
Constructing Generators of Cohomology Classes

on Surfaces

Josua Rieder

October 2022

Contents

1 Introduction 2
1.1 Motivation . 2
1.2 Terminology and Notation . 2

2 Problem Formulation 4
2.1 Setting . 4
2.2 Input Constraints . 5
2.3 Objectives . 5
2.4 Secondary Objectives . 6
2.5 Complexity Analysis . 6

3 Proposed Algorithms 7
3.1 Precomputations . 7
3.2 Topological Cycles . 10

3.2.1 Intersection Resolution . 12
3.2.2 Time Complexity . 16

3.3 Electric Connector Cycles . 18
3.3.1 Time Complexity . 20

3.4 Magnetic Port Cycles . 20
3.4.1 Time Complexity . 22

4 Verification 24
4.1 Derivation . 24
4.2 Implementation Considerations 25

5 Implementation 26
5.1 Testing . 26
5.2 Illustrations . 26

6 Conclusion and Further Work 28

1

Chapter One

Introduction

1.1 Motivation

Given a bounded Lipschitz-polyhedron ΩC ⊆ R3 whose surface ∂ΩC is endowed
with a polygonal discretization Γh, we seek to compute a minimal generating
set of surface edge cycles that are independent in H1(Γh,Z). For problems
with trivial boundary conditions, an algorithm that terminates in O(|E|) steps
is known where |E| is the number of edges of Γh [1]. If, additionally, electric
and magnetic constraints are imposed on some surface elements as in [2], new
algorithms are necessary to, one, ensure that the boundary conditions don’t
interfere with the topological cycles and, two, to find the remaining generators
corresponding to the electric and magnetic ports, which is what we aim to offer
in this work.

1.2 Terminology and Notation

As our work is largely a discretized, computational continuation of the theo-
retical groundwork laid out in [2], we use the terms field domain Ω, circuit
domain ΩC , ports Γi

E , Γ
i
M , cycles γ as well as the notion of σ-relativity exactly

as defined therein.
A walk on a graph G = (V,E) is a sequence of vertices w = (v1, . . . , vn)

where vi ∈ V and {vi, vi+1} ∈ E. We interpret all walks to be open per default,
i.e. we don’t treat {vn, v1} to be among the edges belonging to the walk (and
as such it may not even necessarily be an element of E). Whenever we want to
construct a loop, we always include the first vertex as the last: v1 = vn.

A path is a walk where the vertices (bar the potential wraparound v1 = vn)
are unique. The distinction is not reflected in notation nor code.

An edge function is any function defined on the edge set E of a graph.
In the context of this thesis, we only work with edge functions mapping into
the integers: f : E → Z. From a programming perspective, such functions
are implemented as contiguous, dynamic array of integers and are thus called

2

edge vectors. The algorithm for how to convert walks into edge vectors is not
presented as it is fairly trivial; the only point of caution is that the internal
orientation of the edges has to be respected in this conversion.

For tuples, we let the absolute value notation | · | refer to their length and
the subscript notation k to their k -th element.

For graphs G, we always allow denoting their vertex and edge set as VG and
EG respectively, even if G was not previously defined as G := (VG, EG).

We employ the subroutine BFS (initialism of breadth-first search) in nu-
merous listings. It accepts as arguments the graph G, the set of starting points
S and the set of end points E and returns a tuple containing the vertices of a
shortest path found from S to E : BFS(G,S ⊆ VG, E ⊆ VG)→

⋃∞
i=0 V

i
G. In case

no path from S to E was found, it returns the empty tuple ().
We also employ the subroutine MST (initialism of minimum spanning tree).

It accepts as arguments the connected graph G and optionally a weight function
w and returns a subgraph of G: MST(G,w : EG → R)→ (VG, E

∗
G ⊆ EG).

3

Chapter Two

Problem Formulation

2.1 Setting

Let Sl denote the set of l-primitives for l = 0, 1, 2. Note that we don’t restrict
ourselves to l-simplices so as to not exclude quadrilateral discretizations which
are commonly used in the context of the finite element method. The relationship
between primitives of adjacent dimensions is captured by the oriented incidence
relations ιll−1 : Sl−1 × Sl → {−1, 0, 1}. Every positive-dimensional primitive
is thought of as possessing an interior orientation that manifests through its
incidence relation with its substrate: ι(x,y) = ±1, if the induced orientation
of x with respect to y concurs/disagrees with the interior orientation of x;
ι(x,y) = 0, if x is not contained in y.

Analogously to [2], we denote the circuit domain surface elements as:

G :=
{
Γ1
E , . . . ,Γ

NE

E ,Γ1
M , . . . ,ΓNM

M ,ΓI

}
(2.1)

The port function p : S2 → G is the discrete counterpart of the continuous
boundary conditions as described in [2] and serves as the third and final input.

s12 s11

s21

s31 s10

s20

s30

Figure 2.1: Ex. of an Sl and ι

ι21(s
1
1, s

1
2) = −1

ι21(s
2
1, s

1
2) = −1

ι21(s
3
1, s

1
2) = 1

ι10(s
1
0, s

1
1) = 1

ι10(s
2
0, s

1
1) = −1

ι10(s
3
0, s

1
1) = 0

ι10(s
1
0, s

2
1) = 0

ι10(s
2
0, s

2
1) = 1

ι10(s
3
0, s

2
1) = −1

ι10(s
1
0, s

3
1) = 1

ι10(s
2
0, s

3
1) = 0

ι10(s
3
0, s

3
1) = −1

4

2.2 Input Constraints

A number of constraints apply to the input:

1. The mesh defined by Sl is the surface of a Lipschitz-polyhedron. In par-
ticular, this implies that the mesh is connected and orientable.

