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Chapter 1

Background

1.1 ADMS

Recently, the company Spherene AG [1] has developed so called adaptive density
minimal surfaces, ADMS for short. An example ADMS can be seen in Figure 1.1.
ADMS are thin, printable structures that take the outer form of normal everyday
objects, such as cylinders. However, in comparison to these everyday objects, ADMS
are easily printable without support nodes, they need less material and also have
lower printing times. Nevertheless, they achieve high stability and other desirable
mechanical properties. These properties and the cell-like structure of ADMS allows
for the integration of ADMS in many different scientific fields. Examples include
the possibility of ADMS bone implants or creating light, crash resistant fuel tanks
that can be sent into space.
The goal of this thesis is to create heat flow and stiffness simulations for these thin
ADMS.

1.2 Heat Computations

The heat equation, also known as the diffusion equation, is one of the most studied
PDEs in mathematics. It describes the temperature field of a given object given
some boundary conditions. The temperature field can either be varying over time
(non stationary) or independent of time (stationary). While analytical solutions
exist for special objects, such as the annulus, they are usually not available for
more complex structures such as the ADMS surface described above or even a simple
object such as a square. Therefore, the heat equation is often solved using numerical
methods such as the finite element method. In this thesis, we will implement FEM
to solve the heat equation on the 2D ADMS surface in 3D space.

1.3 Elasticity Computations

An interesting property of every physical body is its reaction to external forces.
Usually, objects either react with elasticity or plasticity, meaning that they deform
and go back to their initial state once the external force is removed, or that they
break. In this thesis we will only study the behavior of elastic materials.
Elasticity is often measured in terms of the displacement, stress and strain a body
experiences in response to external forces. In the case of simple 3D structures,
these properties can be computed by solving the linear or finite elasticity problem.
However, this is not a feasible approach when working with thin, elastic structures
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Chapter 1. Background 2

Figure 1.1: Example of a printed, cylindrical ADMS

such as thin metal plates, clothing or the ADMS surfaces described above.
In the next sections, we will shortly describe the linear elasticity assumptions and
give sources for further reading, before detailing the models used with thin, elastic
structures, such as thin plates or thin shells.

1.3.1 Linear and Finite Elasticity

The most simple model used to describe the behavior of 3D structures is the model
of linear elasticity [2]. In this model, one assumes that a structure only experi-
ences small displacements and rotations. One furthermore expects the stress to
be proportional to the strain of a model, which is generally known as the Young’s
modulus. Under these assumptions, the elasticity problem breaks down to a set of
a tensor PDEs that can be solved using the finite element method. An extensive
treatment of FEM for Linear Elasticity can be found in many standard textbooks,
for example in a book published by Falk in 2008 [3].
However, for soft materials such as rubber, these assumptions usually do not hold.
One therefore has to solve the more complex finite elasticity problem. Many mod-
els for the treatment of such materials have been developed, some of which are
discussed in a book on the treatment of polymers by Bergström [2].

1.3.2 Thin Plates

Thin plates are a phenomena often encountered in continuum mechanics and en-
gineering. They describe flat structural elements whose thickness is negligible in
comparison to their surface area, such as thin metal plates used in airplanes. Due
to their thinness and resulting bendability, treating them as normal elastic 3D



3 1.3. Elasticity Computations

structures is often not accurate enough. Instead, different models have been devel-
oped that capture their behavior more accurately, the most famous one being the
Kirchhoff-Love theory of plates [4]. The theory is built around the concept of the so
called middle plane of a plate, a plane with infinitesimal small thickness that lays
exactly in the middle of the plate. One assumes that all deformations of the plate
are exactly reflected on the middle plane, meaning that straight lines normal to the
mid-surface remain straight and normal to the mid-surface after deformation. Fur-
thermore, one assumes that the plate does not change thickness, meaning that the
normal stress and strain in direction of the plate thickness are negligible [4]. Since
the exact semantics of this theory are not important for this thesis, the interested
reader is referred to the cited source for a more detailed description.

1.3.3 Thin Shells

In contrast to thin plates, thin shells are thin, elastic structures that are already
bent in their initial configuration. Typical examples include fingernails, car bodies,
pans or clothing. It is important to note that thin shell models are consistent with
thin plate models whenever their initial configuration is flat.
In simulations, thin shell models are usually solved by computing the energies pre-
vailing in a system and using those to find the vertex positions minimizing the
energy under some boundary conditions [5]. The energy minimization is often done
using implicit time stepping methods, such as Newmark-timestepping [6], or Newton
based energy minimization [7].
Early shell models were based on the Kirchoff-Love constitutive equations mentioned
above. They were extremely complex and computationally expensive [8] [9]. In
these models, energies and forces over a structure were computed using its smooth
surface representation. In 2003, Grinspun et al. showed that these models can be
simplified drastically without any loss of information[10]. Their simplification was
based on the idea to compute energies using geometric operators and a piecewise
linear representation of the surface. Their idea was widely accepted and many
newer papers make use of their simplification. A few years later, Grinspun and his
colleague Tamstorf published a paper illustrating how the gradient and the hessian
of flexural energies over a triangulated surface can be computed easily and efficiently
[11].
More recent work usually focuses on more complex scenarios, such as dynamically
changing environmental conditions or antiisotropic materials. For example, Chen et
al. modeled environmental stimuli through dynamic changes in the rest metrics of
a material [12]. However, such complex models are out of the scope of this thesis.



Chapter 2

Math Background

2.1 Barycentric Coordinates

The most common coordinate systems in mathematics, such as the cartesian coor-
dinate system, describe the position of a vertex or an object with respect to the
coordinate systems point of origin. One exception are the barycentric coordinate
functions. These coordinate functions describe the position of a point respective
to three other existing points, e.g. the position of three triangle vertex nodes [13].
They are often used in computer graphics, computer simulations and geometry.
Assuming that a triangle K is defined through the three vertex positions v,v and
v, the triangle normal is given by

n =
(v − v)× (v − v)

||(v − v)× (v − v)||
(2.1)

and the three barycentric coordinate functions are defined as

λ1(x) = n · (v − v)× (x− v)

2|K|
(2.2)

λ2(x) = n · (v − v)× (x− v)

2|K|
(2.3)

λ3(x) = n · (v − v)× (x− v)

2|K|
(2.4)

(2.5)

where x ∈ R3 is a point in the cartesian coordinate system.

In this thesis, the barycentric coordinate functions and their gradients are used in
the context of the FEM. The derivation of the gradient is now shown on the example

4



5 2.1. Barycentric Coordinates

of λ1. Using the definition of the gradient and Equation 2.2, we find that

∇Γ λ1(p) =
1

2|K|
∇Γ [n · ((v − v)× (x− v))] (2.6)

=
1

2|K|
∇Γ

n ·
(v2y − v1y)(pz − v1z)− (v2z − v1z)(py − v1y)

(v2z − v1z)(px − v1x)− (v2x − v1x)(pz − v1z)
(v2x − v1x)(py − v1y)− (v2y − v1y)(px − v1x)


(2.7)

=
1

2|K|

ny(v2z − v1z)− nz(v2y − v1y)
nz(v2x − v1x)− nx(v2z − v1z)
nx(v2y − v1y)− ny(v2x − v1x)

 (2.8)

(2.9)

which corresponds to

∇Γ λ1(p) =
n× (v − v)

2|K|
(2.10)

Similarly, ∇Γ λ2 and ∇Γ λ3 evaluate to

∇Γ λ2(x) =
n× (v − v)

2|K|
(2.11)

∇Γ λ2(x) =
n× (v − v)

2|K|
(2.12)

(2.13)

In literature one can often only find the gradient of the barycentric coordinate
functions for the 2D case. For evaluation, we set

n = (0, 0, 1)T (2.14)

Plugging this into equation 2.10 we get that in 2D,

∇Γ λ1(p) =
1

2|K|

−v2y + v1y

v2x − v1x

0

 (2.15)

(2.16)

which is equal to the result described in the literature [14].



