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Abstract

This thesis shows the application of the boundary element method to
dielectric breakdown prediction and its fast computation using graph-
ics processing unit. First, the problem is formulated in the boundary el-
ement context. Then, based on the H2Lib library, the necessary kernels
are developed in OpenCL to offload and distribute the computations
onto multiple GPUs. The key features of the implementation are illus-
trated in detail. Last but not least the performance and accuracy of the
newly implemented code are evaluated against an existing industrial
code.
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Chapter 1

Introduction

Every high voltage device has to pass dielectric type tests, in which a large
voltage is applied to the device. The test is passed if no dielectric break-
down occurs. A breakdown usually starts from an electrode-surface with
high dielectric stress, and then propagates through the volume towards the
opposing electrode, see figure 1. This propagation stops if the electric field
strength along the breakdown path is not strong enough [3].

Figure 1.1: The electric field strength on the surface of a disconnector and possible breakdown
paths along field lines.

An inception of a streamer, i.e. the initial state of a breakdown only occurs
if the criterion (1.1) is fulfilled.

∫
γ

αe f f (|E(γ(s)|)ds < Kstr (1.1)

Herein αe f f is the effective ionization function that depends on the strength
of the electric field E, and Kstr is the (gas specific) streamer constant. Thus
the prediction of a dielectric breakdown during a type test requires the com-
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putation of the electric field at all surface points and along field lines in the
volume.

Simulation-based dielectric design became a standard procedure because
a user-friendly, i.e., fast, robust, reliable, and easy-to-use computational
method was developed [2], [4]. In the following chapter we will first de-
scribe the boundary element method formulation and then introduce how
general-purpose graphics processing units (GPGPUs) can be used to reduce
computing times. In the third chapter key implementation features will be
discussed and the distribution of the workload on to multiple GPUs. Last
but not least results will be presented with a focus on application and the
comparison to an exiting industrial code.
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Chapter 2

Theoretical Background

The necessary equation can be derived directly from Maxwell’s equations
[2]. In the case of electrostatics all terms with a time derivative vanish. Thus
we have

∇× E = 0, (2.1)
∇D = ρ. (2.2)

The electric field is conservative and can be expressed as the gradient of the
scalar potential ϕ

E = −∇ϕ. (2.3)

Assuming linear materials the constitutive relation has the following form

D = εE, (2.4)

where ε is the permittivity of the material. Combining the above equations,
we have that the potential ϕ satisfies the Poisson equation

∇2ϕ = −ρ

ε
. (2.5)

In absence of charges in space this is simply the Laplace equation

−∇2ϕ = 0. (2.6)
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2.1. Formulation

2.1 Formulation

We use an indirect formulation with a single layer potential

ϕ(x) = ΨSL[σ](x) =
∫

Γ

1
4π|x− y|σ(y)dSy. (2.7)

Herein, x is any point in the domain, y is a point on the surface and σ is the
surface charge distribution.

Conductors A conductor, a well separated conducting part, is on a constant
potential. If a conductor is connected to a voltage source U0, then it holds
for all points of the conductor surface ΓC that

ϕ(x) = U0 ∀x ∈ ΓC. (2.8)

Floating Conductors For conductors that are not connected to a voltage
source it holds that

ϕ(x) = U ∀x ∈ ΓF. (2.9)

where ΓF is the surface of the floating conductor and U is an additional
unknown that can be determined by a charge neutrality condition [1]. It can
be derived from the Gauss law

∫
ΓF

D · ndS = Q. (2.10)

The normal component of displacement field can be expressed as

D · n = εE · n = −ε∇ϕ · n = −ε∇nΨSL[σ]. (2.11)

The last term is the exterior Neumann trace of the single layer potential and
can be expressed with help of the adjoint double layer

∇nΨSL[σ] =
1
2

σ + K′σ. (2.12)

Combination of the equations from above yields the constraint

∫
ΓF

1
2

εσ + εK′σdS = 0 (2.13)
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2.1. Formulation

This can be extended if the floating conductor is a thin sheet, i.e. modeled
only by a single surface. Then the electric field from the other side needs
also to be taken into account

∫
ΓF

1
2
(ε1 + ε2)σ + (ε1 − ε2)K′σdS = 0. (2.14)

Dielectric Interfaces On dielectric surfaces the free surface charge σS has
to vanish everywhere. The interface condition reads as

n · (D2 −D1) = 0. (2.15)

Thus the condition that has to be fulfilled on the dielectric surface ΓD is

1
2
(ε1 + ε2)σ(x) + (ε1 − ε2)(K′σ)(x) = 0 for x ∈ ΓD. (2.16)

General problem In a general setting we have to solve the following set of
integral equations.

(Vσ)(x) = U0 for x ∈ ΓC (2.17)

(Vσ)(x)−U = 0 for x ∈ ΓF (2.18)

1
2
(ε1 + ε2)σ(x) + (ε1 − ε2)(K′σ)(x) = 0 for x ∈ ΓD (2.19)

with the additional constraints for the floating potentials either of this form∫
ΓF

1
2

εσ + εK′σdS = 0 (2.20)

or in case of a floating sheet in the following form∫
ΓF

1
2
(ε1 + ε2)σ + (ε1 − ε2)K′σdS = 0 (2.21)

where the single layer potentials V is

(Vσ)(x) =
∫

Γ

1
4π|x− y|σ(y)dSy (2.22)

and the adjoint double layer potential K′ is

(K′σ)(x) =
∫

Γ

(x− y) · n(x)
4π|x− y| σ(y)dSy. (2.23)
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2.2. GPU Programming

2.1.1 Field lines

To compute field lines we have to solve the following ODE

dγ(s)
ds

= E(γ(s)) (2.24)

where γ(s) is the field line and E the electric field.

The electric field is the gradient of the potential (2.3). It can be therefore com-
puted from the gradient of the single layer potential of the surface charge
distribution.

E(x) = −gradx

∫
Γ

1
4π|x− y|σ(y)dSy =

∫
Γ

(x− y)
4π‖x− y‖3 σ(y)dSy (2.25)

2.2 GPU Programming

In this section we will shortly describe the difference between a CPU and a
GPU as well as explain the core concepts of OpenCL.

2.2.1 CPU vs. GPU hardware

Both CPU and GPU comprise of arithmetic logic units (ALU), control logic
and a fast local cache and more but slower memory (DRAM). These compo-
nents differ in size, complexity and number for CPUs and GPUs.

A CPU has a relative small number of ALU, a fairly complex control logic
unit and a large cache. Thus is well suited for sequential instruction execu-
tion, using techniques like out-of-order execution and speculative execution
and low latency of the cache to be fast.

Figure 2.1: Difference of CPU and GPU hardware

A GPU mostly consists of hundreds of ALUs, simpler control logic with a
small cache. A GPU is mainly built to do computationally intensive work.
Its focus lies on high throughput. It uses different techniques to achieve that.
First, it uses massive vectorization of the workload. The vector-registers
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2.2. GPU Programming

on a GPU have a typical width of 32. Thus 32 threads execute the same
instruction at once. These threads on a GPU are bundled together in so
called warps or wavefronts that fill this vector registers. Second, it uses so
called latency hiding, where multiple warps are ready to be executed on the
same compute unit. The scheduler picks one warp to execute. When its
execution stalls, maybe waiting for a memory access, another warp, that is
ready to be executed on the same compute unit, is executed in the mean
time. Thus the latency of the memory access of the first warp is hidden
behind the execution of another warp.

The challenge to use the full potential of GPU is to have enough parallelism
to fill all instruction-registers, multiple warps per compute unit and to have
the full width of the vectorized units do the same instruction.

2.2.2 OpenCL

OpenCL is an open standard for parallel programming of heterogeneous
systems. It allows to write programs that can be executed in parallel on
heterogeneous systems by providing an high-level abstraction over these
systems. There exist in-depth guides like [8]. Here we will only give a short
introduction to OpenCL and its core concepts.

The platform model gives a high-level description of the system. An OpenCL
platform includes a single host, that interacts with the external environment.
The host is connected to one or more OpenCL devices. An OpenCL device
can be a CPU, a GPU or any other hardware that is supported by OpenCL.
The compute devices are divided into compute units, which are further di-
vided into one or more processing units.

Figure 2.2: OpenCL platform model

The execution model defines how the application is mapped to the hardware.
The central part is the kernel, the function we want to execute. When the
host issues the command to execute a kernel, the OpenCL runtime creates
an index space, the NDRange. For each point in the index space an instance
of the kernel is executed. This instance is called workitem, which is identified
by its global coordinates gi in the index space. The workitems are organized
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2.2. GPU Programming

in equal-sized workgroups. Workgroups give a more coarse decomposition
of the index space. Workitems in a workgroup are executed concurrently
on a single compute unit. The workgroup itself has an index wi and the
workitems in a workgroup have unique local indices li. The global index gi
of a workitem can be expressed as combination of its workgroup index wi,
the workgroup size Li and the local index li.

gi = wi · Li + li (2.26)

Figure 2.3: Example of 2-dimensional NDRange with global IDs and workgoup with local Ids

There is also a memory model that defines different levels of memory in
OpenCL. That is not of importance for this work and will not be discussed
here.

The programming model is equivalent to the execution model on the algo-
rithmic level. Meaning it maps a parallel algorithm to OpenCL. There are
two different programming models. The data-parallel programming model
that uses a data-centered approach. It applies a sequence of instructions
concurrently to the data. Sometimes this is also referred to as Single In-
struction Multiple Thread (SIMT), similar to single instruction vectorization
(SIMD). The other programming model is the task-parallel programming
model, where the problem is split into independent tasks. These tasks are
them submitted at the same time and it is up to the system to execute them
in a balanced order. In this work we only use the data-parallel programming
model.

More detailed explanations can be found in [8] and [7].
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Chapter 3

Implementation

The implementation is based on the H2Lib Library [6]. H2Lib is an open
source library for hierarchical matrices. The library also contains application
modules for boundary element methods in 3D.

We use the collection method, that is we demand that the equations (2.17) to
(2.19) are only exactly satisfied in the nodes of the mesh xi.