2. Every port is topologically trivial, i.e. simply connected.

3. Every vertex belongs to at most one port.

Compare also assumption 1 in [2].

2.3 Objectives

Using the port function p defined above, we introduce the notion of excluded
mesh elements:

• A face f is an excluded face iff it is affiliated with a port: p(f) ̸= ΓI

• An edge e is an excluded edge iff at least one of its bordering faces belongs
to an electric port or both bordering faces belong to a magnetic port.

• A vertex v is an excluded vertex iff it belongs to an electric port or is in
the interior of a magnetic port.1

Figure 2.2: Excluded vertices in red Figure 2.3: Excluded edges in red

Our objective is to find a minimal set of fundamental cycles γ1, . . . , γN non-
bounding relative to ∂ΓE which is thus restricted to the non-excluded edges.
As discussed in section 3.2 of [2], such cycles fall into one of three classes:

1In the graph-theoretic setting, interiorness is verified by checking whether any neighboring
vertex is unaffiliated with any port.

5

1. Topological cycles, of which there are NT = 2β1(ΩC) where β1 is the first
Betti number and ΩC is the circuit domain. As such, each one-dimensional
hole in the circuit domain corresponds to a pair of cycles.

2. Electric connector cycles, of which there are max(NE − 1, 0) in the case
of a single connected circuit domain.

3. Magnetic port cycles, of which there are max(NM − 1, 0) in the case of a
single connected circuit domain.

These N cycles may then be used to obtain the discrete counterpart of the
corresponding tangential cohomology vector fields c1, . . . , cN satisfying∫

γj

cm · ds =

{
1 m = j,

0 else,
j,m ∈ {1, . . . , N} (2.2)

2.4 Secondary Objectives

As a secondary objective, we desire cycles that are as short as possible. Short-
ness here refers to the number of contained edges, not distance in a metric space.
The benefit of short cycles lies within superior numerical stability during the
subsequent FEM step of the electromagnetic simulation.

2.5 Complexity Analysis

To facilitate the inquiry into our algorithms’ complexity, it is beneficial to pro-
vide some (in-)equalities that we can draw on later.

First, we assume the maximum polygonal arity, the maximum number of
edges belonging to a single polygon, to be constant:

amax = max
f∈S2

∑
e∈S1

∣∣ι21 (l, f)∣∣ (2.3)

This assumption is justified because, in practice, the maximum arity is a
design choice not contingent on the fineness of the mesh.

Secondly, it can be observed that O (|EV |) = O (|EF |) because the mesh is
the surface of a bounded domain.

Lastly, for polyhedra with constant genus g and thus constant Euler char-
acteristic χ = 2 − 2g, we can derive the following with the help of Euler’s
polyhedron formula χ = V − E + F :

O (|VV |+ |VF |) = O (|EV |+ χ) = O (|EV |) (2.4)

O (|VV |) ⊆ O (|EV |) (2.5)

O (|VF |) ⊆ O (|EV |) (2.6)

6

Chapter Three

Proposed Algorithms

3.1 Precomputations

For given Sl, ι, p, collectively referred to as the mesh, we populate a small
number of data structures. All further computations are performed on these
three data structures; they fully capture the problem input.

1. V = (VV , EV): an undirected graph whose vertices are the mesh’s vertices
(S0) and whose edges are the mesh’s edges (S1), called the vertex graph.

2. F = (VF , EF): an undirected graph whose vertices are the mesh’s faces
(S2) and whose edges represent face adjacency, called the face graph.

3. C: an array of size |EV | that stores the two adjacent faces (argmaxf∈S2

∣∣ι21(e, f)∣∣)
and the two contained vertices (argmaxv∈S0

∣∣ι10(v, e)∣∣) for every edge e.

In listings, we will denote access to C as {f1, f2} ← fC(e) and {v1, v2} ←
vC(e) respectively.

Side note: The graphs are implemented as adjacency lists following the array-
of-arrays paradigm (the graph is represented as an array of the size of its vertex
set whose every entry contains an array of outbound edges). Undirectedness is
achieved by doubly inserting, i.e. for every edge {vi, vj}, not only is an entry in
the outbound edge array of vi maintained but also vj .

These two graphs have a number of annotations (accompanying data) asso-
ciated with their vertices and edges:

• VV is annotated with the vertices’ port information, denoted pV : S0 → G.
In the code, the port information is a pair of enumerator (for the port type)
and index to indicate which subset of 2.1 the element belongs to.

• EV is annotated with the edges’ indices and directions.
The latter is denoted vC : S1 → S20 , a mapping from edges to ordered
pairs of vertices.

7

In the code, the edge direction is an enumerator to indicate whether the
direction of the edge dictated by ι is from the vertex with the lower index
to the one with the higher index or the reverse.

• VF is annotated with the faces’ port information and vertex list.
The latter is denoted vF : S2 →

⋃∞
i=0 Si0.

In the code, the port information is identical to that of VV and the vertex
list is an array of vertex indices obeying the inherent order dictated by ι.

• EF is annotated with the vertex graph edge index that the face graph
edge crosses, denoted eV : EF → EV .

1

The edges of the face graph signify face adjacency and therefore don’t
directly correspond to mesh edges. However, for meshes that discretize
a bounded domain (which is one of our prerequisites), face graph edges
always correspond to vertex graph edges because there are no borders.

While populating the annotation of the vertices’ (VV) port information, we
also make sure that every vertex belongs to at most one port.

