
Partition of unity method Based
Wave-Ray Multigrid

Master Thesis

Liaowang Huang

April 15, 2021

Advisors: Prof. Dr. Ralf Hiptmair

Department of Mathematics, ETH Zürich

Abstract

The standard multigrid methods are unable to solve the Helmholtz
problem efficiently, because they can’t eliminate some problematic er-
ror components, for these components are almost invisible for local re-
laxation on fine grids and too oscillatory to be approximated on coarse
grids. The wave-ray methods represent the problematic components as
the product of a high-frequency Fourier component and a smooth ray
function, then another ray cycle is employed to deal with the ray func-
tion. This project aims at approximating the problematic error compo-
nents in plane wave PUM spaces, which have good local approximation
properties regarding the problematic error components. This project
also investigate the effect of using GMRES and local smoothing with
impedance boundary condition on coarse grids.

i

Acknowledgements

First and foremost, I want to thank my supervisor Prof. Dr. Ralf Hiptmair
for the valuable discussions and constructive feedback on my work. I sin-
cerely appreciate all his contributions of time, ideas and encouragement in
this period. I also would like to thank my parents and family for their un-
conditioned support and patience during my study in Switzerland. Last, I
thank my flatmates and all my friends for their support and company, life
would be less fun without them.

iii

Contents

Contents v

1 Introduction 1

2 Helmholtz equation 3

2.1 Derivation . 3
2.2 Boundary condition . 4
2.3 Model problem and Variational formulation 5

3 Multigrid method 7

3.1 Introduction . 7
3.2 Elements of Multigrid in Finite element method 8
3.3 Power iteration to obtain convergence factor 10
3.4 Difficulties in solving Helmholtz equation with standard multi-

grid method . 11

4 Wave-ray multigrid method 19

4.1 Characteristic Component and Ray Equations 19
4.2 Separation . 20

5 Plane-wave PUM 23

5.1 The partition of unity method 23
5.2 Approximate the solution of Helmholtz equation 24
5.3 Implementation in LehrFEM++ 25
5.4 Resolution test . 31

6 PUM wave-ray method 37

6.1 Transfer operator . 38

7 Numerical Experiments 43

7.1 Code Validation . 43

v

Contents

7.2 Apply Standard Multigrid to Helmholtz problem 45
7.3 Extend PUM wave-ray multigrid 46

8 Stable smoothing method 51

8.1 GMRES . 51
8.2 Local smoothing with impedance boundary condition 52
8.3 Numerical experiments . 54

9 Discussion 57

A Appendix 59

A.1 Implementation of GMRES . 59
A.2 Eigenvalues of Gauss-Seidel relaxation 62

Bibliography 65

vi

Chapter 1

Introduction

This master thesis project aims at solving the Helmholtz boundary value
problem posed on a two-dimensional domain W ⇢ R2 :

Du + k2u = 0 in W

with suitable boundary conditions. Discretization of the Helmholtz equation
by finite elements or finite differences leads to a linear system of equations

A~µ = ~j

However, when the wave number k is large, the matrix A becomes highly
indefinite, which prevents us from solving the problem efficiently. Fast relax-
ation methods such as Jacobi and Gauss-Seidel relaxation fail to eliminate
or even diverge some error components, while the stable methods such as
Kaczmarz relaxation need large amount sweeps. The above motivates us
to use the multigrid methods [3][7][13], however, standard multigrid meth-
ods fail to solve the highly indefinite Helmholtz equations. This is because
the standard multigrid methods are unable to reduce the error components
eik(d1x+d2y) with d2

1 + d2
2 ⇡ 1, these components are called characteristic compo-

nents. On fine grids, the characteristic components are near the null space of
the Helmholtz operator L := D + k2, which make them invisible to local re-
laxation since their errors can have very small residuals. On the other hand,
characteristic components are too oscillatory to be treated on coarse grids.

As for modern solvers, I. Livshits and A. Brandt [2][11] has proposed the
wave-ray method. Lee et al.[9][10] combine the wave ray method and the
first-order system least squares for Helmholtz problems. Elman et al.[4]
modify the standard multigrid by adding GMRES iterations at coarse grids
and use the modified multigrid as outer iteration for GMRES. Other meth-
ods such as domain decomposition preconditioning and complex shift Laplace
preconditioning can be found at [5][8].

1

1. Introduction

Among these methods, we are most interested in the wave ray method. The
standard multigrid cycle is called wave cycle, and another ray cycle is em-
ployed to deal with the oscillatory characteristic components, and these com-
ponents are represented as the product of an oscillatory Fourier mode and a
smooth amplitude (or ray function), the ray function is smooth so that it can
be treated on the coarse grids. The wave-ray method motivates us the use
of PUM[1], the PUM space use functions which have better local approxima-
tion properties for oscillatory functions than the polynomials, and we are
going to treat the characteristic components in PUM space since the coarse
grids cannot eliminate them, the difference with the wave-ray method is that
we will employ PUM based cycle instead of ray cycle after wave cycle, and
we call this method the PUM wave-ray method, and we will implement it in
C++ with LehrFEM++ library1.

An outline of the paper is as follows. In chapter 2, we will give the deriva-
tion of Helmholtz equation, the boundary condition and variation form for
our model problem. In chapter 3, we will give a brief introduction of the
multigrid method and analysis why it fails for Helmholtz problem. Chap-
ter 4 presents the basic idea of wave-ray method. Chapter 5 talks about
the PUM and its implementation in LehrFEM++. We presents our PUM
wave-ray method in chapter 6 and the numerical experiments are shown in
chapter 7. In chapter 8, we use some stable relaxation methods and use the
multigrid as the preconditioner for GMRES to solve the Helmholtz problems.
Finally, we make some discussion in chapter 9. And the codes generating
the results of numerical experiments can be found at my Github repository
https://github.com/liaowangh/PUM_WaveRay.

1https://craffael.github.io/lehrfempp/

2

https://github.com/liaowangh/PUM_WaveRay

Chapter 2

Helmholtz equation

In this chapter we will introduce the acoustic waves, Helmholtz equation
and boundary conditions. We will also give the variational form of our
model Helmholtz problem.

2.1 Derivation

In this section we will give a short introduction about the acoustic wave
propagation and its governing equations, which are obtained from the fun-
damental laws for compressible fluids[6]:

• Conservation of Mass:

Consider the flow of fluid material with pressure P(x, t), density r(x, t)
and velocity V(x, t). The conservation of mass in a unit time interval
is expressed as:

�
∂

∂t

Z

V
rdV =

Z

∂V
rV · ndS =

Z

V
div(rV)dV

where V is a volume element with boundary ∂V and n is a outward
normal vector. The second equality comes from the Gauss theorem,
thus we have the continuity equation

∂r

∂t
+ div(rV) = 0. (2.1)

• Equation of Motion:

The total force along ∂V is F = �
R

∂V PndS, according to the second
Newtonian law F = ma, we have

�

Z

∂V
PndS =

Z

V
r

dV
dt

dV

3

2. Helmholtz equation

and
R

∂V PndS =
R

V rPdV comes from the Gauss theorem, thus we
arrive at the equation of motion

r
∂V
∂t

= �rP (2.2)

where we make a linearization: dV/dt ⇡ ∂V/∂t

From linear material law, we write:

P = c2r

where constant c is called the speed of sound. Then we can write

∂2P
∂t2 = c2 ∂2r

∂t2

i
= �c2 ∂

∂t
div(rV)

= �c2(div(
∂r

∂t
V) + div(r

∂V
∂t

))

ii
= �c2 div(

∂r

∂t
V) + c2DP

where i and ii are derived based on the equation (2.1) and (2.2) respectively.
If we further assume that r is constant and assume time harmonic waves, i.e.
the scalar field P can be separated as

P(x, t) = p(x) exp(�iwt)

where w > 0 is the angular frequency, we can finally obtain the Helmholtz
equation

Dp + k2 p = 0

with the wave number defined by

k :=
w
c

.

2.2 Boundary condition

If we want the problem to be well-posed, we need to formulate suitable
boundary conditions, typical the Helmholtz problem is considered in an
unbounded exterior domain with Sommerfeld radiation condition at infinity,
one way to make it friendly to numerical computational is to simply cuts
off the infinite domain to form a domain W with limited size, and add an
artificial absorbing boundary condition (ABC) at the new boundary, which
models the effect of the rest of the domain. One kind of ABC is

∂u
∂n
� iku = g on ∂W

In practice we will consider the combination of ABS and Dirichlet boundary
condition.

4

2.3. Model problem and Variational formulation

2.3 Model problem and Variational formulation

Throughout the paper, our experimental will base on the following Helmholtz
boundary value problem posed on a two-dimensional domain W ⇢ R2 :

Du + k2u = 0 in W
∂u
∂n
� iku = g on GR

u = f on GD

(2.3)

Here k > 0 is the wave number, g 2 L2(GR), f 2 L2(GD), GD and GR are two
well separated parts of the boundary, GD [GR = ∂W. In practice, we will use
different type of domains,

The weak formulation of Helmholtz problem (2.3) is given by

Find u 2 V := H1
GD
(W) such that

a(u, v) = F(v) 8v 2 V (2.4)

where

a(u, v) =
Z

W
(grad u · grad v̄� k2uv̄)dx� ik

Z

GR

uv̄dS 8u, v 2 V (2.5a)

F(v) =
Z

GR

gv̄dS 8v 2 V (2.5b)

Let Vh be a finite dimensional subspace of V. The Galerkin finite element
discretizatin of (2.4) is as follows:

Find uh 2 Vh such that,

a(uh, vh) = F(vh) 8vh 2 Vh (2.6)

Suppose {c1(x), · · · , cM(x)} is a basis of Vh, and for uh 2 Vh, there are
unique coefficients µj 2 C, j 2 {1, 2, · · · , M}, such that uh = ÂM

j=1 µjcj, then
(2.6) is equivalent to the following linear system of equations:

A~µ = ~j (2.7)

Where

A = [a(cj, cm)]
M
m,j=1 2 CM,M

~µ = (µ1, · · · , µM)> 2 CM

~j = [F(cj)]
M
j=1

5

Chapter 3

Multigrid method

3.1 Introduction

When we try to solve a boundary value problem with numerical method,
we will probably end up solving a sparse system of linear equations. There
are two kinds of methods to solve them: direct methods and iterative (or
relaxation) methods. Direct method is generally expensive, and we are in-
terested in the iterative methods. Jacobi and Gauss-Seidel iterations are
two typical relaxation methods. The relaxation methods start with a initial
guess at a solution, they generate new approximation from the previous
one through some simple updating steps or iterations. Relaxation meth-
ods also have their limitations, if we apply Fourier mode analysis (assume
the error consists of Fourier modes of different frequencies), we can find
that high-frequency (oscillatory) modulation on the long wave in the error
can be eliminated efficiently while the low-frequency (smooth) components
persists [3]. This smoothing property inspires the multigrid method, the
smooth modes on a fine grid look less smooth on a coarse grid, so when
relaxation on fine grid begins to stall, we can move the smooth error modes
to the coarser grid, where them appear more oscillatory and relaxation will
be more effective.

Algorithm 1 shows the procedure of a standard correction scheme, the coarse
grid provides the correction to the fine grid by solving the residual equation
by multigrid recursively.

To implement the V-cycle, we need figure out how to move to coarser grid
and what is system of equations in coarser grid. In algorithm 1, we move
the fine grid residual to coarser grid and transfer the error correction back
to fine grid, the Ih

H and IH
h denote the prolongation and restriction operator

respectively, and AH is the coarse grid operator, their implementation in
finite element background is introduced in next section.

7

3. Multigrid method

Algorithm 1: ~v = MG(A,~v,~j) V-cycle scheme
if On coarsest grid then

~v = A�1~j
else

Relax n1 times on A~µ = ~j with initial guess ~v.
~v ~v + Ih

H MG(AH, 0, IH
h (~j� A~v)).

Relax n2 times on A~µ = ~j with initial guess ~v.
end

Here ~j denotes the initial guess, AH is the coarse-grid representation
of A and IH

h , Ih
H are restriction and prolongation operator.

3.2 Elements of Multigrid in Finite element method

In this section, we will illustrate the multigrid method in a two-mesh back-
ground. Suppose Vh and VH are two finite element spaces associated with a
fine and a coarse mesh respectively, and their basis functions are denoted as
{bh

1, · · · , bh
nh
} and {bH

1 , · · · , bH
nH
}.

In practice, we create the meshes by uniform regular refinement, and choose
the finite element space to be Lagrangian finite element space with the basis
functions to be the nodal basis functions, thus we have VH ⇢ Vh. For any
v 2 Vh, we can write it as a linear combination of {bh

i }:

v =
nh

Â
i=1

vibh
i , vi 2 F

where F is the scalar field (R or C), so we can represent the element of Vh
by its coefficient vector regarding nodal basis {bi}, and we use Fnh (FnH) to
denote the coefficient vector space with respect to Vh (VH). In the sequel,
we will use vh(vH) to denote a function from Vh(VH) and use ~vh = [vh

i]

(~vH = [vH
i]) to denote its coefficient vector. And the prolongation and re-

striction operator IH
h and Ih

H will be used to denote the mapping between
finite element spaces and coefficient vector spaces simultaneously.

