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Abstract

The thesis discusses the h-convergence of the discrete solutions for
the Dirac operator and the Hodge Laplacians on the surface of the
3-sphere. At first, it describes the discretization with finite element
methods based on the Lehrfem++. The h-convergence experiments
then show algebraic convergence with rate one for all source problems.
Moreover, the Dirac operator turned out to be solvable numerically with
the Laplace Operator and a suitable modification of the load function.
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Chapter 1

Introduction

This thesis discusses the discretization of the Hodge Laplacians for the Whit-
ney zero, one, and two forms, as well as the Dirac operator using the same
discrete function spaces. This includes the derivation of variational formu-
lations, discretization of the function spaces, the realization of the discrete
source problems, and an h-convergence study of these source problems on the
surface of the 3-sphere. Moreover, for the convergence studies, we provide a
triangulation of the sphere.

According to the previously described main goals, the thesis comprises
five parts. The first part, starting in chapter 2, discusses the mathematical
foundations of the problem and introduces the necessary notation. More
specifically, we define the function spaces and state the definitions of the
Hodge-Laplacian and Dirac operators. Furthermore, we introduce the source
problems, on which the h-convergence studies will be done in chapter 6. The
chapter also touches on the variational problems which can be solved with
the finite element method.

The second part, chapter 3, concerns the discretization of the function spaces
used in the source problems. Namely, these are the three first Whitney
k-forms.

The third part, chapter 4, discusses the Implementation based on the Lehrfem++
framework, a c++ library developed at the Seminar for Applied Mathematics
at ETH Zürich [4]. This chapter starts with a description of the triangulation
of the sphere and continues by providing the technical details needed for
the realization of the element providers for each of the bilinear forms in the
variational problems. Then it also discusses how these element providers
cooperate to represent the Dirac operator and the Hodge Laplacians.

Chapter 5 introduces subsequently the methods used to debug the Dirac
operator, which at first had a sign error in one of the matrix providers,
leading to a nonconverging solution.
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1. Introduction

Finally, in the fifth part, chapter 6 and 7, discusses how well the method
performs in terms of converge under h-refinement. Chapter 6 starts with a
introduction of the tested functions and presents the results of the numerical
experiments. This is followed by a final discussion and conclusions in
chapter 7.
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Chapter 2

Mathematical Foundations

This chapter first defines the surface differential operators occurring in the
problems of this thesis. These definitions are necessary not only for the
discretization discussed in chapter 3, but also in the analytical derivation of
test functions for the experiments presented in chapter 6. Then we introduce
definitions of the Hodge Laplacian operators and the Dirac operators, the
main components of the source problems. The last section of the chapter is
devoted to the source problems themselves, of which discretization and the
h-convergence are the main goals.

2.1 Surface Differential Operators

The problems in this thesis consist of four basic differential operators, in-
troduced in the following subsections. The last subsection is devoted to the
involved function spaces. Throughout the thesis, surface differential opera-
tors are marked with a subscript Γ, for example gradΓ. The subscript denotes
a projection onto the two-dimensional tangential space of a two-dimensional
Manifold Γ in the three-dimensional world. In the experiments, chapter 6,
we restrict this Manifold to be the surface of the 3-sphere Γ = ∂S.

2.1.1 Surface Gradient

The surface gradient is the gradient projected on the tangent space of the
surface. Formally we have

gradΓ u := (I3 − n nT) grad ũ u : Γ → R, (2.1)

where the unit normal vector,

n := nΓ(x) x ∈ S, (2.2)

3



2. Mathematical Foundations

is implicitly defined with respect to the surface Γ and a coordinate x ∈ Γ. For
example on the surface of the sphere with radius one the normal is equivalent
to

n∂S(x) =
x

∥x∥ . (2.3)

And ũ|Γ is an extension of u such that

ũ|Γ = u. (2.4)

2.1.2 Surface Divergence

Similar to the surface gradient, the surface divergence is the divergence with
a correction term for the divergence in non-tangential direction given in

divΓ u := div ũ − nTDũ n u : Γ → R3, (2.5)

with the normal n, defined above in (2.2), and the Jacobian Dũ of the surface-
vectorfield ũ. And ũ is an extension of u analogue to 2.4.

2.1.3 Surface Curl

We define two surface curls, one operating on tangential surface-vectorfields
and one operating on scalar surface-functions in

curlΓ u := divΓ(Rnu) (2.6)

= divΓ(n × u) u : Γ → R3, (2.7)

with Rn a rotation operator, rotating the field 90 degrees around n.

For the vector-curl operating on scalar functions, we define

curlΓ u := Rn(gradΓ u) (2.8)
= n × (gradΓ u) u : Γ → R. (2.9)

2.1.4 Function Spaces

For the variational problems, derived later in section 2.5 to be meaningful,
we need to choose a compliant pair of trial and test spaces. The choice of
the function spaces depends on the operators acting on the trial and test
functions in the integrals of the variational forms. Hence, in this chapter,
we introduce these function spaces H1(Γ), H(curlΓ, Γ), H(divΓ, Γ), and L2(Γ),
of which definitions are drawn from [7, section 1.3] and [3, section 2]. The
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2.2. Hodge Laplacians

above spaces have the interesting properties

∀u ∈ H1(Γ)
∫
Γ

|gradΓ u|2 dx < ∞ (2.10)

∀u ∈ H(curlΓ, Γ)
∫
Γ

|curlΓ u|2 dx < ∞ (2.11)

∀u ∈ H(divΓ, Γ)
∫
Γ

|divΓ u|2 dx < ∞ (2.12)

∀u ∈ L2(Γ)
∫
Γ

|u|2 dx < ∞, (2.13)

from which we deduce that the variational forms in section 2.5 are well
defined.

2.2 Hodge Laplacians

This section introduces the three Hodge Laplacian operators on the zero, one,
and two forms. More general formulations can be found in [1, section 7.1].
The special cases discussed in the current section are stated in [1, section 7.4].

The first Hodge-Laplacian on the zero form is defined as

∆0 u := (divΓ ◦ gradΓ) u, (2.14)

with divΓ from (2.5) and gradΓ defined in (2.1).

The second Hodge-Laplacian on the 1-form is defined to be

∆1 u := (gradΓ ◦ divΓ − curlΓ ◦ curlΓ) u, (2.15)

with operators divΓ, gradΓ as above. Moreover the vector-curl curlΓ is defined
in (2.8) and the scalar-curl curlΓ in (2.6).

Then we have the third Hodge-Laplacian acting on the 2-form given as

∆2 u := (divΓ ◦ gradΓ) u, (2.16)

which formally agrees with the definition of the first Hodge-Laplacian (2.14).
The difference will become obvious when we discuss the variational formula-
tions in section 2.5.

2.3 Dirac Operator

For the Dirac operator, we have the definition based on [10, section 2.2]

D :=

 0 grad∗
Γ 0

gradΓ 0 curl∗Γ
0 curlΓ 0

 . (2.17)
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2. Mathematical Foundations

Where gradΓ and curlΓ are defined as above (2.1, 2.6) and for grad∗
Γ, curl∗Γ we

have

grad∗
Γ ≡ −divΓ (2.18)

curl∗Γ ≡ curlΓ. (2.19)

2.4 Source Problems

In the experiments, chapter 6, we study the h-convergence of the discretiza-
tion of the source problems

−∆0 u + k2 u = f0 (2.20)

−∆1 u + k2 u = f1 (2.21)

−∆2 u + k2 u = f2 (2.22)

Du⃗ + ık u⃗ = f⃗ , (2.23)

for some k ̸= 0, k ∈ R and functions f0 : Γ → R, f1 : Γ → R3, f2 : Γ → R and
f⃗ : Γ → C × C3 × C. Therefore the discretization of these problems is one
of the main goals in this thesis, discussed in chapter 3. In the experiments
section, we then study, apart from the h-convergence the stability of the
method for different values of k.