Within computer memory, these annotations manifest as additional data
stored per vertex (in the case of vertex annotations) and per outbound edge (in
the case of edge annotations). This is taken care of by the graph theory library.
See chapter 5 for more.

It may come as a surprise that our vertex graph is undirected despite the
input mesh being endowed with an orientation. The directionality information
is actually still preserved (as part the annotations of EV and VF); defining the
graph as undirected, however, makes implementing some of the algorithms - in
particular the topological cycle algorithm - more comfortable. Asymptotically,
there is no difference.

1This is achieved by constructing EF and its annotation only after C has been populated.
At that point, one can iterate over C and insert an element into EF for every encountered
face pair.

8

The following is a small collage illustrating the different structures associated
with an exemplary torus mesh. The left and right, as well as the top and bottom
edges of the diagrams are identified, i.e. they refer to the same edges which is
the reason why it looks like there is a shortage of vertices in 3.2.

Figure 3.1: Mesh Figure 3.2: Mesh + VV Figure 3.3: Mesh + VF
2

All the computations presented in this section up until this point are trivial
to perform, so we won’t describe their derivation. A reference implementation
is also available. The last step we will describe in a little more detail:

Once all structures have been populated, we will find an orientation of the
mesh. The orientation of a face is stored in our data structures by the order in
which the vertices appear in a face’s vertex list (vF). Inverting the orientation
of a face is equivalent to reversing this list. To compute an orientation, we
perform the following steps for each connected component3 of the face graph:

1. Pick a random face from the respective connected component.

2. Initiate a depth-first search starting at that face, storing a boolean array
for which faces have been visited and storing the predecessor alongside on
the DFS-stack that indicates which face has led to the discovery of that
face.

2.1. For every visited face, orient it in accordance with its predecessor:

2Note that the elements of VF are not actually nodes with a physical position as this
illustration might suggest. The orange dots are merely an abstract representation of the
entire face they are illustrated to be inside of.

3Although there is only one connected component as per the first input constraint, the
orientation algorithm trivially works for multiple disjoint meshes as well and thus we present
it in that form.

9

2.1.1. Find the edge shared by the current and the predecessor face.

2.1.2. If the edge’s endpoint vertices occur in the same direction4, re-
verse this face’s vertex array.

2.2. While enqueueing the adjacent unvisited faces, check whether the
now oriented current face is oriented in agreement with the the ad-
jacent visited faces, i.e. whether subroutine 2.1. executed on the
current face and that adjacent visited face would be a no-op. If it is
not, abort the algorithm because the mesh is not orientable.

3.2 Topological Cycles

For computing topological cycles, we largely rely on previous work [1]. The only
novel contribution here consists of the intersection resolution code.

Algorithm 1 Topological Cycles

1: procedure TopologicalCycles(V,F)
2: F∗ ←MST (F)
3: V ′ ← (VV , EV \ {eV (e) | e ∈ EF∗})
4: V∗ ←MST (V ′)
5: B ← EV′ \ EV∗ ▷ B is the set of buckles
6: C ← {BFS ((VV′ , EV′ \ {{a, b}}) , {a} , {b}) | {a, b} ∈ B}
7: C ← {PushLoopsOutOfPorts (γ,V) | γ ∈ C}
8: return C
9: end procedure

4As an example, (2, 3) occurs in the same direction in both (1, 2, 3, 4) as well as (5, 2, 3, 6),
but not in (4, 3, 2, 1). The wraparound also has to be considered: (2, 3) occurs in the same
direction in both (1, 2, 3, 4) as well as (3, 4, 1, 2).

10

Figure 3.4: F in orange Figure 3.5: EF∗ in red Figure 3.6: V ′ in blue

Figure 3.7: EV∗ in green Figure 3.8: B in fuchsia Figure 3.9: C in navy

11

3.2.1 Intersection Resolution

In the above algorithm, we computed the topological cycles on the mesh. Be-
cause we eventually want to convert these cycles into edge functions (cf. 2.2)
and because not all edges are admissible in the domain of these functions, we
need to reroute the cycles that happen to include excluded edges.

We now describe the PushLoopsOutOfPorts function used above in the
topological cycle function. As the name suggests, this algorithm only works for
loops. This is not an inherent limitation of the algorithm; an adaptation that
works for open walks is not difficult to arrive at but we would have no use for
it within this work because all topological cycles are loops.

1. If the given loop γ doesn’t contain an excluded edge, terminate.5

2. If the last edge of the loop is an excluded edge, rotate6 the loop until that
is no longer the case.7

3. Iterate through the edges of the loop and for each consecutive run of
excluded edges, do the following:

3.1. Construct a outline graph for the smallest non-excluded outline around
the corresponding port.8

3.2. Find the shortest path on this outline graph from the start to the
end of the run of excluded edges, the detour.

3.3. Replace the run with the shortest path on the port’s outline.

When dealing with electric ports, a lot of extra care has to be taken in step
3.1. when the outline graph is constructed. For PushLoopsOutOfPorts
to not alter the homological properties of the topological cycles, the runs of
excluded edges and their detours have to be topologically equivalent. As ports
are constrained to be topologically trivial, this means that the outline graphs
constructed in 3.1. also have to be topologically trivial. A näıve implementation,

5Even though walks (here: loops) are implemented as arrays of vertices as outlined in the
terminology section, we freely switch back and forth between a vertex-centric and an edge-
centric view. In fact, in the reference implementation, walks come with iterators that make
them behave as though they were arrays of edges instead.

6Special care has to be taken for the last vertex: the correct algorithm is to remove the
last vertex (which is equal to the first vertex), rotate as usual and to then reinsert the new
first vertex at the back.

