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Abstract

Numerical simulations, optimisation problems, statistical analysis and
computer graphics are only a few examples from the wide range of real-life
applications which rely on solving large systems of linear equations. The
best classical methods can approximate the solution of sparse systems
in time O(

√
Nκ), where N denotes the number of unknowns and κ its

condition number. In 2009, A. Harrow, A. Hassidim and S. Lloyd (HHL)
proposed a quantum algorithm with a running time of poly(logN,κ) under
the assumptions of the availability of efficient methods for loading the
data, Hamiltonian simulation and extracting the solution. This thesis
presents implementations for the missing oracles and analyzes the overall
performance of the algorithm. A complete implementation of the HHL
algorithm running in poly(logN,κ) is given for the case of a special class of
tri-diagonal symmetric matrices arising from Finite Difference methods for
two-point Boundary Value Problems. Full analyses of the mathematical
approximations obtained and the circuit depths are also included.
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1 Introduction

Systems of linear equations arise naturally in many real-life applications in a
wide range of areas. An interdisciplinary example is the study of the flow of
some quantity through a network. It can be the flow of traffic in a grid of
city streets, the current flow through electrical circuits, or the distribution of
products from manufacturers to consumers through a network of wholesalers
and retailers. In particular, symmetric matrices arise more often in applications
than any other major class of matrices[44, Chapter-7], as it occurs in many cases
with the solution of Partial Differential Equations. Another practical application
involving a system associated to a symmetric matrix is the analysis of the images
from a satellite. An effective method to suppress redundant information and
provide in one or two composite images most of the information is the Principal
Component Analysis, which tries to find a linear combination of the images.
The size of the systems arising from these type of situations is usually very
large. However, even the best classical general purpose method, the conjugate
gradient, has a runtime complexity ofO(Nsκ log(1/ε)), whereN denotes the size
of the system, s the maximum number of non-zero entries in a row or column,
κ the condition number and ε the precision [33]. Therefore, areas where the
amount of data to be processed is growing need faster methods.

A promising aspirant to this end is Quantum Computing. At the time of
writing, there is a big gap between the theory and the existing hardware. The
technology needed for quantum computations is still in its infancy, although it
is already possible to run experiments in small chips. However, for small com-
putations, classical computers outperform their quantum counterparts. The
promising potential in the field of Quantum Computing lies in the computation
of large amounts of data. Nonetheless, the hope is that one day the technology
will be mature enough to run complex algorithms. In the meantime, the devel-
opment of the theory will continue so that everything is ready when that day
arrives.

This thesis had two main goals. One, to investigate from a mathematical
point of view an algorithm proposed by A. Harrow, A. Hassidim and S. Lloyd
([1]) to solve systems of linear equations with a quantum computer. In contrast
with the running time of the best classical algorithm, their algorithm has a run-
ning time complexity of O(log(N)s2κ2/ε). The other goal of the thesis was a
practical implementation with the Qiskit open source software from IBM ([42])
Qiskit is based on Python and allows to run either local simulations, or simula-
tions on a real device. In the end, a complete implementation of the algorithm
was achieved and the mathematical results complemented with the data from
the simulations.

The structure of this thesis is as follows. Section 2 is a short introduction to
quantum computing from a mathematical point of view. Section 3 is a review of
the existing work on solving systems of linear equations with a quantum com-
puter. Section 4 gives an overview of the complete algorithm. Sections 5 to 8
discuss the different stages of the algorithm: state preparation, Hamiltonian
simulation, eigenvalue inversion and observables. Finally, an overall mathe-
matical analysis is given in Section 9, and Section 11 gives some guidelines for
possible further work followed by a conclusion.
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2 Axiomatic quantum computing

The aim of this section is to provide enough mathematical background for the
reader. The material presented is a combination of Sections 2-3 of [6], and
Chapter 2.1.-2.2. of [3]. The former, incorporating explanations of the basic
algorithms, is still a Mathematics paper and does not require previous knowl-
edge of Physics. The book by Nielsen and Chuang is regarded as the standard
text in the subject and encompasses both Quantum Computing and Quantum
Information.

Since interest in Quantum Computing might come from different fields, the
idea is to not assume a deep knowledge of Mathematics while giving only the
strictly necessary definitions. The structure is as follows. Section 2.1 presents
the tools from linear algebra, then Section 2.2 introduces the basic elements of
quantum computing as mathematical entities, and Section 2.3 is dedicated to
quantum measurements. The notation adopted to denote vectors and operators
throughout this work is that of Quantum Mechanics, as it is conventional in
Quantum Computing. Thus, |v〉 will denote a vector in a vector space. In this
field it is also common to start counting from 0 and this convention has been
preserved even in the mathematical definitions for the sake of consistency.

2.1 Linear algebra preliminaries

We begin by defining the mathematical framework for developing the theory of
Quantum Computing. We will be interested in complex vector spaces.

Definition 2.1. Given a complex vector space Cn, n ∈ N, a ket is a column
vector |v〉 ∈ Cn. A bra |v〉 ∈ (Cn)∗ is a vector in the dual space and can be
thought as the transpose conjugate of |v〉.

Example 1.

Let |v〉 =


1− i

2
− i

2
0

 ∈ C4. Then its bra is given by 〈v| =
(
1 + i, 2, i

2 , 0
)
.

With this notation, the braket 〈y|x〉 of two vectors |x〉 , |y〉 ∈ Cn denotes
the standard inner product in Cn. Thus, if |x〉 = (x0, x1, ..., xn−1)T and |y〉 =
(y0, y1, ..., yn−1)T , then

〈y|x〉 := (|y〉 , |x〉) =
(
y∗0 , y∗1 , ..., y∗n−1

)


x0

x1

...
xn−1

 =

n−1∑
i=0

y∗i xi ∈ Cn, (1)

where for z ∈ C, z∗ denotes the complex conjugate.

Definition 2.2. Given two complex vector spaces V ⊂ Cm and W ⊂ Cm,
m,n ∈ N, with bases |e0〉,|e1〉, ...,|em−1〉 and |f0〉 , |f1〉 , ..., |fn−1〉 respectively,
the tensor product V ⊗W is another complex vector space of dimension mn.
The tensor product space is equipped with a bilinear operation ⊗ : V ×W →
V ⊗W . The vector space V ⊗W has basis |ei〉 ⊗ |fj〉 ∀i = 0, 1, ...,m − 1, j =
0, 1, ..., n− 1.
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For a tensor product of vectors many times we will omit the ⊗ symbol, thus
|v〉 |w〉 := |v〉 ⊗ |w〉.