2.5 Variational Problems

For the source problems above, we formulate the corresponding variational
problems, which can be solved with finite element methods. That is, we
transform the source problems (2.20, 2.21, 2.22, 2.23) into the following
equivalent formulations under the assumption that the domain Γ does not
have a boundary ∂Γ = Ø. This assumption is reasonable for Γ = ∂S, which
will be the only domain studied in the experiments. For the first source
problem we have

u ∈ H1(Γ) (2.24)∫
Γ

gradΓ u · gradΓ v dx + k2
∫
Γ

u v dx =
∫
Γ

f0 v dx ∀v ∈ H1(Γ). (2.25)

For the second source problem we introduce an additional variable and set
the trial-space of u to

u ∈ H(curlΓ, Γ) (2.26)

p := divΓ u p ∈ H1(Γ), (2.27)
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2.5. Variational Problems

and get the two equations for ∀v ∈ H(curlΓ, Γ), ∀q ∈ H1(Γ),∫
Γ

curlΓ u · curlΓ v dx + k2
∫
Γ

u · v dx +
∫
Γ

v · gradΓ p dx =
∫
Γ

f1 · v dx (2.28)

∫
Γ

u · gradΓ q dx +
∫
Γ

p q dx = 0. (2.29)

The third source problem, which formally agrees with the first one, will be
solved with a different discretization and hence need a different variational
formulation. Therefore we again introduce a new variable and set the trial-
space of u to

u ∈ L2(Γ) (2.30)
j := gradΓ u j ∈ H(divΓ). (2.31)

Then we get the following equations∫
Γ

j · v dx +
∫
Γ

q divΓ v dx = 0 ∀v ∈ H(divΓ, Γ) (2.32)

∫
Γ

u divΓ j dx + k2
∫
Γ

u q dx =
∫
Γ

f2 q dx ∀q ∈ L2(Γ). (2.33)

For the Dirac source problem we get three equation because of the corre-
sponding three components. The trialspace is hence given as

u⃗ ∈ H1(Γ)× H(curlΓ, Γ)× L2(Γ), (2.34)

and the variational problem

ı k
∫
Γ

u⃗1 v dx +
∫
Γ

u⃗2 · gradΓ v dx =
∫
Γ

f⃗1 v dx (2.35)

∫
Γ

v · gradΓ u⃗1 dx + ı k
∫
Γ

u⃗2 · v dx +
∫
Γ

u⃗3 curlΓ v dx =
∫
Γ

f⃗2 · v dx (2.36)

∫
Γ

q curlΓ u⃗2 dx + ı k
∫
Γ

u⃗3 q dx =
∫
Γ

f⃗3 q dx. (2.37)

∀v ∈ H1(Γ)
∀v ∈ H(curlΓ, Γ)

∀q ∈ L2(Γ)

The derivations of the variational problems in this chapter and their equiva-
lence to the source problems stated in (2.20, 2.21, 2.22, 2.23), can be found in
appendix A.
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Chapter 3

Discretization

This section is concerned with the definition of a finite-dimensional subspace,
or rather a finite-dimensional approximation of a subspace, for the given
function spaces in the variational forms. Hence we focus on the following
four function spaces H1(Γ), H(curlΓ, Γ), H(divΓ, Γ), L2(Γ). We will define
each discrete function space by finite set of basis functions. Replacing the
function spaces by their finite-dimensional approximations then leads to the
discretizations of the source problems given in section 2.4. details concerning
the discretizations of the source problems will be discussed in chapter 4.

3.1 Mesh

The dimensionality of the discrete function spaces strongly depends on the
chosen mesh. Moreover, it has a large influence on the shape of the basis
functions and therefore is a fundamental part of discretizations. In this thesis,
we require the mesh to be a triangulation of the Domain, the surface of the
3-sphere ∂S. In the following, we denote this triangulation as M. V refers to
the set of vertices in M, E to the set of edges and C to the set of cells, i.e. the
triangles. Furthermore we require the vertices, edges and cells to be indexed
and edges to be oriented. This is achieved with the definitions

V = {vj | j ∈ {0, ..., n − 1}, n = |V|} (3.1)

E = {ej | ej = (vj0 , vj1), j ∈ {0, ..., m − 1}, m = |E |} (3.2)

C = {Kj |Kj = (vj0 , vj1 , vj2), j ∈ {0, ..., |C| − 1}}. (3.3)

These definitions imply that edges have a induced and a intrinsic orientation.
Of which the intrinsic orientation is given by the edge definition and the
induced orientation are implied by the cell definitions through the order of the
vertices. We require the edges within one cell to be oriented counterclockwise,
which is equivalent to requiring outward pointing normal vectors.
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3. Discretization

The induced and intrinsic orientation of edges then further implies a relative
orientation sji for the edges in a triangle Kj ∈ C with Kj = (vj0 , vj1 , vj2)

sj0 =

{
1 (vj0 , vj1) ∈ E
−1 (vj1 , vj0) ∈ E

(3.4)

sj1 =

{
1 (vj1 , vj2) ∈ E
−1 (vj2 , vj1) ∈ E

(3.5)

sj2 =

{
1 (vj2 , vj0) ∈ E
−1 (vj0 , vj2) ∈ E

. (3.6)

These relative orientations indicate if the induced orientation agrees with the
intrinsic orientation of the edge.

The above definition of the mesh complies with the definition in [7, sec-
tion 2.5.3]. Hence we can further rely on this reference and associate basis
functions with exactly one entity of the mesh. This holds for all the basis
functions in this thesis.

The concept of Parametric Finite Element Methods [7, section 2.8] enables us
to define the basis function only on the reference triangle and use a bijective
pullback function to get basis functions on general triangles of the mesh. This
reference triangle is defined to be

K̂ := ((0, 0), (1, 0), (0, 1)). (3.7)

The pullback function for on an arbitrary triangle in three dimensions Kj ∈ C
can then be defined as

Kj = (vj0 , vj1 , vj2) (3.8)

φKj : K̂ → Kj (3.9)

φKj((x0, x1)) := vj0 + x0 vj1 + x1 vj2 . (3.10)

3.2 Discrete Function Spaces

This section provides a definition of the discrete function spaces by a set of
basis functions, the global shape functions. In this thesis, we restrict ourselves
to linear basis functions with local support. This is, the basis functions are
linear only on cells to which their associated entity is adjacent and zero
everywhere else.

3.2.1 Whitney Zero-Forms

The discretization of the H1(Γ) space is given by

H1(Γ) → S0
1(M). (3.11)

10



3.2. Discrete Function Spaces

This is the piecewise linear continuous finite element space, the Whitney
zero-forms [7, section 2.3.4]. The basis functions are associated with the
vertices of the mesh. And the local definition of the basis function on the
reference triangle are given as the barycentric coordinate functions K̂ (3.7)

x =

(
x0
x1

)
∈ K̂ (3.12)

λ̂0(x) = 1 − x0 − x1 (3.13)

λ̂1(x) = x0 (3.14)

λ̂2(x) = x1. (3.15)

This definition can now be used to define global shape functions, using the
above definition of the pullback function (3.10) and a restriction to ensure
local support

λji(x) =

{
λ̂i(φ−1

Kj
(x)) x ∈ Kj ⊆ Supp(λji)

0 otherwise
, (3.16)

where we use indexing compliant with the definition of cells (3.3). Moreover
we define the Support of a basis function b to be

Supp(b) :=
⋃

Kj∈A

Kj (3.17)

A := {Kj | b is sub-entity of Kj}, (3.18)

where sub-entities of a given cell are all vertices and edges of that cell and
the cell itself.

Then we can also compute the gradients of the basis functions λi in the region
of their support. For this we rely on lemma [7, lemma 2.8.3.10]

gradΓ λji(x) = DφKj(x̂)(DφKj(x̂)
TDφKj(x̂))

−1grad λ̂i(x̂). (3.19)

In the following we will use the following notation for the Gramian matrix

GKj(x̂) := DφKj(x̂)
TDφKj(x̂). (3.20)

Expressing the gradients with the reference gradients will become handy
in the implementation. Which is the rational to introduce the on first sight
cumbersome expression.

3.2.2 Whitney One-Forms

The space H(curlΓ, Γ) is discretized by

H(curlΓ, Γ) → W1(M), (3.21)

11



3. Discretization

the space of piecewise linear vector fields, the Whitney 1-forms, surface edge
elements [8, section 5]. The basis functions are associated with edges and in
a cell Kj we define the local basis functions

bj0|Kj
= sj0 (λj0 grad λj1 − λj1 grad λj0) (3.22)

bj1|Kj
= sj1 (λj1 grad λj2 − λj2 grad λj1) (3.23)

bj2|Kj
= sj2 (λj2 grad λj0 − λj0 grad λj2). (3.24)

Where the factors si ∈ {−1, 1} are indicators of the relative orientation of the
edges as introduced in (3.4, 3.5, 3.6). The global bi is the combination of the
two induced bju|Kj

, blk |Kl
functions in the two triangles Kj, Kl in the support of

bi, analogue to the definition of the support of the barycentric basis functions
(3.16).