Prolongation operator

As for the prolongation operator Ih
H : VH ! Vh, since VH ⇢ Vh, the prolon-

gation operator is exact and is the embedding, implementation detail can be
found in section 6.1, we assume

bH
i =

nl

Â
j=1

qjibh
j .

then we can write the Ih
H in the matrix form Ih

H = Q = [qij] 2 Fnh⇥nH .

8

3.2. Elements of Multigrid in Finite element method

Restriction operator

Restriction operator IH
h transfer the residual from fine mesh to coarse mesh.

Suppose the fine grid problem Ah~µ
h = ~jh is generated from the discrete

variational problem

find uh 2 Vh, such that a(uh, vh) = F(vh) 8vh 2 Vh

Suppose we have an approximation solution vh 2 Vh and its coefficient vec-
tor is ~vh, then the residual is~rh = ~jh

� Ah~v
h, we can observe that in terms

of component of~rh = [rh
i]

rh
i = jh

i �
nh

Â
j=1

ah
ijv

h
i = F(bh

i)�
nh

Â
j=1

a(bh
j , bh

i)v
h
i

= F(bh
i)� a(vh, bh

i) := F̂h(bh
i)

we can say that residual is a functional F̂h : Vh 7! F, and on the coarser grid,
its natural to define F̂H(w) := F̂h(w), 8w 2 VH [13], thus

rH
i = F̂h(bH

i) = F̂h(
nh

Â
j=1

qjibh
j)

=
nh

Â
j=1

qji F̂h(bh
j) =

nh

Â
j=1

qjirh
j

so
[rH

1 , · · · , rH
nH
]> = Q>[rh

1, · · · , rh
nh
]>

and we define IH
h = (Ih

H)
>.

The coarse mesh problem

A straightforward approach is to let the coarse mesh matrix AH to be the
“VH version of the fine mesh matrix Ah”. Another method is to construct the
matrix AH by Galerkin projection[7]. We start from the residual equation

Ah~e
h =~rh.

For the moment assume~eh lies in the range of the prolongation operator Ih
H.

Then, there is a vector~eH
2 FnH such that

~eh = Ih
H(~e

H).

Substituting this equation into the former equation gives

Ah Ih
H(~e

H) =~rh.

9

3. Multigrid method

Now apply the restriction operator on both sides of this equation

IH
h Ah Ih

H(~e
H) = IH

h ~r
h.

which leads to the definition

AH := IH
h Ah Ih

H.

This definition of the coarse grid matrix is called Galerkin projection. Al-
though the assumption that~eh lies in the range of prolongation is in general
not given, this derivation gives a motivation for defining the coarse grid
operator.

3.3 Power iteration to obtain convergence factor

For an iterative method, the biggest eigenvalue of the iteration matrix is the
convergence factor, which tells us roughly the worst factor by which the
error is reduced with each relaxation sweep. We can use the power iteration
to obtain the convergence factor of the multigrid method. We take the two
grid correction scheme for example.

After building the linear system of equations

Ah~µ
h = ~jh

in fine mesh, the two-mesh correction scheme goes like:

• Relax n1 times on Vh with initial guess ~µh.

• Compute the residual~rh = ~jh
� Ah~µ

h, and transfer it to FnH by IH
h ~r

h.

• Solve AH~eH =~rH.

• Transfer the coarse-mesh error to the fine-mesh by ~eh = Ih
H~e

H and
correct the fine-mesh approximation by ~µh

 ~µh +~eh.

• Relax n2 times with initial guess ~µh.

Suppose the relaxation operator is R and it updates~µh in the following way:

~µh
 R~µh + C~jh

for constant matrix C. Then relaxation n times can be written as

~µh
 Rn~µh + (

n�1

Â
t=0

Rt)C~jh

| {z }
:= f(n,~jh)

10

3.4. Difficulties in solving Helmholtz equation with standard multigrid method

Take the whole correction scheme process one step a time, we can write

~µh
 Rn2

⇣
Id � Ih

H (AH)
�1 IH

h Ah

⌘
Rn1~µh

+ Rn2(Ih
H A�1

H IH
h (~jh

� Ah f (n1,~jh)) + f (n1,~jh)) + f (n2,~jh) (3.1)

And
M = Rn2

⇣
Id � Ih

H (AH)
�1 IH

h Ah

⌘
Rn1

is the correction scheme operator. Note that in equation (3.1) if we let~jh = 0,
then the update goes like

~µh
 M~µh

If we normalize the ~µh after update and then keep updating and normaliza-
tion, we are actually doing the power iteration regarding the operator M,
which provides us the slowest convergence mode about this two grid correc-
tion scheme. And the corresponding eigenvalue (convergence factor) can be
obtained by Rayleigh quotient.

3.4 Di�culties in solving Helmholtz equation with stan-
dard multigrid method

Most of the difficulties of standard multigrid method applied to Helmholtz
problem can be seen from a one-dimensional model problem. We consider
the following one-dimensional Helmholtz problem posed on the unit inter-
val (0, 1) with homogeneous Dirichlet boundary conditions

�u00 � k2u = f , u(0) = u(1) = 0 (3.2)

Finite difference discretization of (3.2) on a uniform grid containing N inte-
rior points leads to a linear system of equations A~µ = ~j with the coefficient
matrix

A =
�
1/h2� tridiag(�1, 2,�1)� k2I 2 RN⇥N

where h = 1/(N + 1) denotes the mesh width and I denotes the identity
matrix.

The eigenvalues of A are

lj =
2(1� cos jph)

h2 � k2 =
4
h2 sin2 jph

2
� k2, j = 1, . . . , N

and the eigenvectors are

~vj = [sin ijph]Ni=1, j = 1, . . . , N (3.3)

The choice of Dirichlet boundary conditions in (3.2) allows us to perform
Fourier analysis using these analytic expressions for eigenvalues and eigen-
vectors.

11

3. Multigrid method

Smoothing

We consider the Gauss-Seidel(GS) relaxation

~um+1 = (D� L)�1(~j+ U~um)

as the smoothing operator, where we split A as A = D � L �U, D is the
matrix consisting of the diagonal of A, �L and �U are strict lower and
upper triangle matrix of A respectively. Then the error propagation matrix
is RGS = (D� L)�1U, and its eigenvalue is

lGS
j =

4
(2� h2k2)2 cos2(jph), j = 1, · · · , N

the derivation can be found in (A.2). When hk > 2, lGS
j < 1 for all j, the

GS smoothing will damp every modes. When hk is small, some modes may
be amplified, but GS is still stable if the the amplification factor is within
the acceptable range. However, when kh is in the intermediate range, say
hk ⇡

p
2, then some eigenvalues will be very large and GS is very unstable,

so we can perform GS in fine and coarse grids, but we need to avoid doing
smoothing in intermediate grids. (Note that the modes mentioned above
refer to the eigenvectors of RGS, not the eigenvectors (3.3) of A.)

Figure (3.1) shows the effect of GS operator RGS applied to eigenvectors (3.3)
of A, it shows the norm reduction of each eigenvector after 5 G-S iterations.
We can see that the oscillatory part are reduced efficiently, while small num-
ber of smooth modes are amplified.

Coarse grid correction

Here we will focus on an analysis of the two-grid correction scheme, since
V-cycle is just nested application of the two-grid correction scheme, an un-
derstanding of it is important. We will show why standard multigrid will
not always work for Helmholtz problem.

Assume the number of interior grid points N is odd, and let the next coarser
grid consists of n = (N � 1)/2 interior grid points. Let H = 2h denotes
the coarse mesh size, let ~eh = ~µ �~vh denotes the fine-grid error, let ~rh =
~jh
� Ah~v

h denotes the residual.

Let the coarse-to-fine prolongation be the interpolation Ih
H : Fn ! FN

h
Ih
H~w

H
i

i
:=

(
[~wH]i/2, i even ,
1
2 [~w

H](i�1)/2 +
1
2 [~w

H](i+1)/2, i odd ,
i = 1, . . . , N

12

3.4. Difficulties in solving Helmholtz equation with standard multigrid method

Figure 3.1: Gauss-Seidel iteration matrix applied to the model problem with
N = 31, wave number k = 3p. The initial guesses consist of the eigenvectors
{vj}

N
j=1 of A. The figure shows the norm reduction kRm

GS~vjk/k~vjk with
m = 5.

Let the fine-to-coarse operator be the full weighting IH
h : FN ! Fn, we have

componentwise

h
IH
h ~u

h
i

i
:=

1
4

✓h
~uh

i

2i�1
+ 2

h
~uh

i

2i
+

h
~uh

i

2i+1

◆
, i = 1, . . . , n

and the relation Ih
H = 2

�
IH
h
�>.

Following analysis was given in [4]. Consider a fine-grid error~eh = ~vh which
is the exactly the smoothest eigenvector~vh of Ah with associated eigenvalue
lh. The fine-grid residual is thus given by~rh = Ah~e

h = lh~vh, and, since we
are assuming that ~vh is smooth, its restriction~rH := IH

h ~r
h = lh IH

h ~v
h to the

coarse grid will also be close to an eigenvector of the coarse grid operator
AH but with respect to a slightly different eigenvalue lH. The coarse grid
version of correction is obtained by solving the residual equation in coarse

13

3. Multigrid method

grid exactly

~eH = (AH)
�1~rH = lh (AH)

�1 IH
h vh
⇡

lh

lH IH
h vh

The error on the fine grid after the correction is

~eh
� Ih

H~e
H
⇡ ~vh

�
lh

lH Ih
H IH

h ~v
h =

✓
1�

lh

lH

◆
~vh, (3.4)

since the mode ~vh is very smooth, we can assume that it is invariant under
restriction followed by prolongation. We can see from (3.4) that the effec-
tiveness of the coarse grid correction depends on the ratio lh/lH under the
assumption that the restrictions of smooth eigenvectors are again eigenvec-
tors of AH. If the ratio is 1, then the correction is exact, but if it’s large, the
correction can be arbitrarily bad. This occurs whenever one of lh, lH is close
0 and the other is not. Moreover, if lh and lH have opposite signs, then the
correction is in the wrong direction.

Next let’s see which eigenvalues are problematic. The fine grid eigenvectors
are related by

h
~vh

N+1�j

i

i
= (�1)i+1

h
~vh

j

i

i
. And the coarse grid eigenvectors

are
~vH

j = [sin ijpH]ni=1, j = 1, · · · , n

Proposition 3.1 The coarse-grid eigenvectors are mapped by the prolongation op-
erator Ih

H according to

Ih
H~v

H
j = c2

j~v
h
j � s2

j~v
h
N+1�j, j = 1, . . . , n (3.5)

with

cj := cos
jph

2
, sj := sin

jph
2

, j = 1, . . . , N

Proof For i = 1, · · · , n

[Ih
H~v

H
j]2i = [~vH

j]2i

= sin(ijpH)(c2
j + s2

j)

= c2
j sin(2ijph)� s2

j (� sin(2ijph))

= c2
j [v

h
j]2i � s2

j [v
h
N+1�j]2i

14

3.4. Difficulties in solving Helmholtz equation with standard multigrid method

For i = 0, · · · , n

[Ih
H~v

H
j]2i+1 =

1
2
[sin(ijpH) + sin((i + 1)jpH)]

=
1
2
[sin((2i + 1)jph� jph) + sin((2i + 1)jph + jph)]

= sin((2i + 1)jph) cos(jph)

= [~vh
j]2i+1(c2

j � s2
j)

= c2
j [~v

h
j]2i+1 � s2

j [~v
h
N+1�j]2i+1 ⇤

Proposition 3.2 The fine-grid eigenvectors are mapped by the restriction operator
IH
h according to

IH
h ~v

h
j =

8
><

>:

c2
j~v

H
j , j = 1, . . . , n

0, j = n + 1
�c2

j~v
H
N+1�j, j = n + 2, . . . , N

(3.6)

with cj and sj as defined as in Proposition 3.1

Proof For j = 1, · · · , n

[IH
h ~v

h
j]i =

1
4
(sin((2i� 1)jph) + 2 sin(2ijph) + sin((2i + 1)jph))

=
1
4
(2 sin(2ijph) cos(jph) + 2 sin(2ijph))

=
1
2
[~vH

j]i(cos(jph) + 1)

= c2
j [~v

H
j]i

The derivation for j = n + 1, · · · , N are similar. ⇤

If AH denotes the coarse grid discretization matrix, then one iterate of two-
grid correction scheme updates the initial value as

~uh := ~uh + Ih
H (AH)

�1 IH
h (~jh

� Ah~u
h)

from which we obtain the error propagation operator C := I� Ih
H (AH)

�1 IH
h Ah.

Denoting the eigenvalues of Ah and AH by
n

lh
j

oN

j=1
and

n
lH

j

on

j=1
respec-

tively, we may summarize the action of C on the eigenvectors using (3.5)
and (3.6) as follows.

15

3. Multigrid method

Theorem 3.3 The image of the fine-grid eigenfunctions
n
~vh

h

oN

j=1
under the error

propagation operator C of the exact coarse grid correction is given by

C~vh
j =

8
>>><

>>>:

(1� c4
j

lh
j

lH
j
)~vh

j + s2
j c2

j
lh

j

lH
j
~vh

N+1�j, j = 1, . . . , n,

~vh
n+1, j = n + 1,

(1� c4
j

lh
j

lH
N+1�j

)~vh
j + s2

j c2
j

lh
j

lH
N+1�j

~vh
N+1�j, j = n + 2, . . . , N.