7This step is not strictly necessary. An equivalent algorithm that omits this step and
instead works with cyclical indices may be devised but we opted for this variant because it
makes the rest of the algorithm a bit easier and because it has no impact on the asymptotic
performance of the algorithm.

8The same graph can later be reused, should another intersection with the same port occur.
This is the reason why these graphs are tabulated in the reference implementation.

9As the outline graphs do not reside in the same space as the mesh and the vertex graph
(cf. figure 3.19), what is illustrated here is merely a projected version “ϕ(G)”. Contrary to
what the illustration suggests, the top and bottom “fangs” are not connected.

10When converting vertex walks to edge vectors, redundant back-and-forths are automati-
cally removed because they cancel out (i.e. sum up to 0) when constructing the edge vector.

12

Figure 3.10: Excluded edges Figure 3.11: C before resolution

Figure 3.12: Outline graphs9 Figure 3.13: Detours

Figure 3.14: C after resolution Figure 3.15: C as an edge vector10

for instance one that uses subgraphs of V as outline graphs, may fail to deliver
on this in situations where electric ports are “close” to being topologically non-
trivial but it may still at least be able to accurately tell when it fails, e.g. by
computing the cyclomatic number r of the generated outline graph.

The following situation (Figure 3.16) is a trap for näıve implementations of

13

PushLoopsOutOfPorts: if the outline graph is constructed as a subgraph
of the vertex graph, the detour chosen for the illustrated intersection “short-
circuits” the topological cycle. The shortest path on the näıve outline graph
between the upper intersection vertex and the lower intersection vertex com-
prises exactly the two edges of the topological cycle that aren’t excluded. The
topological cycle collapses to a loop of length 4 on the two edges between the the
port. Upon constructing the edge vector, the cycle vanishes completely. The
below collage demonstrates correct handling of this situation as performed by
the reference implementation.

Figure 3.16:
C before resolution

Figure 3.17:
C after resolution

Figure 3.18:
C as an edge vector

A more sophisticated approach and also the one pursued in the reference
implementation is to not use subgraphs of V as outline graphs for electric ports
but to potentially insert multiple vertices into the outline graphs (the local
theater) for one and the same vertex in the vertex graph (the global theater).
The idea is to trace along the boundary of the ports and, in the case of electric
ports, to draw arcs (α) of non-excluded edges from and into the boundary for
every boundary edge. These arcs are to be inserted into the outline graph with
no regard for previous arcs: if a global vertex that is part of the current arc was
already part of a previous arc, it is nonetheless inserted again locally. The vertex
in the global theater then corresponds to multiple vertices in the local theater
while they among themselves are not in any way connected to each other. For
magnetic ports, we simply take the tight boundary as our outline graph because
magnetic port boundary edges are not excluded.

We now present the above ideas in a rigorous format. Note that v is any
vertex on the boundary of the port whose outline graph we want to construct.
We naturally have this v at hand when we search for runs of excluded edges in
our intersection resolution code.

14

Algorithm 2 Construct Outline Graph

1: procedure ConstructOutlineGraph(V,F , v ∈ VV)
2: ∂ΓI := {e ∈ EV | (∃f ∈ fC(e) : p(f) = ΓI) ∧ (∃f ∈ fC(e) : p(f) ̸= ΓI)}
3: p← (v, 1) ▷ previous vertex
4: c← p ▷ current vertex
5: l← c ▷ last (final) vertex
6: G← ({c}, {})
7: while true do
8: e ∈ {e ∈ ∂ΓI \ {{p1, c1}} | c ∈ e} ▷ pick arbitrarily11

9: n1 ∈ vC(e) \ {c} ▷ pick unique
10: x← [n1 = l1] ▷ abortion condition
11: if x then
12: n← l
13: else
14: n← (n1, |VG|+ 1)
15: VG ← VG ∪ {n}
16: end if
17: if ∃i : pV (v) = Γi

M then
18: EG ← EG ∪ {{c, n}}
19: else if ∃i : pV (v) = Γi

E then ▷ purely illustrative check

20: α← BFS((VV , E̊V), {c1}, {n1}) ▷ E̊V is EV w/o excluded edges
21: α′ ← ((α2, |VG|+ 1), (α3, |VG|+ 2), . . . , (α|α|−1, |VG|+ |α| − 2))
22: VG ← VG ∪ {α′

1, . . . , α
′
|α′|}

23: EG ← EG ∪ {{c, α′
1}, {α′

1, α
′
2}, . . . , {α′

|α′|, n}}
24: end if
25: if x then
26: break
27: end if
28: p, c← c, n
29: end while
30: return G
31: end procedure

To translate back and forth between the global and the local theater, there
exists a left-unique, right-total relation between VV and VG. However, to be
more in line with the implementation, we opt to rather denote this as ϕ : VG →
VV , v 7→ v1. The inverse is set-valued: ϕ−1 : ranϕ → P(VG) \ {{}}. In the
reference implementation, ϕ is realized by annotating the vertices VG while ϕ−1

is realized by means of a non-unique hash table (from VV to (multiple) VG) that
is updated with every insertion into VG.

Detours between the port boundary vertices a, b ∈ VV are then found by
computing β′ ← BFS(G,ϕ−1(a), ϕ−1(b)) and by then pulling back the re-

11For the very first iteration, there are two choices. For all subsequent iterations, there is
only one.

15

c1 α2

α3n1

p1

c α′
1

α′
2

n

p

ϕ, ϕ−1

Figure 3.19: Snapshot of a ConstructOutlineGraph iteration:
global theater (left), local theater (right), previous arcs EG, current arc α / α′

sulting path β′ into the global theater by mapping its vertices with ϕ: β ←
(ϕ(β′

1), . . . , ϕ(β
′
|β′|)). The resulting β is then woven into the topological cycle,

replacing (a, . . . , b).