3.2.3 Rotated Whitney One-Forms

For H(divΓ, Γ) we define the discretized space by

H(divΓ, Γ) → W1
×(M), (3.25)

the space of piecewise linear vector fields, the rotated Whitney 1-forms,
surface Raviart-Thomas elements. We get these functions by locally rotating
the basis functions bi around the outward pointing normal of the cell nKj .
Therefore, we again define these functions locally on a triangle Kj

b′
j0 = nKj × bj0 (3.26)

b′
j1 = nKj × bj1 (3.27)

b′
j2 = nKj × bj2 . (3.28)

As with the Whitney 1-form basis function, the global b′
i result from combin-

ing two local basis functions in the support of b′
i

3.2.4 Whitney Two-Forms

The last space we need in this thesis is L2(Γ) which is discretized by

L2(Γ) → S−1
0 (M) (3.29)

These are the piecewise constant, discontinuous functions, the Whitney 2-
forms. Their basis functions are associated with the cells and globally defined
to be one on the cell and zero everywhere else on the mesh

µi(x) =

{
1 x ∈ ci

0 otherwise
. (3.30)
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Chapter 4

Implementation

This chapter discusses the implementations necessary to conduct the experi-
ments in this thesis. The chapter consists of four main parts, starting with
a triangulation of the surface of the sphere, then the implementations of
element providers for the bilinear and linear forms in the source problems,
followed by the implementation of the operators, namely the Dirac operator
and the three Hodge Laplacian operators, and finally, the implementation
of the source problems. The whole code is based on the library Lehrfem++
[4]. Moreover, we will restrict ourselves to merely pointing out the coupling
points to the code not implemented in the scope of this thesis. The source
code of the cloned repository is available in the git repository [5]. Links
to the documentation are provided throughout the chapter for the readers
convenience.

4.1 Triangulation of ∂S

The triangulation has to meet the requirements described in section 3.1.
Moreover, the implementation has to compute arbitrarily fine meshes such
that we can later use it for h-convergence studies. The key idea here is to
define refinement levels. With increasing refinement level, the mesh width,
which in triangulations is equivalent to the largest edge, has to decrease.
Conceptually we achieve this by refining the mesh of the previous refinement
level, starting with an octagon as the mesh with refinement level zero.

For the refinement, we then introduce the concept of rings, which are sets
of vertices sharing the same θ-coordinate in spherical coordinates. This is
also equivalent to sharing the same z-coordinate in Cartesian coordinates.
However, we will stick to the spherical coordinates because there we define
the rings as evenly spaced. From this follows that the refinement level zero,
the octagon, has three rings. We add one new ring between every two
consecutive rings in one conceptual refinement step. Furthermore, we assign

13



4. Implementation

vertices to all the rings as follows: The first and last rings only contain one
vertex. Then the second and second last ring contain precisely four vertices.
And for all the other rings, it must hold that the number of vertices increases
by four, with every ring going towards the largest in the middle. For the
first two refinement steps and the upper hemisphere, this is illustrated in
figure 4.1, where the new rings are colored in red for every step. This is
equivalent to splitting each cell into four new cells and then projecting the
newly created points on the sphere, such that they are located on the rings.

The documentation and source code is available in SphereTriagMeshBuilder.
In the following, we describe the algorithm which directly builds a mesh for
a given refinement level without the incremental refinement steps, but such
that the resulting mesh is the same. For this, we start by describing the rings
in more detail and then discuss how the vertices and cells are computed.
Using the lf::mesh::MeshFactroy class in the Lehrfem++ library [4], we
only have to specify the positions of vertices, and for the cells, we only have
to specify the defining three vertices in the correct local order. Edges are
then added automatically based on the cells. Moreover, the numbering of
vertices and cells then follows the order in which they are added, and the
ordering of the edges is assumed to be arbitrarily assigned but provided
by the lf::mesh::MeshFactroy class, which suffices for the purpose of this
thesis.

4.1.1 Rings

In the implementation, we heavily rely on the concept of rings, therefore we
first derive the number of rings and define a helpful notation to exploit the
symmetry of the upper and lower hemisphere.

Let l be the refinement level. Then we get

#r = 3 +
l

∑
i=1

2i = 2l+1 + 1 (4.1)

rings in total. The reasoning is, that we start with three rings and in every
refinement we place one ring in between every ring. The prove by induction
can be found in appendix C, together with the derivation of the number of
vertices, edges and cells for a given refinement level. These numbers are then
also presented in the code documentation.

In the following we consider that the rings r and #r − r − 1 are symmetric
with zero indexing. Hence we define

r̃ =

{
r , r ≤ ⌊ #r

2 ⌋
#r − r − 1 , else

(4.2)

for further simplifications throughout the chapter.
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4.1.2 Vertices

We only need to compute the positions of vertices. Their total number is
given in appendix C. However for the algorithm, we only need the number
of vertices per ring since we build the vertices in a loop over the rings. Hence
we rely on the rings and we place the vertices equally spaced on these rings.
The number of vertices per ring is given by

#vr =

{
1 , r̃ = 0
r̃ · 4 , else

, (4.3)

because on the ring with index r̃ = 0 we have only one vertex. Further, on
the ring with index r̃ = 1 we have four vertices. Then with every ring we
have 4 more vertices until we reach the middle ring, as illustrated in figure
4.1.

The vertex position can then be determined with spherical coordinatesx
y
z

 =

r · cos(φ) · sin(θ)
r · cos(φ) · sin(θ)

r · cos(θ)

 . (4.4)

With dθ = 2π
#r and dφ = 2π

#vr
this is then equivalent tox

y
z

 =

r · cos(vidx · dφ) · sin(ridx · θ)
r · sin(vidx · dφ) · sin(ridx · θ)

r · cos(ridx · θ)

 . (4.5)

Note that vidx is the index on the ring on which v is located. By the fact that
the rings are evenly spaced, θ is well defined and by defining that the first
vertex v0 on every ring has φv0 = 0 coordinate the positions for the vertices
are well defined.

4.1.3 Cells

The last entities that need to be defined are the cells, because the edges will
be built based on the cells as described above.

For the algorithm, cells are associated with vertices such that they imply a
natural ordering according to which we can create them. The vertex to which
we associate the cells are the first vertices of the ring, on which the cells
have an edge, traversing the vertices on every ring in counterclockwise order.
We point out that every cell only has precisely one edge on a ring. Hence,
every cell will be associated with exactly one vertex. If this was not the case,
either the rings would touch at some point, or the cell would need more than
three edges. Moreover, we create two cells for every vertex except for the two
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Figure 4.1: Mesh on the upper hemisphere for refinement levels 0 to 2

vertices on the first and last ring with only one vertex. With this, we have
twice as many cells as there are vertices minus two.

We can then construct one cell above and one cell below the ring. For each
of the two, we pick the right vertex on the ring above or below, respectively,
so the result looks like in figure 4.1. For the formal definition of the cells,
we introduce quarters q ∈ {0, 1, 2, 3}. The cell associated with vertex i in
direction of a smaller ring r′ and on the upper hemisphere is then given by

(v(r,i), v(r,i+1), v(r′,i−q)). (4.6)

On the lower hemisphere we have to change the local ordering such that the
local ordering remains counterclockwise

(v(r,i), v(r′,i−q), v(r,i+1)). (4.7)

The cell in direction of the larger ring r′′ on the upper hemisphere, if such a
ring exists, is

(v(r,i), v(r′′,i+1+q), v(r,i+1)), (4.8)

and on the lower hemisphere

(v(r,i), v(r,i+1), v(r′′,i+1+q)), (4.9)

where q for the above definitions of triangles is chosen according to

q =

⌊
i

number of vertices on ring r

⌋
. (4.10)

This already defines the whole mesh since the local orientations are implicitly
given by the vertex order. With these considerations we can build a list of all
vertices and cells with a double for loop over the rings and vertices in each
ring.
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4.2. Assembly

4.2 Assembly

This section introduces all the local assembly algorithms needed for the
source problems. By relying on the Lehrfem++ [4] library, we only have
to implement element providers, which are classes compliant with one of
the global assembly method lf::assemble::AssembleMatrixLocally() or
lf::assemble::AssembleVectorLocally(). The element providers are then
only responsible for computing local assembly matrices and vectors restricted
on a single triangle. A local assembly matrix for a triangle K and a bilinear
form b(v, u) is the matrix A containing the evaluations of the bilinear form
over the triangle with all the combinations of corresponding basis functions.
So let v be in the span of the basis β1 = {b11, b12, ..., b1n} and and u in the
span of the basis β2 = {b21, b22, ..., b2m}. Then we have Aij = b|K(b1j, b2i),
where we only have to include those basis functions for which b1j |K ̸≡ 0
and b2i |K ̸≡ 0. The local assembly vectors are defined in the same way but
instead of a bilinear b(u, u) we have a linear form l(u) which leads to the
element vector Vi = l|K(b2i). These considerations allow us only to reason
about the computation of the restricted bilinear forms b|K(b1j, b2i) and linear
forms l|K(b2i). The element matrices as well as the element vectors can then
be obtained by a loop over the basis functions.

We start with the element providers for the first Hodge Laplacian source
problem, then continue with the providers for the second and the third
Hodge Laplacians, and finally, we touch on the Dirac operator. The classes
are mainly named according to the basis functions they use, and the operators
acting on these basis functions.