Definition 2.3. Given A ∈ Cm×n, B ∈ Cp×q, the Kronecker product A⊗B
is the matrix defined as:

D := A⊗B =


a00B · · · a0n−1B
a10B · · · a2nB

...
...

am−10B · · · am−1n−1B

 . (2)

If we choose the standard basis over the vector spaces Cm×n and Cp×q, then the
bilinear operation ⊗ of the tensor product Cm×n⊗Cp×q is simply the Kronecker
product.

Proposition 2.1. Let A,B ∈ Cm×mC,D ∈ Cn×n be linear transformations on
Cm and Cn respectively, |u〉 , |v〉 ∈ Cm, |w〉 , |x〉 ∈ Cn, and a, b ∈ C. The tensor
product satisfies the following properties:

(i) (A⊗ C) (B ⊗D) = AB ⊗ CD.

(ii) (A⊗ C) (|u〉 ⊗ |w〉) = A |u〉 ⊗ C |w〉.

(iii) (|u〉+ |v〉)⊗ |w〉 = |u〉 ⊗ |w〉+ |v〉 ⊗ |w〉.

(iv) |u〉 ⊗ (|w〉+ |x〉) = |u〉 ⊗ |w〉+ |u〉 ⊗ |x〉.

(v) a |u〉 ⊗ b |w〉 = ab |u〉 ⊗ |w〉.

(vi) (A⊗ C)
†

= A† ⊗ C†. (See Definition 2.8.)

The vector spaces used in quantum computing are of the form
(
C2
)⊗n

, where(
C

2
)⊗n

:= C
2 ⊗ · · · ⊗ C2︸ ︷︷ ︸
n times

and n ∈ N. (3)

This notation is the same for operators. We now specify the basis elements and
their notation for these spaces.

Definition 2.4. The standard basis for C2 is denoted by |0〉1 =

(
1
0

)
and

|1〉1 =

(
0
1

)
. The standard basis for

(
C2
)⊗n

, which has 2n elements, is denoted

by |0〉n , |1〉n , ..., |2n − 1〉n.

6



Example 1. We write explicitly the basis elements of
(
C2
)⊗2

= C2 ⊗ C2:

|0〉 := |0〉2 = |0〉 ⊗ |0〉 = |00〉 =


1
0
0
0

 , |1〉 := |1〉2 = |0〉 ⊗ |1〉 = |01〉 =


0
1
0
0

 ,

(4)

|2〉 := |2〉2 = |1〉 ⊗ |0〉 = |10〉 =


0
0
1
0

 , |3〉 := |3〉2 = |1〉 ⊗ |1〉 = |11〉 =


0
0
0
1

 .

(5)

(6)

Remarks. Example 1 introduces the alternative but equivalent notations for
the basis states. Throughout this work we will switch between them accordingly
to the context and without further warning.

(i) In many cases, when n is known, the subscript is dropped and we write
|i〉 in place of |i〉n for the ith basis state.

(ii) There are situations (namely the qubits, which will be introduced in Sec-
tion 2.2) where it is more convenient to switch to a binary notation for the
basis states, e.g. |010〉 denotes |2〉3.

The outer product in the braket notation will be a convenient way for writing
matrices and calculating products with other matrices or vectors. We now give
the definition.

Definition 2.5. Let V and W be linear subspaces of Cn and Cm, respectively,
where n,m ∈ N. Let |v〉 ∈ V and |w〉 ∈W . Then the outer product (|w〉 〈v|) :
V →W is a linear operator whose action is defined by

(|w〉 〈v|) (|v′〉) := |w〉 〈v|v′〉 = 〈v|v′〉 |w〉 for |v′〉 ∈ V. (7)

Definition 2.6. Let V ⊂ Cn, n ∈ N, be a complex vector space. Then IV
denotes the identity operator in V . The notation Ik, k ∈ N will be used to

denote the identity operator in C2k , i.e. the 2k × 2k identity matrix.

Remark. For k = 1 the subscript will be often dropped, therefore in this text
I := I1.

Example 2.

I := I1 =

(
1 0
0 1

)
, I2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 . (8)

Theorem 2.1 (Completeness relation). Let V be a complex inner product space
and let |v0〉 , |v1〉 , ..., |vn−1〉 be an orthonormal basis for V . Then

IV =

n−1∑
i=0

|vi〉 〈vi| . (9)
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Proof. Let |w〉 ∈ V be an arbitrary vector. It can be written |w〉 =
∑n−1
i=0 wi |vi〉

for some wi ∈ C. . Note that 〈vi|w〉 = wi, therefore(
n−1∑
i=0

|vi〉 〈vi|

)
|w〉 =

n−1∑
i=0

|vi〉 〈vi|w〉
n−1∑
i=0

|vi〉wi = |w〉 . (10)

We will be mostly interested in the equation

Ik =

2k−1∑
i=0

|i〉 〈i| . (11)

Definition 2.7. Let V be a complex vector space and A : V → V a linear
operator on V (i.e. a square matrix). A diagonal representation for A is

A =

n−1∑
i=0

λi |vi〉 〈vi| , (12)

where the vectors |vi〉,0 ≤ i ≤ n− 1 form an orthonormal set of eigenvectors for
A with corresponding eigenvalues λi. An operator is said to be diagonalisable
if it has a diagonal representation.

Definition 2.8. Let A be a linear operator on a Hilbert space, V . Then, its
adjoint or Hermitian conjugate, A†, exists and is the unique operator on V
such that

(|v〉 , A |w〉) =
(
A† |v〉 , |w〉

)
∀ |v〉 , |w〉 ∈ V. (13)

The above introduces the dagger notation from quantum mechanics. Which,
in matrix representation, is no other than the transpose conjugate of a matrix:
A† := (A∗)T .

Definition 2.9. Let A be a linear operator on a Hilbert space, V . Then A is
said to be

(i) normal when AA† = A†A,

(ii) Hermitian or self-adjoint when A = A† (a normal matrix is hermitian
iff its eigenvalues are real),

(iii) unitary when AA† = I.

The next theorem is taken from Section-2.1.7 of [3] and stated without proof.

Theorem 2.2 (Spectral decomposition). Any normal operator A on a vector
space V is diagonal with respect to some orthonormal basis for V . Conversely,
any diagonalisable operator is normal.

We can now define functions of normal matrices.

Definition 2.10. Let A ∈ Cn×n be a normal matrix with eigenvalues λi and
respective orthonormal eigenvectors |vi〉. Let f : C→ C. Then

f(A) :=

n−1∑
i=0

f(λi) |vi〉 〈vi| . (14)
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Example 2. In particular, with A as in Definition 2.10,

eiAt =

n−1∑
i=0

eiλit |vi〉 〈vi| . (15)

The last piece of linear algebra we will need is the condition number of a
matrix associated to a linear system of equations A |x〉 = |b〉. Roughly speaking,
this quantity is the rate at which the solution, |x〉, will change with respect to a
change in |b〉. Before addressing the condition number, we will need the following
definitions which can be found in Chapter 5 from [2].