Chapter 3

Heat Flow Computations

In this chapter we first explain the steps necessary to numerically simulate the heat
flow on a thin 3D structure. Next, we detail how functionals can be used to extract
the mean temperature and the bulk heat conductivity from the computed heat flow.
In a next step, we show the correctness of our implementation by comparing the
achieved results to the known analytical solution on an annulus and by illustrating
that the solution converges towards a solution when the structure is refined. In a last
step we simulate the heat flow through a set of different ADMS, before evaluating
the respective functionals and comparing the obtained results.

6



7 3.1. Simulation of Heat Flow

3.1 Simulation of Heat Flow

3.1.1 Assumptions

When simulating the heat flow through a thin structure, certain simplifications and
assumptions have to be made regarding the structure and its representation. In the
following, we assume that

1. The structure is thin enough to justify a representation as a 2D surface, mean-
ing that the thickness at any point is significantly smaller than the total surface
area. To account for changes in thickness in the simulation, we will assume
that the heat conductivity at a vertex is approximately proportional to the
thickness at that point.

2. The structure is surrounded by air. Due to the low heat conductivity coeffi-
cient of air, this allows for neglecting possible heat exchange of the structure
with its surroundings.

3. The structure is available as a triangulated mesh. For simplicity, we further
require that the mesh has no non-manifold edges or vertices.

3.1.2 Problem Formulation

The heat flow in a medium can be computed using the steady-state heat equation:

−div(α(x)∇Γ u(x)) = f(x) on Ω

where x ∈ R3 is a point on the ADMS Ω, u(x) : R3 → R is the unknown heat
flow, α(x) : R3 → R the heat conductivity and f(x) : R3 → R the heat flux
density of an internal heat source. As was mentioned earlier, we assume that the
heat conductivity approximately corresponds to the wall thickness. Furthermore,
we always use

f(x) ≡ 0 ∀x ∈ R3 (3.1)

which implies that no internal heat source is used.
In the case of α(x) ≡ 1, this problem is also known as the Laplace-Beltrami Equation

4u = 0 (3.2)

with 4 := ∇Γ · ∇Γ being the Laplace Operator.

To solve the steady-state Equation 3.1.2, we have to specify boundary conditions.
In this thesis, we restrict the set of possible boundary conditions to homogeneous
Neumann boundary conditions

(α(x)∇Γ u(x)) · n = 0 on ∂Ω (3.3)

and arbitrary Dirichlet boundary conditions

u = g on ∂Ω

where g is a function defined on δΩ. In reality, the boundary is often partitioned
into multiple regions with varying boundary conditions. For example, a cylinder
might have an isolating mantle area (homogeneous Neumann boundary condition),
a top area that is heated with 100◦C and a bottom area that is kept at 0◦C (constant



Chapter 3. Heat Flow Computations 8

Dirichlet boundary conditions). We therefore assume that the boundary δΩ can be
partitioned into a set of mutually disjoint boundaries Γi, meaning that

δΩ = Γ1 ∪ Γ2 ∪ ... ∪ Γk

with

Γ1 ∩ Γ2 ∩ ... ∩ Γk = ∅

3.1.3 Discretized Linear Variational Problem

The PDE mentioned above can be written as linear variational problem:

u ∈ V : a(u, v) = l(v) ∀v ∈ V (3.4)

a(u, v) :=

∫
Ω

∇Γ u · ∇Γ v dx (3.5)

as described in Section ??. Since computers can not solve a problem in an infinite
dimensional function space V , we replace V with a finite-dimensional subspace
Vh ⊂ V . In practice, this means that we create a basis Bh such that

Bh = {b1h, ..., bNh } N := dimVh Vh = Span{Bh}

Bh can then be used to discretize uh:

uh = µ1b
1
h + ...+ µNb

N
h µi ∈ R, uh ∈ Vh

This leads to the discrete formulation of the linear variational problem

uh ∈ Vh : a(uh, vh) = l(vh) ∀vh ∈ Vh

It is important to note that the choice of basis Bh has no influence on the solution
uh. In this thesis, we choose the barycentric coordinate functions described in
Section 2.1 as local basis functions.

3.1.4 Solving the Discretized Linear Variational Problem

The linear system of equations corresponding to the discretized linear variational
problem is

Aµ = φ

where A is the so called stiffness matrix (Galerkin matrix) A = [a(bkh, b
j
h)]Nj,k=1 ∈

RN×N , µ the coefficent vector and φ = [l(bjh)]Nj=1 ∈ RN the load vector (right hand
side vector). This Section is concerned with the assembly of A and φ as well as with
solving the system of equations under consideration of the boundary conditions δΩ.

Galerkin Matrix

First, let us consider the the Galerkin matrix assembly. Clearly, (A)ij = 0 if there
is no connection between the nodes xi and xj . Since most nodes are not connected
with each other, the Galerkin matrix fulfills the criteria of a sparse matrix.

For i 6= j and xi connected to xj , we can write
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Figure 3.1: Two very simple triangle meshes. Figure 3.1.4 shows the triangles that
contribute to (A)ij , Figure 3.1.4 shows the triangles that contribute to (A)ii.

(A)ij =

∫
K1

α(x) · ∇Γ bjh|K1
· ∇Γ bih|K1

dx+

∫
K2

α(x) · ∇Γ bjh|K2
· ∇Γ bih|K2

dx

(3.6)

where K1 and K2 are the triangles adjacent to the edge between the vertices xi and
xj as depicted in Figure 3.1.4

If i = j, we sum up the contributions of the triangles associated with node xi

(A)ii =
∑
k

∫
Kk

α(x) · ∇Γ bih|Kk
· ∇Γ bih|Kk

dx (3.7)

The most efficient way to construct the Galerkin matrix is by first assembling the
local Galerkin matrix for each triangle. The local Galerkin matrix AK ∈ R3×3 can
be computed with the formula:

AK(bjh, b
i
h) =

∫
K

α(x) · ∇Γ bjh|K · ∇Γ b
i
h|K dx (3.8)

where bih|K is the i-th basis function of basis Bh for triangle K. Using the derivation
for the barycentric coordination functions described in Section 2.1 and using them
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as local basis functions, we get that

∇Γ b0h|K =
n× (v − v)

2|K|
(3.9)

∇Γ b1h|K =
n× (v − v)

2|K|
(3.10)

∇Γ b2h|K =
n× (v − v)

2|K|
(3.11)

(3.12)

where n is the normal to the triangle K, |K| is the triangles area and vi ∈ R3,
i, l ∈ {0, 1, 2} are the triangle nodes. Using the quadrature rule [15] [14] on Equation
3.8 we find that

(AK)i,l =
1

3
· |K|

3∑
j

α(m̂j) · ∇Γ bih|K · ∇Γ b
l
h|K (3.13)

with m̂j being the midpoints of triangle K.

In a next step, the full Galerkin matrix is assembled. In the case of i 6= j we use
Equation 3.6 to find that

(A)ij = (AK1)a,b + (AK2)c,d (3.14)

where a, b, c, d ∈ {0, 1, 2} and a 6= b and c 6= d are the edges vertex indices of triangle
K1 and K2 respectively. If i = j, we get

(A)ii =
∑
k

(AK)a,a (3.15)

where a is the vertex index of triangle Kk that is adjacent to the vertex node xi.
Figure 3.2 visualizes which entries are supposed to be summed up.