Note that for all the derivations and definitions, we do not consider the exact
parametrization of the sphere but only its triangulation. From this follows
that φK, as defined in the previous chapter (3.10), is affine and hence DφK
constant.

4.2.1 Laplace Matrix Provider

This first element matrix provider, of which the documentation and source
code is available in LaplaceMatrixProvider, is responsible for the computa-
tion of the bilinear form resulting from the standard Laplace-operator∫

Γ

gradΓ u · gradΓ v dx. (4.11)

The matrix provider uses barycentric coordinate functions on triangles in a
three dimensional world which leads to∫

K

gradΓ λi gradΓ λj dx = (grad λ̂j)
T G−T

K DφT
K DφK G−1

K (grad λ̂i)|K|, (4.12)
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of which the equivalence follows form (3.19) and the fact that the gradients
gradΓ λl as well as DφK are constant within cells. Note that, as already
pointed out above, this only applies, because we defined the mapping φK
form the reference triangle to the triangulation of the sphere. This can then be
computed relying on the lf::uscalfe namespace which includes functions
λ̂i on the reference triangle and their gradients grad λ̂i, further we can then
make use of the lf::geometry namespace which provides us with methods
to compute |K| and the Jacobian-inverse-Gramian matrices DφK G−1

K . These
tools, provided by Lehrfem++ [4], will be the main building blocks for most
of the matrix and vector providers in this chapter.

4.2.2 Mass Zero Matrix Provider

The second element matrix provider, which is available under the link
MassMatrixProvider, computes the mass matrix for barycentric basis func-
tions on triangles in a three-dimensional world. This is, it computes the
bilinear form ∫

∂Γ

u v dx (4.13)

locally, which results in

∫
K

λi λj dx =

{ |K|
6 i = j
|K|
12 i ̸= j

, (4.14)

and directly follows from [7, lemma 2.7.5.5]. With the above already men-
tioned namespace lf::geometry the implementation is straight forward.

4.2.3 Load Vector Provider

The element vector provider LoadVectorProvider implements the linear
form ∫

K

f0 v dx, (4.15)

restricted on a triangle. This can be approximated with numerical quadrature
provided by the Lehrfem++ [4] library in the namespace lf::quad. The
quadrature rules in lf::quad provide us with weights wi and points pi on
the reference triangle K̂, which then leads to the following formula for the
j-th element in the element vector

∑
i
|K| wi f0(φK(pi)) λ̂j(pi). (4.16)
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The function φK is as well already implemented in Lehrfem++ [4] and is
available through the function Global() of the lf::geometry::Geometry

object representing the triangle K. The caveat is that the function f0 is not
necessarily defined on K, because K is generally not a subspace of Γ. To
address this issue, we require the functor passed to the load vector provider
to be defined on K. This puts the burden on the caller. Such that we can only
recommend projecting input coordinates x ∈ K onto Γ inside the functor. For
Γ = ∂S this can be done with x′ = x

∥x∥ .

4.2.4 Whitney One Curl Curl Matrix Provider

The naming refers to the basis functions, which in this case are the Whitney
one-forms, and the operations in the bilinear form, which is a scalar curl on
the first function and a scalar curl on the second function. The documenta-
tion and source code can be found in WhitneyOneCurlCurlMatrixProvider.
Formally we have the bilinear form

∫
Γ

curlΓ u · curlΓ v dx (4.17)

for the triangle K and the local basis functions bi, bj this results in

∫
K

curlΓ bi · curlΓ bj dx = sisj
1
|K| , (4.18)

of which the derivation can be found in appendix B.1. The righthandside
of (4.18) can then be implemented by getting |K| as described previously
and getting the sk with the method RelativeOrientations(), which, when
called on a mesh triangle, returns the relative orientations for the edges of
that triangle. The cells inherit this method from the lf::mesh::Entity class
in the Lehrfem++ [4] library.

4.2.5 Whitney One Mass Matrix

This matrix provider computes the mass matrix for surface vector fields, i.e.
the following bilinear form

∫
Γ

u · v dx (4.19)
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with the derivations in appendix B.2 we arrive at

ci j := ((grad λ̂i)
T G−T

K DφT
K DφK G−1

K (grad λ̂j))
|K|
12

(1 + δi j) (4.20)

di j := ((grad λ̂i)
T G−T

K DφT
K DφK G−1

K (grad λ̂j))
|K|
12

(1 + δi−1 j+1)

(4.21)∫
K

bj · bj dx = sisl
(
ci+1 j+1 − di+1 j − dj+1 i + ci j

)
(4.22)

for the entries of the assembly matrix. In the implementation, available under
the link WhitneyOneMassMatrixProvider, we can get all the components in
(4.22) the same way as in the previous subsections.

4.2.6 Whitney One Grad Matrix Provider

This matrix provider, WhitneyOneGradMatrixProvider, computes the ele-
ment matrices of ∫

Γ

v · gradΓ p dx. (4.23)

For this bilinear form we get the element matrix entries for K

∫
K

bi · gradΓ λj dx =

si |K|
3

(
(grad λ̂i)

T G−T
K DφT

K DφK G−1
K (grad λ̂j)

−(grad λ̂i+1)
T G−T

K DφT
K DφK G−1

K (grad λ̂j)
),

(4.24)

of which the derivation can be found in appendix B.3. Again, we can use
the same components already discussed for the previous subsections of this
chapter.

4.2.7 Whitney One Vector Provider

The vector provider of the Whitney one basis functions, given under the link
WhitneyOneVectorProvider, with the linear form∫

K

f1 v dx (4.25)

can as well be obtained with numerical quadrature. Moreover, as in section
4.2.3, we assume that the functor providing f1 is well defined on K. This then
leads to

∑
i
|K| wi f1(φK(pi)) · bj(pi) (4.26)

for the j-th component of the element vector. All the needed components can
be obtained analogously to section 4.2.3.
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4.2.8 Rot Whitney One Div Matrix Provider

The matrix provider RotWhitneyOneDivMatrixProvider computes the bilin-
ear form ∫

Γ

q divΓ v dx. (4.27)

Due to the cell wise constant basis functions for q we get the element matrix
entries ∫

K

divΓ b′
i dx =

∫
K

curlΓ bi dx (4.28)

= − si

|K| . (4.29)

The second equation is given in appendix B.9 and the first equation follows
form the definition of curlΓ which is, the surface divergence of the rotated
vector field. Together with the fact that b′ is the rotated b. We point out that
this will result in a matrix of dimensions 3 × 1 because the second basis of q
in (4.27) only has one constant basis function per triangle.

4.2.9 Whitney Two Mass Provider

This matrix provider, of which the documentation and implementation is
given in WhitneyTwoMassProvider computes the mass matrix for the locally
constant basis functions ∫

Γ

u q dx, (4.30)

which gives the matrix entry ∫
K

dx = |K|. (4.31)

We point out that there is only one matrix entry because of the single basis
function with K in its support.

4.2.10 Whitney Two Vector Provider

The last vector provider, for the bilinear form∫
K

f2 q dx, (4.32)
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can alike the other vector providers be obtained with numerical quadrature.
With the requirement for the functor providing f2 to be defined on K, we get

∑
i
|K| wi f2(φK(pi)), (4.33)

which is only a scalar because there is only a single constant basis function
per cell. Again, all the needed components can be obtained analogously
to section 4.2.3. And the implementation can be found under the link
WhitneyTwoVectorProvider.

4.3 Operators

This section discusses the Galerkin matrices of the variational problems for
the three Hodge Laplace operators and the Dirac operator. Which agrees
with the Galerkin matrices of the variational problems (2.25), (2.28, 2.29) and
(2.32, 2.33), without the mass terms. Further, we postpone the discussion of
the right-hand side vectors of the source problems to the next chapter.

With the element matrix providers in the last section, we get the Galerkin
matrix for one bilinear form with the function AssembleMatrixLocally()

provided in lehrfem++ [4]. Hence, we restrict ourselves in this section to
discuss which element providers are used and how the resulting matrices
are arranged. All the classes described in the following can be found in the
namespace opertors.

4.3.1 Hodge Laplacian Zero Form

In this problem, which is part of (2.25), we only have one bilinear form, and
therefore the resulting Galerkin matrix is the Galerkin matrix we get from
global assembly, which is calling the function AssembleMatrixLocally on
the matrix element provider defined by (4.12). This is implemented in the
class WhitneyZeroHodgeLaplace.