Definition 2.11. The p-norm, for p ≥ 1, of |x〉 ∈ Cn, n ∈ N, is defined as

‖|x〉‖p =
(∑n−1

i=0 |xi|
p
)1/p

.

Definition 2.12. A vector norm,‖·‖, that is defined on Cp for p = m,n, induces
a matrix norm on Cm×n by setting

‖A‖ = max
‖|x〉‖=1

‖A |x〉‖ forA ∈ Cm×n, |x〉 ∈ Cn×1. (16)

It is called the induced matrix norm.

Remark. An equivalent definition for the induced matrix norm is given by the
expression

‖A‖ = sup
|x〉6=0

‖A |x〉‖
‖|x〉‖

. (17)

Proposition 2.2. An induced matrix norm is compatible with its underlying
vector norm in the sense that

‖A |x〉‖ ≤ ‖A‖‖|x〉‖. (18)

Now we can define the condition number. The following is taken from Chap-
ter 3 from [4], which also contains more on the topic.

Definition 2.13. The condition number of a matrix A ∈ Cn×nis defined as

κ(A) = ‖A‖
∥∥A−1

∥∥, (19)

where ‖·‖ is an induced matrix norm.

The condition number depends on the choice of norm. In this report we use
the 2-norm, in which case, and for A normal, it is also defined as

κ(A) =
|λmax(A)|
|λmin(A)|

. (20)

Here λmax and λmin denote the maximal and minimal eigenvalues of A respec-
tively. The following result will be useful in the error analysis of the state
preparation later in this text.

Proposition 2.3. Let A ∈ Cn×n be a nonsingular matrix and |x〉 , |b〉 , |ε〉 ∈
Cn, n ∈ N. Then ∥∥A−1 |ε〉

∥∥
‖A−1 |b〉‖

≤ κ(A)
‖|ε〉‖
‖|b〉‖

. (21)
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2.2 Building blocks of Quantum Computing

A qubit is to a quantum computer what a bit is to a classical one. In a similar
way that a computer has a register made of bits, the quantum computer has a
register made of qubits. We now define these.

Definition 2.14. Mathematically, a qubit is represented by a unitary vector
|q〉 ∈ C2. It can be written as

|q〉 = α |0〉+ β |1〉 , where |α|2 + |β|2 = 1 and α, β ∈ C. (22)

For the following definition we encounter something that is common from
the field of Computer Science: indexes run starting from 0.

Definition 2.15. The state of n qubits, |q0〉 , |q1〉 , ..., |qn−1〉, is a unitary
vector |ψ〉 ∈ C2n :

|ψ〉 = |qn−1〉 ⊗ · · · ⊗ |q1〉 ⊗ |q0〉 . (23)

It can be represented in the standard basis as

|ψ〉 =

2n−1∑
i=0

αi |i〉 where αi ∈ C and

2n−1∑
i=0

|αi|2 = 1. (24)

The state of a register consisting of m qubits is the state of those m qubits.

Remark. It is crucial to highlight the word unitary in the definitions of qubit,
state of n qubits and state of a register. Throughout this work, whenever we
work with the state of the register at a particular stage of an algorithm, it will
always be assumed normalised.

Sometimes, however, it is more illustrative to work with C |ψ〉, where C is
a constant, or to omit the normalisation factors altogether. Nonetheless, the
reader should acknowledge the implicit normalisation.

When drawing a quantum circuit, wires represent qubits. In this report we
use the convention that, with the notation from Definition 2.15, the bottom
wire represents |q0〉 while the top wire is for |qn−1〉. Thus, for example, Eq. 23
is the state of the register drawn in Figure 1.

|qn−1〉
...

...
|q1〉
|q0〉

Figure 1: Representation of a register of n qubits.

Definition 2.16. We say that n qubits are in a basis state if their state

|ψ〉 =
∑2n−1
i=0 αi |i〉 is such that ∃k : |αk| = 1, αi = 0 ∀i 6= k. Otherwise, we

say that they are in a superposition.
Furthermore, any linear combination

∑
i αi |ψi〉 is said to be a superposi-

tion of the states |ψi〉 with amplitude αi for the state |ψi〉.
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Definition 2.17. A quantum state |ψ〉 ∈ C2n is decomposable if it can be
expressed as a tensor product |ψ1〉 ⊗ · · · ⊗ |ψk〉 of k > 2 quantum states on
n1, ..., nk qubits respectively, with the property that n1 + ...+ nk = n.

Definition 2.18. Let n, k ∈ N. A quantum state |ψ〉 ∈ C2n is a product state
if it is decomposable into the tensor product of n single-qubit quantum states.
Otherwise, it is entangled.

Quantum gates are the counterpart of logical gates in a classical computer.
They must satisfy certain conditions to abide by the laws of quantum mechanics,
which state that the evolution of quantum systems is described by unitary op-
erators. Remarkably, this means that the possible operations on qubits will be
reversible, which could have boded dubious any computational speed up from
this field already from the beginning. Fortunately, C. H. Bennett showed in
1973 in [5] that it is possible to make any computation reversible, and that it is
possible to do so with only a polynomial overhead in time and space.

Theorem 2.3 (Bennett, 1973). For every standard one-tape Tuning machine
S, there exists a three-tape reversible, deterministic Turing machine R such that
if I and P are strings on the alphabet of S, containing no embedded blanks, then
S halts on I if and only if R halts on (I;B;B), and S : I → P if and only if
R : (I;B;B)→ (I;B;P ).

Furthermore, if S has f control states, N quintuples and a tape alphabet of
z letters, including the blank, R will have 2f + 2N + 4 states. 4N + 2z + 3
quadruples and tape alphabets of z, N + 1, and z letters, respectively. Finally.
if in a particular computation S requires ν steps and uses s squares of tape,
producing an output of length λ, then R will require 4ν + 4λ+ 5 steps, and use
s, ν + 1, and λ+ 2 squares on its three tapes, respectively. (Where ν >> s, the
total space requirement can be reduced to less than 2

√
νs).)

We now give the formal definition for quantum gates.

Definition 2.19. A quantum gate on n qubits is a unitary matrix U ∈
C2n×2n .

|q2〉

U1 U2|q1〉 U2U1 |q2〉 |q1〉 |q0〉

|q0〉

Figure 2: Quantum gates on three qubits.

Operations on qubits are represented as gates, which in the circuit are drawn
as boxes, as shown in Figure 2. Circuits are read from left to right, but when
writing the mathematical expression corresponding to a circuit, gates are written
from right to left. For example, in the circuit from Figure 2, U1 is the first gate
to be applied on the initial state |ψ〉 = |q2〉 |q1〉 |q0〉.

Remark. Identity gates are usually omitted when drawing a circuit, and gates
on the same vertical line become a tensor product in a mathematical equation.