Load Vector

Since we always have 4u = 0, it follows that φ ≡ 0.

Boundary Conditions

As mentioned earlier, we only deal with homogeneous Neumann boundary condi-
tions or Dirichlet boundary conditions. Homogeneous Neumann boundary condi-
tions do not require any changes in either the Galerkin matrix or the load vector.
In comparison, Dirichlet boundary conditions have to be enforced, meaning that
we have to guarantee that when solving the linear system of equation, the value for
xi ∈ Γl has to be equal to g(xi), the solution on the boundary. This can easily be
done by setting φi = g(xi), (A)ii = 1 and every other value in the row (A)i to zero.
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Figure 3.2: Which entries to sum up shown in green
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3.2 Functionals

Once the temperature uh is found or computed, we might want to use it to extract
further properties related to it. For example, one might want to know about the
mean temperature or the total heat flux in the considered object. More technically,
this means that we consider a mapping from our function space u ∈ V into R.
In the following sections we will give the mathematical description and numerical
approaches to evaluating the heat flux and the mean temperature functional.

3.2.1 Heat Flux

The heat flux through a boundary Γl can be computed using the formula:

J(u) :=

∫
Γl

α(x) · ∇Γ u · n dS (3.16)

where n is the normal with respect to Γl.
First, let us consider how to numerically solve a line integral. Clearly, we can
discretize the integral to the level of triangles:

J(u) =
∑
k

Jk(u) =
∑
k

∫
Γl

a(x) · ∇Γ uk · n dS (3.17)

Since we are working with 2D triangles in a 3D environment, we have to differentiate
between four different cases:

1. If no triangle vertex lies on the boundary, then that triangle simply does not
contribute to the bulk heat flux. The integral evaluates to zero.

Jk(u) = 0 (3.18)

2. If only one triangle vertex lies on the boundary, it can be ignored.

3. If two vertices lie on the boundary, we have to evaluate the integral as a line
integral. Without loss of generality, assume that the vertices vi and vj lay on
Γl. Then, we can parametrize the line as

f(t) = (1− t) · vi + t · vj t ∈ (0, 1) (3.19)

f ′(t) = −vi + vj (3.20)

and the integral Jk(u) can be rewritten as∫ 1

0

α(f(t)) · ∇Γ uk(f(t)) · n · ||f ′(t)|| dt (3.21)

Clearly, ||f ′(t)|| is simply the length of the triangle edge that lie on the bound-
ary. Using simple one point quadrature, we can now rewrite the integral as

Jk(u) = α(mij) · ∇Γ uk(mij) · n · ||vj − vi|| (3.22)

where mij denotes the midpoint between vi and vj .

4. Since we are working in 3D space with a 2D surface, it can theoretically happen
that all three vertices lie on a boundary. This is however mathematically
invalid and an indicator that something went wrong.
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Next, we have to evaluate ∇Γ u. Recall that by Equation 3.1.3, we can reconstruct
the original solution by summing over the value of u at each vertex multiplied by
the respective basis function

uh(x) =

N∑
i

µi · bih(x) (3.23)

Since bhi (x) 6= 0 only if x associated with the triangle the basis function belongs to,
we can express ∇Γ uK of triangle K in terms of the local triangle basis functions:

∇Γ uK =

3∑
j

ujK · ∇Γ b
j
h|k(x) (3.24)

where j is the local vertex index.

Note that since the gradient of the barycentric functions are constant, ∇Γ uK over
a triangle is also constant.
While this solution converges, experiments show that [14] it does so only slowly
with rate O(h1

M ).

3.2.2 Heat Flux with cutoff function

Alternatively, we can define a cutoff function ϕ that fulfills the following conditions

ϕ(x) ≡ 1 x ∈ Γl (3.25)

ϕ(x) ≡ 0 x ∈ ∂Ωdir \ Γl (3.26)

where Ωdir is the set of all Dirichlet boundary conditions. Since such a cutoff
function will not change the value of an integral over the boundary Γl, we can use
it to extend Equation 3.16 to obtain∫

Γl

α(x) · ∇Γ u · n dS =

∫
Γl

(α(x) · ∇Γ u · n) · ϕdS (3.27)

=

∫
Ω

div(α(x) · ∇Γ u) · ϕ+ α(x) · ∇Γ u · ∇ϕdx (3.28)

According to our problem formulation in Section 3.1.2, the term

div(α(x) · ∇Γ u) ≡ 0

always evaluates to zero. Therefore, the modified Equation 3.27 can be written as

J∗(u) :=

∫
Ω

α(x) · ∇Γ u · ∇ϕdx (3.29)

Experiments have shown that this modified heat flux converges with O(h2
M ), which

leads to a remarkable reduction in output error [14].
Using the quadrature rule and Equation 3.24, we find that J∗(u) can be evaluated
as follows:

J∗K(u) :=
1

3
· |K| ·

3∑
i

α(x) · ∇Γ u(m̂i) · ∇ϕ(m̂i) (3.30)

J∗(u) =

M∑
k

J∗k (u) (3.31)
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3.2.3 Mean Temperature

The mean temperature in an object can be computed using the following functional:

F (u) :=
1∫

Ω
α(x) dx · |Ω|

∫
Ω

α(x)u(x) dx (3.32)

Since u(x) is known once the diffusion equation is solved, this integral can easily
be computed using the quadrature rule [15].
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3.3 Implementation Details

This section details the algorithm and methods used for solving the heat diffusion
equation.

3.3.1 Geometry Processing Library IGL

The C++ geometry processing library IGL [16] is a widly used library that offers
a variety of mesh processing functions. Amongst other things, it offers standard
functions for reading and writing meshes, functions that offer information about
the mesh and neighbourhood connectivity, as well as most other functions found in
stand alone mesh editors such as mesh lab.
IGL relays heavily on the well known matrix operation library Eigen [17]. Meshes
are fully represented as matrices. Assuming one is working in a 3D environment,
then all mesh vertices are saved in a matrix V ∈ RN×3 and the triangle connectivity
is saved in yet another matrix F ∈ NM×3 where M is the number of triangles.

3.3.2 Solving the Heat Diffusion Equation

For simplicity, the algorithm used for solving the heat diffusion equation is summa-
rized as pseudo code in Algorithm 1. Some of the steps are explained in more detail
in the following sections.

Algorithm 1: Overview of the algorithm for solving the heat diffusion
equation

Data: Mesh represented as matrices V and F
Result: Solution u of heat diffusion equation

1 Detect boundaries;
2 Assemble local Galerkin matrices;
3 Assemble global Galerkin matrix A;
4 Set φ to zero vector;
5 foreach Vertex i on dirchlet boundary do
6 Set row i in A to zero;
7 Set (A)ii = 1;
8 Set φi to value on boundary of i;

9 end
10 Solve Au = φ;
11 return u

Boundary Detection

The boundary detection method implemented is equal to the boundary detection
method used in the black box that generates the ADMS, thereby simplifying the
interface between black box and the implemented heat flow computation. In this
use case, the boundaries are defined as separate meshes. A point is then assumed
to lie on the boundary defined by the separate mesh if it lies on one of the meshes
faces.
If a point that is technically a boundary point is not detected by the used boundary
detection method, it is simply assumed to be on a homogeneous Neumann Bound-
ary. If a point is detected to be on more than one boundary, an error is thrown.