3.2.2 Time Complexity

An essential component of TopologicalCycles is the algorithm used to solve
the MST problem. While, as of today, the time complexity of the optimal algo-
rithm solving the general MST problem is not known [3], our task is massively
simplified by virtue of our graphs being unweighted. For unweighted graphs,
any spanning tree is a minimum spanning tree. Spanning trees can be found us-
ing a simple breadth-first search which terminates in O (|V |+ |E|) steps, which
is equivalent to O (|E|) for our types of graphs.

The time complexity of TopologicalCycles is obtained by summing up
the time complexities of its steps:

2: F∗ ←MST (F)
O (|EF |) = O (|EV |)

3: V ′ ← (VV , EV \ {eV (e) | e ∈ EF∗})
O (|VV |+ |EV |+ |EF |) = O (|EV |)

4: V∗ ←MST (V ′)
O (|EV′ |) ⊆ O (|EV |)

5: B ← EV′ \ EV∗

O (|EV′ |+ |EV∗ |) ⊆ O (|EV |)

16

6: C ← {BFS ((VV′ , EV′ \ {{a, b}}) , a, b) | {a, b} ∈ B}
O (|B| · |EV′ |) = O (β1|EV′ |) ⊆ O (β1|EV |); this somewhat output-sensitive
time complexity comes from the fact that every buckle corresponds to one
topological cycle.

7: C ← {PushLoopsOutOfPorts (γ,V) | γ ∈ C}
O
(
β1|EV |2

)
or O (β1|EV |); see below.

The total time complexity of TopologicalCycles is thus concluded to
be either O

(
β1|EV |2

)
or O (β1|EV |) depending on the additional assumptions

made. See below for more details.
We now examine the time complexity of PushLoopsOutOfPorts. It is

obvious that steps 1 and 2 terminate after O (|EV |) operations.
Even though step 3.1 is within a loop, the loop does not really pertain to it in

terms of complexity because the created outline graphs are tabulated, and nei-
ther does the number of topological cycles. We view step 3.1 as being executed
once per port (O (NM +NE) times). For magnetic ports, ConstructOut-
lineGraph simply traces along the boundary and thus takes O (|EV |) steps to
complete for all magnetic ports cumulatively. For electric ports, the time com-
plexity is dominated by the BFS searches we perform for every arc. We compute
O(|∂ΓE |) arcs (the number of electrical boundary edges) and every BFS search
takes O (|EV |) steps to complete. We conclude that step 3.1 takes O(|∂ΓE ||EV |)
steps to complete. In many situations, e.g. if |EV | increases through uniform
refinement of the mesh, the number of electric port boundary edges is asymp-
totically equivalent to the number of vertex graph edges O(|∂ΓE |) = O (|EV |),
leaving us with the complexity of O(|EV |2).

Although the complexities presented for this step are relatively large, we
conjecture that they are not tight upper bounds and that the true upper bound is
closer to Θ (NE |EV |). In fact, if we again consider the case where |EV | increases
as a consequence of uniform refinement of the mesh, we can expect that after
a constant number of refinements, the BFS step becomes unable to discover
other ports because it reaches n1 too quickly. However, if other ports are out
of the equation, the generated path α cannot be longer than the arity of the
polygon that the edge {c1, n1} is part of which is bounded by the constant amax

per 2.3. In that case, the electric port outlines are just a constant factor times
longer than tight boundaries and computing them takes only O (|EV |) steps for
all electric ports cumulatively.

Each execution of steps 3.2 and 3.3 takes O (|EV |) operations to terminate
because the size of the number of edges in such an outline graph is only bounded
from above by O (|EV |). Finding and inserting O (|EV |) shortest paths (thanks
to loop 3), each of length O (|EV |), takes O

(
|EV |2

)
steps to complete.

For an example where PushLoopsOutOfPorts really does take Θ
(
|EV |2

)
steps to complete, consider figure 3.20: “the comb”. The illustrated strip is the
surface of a torus, Θ (|EV |) edges long and a constant number of edges wide.
The given topological cycle intersects the single magnetic port Θ (|EV |) times
while the average shortest path around the port is also Θ (|EV |) edges long.

17

Θ (|EV|)

C

Figure 3.20: “The comb” (torus surface)

Note that it is entirely possible for the first 6 steps of TopologicalCycles
to yield the illustrated topological cycle, provided that a sufficiently adversarial
MST algorithm is used.

If we venture the assumption that the total number of intersections between
each topological cycle and all ports (or equivalently, the number of consecutive
runs of excluded edges in each topological cycle) is bounded by a constant, the
time complexity shrinks because loop 3 is only performed a constant number of
times. The new time complexity of steps 3.2 and 3.3 would become O (|EV |)
including the loop.

Summing up the above complexities gives us a total complexity of either
O
(
|EV |2

)
or O (|EV |) for PushLoopsOutOfPorts, depending on the addi-

tional assumptions made. Combined with the fact that the subroutine is invoked
Θ(|C|) = Θ(|B|) = β1 times, this yields a total time complexity of O

(
β1|EV |2

)
or O (β1|EV |) respectively for step 7.

3.3 Electric Connector Cycles

As described in more detail in [2], the sought-after electric connector cycles γE
i ,

i = 1, . . . , NE are exactly those walks that start and end on the boundary of
electric ports and that establish connections between all electric ports. We will
take extra care to ensure that the generated electric connector cycles are optimal
in the sense as defined in 2.4, i.e. contain the lowest number of edges possible.