11



Example 3. The circuits drawn in Figure 3 are equivalent. The mathematical
expression describing their action is

(I ⊗ U) (|0〉 ⊗ |0〉 ⊗ |0〉) = |0〉 ⊗ U |00〉 . (25)

However, the preferred notation will be that of Figure 3a.

|0〉
|0〉

U
|0〉

(a) Unitary gate and implicit identity gate.

|0〉 I

|0〉
U

|0〉

(b) Unitary gate and identity gate.

Figure 3: Two equivalent circuits.

Of particular interest are one-qubit gates, that is unitary matrices in C2×2.
Among those, the Pauli gates and the Hadamard gate should be highlighted.

Definition 2.20. The Pauli gates are the following single-qubit gates:

X = NOT =

(
0 1
1 0

)
; Y =

(
0 −i
i 0

)
; Z =

(
1 0
0 −1

)
. (26)

The Pauli matrices exponentiated give rise to three important operators.

Definition 2.21. The rotation operators about the x̂, ŷ and ẑ axes are de-
fined by the equations

Rx(θ) := e−iθX/2 = cos

(
θ

2

)
I − i sin

(
θ

2

)
X =

(
cos
(
θ
2

)
−i sin

(
θ
2

)
−i sin

(
θ
2

)
cos
(
θ
2

) ) , (27)

Ry(θ) := e−iθY/2 = cos

(
θ

2

)
I − i sin

(
θ

2

)
Y =

(
cos
(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

) ) , (28)

Rz(θ) := e−iθZ/2 = cos

(
θ

2

)
I − i sin

(
θ

2

)
Z =

(
e−iθ/2 0

0 eiθ/2

)
. (29)

Example 4. The X or NOT gate is the quantum counterpart to the logical
NOT gate. Its action is to flip the state of a qubit:

X |0〉 =

(
0 1
1 0

)(
1
0

)
=

(
0
1

)
= |1〉 , (30)

X |1〉 =

(
0 1
1 0

)(
0
1

)
=

(
1
0

)
= |0〉 . (31)

Definition 2.22. The Hadamard gate is the one-qubit gate defined by

H =
1√
2

(
1 1
1 −1

)
. (32)

12



Lemma 2.4. Let •n denote the bitwise dot product. Then the action of H⊗n

on the n-qubit state |x〉n is

H⊗n |x〉n =
1√
2n

2n−1∑
k=0

(−1)k•nx |k〉n . (33)

In particular, if |x〉n = |0〉n, applying H⊗n yields a uniform superposition of
basis states:

H⊗n |0〉n =
1√
2n

2n−1∑
k=0

|k〉n . (34)

Proof. We first compute specifically the action of H on one qubit.

H |0〉 =
1√
2

(
1 1
1 −1

)(
1
0

)
=

1√
2

(
1
1

)
=

1√
2

(|0〉+ |1〉) , (35)

H |1〉 =
1√
2

(
1 1
1 −1

)(
0
1

)
=

1√
2

(
1
−1

)
=

1√
2

(|0〉 − |1〉) . (36)

This can be summarised as

H |x〉1 =
1√
2

(|0〉+ (−1)x |1〉) =
1√
2

1∑
k=0

(−1)k·x |k〉1 . (37)

Therefore, writing the binary string x := xn−1...x1x0 for xi ∈ {0, 1}, one has

H⊗n |x〉n =

n−1⊗
i=0

1√
2

(|0〉+ (−1)x |1〉) =
1√
2n

2n−1∑
k=0

(−1)k•nx |k〉n (38)

Remark. When it is clear from the context, we will write a simple dot instead
of •n to refer to the bitwise dot product, i.e. in those cases k · x := k •n x.

The power of H⊗n is that further operations will be simultaneously applied
to all basis states. The following example shows this for the two-qubit case.

Example 5. Let U be a two-qubit gate. And consider the circuit from Figure 4.

|0〉 H
U

|0〉 H

Figure 4: Two Hadamards and a two-qubit gate.

Mathematically, the effect of this circuit is

U(H ⊗H)(|0〉 ⊗ |0〉) = U
1

2
(|00〉+ |01〉+ |10〉+ |11〉) (39)

=
1

2

3∑
i=0

U |i〉 . (40)
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Another two important single-qubit gates are the phase gate (S) and the
π/8 gate (T ):

S =

(
1 0
0 i

)
; T =

(
1 0
0 ei/4

)
. (41)

The analogous quantum if logical operation is a controlled gate. The prototyp-
ical controlled operation is the CNOT or controlled-NOT gate (CX for short),
which flips the target qubit if the control qubit is |1〉.

Definition 2.23. The CNOT gate (CX) is a two-qubit gate with two input
qubits: the control qubit and the target qubit. Let ⊕ denote addition modulus
2, |c〉 the control qubit and |t〉 the target qubit. Then the action of the CNOT
gate is defined as

|c〉 |t〉 7→ |c〉 |t⊕ c〉 . (42)

The matrix representation is given by

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 . (43)

And the circuit representation is shown in Figure 5, with the top line represent-
ing the control qubit and the bottom the target qubit.

•

Figure 5: CNOT gate.

One can also define controlled operations in which the action takes place
when the control qubit is |0〉. This is represented by an empty circle as shown
in figure 6.

Figure 6: CNOT gate controlled by 0.

Multiple controls are allowed, as well as controlled multi-qubit gates. For
example, the circuit from Figure 7 is a representation of a two-qubit gate U that
will be applied on qubits |q2〉 and |q1〉 if |q0〉 = 0 and |q3〉 = 1.

|q3〉 •
|q2〉

U
|q1〉
|q0〉

Figure 7: Multi-controlled two-qubit gate.
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Real quantum computing devices can only implement operations from a
finite set of gates. The following theorem is proved in Section 4.5.3. of [3] and it
states that we can approximate any unitary operation with a small set of gates,
provided these are well-chosen.

Definition 2.24. Let U be a unitary operation and V an approximation to U .
The approximation error is defined as

max
‖|ψ〉‖=1

‖(U − V ) |ψ〉‖. (44)

Definition 2.25. The standard set of universal gates consists of Hadamard,
phase, controlled-NOT (CNOT), and π/8 gates.

The following theorem explains why the standard set is called universal.

Theorem 2.5. An arbitrary single qubit gate may be approximated to an accu-
racy ε using O

(
log2(1/ε)

)
gates from the standard set.

There exist other combinations of gates which as a set are universal, however
we are interested in the standard, since it is the one available in Qiskit software
from IBM ([42]) used to implement this project.

The following are the most important gate decompositions that we will use
in the upcoming sections for the gate count analyses of the different algorithms.
These are taken from Chapter 4.3. of [3].

• Toffoli: 6CNOTs +7T +2H +1S = 6·CNOTs+10 · {one-qubit gate}.