4.3.2 Hodge Laplacian One form

In this problem (2.28, 2.29) we have four bilinear forms excluding the mass
term. These bilinear forms involve functions in two function spaces. The
method AssembleMatrixLocally() produces a Galerkin matrix A for exactly
one bilinear form. Hence, in order to obtain the full Galerkin matrix for this
Hodge Laplacian we can combine the matrices of the four bilinear forms in a
natural way

B =

(
B11 B12
B21 B22

)
∈ R(|E |+|V|)×(|E |+|V|). (4.34)
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Of which we obtain B11 ∈ R|E |×|E | by global assembly on the matrix element
provider defined by (4.18). Because the storage format of those matrices is a
list of triplets, to include B11 in B we can just copy the triplets in B11 to B. Then
the second matrix B12 ∈ R|E |×|V| we get with the element provider resulting
from (4.24). After global assembly, we can simply add the entries of B12 to the
matrix B by adding the triplets of B12 to the list of B and updating the column
indexes by the additional offset |E |. By taking a closer look at the variational
problem (2.28, 2.29) we see that B21 = −BT

12. Which can be included into B
by swapping the row and column index in the triplets of B12, negating the
value and adding an offset |E | to the row such that the whole matrix gets
placed in the bottom left corner. For the computation of B22 ∈ R|V|×|V| we
use the element matrix provider defined in (4.22). And it can be placed in
B with the row and column offsets of |E |. The implementation can then be
found in the class WhitneyOneHodgeLaplace.

4.3.3 Hodge Laplacian two Form

This last Hodge Laplacian implies the variational problem (2.32, 2.33) without
the mass term. Then analogously to the previous subsection this variational
problem yields the Galerkin matrix

C =

(
C11 C12
C21 0

)
∈ R(|E |+|C|)×(|E |+|C|). (4.35)

The matrix C11 in this case is obtained with the element matrix provider (4.22)
this is becuase we have∫

K
b′

i · b′
j dx =

∫
K

bT
i

(
0 1
−1 0

)(
0 −1
1 0

)
bj dx (4.36)

=
∫

K
bi · bj dx (4.37)

Then for the matrix C12 we can use the matrix element provider form (4.29).
Moreover, we again have C12 = −CT

21. The matrix C is then built precisely
the same way as in the previous section explained. The class for this problem
is named WhitneyTwoHodgeLaplace.

4.3.4 Dirac Opeartor

For the dirac operator variational problems (2.35, 2.36, 2.37) we have three
defining test and trial spaces. These lead to the matrix

D =

 0 D12 0
D21 0 D23

0 D32 0

 ∈ R(|V|+|E |+|C|)×(|V|+|E |+|C|). (4.38)
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For the non zero matrix blocks we get D12 with the element matrix provider
WhitneyOneGradMatrixProvider in section 4.2.6. For D21 we have D21 = DT

12
and hence we can use the same element matrix provider. Then for D23 = DT

32
we can use RotWhitneyOneDivMatrixProvider, section 4.2.8 , because of∫

K

divΓ b′
i dx =

∫
K

curlΓ bi dx,

which follows form the definition of b′
i. Hence, we can directly take the same

resulting matrix and for the transposition we additionally have to swap the
row and column index. Fitting everything together into the matrix D can
then be done with the proper offsets as similar to the previous sections. For
this last operator we implemented the above descriptions in DiracOperator.

4.4 Source Problems

The source problems in all the discussed forms consist of either the sum
of the negative Hodge Laplace operator or the Dirac operator combined
with a stabilization term scaled by some constant k2 or ık respectively. The
two classes implementing these problems can be found under the links
HodgeLaplaceSourceProblems and DiracOperatorSourceProblem.

For the Galerkin matrices A, B, C, D this can then be achieved by adding the
Galerkin matrix obtained by the corresponding mass matrix provider. Let us
denote the mass matrices M0 obtained with the matrix provider implemented
in the class MassMatrixProvider, M1 obtained using the matrix provider
WhitneyOneMassMatrixProvider, and M2 with the WhitneyTwoMassProvider.

Then we get the Galerkin matrix for the first source problem with

As = A + k2 M0. (4.39)

For the second source problem we get the Galerkin matrix

Bs =

(
B11 + k2 M1 B12

B21 B22

)
. (4.40)

The third source problem then gets the Galerkin matrix

Cs =

(
C11 C12
C21 +k2 M2

)
. (4.41)

And lastly for the Dirac opeartor we have to add all three mass matrices
resulting in

Ds =

ı k M0 D12 0
D21 ı k M1 D23

0 D32 ı k M2

 . (4.42)
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In order to optain the load vectors we denote the output vector V0of global as-
sembly with the LoadVectorProvider and a functor for the function f0. Then
let V1 be the vector obtained with WhitneyOneVectorProvider, and a functor
for the function f1, and V2 the vector resulting from WhitneyTwoVectorProvider

and a functor for f2. With these notations and the variational problems, we
get the load vector for the first source problem with the zero forms

VsA = V0. (4.43)

For the second source problem with the two forms we get

VsB =

(
V1
0

)
. (4.44)

And for the thrid soruce problem involving the Hodge Laplacians we then
get

VsC =

(
0

V2

)
. (4.45)

For the load vector of the Dirac operator, we need the same vector providers
but with different functors, which gives V⃗i with the functor for f⃗i. This then
implies the load vector for the Dirac source problem

VsD =

V⃗0

V⃗1

V⃗2

 . (4.46)

The solutions to the problems in the representation of the basis expansion
coefficients for the involved discrete funciton spaces can then be obtained by
solving the linear systems

As µA = VsA (4.47)
Bs µB = VsB (4.48)
Cs µC = VsC (4.49)
Ds µD = VsD . (4.50)

And for this we relay on the Eigen::SparseLU [6] solver to solve the systems
in the implementation.
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Chapter 5

Debugging

Due to the problem with the implementation, it is necessary to insert this
chapter. Therefore, this chapter discusses the approaches we took in order to
debug the not properly working parts of the code.

5.1 Problems

We first describe what part of the code did not work properly and needed a
closer inspection. The experiments for the Hodge Laplacians seemed to work
because the L2-Error of the discrete solution showed a linear h-convergence.
However, the code approximating the Dirac operator did not have the same
behavior. With the same test functions as for the Hodge Laplacians defined
in (6.5), only the solution of the first component with the Whitney zero form
converged to the desired function. This behaviour is depicted in the figure
5.1. For a properly working code we would expect something similar to
figure 6.3. In other words, we would expect convergence for all components.

5.2 Analytical Computations

Due to the suspicious result of the converging zero component, the first place
to look for errors in the analytical computations of the solution and source
functions. Since the computations for the Hodge Laplacians seem to work,
we can test −∆ = D2. This test is done in the Mathematica [9] notebook
testfunctionDirac.nb. It turned out to be successful. Furthermore, the compu-
tations for the Dirac operator involve the same differential operators as for
Hodge Laplacians, namely the surface divergence, surface gradient, scalar-cul
and vector-curl. Therefore, we assumed the analytical computations to be
correct.
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5. Debugging

Figure 5.1: L2-errornorm of Dirac source problems uh − u under h-refinement for erroneous code
where h is denotes the mesh width.

5.3 Convergence of the Solution

The next test we conducted was a convergence test for the expression

|∥uk∥2
L2 − ∥uk−1∥2

L2 | =

∣∣∣∣∣∣
∫
∂S

(uk − uk−1) (uk + uk−1) dx

∣∣∣∣∣∣ (5.1)

≤ ∥uk + uk−1∥L2 ∥uk − uk−1∥L2 (5.2)

in which the inequality follows from the Cauchy-Schwarz inequality. The
term uk denotes the discrete solution of the k-th refinement step. The term
∥uk − uk−1∥L2 is then expected to converge with an algebraic rate. Therefore,
it is expected that the expression (5.1) also converges at an algebraic rate.
The code for this can be found in DiracConvergenceTest. And as expected,
we get algebraic convergence for all three components of the approximated
function u⃗h. This empirical convergence is depicted in figure 5.2. For the
one form, we get an algebraic rate of about 1.5, and for the Whitney one and
two components, we get about rate two. From this, we conclude that the
numerical computations converge. But at the same time, we do not learn
to what value it converges, and hence we do not know whether this is the
desired function.

5.4 Bilinear Forms

The section on debugging finite element inspired the next approach methods
in [7, section 3.8]. The rationale here is to test the Galerkin discretization
of individual bilinear forms b(v, u) by studying the convergence of the
expression

|b(v, u)− v⃗h B u⃗h|. (5.3)
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Figure 5.2: Convergence test for the Dirac Opeartor |∥uk∥2 − ∥uk−1∥2| k→∞−→ 0. For k → ∞ we
get for the mesh width h → 0.

The bilinear form b(v, u) is the analytical solution, which can be computed
for known v, u, B is the Galerkin matrix of that bilinear form and v⃗h, u⃗h are
the analytical basis expansion coefficients. The vectors v⃗h, u⃗h can easily be
computed if the corresponding basis is a cardinal basis. In this case, we can
just evaluate the analytical solution at the points where the basis is defined
to be one. In such a case, the expression (5.3) is expected to converge with an
algebraic rate.