Proof We give the derivation for j = 1, · · · , n,

C~vh
j = (I � Ih

H (AH)
�1 IH

h Ah)~vh
j

= ~vh
j � lh

j Ih
H (AH)

�1 IH
h ~v

h
j

= ~vh
j � c2

j lh
j Ih

H (AH)
�1~vh

j

= ~vh
j � c2

j
lh

j

lH
j

Ih
H~v

h
j

= ~vh
j � c2

j
lh

j

lH
j
(c2

j~v
h
j � s2

j~v
h
N+1�j)

= (1� c4
j

lh
j

lH
j
)~vh

j + c2
j s2

j
lh

j

lH
j
~vh

N+1�j ⇤

As a consequence, the two-dimensional spaces spanned by a smooth mode
and its complementary mode are invariant under C : C

h
~vh

j ,~vh
N+1�j

i
=

h
~vh

j ,~vh
N+1�j

i
C j with

C j :=

2

64
1� c4

j
lh

j

lH
j

c2
j s2

j
lh

N+1�j

lH
j

s2
j c2

j
lh

j

lH
j

1� s4
j

lh
N+1�j

lH
j

3

75 , j = 1, . . . , n

The following result shows the dependence of the matrices C j on kh.

Theorem 3.4 Using the notation defined above, there holds

C j =

2

664
s2

j

✓
1�

k2c2
j

lH
j

◆
c2

j

✓
1 +

k2c2
j

lH
j

◆

s2
j

✓
1 +

k2s2
j

lH
j

◆
c2

j

✓
1�

k2s2
j

lH
j

◆

3

775 , j = 1, . . . , n (3.7)

Moreover,

lim
kh!0

C j =

"
s2

j c2
j

s2
j c2

j

#
, lim

kh!•
C j =

2

4
s2

j

⇣
1 + c2

j

⌘
s2

j c2
j

s2
j c2

j c2
j

⇣
1 + s2

j

⌘

3

5 , j = 1, . . . , n

16

3.4. Difficulties in solving Helmholtz equation with standard multigrid method

Proof Recall that cj = cos(jph/2), sj = sin(jph/2) and

lh
j =

4
h2 sin2 jph

2
� k2 =

4
h2 s2

j � k2, j = 1, · · · , N

lH
j =

4
H2 sin2 jpH

2
� k2 =

4
h2 sin2 jph

2
cos2 jph

2
� k2

=
4
h2 c2

j s2
j � k2 j = 1, · · · , n

We can rewrite the (1, 1)�entry of Cj, 1� c4
j lh

j /lH
j = (lH

j � c4
j lh

j)/lH
j , sub-

stitude the expression of lh
j and lH

j into the numerator:

lH
j � c4

j lh
j =

4
h2 c2

j s2
j � k2

� c4
j (

4
h2 s2

j � k2)

=
4
h2 c2

j s2
j (1� c2

j)� k2(1� c4
j)

=
4
h2 c2

j s4
j � k2s2

j (1 + c2
j))

= s2
j (

4
h2 c2

j s2
j � k2

� k2c2
j)

= s2
j (l

H
j � k2c2

j)

so we have

1� c4
j

lh
j

lH
j

= s2
j (1�

k2c2
j

lH
j
)

For the (2, 1)� entry

s2
j c2

j lh
j = s2

j c2
j (

4
h2 s2

j � k2)

= s2
j (

4
h2 s2

j c2
j � k2 + k2

� k2c2
j)

= s2
j (l

H
j + k2s2

j)

we have

s2
j c2

j
lh

j

lH
j

= s2
j (1 +

k2s2
j

lH
j
).

The derivation for the remaining two items are similar, we need to use the
fact that sN+1�j = cj.

17

3. Multigrid method

For the second part of the theorem, we note that

k2c2
j

lH
j

=
k2c2

j
4
h2 s2

j c2
j � k2

=
k2h2c2

j

4s2
j c2

j � k2h2

=
c2

j
4s2

j c2
j

k2h2 � 1

we can conclude that

lim
kh!0

k2c2
j

lH
j

= 0 lim
kh!•

k2c2
j

lH
j

= �c2
j

similarly,

lim
kh!0

k2s2
j

lH
j

= 0 lim
kh!•

k2s2
j

lH
j

= �s2
j ⇤

If we apply the error propagation operator to a smooth mode ~vh
j , theorem

3.4 tells us that

C~vh
j = C

h
~vh

j ,~vh
N+1�j

i ✓ 1
0

◆
=

h
~vh

j ,~vh
N+1�j

i
C j

✓
1
0

◆

Denote C j = [cij]2i,j=1, then

C~vj = c11~vj + c12~vN+1�j

we can see that if both c11 and c12 are small, then this mode is damped by the
coarse grid correction. However if c11 is large, this mode is amplified, and if
c12 is large, the complementary mode is introduced by the coarse grid, from
(3.7), we can know that these situations happen when lH

j is small. Look
back to equation (3.4),

lh
j

lH
j

=
4s2

j /h2 � k2

4s2
j c2

j /h2 � k2 = 1 +
4s2

j

4s2
j c2

j � h2k2

For very small or very large value of kh, the ratio approaches 1 and thus
the coarse grid correction strongly damps the smooth error modes, but this
does not hold when kh is in the intermediate range.

18

Chapter 4

Wave-ray multigrid method

4.1 Characteristic Component and Ray Equations

From the analysis of the section 3.4, we know that some components are
hard to eliminate when using standard multigrid method (wave cycle) to
solve Helmholtz equation. Fourier component of form exp(i(k1x+ k2y) with
k2

1 + k2
2 = k2 are such problematic errors, these components will be called the

principal components. The principal components satisfy the homogeneous
Helmholtz equation (D + k2)u = 0, so they are in the null space of the
operator, hence in discretization form, they are close to the eigenvectors with
associated eigenvalue to 0, what’s more, they may have very small residual,
which make them nearly invisible to standard local relaxation. On the other
hand, on coarser grids such components cannot be approximated, because
the grid does not resolve their oscillations. (to avoid large phase error, mesh
width h should be very small.)

Brandt and Livshits[2][11] proposed a variant of multigrid especially tai-
lored to the Helmholtz equation by exploiting the structure of the character-
istic error components.

Let’s consider a two-dimensional Helmholtz equation:

Du(x, y) + k2u(x, y) = f (x, y), (x, y) 2 R2 (4.1)

the problem is descretized with five point scheme:

uh
i�1,j � 2uh

i,j + uh
i+1,j

h2 +
uh

i,j�1 � 2uh
i,j + uh

i,j+1

h2 + k2uh
i,j = fi,j

where ui,j ⇡ u(ih, jh) and fi,j = f (ih, jh).

Let v(x, y) be the error left after the standard multigrid cycle, and it has the
form

v(x, y) =
L

Â
l=1

v̂l(x, y) exp(i(kl
1x + kl

2y))

19

4. Wave-ray multigrid method

where v̂l are called the ray functions, if L is chosen to be sufficiently large,
ray functions are smooth enough to be approximated on coarse levels. The
residual corresponding to the error can be represnented as

r(x, y) =
L

Â
l=1

r̂l(x, y) exp(i(kl
1x + kl

2y))

Substitute v and r into (4.1), we get the equations for ray functions v̂l :

Dv̂l + 2ik1
∂v̂l
∂x

+ 2ik1
∂v̂l
∂y

= r̂l , l = 1, · · · , L

The ray equation describe the envelope function of a ray function, and the
oscillatory component exp(i(kl

1x + kl
2y)) disappears from the equation.

4.2 Separation

What we can get after the standard multigrid cycle is the residual r(x, y), to
obtain the ray equations we need to obtain the residual r̂l , this procedure is
called separation. In practice, the residual is obtained on a sufficiently fine
grid, then transfer to the separation level.

A basic tool for the separation is a simple one-dimensional three-point weight-
ing

W = (w0, w1, w0) .
Let g(a) be a one-dimensional function defined on a gird with mesh size h,
and it has the form

g(a) = a1(a)e�ipa + a2(a) + a3(a)eipa

where the aj(a) are smooth, compared to e±ipa. We want to remove the char-
acteristic waves and only smooth a2 should be left. The result of applying
the weighting operator to g is

(Wg)(a) = w0g(a� h) + w1g(a) + w0g(a + h)

= e�ipa[w0a1(a� h)eiph + w1a1(a) + w0a1(a� h)e�iph]

+ w0a2(a� h) + w1a2(a) + w0a2(a + h)

+ eipa[w0a3(a� h)e�iph + w1a3(a) + w0a3(a + h)eiph]

⇡ e�ipaa1(a)(w0eiph + w1 + w0e�iph) + a2(a)(2w0 + w1)

+ e�ipaa3(a)(w0e�iph + w1 + w0eiph)

Where we use the fact that aj(a) are smooth and assume aj(a� h) ⇡ aj(a) ⇡
aj(a + h). To let the result after weighting be an approximation to the func-
tion a2(a), we can set

2w0 + w1 = 1

w0(e�iph + eiph) + w1 = 0

20

4.2. Separation

which gives us

w0 =
1

2(1� cos(ph))
w1 = �

cos(ph)
1� cos(ph)

A two-dimensional weighting operator can be constructed as a tensor product
of two one-dimensional operators.

After the separation, ray equations can be solved by another multigrid cycle,
which is called the ray cycle. Then the ray solution have to be interpolated
back to the separation level to begin the merge procedure, the solution of the
ray equations is multiplied with the corresponding characteristic component
and added to the wave-cycle solution.

21

Chapter 5

Plane-wave PUM

5.1 The partition of unity method

The partition of unity method (PUM) was proposed by I. Babuška and J.
Melenk[1]. The PUM method allows the construction of conforming ansatz
spaces with local properties determined by the user. The main features of
the PUM are the following.

• The construction of ansatz spaces can make use of a priori knowledge
about the differential equation. The classical FEM relies on the local ap-
proximation properties of polynomials, for some problems (problems
with highly oscillatory solution), polynomials have poor approxima-
tion properties. If we know the analytic knowledge about the local
behaviour of the exact solution, we may can approximate the exact
solution locally with functions better than polynomials.

• The PUM enable us to construct ansatz spaces of any desired regular-
ity.

To see the second feature clearly, we need to present the definition of PUM
first.

Definition 5.1 Let W ⇢ Rn be an open set, {Wi} be an open cover of W
satisfying a pointwise overlap condition

9M 2 N 8x 2 W card {i | x 2 Wi} 6 M

Let {ji} be a Lipschitz partition of unity subordinate to the cover {Wi}

23

5. Plane-wave PUM

satisfying
supp ji ⇢ closure (Wi) 8i

Â
i

ji ⌘ 1 onW

kjikL•(Rn) 6 C•

krjikL•(Rn) 6
CG

diam Wi

where C•, CG are two constants. Then {ji} is called a (M, C•, CG) partition
of unity subordinate to the cover {Wi}. The partition of unity {ji} is said to
be of degree m 2 N0 if {ji} ⇢ Cm (Rn). The covering sets {Wi} are called
patches.

Definition 5.2 Let {Wi} be an open cover of W ⇢ Rn and let {ji} be a
(M, C•, CG) partition of unity subordinate to {Wi}. Let Vi ⇢ H1 (Wi \W) be
given. Then the space

V := Â
i

jiVi =

(

Â
i

jivi | vi 2 Vi

)
⇢ H1(W)

is called the PUM space. The PUM space V is said to be of degree m 2 N if
V ⇢ Cm(W). The spaces Vi are referred to as the local approximation spaces.

From the definition of the PUM, we can see that local approximation in
the spaces Vi can be either achieved by the smallness of the patches (an ’h’
version) or by good properties of Vi (a ’p’ version).

5.2 Approximate the solution of Helmholtz equation

Here we consider solving the Helmholtz problem (2.3) with the PUM. When
the wave number k is high, the solution of Helmholtz problem is highly os-
cillatory, approximation with polynomials performs poorly and Melenk[12]
has demonstrated that the approximation with plane waves which display-
ing the same oscillatory behaviour as the solution can be very efficient.
Therefore we choose the following type of local approximation spaces

Ṽ = span{et(x)|t = 1, · · · , N}

where N is the number of plane waves and

dt = (cos 2p(t�1)
N , sin 2p(t�1)

N) t = 1, · · · , N
et(x) = exp(ikdl

t · x)

Let T denote the mesh, V denote the set of vertices of T , assume n =]|V|.
The nodal basis functions {bi} associated with T is chosen as the partition

24

5.3. Implementation in LehrFEM++

of unity, which leads to the following PUM space

W = span {bi(x)et(x)|pi 2 V , t = 1, · · · , N} (5.1)

In order to keep using the notation from §2.3, we write the basis functions
of W in the following order:

b1e1, · · · , b1eN , · · · , bne1, · · · , bneN

and denote them as c1, · · · , cM, M = nN, the relation between bjet and cp is
that if bjet = cp, then

p = (j� 1)N + t
j = b(p� 1)/Nc+ 1, t = (p� 1)mod N + 1 (5.2)

We can have the following linear system of equations

A~µ = ~j (5.3)

Note that in plane wave PUM space (5.1), the nodal basis function bi is not
included in the space, we can define the extended PUM space:

EW = span {bi(x)et(x)|pi 2 V , t = 0, · · · , N} (5.4)

where e0 ⌘ 1, so that the Lagrangian finite element space S0
1 (T) ⇢ EW. The

intuition is that adding the nodal basis function to PUM space is helpful
to dealing with the non-homogeneous Helmholtz equation, since the plane
wave function et satisfies (D + k2)et = 0, the nodal basis function can help
to resolve the non-zero right hand side.