• • • • • T

• = • • T † T † S

H T † T T † T H

Figure 8: Toffoli gate and its decomposition.

• C–U : 2·CNOTs + 4 · {one-qubit gate}.

• • • U1(α)

U
=

C B A

Figure 9: One-controlled single-qubit gate and its decomposition. α,A,B and
C satisfy U = eiαAXBXCX,ABC = I.

• Cn–U : (12n−10)·CNOTs+(20n−16)·{one-qubit gate}+(n−1)·{ancilla}.
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Figure 10: Multi-controlled single-qubit gate and its decomposition for n = 5.

2.3 Measurements

Measurements are the procedure to obtain information from a quantum state.
In this case, however, there is no classical analogue. The typical explanation is
that when a person performs a measurement on a quantum state |ψ〉 =

∑
i αi |i〉,

it causes it to collapse into one of the |i〉 with probability |αi|2 (this means that
the person instead of observing the quantum state |ψ〉 will see |i〉).

There is no good understanding yet as to why it happens or what does it
really mean. There are different interpretations, and discussions on the topic
are likely to deviate towards a more philosophical ground. Nonetheless, there
does exist a general agreement: that the mathematics used to describe this
bewildering event predict well the outcome of experiments.

Definition 2.26. A collection of measurement operators on n qubits is a
set {Mm} ⊂ C2n×2n ,m ∈ I ⊂ N, such that its elements satisfy the completeness
equation ∑

m

M†mMm = In (45)

Definition 2.27. A quantum measurement by a collection of measurement
operators {Mm} on n qubits is a map

{|ψ〉 ∈ C2n : 〈ψ|ψ〉 = 1} → {|φ〉 ∈ C2n : 〈φ|φ〉 = 1} (46)

that sends a quantum state on n qubits |ψ〉 to the n-qubit state

Mm |ψ〉√
〈ψ|M†mMm |ψ〉

(47)
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with probability
p(m) = 〈ψ|M†mMm |ψ〉 . (48)

The state from Eq. 47 is referred to as the post-measurement state with m being
the outcome of the measurement.

Remark. The completeness equation expresses the fact that the probabilities
sum up to one: ∑

m

p(m) =
∑
m

〈ψ|M†mMm |ψ〉 = 1. (49)

We will refer to quantum measurements as measurements. Sometimes we are
interested in measuring only a few qubits from a quantum state. In that case
the measurement operators can be tensored with identity matrices to obtain
measurement operators in the state space. The next example illustrates the
case for one qubit measurements.

Example 6. An important example of a measurement is the measurement of
a qubit in the computational basis. This is a measurement of a single qubit
with two outcomes defined by the two measurement operators M0 = |0〉 〈0| and
M1 = |1〉 〈1|. Suppose that we have the state

|ψ〉 = α0 |00〉+ α1 |01〉+ α2 |10〉+ α3 |11〉 , (50)

where
∑
i |αi|

2
= 1 and αi ∈ C. To measure the last qubit in the compu-

tational basis we would use the collection of measurement operators {M0 =
I ⊗ |0〉 〈0| ,M1 = I ⊗ |1〉 〈1|}. First, we check that the completeness equation is
satisfied:

M†0M0 = (I ⊗ |0〉 〈0|)†(I ⊗ |0〉 〈0|) =
(
I† ⊗ (|0〉 〈0|)†

)
(I ⊗ |0〉 〈0|) (51)

= (I ⊗ |0〉 〈0|)2 = I ⊗ |0〉 〈0| = M0, (52)

M†1M1 = (I ⊗ |1〉 〈1|)†(I ⊗ |1〉 〈1|) =
(
I† ⊗ (|1〉 〈1|)†

)
(I ⊗ |1〉 〈1|) (53)

= (I ⊗ |1〉 〈1|)2 = I ⊗ |1〉 〈1| = M1. (54)

Therefore,

M†0M0 +M†1M1= M0 +M1 = I ⊗ |0〉 〈0|+ I ⊗ |1〉 〈1| (55)

= I ⊗ (|0〉 〈0|+ |1〉 〈1|) = I2. (56)

Then the probability of obtaining a measurement outcome of 0 is

p(0) = 〈ψ|M†0M0 |ψ〉 = 〈ψ|M0 |ψ〉 (57)

=

(
3∑
i=0

α∗i 〈i|

)
(α0 |00〉+ α2 |10〉) (58)

= |α0|2 + |α2|2. (59)

Similarly, one obtains p(1) = |α1|2+|α3|2. And the respective post-measurement
states are

α0 |00〉+ α2 |10〉√
|α0|2 + |α2|2

and
α1 |01〉+ α3 |11〉√
|α1|2 + |α3|2

. (60)

The symbol representing the measurement of one-qubit in the computational
basis is a meter, as shown in Figure 11.
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Figure 11: Measurement of the last qubit in the computational basis.

The measurement of one qubit plays an important role in many algorithms.
There are situations in which we use a single qubit to store whether the run of a
part of an algorithm has been successful or not. Then we measure the qubit and
decide what to do depending on the outcome. If it has been what we labelled as
success, we tell the program to proceed. Otherwise we repeat the process until
we see the flag for success.
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3 Literature review

In this section we discuss the existing literature on solving systems of linear
equations and related problems. Here we make the same division into sub-
problems that was encountered during the implementation of the algorithm and
which is followed throughout the report.

First we give an overview of the quantum algorithms to solve systems of
linear equations. Then we address state preparation, which will be needed to
load the right hand side of the equation into the quantum register. Afterwards
we discuss the literature on Hamiltonian simulation (finding a circuit whose
effect is eiAt) applied to the problem of solving systems of linear equations. The
section finishes with a review of the existing works on quantum arithmetics.

3.1 Solving systems of linear equations

The main idea came from the paper by Harrow, Hassidim and Lloyd (HHL)
[1], and much of the subsequent literature on the topic uses their algorithm as
a base and tries to improve the running time or use of resources. At the core
of the algorithm is a procedure called Quantum Phase Estimation, which is a
quantum algorithm that estimates the eigenvalues of an operator and stores
them in the register. Then, quantum arithmetics can be used to invert these
values and obtain the solution to the system. For an accuracy of ε, however,
the running time of the Quantum Phase Estimation increases as O(1/ε). The
total runtime complexity of the algorithm is O(log(N)s2κ2/ε).

In [8], the authors propose to circumvent the limits from phase estimation
by approximating the inverse of the matrix via unitaries. They propose two
methods, one more general applying to any Hamiltonian which can be efficiently
simulated and the other more efficient but applying only for sparse hamiltonians.
The improved algorithm would run in time poly(log(1/epsilon)). Their method
was used as a subroutine in a study of the HHL algorithm applied to the finite
element method for differential equations[36].