To define the value of a point on its boundary, a boundary function can be defined.
The boundary function can either be constant or dependent on the boundary points
position.
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Galerkin Matrix Assembly

First, the local Galerkin matrices are assembled. To that end, we iterate over all
triangle faces and assemble the local matrix (AK) according to the aforementioned
Equation 3.8. For simplicity, the different local Galerkin matrices are saved in a
Matrix L ∈ RM×9 where (AK)i,j corresponds to the entry LK,3i+j . Since (AK)
is symmetric, it might be worth reducing the dimensions of L to L ∈ RM×6 or
L ∈ RM×8 from a computational point of view. We however decided against this
in order to not further complicate the code and since the total computation time is
not dominated by the matrix assembly.
Next, the local Galerkin matrices are used to assemble the sparse global Galerkin
matrix according to Equation 3.6. Rather than adding the local matrix contribu-
tions directly to the global matrix, the construct of Eigen Triplets is used.

Solving the Linear System of Equation

Since the matrix A is necessarily sparse and quadratic, solving the linear system of
equation is done using Eigens SparseLU solver.
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3.4 Convergence Tests

3.4.1 Annulus

In mathematics, an annulus is defined through two circles sharing a center but with
differing radii. For simplicity, we will assume that the annulus lays solely in the
(x, y) plane, meaning that zi = 0 ∀(xi, yi, zi) ∈ Ω.

Let Rin be the radius of the small inner circle and Rout be the radius of the larger
circle. The boundaries can then be defined as

Γin := {(x, y)|x2 + y2 = R2
in} (3.33)

Γout := {(x, y)|x2 + y2 = R2
out} (3.34)

let uin and uout denote the temperature in Celsius on Γin and Γout respectively.
The stationary heat equation problem can then be written as:

4u(r, φ) = 0 on Ω (3.35)

u(Rin, φ) = uin(Rin, φ) on Γin (3.36)

u(Rout, φ) = uout(Rin, φ) on Γout (3.37)

(3.38)

To simplify the search for an appropriate cutoff function, we further set Rin =
0.5 ·Rout. The cutoff function

ϕ(x) =
2||x||
Rout

− 1 (3.39)

∇ϕ(x) =
2

Rout · ||x||

(
x
y

)
(3.40)

then fulfills the criteria for a cutoff function as stated in Equation 3.25.

Real Solution for Boundary Conditions Independent of φ

Let us assume that the boundary conditions are constant, meaning that they do
not depend on the angle φ. Furthermore, let a(x) ≡ 1. The solution to Equation
3.35 is then

u(r, φ) = C1 · ln(r) + C2 (3.41)

Plugging in the boundary conditions above, we find that

C2 :=
uout · ln(Rin)− uin · ln(Rout)

ln(Rin)− ln(Rout)
(3.42)

C1 :=
uin

ln(Rin)
− C2 · ln(Rin) (3.43)

(3.44)
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Assuming α(x) ≡ 1, the real heat flux over the boundary Γout is given by

Jflux(u) =

∫
Γout

∇u · ndS (3.45)

=
1

Rout

∫
Γout

(
C1

r
0

)
·
(
r
φ

)
dS (3.46)

=
C1

Rout

∫ 2π

0

||
(
−Rout · sin(t)
Rout · cos(t)

)
|| dt (3.47)

= C1

∫ 2π

0

1 dt (3.48)

= 2 · π · C1 (3.49)

and the mean temperature given in Equation 3.32 evaluates to

JT̄ (u) =
1

π(R2
out −R2

in)
(3.50)

Convergence for Boundary Conditions Independent of φ

We can now compare the analytical results to the result computed by the finite
element method. We start with the relatively coarse annulus mesh shown in Figure
3.4.1 with Rin = 12mm and Rout = 24mm. We calculate the heat distribution,
the two different heat fluxes and the mean temperature and compare it to the real
solutions derived in the previous section. This step is then repeated multiple times
on increasingly refined annulus meshes. The finest mesh can be seen in Figure 3.4.1.

Figure 3.3: Coarse and highly refined annulus annulus mesh with an average edge
length of 6.8mm and 0.2mm respectively

Our boundary conditions are given with

uin = 60C◦ (3.51)

uout = 10C◦ (3.52)
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Figure 3.4: Visualization of the heatflux for uin = 60C◦ and uout = 10C◦

Applying the formulas for the analytical solutions of the annulus, we find

u(r, φ) = −72.1348 · ln(r) + 238.701 (3.53)

Jflux = −453.236 (3.54)

JT̄ = 29.4007 (3.55)

The computed solution is visualized in Figure 3.4.1

In Figure 4.5, we plot the RMSE between the real solution and the computed
solution at every point of the mesh for different mesh resolutions. We can clearly
see that the result converges towards the real solution.
Similarly, the absolute error between the different functionals and their respective
real solution are plotted in 3.4.1. As expected, the computed solution of the heat
flux functional is far more exact when using the cutoff function. Interestingly, the
computed mean temperature seems to be even more precise. This can be explained
by the fact that the mean temperature is already continuous on H1(Ω) without
introducing an artificial cutoff function.
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Figure 3.5: Error convergence on annulus
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Convergence for Boundary Conditions Dependent of φ

In this section, we show convergence on the annulus for a set of more complex
boundary conditions. For this test case, we only show that the solution converges
towards a fixed solution. Using the meshes, functionals and cut off function as
above, but this time modify the problem statement to be

4u(r, φ) = 0 on Ω (3.56)

u(Rin, φ) = 0 on Γin (3.57)

u(Rout, φ) = 4 sin(5φ) on Γout (3.58)

(3.59)

where φ ∈ [−π, π] and therefore defined as

φ = arctan 2(x) (3.60)

A visualization of the heat equation on the coarsest and finest grid can be seen in
Figure 3.6.

Figure 3.6: Solution of the heat equation for u(Rin, φ) = 0 on Γin and u(Rout, φ) =
4 ·sin(5φ) on Γout on a coarse and a refined mesh. It is easy to see that both meshes
show the same solution.

The value of the functional at each refinement step as well as the absolute change in
value in comparison to the previous step is plotted in Figure 3.7. The heat flux and
the mean temperature both converge towards zero. This seems reasonable consid-
ering that the temperature on the inner circle is zero and is uniformly distributed
between −4C◦ and +4C◦. As before, it becomes obvious that computing the heat
flux with a cutoff gives far better results than computing the heat flux normally.

3.4.2 Mesh Independence of Result on Cylindrical ADMS

We now show that the computed heat flow on a cylindrical ADMS is independent
of the chosen mesh. To that end, we compare the computed heat flux and mean
temperature of a cylindrical ADMS on two different mesh representations, shown
in Figure 4.2.
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Figure 3.7: Change in value and value difference between respective mesh refinement
steps on an annulus.

Let R be the cylinder radius and H its height. A natural boundary region is defined
through the cylinder surface Ω, split into the mantle area m, the cylinder top Γtop
and the cylinder bottom Γbot. For this test, we keep the top area at 60C◦, the
bottom area at 10C◦ and assume that the mantle area is isolated. The problem
statement can then be written as

4u(r, φ, h) = 0 on Ω (3.61)

u(r, φ, 0) = 10C◦ on Γbot (3.62)

u(r, φ,H) = 60C◦ on Γtop (3.63)

∇u(R,φ, h) = 0 on Γm (3.64)

(3.65)

In Figure 3.9 the vertices of the used cylindrical ADMS lie on Γtop, Γbot, Γm are
colored in red, green and blue respectively.
As a cutoff function, we define

ϕ(x) =
h2

R2
(3.66)

∇ϕ(x) =
2h

R2

0
0
1

 (3.67)

which fulfills the criteria of a cutoff function when the the boundary flux over Γtop
is computed and if Γm is isolating.