5.3 Implementation in LehrFEM++

Assembly Algorithms in LehrFEM++

We make use of the assembly algorithms implemented in LehrFEM++ to
build the stiffness matrix and right hand side vector in (5.3). Let’s first
introduce the idea of the assembly. We need to compute the matrix A =
[a(cj, ci)]Mi,j=1 and ~j = [F(ci)]Mi=1. Computational of every entry in A and ~j
can be written in terms of local cell contributions,

a(u, v) =
Z

W
(grad u · grad v̄� k2uv̄)dx� ik

Z

GR

uv̄dS

= Â
K2T

Z

K
(grad u|K · grad v̄|K � k2u|Kv̄|K)dx

� ik Â
e2GR

Z

e
u|ev̄|edS 8u, v 2W

F(v) =
Z

GR

gv̄dS = Â
e2GR

Z

e
gv̄|e 8v 2W

25

5. Plane-wave PUM

where K is the element of the mesh, e is the the element of the boundary.
·|K restrict the function to K, ·|e restrict the function to e, and they are not
defined outside the local element. Let

a1(u, v) =
Z

W
(grad u · grad v̄� k2uv̄)dx

and
a1|K(u, v) =

Z

K
(grad u|K · grad v̄|K � k2u|Kv̄|K)dx

We will illustrate the algorithm by assembling the matrix A1 = [a1(cj, ci)]Mi,j=1.

Suppose the local basis functions in cell K is {c1
K, · · · , cQ

K}, Q = Q(K) 2 N,
and define the element matrix

A1|K := [a1|K(c
j
K, ci

K)]
Q
i,j=1

Since the local basis functions are restriction of global shape functions to the
element K, there is a connection between them, let G be the index mapping
such that

cj|K = ci
K, if G(K, i) = j

Algorithm 2: B Assemble(T), Assembly routine for element ma-
trix

Initial B of size M⇥M

for K 2 T do

get index mapping G

get local element matrix BK

for i = 1 to QK do

for j = 1 to QK do

B(G(K, i), G(K, j))+ = BK(i, j)

end

end

end

Algorithm 2 is the assemble procedure, in LehrFEM++ routine

l f :: assemble :: AssembleMatrixLocally

implements this assembly process, what we need to do is to give the routine
to compute the local element matrix and local to global index mapping.
Things are tricky when the underlying finite element space is the plane wave
PUM spaces and the basis function is the nodal basis function times the
plane wave, we need to design our own class to compute the local matrix.

26

5.3. Implementation in LehrFEM++

Local computation for plane wave PUM space

1 Mat_t Eval(const lf::mesh::Entity& cell){

2 const lf::base::RefEl ref_el{cell.RefEl()};

3 LF_ASSERT_MSG(ref_el == lf::base::RefEl::kTria(),

4 "Cell must be of triangle type");

5 Mat_t elem_mat(3 * N_, 3 * N_);

6 const lf::geometry::Geometry *geo_ptr = cell.Geometry();

7

8 auto vertices = geo_ptr->Global(ref_el.NodeCoords());

9

10 Eigen::Matrix3d X, tmp;

11 tmp.block<3,1>(0,0) = Eigen::Vector3d::Ones();

12 tmp.block<3,2>(0,1) = vertices.transpose();

13 X = tmp.inverse();

14

15 for(int i = 0; i < 3*N_; ++i){

16 int i1 = i / N_; int t1 = i % N_;

17 for(int j = 0; j < 3*N_; ++j) {

18 int j2 = j / N_; int t2 = j % N_;

19 auto f = [this,&X,&i1,&j2,&t1,&t2](const

Eigen::Vector2d& x)->Scalar {,!

20 Eigen::Vector2d di, dj, betai, betaj;

21 double pi = std::acos(-1);

22 di << std::cos(2*pi*t1/N_),

std::sin(2*pi*t1/N_);,!

23 dj << std::cos(2*pi*t2/N_),

std::sin(2*pi*t2/N_);,!

24 betai << X(1, i1), X(2, i1);

25 betaj << X(1, j2), X(2, j2);

26 double lambdai = X(0,i1) + betai.dot(x);

27 double lambdaj = X(0,j2) + betaj.dot(x);

28

29 auto gradci = std::exp(1i*k_*di.dot(x)) * (betai

+ 1i*k_*lambdai*di);,!

30 auto gradcj = std::exp(1i*k_*dj.dot(x)) * (betaj

+ 1i*k_*lambdaj*dj);,!

31 auto val_ci = lambdai *

std::exp(1i*k_*di.dot(x));,!

32 auto val_cj = lambdaj *

std::exp(1i*k_*dj.dot(x));,!

33

27

5. Plane-wave PUM

34 return alpha_ * gradci.dot(gradcj) + gamma_ *

val_cj * std::conj(val_ci);,!

35 };

36 elem_mat(i, j) = LocalIntegral(cell, degree_, f);

37 }

38 }

39 return elem_mat;

40 }

The C++ code above is the key routine to compute the local element matrix
A1|K. Here we made a small change about a1(·, ·):

a1|K(cp, cq) =
Z

K
(a grad cp · grad cq + gcpcq)dx (5.5)

where K is a local triangle cell, which corresponds to the input argument

const lf::mesh::Entity& cell

a, g 2 C are two free parameters, for Helmholtz equation, we can set a =
1, g = �k2. Let cp(x) = bi(p)(x) exp(ikdt(p) · x), where t(·), i(·) is defined as
in (5.2), the gradient is

grad cp(x) = exp(ikdt(p) · x) grad bi(p)(x) + ikbi(p)(x) exp(ikdt(p) · x)dt(p)

Line 19-35 in the code creates the lambda expression for

a grad cp · grad cq + gcpcq

then in line 36, we use the numerical quadrature to compute the value
a1|K(cp, cq).

Now let’s go into the detail of the code. In line 5, we create the matrix
object to represent A1|K, where N is the number of plane waves (as the Nl
in (5.1)), since the cell is triangle, the number of local basis functions is 3N .
The nodal basis functions restricted in this cell is the barycentric coordinate
functions, their expressions can be obtained if we know the coordinates of
the nodes of the triangle cell, and line 11-13 does this job, X(0, i)+ X(1, i)x+
X(2, i)y represents the barycentric coordinate function associates with node
i. Line 15-18 are two iterations over the local basis functions and compute
the index for barycentric coordinate function and the plane wave function,
line 24-27 compute the value of barycentric coordinate function at point x,
line 29-32 compute the value of basis function and its gradient at point x.

As for edge matrix A2|e = [a2|e(c
j
K, ci

K)]
Q(e)
i,j=1 As for the local computation

concerning

a2|e(cp, cq) = g
Z

e
cpcqdS

28

5.3. Implementation in LehrFEM++

where e is an edge of the mesh, g 2 C is a parameter, for Helmholtz problem,
we need to set g = �ik. we can make use of the LefrFEM++ module

lf::uscalfe::MassEdgeMatrixProvider

which computes the edge matrix corresponding to

(u, v) 7!
Z

e
g(x)u(x)v(x)dS,

where u, v are nodal basis functions restricted at edge e. Note that

cpcq = exp(ik(dt(p) � dt(q)) · x)bi(p)bi(q)

if we set g(x) = exp(ik(dt(p) � dt(q)) · x), we can build matrix A2|e with the
help of the LehrFEM++ routine. The C++ code are as follows:

1 Mat_t Eval(const lf::mesh::Entity &edge){

2 const lf::base::RefEl ref_el{edge.RefEl()};

3 LF_ASSERT_MSG(ref_el == lf::base::RefEl::kSegment(),"Edge

must be of segment type");,!

4 Mat_t edge_mat(2 * N_, 2 * N_);

5

6 double pi = std::acos(-1.);

7 Eigen::Matrix<Scalar, 2, 1> d1, d2;

8 for(int t1 = 0; t1 < N_; ++t1) {

9 d1 << std::cos(2*pi*t1/N_), std::sin(2*pi*t1/N_);

10 for(int t2 = 0; t2 < N_; ++t2) {

11 d2 << std::cos(2*pi*t2/N_), std::sin(2*pi*t2/N_);

12 auto new_gamma = [this, &d1, &d2](const

Eigen::Vector2d& x)->Scalar{,!

13 return gamma_ * std::exp(1i * k_ *

(d2-d1).dot(x));,!

14 };

15 lf::mesh::utils::MeshFunctionGlobal

mf_gamma{new_gamma};,!

16 lf::uscalfe::MassEdgeMatrixProvider<double,

decltype(mf_gamma), decltype(edge_selector_)>,!

17 edgeMat_builder(fe_space_, mf_gamma,

lf::quad::make_QuadRule(ref_el, degree_),

edge_selector_);

,!

,!

18 const auto edge_mat_tmp =

edgeMat_builder.Eval(edge);,!

19 edge_mat(t1, t2) = edge_mat_tmp(0, 0);

20 edge_mat(t1, t2 + N_) = edge_mat_tmp(0, 1);

21 edge_mat(t1 + N_, t2) = edge_mat_tmp(1, 0);

29

5. Plane-wave PUM

22 edge_mat(t1 + N_, t2 + N_) = edge_mat_tmp(1, 1);

23 }

24 }

25 return edge_mat;

26 };

Here the number of local basis functions in edge e is 2N . Line 8 and 9
are two iterations over local basis functions. Line 12-14 define the lambda
object representing the function g̃(x) = g exp(ik(dt(p)� dt(q)) · x). Line 16-18
computes the local edge matrix corresponds to

(bi, bj)!
Z

e
g̃(x)bi(x)bj(x)dS

Line 19-22 assign the value to A2|e.

Local computation for right hand side vector is similar, we can make use of
the routine

lf::uscalfe::ScalarLoadEdgeVectorProvider

which computes the local edge vector corresponding to

v!
Z

e
y(x)v(x)dS

where g is a locally continuous source function. As for

Fe(cp) =
Z

e
g(x) exp(�ikdt(p) · x)bi(p)(x)

we can set y(x) = g(x) exp(�ikdt(p) · x) to make use of the LehrFEM++
routine.

Treatment of non-zero Dirichlet condition

There is a boundary condition u = f on GD in problem (2.3), treatment
in LehrFEM++ is that first ignore the essential boundary conditions and
assemble the linear system of equations A~µ = ~j, since some component of ~µ
is known (Dirichlet data), next step is to modify the linear system according
to the known value. The Dirichlet data is easily obtained in Lagrangian
finite element space, which is nodal projection, however, in plane wave PUM
space, things are not straightforward since more than one basis functions
don’t vanish in boundary node, the strategy taken here is the L2 projection.

For any function u 2 L2(W), L2 projection into a finite element space Vh
seeks the element uh 2 Vh that is the best approximation:

uh = argminvh
kvh � uk2

30

5.4. Resolution test

equivalently,
(uh, vh)W = (u, vh)W 8vh 2 Vh

where we use the L2 norm, kuk =
R

W |u|2dx and the inner product (u, v)W =R
W uv̄dx. we can also build the linear system of equations

B~x = ~b

with {ji} a basis of Vh, B = [(jj, ji)]ij, uh = Âi xi ji and ~b = [(f , vi)]i

For Dirichlet condition, let Vh(GD) the finite space spanning by basis func-
tions of Vh which associate with nodes on GD, then fh 2 Vh(GD) we seek
satisfies

(fh, v)GD = (f , v)GD 8v 2 Vh(GD)

In implementation, we can first build the linear equations Bx = b for

(fh, v)GD = (f , v)GD 8v 2 Vh

and then modify the equations such that xi = 0 if i-th basis function asso-
ciates a node not in GD. and equation A~µ = ~j should be modified such that
µi = xi if i-th basis function associates a node in GD.

5.4 Resolution test

In this section we will do a convergence studies about the PUM discretiza-
tion, we will choose the function g and f properly such that the true solution
for Helmholtz equation (2.3) is the plane wave u(x) = exp(ikd · x) with the
frequency d = (0.8, 0.6). We will solve the problem on a sequence of regu-
lar refinement meshes (indexed by l, l = 0 is the coarsest mesh, and mesh
width satisfies hl = 2�l), and with different number of plane waves in (Ex-
tend) PUM spaces, and for different wave number in Helmholtz equation,
and the computational domain is the unit square W = (0, 1) ⇥ (0, 1). We
will use N to indicate the number of plane waves, (N = 0 for extend PUM
space means the Lagrangian finite element space). Suppose the finite ele-
ment solution is uh, we will show the L2 norm ku� uhk2 and H1 semi-norm
|u� uh|H1 .

Table 5.1, 5.2 and 5.3 shows the results obtained from PUM space, while
Table 5.4, 5.5 and 5.6 shows the results obtained from Extend PUM space.
And we can observe that

1. using the extend PUM space, using the finer mesh and increasing the
number of plane waves can resolve the problem better, since they all
enlarge the finite element space.