All the papers mentioned focus on sparse matrices, which are defined as
matrices with few non-zero entries. However, there are also proposals to deal
with dense matrices, such as [9].

The running time of the HHL algorithm scales with the condition number of
the matrix, which poses a problem for ill-conditioned matrix. [10] introduces the
idea to first apply a preconditioner from the class of sparse approximate inverse
(SPAI). The reason for this class rather than an arbitrary preconditioner is
that we only have local knowledge of A and sparsity should be preserved after
precondition for the hamiltionian simulation. This class of preconditioners was
originally introduced in [31] for parallel computing.

Recently, a hybrid algorithm was proposed in [11]. Here the register is
measured after phase estimation to obtain the eigenvalues classically and then
find a suitable circuit to perform the inversion of these values.

Finally, in the paper by Harrow, Hassidim and Lloyd, there is a proof of the
optimality of their algorithm based on complexity classes. It can be found in
Section-5 of [1].
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3.2 State preparation

Our motivation to work on this problem will be to bring the initial quantum
register into a state representing the vector |b〉 on the right hand side of the
equation. Nonetheless, it is a broader problem: many quantum algorithms rely
of having a procedure to prepare the initial register in a determinate state. The
problem is defined as, starting from |0〉n, how to obtain an target state |ψ〉n.

One of the first proposals ([7]) was to prepare states whose amplitudes are
given by a probability distribution which is efficiently classically computable.The
idea is that if something is efficiently computable by a classical computer, one
can take the classical circuit and apply it simultaneously to the basis states.
The drawback is that there is still much work to do on performing arithmetic
operations with quantum computers.

Soklakov and Schack offer in [12] an improvement of this method, where
the function does not need to be efficiently integrable. They part from the
assumption that there are oracles defining the state (i.e. giving the amplitudes
and phases of each basis state) and propose a state preparation algorithm similar
to [7] by approximating the state. However, it is a nontrivial assumption that
these oracles are given. But it could be applied in conjunction to an algorithm
to obtain those oracles.

In [13] they propose a method which assumes positive real amplitudes and
encoded classical information about the state. With this information and via
controlled rotations they achieve the desired quantum state. Although not being
able to efficiently prepare all states, the method will work for a family of states
where it is possible to efficiently compute a function of the amplitudes.

On the other hand, [14] proposed dividing the vector representing the state in
2-blocks and performing rotations on each block. Since these are controlled ro-
tations, it requires an exponential number of gates. Conveniently, their method
is already integrated in Qiskit ([42]) and can be readily used. Because the goal
was to solve a system of linear equations more efficiently than on a classical com-
puter, we tried to be thrifty when it came to gates and sought for an alternative
method.

Another method through rotations is proposed in [15]. It is a more general
algorithm to transform any state |a〉 into |b〉. The idea is to apply a set of
rotations to equalise the phases, and then another set of rotations to obtain a
fixed state (say, |0〉). Finally, apply the inverse operations to obtain the target
state.

In [16] they propose to split the state into even parts and use the method by
[15] to prepare a 2-qubit state. The idea is to copy the just prepared state into
the other half of the register via CNOTS. Then unitary operation to simulta-
neously transform the copied basis states of the second half of the register into
Schmidt basis states. For more than 4 qubits, it uses the same idea but relies
on being able to prepare a k-qubit state. So this paper rather than a method to
prepare an arbitrary state provides a method to decrease the number of gates.

3.3 Hamiltonian simulation

The Hamiltonian simulation problem is defined as, given an n × n Hermitian
matrix A, find a circuit whose effect is eiAt. We will need it later for the
Quantum Phase Estimation stage of the HHL algorithm (Section 4.2).
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Mostly all approaches make a subdivision into two further problems: decom-
position into a sum of sparse Hamiltonians and recombination in the simulation.

[17] propose decomposing the given matrix into a sum of one-sparse matrices
(that is, at most one non-zero entry per row and column) and then simulating
each of them. However, if two matrices do not commute then the product of
exponentials is just an approximation. So one wants to minimise the number
of one-sparse matrices used in the decomposition. The key idea to find a good
decomposition is by associating the matrix to a graph and finding a colouring,
this will be explained in more detail in Section 6.1.

A very detailed description of how to simulate general 1-sparse Hamiltonians
can be found in Chapter-4 of [18].

On the other hand, in [19] they part from the assumption that the simulation
of 1-sparse hamiltonians is given and instead focus on a more efficient algorithm.
They study higher order Suzuki methods and show their scaling is optimal in a
blackbox setting (i.e. not exploiting the structure of the problem). They also
give a graph-theory based algorithm to decompose the Hamiltonian into a sum
of 1-sparse which minimizes the number of black-box calls.

An approach different from Lie-Trotter-Suzuki is given by [20]. They show
how to implement a linear combination of unitaries with high probability, and
study the approximation via multi-product formulas instead of Lie-TrotterSuzuki,
since the former require less exponentials.

As to how to decompose H, [22] say that by taking the components of the sum
to be graphs whose connected components are stars translates into an improved
complexity of the simulation.

Another method is via quantum walks. For a discrete-quantum walk, a step
corresponds to a unitary operation moving amplitudes between adjacent ver-
tices. First [21] and improved in [23] by focusing on applying it to Hamiltonian
simulation assuming black-boxes for the Hamiltonian they show how to obtain
an operator which corresponds to the quantum walk of the Hamiltonian. One
of the advantages of this method is that it applies to non-sparse Hamiltonians,
although works better when sparse.

In [24] they study the trade-off between increasing the number of Trotter
steps to gain accuracy in the approximation to the exponential, and the physical
inaccuracy added from increasing the circuit depth.

3.4 Quantum arithmetics

Many quantum algorithms rely on being able to implement arithmetic functions.
A quantum circuit is, however, reversible by definition and therefore so must
be the circuits for quantum arithmetics. The price tag of these kind of circuits
is a large number of qubits to remember the intermediate results [25]. There-
fore, using traditional reversible circuits translates into obtaining very expensive
quantum circuits from an inexpensive classical algorithm.

Research on the topic focuses on reducing the auxiliary memory needed or
the number of computational steps. [26] focuses on the former and give circuits
for addition, multiplication and exponentiation. They save memory by reversing
some computations with different computations.

A useful operation is the so called analog (data as amplitudes) to digital
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(data as qubit strings) conversion and vice versa. This is, respectively,

λ 7→
∣∣∣λ̃〉

m
and

∣∣∣λ̃〉
m
7→ λ, (61)

where λ ∈ R and λ̃ is the m-bit string that best approximates λ. The above
conversions are described in [27] and are not to be confused with [28], whose
paper gives a method to encode a smooth wave function into the amplitudes
and phases of a quantum state.