(Vσ)(xi) = U0 ∀xi ∈ ΓE (3.1)
(Vσ)(xi)−U = 0 ∀xi ∈ ΓF (3.2)

1
2
(ε1 + ε2)σ(xi) + (ε1 − ε2)(K′σ)(xi) = 0 ∀xi ∈ ΓD (3.3)

3.1 Building blocks

In this section we describe the basic building blocks we need to assembly
the collocation matrix.

3.1.1 FE-Space

We use a piece-wise linear approximation for the surface charge density σ.
Thus, we will have contributions from multiple elements to one entry in
the matrix. Or the other way around a triangle is part of the support of
three basis functions. We need to keep track of the mapping between the
local basis function on a triangle to the global basis function. In the H2Lib
following element-centric representation is used.

We have a 2d array with the dimensions N × 4 where for each of the N ele-
ments we store four entries. The first entry gives the index of the physical
element in the mesh. Whereas the remaining three are the indices of the ba-
sis function associated with the first, second and third corner of the triangle.
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3.1. Building blocks

The reserved value ’∼0’ (all bits set) is used to mark when an element has
no contribution to a global basis function.

Furthermore, this format allows for efficient storage and transfer onto a
GPU, because the memory handling is easier for continuous blocks of mem-
ory.

3.1.2 2nd-order triangles

We use the following parametrization for the curved triangles. We have the
linear shape functions

ϕA(t, s) = 1− s ϕB(t, s) = s− t) ϕC(t, s) = t

and add the edge bubble functions

ϕAB(t, s) = ϕA(t, s)ϕB(t, s) = (1− s)(s− t)
ϕBC(t, s) = ϕB(t, s)ϕC(t, s) = (s− t)t
ϕCA(t, s) = ϕC(t, s)ϕA(t, s) = t(1− s).

Since the edge bubble function are equal to 1/4 in the midpoints of the
respective edge, we can define the difference vectors

DAB := 4MAB− 2(A+ B) DBC := 4MBC− 2(B+C) DCA := 4MCA− 2(C+ A)

to obtain the quadratic parametrization

Φ(t, s) =AϕA(t, s) + BϕB(t, s) + CϕC(t, s)+
DAB ϕAB(t, s) + DBC ϕBC(t, s) + DCA ϕCA(t, s)

where A, B and C are the corner of the triangle and MAB, MBC and MCA are
the midpoints of the edges.

3.1.3 Quadrature for near-singular & singular integrals

The integrals for the single layer (2.22) and double layer potential (2.23) are
singular if x is equal to y. This means that standard quadrature does not well
approximate the integral. In the case of our collocation method the integral
can become singular in a corner of the triangle, i.e. the collocation point is
the corner of the triangle. Thus we can use the Duffy-Transformation. It
maps the unit square to the reference triangle, see figure 3.1 and equation
(3.4).

Figure 3.1: Mapping from square to triangle.

[
y1
y2

]
= Φ(ε, η) =

[
ε

εη

]
(3.4)
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3.1. Building blocks

Now let us assume that the singular corner is x = [0, 0]T, then we can trans-
form the integral in the following way

∫
K

f (y1, y2)

4π
√

y2
1 + y2

2

dy1dy2 =
∫

Q

f (ε, εη)

4π
√

ε2 + (εη)2
εdεdη =

∫
Q

f (ε, εη)

4π
√

1 + η2
dεdη.

(3.5)

Due to the determinant of the transformation’s Jacobian the singularity is
canceled.

We can use standard tensor-product Gauss-quadrature on the square in com-
bination with the Duffy-Transformation to integrate the arising type of sin-
gular integrals in the collocation method.

Near-singular integrals We also have to take care of integrals that are nearly
singular, meaning x and y are close together. This is the case if there is a
narrow gap in the geometry or during the postprocessing when we evaluate
a point near the surface. In this case we use a simple subdividing strategy.
We compute the closest point P on the linear approximation of the curved
triangle to the point x. And efficient algorithm for this can be found in
[5]. We subdivide the triangle in the closest point and again employ the
Duffy transformation to integrate over all smaller triangles increasing the
resolution of the quadrature locally around the closest point. There a three
different cases how we have to split the triangle depending on the location
of the closest point , figure 3.2. If P is one of the corners we do not subdivide.
If P lies on an edge we split the triangle along the line between P and the
opposite corner. If P is in the interior of the triangle we create three new
triangles: PAB, PBC, PCA.

Figure 3.2: Examples of triangle subdivision depending on the location of P

We use a simple heuristic threshold to detect these near singular cases.

nearsingular(T, x) =
|x− o|

r
(3.6)
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3.2. Matrix Assembly

Herein, x is the collocation point, o the circumcenter of the triangle T and r
its circumcircle radius. If the value of nearsingular is smaller than a thresh-
old ε, then we treat the integral as near-singular and use above subdivision
method.

3.2 Matrix Assembly

First, we notice that we can assemble the matrix row-wise. We have from
the collocation method that the equations hold for each collocation point
individually. Each row in the collocation matrix is associated with one collo-
cation point. There is no dependence between individual rows.

Second, due to the linear basis function we have that multiple triangles will
contribute to a single entry in the matrix. Or equally, each triangle will
contribute to three entries in a row when we assemble the matrix.

The standard method to assemble the matrix is to iterate over each colloca-
tion point - triangle pair and compute its local contribution and add it to
the right entries of the matrix. For such a collocation point-triangle pair we
need to evaluate the integral

∫
K

1
4π|xi − y|b

j
N(y)dSy, (3.7)

if the collocation point is on a conductor surface or

∫
K

(xi − y) · n(xi)

4π|xi − y| bj
N(y)dSy, (3.8)

if the collocation point is on a dielectric surface. Herein, xi is the collocation
point, K the triangle and bj

N the j-th basis function.

We suggest the following method to parallelize this process: The assembly
is done with one thread per row. In each thread we iterate over all triangle
sequentially, where we compute the contribution of the current triangle and
update the corresponding entries in the matrix. This approach has the ad-
vantage that we don’t have to worry about race conditions when updating
the matrix entries because each thread writes to a different row.

The realization with OpenCL is straightforward: We use an one-dimensional
NDRange. The size of the NDRange matches the number of collocation
points. Thus the global index of the thread gives us the index of the colloca-
tion point, i.e. the row in the matrix. Then all workitems iterate in lockstep
over all triangles. This minimizes the memory reads of the geometry as all
workitems work with the same triangle at the same time.
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3.2. Matrix Assembly

Figure 3.3: Visualization of the parallization of the assembly

Near singular treatment In subsection 3.1.3 is described how to handle sin-
gular and near singular integrals. It is an adaptive method for the quadra-
ture. But adaptability can impact the performance of a GPU badly, because
we have divergence in the control flow on the GPU and the threads in a
warp will be executed sequentially, see section 2.2.1.

Hence we try to minimize the different cases. We only distinguish between
two cases. The first is if we have a regular or singular integral. They can be
integrated using the standard Duffy-Transformation. By rotating the map-
ping of the reference triangle to the right corner we can cancel the singularity
in any corner of the triangle.

And the other case is if we have a near-singular integral. This case requires
the subdivision method. Therefore, to avoid any large control flow diver-
gence, we will first compute the regular and singular pairs and deal with
the near-singular integrals later. We iterate over all triangles and the regular
and singular pairs are computed but not the near singular pairs. We can
identify them with help of (3.6). They will be marked as incomplete. After
all triangles have been processed, there are some triangles left that are near
singular and thus not yet computed, see figure3.4.

The detailed treatment of the near singular case is described in the previous
section. In short, the idea is to split the triangle in multiple triangles so that
the closest point is moved into a corner of the smaller triangles and we can
again use the Duffy-Transformation. There are three types splits. Either the
closest point is already a corner and no splitting is necessary or the closest
point lies on an edge then two triangles are needed or it lies in the interior
for which three triangles are needed.

But actually we only need one case. The first two are a degenerate case of
the third, in which either one or two of the small triangles are degenerated
to a line. Hence all near-singular triangles are split into three smaller trian-
gles. If one of the triangles is degenerate, then the corresponding quadrature
weights are set to zero by the Gram determinant of the transformation which
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3.3. Constraint Assembly

Figure 3.4: Near-singular assembly: The gray triangle are near-singular and are compute sepa-
rately.

is equal to zero for degenerate triangles. Some computation will be unnec-
essary, i.e. canceled by a multiplication with zero. But it allows to handle
all three case at once, without any divergence in the control flow.

This strategy allows for efficient implementation on a GPU for near-singular
integrals with a small overhead for computing the near-singular triangles in
the end.

3.3 Constraint Assembly

The constraint condition for a floating potential has the following form, see
(2.13)

∫
ΓF

1
2

εσ + εK′σdS = 0. (3.9)

If we plug in the approximation of σi = ∑i σibi
N , it can be written as

∑
i

σi

∫
ΓF

1
2

bi
N(x) +

∫
Γ

(x− y) · n(x)
4π|x− y|3 bi

N(y)dSydSx (3.10)

We apply a quadrature with points xq and weights wqfor the outer integral.

∑
i

σi

Q

∑
q

1
2

wqbi
N(xq) + wq

∫
Γ

(xq − y) · n(xq)

|xq − y|3 bi
N(y)dSy (3.11)

The inner integral in (3.11) is identical to (3.8) if we use the vertex of the
mesh as quadrature points xq = xi. Such a quadrature rule would be the 2D
trapezoidal rule.
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3.4. GMRES

∫
K

f (x)dx ≈ |K|
3
( f (a1) + f (a2) + f (a3)) (3.12)

The computation of the discretized constraints is done in two steps. First
we compute a double layer potential collocation matrix for the collocation
points on the surface of the floating potential. This gives us the values of the
second part of the integrand in the quadrature points. Then we use these
entries to evaluate the outer integral with the 2D trapezoidal rule.

For the first part, we can use the same routines as for the assembly of the
collocation matrix rows. The second part is implemented as a special reduc-
tion over the columns of the matrix. Where the reduction is done in parallel
for all columns at once and according to the trapezoidal rule.

Figure 3.5: Spread out constraint assembly and then reduction with quadrature.