31

5. Plane-wave PUM

2. For high wave number, coarse mesh and small number of plane waves
can hardly resolve the problem. When k = 60, we need mesh on level
5 to resolve the problem if 3 plane waves are provided in the (extend)
PUM space, and level 4 if 5 plane waves are provided.

l
N 3 5 7 9 11 13

0 4.6e-01 8.4e-02 2.2e-03 1.7e-05 1.5e-06 1.6e-07
1 1.1e-01 6.5e-03 2.1e-04 7.4e-07 7.4e-08 7.4e-09
2 1.7e-02 8.2e-04 1.2e-05 2.7e-08 1.1e-09 1.8e-09
3 3.2e-03 1.1e-04 7.3e-07 8.0e-10 9.0e-09 5.3e-09
4 7.2e-04 1.4e-05 4.6e-08 5.1e-10 9.3e-09 1.2e-07
5 1.8e-04 1.8e-06 2.9e-09 3.6e-09 1.8e-06 1.2e-06

(a) L2 error

l
N 3 5 7 9 11 13

0 3.7e+00 1.0e+00 5.1e-02 4.1e-04 3.8e-05 4.1e-06
1 1.4e+00 2.0e-01 8.0e-03 3.6e-05 3.3e-06 4.0e-07
2 4.8e-01 4.5e-02 8.8e-04 2.1e-06 9.8e-08 1.6e-07
3 1.9e-01 1.1e-02 1.1e-04 1.2e-07 1.4e-06 8.2e-07
4 8.9e-02 2.8e-03 1.4e-05 1.5e-07 2.8e-06 3.3e-05
5 4.3e-02 7.1e-04 1.7e-06 1.8e-06 9.1e-04 5.9e-04

(b) H1 semi error

Table 5.1: Resolution test of PUM space, k = 6, solution:plane wave

Solve non-homogeneous Helmholtz equation on extend PUM space

To show that our extend PUM space can resolve non-homogeneous Helmholtz
equation, we consider the following problem:

Du + k2u = 1 in W
∂u
∂n
� iku = g on ∂W

(5.6)

where the domain W is the unit square (0, 1) ⇥ (0, 1), and we choose the
function g carefully such that the true solution is u(x) = exp(ikd · x) + 1/k2,
again we will solve the problem on a sequence of meshes and with different
number of plane waves and mesh width. We can see from Table 5.7 and
5.8 that the extend PUM space resolve the non-homogeneous Helmholtz
problem well.

32

5.4. Resolution test

l
N 3 5 7 9 11 13

0 1.1e+00 1.2e+00 7.0e-01 5.5e-02 6.2e-02 1.1e-01
1 1.2e+00 1.9e+00 9.1e-01 5.7e-03 3.5e-03 8.6e-02
2 1.2e+00 4.1e-01 1.1e-02 1.4e-04 7.2e-05 5.5e-05
3 2.7e-01 3.6e-02 5.4e-04 4.8e-06 1.4e-06 5.5e-07
4 5.6e-02 3.4e-03 3.4e-05 1.4e-07 1.8e-08 4.7e-09
5 1.3e-02 3.3e-04 2.1e-06 4.5e-09 9.0e-10 3.2e-08

(a) L2 error

l
N 3 5 7 9 11 13

0 2.2e+01 2.4e+01 1.4e+01 1.1e+00 1.3e+00 2.4e+00
1 2.4e+01 3.9e+01 1.8e+01 1.4e-01 1.1e-01 1.7e+00
2 2.5e+01 9.6e+00 6.1e-01 1.1e-02 5.7e-03 4.7e-03
3 6.7e+00 1.6e+00 8.3e-02 6.6e-04 1.9e-04 8.4e-05
4 2.1e+00 4.3e-01 1.0e-02 3.8e-05 5.3e-06 1.4e-06
5 9.0e-01 1.1e-01 1.3e-03 2.3e-06 5.6e-07 2.1e-05

(b) H1 semi error

Table 5.2: Resolution test of PUM space, k = 20, solution:plane wave

l
N 3 5 7 9 11 13

0 1.0e+00 1.2e+00 1.0e+00 3.1e-01 5.4e-01 1.2e+00
1 1.0e+00 1.3e+00 1.1e+00 8.7e-02 1.7e-01 1.5e+00
2 1.2e+00 1.5e+00 1.1e+00 3.9e-02 1.2e-01 6.4e-01
3 1.4e+00 2.0e+00 1.6e-01 1.8e-03 3.7e-03 2.8e-02
4 1.3e+00 7.7e-01 6.0e-03 4.7e-05 2.0e-05 2.1e-05
5 4.4e-01 1.0e-01 2.1e-04 1.2e-06 2.8e-07 1.6e-07

(a) L2 error

l
N 3 5 7 9 11 13

0 6.1e+01 7.2e+01 6.2e+01 1.8e+01 3.3e+01 7.3e+01
1 6.1e+01 7.6e+01 6.4e+01 5.3e+00 1.1e+01 8.7e+01
2 7.0e+01 8.8e+01 6.9e+01 2.4e+00 7.4e+00 3.9e+01
3 8.7e+01 1.2e+02 1.0e+01 1.7e-01 2.5e-01 1.7e+00
4 8.0e+01 4.8e+01 1.0e+00 1.2e-02 5.3e-03 6.7e-03
5 2.8e+01 7.7e+00 1.3e-01 6.2e-04 1.5e-04 1.0e-04

(b) H1 semi error

Table 5.3: Resolution test of PUM space, k = 60, solution:plane wave

33

5. Plane-wave PUM

l
N 0 3 5 7 9 11 13

0 6.9e-01 2.7e-01 6.2e-02 1.9e-03 1.2e-05 1.5e-06 1.6e-07
1 3.7e-01 5.9e-02 5.5e-03 1.8e-04 6.5e-07 6.9e-08 6.9e-09
2 1.4e-01 7.7e-03 5.8e-04 1.0e-05 2.1e-08 1.0e-09 2.7e-09
3 3.9e-02 9.9e-04 7.0e-05 6.6e-07 5.3e-10 1.3e-08 2.2e-09
4 1.0e-02 1.3e-04 7.9e-06 4.3e-08 3.6e-10 1.3e-08 5.3e-08
5 2.5e-03 1.6e-05 7.7e-07 2.8e-09 8.5e-09 7.0e-07 5.5e-06

(a) L2 error

l
N 0 3 5 7 9 11 13

0 5.0e+00 2.5e+00 8.8e-01 4.6e-02 3.1e-04 3.8e-05 4.2e-06
1 3.6e+00 9.9e-01 1.8e-01 7.4e-03 3.3e-05 3.2e-06 3.8e-07
2 1.9e+00 2.9e-01 3.5e-02 7.9e-04 1.8e-06 9.3e-08 2.6e-07
3 9.5e-01 7.9e-02 7.4e-03 1.0e-04 9.6e-08 2.3e-06 3.7e-07
4 4.7e-01 2.1e-02 1.6e-03 1.3e-05 1.3e-07 4.2e-06 1.7e-05
5 2.3e-01 5.2e-03 3.2e-04 1.6e-06 5.4e-06 4.1e-04 3.2e-03

(b) H1 semi error

Table 5.4: Resolution test of Extend PUM space, k = 6, solution:plane wave

l
N 0 3 5 7 9 11 13

0 1.0e+00 1.1e+00 1.2e+00 7.5e-01 5.6e-02 1.1e-01 3.2e-01
1 1.0e+00 1.2e+00 1.5e+00 1.1e-01 1.9e-03 2.1e-03 3.1e-03
2 1.0e+00 6.5e-01 2.8e-01 1.0e-02 1.2e-04 5.8e-05 4.5e-05
3 8.9e-01 1.2e-01 2.6e-02 5.2e-04 3.4e-06 1.2e-06 4.8e-07
4 3.4e-01 1.3e-02 2.5e-03 3.3e-05 8.6e-08 1.6e-08 4.4e-09
5 9.4e-02 1.2e-03 2.5e-04 2.1e-06 2.7e-09 8.7e-10 1.1e-07

(a) L2 error

l
N 0 3 5 7 9 11 13

0 2.0e+01 2.2e+01 2.4e+01 1.5e+01 1.1e+00 2.3e+00 6.6e+00
1 2.0e+01 2.4e+01 2.7e+01 2.8e+00 7.9e-02 9.1e-02 1.6e-01
2 2.1e+01 1.4e+01 7.0e+00 5.8e-01 9.7e-03 5.2e-03 4.3e-03
3 1.9e+01 3.5e+00 1.4e+00 7.8e-02 5.6e-04 1.8e-04 8.1e-05
4 8.3e+00 9.0e-01 3.4e-01 1.0e-02 3.2e-05 5.0e-06 1.4e-06
5 3.2e+00 2.4e-01 8.8e-02 1.3e-03 1.9e-06 5.5e-07 7.7e-05

(b) H1 semi error

Table 5.5: Resolution test of Extend PUM space, k = 20, solution:plane wave

34

5.4. Resolution test

l
N 0 3 5 7 9 11 13

0 1.0e+00 1.0e+00 1.1e+00 1.1e+00 1.1e+00 1.1e+00 1.1e+00
1 1.0e+00 1.0e+00 1.2e+00 1.1e+00 9.0e-01 1.1e+00 1.2e+00
2 1.0e+00 1.2e+00 1.5e+00 1.1e+00 4.4e-02 8.8e-02 2.1e-01
3 1.0e+00 1.3e+00 1.5e+00 8.4e-02 7.9e-04 9.3e-04 2.5e-03
4 1.2e+00 9.9e-01 5.3e-01 5.6e-03 4.3e-05 1.9e-05 2.0e-05
5 1.3e+00 1.5e-01 5.8e-02 2.1e-04 7.6e-07 2.7e-07 1.6e-07

(a) L2 error

l
N 0 3 5 7 9 11 13

0 6.0e+01 6.2e+01 6.6e+01 6.3e+01 6.4e+01 6.4e+01 6.7e+01
1 6.0e+01 6.2e+01 7.3e+01 6.6e+01 5.4e+01 6.4e+01 7.0e+01
2 6.0e+01 7.1e+01 8.8e+01 6.6e+01 2.7e+00 5.3e+00 1.3e+01
3 6.0e+01 7.9e+01 8.8e+01 6.3e+00 1.3e-01 1.4e-01 4.0e-01
4 7.1e+01 6.0e+01 3.3e+01 9.8e-01 1.1e-02 5.1e-03 6.5e-03
5 8.0e+01 1.0e+01 4.8e+00 1.3e-01 5.3e-04 1.5e-04 1.0e-04

(b) H1 semi error

Table 5.6: Resolution test of Extend PUM space, k = 60, solution:plane wave

l
N 5 7 9 11

0 6.2e-02 1.9e-03 1.2e-05 1.5e-06
1 5.5e-03 1.8e-04 6.5e-07 6.9e-08
2 5.8e-04 1.0e-05 2.1e-08 1.0e-09
3 7.0e-05 6.6e-07 5.2e-10 5.0e-09
4 7.9e-06 4.3e-08 8.7e-10 7.3e-09

(a) L2 error

l
N 5 7 9 11

0 8.7e-01 4.6e-02 3.1e-04 3.8e-05
1 1.8e-01 7.4e-03 3.3e-05 3.2e-06
2 3.5e-02 7.9e-04 1.8e-06 9.3e-08
3 7.4e-03 9.9e-05 9.6e-08 8.8e-07
4 1.6e-03 1.3e-05 3.2e-07 2.3e-06

(b) H1 semi error

Table 5.7: Resolution test for non-homogeneous Helmholtz problem with
k = 6

35

5. Plane-wave PUM

l
N 5 7 9 11

0 1.2e+00 7.5e-01 5.6e-02 1.1e-01
1 1.4e+00 1.1e-01 1.9e-03 2.1e-03
2 2.8e-01 1.0e-02 1.1e-04 5.8e-05
3 2.6e-02 5.2e-04 3.4e-06 1.2e-06
4 2.5e-03 3.3e-05 8.6e-08 1.6e-08

(a) L2 error

l
N 5 7 9 11

0 2.4e+01 1.5e+01 1.1e+00 2.3e+00
1 2.7e+01 2.8e+00 7.9e-02 9.1e-02
2 7.0e+00 5.8e-01 9.7e-03 5.2e-03
3 1.4e+00 7.8e-02 5.6e-04 1.8e-04
4 3.4e-01 1.0e-02 3.2e-05 5.0e-06

(b) H1 semi error

Table 5.8: Resolution test for non-homogeneous Helmholtz problem with
k = 20

36

Chapter 6

PUM wave-ray method

We know that standard multigrid method can’t remove the error of the form
v(x) exp(ikd · x) with kdk ⇡ 1, where v(x) is the smooth ray function, and
the wave-ray method introduces the ray cycle to deal with these problematic
errors. Here we move the residual after the wave cycle to the PUM spaces
to obtain the characteristic error correction.