The results of the heat flux for the given problem on the coarsest mesh can be seen
in Figure 3.10. Table 3.1 lists the properties and the computed functionals for the
two different meshes. It is easy to see that the heat flux and the mean temperature
is almost identical, thereby showing that the results can be assumed to be mesh
independent.
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Figure 3.8: The two different cylindrical meshes used to proof that the results are
mesh independet. The Figure shows the two different meshes (top) as well as a
zoom from the top of the cylinders (left). The blue lines help see the differences
between the two meshes.
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Figure 3.9: Coarse ADMS mesh with vertices colored according to the boundary
they belong to. Red for the top area, green for the bottom area, blue for the mantel
area and black if they do not belong to any boundary.

Figure 3.10: Result on one of the two cylindrical meshes.
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Cylinder Faces Mean Temperature Heat Flux Heat Flux w. ϕ

Cylinder 1 81’397 40.1045 250.954 220.405

Cylinder 2 86’452 40.1502 249.952 221.364

Table 3.1: Properties of two different meshes of the same ADMS. It is shown that
the results are independent of the chosen mesh.
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Cylinder Faces Mean Temperature Heat Flux Heat Flux w. φ

Cylinder 1 624’220 31.294 269.209 277.351

Cylinder 2 607’269 29.1906 251.612 259.728

Cylinder 3 591’515 27.1429 235.508 241.24

Table 3.2: Properties of three different cylindrical ADMS simulated with increasing
density on the top of the cylinder

3.5 Results on ADMS

In this section we present the results of the heat flux equation and the respective
functionals on different cylindrical and cubic ADMS. The results are then analysed
and compared with each other.

3.5.1 Cylinder Structure

The exact geometry of an ADMS is determined by many different factors. One
of the most important factors is a density field that describes how large the tubes
and channels are supposed to be in a certain region. The higher the density, the
larger the tubes and channels. In this section we now study the effect of differently
sized channels and tubes. To this end, we simulate the heat flow on three different
cylindrical ADMS with increasingly larger tubes and channels towards the top of
the ADMS. The top of each cylinder is set to be 60C◦, the bottom to be 10C◦ and
the mantel area to be isolating.

The results are shown in Figure 3.11 and their respective functional values and
geometric properties are listed in Table 3.2. When looking at the Figures and the
reported data, it becomes clear that the heat applied on the top diffuses faster
when the top tubes become larger. This is probably due to the increased surface
area present in that area. In reverse, the lower temperature at the bottom stays until
further into the cylindrical structure. These facts are also reflected in the decreasing
mean temperature and the decrease in heat flux over the upper boundary.

3.5.2 Wall Width

Usually the wall width of an ADMS is not constant over the whole surface. To study
the effects the wall width has on the heat distribution, we first show the difference
an increase in constant wall width has before experimenting with wall widths that
vary over the surface.

Increase in Constant Wall Width

To study the effect of a change in constant wall width, we simulate the same three
cylinders as above but with a five times thicker surface. Considering the formula
used to compute the heat flux, we would expect the mean temperature to stay
the same and a increase in heat flux proportional to the increase in constant wall
width.
Table 3.3 lists the computed properties. It is easy to see that the results are as
expected: While the mean temperature is unchanged, the heat flux increases pro-
portionally.
By simulating the heat flow on the same cylinders as in the previous section, we can
furthermore compute the absolute change in temperature at each vertex. As would
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Figure 3.11: Heat Flow in three different cylindrical ADMS simulated with increas-
ingly larger density on the top of the cylinder. The cylinders are numbered as
cylinder 1, cylinder 2 and cylinder 3 from left to right.

be expected, the temperature difference at every vertex is so small that it can be
attributed to floating point rounding errors.

Linearly Increasing Wall Width

Using the same cylinderical ADMS as before, we now assume the wall width to be
a function of the cylinders height.

w(x) = 1 +
h

H
(3.68)

where h is the height of point x and H is the total height of the cylinder. Using this
function w, we get a large wall width for the large tubes on top of the cylinder and
a small wall width for the tiny tubes on the bottom of the cylinder. The results can
be seen in Figure 3.12, the results of the functionals are listed in Table 3.4. Clearly
and as expected, the mean temperature and the heat flux over the upper boundary
increase.
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Cylinder Faces Mean Temperature Heat Flux Heat Flux w. φ

Cylinder 1 624’220 31.294 1346.05 1386.75

Cylinder 2 607’269 29.1906 1258.06 1298.64

Cylinder 3 591’515 27.1429 1177.54 1206.2

Table 3.3: Properties of three different cylindrical ADMS simulated with increas-
ingly larger density on the top of the cylinder. While the cylinders are the same as
the ones used in Table 3.2, the wall width was increased by a factor of five.

Figure 3.12: Heat Flow in three different cylindrical ADMS simulated with increas-
ingly larger density on the top of the cylinder. The cylinders are numbered as
cylinder 1, cylinder 2 and cylinder 3 from left to right. In comparison to the cylin-
ders in Figure 3.11, the cylinders in this Figure have a linearly increasing wall width
towards the top of the cylinders.

Cylinder Faces Mean Temperature Heat Flux Heat Flux w. ϕ

Cylinder 1 624’220 36.8127 400.684 411.724

Cylinder 2 607’269 34.6243 380.188 391.04

Cylinder 3 591’515 32.3979 360.022 369.263

Table 3.4: Properties of three different cylindrical ADMS simulated with increas-
ingly larger density on the top of the cylinder. While the cylinders are the same as
the ones used in Table 3.2, the wall width was increased linearly towards the top of
the cylinders.
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Elasticity Computations

This chapter describes the mathematics and physics needed to compute the stiffness
of thin shelled structures. First, we identify a set of assumptions needed for a
reasonably simple simulation. Next, we explain the different simulation steps needed
to find the displacements of internal vertices as a reaction to the displacement of
some boundary vertices. These displacements and resulting forces are then used to
compute the stiffness.

4.1 Assumptions

Just as when simulating the heat flow through a thin structure, certain simplifica-
tions and assumptions have to be made when computing the vertex displacement
in a thin structure. In the following, we assume that

1. The structure is thin enough to justify a representation as a 2D surface, mean-
ing that the thickness at any point is significantly smaller than the total sur-
face area. The theoretical material thickness is used to determine a stiffness
parameter and therefore still has an influence on the simulation.

2. When no external forces or displacements are enforced, the energy at any
point in the structure is zero.

3. The structure is elastic, meaning that once external forces or displacements are
not enforced anymore, the material deforms back to its initial configuration.

4. The material is isotropic, meaning that the material properties are indepen-
dent of their direction. Isotropic materials are for example glass and metals,
non-isotropic materials include layered stone and wood.

5. There are no rigid body transformations but only deformations.

6. The deformation is small enough to not make in-object collision detection
necessary.

7. The structure is available as a triangulated mesh. For simplicity, we further
require that the mesh has no non-manifold edges or vertices.

28
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4.2 Deformation

Whenever force is applied to a body or structure, it transforms in some way. It
might rotate, translate or deform. While rotations and translations are rigid body
transformations that do not change the shape and thereby the potential energy
in the body, deformations trigger an increase in potential energy. According to
the principle of minimal work, the body will deform in a way that minimizes this
increase in potential energy. When simulating deformations, we make use of this
behavior: We first define a discretized version of the elastic energy known from
mechanics, compute its derivative and Hessians before using Newtons Method to
minimize the energy present in a body.
In the following, let eij denote the edge between two vertices xi and xj , K denote
a triangle and |K| its area. The hinge angle between two triangles Kl and Kr is
denoted as θlr. A visualization of this can be seen in Figure 4.1. Bars relate to the
quantity in its undeformed configuration.