Order of Assembly The full matrix requires a lot of storage as does the
first step of the constraint computation. We compute the constraint first,
because the memory allocated for the constraint matrix can be freed after
the reduction and be reuse for the system matrix.

3.4 GMRES

Now that we assembled the matrix we want to solve it. For that, we use
an iterative solver, more specifically GMRES. The most compute intensive
parts of the solving process are the matrix-vector multiplications during
each iteration. We can do them efficiently on the GPU by computing the
scalar product between the matrix rows and the vector in parallel. The
matrix is already stored on the GPU, we only have to transfer the vector
onto the GPU and extract the result after the matrix-vector multiplication
from the GPU.
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3.5. Postprocessing

3.5 Postprocessing

For the evaluation of the potential and the electric field we have to compute
integrals similar to (3.8). The differences are, that we now know the coeffi-
cients σi for the surface charge, the point x does not need to be part of the
surface and that contributions from the basis function are summed together
not spread out over a matrix.

E(x) =
∫

Γ

(x− y)
4π|x− y|σ(y)dSy ≈

N

∑
j=0

σj

∫
Γ

(x− y)
4π|x− y|b

j
N(y)dSy x 6∈ Γ (3.13)

Thus we use the similar strategy as for the assembly. We evaluate multiple
points in parallel. We can now easily use multiple threads for one point. We
split the surface in disjoint subsurface and compute the integral contribu-
tions on them individually and, in a second step, sum these local integrals
together to the result. This increases the performance on the GPU as we can
fill the GPU with hundreds of threads even in the case of a low amount of
evaluation points.

Figure 3.6: Parallelization of the evaluation of potential and electric field

Remark 1 We evaluate the potential and the electric field at the same time,
we have to evaluate the expensive quadratic parameterization of the surface
only half as often.

Remark 2 We have two versions for the evaluation. One for the case, when
the point is on the surface since we have to consider the singular integrals
in this case. And one for the case, when the point is not part of the surface
since we only have to deal with near-singular integrals.

Evaluation of field lines For the evaluation of field lines the ordinary dif-
ferential equation (2.24) has to be solved, where the start point will be a
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3.6. Distributed-memory parallelization

point on the surface. We use the Euler method with a fixed step size. The
computational expensive part is the evaluation of the electric field in a point
in space. How this is done is discussed in the previous paragraph about
postprocessing. Thus, here we will only describe the implementation of the
stepping process.

The computation of the field lines is parallelized by computing the same step
for all field lines at same time. We start with a set of points X = {x1, ..., xn}
which are the current end points of the field lines. At the beginning this will
be a set of starting points on the surface. We compute the electric field in
these points using the routine for postprocessing. With the electric field in
the point E(xi) we can compute the next point

x′i = xi + ∆sE(xi)

where x′i is the new point and ∆s the fixed stepsize. But we before we update
the end points, we have to test if the field line intersects with a surface as
this terminates the field line. Thus we test if the field line will intersect with
a triangle in the mesh during the step.

To avoid testing with all triangles, we created a short list of triangles for
possible intersection during the computation of the electric field because
there we iterate anyway over all triangle-point pairs in the evaluation of
the electric field. We store all triangles that are closer to the point than
the step size plus the circumradius of the triangle. All triangles are then
checked for intersections after the computation of the electric field and know
the direction of the next step. In case of curved triangles, we resort to a
simplified intersection test. We check against the linear approximation with
a large tolerance to compensate for inaccuracy and terminate the field line,
if the field line is close to the flat triangle and thus an intersection with the
curved element is likely. But this is just a crude heuristic that will need
improvement in the future.

After we checked for intersections, we only continue with a new set of point
X′ whose field lines had no intersection. We stop either if the are no more
unfinished field lines or if a maximum number of steps is reached.

3.6 Distributed-memory parallelization

Due to the use of dense matrices the problem sizes we can solve are limited
by the amount of memory we have to store the matrix. To have more mem-
ory and thus to be able to solve large problems we need to use multiple
GPU’s. Luckily due to the fact that the rows of the matrix are independent
from each other the matrix A can be easily split into equal sized row blocks
A1, ..., An that can be computed and stored on different GPUs.
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Figure 3.7: Loop of field line evaluation

A =


A1
A2
...

An


The constraint can be computed as well on multiple GPUs. We split the
set of points belonging to the floating potential surface and distribute them
onto different GPUs. We compute the entries for the constraint evaluation
locally and do a local reduction. Then, we transfer the local constraint row
to the GPU with the corresponding matrix block. There, the constraint con-
tributions from the different GPUs can be summed together to build the full
constraint row and add it to the matrix.

The overall assembly is split in two phases. First, the assembly of the con-
straint and second the assembly of the system matrix. In the first phase
we assemble the constraint contribution in matrix form. Then, we do the
column-wise reduction of the matrix to the constraint row. In the second
phase we assemble the full matrix in three steps. In the first step we com-
pute all rows that have single layer entries. In the second step we compute
all entries with double layer entries. In the third step we add the constraint
entries to system matrix. This process is illustrated for two GPUs in figure
3.8.

Remark 1 The matrix-vector multiplication of the iterative solver is done
locally on the row blocks. The local result is then stitched together on the
master node that manages the iterative process.

Remark 2 For the post processing the distributed memory parallelization
is simple. We just distribute the evaluation point equally onto the available
GPUs.
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Figure 3.8: Example of assembly for a matrix with two GPUs.
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Chapter 4

Numerical results

In this section the results of the numerical experiments are presented. First
the results are compared in accuracy to the existing solver POLOPT [2], [4]
for a small test case. Then the time to solution is compared for large cases
and also for evaluating field lines.

4.1 Comparison H2Lib vs. POLOPT

First, we compare the accuracy of the H2Lib implementation with POLOPT.

4.1.1 Test cases

Bigmac & Sandwich These are two artificial models that cover most of
the features that were implemented. The ’Bigmac’ model consists of 4 slabs
stacked on top of each other. The lowest is a conductor with an applied
voltage of 100kV, then an insulating dielectric slab, then again a conducting
slab that has no source connected and and on top is another dielectric part,
see figure 4.1. The ’Sandwich’ model is almost the same except the floating
conductor is reduce to the interface between the to dielectrics, see figure 4.2.

Figure 4.1: Cross-section of ’Bigmac’ model.
Figure 4.2: Cross-section of ’Sanwich’ model.

The permittivity for the insulating dielectric slabs is varied, while everything
else remains the same. The voltage of the surface of the floating conductor
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of the ’Bigmac’ can be found in table 4.1. The voltage for the floating sheet
in the ’Sandwich’ can be found in table 4.2. As reference the result of an 2D
axis-symmetric charge simulation (ELFI) are also given in table 4.1 and 4.2.

ε1 ε2 ELFI(2D) POLOPT H2LIB
5 10 88.85kV 89.21kV 89.41kV
5 1 90.25kV 89.90kV 89.87kV
1 10 69.51kV 69.82kV 70.27kV
1 1 71.37kV 71.18kV 71.16kV

Table 4.1: Potential on conducting slab in the ’Bigmac’ model for different material parameters
for different solvers.

ε1 ε2 ELFI(2D) POLOPT H2LIB
5 10 90.99kV 91.29kV 92.15kV
5 1 93.48kV 94.75kV 94.72kV
1 10 72.59kV 73.48kV 73.38kV
1 1 78.52kV 80.43kV 80.42kV

Table 4.2: Potential on conducting sheet in the ’Sandwich’ model for different materials for
different solvers.

Overall the new H2Lib results match the value form POLOPT well. For
higher material coefficients the difference are larger.

Figure 4.3: Cross-section drawing of the bushing.

Bushing A real-world problem that can be modeled is a bushing. In this
case it consists of an insulator wrapped around a high-voltage conductor.
Inside insulator, there are five thin conducting sheets. The outermost is as-
sumed to be grounded, the potential of the other sheets is unknown, see
figure 4.3 The values of the floating potentials are computed with both
POLOPT and the H2Lib , see table 4.3. The results are again compared
with ELFI.
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ELFI(2D) POLOPT H2LIB
Ufoil1 70.8kV 70.15kV 70.22kV
Ufoil2 51.4kV 50.47kV 50.50kV
Ufoil3 35.0kV 34.00kV 34.02kV
Ufoil4 18.9kV 18.02kV 18.02kV

Table 4.3: Potential on conducting sheet in the bushing.

4.1.2 Double vs. single precision

Using single precision instead of double precision decreases the memory
needed to store the matrix by half. Furthermore standard consumer GPU
are optimize for single precision since in graphic application the difference
between double and single precision has no visible effect. Thus we tested if
the use of single precision does impact the accuracy negatively.

Single precsion Double precision Relative difference
Ufoil1 70.219841kV 70.220740kV 1.28e-5
Ufoil2 50.502563kV 50.504335kV 3.51e-5
Ufoil3 34.017059kV 34.018866kV 5.31e-5
Ufoil4 18.021936kV 18.022896kV 5.33e-4

Table 4.4: Potential on conducting sheet in the bushing for single precision and double precision.

As we can see in 4.4, the deviations of floating potential values are minimal.
But the runtime can increase by a factor of four if we use double precision
and a standard consumer GPU (GT 940M) with less double precision ALUs
than single precision ALUs. If we do the same computation on a more
expensive general purpose GPU (Tesla P100) we can see that the time only
increases slightly, see table 4.5.

Single precsion Double precision
Time GT940M 2.34s 9.47s

Time P100 1.70s 1.86s

Table 4.5: Time to solution for different GPU models using single and double precision.

There is no evident drawback of using single precision compared to all
the advantages, less memory and faster computation on cheaper hardware.
Thus, for all further experiments single precision is used.

4.1.3 Time-to-solution comparison

After we showed in the previous subsections that we achieve similar results
with the H2Lib implementation, we compare the time it takes to compute
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the solution.

Figure 4.4: Cumulative times for assembly, solving and surface electric field computation for
POLOPT and H2LIB.