First let’s introduce the ingredients to perform the PUM ray cycle, the algo-
rithm detail and numerical experiments will be presented in section 7.3. (the
explanation will be based on PUM space, the extension to the extend PUM
space is trivial). We assume a hierarchy of nested meshes T0 � T1 � · · · �

TL created by uniform, regular refinement. Let Sl denote the Lagrangian fi-
nite element space S0

1 (Tl). Let Vl denote the set of vertices of Tl , and assume
]|Vl | = nl and Vl = {pl

1, · · · , pl
nl
}. Write bl

i for the piecewise linear nodal
basis function (“tent function”) associated with vertex pl

i 2 Vl . Let Nl be the
number of plane waves on mesh level l and Nl = 2L+1�l , l = 0, · · · , L� 1
and again write

dl
t = (cos 2p(t�1)

Nl
, sin 2p(t�1)

Nl
) t = 1, · · · , Nl

el
t(x) = exp(ikdl

t · x)

and define the wave modulated partition of unity space according to

WL := S0
1 (TL)

Wl := span{bl
i(x)el

t(x)|pl
i 2 Vl , t = 1, · · · , Nl}, l = 0, · · · , L� 1 (6.1)

Here the space WL is still the Lagrangian finite element space, and the
residual obtained at this mesh will be transferred to the PUM spaces to
start the ray cycle, we need the transfer operator between these spaces, and
coarse grid operator. If we have defined Il+1

l : Wl 7! Wl+1, then operator
Il
l+1 : Wl+1 7!Wl can be defined as the transpose of Il+1

l , and the coarse grid

37

6. PUM wave-ray method

operator is built by Galerkin projection

Al = Il
l+1Al+1 Il+1

l

Following we will focus on the construction of the operator Il+1
l and its

implementation in LehrFEM++.

6.1 Transfer operator

Prolongation operator Ql+1
l : Sl 7! Sl+1

Suppose

Ql+1
l bl

j(x) =
nl+1

Â
k=1

qkjbl+1
k (x)

then,
Ql+1

l [bl
1, · · · , bl

nl
] = [bl+1

1 , · · · , bl+1
nl+1

][qkj]
nl+1,nl
k,j=1

we can write the prolongation operator in matrix form Ql+1
l = [qkj]

nl+1,nl
k,j=1 ,

Since the mesh {Tl} are created by uniform refinement, we have that for
l < L, Sl ⇢ Sl+1, since bl+1

k is tent function associated with vertex pl+1
k , we

can conclude that

bl+1
k (pl+1

s) = dks, qkj = bl
j(pl+1

k)

and

bl
j(pl+1

k) =

8
><

>:

1, if pl
j = pl+1

k
1
2 , if segment pl

j p
l+1
k is an edge in Tl+1

0, otherwise
(6.2)

In LehrFEM++, if the mesh hierarchy is generated by uniform refinement,
for a vertex pl+1

k in mesh Vl+1, we can get its parent entity in mesh Vl , its
parent entity is either a vertex or an edge (in this case, pl+1

k is generated in
the refinement process), so we can know the value of bl

j(pl+1
k) easily, and

thus the operator Ql+1
l .

1 HE_FEM::SpMat_t HE_FEM::prolongation_lagrange(size_type l) {

2 LF_ASSERT_MSG(l >= 0 && l < L_, "l in prolongation should be

smaller to L_");,!

3 auto coarse_mesh = getmesh(l);

4 auto fine_mesh = getmesh(l+1);

5

6 auto coarse_dofh =

lf::assemble::UniformFEDofHandler(coarse_mesh,,!

7 {{lf::base::RefEl::kPoint(), 1}});

38

6.1. Transfer operator

8 auto fine_dof =

lf::assemble::UniformFEDofHandler(fine_mesh,,!

9 {{lf::base::RefEl::kPoint(), 1}});

10

11 size_type n_c = coarse_dofh.NumDofs();

12 size_type n_f = fine_dof.NumDofs();

13

14 Mat_t M = Mat_t::Zero(n_c, n_f);

15 for(const lf::mesh::Entity* edge: fine_mesh->Entities(1)) {

16 nonstd::span<const lf::mesh::Entity* const> points =

edge->SubEntities(1);,!

17 size_type num_points =

(*edge).RefEl().NumSubEntities(1);,!

18 LF_ASSERT_MSG((num_points == 2),

19 "Every EDGE should have 2 kPoint subentities");

20 for(int j = 0; j < num_points; ++j) {

21 auto parent_p = mesh_hierarchy_->ParentEntity(l+1,

*points[j]); // parent entity of current point,!

22 if(parent_p->RefEl() == lf::base::RefEl::kPoint()) {

23 // it's parent is also a NODE. If the point in

finer mesh does not show in coarser mesh,,!

24 // then it's parent is an EDGE

25 M(coarse_mesh->Index(*parent_p),

fine_mesh->Index(*points[j])) = 1.0;,!

26 M(coarse_mesh->Index(*parent_p),

fine_mesh->Index(*points[1-j])) = 0.5;,!

27 }

28 }

29 }

30 return (M.transpose()).sparseView();

31 }

Above is the C++ implementation of the prolongation matrix Ql+1
l . Line 14

creates the object to store the transpose of the prolongation operator (in code,
n f = nl+1, nc = nl). Line 15 iterates through edges to find the connecting
edge pairs in Tl+1, line 22 determines whether the current node also appear
in the mesh Tl , line 25 and 26 deal with the first two cases in (6.2).

Operator IL
L�1 : WL�1 7!WL

WL is the Lagrangian finite element space S0
1 (TL) while WL�1 is the plane

wave PUM space, we can define the operator IL
L�1 as the nodal projection,

39

6. PUM wave-ray method

that is for u 2WL�1, IL
L�1u satisfies

IL
L�1u(p) = u(p), for p 2 VL

Assume bL�1
j (x) = ÂnL

k=1 qkjbL
k (x), and let matrix A = [aij] = [eL�1

j (pL
i)]

nL,NL�1
i,j=1

then for bL�1
j eL�1

t 2WL�1,

bL�1
j (pL

i)e
L�1
t (pL

i) = qijait

which means

IL
L�1(b

L�1
j eL�1

t) =
nL

Â
i=1

qijaitbL
i

and we can write the operator IL
L�1 in the matrix form:

IL
L�1 =

0

BBB@

q11A1· q12A1· · · · q1,nL�1A1·
q21A2· q22A2· · · · q2,nL�1A2·

...
qnL,1AnL· qnL,2AnL,· · · · qnL,nL�1AnL,···

1

CCCA

where Ai· indicates the i-th row of matrix A.

Operator Il+1
l : Wl 7!Wl+1, l < L� 1

Recall that Nl = 2L+1�l , so Nl = 2Nl+1, note that for t = 1, 2, · · · , Nl+1

dl
2t�1 = (cos

2p(2t� 2)
Nl

, sin
2p(2t� 2)

Nl
)

= (cos
2p(t� 1)

Nl+1
, sin

2p(t� 1)
Nl+1

)

= dl+1
t

so el
2t�1 = el+1

t , suppose bl
i = Ânl+1

j=1 qjibl+1
j then we can write

bl
i e

l
2t�1 =

nl+1

Â
j=1

qjibl+1
j el+1

t i = 1, · · · , nl t = 1, · · · , Nl+1 (6.3)

Inspired by [10], we employ an ”exponential interpolation” for el
2t, which

we write in a different form:

el
2t = exp(ikdl

2t · x)
= exp(ikdl+1

t · x) exp(ik(dl
2t � dl+1

t) · x)
:= el+1

t dt

40

6.1. Transfer operator

where dt(x) = exp(ik(dl
2t � dl+1

t) · x), which is less oscillatory compared to
el

2t and we can do a nodal projection into Sl+1, so we write

Il+1
l (bl

i e
l
2t) =

nl+1

Â
j=1

ait
j bl+1

j el+1
t i = 1, · · · , nl t = 1, · · · , Nl+1 (6.4)

where
aik

j = qjidt(pl+1
j)

(6.3) and (6.4) together give us the transfer operator Il+1
l .

1 HE_PUM::SpMat_t HE_PUM::prolongation(size_type l) {

2 LF_ASSERT_MSG((l < L_),

3 "in prolongation, level should smaller than" << L_);

4 double pi = std::acos(-1.);

5 auto Q = prolongation_lagrange(l);

6 int n1 = Q.cols(), n2 = Q.rows(); // n1: n_l, n2: n_{l+1}

7 int N1 = num_planewaves_[l], N2 = num_planewaves_[l+1]; //

N1: N_l, N2: N_{l+1},!

8

9 auto mesh = getmesh(l+1); // fine mesh

10 auto dofh = lf::assemble::UniformFEDofHandler(mesh,

{{lf::base::RefEl::kPoint(), 1}});,!

11

12 SpMat_t res(n2 * N2, n1 * N1); // transfer operator

13 std::vector<triplet_t> triplets;

14

15 for(int outer_idx = 0; outer_idx < Q.outerSize();

++outer_idx) {,!

16 for(SpMat_t::InnerIterator it(Q, outer_idx); it; ++it) {

17 int i = it.row();

18 int j = it.col();

19 Scalar qij = it.value();

20 for(int t = 1; t <= N2; ++t) {

21 triplets.push_back(triplet_t(i*N2+t-1,

j*N1+2*t-2, qij));,!

22 }

23 const lf::mesh::Entity& p_i = dofh.Entity(i);

24 coordinate_t pi_coordinate =

lf::geometry::Corners(*p_i.Geometry()).col(0);,!

25 for(int t = 1; t <= N2; ++t) {

26 Eigen::Vector2d d1, d2;

27 d1 << std::cos(2*pi*(2*t-1)/N1),

std::sin(2*pi*(2*t-1)/N1); // d_{2t}^l,!

41

6. PUM wave-ray method

28 d2 << std::cos(2*pi*(t-1)/N2), std::sin(2*pi*(

t-1)/N2); // d_{t}^{l+1},!

29 Scalar tmp = qij *

std::exp(1i*k_*(d1-d2).dot(pi_coordinate));,!

30 triplets.push_back(triplet_t(i*N2+t-1,

j*N1+2*t-1, tmp));,!

31 }

32 }

33 }

34 res.setFromTriplets(triplets.begin(), triplets.end());

35 return res;

36 }

Above is the C++ implementation of the operator Il+1
l , l < L� 1, note that

here the index for bl
i starts from 0 and index for el

t starts from 1, so bl
i e

l
t

has global index i ⇤ Nl + t � 1. Line 15 and 16 loop from the entry of Q
(prolongation operator betweenSl and Sl+1). Line 20-21 implement (6.3).
Line 25-33 implement (6.4).

42

Chapter 7

Numerical Experiments

In this chapter, we will examine our PUM Wave-Ray methods for solving
Helmholtz problem (2.3) with some manufacture solutions. We can choose
g and f properly in (2.3) such that the exact solution is

1. Plane wave of form u(x) = exp(ikd · x), where d = (0.8, 0.6).

2. Fundamental solution: u(x) = i
4 H(1)

0 (ikkx � ck), where H(1)
0 is the

Hankel function of first kind and~c is a point outside the domain W.

3. Spherical wave(in polar coordiante): u(r, q) = J|l|(kr) exp(ilq), l 2 Z

To ensure the correctness of our code, we will first do a code validation,
which includes the validation of the prolongation(transfer) operator and to
solve the problem on the single mesh with Lagrangian finite element space
and plane wave (extend) PUM spaces to verify that finest and coarser mesh
can resolve the problem correctly. The resolution test for (extend) PUM
spaces can be found in §5.4.

7.1 Code Validation

Resolution test in standard Lagrangian finite element space

We solve the Helmholtz problem on a sequence of meshes Tl and the finite
element space is the standard Lagrangian finite element space Sl , the true
solutions are manufacture solutions introduced above, and we choose the
wave number k = 2. Suppose uh is the finite element solution and u is the
exact solution, we can observe from Figure 7.1 that

kuh � ukW = O(h2), |uh � u|H1(W) = O(h)

satisfies in all three cases, where h is the mesh width, which means that we
solved the problem correctly.

43

7. Numerical Experiments

(a) solution: plane wave (b) solution: fundamental solution

(c) solution: spherical wave

Figure 7.1: Solved on Lagrangian finite element space.

Test transfer operator

Here we test the prolongation operator Ql+1
l : Sl 7! Sl+1 and Il+1

l : EWl 7!

EWl+1, where Sl is the standard Lagrangian finite element space S0
1 (Tl) and

EWl is the extend PUM space. The prolongation(transfer) operator is very
important in the multi-grid method, and it should preserve the function
being transferred as much as possible, i.e. kIl+1

l vlkL2(W) should be very
close to kvlkL2(W). Our test shows that kQl+1

l vlkL2(W)/kvlkL2(W) = 1, which
is exactly what we want since the standard Lagrangian finite element space
is nested (Sl ⇢ Sl+1), Ql+1

l is actually an embedding operator. As for the
operator Il+1

l , Table 7.1 gives the result of kvl+1kL2(W)/kvlkL2(W), where v0 2

EWl is a randomly generated function and vl+1 = Il+1
l vl , as we can see,

all the ratios are very close to 1, we can conclude that the operator Il+1
l

is implemented correctly and its a preserves the function being transferred
very well in terms of L2 norm.

kvl+1kL2(W)/kvlkL2(W) 0 1 2 3 4 5
l 0.995 1.000 0.999 0.998 0.998 1.000

Table 7.1: Test transfer operator between extend PUM spaces

44

7.2. Apply Standard Multigrid to Helmholtz problem

Multi-grid method for Laplace problem

Here we consider solving the following Dirichlet problem with the standard
multi-grid method

Du = 0 in W
u = g on ∂W (7.1)

where W = (0, 1)⇥ (0, 1), and we choose the exact solution to be u(x, y) =
exp(x + iy). The purpose is to validate the transfer operator Ql+1

l again and
the procedure of the multi-grid method. The mesh width of the finest mesh
is hL = 1

32 , and we use the three coarse meshes to perform the standard
v-cycle. Let v(0) be the randomly chosen initial value, v(i) be the value in the
ith iterate, uh be the finite element solution and e(i) = uh � v(i) be the error
function in the ith iterate. From Table 7.2, we can conclude that the conver-
gence rate of this 4-mesh v-cycle is about 0.103, which coincides the result
obtained doing the power iteration to this v-cycle, so the implementation of
the v-cycle and the prolongation operator is correct.

i 1 2 3 4 5
ke(i+1)kL2(W)/ke(i)kL2(W) 0.112 0.100 0.103 0.103 0.103

Table 7.2: L2 norm of error function in standard multi-grid method

7.2 Apply Standard Multigrid to Helmholtz problem

We know that standard multigrid can’t resolve Helmholtz problem when the
wave number is large, we will compute the convergence factor by power iter-
ation to show this. Table 7.3 shows some results with different wave number
and number of meshes (levels), the domain is chosen to be unit square and
the finest mesh has mesh width 1/32. We perform 2 sweeps of Gauss-Seidel
relaxation on each level. We can see that the convergence degrades as in-
creasing of wave number and levels, since we know that G-S relaxation is
unstable on levels with k times mesh width falls in an intermediate range.