18

Algorithm 3 Electric Connector Cycles

1: procedure ElectricConnectorCycles(V,F)
2: V̊ ← (VV , E̊V) ▷ E̊V is EV without the excluded edges
3: for i = 1, . . . , NE do
4: V i

B ← ∅ ▷ sets of boundary vertices
5: end for
6: for all e ∈ EV do
7: if (∃i∃f ∈ fC(e) : p(f) = Γi

E) ∧ (∃f ∈ fC(e) : p(f) = ΓI) then
8: V i

B ← V i
B ∪ vC(e)

9: end if
10: end for
11: G = (VG, EG)← ({Γ1

E , . . . ,Γ
NE

E }, ∅) ▷ port reachability graph
12: γE : EG →

⋃∞
i=0 V

i
V ▷ codomain is the set of walks on VV

13: for i = 2, . . . , NE do
14: for j = 1, . . . , i− 1 do
15: γE

j,i ← BFS(V̊, V j
B , V

i
B)

16: if |γE
j,i| ≠ 0 then ▷ if a path was found

17: e = {Γj
E ,Γ

i
E}

18: EG ← EG ∪ {e}
19: γE(e)← γE

j,i

20: end if
21: end for
22: end for
23: w : EG → N, e 7→ |γE(e)| ▷ edge weight function
24: G∗ ←MST(G,w)
25: return

{
γE(e) | e ∈ EG∗

}
26: end procedure

Figure 3.21: γE with many overlaps Figure 3.22: γE |EG∗

19

3.3.1 Time Complexity

It can easily be seen that the lines 2 to 12 terminate in O (|EV |) steps.
As for the nested loop from line 13 to 22, a näıve implementation may have a

complexity of O
(
N2

E |EV |
)
but this is not strictly necessary. It suffices to only perform

NE − 1 breadth first searches if, in every search, the shortest path from the starting
port to every other port is recorded. This is the approach taken by the reference
implementation and brings the complexity down to O (NE |EV |).

As for line 23, it is clear that it inherits the above complexity: the paths γE

have been constructed in O (NE |EV |) steps so they cannot be longer in total than
O (NE |EV |) vertices and measuring them also cannot take longer than O (NE |EV |)
steps.

For a second time, we depend on the complexity of an MST subroutine for line
24 and for a second time, just as in 3.2.2, we find ourselves in a simplified case for
which the complexity is a known result. As the edge weights for our port reachability
graph stem from the number of vertices between the ports, we are restricted to integer
weights for which a linear-time MST algorithm is known [4]. Thanks to this result,
line 24 can be finished in O (NE + |EG|) steps. As for |EG|, we can use the same
argument as above and conclude that |EG| cannot grow faster than NE |EV | so we can
bound the time complexity of this line with O (NE |EV |) too.

Line 25, dealing with less than NE paths, each of which is no longer than |EV |,
trivially terminates in O (NE |EV |) steps too.

We thus conclude that the time complexity of the entire ElectricConnector-
Cycles routine is O (NE |EV |).

3.4 Magnetic Port Cycles

As discussed in [2], for our connected surface, the desired magnetic connector cycles
each comprise of two loops: one loop around the cycle’s respective magnetic port
and one disagreeing loop around a singled-out magnetic port. Pursuant to our sec-
ondary objective, we choose the magnetic port with the shortest boundary for the
role of the singled-out port. “Disagreeing” here refers to the constraint that, among
the two loops of every cycle, one loop should agree with the orientation of the faces
of the port it bounds whereas the other one should disagree with it. The function
BoundaryOrientation serves to determine the agreement between a boundary loop
and the faces of the port it bounds.

For the implementation of MagneticPortCycles, we first construct the edge
vector (Z|EV |) for the boundary of every magnetic port. This is achieved by first
finding any edge on the boundary of the magnetic port and then tracing along the
boundary until the initial edge is rediscovered. Some care has to be taken to properly
respect the edges’ interior orientation (vC). The shortest among all boundaries is then
removed from this set and added disagreeingly onto all other edge vectors.

For the implementation of BoundaryOrientation, we consider an edge of the
boundary loop as well as the port face it touches and then compare the direction
prescribed onto the edge by the boundary loop and by the face (vF).

20

Algorithm 4 Magnetic Port Cycles

1: procedure MagneticPortCycles(V,F)→ P(Z|EV |)

2: ∂Γi
M := {e ∈ EV | {p(f) | f ∈ fC(e)} = {Γi

M ,ΓI}}
3: B ← {} ▷ magnetic port boundary edge vectors
4: for i = 1, . . . , NM do
5: γ ← 0|EV | ▷ edge vector

6: e ∈ ∂Γi
M ▷ pick arbitrarily

7: p← vC(e)1 ▷ previous vertex
8: c← vC(e)2 ▷ current vertex
9: l← c ▷ last (final) vertex

10: do
11: if p = vC(e)1 then ▷ check edge’s interior orientation
12: δ ← 1
13: else
14: δ ← −1
15: end if
16: γe ← γe + δ

17: e ∈ {e′ ∈ ∂Γi
M \ {e} | c ∈ e′} ▷ pick unique

18: n ∈ vC(e) \ {c} ▷ pick unique
19: p, c← c, n
20: while c ̸= l
21: B ← B ∪ {γ}
22: end for
23: if |B| < 2 then
24: return {}
25: end if
26: γ∗ ∈ argminγ∈B |{e ∈ EV | γe ̸= 0}| ▷ pick arbitrarily
27: φ∗ ← BoundaryOrientation(V,F ,γ∗)
28: C ← {}
29: for γ ∈ B \ {γ∗} do
30: φ← BoundaryOrientation(V,F ,γ)
31: C ← C ∪ {γ − φφ∗γ∗}
32: end for
33: return C
34: end procedure