In figure 4.4 we plotted the time it takes to assembly, solve and compute the
surface electric field on different meshes for POLOPT and H2Lib. POLOPT
used a total of 180 CPU cores distributed over 5 nodes with two 18-core
CPUs each. For H2Lib we used a total of 12 NVidia GTX 1080Ti, distributed
over multiple nodes. For POLOPT we can clearly see the quadratic scaling
with the mesh size that is expected as the work scales quadratic with the
input size.

In figure 4.5 we plotted the timings of H2Lib only. We can also see out that
the scaling is also non-linear, but better than the scaling of POLOPT.

Benchmark problem We did some computation with the benchmark prob-
lem EXK0-GIS from ABB, see figure 4.6. The same geometry has been
meshed in different resolutions. The meshes range from 68’218 nodes up
to 330’706 nodes. We again used 180 cores for POLOPT. For the H2Lib the
number of GPUs where chosen so that the full matrix stored in single pre-
cision fits in the combined memory of all GPUs. One GTX 1080Ti has 11
gigabytes of dedicated memory. Thus for the largest model we need a total
of 40 GPUs. The timings can be found in table 4.6.

4.2 Field line computation

In the previous section, we focused on the results concerning the first part
of the breakdown prediction, the computation of the electric field on the
surface. The more expensive part in term of computation is the evaluation
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Figure 4.5: Cumulative times for assembly, solving and surface electric field computation for
H2Lib.

Figure 4.6: Crosssection of the EXK0-GIS model.

of field lines, because it can require hundreds of surface integrals evaluations
to compute a single field line.

There is no current configuration of POLOPT that allows for the evaluation
of the field lines in parallel. Therefore the time for the evaluation of field
lines in table 4.7 is for the serial code only. With the parallelization of the
evaluation process and the use of the GPUs we were able to compute 500
times more field lines in a shorter time than the existing tools.

For the result in table 4.7 we use the standard 180-cores for the computation
with POLOPT and serial code for the fieldlines. For H2LIB we used 4 NVidia
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#Nodes #GPUs H2Lib POLOPT
68’218 2 18s 33s

140’183 8 19s 130s
232’029 20 26s 371s
330’706 40 34s 702s

Table 4.6: Computation time for different meshes. The H2Lib used multiple GTX1080Ti, while
POLOPT is always executed on 180 CPU-Cores.

POLOPT H2Lib GPU
180 Cores 4xTesla P100

Assembly 11s 2s
Solving 11s 2s
Eval. E 11s 2s
Total 33s 6s
Field lines 102s for 17

fieldlines
67s for 9’219
fieldlines

Table 4.7: Computation and fieldline evaluation time. Fieldlines for POLOPT are computed on
local workstation without parallelization! Model size: 68’218 Nodes.

Tesla P100 General-Purpose GPUs.

Figure 4.7 shows the 17 field lines that are computed with POLOPT. The
highlighted points are the 9’219 starting points that were computed with
the H2Lib in the same time.
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Figure 4.7: EXK-0 GIS with surface electric field and selected fieldlines. The highlight points
are all critical points.
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Chapter 5

Conclusion & Outlook

In this thesis we implemented the assembly, solving and postprocessing of
the electrostatic problem, distributed over multiple GPUs. We achieved the
distribution of the computations over several dozen GPUs with good load
balancing. The large scale parallelization is achieved due to the fact that the
matrix can be split into independent row blocks. These block are then small
enough to be computed and stored on a single GPU. By following the data-
parallel programming model for GPUs, we implemented the algorithms to
use performance benefits of GPUs. Thus, we were able to reduce time-to-
solution from minutes to seconds for large real-world problems. It was also
experimentally verified that single precision can be used to do the compu-
tation and thus we were able to use cheaper consumer GPUs and cut the
memory requirement in half. In addition, we parallelized the postprocess-
ing evaluation of field lines. The parallelized version computes thousands
of field lines paths in the same time as before only a few selected breakdown
paths were compute with a serial code.

There is further work required in the area of the evaluation of dielectric
breakdown paths. The detection of intersection with the curved triangle
needs to be improved. This would allow for the evaluation of breakdown
paths in geometries with dielectrics. That is necessary for the complete di-
electric design process. Also compression techniques for the matrix should
be considered. As the main obstacle to solve bigger problems is the need to
store the full matrix.
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Appendix A

Appendix

In following we have code of OpenCL kernel for the computation of single
layer row of the collocation matrix.

A.1 OpenCL kernel

Listing A.1: OpenCL kernel for the assembly of single layer with near-singular integration

/∗∗ @brief OpenCL Kernel to compute the s i n g l e l a y e r row of c o l l o c a t i o n matirx
∗
∗
∗ @param v e r t i c e s Number of nodes in grid
∗ @param t r i a n g l e s Number of t r i a g l e s
∗ @param x Node coordinates
∗ @param t Corner i n d i c e s of t r i a n g l e s
∗ @param s Edge midpoint i n d i c e s of t r i a n g l e s
∗ @param m Edge midpoint coordinates
∗ @param o Cirmcumcenter of t r i a n g l e
∗ @param d Circumcirc le radius
∗ @param ng Number of quadrature points
∗ @param xg Quadrature points
∗ @param wg Quadrature weight
∗ @param nt Number of t r i a n g l e s in l o c a l to g loba l mapping
∗ @param t r i 2 v t x Local to g loba l mapping
∗ @param nv Number of c o l l o c a t i o n points
∗ @param vtx C o l l o c a t i o n point i n d i c e s
∗ @param c r i t Cache to s t o r e near−s i n g u l a r t r i a n g l e s
∗ @param eps Tolearance f o r near−s i n g u l a r t r i a n g l e s
∗ @param Ga Matrix
∗ @param ldG Leading dimension of Matrix
∗/

k e r n e l void
b u i l d m a t r i x b l o c k n e a r s l ( i n t v e r t i c e s , i n t t r i a n g l e s ,

g l o b a l const r e a l (∗x ) [ 3 ] , g l o b a l const i n t (∗ t ) [ 3 ] ,
g l o b a l const i n t (∗ s ) [ 3 ] , g l o b a l const r e a l (∗m) [ 3 ] ,
g l o b a l const r e a l (∗o ) [ 3 ] , g l o b a l const r e a l ∗d ,

i n t ng , g l o b a l const r e a l ∗xg , g l o b a l const r e a l ∗wg,
i n t nt , g l o b a l const i n t ∗ t r i 2 v t x ,
i n t nv , g l o b a l const i n t ∗vtx ,

g l o b a l i n t ∗ c r i t , r e a l eps ,
g l o b a l r e a l ∗Ga , i n t ldG )
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{
const r e a l f a c t o r = 1 . 0 / ( 4 . 0 ∗ 3 .14159265358979323846) ;
const unsigned permutation [ ] = { 0 , 1 , 2 , 0 , 1 } ;
const unsigned ∗py ;
r e a l x0 , x1 , x2 , y0 , y1 , y2 , n0 , n1 , n2 ;
r e a l xa [ 3 ] , xb [ 3 ] , xc [ 3 ] , xab [ 3 ] , xbc [ 3 ] , xca [ 3 ] ;
r e a l dt [ 3 ] , ds [ 3 ] ;
r e a l na [ 3 ] , nb [ 3 ] , nc [ 3 ] , nab [ 3 ] , nbc [ 3 ] , nca [ 3 ] ;
r e a l b0 , b1 , b2 ;
r e a l gy ;
r e a l d0 , d1 , d2 ;
r e a l kv ;
r e a l sum0 , sum1 , sum2 ;

r e a l norm2 ;
r e a l d i s t [ 3 ] ;
r e a l pa [ 2 ] ;
r e a l aa [ 3 ] [ 2 ] ;
r e a l F [ 2 ] [ 2 ] ;
r e a l xp , yp ,wp;

r e a l ab [ 3 ] , ac [ 3 ] , bc [ 3 ] , ap [ 3 ] , bp [ 3 ] , cp [ 3 ] ;
r e a l d3 , d4 , d5 , d6 , va , vb , vc , w1, w2, w3, denom ,w, v ;

u int n c r i t ;

u int i , j , l , i i , j j , k , k1 , k2 ;

//Get g loba l id
i = g e t g l o b a l i d ( 0 ) ;

//Check i f id in range
i f ( i >= nv )

re turn ;

//Get c o l l o c a i t o n point index
i i = ( vtx ? vtx [ i ] : i ) ;

// c o l l o c a t i o n point
x0 = x [ i i ] [ 0 ] ;
x1 = x [ i i ] [ 1 ] ;
x2 = x [ i i ] [ 2 ] ;

//Reset number of near s i n g u l a r t r i a n g l e s
n c r i t = 0 ;

//Set matrix row to zero
f o r ( j j =0 ; j j <v e r t i c e s ; j j ++)

Ga[ i i + j j ∗ldG ] = 0 . 0 ;

//Loop over t r i a n g l e
f o r ( j =0 ; j<nt ; j ++)
{

//Get t r i a n g l e index
j j = t r i 2 v t x [4∗ j ] ;

//Distance to cicumcenter of t r i a n g l e
d i s t [ 0 ] = o [ j j ][0]− x0 ;
d i s t [ 1 ] = o [ j j ][1]− x1 ;
d i s t [ 2 ] = o [ j j ][2]− x2 ;
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norm2 = d i s t [ 0 ]∗ d i s t [ 0 ] + d i s t [ 1 ]∗ d i s t [ 1 ] + d i s t [ 2 ]∗ d i s t [ 2 ] ;

//Check i f ponint i s i n s i d e c r i t c a l sphere and not s i n g u l a r case
i f ( norm2 < d [ j j ]∗ eps∗eps

&& t [ j j ] [ 0 ] != i i
&& t [ j j ] [ 1 ] != i i
&& t [ j j ] [ 2 ] != i i )

{
//Add to near−s i n g u l a r l i s t
c r i t [ i +nv∗ n c r i t ] = j ;
n c r i t ++;
//Go to next t r i a n g l e
continue ;

}

//Rotate r e f e r e n c e element f o r s i n g u l a r case
py = permutation ;
i f ( t [ j ] [ 1 ] == i i )

py = permutation + 1 ;
e l s e i f ( t [ j ] [ 2 ] == i i )

py = permutation + 2 ;