L\k 1 2 3 4 5 6 7
4 0.10 0.10 0.11 0.11 0.12 0.15 0.19
5 0.10 0.10 0.11 0.14 0.28 0.59 -
6 0.11 0.12 0.38 - - - -

Table 7.3: Convergence factor of using standard multigrid to solve
Helmholtz equation, a dash denotes divergence, k denotes the wave num-
ber, L denotes the number of meshed.

45

7. Numerical Experiments

7.3 Extend PUM wave-ray multigrid

Before implementing the multigrid method, we need to decide the relaxation
method performed on each levels. From Table 7.4, we can observe that for
operator constructed based on Lagrangian finite element space, if kh(k is
the wave number while h denotes the mesh width) is between 2 and 8, the
Gauss-Seidel(G-S) relaxation has a bad divergence, it will amplify the errors,
so G-S relaxation should not be performed, while on extend PUM space,
G-S relaxation should only be used on fine meshes. These observation also
agrees with the conclusion by the Brandt and Livshits (§7 in [2]), in practice,
we only use G-S relaxation when kh < 1.5 or kh > 8.0 in wave cycle, and use
block G-S relaxation when kh < 1.0 in ray cycle, otherwise no relaxation is
performed.

kh 16 8 4 2 1 0.5
µ1 0.37 0.77 div 2.67 1.26 1.06
µ2 div div div div 1.45 -

Table 7.4: µ1 and µ2 are the convergence factor for Gauss-Seidel on different
meshes for operator constructed based on Lagrangian finite element space
and Extend PUM space respectively.

Algorithm 3 describes the solver used for the following experiments. Index
the levels used in the wave cycle from coarsest to finest as 0 to Lw, let Lr de-
notes the “wave-to-ray switching” level, that is, on the Lr-th level of second
leg of the wave cycle, the residual is transferred to the (extend) PUM space
to do another v-cycle (ray cycle), and let nr to denote the number of extra
(extend) PUM spaces. The space S0

1 (TLr) act as the space WL (here L should
be nr + 1) in (6.1).

Figure 7.2 to 7.5 shows the convergence factor study of the PUM wave-ray al-
gorithm. The experiments are carried out in different domains (unit square,
unit square with a square hole, unit square with a triangle hole), the coars-
est mesh width is h0 = 1, and mesh with index l has mesh width hl = 2�l ,
the exact solution is chosen to be plane wave, and the convergence factor is
obtained from the power iteration (run the multigrid with zero right hand
side and normalize solution after each iteration). The experiments produce
the results in Figure 7.2, 7.3 and 7.5 use only 1 extra extend PUM space, that
is, the ray-cycle is a 2-mesh correction scheme, while 7.4 uses 2 extra extend
PUM spaces. We have the following observations:

• the convergence factor increase along with the increase of wave num-
ber, when the “wave-to-ray switch” level Lr is set to 3, the wave-ray
method diverges when k & 22, while the algorithm stay convergence
when Lr = 4 if nr = 1 in both cases, so we should choose a fine mesh

46

7.3. Extend PUM wave-ray multigrid

Algorithm 3: PUM Wave-Ray algorithm
Lw: index for the finest mesh, Lr: “wave-to-ray switch” level, nr:
number of extra extend PUM spaces;

uLw denotes the approximate solution we want, and it is randomly
initialized, ul(l < Lw) is initialized to zero

for l = Lw; l � 1; l = l � 1 do

Relaxation⇤ Al~ul = ~jl ;
Residual calculation jl�1 = Il�1

l (~jl � Al~ul);
end

Coarsest wave grid(l = 0), direct solve A0~u0 = ~j0
for l = 1; l Lw; l = l + 1 do

~ul = ~ul + Il
l�1~ul�1 ;

Relaxation⇤ Al~ul = jl ;
if l == Lr, transfer residual ~jl � Al~ul to the extend PUM space
to do another v-cycle(ray cycle) with nr extra extend PUM
spaces, then transfer correction back to wave level l;

end

* relaxation strategy: if kh < 1.5 or kh > 8, perform m1 steps of
Gauss-Seidel relaxation, otherwise no relaxation, as for relaxation
in extend PUM spaces, block G-S (group the d.o.f with the same
node together) is performed only when kh < 1.

as “wave-to-ray switch” mesh (khLr < 2 at least).

• Figure 7.3 and Figure 7.5 have a similar trend and they all set Lr = 4, so
the choice of Lr really matters, it determines whether the problematic
error components can be eliminated.

• The domain also influences the convergence.

• When Lw = 5, Lr = 4, adding the number of extend PUM spaces seems
have no improvement, when k & 24, it even worse the convergence
compared to only one extend PUM space.

47

7. Numerical Experiments

Figure 7.2: Convergence factor, here Lw = 5 means there are 6 meshes in
wave cycle, and “wave-to-ray switching” level is Lr = 3, and nr = 1 extend
PUM space is used (2 mesh ray cycle) , and m1 = 2 iteration of relaxation
steps. Three curves corresponding to the computational domain to be unit
square, unit square with a square hole, unit square with a triangle hole.

48

7.3. Extend PUM wave-ray multigrid

Figure 7.3: Convergence factor, Lw = 5, Lr = 4, nr = 1, m1 = 2.

Figure 7.4: Convergence factor, Lw = 5, Lr = 4, nr = 2, m1 = 2
, that is the ray cycle consists 3 meshes.

49

7. Numerical Experiments

Figure 7.5: Convergence factor, Lw = 6, Lr = 4, nr = 1, m1 = 2.

50

Chapter 8

Stable smoothing method

From the discussion in 3.4, we know that we should not implement Gauss-
Seidel relaxation on intermediate meshes. In this chapter we will use two
stable smoothing methods, GMRES and local smoothing with impedance
boundary condition, on intermediate meshes, and use the multigrid method
with new smoothing strategy as the preconditioner for outer GMRES itera-
tion [4].

8.1 GMRES

For a linear system of equations A~µ = ~j, the Krylov subspace methods seek
an approximate solution in the Krylov space

Kn(A,~r) = span{~r, A~r, · · · , An�1~r}

where r = ~j� A~µ0 is the initial residual with initial guess ~µ0. General-
ized minimal residual method (GMRES) seeks ~µn 2 Kn that minimizes the
Euclidean norm of the residual

~µn = argmin~x2Kn
k~j� A~xk

Arnoldi iteration is used to find the orthonormal basis of Kn.

Let M be a preconditioner and change the linear equations into

AM�1~y = ~j, ~µ = M�1~y

if the preconditioner is chosen properly, we may improve the convergence
behavior. And when we use the GMRES to solve the preconditioned system,
in every iteration we need to solve an equation of form M~z = ~v, and this
equation may also be solved by an iterative method, if we use a nonlinear it-
erative method, then the preconditioner M actually differs in every iteration,
in this situation we need to use Flexible GMRES (FGMRES), the detail can
be found in [14]. The C++ implementation of GMRES for original system is
presented at appendix A.1.

51

8. Stable smoothing method

8.2 Local smoothing with impedance boundary condi-
tion

Domain decomposition

Here we present again the Helmholtz boundary value problem posed on a
two-dimensional domain W ⇢ R2 :

�Du� k2u = 0 in W
∂u
∂n
� iku = g on GR

u = f on GD

(8.1)

The variational formulation for (8.1) is: Find u 2 V := H1
GD
(W) such that

a(u, v) = F(v) 8v 2 V (8.2)

where

a(u, v) =
Z

W
(grad u · grad v̄� k2uv̄)dx� ik

Z

GR

uv̄dS 8u, v 2 V (8.3a)

F(v) =
Z

GR

gv̄dS 8v 2 V (8.3b)

We approximate (8.2) using the Galerkin method in a finite-element space
Vh ⇢ V on a triangular mesh T h with mesh width h. The linear system is

A~µ = ~j (8.4)

Let {b1, · · · , bn} be the nodal basis of Vh, bi is the tent function associated
with vertex xi. Suppose there is a set of open subdomains {Wl}

N
l=1, forming

an overlapping cover of W, and each Wl is a union of elements of the mesh
T h. The discrete local version of (2.3) with impedance boundary condition
is[5]:

�Du� k2u = 0 in Wl
∂u
∂n
� iku = 0 on ∂Wl\GD

u = f on ∂Wl \ GD

(8.5)

The local impedance sesquilinear form on Wl is

al(u, v) =
Z

Wl

(grad u · grad v̄� k2uv̄)dx� ik
Z

∂Wl\GD

uv̄dS (8.6)

For u, v 2 Vh
l = {vh|Wl

: vh 2 Vh}. And suppose Vh
l = span{cl

1, · · · , cl
nl
},

define a local to global index mapping G such that

cl
i = bj|Wl , j = G(i, l)

Define the matrix Al = [al(cl
j, cl

i)]
nl
i,j=1, which is a local version of A in (8.4).

52

8.2. Local smoothing with impedance boundary condition

Local Smoothing

Let ~v be an approximation solution of systems,

A~µ = ~j

the residual equation is

A~e =~r

where~r = ~j� A~v.

Let the subdomain Wl be the vertex patch associated with vertex xl , here the
vertex patch is the two layers of triangles around xl . The local linear system
for “vertex-patch subproblems”:

Al~el =~rl (8.7)

where~rl 2 Rnl and

~rl [i] =

(
~r[l] if l = G(i, l)
0 otherwise

where [i] denotes the ith component of the vector. Solve the problem (8.7)
directly and then update:

~v[l] = ~v[l] +~el [i], where l = G(i, l)

Implementation in LehrFEM++

Algorithm 4 gives the procedure of how to obtaining index of cells and
vertices in a vertex patch, with these information, we can assemble local
matrix Al and construct the local to global mapping G.

Suppose Ãl = [al(bj, bi)]ni,j=1, and Ql 2 Rnl ,n such that Ql [i, j] = 1 if G(i, l) =
j, then

Al = Ql ÃlQ>l

53

8. Stable smoothing method

Algorithm 4: Get the index of vertices and cells in any vertex patch
Input: mesh;

Output: adjacent vertex, adjacent cell (adjacent vertex[i] should
contain the index of vertices in vertex patch i, while adjacent cell[i]
should contain the index of cells in vertex patch i);

for cell in mesh do

i = mesh!Index(cell) ;

for vertex in cell do

p=mesh!Index(vertex);

adjacent cell[p].insert(i);

insert the index of three vertices of cell to adjacent vertex[p];

end

end

Add elements of adjacent vertex[j] to adjacent vertex[i] if
j 2adjacent vertex[i];

Add elements of adjacent cell[j] to adjacent cell[i] if
j 2adjacent cell[i];

8.3 Numerical experiments

Algorithm 5 shows the new smoothing strategy, GMRES or local smooth-
ing with impedance boundary condition is used on intermediate meshes, in
practice we choose to perform G-S twice (µ1 = µ2 = 2). We use algorithm 5
as the action of the inverse of a preconditioner operator for the finest prob-
lem

AL~µ = ~j

We will run a series of numerical experiments to show the effectiveness of
this method, in all tests the outer FGMRES iteration is run until

k~rmk/k~r0k < 10�6

is satisfied, where ~rm = ~j� AL~vm is the residual of the mth outer FGM-
RES iterate and the norm is the vector Euclidean norm. In practice we use
three different domains (unit square, unit square with square hole and unit
square with triangle hole), g and f are chosen such that the true solution is
plane wave u(x) = exp(ikd · x) with frequency d = (0.8, 0.6), and table (8.1)
and (8.2) shows the iterations counts with increasing wave number for the
intermediate smoothing being GMRES and local smoothing with impedance
boundary condition respectively.