For the Whitney one-form basis, this leads to the problem that the basis does
not have the cardinal basis property. Since the functions are vector-valued,
this is not possible. In order to find the analytical basis expansion coefficients,
we theoretically have to solve the system such that at the edge midpoints,
the analytical vector field agrees with the vector field produced by the basis.
This then leads to three constraints per basis function. And gives a system
with three times more equations than unknowns, of which the solution is not
defined in the general case.

An alternative approach is to solve the system with least squares, which
minimizes the sum of the squared residuals at the evaluated points. This
approach is discussed in the following subsection.

Note that the state of the art is to use path integrals along the edges, which
then give the tangential components.

5.4.1 Basis Expansion Coefficients for Whitney One-Form

For this approach, we will first study the local constraints on triangles and
then by assigning equal weight to both local constraints per function from the
two triangles of the support we compute the global constraint representing
one row in the matrix.
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We consider K = (v0, v1, v2) and the midpoint of the edge i ∈ {0, 1, 2}. Then
we get the value of the discrete solution by

uh |K(xmidi) = µi+1 bi+1(xmidi) + µi+2 bi+2(xmidi) + µi bi(xmidi) (5.4)

= µi+1
si+1

2
grad λi+2(xmidi)

− µi+2
si+2

2
grad λi+2(xmidi)

+ µi
si

2
(grad λi+1(xmidi)− grad λi(xmidi))

, (5.5)

in which we used that the barycentric coordinate functions at the edge
midpoints are either zero or one half.

Let K̃ the second triangle adjacent to the edge we are building the constraints
for, with which we mean edge i in K. Then we can weight the two resulting
vectors with weights wK, wK̃ and wK + wK̃ = 1 which leads to the global
constraint on µ

u(xmide) = wK uh |K(xmide) + wK̃ uh |K̃(xmide). (5.6)

For the implementation in the debugging experiments, we choose for sim-
plicity wK = 1

2 . We point out that each such equations gives in fact three
constraints because the functions are vector fields.

The linear system is then built in the spirit of global assembly as described
in [7, section 2.4]. This means, we compute the entries by iterating over the
cells and adding the necessary entries to the matrix, which is realized with
the class lf::assemble::COOMatrix in [4].

Because there is no reference for this procedure, we present as a small
experiment, showing that the solution uh then converges to u, with mesh
refinement. This is needed in order to get valuable solutions for the testing
of bilinear forms. The experiment depicted in figure 5.3 shows an algebraic
convergence of the L2-error with the orange line. As functions, we used the
experiment function in (6.4). The green line shows the minimized quantity
of the sum of squared residuals at the edge midpoints, which formally is

|E |

∑
e=1

∥uh(xmide)− u(xmide)∥2.

Then the orange line show the convergence of the L2-error. That is the
convergence of

∥uh − u∥L2

under h-refinement. The implementation and it’s documentation can be
found in WhitneyOneBasisExpansionCoeffs.
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Figure 5.3: Convergence of the approximation with knowledge of the analytical solution under
h-refinement with mesh width h.

5.4.2 Bilinear Form Convergence

With the basis expansion coefficients µ1 for the Whitney one form as com-
puted in the previous section and the basis expansion coefficients µ2 for the
Whitney two forms, which we get by evaluating the analytical solution at the
cell midpoints, we can compute the experiment in (5.3). The computation
of this can be found in the Mathematica [9] notebook testfunctionDirac.nb.
The code can be found in WhitneyOneCurlTest. The bilinear form we test is
given by

b(q, v) =
∫
Γ

q curlΓ v dx, (5.7)

of which the Galerkin matrix agrees with the one in (4.27). Because of the
equation (4.28). Hence in order to build the Galerkin matrix we can use
the RotWhitneyOneDivMatrixProvider, and then take the resulting Galerkin
matrix.

For the experiment we use the functions

x =

x
y
z

 (5.8)

q(x) = sin(z) (5.9)

v(x) =

−y
x
0

 . (5.10)
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Figure 5.4: Convergence test for bilinear form (5.3) under h-refinement where h denotes the
mesh width.

For this we finally got the convergence plot in figure 5.4. The convergence
in this plot showed that the L2-error norm converges faster than algebraic
rate two. But this result might be misleading, because the convergence of the
approximated basis expansion coefficients and the actual convergence of this
experiment might add up.

This was the experiment, which revealed the error. It turned out that the
error was a wrong sign in the computation of curlΓ b which lead to the wrong
equation curlΓ b = −divΓ b′. This sign error was cancelled out for the Hodge
Laplacian, because there we directly used divΓ b′ in the computations.
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Chapter 6

Experiments

In this chapter, we discuss the experiments, run on the implementation of the
source problems. First, we introduce the chosen test functions, the stability of
the solutions for a range of k. In other words we inspect how stable the rate
of convergence is, when changing the value k. Furthermore, we will inspect
the convergence in terms of h-refinement and the L2-errors of the source
problems with a stable k. The experiments are then concluded by comparing
the solutions computed with Dirac operator and Hodge Laplacians.

6.0.1 Error

In this short subsection, we describe how we measure the error of the discrete
solution. So let uh be the discrete solution, and u the corresponding analytic
solution. Then we get the L2 error

∥uh − u∥ =

√∫
M

|uh(x)− u(x)|2 dx. (6.1)

In the following we then approximate the integral under the root with local
quadrature on the triangles in M and then summing up over the results. We
implement such a functionality in the function L2norm() of the namespace
post processing. The function takes a functor argument for the function
uh − u and a functor, computing the square. We face the same issue here as
with the vector provider classes, namely, that the domains of uh and u are
not the same. This detail is once more resolved by projecting the points in
M onto ∂S.

6.1 Experiment Functions

In order to conduct experiments, we first chose experiment functions defined
on ∂S. The criteria were only smoothness, such that the differential operators
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are defined and non-vanishing load functions. Smoothness has the additional
advantage that smooth functions generally have better convergence properties
when approximated with Finite Element Methods [7, chapter 3]. Based on
this we then chose the test functions for the four source problems (2.20, 2.21,
2.22, 2.23),

x =

x0
x1
x2

 (6.2)

u0(x) = u2(x) = sin(x0) + cos(x1) + sin(x2) (6.3)

u1 = (I3 − nnT)

sin(x1)
sin(x2)
sin(x0)

 (6.4)

u⃗ =

u0
u1
u2

 . (6.5)

The load functions resulting when we plug these function in the four source
problems

−∆0 u + k2 u = f0 (6.6)

−∆1 u + k2 u = f1 (6.7)

−∆2 u + k2 u = f2 (6.8)

Du⃗ + ık u⃗ = f⃗ (6.9)

are then computed with Mathematica [9]. The full computations and the
source functions can be found in the documents testfunctionsLaplace.nb and
testfunctionDirac.nb. We omit to state the resulting in explicit terms of the
load functions because of their complexity. Moreover, we point out that the
function u1 needs to be a tangential vector field, and hence the complexity
increases rapidly when applying the differential operators.

6.2 Stability of the solution

As already introduced, in this experiment we are numerically looking how
stable the solution converges for a range of values of the positive parameter k.
In order to determine this, we iterated over a list of evenly spaced values for k
and approximated the L2 norm of the error function. For the discrete solution
uh, we get the error by ∥uh − u∥L2 . The rates of algebraic convergence are
computed for each refinement step with the formulas in [7, section 3.2.2].

In order to assess how well the computed rates of algebraic convergence
can be trusted, we measure how much they estimated rates change for each
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6.2. Stability of the solution

Figure 6.1: Empirical variance of the approximated rates of algebraic convergence for the Hodge
Laplacian source problems as a function of k

iteration step. Because in the formula [7, section 3.2.2] we estimate these rates
based the numerical solution of two consecutive refinement steps. We then
regard the result of the computation, for two refinement step as a random
variable X. With this definition of X, the variance of X measures exactly
the fluctuation around the mean. Note that under the assumption that
our algorithm converges stably to a solution, the randomness only contains
numerical differences between the refinement steps such as numerical errors
or the regularity of the individual mesh refinement steps. For this case we
then expect a rather small variance of the variable X. On the other hand,
if the problem is singular, for example by choosing k = 0, then X is can
take any value and we expect a much higher variance. For each value of the
parameter k this random variable is different and therefore we will denote
Xk the random variable to express that it is dependent on k

For the experiment we chose 100 evenly spaced k2 ∈ [0.001, 16) and for each
k we computed the solution for 5 refinement levels. Then we computed
the resulting four empirical algebraic orders and regarded them as sampled
data of the random variable Xk. Further we used the samples to compute
a empirical variance of of Xk for each k. These empirical variances of the
estimated rates of algebraic convergence are then plotted in 6.1 as a function
of k.

The plot shows that for values of k over about 0.3, the solution seems to
converge with a stable rate.