//Get corners of t r i a n g l e
xa [ 0 ] = x [ t [ j j ] [ py [ 0 ] ] ] [ 0 ] ;
xa [ 1 ] = x [ t [ j j ] [ py [ 0 ] ] ] [ 1 ] ;
xa [ 2 ] = x [ t [ j j ] [ py [ 0 ] ] ] [ 2 ] ;
xb [ 0 ] = x [ t [ j j ] [ py [ 1 ] ] ] [ 0 ] ;
xb [ 1 ] = x [ t [ j j ] [ py [ 1 ] ] ] [ 1 ] ;
xb [ 2 ] = x [ t [ j j ] [ py [ 1 ] ] ] [ 2 ] ;
xc [ 0 ] = x [ t [ j j ] [ py [ 2 ] ] ] [ 0 ] ;
xc [ 1 ] = x [ t [ j j ] [ py [ 2 ] ] ] [ 1 ] ;
xc [ 2 ] = x [ t [ j j ] [ py [ 2 ] ] ] [ 2 ] ;

//Get midpoints of t r i a n g l e
xbc [ 0 ] = m[ s [ j j ] [ py [ 0 ] ] ] [ 0 ] ;
xbc [ 1 ] = m[ s [ j j ] [ py [ 0 ] ] ] [ 1 ] ;
xbc [ 2 ] = m[ s [ j j ] [ py [ 0 ] ] ] [ 2 ] ;
xca [ 0 ] = m[ s [ j j ] [ py [ 1 ] ] ] [ 0 ] ;
xca [ 1 ] = m[ s [ j j ] [ py [ 1 ] ] ] [ 1 ] ;
xca [ 2 ] = m[ s [ j j ] [ py [ 1 ] ] ] [ 2 ] ;
xab [ 0 ] = m[ s [ j j ] [ py [ 2 ] ] ] [ 0 ] ;
xab [ 1 ] = m[ s [ j j ] [ py [ 2 ] ] ] [ 1 ] ;
xab [ 2 ] = m[ s [ j j ] [ py [ 2 ] ] ] [ 2 ] ;

//Compute d i f f e r e n c e v e c t o r s f o r midpoints
xbc [ 0 ] = 4 . 0 ∗ xbc [ 0 ] − 2 . 0 ∗ ( xb [ 0 ] + xc [ 0 ] ) ;
xbc [ 1 ] = 4 . 0 ∗ xbc [ 1 ] − 2 . 0 ∗ ( xb [ 1 ] + xc [ 1 ] ) ;
xbc [ 2 ] = 4 . 0 ∗ xbc [ 2 ] − 2 . 0 ∗ ( xb [ 2 ] + xc [ 2 ] ) ;
xca [ 0 ] = 4 . 0 ∗ xca [ 0 ] − 2 . 0 ∗ ( xc [ 0 ] + xa [ 0 ] ) ;
xca [ 1 ] = 4 . 0 ∗ xca [ 1 ] − 2 . 0 ∗ ( xc [ 1 ] + xa [ 1 ] ) ;
xca [ 2 ] = 4 . 0 ∗ xca [ 2 ] − 2 . 0 ∗ ( xc [ 2 ] + xa [ 2 ] ) ;
xab [ 0 ] = 4 . 0 ∗ xab [ 0 ] − 2 . 0 ∗ ( xa [ 0 ] + xb [ 0 ] ) ;
xab [ 1 ] = 4 . 0 ∗ xab [ 1 ] − 2 . 0 ∗ ( xa [ 1 ] + xb [ 1 ] ) ;
xab [ 2 ] = 4 . 0 ∗ xab [ 2 ] − 2 . 0 ∗ ( xa [ 2 ] + xb [ 2 ] ) ;

//Compute quadrat ic parametr izat ion f o r normal vec tor
dt [ 0 ] = xb [ 0 ] − xa [ 0 ] + xab [ 0 ] ;
dt [ 1 ] = xb [ 1 ] − xa [ 1 ] + xab [ 1 ] ;
dt [ 2 ] = xb [ 2 ] − xa [ 2 ] + xab [ 2 ] ;
ds [ 0 ] = xc [ 0 ] − xa [ 0 ] + xca [ 0 ] ;
ds [ 1 ] = xc [ 1 ] − xa [ 1 ] + xca [ 1 ] ;
ds [ 2 ] = xc [ 2 ] − xa [ 2 ] + xca [ 2 ] ;
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na [ 0 ] = dt [ 1 ] ∗ ds [ 2 ] − dt [ 2 ] ∗ ds [ 1 ] ;
na [ 1 ] = dt [ 2 ] ∗ ds [ 0 ] − dt [ 0 ] ∗ ds [ 2 ] ;
na [ 2 ] = dt [ 0 ] ∗ ds [ 1 ] − dt [ 1 ] ∗ ds [ 0 ] ;

dt [ 0 ] = xb [ 0 ] − xa [ 0 ] − xab [ 0 ] ;
dt [ 1 ] = xb [ 1 ] − xa [ 1 ] − xab [ 1 ] ;
dt [ 2 ] = xb [ 2 ] − xa [ 2 ] − xab [ 2 ] ;
ds [ 0 ] = xc [ 0 ] − xa [ 0 ] + xbc [ 0 ] − xab [ 0 ] ;
ds [ 1 ] = xc [ 1 ] − xa [ 1 ] + xbc [ 1 ] − xab [ 1 ] ;
ds [ 2 ] = xc [ 2 ] − xa [ 2 ] + xbc [ 2 ] − xab [ 2 ] ;
nb [ 0 ] = dt [ 1 ] ∗ ds [ 2 ] − dt [ 2 ] ∗ ds [ 1 ] ;
nb [ 1 ] = dt [ 2 ] ∗ ds [ 0 ] − dt [ 0 ] ∗ ds [ 2 ] ;
nb [ 2 ] = dt [ 0 ] ∗ ds [ 1 ] − dt [ 1 ] ∗ ds [ 0 ] ;

dt [ 0 ] = xb [ 0 ] − xa [ 0 ] + xbc [ 0 ] − xca [ 0 ] ;
dt [ 1 ] = xb [ 1 ] − xa [ 1 ] + xbc [ 1 ] − xca [ 1 ] ;
dt [ 2 ] = xb [ 2 ] − xa [ 2 ] + xbc [ 2 ] − xca [ 2 ] ;
ds [ 0 ] = xc [ 0 ] − xa [ 0 ] − xca [ 0 ] ;
ds [ 1 ] = xc [ 1 ] − xa [ 1 ] − xca [ 1 ] ;
ds [ 2 ] = xc [ 2 ] − xa [ 2 ] − xca [ 2 ] ;
nc [ 0 ] = dt [ 1 ] ∗ ds [ 2 ] − dt [ 2 ] ∗ ds [ 1 ] ;
nc [ 1 ] = dt [ 2 ] ∗ ds [ 0 ] − dt [ 0 ] ∗ ds [ 2 ] ;
nc [ 2 ] = dt [ 0 ] ∗ ds [ 1 ] − dt [ 1 ] ∗ ds [ 0 ] ;

dt [ 0 ] = xb [ 0 ] − xa [ 0 ] + ( xbc [ 0 ] − xca [ 0 ] − xab [ 0 ] ) ∗ 0 . 5 ;
dt [ 1 ] = xb [ 1 ] − xa [ 1 ] + ( xbc [ 1 ] − xca [ 1 ] − xab [ 1 ] ) ∗ 0 . 5 ;
dt [ 2 ] = xb [ 2 ] − xa [ 2 ] + ( xbc [ 2 ] − xca [ 2 ] − xab [ 2 ] ) ∗ 0 . 5 ;
ds [ 0 ] = xc [ 0 ] − xa [ 0 ] + ( xbc [ 0 ] − xca [ 0 ] − xab [ 0 ] ) ∗ 0 . 5 ;
ds [ 1 ] = xc [ 1 ] − xa [ 1 ] + ( xbc [ 1 ] − xca [ 1 ] − xab [ 1 ] ) ∗ 0 . 5 ;
ds [ 2 ] = xc [ 2 ] − xa [ 2 ] + ( xbc [ 2 ] − xca [ 2 ] − xab [ 2 ] ) ∗ 0 . 5 ;
nbc [ 0 ] = dt [ 1 ] ∗ ds [ 2 ] − dt [ 2 ] ∗ ds [ 1 ] ;
nbc [ 1 ] = dt [ 2 ] ∗ ds [ 0 ] − dt [ 0 ] ∗ ds [ 2 ] ;
nbc [ 2 ] = dt [ 0 ] ∗ ds [ 1 ] − dt [ 1 ] ∗ ds [ 0 ] ;

dt [ 0 ] = xb [ 0 ] − xa [ 0 ] + ( xbc [ 0 ] + xab [ 0 ] − xca [ 0 ] ) ∗ 0 . 5 ;
dt [ 1 ] = xb [ 1 ] − xa [ 1 ] + ( xbc [ 1 ] + xab [ 1 ] − xca [ 1 ] ) ∗ 0 . 5 ;
dt [ 2 ] = xb [ 2 ] − xa [ 2 ] + ( xbc [ 2 ] + xab [ 2 ] − xca [ 2 ] ) ∗ 0 . 5 ;
ds [ 0 ] = xc [ 0 ] − xa [ 0 ] ;
ds [ 1 ] = xc [ 1 ] − xa [ 1 ] ;
ds [ 2 ] = xc [ 2 ] − xa [ 2 ] ;
nca [ 0 ] = dt [ 1 ] ∗ ds [ 2 ] − dt [ 2 ] ∗ ds [ 1 ] ;
nca [ 1 ] = dt [ 2 ] ∗ ds [ 0 ] − dt [ 0 ] ∗ ds [ 2 ] ;
nca [ 2 ] = dt [ 0 ] ∗ ds [ 1 ] − dt [ 1 ] ∗ ds [ 0 ] ;