21

Algorithm 5 Boundary Orientation

1: procedure BoundaryOrientation(V,F ,γ ∈ Z|EV |)→ {−1, 1}
2: e ∈ {e ∈ EV | γe ̸= 0} ▷ pick arbitrarily

3: f ∈ {f ∈ fC(e) | ∃i : p(f) = Γi
M} ▷ pick unique

4: v ← vF (f)
5: i ∈ {i ∈ {1, . . . , |v|} | vi = vC(e)1} ▷ pick unique
6: if i = |v| then
7: j ← 1
8: else
9: j ← i+ 1

10: end if
11: if vj = vC(e)2 then
12: φ← 1
13: else
14: φ← −1
15: end if
16: return φ sgn(γe)
17: end procedure

As an example, consider the following situation with two magnetic port cycles
γ1,γ2. The round circles illustrate the faces’ interior orientation. It can be seen how
in the two cycles the loop γ∗ occurs in different winding directions.

Figure 3.23: γ1 ∈ C Figure 3.24: γ2 ∈ C

3.4.1 Time Complexity

The first part of BoundaryOrientation is to find a vertex graph edge that occurs
within the provided boundary loop. As we cannot make any further assumption as to
where within γ the first such edge occurs, this takes us Θ (|EV |) steps to complete.

The second and final non-constant-time part of BoundaryOrientation is the
search for vC(e)1 in v which takes Θ (|v|) steps to complete. However, this can be

22

bounded by O (amax) which we assumed to be constant in 2.3.
The total time complexity of BoundaryOrientation thus comes out as Θ (|EV |).

The first part of MagneticPortCycles, constructing all boundaries B, takes
O (|EV |) steps to complete per magnetic port, hence O (NM |EV |) in total (obviously
Θ (|B|) = Θ (|C|) = Θ (NM)). As we assume that we are working with dense data
structures12, it can also be observed that this complexity cannot be undercut because
the vectors in B contain Θ (NM |EV |) scalars and thus necessitate at least Θ (NM |EV |)
steps to be constructed.

Finding the shortest boundary loop γ∗ requires inspecting each of the scalars
initialized in the previous part a constant number of times and, thus, doesn’t change
the complexity.

In the last relevant part, we invoke BoundaryOrientation (Θ (|EV |)) and per-
form a linear algebra operation (Θ (|EV |)). Both these steps are executed Θ (|B|) =
Θ (NM) times, giving us a complexity of Θ (NM |EV |) for this part, too.

The total time complexity ofMagneticPortCycles is thus shown to be Θ (NM |EV |).

12“Dense” here refers to an implementation paradigm of linear algebra (here, vector) data
structures. Unlike sparse data structures, dense data structures incur complexity even if filled
with zeros. Sparse data structures which would change the complexity of this step were,
however, not investigated within the scope of this work.

23

Chapter Four

Verification

4.1 Derivation

We define the boundary operator for l-chains:

Bl : R|Sl| → R|Sl−1|, l = 1, 2 (4.1)

Using the incidence function ι as defined in 2.1, this operator can be represented
as a matrix:

Bl ∈ {−1, 0, 1}|Sl−1|×|Sl| (4.2)

(Bl)j,k = ιll−1

(
sjl−1, s

k
l

)
(4.3)

where j = 1, . . . , |Sl−1| and k = 1, . . . , |Sl|. The matrix Bl is the signed incidence
matrix of l- and l − 1-primitives.

We use the symbol̊ to denote removal of excluded primitives:

S̊l := {sl ∈ Sl | sl is not excluded} (4.4)

This notion naturally extends to Bl (and, thus, Bl) by restricting the domain and
codomain:

B̊l : R|S̊l| → R|S̊l−1| (4.5)

As derived in [2], our task consists of finding all 1-chains on the edge set S1 whose
boundary is either empty or contained in ∂ΓE . Finding these 1-chains is equivalent to
finding the null space ker B̊1.

It is known that the null space of B̊1 is contained in the range of B̊2, formally
ker B̊1 ⊆ ran B̊2. The generating 1-chains {̊c1, . . . , c̊M} ⊆ Z|S1| are supposed to close
this gap, hence the following equation must hold:

ker B̊1 = ran B̊2 + span {̊c1, . . . , c̊M} (4.6)

This viewpoint places the verification problem wholly into the domain of linear
algebra, allowing us to tackle it using linear algebra methods. We start off by defin-

ing C̊ :=
[̊
c1 · · · c̊M

]
∈ {−1, 0, 1}|S̊1|×M which allows us to make the following

simplifications:

24

ker B̊1 = ran B̊2 + span {c1, . . . , cM}

ker B̊1 = ran B̊2 + ranC (4.7)

ker B̊1 = ran
[
B̊2 C

]
(4.8)

We give this composed matrix a name for convenience’s sake:

X :=
[
B̊2 C̊

]
∈ {−1, 0, 1}|S̊1|×|S̊2|+M (4.9)

Verifying 4.8 is equivalent to verifying the following pair of equations:

B̊1X = 0 (4.10)

ker

[
B̊1

XT

]
= {0} (4.11)

the former of which proves ranX ⊆ ker B̊1 while the latter proves that there are
no linearly dependent and thus redundant 1-cycles among {̊c1, . . . , c̊M}.