Figure 4.1: Visualization with of naming convention in triangle

4.2.1 Energy

The energy used in this simulation needs to be a measure for the amount of deforma-
tion a structure has experienced. When working with solids, it is usually enough to
consider the well known elastic energy that is used when working with springs. For
thin, easily bendable structures such as the ADMS, one also needs to take bending
energy into account.
A typically used energy is the shell energy [18] defined as

Eshell =

∫
Ω

kstiff ||I(u, v)− Ī||2F + kbend||II − ĪI||F dudv (4.1)

where I and II are the fundamental forms of a surface and measure the amount of
stretching and bending in a body respectively [19].
While this model is physically accurate, it is computationally expensive to compute.
Instead, we use the discretized version of this energy presented by Grinspun et al.
[10]. The energy becomes

E =
∑
θlr

Ebend(θlr) +
∑
eij

Emembrane(eij) (4.2)



Chapter 4. Elasticity Computations 30

where Ebend accounts for the bending energy over all hinges and Emembrane accounts
for the material stretching. Both these energies will be explained in more detail in
the two following sections.

4.2.2 Bending Energy

The bending energy describes the amount of change in local curvature over a hinge.
It has been defined in several different ways in the literature [10] [20] [21]. In this
thesis, we will use the bending energy as defined in [11]:

Ebend(θlr) = kbend · alr · (ϕ(θlr)− ϕ(θ̄lr))
2 (4.3)

alr = 3 · |ēij |2
¯|Kl|+ ¯|Kr|

(4.4)

ϕ = 2 · tan

(
θlr
2

)
(4.5)

where kbend is the bending stiffness. The chosen ϕ is especially useful since it
prevents faces from collapsing by increasing the energy drastically when θlr becomes
too large.
To ensure that the model agrees with the plate model when in resting state, the
bending stiffness should be set to

kbend =
D

2
=

Y h3

24(1− ν2)
(4.6)

where Y is the Young’s modulus [ Nm2 ], ν is the Poisson’s ratio and h is the shell
thickness [m] [11].

4.2.3 Membrane Energy

Membrane Energy is the energy that results from the stretching and shearing of a
surface.

Emembrane = Eshear + Estretch (4.7)

where Eshear is the energy related to local changes in edge length and Estretch the
energy related to changes in area.
We define the shearing energy as

Eshear(eij) = kshear · (|eij | − |ēij |)2 (4.8)

and the stretching energy as

Estretch(eij) = kstretch · (|K| − |K̄|)2 (4.9)

While materials like rubber are prone to stretching and shearing, other materials
such as stone barely stretch or shear at all. In simulations this can easily be achieved
by setting large enough stretching kstretch and shearing coefficients kshear.
Since ADMS are mostly printed with stiff materials, this restriction applies to us.
For simplicity and since the stretching can not increase without an increase in
shearing energy, we will use Estretch = 0.
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4.2.4 Derivatives and Hessian

Computing the energy minima using Newton’s method, the energy gradient and
the energy Hessian are required. This section lists the gradient and Hessian for the
bending- and membrane energy.
It is interesting to note that many papers get around the error prone derivation of
energy Hessians by either applying gradient descent to find the energy minima or
by computing the Hessian using auto differentiation. However, both these methods
can cause a drastic increase in runtime.

Bending Energy

First, let us consider the gradient of the angle θlr. Clearly, θlr depends on the four
vertices related with the two triangles left and right of the hinge. The respective
gradients are:

∂θ

∂xi
=

cos(αlj)

hli
nl
T +

cos(αrj)

hri
nr

T (4.10)

∂θ

∂xj
=

cos(αli)

hlj
nl
T +

cos(αri )

hrj
nr

T (4.11)

∂θ

∂xl
= − 1

hl
nl
T (4.12)

∂θ

∂xr
= − 1

hr
nr

T (4.13)

(4.14)

Furthermore, we have to take the derivative of ϕ. Remember that ϕ(θ) = 2 tan( θ2 ).
Assuming for a second that θ is constant we get

ϕ′(θ) = sec2

(
θ

2

)
(4.15)

= 1 + tan2

(
θ

2

)
(4.16)

(4.17)

and

ϕ′′(θ) = tan

(
θ

2

)
· sec2

(
θ

2

)
(4.18)

= ϕ′(θ) · tan

(
θ

2

)
(4.19)

(4.20)

However, θ is not constant. We therefore have to apply the chain rule, leaving us
with

∂ϕ(θ)

∂x
= (1 + tan2

(
θ

2

)
) · ∂θ
∂x

(4.21)

and the total bending energy derivative

∂Ebend(θlr
∂x

= 2 · kbend · alr · (ϕ(θlr)− ϕ(θ̄lr)) ·
∂ϕ(θ)

∂x
(4.22)
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respectively. The bending energy Hessian can directly be taken from the paper and
respective technical report by Tamstorf and Grinspun [11].
Since writing down the formula for the Hessian is extensive and error prone, the
reader is referred to the paper by [11] and the accompanying technical report for
the exact formulas needed.

Membrane Energy

Clearly, the membrane energy only depends on the two vertices describing the re-

spective edge eij = xi − xj . Therefore, all derivatives other than
∂Eshear(eij )

∂xi
and

∂Eshear(eij)
∂xj

will be zero. Using the chain rule and that
∂|eij |
∂xi

=
eij

|eij | , we find that

the gradients are given by:

∂Eshear(eij)

∂xi
= 2 · kshear ·

eij
|eij |

(|eij | − |ēij |) (4.23)

∂Eshear(eij)

∂xj
= −2 · kshear ·

eij
|eij |

(|eij | − |ēij |) (4.24)

(4.25)

Computing the energy Hessian results in:

∂2Eshear
∂x2

i

= 2 · kshear ·
(
I ·
(

1− |ēij |
|eij |

)
+ eijeij

T

(
−|eij | − |ēij |

|eij |3
+

1

|eij |2

))
(4.26)

∂2Eshear
∂x2

j

= 2 · kshear ·
(
I ·
(

1− |ēij |
|eij |

)
+ eijeij

T

(
−|eij | − |ēij |

|eij |3
+

1

|eij |2

))
(4.27)

∂2Eshear
∂xixj

= 2 · kshear ·
(
−I ·

(
1− |ēij |
|eij |

)
+ eijeij

T

(
|eij | − |ēij |
|eij |3

− 1

|eij |2

))
(4.28)

and clearly ∂2Eshear

∂xixj
= (∂

2Eshear

∂xjxi
)

4.2.5 Energy Minima

The energy gradient and hessian computed in the previous section can now be used
to find the energy minima with the damped Newton’s method. The general idea is
to find the energy minima by computing

xk+1 = xk − γH(E)−1 · ∇E (4.29)

where ∈ (0, 1] is a small step size. However, computing the inverse of a matrix is
expensive and furthermore unlikely to preserve the sparsity of H. Using the energy
gradients derived in the previous sections, we can instead compute

Hu = ∇E (4.30)

and then

xk+1 = xk − γu (4.31)

In the case of the complex ADMS, it is vital that a small γ is chosen.
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4.3 Stiffness

Since ADMS are not guaranteed to deform regularly, computing their stiffness is
tricky. For simplicity, we only compute the stiffness in one degree of freedom, namely
for deformations happening in the direction of the z-axis. The average stiffness is
then defined as

κavg =
1

N

∑
i

Fz,i
δ

(4.32)

where δ is the deformation in the z axis and Fz,i is the force applied to the vertices
on the cylinder top.
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4.4 Implementation Details

This section details the algorithm and methods used for finding the displacement
resulting from a small external force. This information is then used to compute the
stiffness.
Just as for the heat flux computations, the geometry library IGL [16] as described
in Section 3.3.1 is used. A very broad overview of the algorithm used is shown in
Algorithm 2. Most of the different steps needed are explained in more detail in the
following sections. The detection of boundaries works as described in Section 11.