dt [ 0 ] = xb [ 0 ] − xa [ 0 ] ;
dt [ 1 ] = xb [ 1 ] − xa [ 1 ] ;
dt [ 2 ] = xb [ 2 ] − xa [ 2 ] ;
ds [ 0 ] = xc [ 0 ] − xa [ 0 ] + ( xca [ 0 ] + xbc [ 0 ] − xab [ 0 ] ) ∗ 0 . 5 ;
ds [ 1 ] = xc [ 1 ] − xa [ 1 ] + ( xca [ 1 ] + xbc [ 1 ] − xab [ 1 ] ) ∗ 0 . 5 ;
ds [ 2 ] = xc [ 2 ] − xa [ 2 ] + ( xca [ 2 ] + xbc [ 2 ] − xab [ 2 ] ) ∗ 0 . 5 ;
nab [ 0 ] = dt [ 1 ] ∗ ds [ 2 ] − dt [ 2 ] ∗ ds [ 1 ] ;
nab [ 1 ] = dt [ 2 ] ∗ ds [ 0 ] − dt [ 0 ] ∗ ds [ 2 ] ;
nab [ 2 ] = dt [ 0 ] ∗ ds [ 1 ] − dt [ 1 ] ∗ ds [ 0 ] ;

nbc [ 0 ] = 4 . 0 ∗ nbc [ 0 ] − 2 . 0 ∗ ( nb [ 0 ] + nc [ 0 ] ) ;
nbc [ 1 ] = 4 . 0 ∗ nbc [ 1 ] − 2 . 0 ∗ ( nb [ 1 ] + nc [ 1 ] ) ;
nbc [ 2 ] = 4 . 0 ∗ nbc [ 2 ] − 2 . 0 ∗ ( nb [ 2 ] + nc [ 2 ] ) ;
nca [ 0 ] = 4 . 0 ∗ nca [ 0 ] − 2 . 0 ∗ ( nc [ 0 ] + na [ 0 ] ) ;
nca [ 1 ] = 4 . 0 ∗ nca [ 1 ] − 2 . 0 ∗ ( nc [ 1 ] + na [ 1 ] ) ;
nca [ 2 ] = 4 . 0 ∗ nca [ 2 ] − 2 . 0 ∗ ( nc [ 2 ] + na [ 2 ] ) ;
nab [ 0 ] = 4 . 0 ∗ nab [ 0 ] − 2 . 0 ∗ ( na [ 0 ] + nb [ 0 ] ) ;
nab [ 1 ] = 4 . 0 ∗ nab [ 1 ] − 2 . 0 ∗ ( na [ 1 ] + nb [ 1 ] ) ;
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nab [ 2 ] = 4 . 0 ∗ nab [ 2 ] − 2 . 0 ∗ ( na [ 2 ] + nb [ 2 ] ) ;

//Reset l o c a l c o n t r i b u t i o n s
sum0 = 0 . 0 ;
sum1 = 0 . 0 ;
sum2 = 0 . 0 ;

//Quadrature
f o r ( k1 =0; k1<ng ; k1++)
{

f o r ( k2 =0; k2<ng ; k2++)
{

//Local shape f u n c t i o n s
b0 = 1 . 0 − xg [ k1 ] ;
b1 = xg [ k1 ] ∗ ( 1 . 0 − xg [ k2 ] ) ;
b2 = xg [ k1 ] ∗ xg [ k2 ] ;

//Global quadrature points on t r i n a g l e
y0 = ( b0 ∗ xa [ 0 ] + b1 ∗ xb [ 0 ] + b2 ∗ xc [ 0 ]

+ b0 ∗ b1 ∗ xab [ 0 ] + b1 ∗ b2 ∗ xbc [ 0 ] + b2 ∗ b0 ∗ xca [ 0 ] ) ;
y1 = ( b0 ∗ xa [ 1 ] + b1 ∗ xb [ 1 ] + b2 ∗ xc [ 1 ]

+ b0 ∗ b1 ∗ xab [ 1 ] + b1 ∗ b2 ∗ xbc [ 1 ] + b2 ∗ b0 ∗ xca [ 1 ] ) ;
y2 = ( b0 ∗ xa [ 2 ] + b1 ∗ xb [ 2 ] + b2 ∗ xc [ 2 ]

+ b0 ∗ b1 ∗ xab [ 2 ] + b1 ∗ b2 ∗ xbc [ 2 ] + b2 ∗ b0 ∗ xca [ 2 ] ) ;

//Compute Gram determinant
n0 = ( b0 ∗ na [ 0 ] + b1 ∗ nb [ 0 ] + b2 ∗ nc [ 0 ]

+ b0 ∗ b1 ∗ nab [ 0 ] + b1 ∗ b2 ∗ nbc [ 0 ] + b2 ∗ b0 ∗ nca [ 0 ] ) ;
n1 = ( b0 ∗ na [ 1 ] + b1 ∗ nb [ 1 ] + b2 ∗ nc [ 1 ]

+ b0 ∗ b1 ∗ nab [ 1 ] + b1 ∗ b2 ∗ nbc [ 1 ] + b2 ∗ b0 ∗ nca [ 1 ] ) ;
n2 = ( b0 ∗ na [ 2 ] + b1 ∗ nb [ 2 ] + b2 ∗ nc [ 2 ]

+ b0 ∗ b1 ∗ nab [ 2 ] + b1 ∗ b2 ∗ nbc [ 2 ] + b2 ∗ b0 ∗ nca [ 2 ] ) ;

gy = s q r t ( n0 ∗ n0 + n1 ∗ n1 + n2 ∗ n2 ) ;

//Evaluate kernel
d0 = x0 − y0 ;
d1 = x1 − y1 ;
d2 = x2 − y2 ;
kv = f a c t o r / s q r t ( d0 ∗ d0 + d1 ∗ d1 + d2 ∗ d2 ) ;

kv ∗= xg [ k1 ] ∗ wg[ k1 ] ∗ wg[ k2 ] ∗ gy ;

//Add c o n t r i b u t i o n
sum0 += b0 ∗ kv ;
sum1 += b1 ∗ kv ;
sum2 += b2 ∗ kv ;

}
}

//Add to matrix
i f ( t r i 2 v t x [4∗ j +py [ 0 ] + 1 ] != ˜0u )

Ga[ i i + t r i 2 v t x [4∗ j +py [ 0 ] + 1 ]∗ ldG ] += sum0 ;
i f ( t r i 2 v t x [4∗ j +py [ 1 ] + 1 ] != ˜0u )

Ga[ i i + t r i 2 v t x [4∗ j +py [ 1 ] + 1 ]∗ ldG ] += sum1 ;
i f ( t r i 2 v t x [4∗ j +py [ 2 ] + 1 ] != ˜0u )

Ga[ i i + t r i 2 v t x [4∗ j +py [ 2 ] + 1 ]∗ ldG ] += sum2 ;
}

//Loop over near−s i n g u l a r t r i a n g l e s
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f o r ( l =0 ; l<n c r i t ; l ++)
{

//Near−s i n g u l a r element index
j = c r i t [ i +nv∗ l ] ;

//Get t r i a n g l e index
j j = t r i 2 v t x [4∗ j ] ;

//Corners of t r i a n g l e
xa [ 0 ] = x [ t [ j j ] [ 0 ] ] [ 0 ] ;
xa [ 1 ] = x [ t [ j j ] [ 0 ] ] [ 1 ] ;
xa [ 2 ] = x [ t [ j j ] [ 0 ] ] [ 2 ] ;
xb [ 0 ] = x [ t [ j j ] [ 1 ] ] [ 0 ] ;
xb [ 1 ] = x [ t [ j j ] [ 1 ] ] [ 1 ] ;
xb [ 2 ] = x [ t [ j j ] [ 1 ] ] [ 2 ] ;
xc [ 0 ] = x [ t [ j j ] [ 2 ] ] [ 0 ] ;
xc [ 1 ] = x [ t [ j j ] [ 2 ] ] [ 1 ] ;
xc [ 2 ] = x [ t [ j j ] [ 2 ] ] [ 2 ] ;

//Compute n e a r e s t point on f l a t t r i a n g l e to c o l l o c a t i o n point
//Based on 5 . 1 . 5 in Real−Time C o l l i s i o n Detect ion by C h r i s t e r Er icson
ab [ 0 ] = xb[0]−xa [ 0 ] ;
ab [ 1 ] = xb[1]−xa [ 1 ] ;
ab [ 2 ] = xb[2]−xa [ 2 ] ;

ac [ 0 ] = xc [0]−xa [ 0 ] ;
ac [ 1 ] = xc [1]−xa [ 1 ] ;
ac [ 2 ] = xc [2]−xa [ 2 ] ;

ap [ 0 ] = x0−xa [ 0 ] ;
ap [ 1 ] = x1−xa [ 1 ] ;
ap [ 2 ] = x2−xa [ 2 ] ;

bp [ 0 ] = x0−xb [ 0 ] ;
bp [ 1 ] = x1−xb [ 1 ] ;
bp [ 2 ] = x2−xb [ 2 ] ;

cp [ 0 ] = x0−xc [ 0 ] ;
cp [ 1 ] = x1−xc [ 1 ] ;
cp [ 2 ] = x2−xc [ 2 ] ;

d1 = ab [ 0 ]∗ ap [0 ]+ ab [ 1 ]∗ ap [1 ]+ ab [ 2 ]∗ ap [ 2 ] ;
d2 = ac [ 0 ]∗ ap [0 ]+ ac [ 1 ]∗ ap [1 ]+ ac [ 2 ]∗ ap [ 2 ] ;
d3 = ab [ 0 ]∗bp [ 0 ] + ab [ 1 ]∗bp [ 1 ]+ ab [ 2 ]∗bp [ 2 ] ;
d4 = ac [ 0 ]∗bp [ 0 ] + ac [ 1 ]∗bp [ 1 ]+ ac [ 2 ]∗bp [ 2 ] ;
d5 = ab [ 0 ]∗ cp [ 0 ] + ab [ 1 ]∗ cp [ 1 ] + ab [ 2 ]∗ cp [ 2 ] ;
d6 = ac [ 0 ]∗ cp [ 0 ] + ac [ 1 ]∗ cp [ 1 ] + ac [ 2 ]∗ cp [ 2 ] ;

vc = d1∗d4−d3∗d2 ;
vb = d5∗d2−d1∗d6 ;
va = d3∗d6−d5∗d4 ;

w1 = d1/(d1−d3 ) ;
w2 = d2/(d2−d6 ) ;
w3 = ( d4−d3 ) / ( ( d4−d3)+ ( d5−d6 ) ) ;

denom = 1 . 0 / ( va+vb+vc ) ;
v = vb∗denom ;
w = vc∗denom ;