These are very useful techniques which can be widely applied to different
parts of quantum algorithms. For example, later we will use digital-to-analog
conversion in our state preparation and in the conditioned rotation of the eigen-
values. In a more recent paper [37], they show how to evaluate polynomials and
give the implementation of a few useful functions (such as trigonometric). They
adapt ideas from high-performance classical libraries to a reversible fixedpoint
domain. Their circuits were developed so that they can be added to existing
software (e.g. Quipper). The paper also gives resource analyses for each opera-
tion. Worth to mention is that there is also investigation on how to implement
elliptic curve arithmetic [38, 39, 40]. In [25], the authors propose to compute
arithmetic in the amplitudes instead, therefore reducing the number of ancilla
qubits that would be otherwise needed. Floating point quantum arithmetics is
explored in [41], where they show it is viable. They study different choices of
floating point representations in the number of qubits.

Another approach is introduced in [29] and later used in [30]. Arguing that
physical properties cannot be measured to high precision, and that it is the
reason digital computers replaced analog, they propose a digital representation
of a state. The latter means to encode the amplitudes of the state in binary in
an additional register. Some advantages of this method are that it allows for
controlled arithmetics and that operations that would not be unitary become
so.
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4 Solving systems of linear equations with a quan-
tum computer

Let A ∈ CN×N , N ∈ N be a Hermitian matrix (A† = A) and |x〉 , |b〉 ∈ CN be
complex vectors. The problem of solving a system of linear equations can be
described as

A |x〉 = |b〉 . (62)

Let κ denote the condition number of A and ε the accuracy of the cal-
culated solution. For a classical computer, the best general method requires
O(N3sκ log(1/ε)) running time, although it returns the full solution. The HHL
is a quantum algorithm to estimate a function of |x〉 in timeO(log(N)s2κ2 log(1/ε))
(Table 1 from [33]). Where, in both cases, s is the maximum number of nonzero
entries in the same row or column of A, and κ denotes its condition number.
After running the HHL, the entries of the vector solution to the system, |x〉,
come encoded as the amplitudes of the final state of the register. Therefore one
does not have direct access to them rather to a function of it. Nevertheless, in
many situations that is what one is interested in.

From now on, assume that |x〉 and |b〉 are unit vectors. Since A is Hermitian,
it has a spectral decomposition

A =

N−1∑
j=0

λj |uj〉 〈uj | , λj ∈ R, (63)

where |uj〉 is the jth eigenvector of A with respective eigenvalue λj . Then,

A−1 =

N−1∑
j=0

λ−1
j |uj〉 〈uj | , (64)

and the right hand side of (62) can be written in the eigenbasis of A,

|b〉 =
N−1∑
j=0

bj |uj〉 , bj ∈ C. (65)

It is useful to keep in mind that the objective of the HHL is to exit the algorithm
with the readout register in the state

|x〉 = A−1 |b〉 =

N−1∑
j=0

λ−1
j bj |uj〉 . (66)

Note that here we already have an implicit normalisation constant since we are
talking about the state of a register.

4.1 Description of the HHL

Here we give a brief outline the key steps of the algorithm, and explain them
in more detail later. The first register, |0〉nl will be used to store a binary
representation of the eigenvalues of A. The second register, |0〉nb will contain
the vector solution, and from now on, N = 2nb . There is an extra register, for
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the ancilla qubits. These are qubits used as intermediate steps in the individual
computations, such as the decomposition of the Cn − U gate from Section 2.2,
but will be ignored since they are set to |0〉 at the beginning of each computation
and restored back to the |0〉 state at the end of the individual operation.

All registers start in the |0〉 state at the beginning of an algorithm. In the
following description of the algorithm, we assume that all computations have
been exact.

(i) Load the data |b〉 ∈ C2nb . That is, perform the transformation

|0〉nl ⊗ |0〉nb 7→ |0〉nl ⊗ |b〉nb =

N−1∑
j=0

|0〉nl ⊗ bj |uj〉nb =:
N−1∑
j=0

bj |0〉nl |uj〉nb .

(67)

(ii) Apply Quantum Phase Estimation (QPE) with

U = eiAt =

N−1∑
j=0

eiλjt |uj〉 〈uj | , (68)

where t will be specified later in Section 9.1. From Section 4.2, the register
is now in the state

N−1∑
j=0

bj |λj〉nl |uj〉nb . (69)

(iii) Add an ancilla qubit and apply a rotation conditioned on |λj〉,

N−1∑
j=0

bj |λj〉nl |uj〉nb

(√
1− 1

λ2
j

|0〉+
1

λj
|1〉

)
. (70)

(iv) Apply the inverse of QPE. If the eigenvalues are perfectly estimated, this
results (from Section 4.2) in

N−1∑
j=0

bj |0〉nl |uj〉nb

(√
1− 1

λ2
j

|0〉+
1

λj
|1〉

)
. (71)

(v) Measure the last qubit in the computational basis. If the outcome is |1〉,
the register is in the post-measurement state(√

1∑N−1
j=0 |bj |

2
/ |λj |2

)
N−1∑
j=0

bj
λj
|0〉nl |uj〉nb , (72)

which up to a normalisation factor corresponds to Eq. 66.

4.2 Quantum Phase Estimation (QPE)

Quantum Phase Estimation is a quantum algorithm which, given a unitary U
with eigenvector |ψ〉m and eigenvalue e2πiθ, finds θ. We can formally define this
as follows.
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Definition 4.1. Let U ∈ C2m×2m be unitary and let |ψ〉m ∈ C2m be one
of its eigenvectors with respective eigenvalue e2πiθ. The Quantum Phase
Estimation algorithm, abbreviated QPE, takes as inputs the unitary gate for

U and the state |0〉n |ψ〉m and returns the state
∣∣∣θ̃〉

n
|ψ〉m. Here θ̃ denotes a

binary approximation to θ and the n subscript denotes it has been truncated to
n digits.

QPE(U, |0〉n |ψ〉m) =
∣∣∣θ̃〉

n
|ψ〉m . (73)

Example 7. For the HHL we will use QPE with U = eiAt, where A is the matrix
associated to the system we want to solve. In this case, for the eigenvector |uj〉nb ,
which has eigenvalue eiλjt, it will output

∣∣∣λ̃j〉
nl
|uj〉nb . Where λ̃j represents an

nl-bit binary approximation to
λjt
2π .

The algorithm uses the inverse Quantum Fourier Transform (QFT†), which
is defined as follows.

Definition 4.2. The Quantum Fourier Transform (QFT) on N = 2n, n ∈
N, qubits is the map

QFTN : |x〉n 7→
1√
N

N−1∑
y=0

e2πi xN y |y〉n , (74)

where |x〉n ∈ CN is a basis state (i.e. x ∈ {0, ..., N −1}). Its inverse, the inverse
Quantum Fourier Transform (QFT†), is given by the map

QFT†N : |x〉n 7→
1√
N

N−1∑
y=0

e−2πi xN y |y〉n , (75)

for |x〉n ∈ CN a basis state.