In figure 6.2 we have the same experiment for the Dirac operator, which
seems to have stable convergence for minimal values of k already compared to
the Hodge Laplacian experiment. We point out once more that although the
two plots in firgures 6.1 and 6.2 have difference ranges for k the stabilization
terms in the source problems will have the same weights because in the
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Figure 6.2: Empirical variance of the approximated rates of algebraic convergence for the Dirac
operator source problems as a function of k

Figure 6.3: L2-Norm of Hodge Laplacian source problems uh − u under h-refinement

Hodge Laplacian source problems we use k2 for the scaling of the mass term.

From this, we conclude that taking a value of k = 0.5 will give stable results
for the convergence studies of the test functions for both source problems.

6.3 H-Convergence study

This section analyzes the convergence of the discrete solution under h-
refinement. We do it for the chosen test functions in section 6.1 and for
the value k = 0.5. We start with the source problems of the three Hodge
Laplacians and then analyze the individual components of the Dirac operator.
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6.3. H-Convergence study

Figure 6.4: Cellwise contributions to the squared L2 error norm for the Lapalce Opeartors zero
form (left), one form (middle) and two form (right). For the refinement level six which has
h = 0.031.

6.3.1 Hodge Laplacians

In figure 6.3 we have an h-refinement experiment of the above-described test
functions for the Hodge Laplacians. The study involves seven refinement
levels with mesh widths form about 1.4 to 0.031. We observe that the
experiments yield an algebraic convergence of rate one. This holds for
all three Hodge Laplacians. Moreover, for this particular experiment the
approximation with the piecewise constant basis, the two-form gives a slightly
better approximation than the solution of the zero-form, with piecewise linear
basis function, solving the same differential equation.

When looking at the cell wise contributions to the squared L2-error, We
observe a pattern depicted in figure 6.4. Namely, the errors seem more severe
in some areas, separated quite clearly by straight lines. However, on a closer
look, we realize that these separation lines lay precisely on the border of the
quarters, according to which we defined our mesh. The pattern indicates
the mesh structure has an influence, at least on the error distribution on the
sphere.

6.3.2 Dirac Operator

Similar to the above convergence study of the three Hodge Laplacians, we
conduct an h-convergence study for the Dirac operator on the surface of the
3-sphere ∂S. The source problem of the Dirac operator produces a result u⃗h
with three components

u⃗h =

u⃗0h
u⃗1h
u⃗2h

 . (6.10)

The individual components live in different function spaces and hence we
analyse them separately. However, by the definition of the problem and the
way we solve it described in chapter 4, we get that the solutions are strongly
connected and hence we expect similar behaviour in all three components. In
figure 6.5 we then observe the expected behaviour with the same convergence
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Figure 6.5: L2-error uh − u of the Dirac Opeartor source problem under h-refinement

Figure 6.6: Cell wise contributions to the squared L2-error norm for the Dirac operators zero form
(left), one form (middle) and two form (right). For the refinement level six which has h = 0.031.

for all three components. And similar to the Hodge Laplace operator, we
again observe the same pattern in the local contributions for the squared error
norm. These local contributions are given in figure 6.6. Again the pattern
with more severe errors along the boundaries of the quarters is visible.

6.4 Relationship Hodge Laplacian and Dirac Operator

This chapter discusses the relationship −∆ + k2 = (D − ık)(D + ık). From a
analytical perspective we get

(−∆ + k2) u⃗ = (D − ık) f⃗ (6.11)

⇐⇒ (D + ık) u⃗ = f⃗ . (6.12)

With this we can solve the system in the two different ways (6.11, 6.12) and
compare the two solutions. For this we first compare the convergence of the
two solutions individually with the load function

f⃗ ∈ H1(∂S)× H(curlΓ, ∂S)× L2(∂S),

given in equation (6.9). The computations can be found in testfunction-
sHodgeAndDirac.nb. The two above equations (6.11, 6.12) can then be solved
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Figure 6.7: L2-error of Hodge Laplacian (right) and Dirac operator (left) source problems with
the same solution

with the finite element approach discussed in chapters 2 to 4. For the modi-
fied Hodge Laplace problem (6.11) we have the righthandside function

g⃗ =

g0
g1
g2

 := (D − ık) f⃗ (6.13)

of which, in the variational problems (2.25 - 2.33) the components g0, g1, g2
are used instead of f0, f1, f2. From this it also follows how the functions are
used in the discretizations.

The code for these experiments is available in HodgeAndDiracExperiment.
The individual convergence results are visualized in figure 6.7. The left figure
is exactly same convergence study as in figure 6.5 and the right side shows a
similar convergence to figure 6.5. This implies, both solutions converge with
an algebraic rate of one. This is also what we expected when considering the
h-convergence studies in the previous section.

In the next experiment we compared the solutions directly and plot the
L2-norm of the difference between the two solutions in figure 6.8. More
formally let udk be the solution using the Dirac operator and ulk the solution
for the Hodge Laplacian, both for the kth refinement level. The measured
quantity is ∥udk − ulk∥L2 . This difference converges with an algebraic rate of
two for all three components of the solution. This result shows that the Dirac
operator source problem can be solved very well with the Hodge Laplace
operator, by modifying the load function.
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Figure 6.8: L2-norm of difference function between the two solutions with Hodge Laplacian and
Dirac operators
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Chapter 7

Conclusions

The main goals of the thesis were the convergence studies of the Dirac
Operator and the Hodge Laplacians. For all the operators, we examined
source problems with stabilization terms. Moreover, we found that for our
test functions defined in section 6.1, the discrete solution convergence with
an empirical rate of one. By inspecting the cell-wise error contributions, we
noticed that the structure of the sphere mesh, more precisely division into
four quarters, becomes visible. The hypothesis for this behavior is that in the
region of the separating lines of the quarters, the triangles become wider and
hence have poorer regularity. Which then leads to an accentuation of errors
in these cells. The relationship between the Dirac operator and the Hodge
Laplacian then lead to the conclusion, that the two methods converge with
the same rate, namley an algebraic rate of one. And the difference of the two
solutions converges with an algebraic rate of two.

In order to conduct the experiments, we first had to implement the dis-
cretization of the source problems. Based on the Lehrfem++ [4] library, this
involved providing the element providers for the bilinear forms in the vari-
ational forms of the source problems. Next, we combined these element
providers in order to build linear systems of equations of which the solutions
are the basis expansion coefficients for our discrete vector fields.

Here, we directly get the connection to the additional chapter about debug-
ging, which became necessary due to a wrong computation leading to a sign
error in the linear system for the Dirac source problem. In the debugging
chapter, the test for the analytical computations in Mathematica [9] lead to
no further insight. Then a test for convergence of the discretized solution
showed that the solution converged but not to what function it converged.
The last test, which revealed the bug, tested the bilinear form by comparing
the analytical solution of a bilinear form to the discrete solutions multiplied
with the Galerkin matrix.
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7. Conclusions

The thesis has potential improvement in the triangulation of the sphere, for
which one can build more regular meshes. Although this will probably not
lead to a major improvement because the mesh is quite regular on most of the
sphere except for the quarter boundaries. Further work might also consider
higher-order implementations of the Whitney forms and convergence studies
on other manifolds, such as a torus.

42



Appendix A

Derivation of Variational Problems

In this section we derive the variational problems in section 2.5 from the
source problems in section 2.4

First we need greens theorem for the surface differential operators which can
be derived form greens theorem [2, Section 13.3.3.3]

∫
Ω

j · grad u dx = −
∫
Ω

u div j dx +
∫

∂Ω

u j dS (A.1)

Then we show that the same formula holds for the differential operators
gradΓ and divΓ first of all we make the assumption that ∂Ω = Ø which
simplifies (A.1) to

∫
Γ

j · gradΓ u dx = −
∫
Γ

u divΓ j dx, (A.2)

for a tangential j.