//Get b a r y c e n t r i c coordinates of c l o s e s t point
//Beyond corner A
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i f ( d1 <= 0 . 0 && d2 <= 0 . 0 )
{

pa [ 0 ] = 0 ;
pa [ 1 ] = 0 ;

}
//Beyond corner B
e l s e i f ( d3 >= 0 . 0 && d4 <= d3 )
{

pa [ 0 ] = 1 ;
pa [ 1 ] = 0 ;

}
//Beyond corner C
e l s e i f ( d6 >= 0 . 0 && d5 <= d6 )
{

pa [ 0 ] = 1 ;
pa [ 1 ] = 1 ;

}
//Under edege c
e l s e i f ( vc <= 0 . 0 && d1 >= 0 . 0 && d3 <= 0 . 0 )
{

pa [ 0 ] = w1 ;
pa [ 1 ] = 0 . 0 ;

}
//Under edge b
e l s e i f ( vb <= 0 . 0 && d2 >= 0 . 0 && d6 <= 0 . 0 )
{

pa [ 0 ] = w2 ;
pa [ 1 ] = w2 ;

}
//Under edge a
e l s e i f ( va <= 0 . 0 && ( d4−d3 ) >= 0 . 0 && ( d5−d6 ) >= 0 . 0 )
{

pa [ 0 ] = 1 . 0 ;
pa [ 1 ] = w3 ;

}
//In s ide the t r i a n g l e
e l s e
{

pa [ 0 ] = v+w;
pa [ 1 ] = w;

}

//Coordinates of f e f e r e n c e t r i a n g l e
aa [ 0 ] [ 0 ] = 0 . 0 ; aa [ 0 ] [ 1 ] = 0 . 0 ;
aa [ 1 ] [ 0 ] = 1 . 0 ; aa [ 1 ] [ 1 ] = 0 . 0 ;
aa [ 2 ] [ 0 ] = 1 . 0 ; aa [ 2 ] [ 1 ] = 1 . 0 ;

//Midpoints of t r i a n g l e
xbc [ 0 ] = m[ s [ j j ] [ 0 ] ] [ 0 ] ;
xbc [ 1 ] = m[ s [ j j ] [ 0 ] ] [ 1 ] ;
xbc [ 2 ] = m[ s [ j j ] [ 0 ] ] [ 2 ] ;
xca [ 0 ] = m[ s [ j j ] [ 1 ] ] [ 0 ] ;
xca [ 1 ] = m[ s [ j j ] [ 1 ] ] [ 1 ] ;
xca [ 2 ] = m[ s [ j j ] [ 1 ] ] [ 2 ] ;
xab [ 0 ] = m[ s [ j j ] [ 2 ] ] [ 0 ] ;
xab [ 1 ] = m[ s [ j j ] [ 2 ] ] [ 1 ] ;
xab [ 2 ] = m[ s [ j j ] [ 2 ] ] [ 2 ] ;

//Compute d i f f e r e n c e v e c t o r s f o r midpoints
xbc [ 0 ] = 4 . 0 ∗ xbc [ 0 ] − 2 . 0 ∗ ( xb [ 0 ] + xc [ 0 ] ) ;
xbc [ 1 ] = 4 . 0 ∗ xbc [ 1 ] − 2 . 0 ∗ ( xb [ 1 ] + xc [ 1 ] ) ;
xbc [ 2 ] = 4 . 0 ∗ xbc [ 2 ] − 2 . 0 ∗ ( xb [ 2 ] + xc [ 2 ] ) ;
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xca [ 0 ] = 4 . 0 ∗ xca [ 0 ] − 2 . 0 ∗ ( xc [ 0 ] + xa [ 0 ] ) ;
xca [ 1 ] = 4 . 0 ∗ xca [ 1 ] − 2 . 0 ∗ ( xc [ 1 ] + xa [ 1 ] ) ;
xca [ 2 ] = 4 . 0 ∗ xca [ 2 ] − 2 . 0 ∗ ( xc [ 2 ] + xa [ 2 ] ) ;
xab [ 0 ] = 4 . 0 ∗ xab [ 0 ] − 2 . 0 ∗ ( xa [ 0 ] + xb [ 0 ] ) ;
xab [ 1 ] = 4 . 0 ∗ xab [ 1 ] − 2 . 0 ∗ ( xa [ 1 ] + xb [ 1 ] ) ;
xab [ 2 ] = 4 . 0 ∗ xab [ 2 ] − 2 . 0 ∗ ( xa [ 2 ] + xb [ 2 ] ) ;

//Compute quadrat ic parametr izat ion f o r normal vec tor
dt [ 0 ] = xb [ 0 ] − xa [ 0 ] + xab [ 0 ] ;
dt [ 1 ] = xb [ 1 ] − xa [ 1 ] + xab [ 1 ] ;
dt [ 2 ] = xb [ 2 ] − xa [ 2 ] + xab [ 2 ] ;
ds [ 0 ] = xc [ 0 ] − xa [ 0 ] + xca [ 0 ] ;
ds [ 1 ] = xc [ 1 ] − xa [ 1 ] + xca [ 1 ] ;
ds [ 2 ] = xc [ 2 ] − xa [ 2 ] + xca [ 2 ] ;
na [ 0 ] = dt [ 1 ] ∗ ds [ 2 ] − dt [ 2 ] ∗ ds [ 1 ] ;
na [ 1 ] = dt [ 2 ] ∗ ds [ 0 ] − dt [ 0 ] ∗ ds [ 2 ] ;
na [ 2 ] = dt [ 0 ] ∗ ds [ 1 ] − dt [ 1 ] ∗ ds [ 0 ] ;

dt [ 0 ] = xb [ 0 ] − xa [ 0 ] − xab [ 0 ] ;
dt [ 1 ] = xb [ 1 ] − xa [ 1 ] − xab [ 1 ] ;
dt [ 2 ] = xb [ 2 ] − xa [ 2 ] − xab [ 2 ] ;
ds [ 0 ] = xc [ 0 ] − xa [ 0 ] + xbc [ 0 ] − xab [ 0 ] ;
ds [ 1 ] = xc [ 1 ] − xa [ 1 ] + xbc [ 1 ] − xab [ 1 ] ;
ds [ 2 ] = xc [ 2 ] − xa [ 2 ] + xbc [ 2 ] − xab [ 2 ] ;
nb [ 0 ] = dt [ 1 ] ∗ ds [ 2 ] − dt [ 2 ] ∗ ds [ 1 ] ;
nb [ 1 ] = dt [ 2 ] ∗ ds [ 0 ] − dt [ 0 ] ∗ ds [ 2 ] ;
nb [ 2 ] = dt [ 0 ] ∗ ds [ 1 ] − dt [ 1 ] ∗ ds [ 0 ] ;

dt [ 0 ] = xb [ 0 ] − xa [ 0 ] + xbc [ 0 ] − xca [ 0 ] ;
dt [ 1 ] = xb [ 1 ] − xa [ 1 ] + xbc [ 1 ] − xca [ 1 ] ;
dt [ 2 ] = xb [ 2 ] − xa [ 2 ] + xbc [ 2 ] − xca [ 2 ] ;
ds [ 0 ] = xc [ 0 ] − xa [ 0 ] − xca [ 0 ] ;
ds [ 1 ] = xc [ 1 ] − xa [ 1 ] − xca [ 1 ] ;
ds [ 2 ] = xc [ 2 ] − xa [ 2 ] − xca [ 2 ] ;
nc [ 0 ] = dt [ 1 ] ∗ ds [ 2 ] − dt [ 2 ] ∗ ds [ 1 ] ;
nc [ 1 ] = dt [ 2 ] ∗ ds [ 0 ] − dt [ 0 ] ∗ ds [ 2 ] ;
nc [ 2 ] = dt [ 0 ] ∗ ds [ 1 ] − dt [ 1 ] ∗ ds [ 0 ] ;

dt [ 0 ] = xb [ 0 ] − xa [ 0 ] + ( xbc [ 0 ] − xca [ 0 ] − xab [ 0 ] ) ∗ 0 . 5 ;
dt [ 1 ] = xb [ 1 ] − xa [ 1 ] + ( xbc [ 1 ] − xca [ 1 ] − xab [ 1 ] ) ∗ 0 . 5 ;
dt [ 2 ] = xb [ 2 ] − xa [ 2 ] + ( xbc [ 2 ] − xca [ 2 ] − xab [ 2 ] ) ∗ 0 . 5 ;
ds [ 0 ] = xc [ 0 ] − xa [ 0 ] + ( xbc [ 0 ] − xca [ 0 ] − xab [ 0 ] ) ∗ 0 . 5 ;
ds [ 1 ] = xc [ 1 ] − xa [ 1 ] + ( xbc [ 1 ] − xca [ 1 ] − xab [ 1 ] ) ∗ 0 . 5 ;
ds [ 2 ] = xc [ 2 ] − xa [ 2 ] + ( xbc [ 2 ] − xca [ 2 ] − xab [ 2 ] ) ∗ 0 . 5 ;
nbc [ 0 ] = dt [ 1 ] ∗ ds [ 2 ] − dt [ 2 ] ∗ ds [ 1 ] ;
nbc [ 1 ] = dt [ 2 ] ∗ ds [ 0 ] − dt [ 0 ] ∗ ds [ 2 ] ;
nbc [ 2 ] = dt [ 0 ] ∗ ds [ 1 ] − dt [ 1 ] ∗ ds [ 0 ] ;