54

8.3. Numerical experiments

Algorithm 5: ~vl = MG(~vl ,~jl) (Multi-grid V-cycle with stable
smoothing on intermediate meshes)

l = 0 indicates the coarsest mesh, while l = L is the finest mesh.
if l==0 then

~vl = A�1
l ~jl

else

if khl < 1.5 or khl > 8.0 then

perform n1 steps of G-S smoothing.
else

perform local smoothing with impedance boundary
condition once or perform GMRES with 20 iterations.

end

~vl ~vl + Il
l�1MG(0, Il�1

l (~jl � Al~vl))
if khl < 1.5 or khl > 8.0 then

perform n2 steps of G-S smoothing.
else

perform local smoothing with impedance boundary
condition once or perform GMRES with 20 iterations.

end

end

k\domain unit square square with square hole square with triangle hole
4 6 8 8
6 7 8 8
8 11 6 9

10 23 9 18
12 44 21 47
14 67 51 76
16 88 82 99
18 103 131 108
20 121 114 114

Table 8.1: Iteration counts for FGMRES until residual is reduced by a factor
of 10�6 with different wave number and underlying computation domain,
here the multi-grid preconditioner contains 5 meshes, the finest mesh has
mesh width hL=1/16, and GMRES is used on intermediate meshes.

55

8. Stable smoothing method

k\domain unit square square with square hole square with triangle hole
4 7 8 8
6 10 9 10
8 14 10 13

10 18 14 19
12 24 25 28
14 32 32 33
16 40 37 39
18 51 43 49
20 60 49 59

Table 8.2: Iteration counts for FGMRES until residual is reduced by a fac-
tor of 10�6. The mesh setting is same as table 8.1. Local smoothing with
impedance boundary condition is used on intermediate meshes.

56

Chapter 9

Discussion

In this project we implement the PUM wave-ray method to solve the Helmholtz
problem, we also implement the multigrid with GMRES and local impedance
smoothing on coarse mesh and use it as preconditioner for outer GMRES it-
eration. Results in chapter 8 tell us that the characteristic components are
quiet stubborn, use the GMRES and local impedance smoothing can only
guarantee not to amplify the problematic errors, the ability of outer GMRES
to handle problematic components degrades as the increase of the wave
number. We can see from results in section 5.4 that (Extend) PUM space
can approximate the Helmholtz problem very well, although the results for
PUM wave-ray method are not satisfactory, the idea of approximating the
characteristic components in PUM spaces worth exploring. Problems may
occur when transferring the residual after wave cycle to PUM space and
transferring the correction back to continue the wave cycle. Characteristic
components are quite oscillatory, we may lose the precision when moving
these components, while in wave-ray method, the smooth ray functions are
separated and treated by ray cycle. It is worth noting that all mesh opera-
tor Al excepting the one on finest wave mesh are constructed by Galerkin
projection, using the operator assembling in PUM spaces cause divergence.
For PUM spaces, if the mesh width is small and the number of plane waves
is high, then the basis functions {bl

i e
l
t} are ‘nearly’ linear dependent, which

make the stiffness matrix to be badly conditioned. In further research, ac-
curacy properties regarding transfer operator between Lagrangian finite ele-
ment space and PUM space, the choice of coarse mesh operator need to be
studied.

57

Appendix A

Appendix

A.1 Implementation of GMRES

The implementation of GMRES in C++, the main routine gmres has five
parameters, first two is the matrix and right hand side, the third is the ini-
tial guess, the forth denotes the maximum number of iterations, last one is
aimed at terminate the procedure early if the residual is reduced at a factor
of threshold. If predonditioned GMRES is required, then the main change
would be at line 29, to change the way to create the new vector for the
Arnoldi iteration.

1 using Scalar = std::complex<double>;

2 using Vec_t = Eigen::Matrix<Scalar, Eigen::Dynamic, 1>;

3 using Mat_t = Eigen::Matrix<Scalar, Eigen::Dynamic,

Eigen::Dynamic>;,!

4

5 template <typename Mat_type>

6 void gmres(Mat_type& A, Vec_t& b, Vec_t& x, int max_iterations,

double threshold) {,!

7 int n = A.rows();

8 int m = max_iterations;

9 Vec_t r = b - A * x; // initial residual

10 double r_norm = r.norm();

11 double error = r_norm / r_norm;

12 std::vector<double> e;

13 e.push_back(error);

14

15 // For givens roatation

16 Vec_t sn = Vec_t::Zero(m), cs = Vec_t::Zero(m);

17

59

A. Appendix

18 // beta is initialized to r_norm*e1

19 Vec_t beta = Vec_t::Zero(m+1);

20 beta(0) = r_norm;

21

22 Mat_t V(n, m+1); // to store the orthonormal bases

23 Mat_t H = Mat_t::Zero(m+1, m);

24 V.col(0) = r / r_norm;

25

26 int j;

27 for(j = 1; j <= m; ++j) {

28 // arnoldi process

29 Vec_t wj = A * V.col(j-1);

30 for(int i = 0; i < j; ++i) {

31 H(i, j-1) = wj.dot(V.col(i));

32 wj = wj - H(i, j-1) * V.col(i);

33 }

34 H(j, j-1) = wj.norm();

35 V.col(j) = wj / H(j, j-1);

36

37 // eliminate the last element in H jth row and update

the rotation matrix,!

38 applay_givens_roataion(H, cs, sn, j-1);

39

40 // update the residual vector

41 beta(j) = -sn(j-1) * beta(j-1);

42 beta(j-1) = cs(j-1) * beta(j-1);

43

44 error = std::abs(beta(j)) / r_norm;

45 e.push_back(error);

46

47 if(error <= threshold) {

48 break;

49 }

50 }

51 // calculate the result

52 if(j == m + 1) {

53 --j;

54 }

55 Vec_t y = solve_upper_triangle(H.topLeftCorner(j, j),

beta.head(j));,!

56 x = x + V.leftCols(j) * y;

57 }

58

59 Vec_t solve_upper_triangle(const Mat_t& U, const Vec_t& b) {

60

A.1. Implementation of GMRES

60 int n = b.size();

61 Vec_t x = Vec_t(n);

62 for(int i = n - 1; i >= 0; --i) {

63 Scalar tmp = b(i);

64 for(int j = i + 1; j < n; ++j) {

65 tmp -= U(i,j) * x(j);

66 }

67 x(i) = tmp / U(i, i);

68 }

69 return x;

70 }

71

72 std::pair<Scalar, Scalar> givens_rotation(Scalar rho, Scalar

sigma) {,!

73 if(rho == 0.0) {

74 return {0.0, 1.0};

75 } else {

76 double tmp = std::abs(rho * rho) + std::abs(sigma *

sigma);,!

77 Scalar c = std::abs(rho) / (std::sqrt(tmp));

78 Scalar s = c * sigma / rho;

79 return {c, s};

80 }

81 }

82

83 void applay_givens_roataion(Mat_t& H, Vec_t& cs, Vec_t& sn, int

j) {,!

84 for(int i = 0; i < j; ++i) {

85 Scalar tmp = cs(i) * H(i, j) + std::conj(sn(i)) * H(i+1,

j);,!

86 H(i+1, j) = -sn(i) * H(i, j) + cs(i) * H(i+1, j);

87 H(i, j) = tmp;

88 }

89 auto cs_pair = givens_rotation(H(j, j), H(j+1, j));

90 cs(j) = cs_pair.first;

91 sn(j) = cs_pair.second;

92 H(j, j) = cs(j) * H(j,j) + std::conj(sn(j)) * H(j+1, j);

93 H(j+1, j) = 0.0;

94 }

61

A. Appendix

A.2 Eigenvalues of Gauss-Seidel relaxation

For matrix A = (1/h2) tridiag(�1, 2,�1) � k2I 2 RN⇥N , h = 1/(N + 1),
we split A into A = D � L � U, where D is the matrix consisting of the
diagonal of A, �L and �U are strict lower and upper triangle matrix of A.
The Gauss-Seidel iteration matrix is RGS = (D� L)�1U, and its eigenvalues
are

lGS
j =

4
(2� h2k2)2 cos2(jph), j = 1, · · · , N

Proof Suppose l is an eigenvalue of RGS and ~w = [wi]Ni=1 is the associated
eigenvector, then we have

RGS~w = l~w () U~w = l(D� L)~w

we have componentwise
⇢

ws+1 + l(2� h2k2)ws + lws�1 = 0, s = 1, · · · , N
w0 = wN+1 = 0 (A.1)

To solve this difference equation, suppose ws satisfies

ws = ts, , s = 0, · · · , N + 1

for some t 2 C, substitute it into the first equation in (A.1), we get

t2 + l(2� h2k2)t + l = 0

suppose this quadratic equation has two solution t1 and t2, according to
Vieta’s formulas ⇢

t1 + t2 = �l(2� h2k2)
t1t2 = l

(A.2)

Due to the linearity, we can assume the solution of (A.1) is

wk = p1tk
1 + p2tk

2, , i = 0, · · · , N + 1

where p1, p2 2 C, for the boundary condition
⇢

w0 = p1 + p2 = 0
wN+1 = p1tN+1

1 + p2tN+1
2 = 0)

⇢
p := p1 = �p2
(t1

t2
)N+1 = 1

we can know that t1/t2 is the (N + 1)�th root of 1, and we are not interested
in the case t1 = t2, so we can write

t1,j

t2,j
= ei 2jp

N+1 , j = 1, · · · , N

62

A.2. Eigenvalues of Gauss-Seidel relaxation

together with the fact that t1,jt2,j = lj, we can get that

t2
1,j = ljei 2jp

N+1 , t2
2,j = lje�i 2jp

N+1

and

l2
j (2� h2k2)2 = t2

1,j + t2
2,j + 2t1,jt2,j

= lj(ei 2jp
N+1 + e�i 2jp

N+1 + 2)

= lj(2 + 2 cos(2jph))

= 4lj cos2(jph)

Finally we get

lj =
4

(2� h2k2)2 cos2(jph).

63

Bibliography

[1] I. Babuška and J. M. Melenk. The partition of unity method. Interna-
tional Journal for Numerical Methods in Engineering, 40(4):727–758, 1997.

[2] A. Brandt and I. Livshits. Wave-ray multigrid method for standing
wave equations. Electronic Transactions on Numerical Analysis, 6, 08 1998.

[3] William Briggs, Van Henson, and Steve McCormick. A Multigrid Tuto-
rial, 2nd Edition. SIAM, 01 2000.

[4] Howard C. Elman, Oliver G. Ernst, and Dianne P. O’Leary. A multigrid
method enhanced by krylov subspace iteration for discrete helmholtz
equations. SIAM Journal on Scientific Computing, 23(4):1291–1315, 2001.

[5] Ivan G. Graham, Euan A. Spence, and Jun Zou. Domain decomposi-
tion with local impedance conditions for the helmholtz equation with
absorption. SIAM Journal on Numerical Analysis, 58(5):2515–2543, 2020.

[6] Frank Ihlenburg. Finite Element Analysis of Acoustic Scattering. Springer,
New York, NY, 1998.

[7] Volker John. Multigrid methods. https://www.wias-berlin.de/

people/john/LEHRE/MULTIGRID/multigrid.pdf, 2013. [Online].

[8] D. Lahaye, J.M. Tang, and C. Vuik. Modern Solvers for Helmholtz Problems.
Birkhäuser, 01 2017.

[9] B. Lee, T. A. Manteuffel, S. F. McCormick, and J. Ruge. Multilevel first-
order system least squares(fosls) for helmholtz equations. SIAM Journal
on Scientific Computing, 1999.

[10] B. Lee, T. A. Manteuffel, S. F. McCormick, and J. Ruge. First-order sys-
tem least-squares for the helmholtz equation. SIAM Journal on Scientific
Computing, 21(5):1927–1949, 2000.

65

https://www.wias-berlin.de/people/john/LEHRE/MULTIGRID/multigrid.pdf
https://www.wias-berlin.de/people/john/LEHRE/MULTIGRID/multigrid.pdf

Bibliography

[11] Irene Livshits and Achi Brandt. Accuracy properties of the wave-ray
multigrid algorithm for helmholtz equations. SIAM Journal on Scientific
Computing, 28(4):1228–1251, 2006.

[12] J. M. Melenk. On generalized finite element methods. Ph.D. Thesis,
University of Maryland, 1995.

[13] Christoph Pflaum. Multigrid methods. https://www.cs10.tf.fau.de/
files/2018/06/pflaum-script-mg.pdf, 2005. [Online].

[14] Yousef Saad. Iterative Methods for Sparse Linear Systems. Society for
Industrial and Applied Mathematics, second edition, 2003.

66

https://www.cs10.tf.fau.de/files/2018/06/pflaum-script-mg.pdf
https://www.cs10.tf.fau.de/files/2018/06/pflaum-script-mg.pdf

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.
− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

https://www.ethz.ch/content/dam/ethz/main/education/rechtliches-abschluesse/leistungskontrollen/plagiarism-citationetiquette.pdf

	Contents
	Introduction
	Helmholtz equation
	Derivation
	Boundary condition
	Model problem and Variational formulation

	Multigrid method
	Introduction
	Elements of Multigrid in Finite element method
	Power iteration to obtain convergence factor
	Difficulties in solving Helmholtz equation with standard multigrid method

	Wave-ray multigrid method
	Characteristic Component and Ray Equations
	Separation

	Plane-wave PUM
	The partition of unity method
	Approximate the solution of Helmholtz equation
	Implementation in LehrFEM++
	Resolution test

	PUM wave-ray method
	Transfer operator

	Numerical Experiments
	Code Validation
	Apply Standard Multigrid to Helmholtz problem
	Extend PUM wave-ray multigrid

	Stable smoothing method
	GMRES
	Local smoothing with impedance boundary condition
	Numerical experiments

	Discussion
	Appendix
	Implementation of GMRES
	Eigenvalues of Gauss-Seidel relaxation

	Bibliography