With (A.2) we are then able to derive the variational problems. For the first
source problem (2.20 we have with the fundamental lemma of variational
calculus [7, Lemma 1.5.1.13]

−∆0 u + k2 u = f0 (A.3)

⇐⇒ −
∫
Γ

∆0 u v dx + k2
∫
Γ

u v dx =
∫
Γ

f0 v dx ∀v ∈ H1(Γ) (A.4)

(A.2)⇐⇒
∫
Γ

gradΓ u · gradΓ v dx + k2
∫
Γ

u v dx =
∫
Γ

f0 v dx ∀v ∈ H1(Γ). (A.5)
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Then for the second source problem (2.21) we get in the same manner with
p = div u ∈ H1(Γ)

∀v ∈ H(curlΓ, Γ) (A.6)

−∆1 u + k2 u = f1 (A.7)

⇐⇒ −
∫
Γ

∆1 u · v dx + k2
∫
Γ

u · v dx =
∫
Γ

f1 · v dx (A.8)

(A.2)⇐⇒

∫
Γ

curlΓ u · curlΓ v dx + k2
∫
Γ

u · v dx

+
∫
Γ

v · gradΓ p dx =
∫
Γ

f1 · v dx.
(A.9)

Moreover we get the constraint (2.29) directly from (A.2)

Then for the third source problem (2.22) we have with j = gradΓ u ∈ H(divΓ)∫
Γ

j · v dx
(A.2)
= −

∫
Γ

u divΓ v dx ∀v ∈ H(divΓ, Γ). (A.10)

Then the second constraint can again be derived with the fundamental lemma
of variational calculus [7, Lemma 1.5.1.13]

−∆2 u + k2 u = f0 (A.11)

⇐⇒ −
∫
Γ

∆0 u q dx + k2
∫
Γ

u q dx =
∫
Γ

f2 q dx ∀q ∈ L2(Γ) (A.12)

⇐⇒ −
∫
Γ

divΓ j q dx + k2
∫
Γ

u q dx =
∫
Γ

f2 q dx ∀q ∈ L2(Γ). (A.13)
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Appendix B

Derivation of discretized biliner forms

This appendix contains derivations for formulas in chapter 4.

B.1 Derivation of (4.18)

∫
K

curlΓ bi · curlΓ bj dx = sisj
1
|K| .

We remark, that the functions curl bjl are constant on the triangle Kj. Then
the curlΓ is defined to be the surface curl. Hence with the restriction on
the triangle Kj we can reduce the mathematical computations to arbitrary
triangles in a two dimensional domain. In the following we use the index i
modulo 3. This is i + 3 = i and i = 1 then i + 2 = 0.

bi =

(
bi x
bi y

)
(B.1)

curl bi = si (−dx bi y + dy bi x) (B.2)

= −si (dx (λi grad λi+1 − λi+1 grad λi)y

− dy (λi grad λi+1 − λi+1 grad λi)x)
(B.3)

= −2 si (dx λi dy λi+1 − dy λi+1 dx λi), (B.4)

with K = (a0, a1, a2) we get an alternative definition of λi from [7, section
2.4.5.1]

ai =

(
ai x
ai y

)
(B.5)

λi =
1

2 |K| (x − ai+1) ·
[

ai y − ai+1 y
ai+1 x − ai x

]
(B.6)

grad λi =
1

2 |K|

[
ai y − ai+1 y
ai+1 x − ai x

]
, (B.7)
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with this we conclude

curlΓ bi = − si

2 |K|2
(
(ai y − ai+1 y)(ai+2 x − ai+1 x)− (ai+2 y − ai+1 y)(ai x − ai+1 x)

)
(B.8)

= −si
1
|K| , (B.9)

which leads to (4.18)

B.2 Derivation of (4.22)

ci j := ((grad λ̂i)
T G−T

K DφT
K DφK G−1

K (grad λ̂j))
|K|
12

(1 + δi j)

di j := ((grad λ̂i)
T G−T

K DφT
K DφK G−1

K (grad λ̂j))
|K|
12

(1 + δi−1 j+1)∫
K

bj · bj dx = sisl
(
ci+1 j+1 − di+1 j − dj+1 i + ci j

)
.
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B.2. Derivation of (4.22)

For its derivation we use (3.19) in the last step

∫
K

bi · bl dx =
∫
K

si (λi gradΓ λi+1 − λi+1 gradΓ λi) · sl (λl gradΓ λl+1 − λl+1 gradΓ λl)dx

(B.10)

= si sl

∫
K

λi gradΓ λi+1 · λl gradΓ λl+1 dx −
∫
K

λi gradΓ λi+1 · λl+1 gradΓ λl dx

−
∫
K

λi+1 gradΓ λigradΓ(λl+1)λl dx +
∫
K

λi+1 gradΓ λi · λl+1 gradΓ λl dx


(B.11)

= sisl

gradΓ λi+1 · gradΓ λl+1

∫
K

λi λl dx − gradΓ λi+1 · gradΓ λl

∫
K

λi λl+1 dx

−gradΓ λi · gradΓ λl+1

∫
K

λi+1 λl dx + gradΓ λi · gradΓ λl

∫
K

λi+1 λl+1 dx


(B.12)

= sisl

(gradΓ λ̂i+1)
T G−T

K DφT
K DφK G−1

K (gradΓ λ̂l+1)
∫
K

λi λl dx

− (gradΓ λ̂i+1)
T G−T

K DφT
K DφK G−1

K (gradΓ λ̂l)
∫
K

λi λl+1 dx

− (gradΓ λ̂i)
T G−T

K DφT
K DφK G−1

K (gradΓ λ̂l+1)
∫
K

λi+1 λl dx

+(gradΓ λ̂i)
T G−T

K DφT
K DφK G−1

K (gradΓ λ̂l)
∫
K

λi+1 λl+1 dx



.

(B.13)

The formula (B.13) is then equivalent to (4.22) with use of [7, lemma 2.7.5.5].
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B. Derivation of discretized biliner forms

B.3 Derivation of (4.24)

∫
K

bi gradΓ λj dx =
∫

K
si(λi gradΓ λi+1 − λi+1 gradΓ λi) · gradΓ λj dx (B.14)

= si

gradΓ λi+1 · gradΓ λj

∫
K

λidx − gradΓ λi · gradΓ λj

∫
K

λi+1 dx


(B.15)

= si
(
gradΓ λi+1 · gradΓ λj − gradΓ λi · gradΓ λj

) |K|
3

(B.16)

=
si |K|

3

(
DφK G−1

K (gradΓ λ̂i+1) · DφK G−1
K (gradΓ λ̂j)

−DφK G−1
K (gradΓ λ̂i) · DφK G−1

K (gradΓ λ̂j)
)

(B.17)

=
si |K|

3

(
(gradΓ λ̂i+1)

T G−T
K DφT

K DφK G−1
K (gradΓ λ̂j)

−(gradΓ λ̂i)
T G−T

K DφT
K DφK G−1

K (gradΓ λ̂j)
) .

(B.18)

In this derivation we again used the fact hat gradΓ λi is constant, (3.19) and
[7, lemma 2.7.5.5].
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Appendix C

Number of entities in the Triangulation
of the sphere

C.1 Number of Rings

In every refinement step we add a ring between two existing rings. As
defined we then have three rings for refinement level zero, |R0| = 3 using
the notation Rj for the set of Rings in refinement level j. This leads to the
formula

|Rk| = |Rk−1|+ |Rk−1| − 1 (C.1)
= 2 |Rk−1| − 1 (C.2)

= 2k+1 + 1 (C.3)

Then we prove (C.3) by induction. We have that the equation holds for level
zero by 21 + 1 = 3. Then we get

|Rk+1| = 2 |Rk| − 1 (C.4)

= 2 (2k+1 + 1)− 1 (C.5)

= 2k+2 + 1 (C.6)

which conludes the prove.

C.2 Number of Vertices

For the number of vertices we get by definition 2 for the first two rings, then
4 for the second and second last ring and incrementally 4 more vertices for
every ring towards the middle. For refinement level k this gives the formula

|Vk| = 2 +
⌊|Rk |/2⌋

∑
i=1

4i +
⌊|Rk |/2−1⌋

∑
i=1

4i (C.7)
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C. Number of entities in the Triangulation of the sphere

Further we know that |Rk| = 2k+2 + 1 is odd for every k. This then leads to

|Vk| = 2 +
⌊|Rk |/2⌋

∑
i=1

4i +
(|Rk |−1)/2

∑
i=1

4i (C.8)

= 2 + 4
(
(|Rk|+ 1)/2 · (|Rk| − 1)/2

2

)
+ 4

(
(|Rk| − 1)/2 · (|Rk| − 3)/2

2

)
(C.9)

= 2 +
(
(|Rk|+ 1)(|Rk| − 1)

2

)
+

(
(|Rk| − 1)(|Rk| − 3)

2

)
(C.10)

= 2 +
(
2 |Rk|2 − 4 |Rk|+ 2

)
(C.11)

= 22 k+2 + 2 (C.12)

C.3 Number of Cells

By the construction of the triangulation we get two cells for every vertex
except for the two cells in the first and last ring. This directly leads to

|Ck| = 2 · |Vk| − 4 (C.13)

= 22 k+3 (C.14)

C.4 Number of Edges

The edges are constructed automatically but by the pattern of the cells and
vertices we defined, we get that there are always six edges adjacent to one
vertex except for the first six vertices to which only 4 edges are adjacent. This
leads to

2 |Ek| = 6 |Vk| − 12 (C.15)

=⇒ |Ek| =
3
2
|Vk| − 3 (C.16)

= 3 (22 k+2 + 1)− 3 (C.17)

= 3 · 22 k+2 (C.18)
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