dt [ 0 ] = xb [ 0 ] − xa [ 0 ] + ( xbc [ 0 ] + xab [ 0 ] − xca [ 0 ] ) ∗ 0 . 5 ;
dt [ 1 ] = xb [ 1 ] − xa [ 1 ] + ( xbc [ 1 ] + xab [ 1 ] − xca [ 1 ] ) ∗ 0 . 5 ;
dt [ 2 ] = xb [ 2 ] − xa [ 2 ] + ( xbc [ 2 ] + xab [ 2 ] − xca [ 2 ] ) ∗ 0 . 5 ;
ds [ 0 ] = xc [ 0 ] − xa [ 0 ] ;
ds [ 1 ] = xc [ 1 ] − xa [ 1 ] ;
ds [ 2 ] = xc [ 2 ] − xa [ 2 ] ;
nca [ 0 ] = dt [ 1 ] ∗ ds [ 2 ] − dt [ 2 ] ∗ ds [ 1 ] ;
nca [ 1 ] = dt [ 2 ] ∗ ds [ 0 ] − dt [ 0 ] ∗ ds [ 2 ] ;
nca [ 2 ] = dt [ 0 ] ∗ ds [ 1 ] − dt [ 1 ] ∗ ds [ 0 ] ;

dt [ 0 ] = xb [ 0 ] − xa [ 0 ] ;
dt [ 1 ] = xb [ 1 ] − xa [ 1 ] ;
dt [ 2 ] = xb [ 2 ] − xa [ 2 ] ;
ds [ 0 ] = xc [ 0 ] − xa [ 0 ] + ( xca [ 0 ] + xbc [ 0 ] − xab [ 0 ] ) ∗ 0 . 5 ;
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ds [ 1 ] = xc [ 1 ] − xa [ 1 ] + ( xca [ 1 ] + xbc [ 1 ] − xab [ 1 ] ) ∗ 0 . 5 ;
ds [ 2 ] = xc [ 2 ] − xa [ 2 ] + ( xca [ 2 ] + xbc [ 2 ] − xab [ 2 ] ) ∗ 0 . 5 ;
nab [ 0 ] = dt [ 1 ] ∗ ds [ 2 ] − dt [ 2 ] ∗ ds [ 1 ] ;
nab [ 1 ] = dt [ 2 ] ∗ ds [ 0 ] − dt [ 0 ] ∗ ds [ 2 ] ;
nab [ 2 ] = dt [ 0 ] ∗ ds [ 1 ] − dt [ 1 ] ∗ ds [ 0 ] ;

nbc [ 0 ] = 4 . 0 ∗ nbc [ 0 ] − 2 . 0 ∗ ( nb [ 0 ] + nc [ 0 ] ) ;
nbc [ 1 ] = 4 . 0 ∗ nbc [ 1 ] − 2 . 0 ∗ ( nb [ 1 ] + nc [ 1 ] ) ;
nbc [ 2 ] = 4 . 0 ∗ nbc [ 2 ] − 2 . 0 ∗ ( nb [ 2 ] + nc [ 2 ] ) ;
nca [ 0 ] = 4 . 0 ∗ nca [ 0 ] − 2 . 0 ∗ ( nc [ 0 ] + na [ 0 ] ) ;
nca [ 1 ] = 4 . 0 ∗ nca [ 1 ] − 2 . 0 ∗ ( nc [ 1 ] + na [ 1 ] ) ;
nca [ 2 ] = 4 . 0 ∗ nca [ 2 ] − 2 . 0 ∗ ( nc [ 2 ] + na [ 2 ] ) ;
nab [ 0 ] = 4 . 0 ∗ nab [ 0 ] − 2 . 0 ∗ ( na [ 0 ] + nb [ 0 ] ) ;
nab [ 1 ] = 4 . 0 ∗ nab [ 1 ] − 2 . 0 ∗ ( na [ 1 ] + nb [ 1 ] ) ;
nab [ 2 ] = 4 . 0 ∗ nab [ 2 ] − 2 . 0 ∗ ( na [ 2 ] + nb [ 2 ] ) ;

//Reset l o c a l c o n t r i b u t i o n s
sum0 = 0 . 0 ;
sum1 = 0 . 0 ;
sum2 = 0 . 0 ;

//Loop over s u b t r i a n g l e s
f o r ( k =0; k<3; k++)
{

//Transformation of s u b t r i a n g l e
F [ 0 ] [ 0 ] = aa [ k][0]−pa [ 0 ] ;
F [ 0 ] [ 1 ] = aa [ ( k+1)%3][0]− aa [ k ] [ 0 ] ;
F [ 1 ] [ 0 ] = aa [ k][1]−pa [ 1 ] ;
F [ 1 ] [ 1 ] = aa [ ( k+1)%3][1]− aa [ k ] [ 1 ] ;

//Loop over quadrature points
f o r ( k1 =0; k1<ng ; k1++)
{

f o r ( k2 =0; k2<ng ; k2++)
{

//Quadrature point
xp = F [ 0 ] [ 0 ] ∗ xg [ k1 ]+F [ 0 ] [ 1 ] ∗ ( xg [ k1 ]∗xg [ k2 ] ) + pa [ 0 ] ;
yp = F [ 1 ] [ 0 ] ∗ xg [ k1 ]+F [ 1 ] [ 1 ] ∗ ( xg [ k1 ]∗xg [ k2 ] ) + pa [ 1 ] ;
//Quadrature weight
wp = ( F [ 0 ] [ 0 ] ∗ F [1] [1]−F [ 0 ] [ 1 ] ∗ F [ 1 ] [ 0 ] ) ∗ xg [ k1 ]∗wg[ k1 ]∗wg[ k2 ] ;

//Local shape f u c n t i o n s
b0 = 1 . 0 − xp ;
b1 = xp − yp ;
b2 = yp ;

//Global quadrature points on t r i a n g l e
y0 = ( b0 ∗ xa [ 0 ] + b1 ∗ xb [ 0 ] + b2 ∗ xc [ 0 ]

+ b0 ∗ b1 ∗ xab [ 0 ] + b1 ∗ b2 ∗ xbc [ 0 ] + b2 ∗ b0 ∗ xca [ 0 ] ) ;
y1 = ( b0 ∗ xa [ 1 ] + b1 ∗ xb [ 1 ] + b2 ∗ xc [ 1 ]

+ b0 ∗ b1 ∗ xab [ 1 ] + b1 ∗ b2 ∗ xbc [ 1 ] + b2 ∗ b0 ∗ xca [ 1 ] ) ;
y2 = ( b0 ∗ xa [ 2 ] + b1 ∗ xb [ 2 ] + b2 ∗ xc [ 2 ]

+ b0 ∗ b1 ∗ xab [ 2 ] + b1 ∗ b2 ∗ xbc [ 2 ] + b2 ∗ b0 ∗ xca [ 2 ] ) ;

//Compute Gram determinant
n0 = ( b0 ∗ na [ 0 ] + b1 ∗ nb [ 0 ] + b2 ∗ nc [ 0 ]

+ b0 ∗ b1 ∗ nab [ 0 ] + b1 ∗ b2 ∗ nbc [ 0 ] + b2 ∗ b0 ∗ nca [ 0 ] ) ;
n1 = ( b0 ∗ na [ 1 ] + b1 ∗ nb [ 1 ] + b2 ∗ nc [ 1 ]

+ b0 ∗ b1 ∗ nab [ 1 ] + b1 ∗ b2 ∗ nbc [ 1 ] + b2 ∗ b0 ∗ nca [ 1 ] ) ;
n2 = ( b0 ∗ na [ 2 ] + b1 ∗ nb [ 2 ] + b2 ∗ nc [ 2 ]

+ b0 ∗ b1 ∗ nab [ 2 ] + b1 ∗ b2 ∗ nbc [ 2 ] + b2 ∗ b0 ∗ nca [ 2 ] ) ;
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gy = s q r t ( n0 ∗ n0 + n1 ∗ n1 + n2 ∗ n2 ) ;

//Evaluate kernel
d0 = x0 − y0 ;
d1 = x1 − y1 ;
d2 = x2 − y2 ;
kv = f a c t o r / s q r t ( d0 ∗ d0 + d1 ∗ d1 + d2 ∗ d2 ) ;

kv ∗= wp ∗ gy ;

//Add c o n t r i b u t i o n
sum0 += b0 ∗ kv ;
sum1 += b1 ∗ kv ;
sum2 += b2 ∗ kv ;

}
}

}

//Add to matrix
i f ( t r i 2 v t x [4∗ j +1] != ˜0u )

Ga[ i i + t r i 2 v t x [4∗ j +1]∗ ldG ] += sum0 ;
i f ( t r i 2 v t x [4∗ j +2] != ˜0u )

Ga[ i i + t r i 2 v t x [4∗ j +2]∗ ldG ] += sum1 ;
i f ( t r i 2 v t x [4∗ j +3] != ˜0u )

Ga[ i i + t r i 2 v t x [4∗ j +3]∗ ldG ] += sum2 ;
}

}
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Manual

B.1 Prerequisites

The code requires the following hardware and software:

• Access to at least one Nvidia GPU with installed drivers

• OpenCL header files

• MPI implementation

• C compiler

• Make

B.1.1 Code structure

• The ’Library’ folder contains: A modified version of H2Lib. With sup-
port for .tra-file input and the collocation method for linear basis func-
tions.

• The ’OpenCL’ folder contains:

– C-files for the functions which load and execute the OpenCL ker-
nels.

– The OpenCL kernels are the ’Kernel’ directory.

• The ’Meshes’ directory contains input meshes used in the numerical
experiment

• The ’Makefile’ is to build the code.

• ’option.inc.default’ contains settings for H2Lib.

• ’test mpi ocl near general.c’ Main file for computations without post-
processing.
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• ’test mpi ocl field.c’ Main file for computation with field lines.

B.1.2 Compile time options

Single or double precision Uncomment option ’USE FLOAT’ in ’option.inc.default’
to use single precision.

Export matrices Uncomment the option ’USE NETCDF’ to export matri-
ces after computations for debugging. Needs ’netcdf’ to be installed on
machine.

B.1.3 Running examples

A simple example can be executed by the following commands in the top
directory of the code. The ’-g’ argument indicates the number on a single
node.

module load mpi
make
./test mpi ocl near general -g 1 Path/To/TraFile.tra

This computes the surface electric field on one GPU without MPI.

mpirun -np 4 ./test mpi ocl near general -g 2 Path/To/TraFile.tra

This computes the surface electric field on two nodes with two GPUs each.
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