Equation 4.11 can be reformulated to a definiteness problem:

ker

[
B̊1

XT

]
= {0}

ker
(
B̊

T

1 B̊1 +XXT
)
= {0} (4.12)

B̊
T

1 B̊1 +XXT is s.p.d. (4.13)

The last step follows from the observation that for any real-valued matrix A,
the matrix AAT is symmetric positive semi-definite which is preserved under matrix
addition. Lastly, the fact that the null space is trivial (4.12) rids us of the “semi-”.

4.2 Implementation Considerations

There are numerous ways to test whether a given symmetric matrix is positive defi-
nite, the most well-known of which is probably the Cholesky decomposition. A point
worth making is, however, that despite us venturing into the domain of computational
linear algebra in our verification routine, we did not necessarily lose determinacy. All
matrices we’ve constructed are integer-valued and checking whether an integer-valued
matrix is positive definite can be done deterministically by using rational numbers
instead of floating point numbers.

25

Chapter Five

Implementation

A reference implementation written in C++20 is provided as a module of LehrFEM++
[5] and builds upon LehrFEM++’s API for handling meshes. However, the only part
of the cohomological cycle computation pipeline that interfaces with LehrFEM++ is
the constructor of the internal mesh data structure. Additionally, some of the auxil-
iary visualization utilities also operate on some of the data structures of LehrFEM++
but they are not relevant to the computation of cycles. By rewriting the aforemen-
tioned constructor to use a different input data structure, the cohomological cycle
computation pipeline can be used independently of LehrFEM++.

The reference implementation including the verification and the auxiliary visual-
ization modules is fully documented using Doxygen [6].

For the basic graph theoretical building blocks, the reference implementation draws
on the C++ graph theory library Quiver [7], which provides a class for adjacency lists
and routines for spanning tree computations and breadth-first search.

5.1 Testing

In the unit test file, we first test the correctness of some more isolated pieces of code
including the correct rejection of input that fails to meet one of the preconditions.

The main part, however, consists of running the entire cohomology pipeline on
a number of preconstructed test cases and invoking the verification routine on the
generated cycles as well as verifying known relationships such as NT = 2β1(ΩC). The
set of test cases comprises two cubes, five tori and a sequence of handlebodies with
genera ranging from 0 to 20. Some of these scenarios test intricate constellations such
as the one presented in Figure 3.16. The meshes used in the different test cases range
from anywhere between 8 and 3000 vertices in size while the number of ports ranges
from 0 to 42. All tests complete successfully.

5.2 Illustrations

The 2D images were handcrafted using the program Inkscape [8].
The 3D images were stylized and rendered using the program ParaView [9]. The

3D models have been generated using the auxiliary visualization utilities included in

26

the reference implementation. The visualization utilities are able to export various of
the internally used data structures to OBJ files.

27

Chapter Six

Conclusion and Further
Work

We have presented algorithms to compute and verify cycles for electromagnetic prob-
lems with nontrivial boundary conditions and we have provided complexity analyses
for these algorithms. We have also provided a reference implementation of the algo-
rithms and of the verification routine with which we have been able to confirm the
correctness of the generated cycles in all tested scenarios.

Further research question in this direction may include:

• Investigate the use and complexity benefit of sparse data structures as briefly
alluded to in the analysis of the magnetic port cycle algorithm.

• Investigate alternative ways to generate the topological cycles in a setting with
impermissible (excluded) edges, in particular whether it is possible to “guide”
the MST algorithm so that the resulting topological cycles don’t contain ex-
cluded edges, saving us the need to move them away from the excluded edges
in a post-processing step.

• Investigate ways to shorten cycles without altering their homological properties.

28

Bibliography

[1] R Hiptmair and J Ostrowski. Generators of H1(Γh,Z) for triangulated sur-
faces: Construction and classification. Report 160, SFB 382, Universität Tübingen,
Tübingen, Germany, 2001. SIAM J. Computing.

[2] Ralf Hiptmair and Jörg Ostrowski. Electromagnetic port boundary conditions:
Topological and variational perspective. International Journal of Numerical Mod-
elling: Electronic Networks, Devices and Fields, 34(3):e2839, 2021.

[3] Seth Pettie and Vijaya Ramachandran. An optimal minimum spanning tree algo-
rithm. J. ACM, 49(1):16–34, jan 2002.

[4] Michael L. Fredman and Dan E. Willard. Trans-dichotomous algorithms for mini-
mum spanning trees and shortest paths. Journal of Computer and System Sciences,
48(3):533–551, 1994.

[5] Raffael Casagrande and Ralf Hiptmair. LehrFEM++. https://github.com/

craffael/lehrfempp.

[6] Dimitri van Heesch. Doxygen. https://www.doxygen.nl/.

[7] Josua Rieder and Pascal Sommer. Quiver. https://github.com/JosuaRieder/

Quiver.

[8] Inkscape Project. Inkscape. https://inkscape.org.

[9] Los Alamos National Laboratory Sandia National Laboratories, Kitware Inc. Par-
aView. https://www.paraview.org/.

29

https://github.com/craffael/lehrfempp
https://github.com/craffael/lehrfempp
https://github.com/JosuaRieder/Quiver
https://github.com/JosuaRieder/Quiver

	Introduction
	Motivation
	Terminology and Notation

	Problem Formulation
	Setting
	Input Constraints
	Objectives
	Secondary Objectives
	Complexity Analysis

	Proposed Algorithms
	Precomputations
	Topological Cycles
	Intersection Resolution
	Time Complexity

	Electric Connector Cycles
	Time Complexity

	Magnetic Port Cycles
	Time Complexity

	Verification
	Derivation
	Implementation Considerations

	Implementation
	Testing
	Illustrations

	Conclusion and Further Work