Algorithm 2: Overview of the algorithm for computing the displacement
and stiffness in a thin shell structure

Data: Mesh represented as matrices V and F
Result: Displacement and stiffness

1 Mesh cleaning;
2 Compute initial hinge angles and edge lengths;
3 Detect boundaries;
4 Enforce small displacement;
5 while Energy has not converged do
6 Compute energy, energy gradient and energy Hessian in mesh;
7 Enforce boundaries;
8 Do one Newton Step;

9 end
10 Compute stiffness;

4.4.1 Mesh Cleaning

During our experiments, we found that the runtime of our algorithm increases
drastically whenever obtuse triangles are present. Unfortunately, these triangles
are known to occur quite often in ADMS meshes. We therefore used a special
mesh cleaning method that was implemented outside the scope of this thesis to
successfully remove these obtuse triangles.

4.4.2 Computing Energy Gradients and Hessians

The energy Hessians and gradients are computed by iterating over all possible edges
and computing the energy gradient and Hessians using the respective formulas. To
ensure correct results, it is important to guarantee that face normals are oriented
consistently and do not flip between different Newton-Iterations, that edge normals
always point outward and that the hinge angle θlr is treated as a signed quantity,
allowing a differentiation between concave and convex hinges. Ways to ensure this
are detailed in the following sections.
To avoid unnecessary computational load, all properties needed are computed only
once after each Newton step.

Face Normal

For simplicity, we ensure a consistent face normal orientation by using the respective
algorithm from the IGL Library.

Edge Normals

The simplest way to ensure that the edge normals always point outward is by guar-
anteeing that the edge vectors always point counter-clockwise. The edge normals
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can then be computed using

ml = eij × n (4.33)

and similarly for mi and mj Considering the rather complex structure of ADMS
and to avoid having to relabel the vertices and triangle faces of an already existing
mesh, we decided on a different approach: First, we compute the different edge
normals with the previous Equation as if we could guarantee a consistent edge
direction. Next, for each vertex, we compute the vector pointing from the vertex to
the triangle centroid:

s =
1

3
(xi + xj + xl)− xl (4.34)

Last, we check the dot product between the vertex-centroid vector and the previ-
ously computed edge normal. If the dot product is smaller than zero, the previously
computed edge normal m is pointing inward and has to be flipped.

Hinge Angle

As was shown in Section 4.2.2, the bending energy depends on the term ϕ(θ) =
2 tan

(
θ
2

)
. Rather than computing θ and then tan

(
θ
2

)
, we can directly use the

trigonometric functions

sin

(
θ

2

)
=
|nl − nr|

2
cos

(
θ

2

)
=
|nl + nr|

2
(4.35)

and therefore

tan

(
θ

2

)
=
|nl − nr|
|nl + nr|

(4.36)

To determine which way a shell is bending, tθ and therefore ϕ(θ) has to be a signed
quantity. Without loss of generality, we define that ϕ(θ) is positive whenever two
triangles are concave, meaning that their normals point away from each other, and
negative whenever the two triangles are convex, meaning that their normals point
towards each other. To differentiate between convex and concave triangles, we em-
ploy a similar approach as with the edge normals: We compute a vector s between
the midpoints of the two triangles adjacent to the hinge. Assuming s points from Kl

to Kr and the dot product s ·nr is larger than zero, the two triangles are concave.
Otherwise, they are convex.

4.4.3 Newton Step

For each Newton step, the linear system of equation shown in Equation 4.30 has to
be solved. In our implementation, the system is solved using the SparseLU solver
from Eigen.
As long as no boundary conditions are enforced, the energy Hessian is symmetric,
real-valued and positive definite. Therefore, we can alternatively solve the system
approximatly using a conjugate gradient solver. Conjugate gradient solvers are
significantly faster for well conditioned matrices, while still resulting in reasonably
correct results. Since the energy Hessian is not necessarily diagonal dominant, we
use the conjugate gradient solver with an incomplete cholesky preconditioner. In
our experiments, the solver proofed to be up to 7 times faster, a number that might
have been improved further by enabling multi threading.
Conjugate gradient solvers require the sparse matrix to be symmetric, meaning
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that we can not employ the same method for boundary enforcement as for the heat
flow computations in Section 3.1.4. However, since we defined the force on the
boundary to always be zero, this reduces to simply setting both the respective rows
and columns to zero.

4.4.4 Initial Boundary Displacement

It is important to note again that only small displacements are allowed to avoid
instabilities and problems with face self intersection. A good indicator is the en-
ergy measure: If the energy increases between two timesteps, the displacement or
the Newton step size should be decreased. Larger displacements can be done by
iteratively enforcing a small displacement and minimizing the respective energy.



37 4.5. Mesh Independence

4.5 Mesh Independence

To verify the correctness of our implementation, we now show that the solution is
mesh independent. To that end, we will use the same meshes as for showing mesh
independence in the heat flow chapter, shown in Figure 4.2. The vertices at the
top of the cylindrical ADMS are moved by ∆ = (0.01, 0.01,−0.01)T and fixed. The
vertices at the bottom of the cylindrical ADMS are fixed as well, thereby enforcing
a deformation of the structure and avoiding that the structure simply experiences
a translation.

Figure 4.2: The nodal displacement from the top of the cylindrical ADMS on two
different meshes that represent the same surface.
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Figure 4.3: Change in bending and shearing energy of the two meshes. Clearly, the
behavior of the energy is almost identical.
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Cylinder Stiffness

Cylinder 1 120.729

Cylinder 3 107.024

Table 4.1: Computed average properties of two different cylindrical ADMS with a
wall width of h = 3mm

Cylinder Stiffness

Cylinder 1 247.79

Cylinder 3 210.755

Table 4.2: Computed average properties of two different cylindrical ADMS with a
wall width of h = 6mm

4.6 Results on ADMS

4.6.1 Chosen Paramters

To simulate the displacement resulting from a small external force in a structure,
certain aforementioned parameters have to be defined. Namely the Young’s Modu-
lus and the Poissons Ratio, the wall thickness and a shearing and stiffness constant.
Furthermore, the damped Newton method requires the choice of a step size γ and
a convergence criteria.
According to the manufacturer of the printer used to print the ADMS, the ADMS
should have a Young’s Modulus of 1.470 · 109Pa. This is in accordance with the
Young’s Modulus and Poisson-Ratio for the respective material found by Amado-
Becker et al. [22]. For the following experiments, we will therefore assume a Young’s
Modulus of E = 1.470 · 109Pa = and a Poisson’s Ratio of 0.4. Together with the
wall thickness, these values can then be used in Equation 4.6 to compute the bend-
ing stiffness kbend.
Through different simulations we found that γ can be chosen according to mesh
quality. The better the mesh, the less problems occur with choice of a larger γ. We
stop the simulation once the energy delta between the current and previous Newton
step is smaller than 0.01

4.6.2 Cylinder Structure

In this section, we explore the effects of a displacement of ∆ = (0, 0, 0.02) on two of
the three different ADMS already introduced in the heat flow computation chapter.
The wall width is assumed to be constant, h = 3mm.The resulting displacement of
the different nodes is visualized in Figure 4.4, the resulting stiffness is listed in Table
4.1. As one would expect, the cylinder with the smaller cells and tunnels proofs to
be more stiff than the ADMS with larger cells towards the top of the structure.

4.6.3 Increase in Wall Width

As a next experiment, we increase the wall width from h = 3mm to h = 6mm while
keeping the deformation constant at ∆ = (0, 0, 0.02). This allows us to examine
the influence of wall width on stiffness and the other mechanical properties. As
expected, the increase in wall width cause the structures to be more stiff. The
respective mechanical properties are listed in Table 4.2.
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Figure 4.4: The nodal displacement from the top of the cylindrical ADMS on two
different meshes.



Chapter 5

Conclusion and Outlook

In this semester thesis we implemented two different algorithms to simulate physical
processes on thin, elastic structures.
The first algorithm allows for the computation of the heat flow through the struc-
ture. From the results, the bulk heat conductivity and the mean temperature were
computed. To ensure correctness of the implemented algorithm, we conducted a set
of experiments: First, we computed the heat flux on an annulus and compared the
results to the known, real solution. We also showed that the accuracy of the com-
puted solution increases when the mesh is refined. Next, we demonstrated that the
solution is mesh independent. Last, we applied the algorithm to different ADMS
and analyzed the influence of the exact ADMS structure on the temperature dis-
tribution, the bulk heat conductivity and the mean temperature. We found that
large tubes cause temperature to diffuse more quickly. In this thesis, we only sim-
ulated the heat flux through the structure, ignoring possible heat exchange with
the medium flowing through the structure. This is completely reasonable under the
assumption that the other medium is air. For future work, it might be interesting
to simulate the heat exchange between the ADMS and another medium, like for
example water.
The second simulation aimed at computing the stiffness of of ADMS. To that end,
we implemented a discrete shell algorithm that computes the structure deformation
under a small boundary displacement. The deformation was then directly used to
compute the stiffness of the different ADMS. Future work could focus on allowing
for the simulation of larger displacements. To achieve this, one would have to im-
plement collision detection that avoids the self intersection of different mesh faces.
Furthermore, one could no longer use the infinitesimal strain assumption, requiring
more complex functions for the computation of strain and stress. Another problem
with the current implementation is that all printed materials are not technically
isotropic and might break or deform easier in certain directions depending on their
print orientation.
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Appendix A

Code Structure

This chapter shortly details the used folder structure, describes how to build and
execute the code and explains what the different executables do.

A.1 Folder Structure

The following folders can be found in the project folder:

• executables contains program code for the starting points and GUI of the
implemented algorithms. The different starting points are explained in more
detail in Section A.2.3.

• include containing the header files for the implemented algorithms.

• output is the folder that results are written into.

• input containing the meshes defining the boundaries, the meshes used for the
convergence tests and for the ADMS experiments.

• plotting containing several jupyter notebooks that can be used to analyze
and plot the results generated by the implemented algorithms.

• src containing the source files for the implemented algorithms.

• tests containing some basic unit tests.

A.2 Building and Executing the Code

A.2.1 Preconditions

To build and run the code accompanying this semester thesis, several software
packages and external libraries are needed.
The following software should be installed beforehand:

• Git

• A C++ Compiler capable of compiling C++ standard 17

• CMake, at least version 3.10

The following external libraries are needed:
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• libigl [16], the graphics library. For installation instructions and information
about the needed third party software, the reader is referred to the libigl
website. For CMake to find the installation, the installation folder should be
put directly inside the project folder or at any other location listed in the
FindLIBIGL.cmake file. For this semester thesis, libigl should be built with
the dependencies LIBIGL_WITH_OPENGL, LIBIGL_WITH_OPENGL_GLFW,
LIBIGL_WITH_OPENGL_GLFW_IMGUI and LIBIGL_WITH_PNG set to on.

• Eigen [17], the matrix operation library. This library gets installed through
libigl.

• The unit test library Google-Test gets installed automatically when building
the semester project.

• A working python installation together with the packages jupyter, pandas,
numpy and plotly are needed to plot statistical results generated by the al-
gorithms.

A.2.2 Build using CMake

Once all preconditions are satisfied, the code can be built using CMake. Let
$PROJECT_PATH be the path pointing to the project folder. On Linux, the code
can be built using the following commands in the terminal:

Listing A.1: Building the Code

$> cd $PROJECT_PATH
$> mkdir build

$> cd build

$> cmake ..

$> make

A.2.3 Running the Code

Compiling the code results in a total of 4 executables located in the build folder.
The following list describes what these executables do.

Semesterproject_main_heatequation: This executable can be used to run the al-
gorithm implemented in this thesis for computing the heat flow and several related
functionals on a given mesh. One of four different test cases can easily be chosen my
passing a number between 0 and 3 to the executable. Each test case comes with an
already predefined mesh and boundary conditions. If no number is passed, the first
test case is chosen automatically. Upon execution, semesterproject_main_heatequation
starts the libigl viewer, showing a small toolbar on the left hand side and the chosen
mesh on the right hand side. An example can be seen in Figure TODO. The heat
equation is solved with the boundary conditions accompanying the boundary condi-
tions whenever the button ”solve” is pressed. The resulting heat diffusion is directly
visualized on the displayed mesh. Mean temperature, heat flux with and without
cutoff function as well as some mesh statistics are outputted on the command line.

Semesterproject_main_deformation : This executable can be used to run the
algorithm implemented in this thesis for computing the deformation of a mesh.
Similarly as for Semesterproject_main_heatequation, one can choose between
three different meshes by passing a number between 0 and 2 to the executable.
Upon execution, the libigl viewer is started. The deformation can be started by
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pressing the ”solve” button. The resulting displacement of the different nodes is
visualized directly on the mesh. The stiffness is outputted on the command line.

Semesterproject_test_real_solution: Executable that computes the heat dif-
fusion as well as several functionals on six different annulus meshes of varying res-
olution. The computed solution is compared to the real solution. The results are
written to a csv file and can be evaluated using the jupyter notebooks saved in the
plotting folder. This is the executable that was used for generating the results
described in Section 3.4.1.

Semesterproject_convergence_test_vs_itself: Executable that computes the
heat diffusion as well as several other functionals on given test meshes, for example
of two meshes representing the same surface. The results are written to a csv file
and can be evaluated using the jupyter notebooks saved in the plotting folder.
This is the executable that was used for generating the results described in Sections
3.4.2 and 4.5.

A.3 Modules and Important Functions

The code accompanying this semester thesis consists of three modules: utils,
heat_flow and discrete_shell. The modules heat_flow and discrete_shell

are mutually independent of each other, although both require a reference to the
utils module. The following section give an overview over these modules.

A.3.1 Utils

The utils module contains a set of helper functions. The following list shortly
describes the most important files and the type of functions they contain.

• view_utils contains functions that can be called from the libigl viewer. For
example, one of the functions can be used to take normed screenshots of
a currently displayed mesh. Others are there to help with visualizing the
boundary points of a mesh.

• matrix_utils, str_utils and math_utils contain everyday helper functions
that can be useful during programming.

• geometry_utils contains functions around cleaning and analyzing a mesh.

• boundary_condition contain classes around selecting and managing bound-
ary points. The boundary_condition_factory returns premade and initial-
ized boundary conditions for various ADMS shapes.

• triangle contains triangle face specific functions, such as computing the
barycentric coordinates, face normals, edge lengths and more.

A.3.2 Heat Flow

The heat_flow module contains functions around solving the heat diffusion equa-
tion.

• fem is the main file in this module. It contains the function
solveStationaryHeatEquation that solves the heat diffusion equation for a
set of vertices, faces and boundary conditions. Other functions in this file are
helper functions for assembling the local and global Galerkin matrices.

• heat_functionals contains functions for computing the different functionals
described and used in this thesis
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A.3.3 Discrete Shell

The heat_flow module contains functions around computing the deformation of a
structure.

• discrete_shell is the main file in this module. It contains the fucntions for
computing the different kind of energy gradients, as well as for executing the
necessary Newton steps.

• displacement_functional contains functions for computing the different
functionals described and used in this thesis
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