The full circuit for the Quantum Phase Estimation is shown in Figure 12
Here we analyse the action of the effect of the QPE on the quantum state after

Figure 12: Circuit for the Quantum Phase Estimation

loading the data from Eq. 67. For simplicity, we do it first for one eigenvalue.
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(i) H⊗nl

|0〉nl |uj〉nb 7→ 1

2nl/2

nl−1⊗
l=0

(|0〉+ |1〉) |uj〉nb . (76)

(ii) After the controlled powers of U

1

2nl/2

nl−1⊗
l=0

(|0〉+ ei2
lλjt |1〉) |uj〉nb =

1

2nl/2

2nl−1∑
l=0

eitλj l |l〉 |uj〉nb . (77)

(iii) QFT† with N = 2nl

1

2nl

2nl−1∑
k,l=0

ei(tλj l−2πlk/2nl ) |k〉nl |uj〉nb . (78)

Writing

αk|j =
1

2nl

2nl−1∑
l=0

eiI(tλj−2πk/2nl ), (79)

78 simplifies to
2nl−1∑
k=0

αk|j |k〉nl |uj〉nb . (80)

If λj can be exactly represented by n bits, then λj = k/2nl for some 0 ≤ k ≤
2nl = 1. In this case, αk|j = 1 and αk′|j = 0 for all k′ 6= k. And 78 would
further simplify, after relabeling k = k/2nl , to

|k〉nl |uj〉nb = |λj〉nl |uj〉nb . (81)

Therefore, if the eigenvalues can be exactly represented,

QPE

eiAt, 2nl−1∑
j=0

|0〉nl |uj〉nb

 =

2nl−1∑
j=0

|λj〉nl |uj〉nb . (82)

From this analysis one can also see that on the number of qubits used for the
eigenvalues register will depend on the accuracy of the eigenvalue approximation,
consequently of the whole HHL.
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5 Polynomial state preparation

In numerous real life applications, it is required to solve a linear system of equa-
tions A |x〉 = |b〉 such that |b〉 is specified by a function. It is a well known result
in Mathematics that continuous functions can be approximated by polynomials.
The following theorem, stated without proof is Theorem 7.26. from [34].

Theorem 5.1 (Stone-Weierstrass). If f is a continuous complex function on
[a, b], there exists a sequence of polynomials Pn such that

lim
n→∞

Pn(x) = f(x) (83)

uniformly on [a, b]. If f is real, the Pn may be taken real.

In this section we focus on how to prepare an arbitrary state with amplitudes
given by a polynomial p : [0, 1]→ [−π/2, π/2] of degree d. That is, for N = 2n,

|b〉 =

N−1∑
i=0

p

(
i

N − 1

)
|i〉 where

N−1∑
i=0

p

(
i

N − 1

)2

= 1 and n ∈ N.

(84)
At the moment of writing, state preparation is an open problem, and it is
believed that it is not necessarily possible to do it efficiently for the arbitrary
case. However, in the description of quantum algorithms, it is often assumed
that the required state comes from previous processes or that there is a black box
procedure for its preparation. Furthermore, it is also common in the literature
to take for granted access to the exact state. Thereby, inaccuracies deriving from
using an approximated quantum state are usually overlooked or intentionally
omitted in the error analyses of the algorithms.

This section is structured in the following manner. In Section 5.1 we ex-
plain the general technique and then give in Section 5.2 the implementation of
the state preparation algorithm. In the HHL paper, which is focused on the
algorithm itself rather than the oracles for state preparation or hamiltonian
simulation, the authors choose to carry out the calculations neglecting any er-
rors from the preparation of the right hand side. Therefore, we use Section 5.3
to complete the error analyses of the HHL by adding the inaccuracies arising
from using an approximated right hand side of the equation, as well as to study
our method. Section 5.4 is then an analysis of the probability of successfully
preparing a state with our proposed circuit. This section ends with a circuit
depth analysis of the algorithm.

5.1 General rotations technique

The main technique used in our implementation is based on conditioned ro-
tations and the goal will be to implement a polynomial. We use the rotation
around the ŷ axis introduced in Definition 2.21:

Ry(θ) := e−iθY/2 =

(
cos
(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

) ) , where Y =

(
0 −i
i 0

)
. (85)

It can also be regarded as the map

Ry(2θ) : |0〉 7→ cos(θ) |0〉+ sin(θ) |1〉 . (86)
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To achieve the main goal, namely implementing a polynomial, we need to be
able to implement sums and products of variables within the amplitudes of a
quantum state. For that we will need controlled versions of the Ry(θ) gate, such
as the one showed in Figure 5.1.

Figure 13: Controlled Ry(θ).

Proposition 5.1. A controlled Ry(θ) gate with control |q0〉 ∈ C2, q0 ∈ {0, 1},
and target |0〉 is the map

|q0〉 |0〉 7→ |q0〉 e−iq0θY |0〉 . (87)

Proof. We calculate the action of the circuit from Figure 5.1 explicitly:

|0〉 |0〉 7→ |0〉 |0〉 , (88)

|1〉 |0〉 7→ |1〉 (cos(θ) |0〉+ sin(θ) |1〉). (89)

Which can also be written in one line as

|q0〉 |0〉 7→ |q0〉 (cos (q0θ) |0〉+ sin (q0θ) |1〉) = |q0〉 e−iq0θY |0〉 . (90)

To implement products we use multi-controlled Ry(θ) gates, such as the one
from Figure 14.

Figure 14: Multi-controlled Ry(θ) gate.

Proposition 5.2. A multi-controlled Ry(θ) gate with controls |qk〉 , ..., |q0〉 ∈ C2

and target |0〉 is the map

|q〉k |0〉 7→ |q〉k e
−i(θ

∏k
i=0 qi)Y |0〉 , (91)

where |q〉k := |qk〉 · · · |q1〉 |q0〉 ∈ C2k+1

and qi ∈ {0, 1}, 0 ≤ i ≤ k. Here q ∈
{0, ..., 2k+1 − 1} has binary representation qk...q1q0.
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Proof. Similarly as before we calculate explicitly the action of the circuit from
Figure 14. Since the gate will be applied only when q0 = · · · = qk = 1, we get

|q〉k |0〉 7→ |1 · · · 1〉k (cos(θ) |0〉+ sin(θ) |1〉) if q0 = · · · = qk = 1, (92)

|q〉k |0〉 7→ |q〉k |0〉 otherwise . (93)

Which can be also written again as

|q〉k |0〉 7→ |q〉k

(
cos

(
θ

k∏
i=0

qi

)
|0〉+ sin

(
θ

k∏
i=0

qi

)
|1〉

)
(94)

= |q〉k e
−i(θΠki=0qi)Y |q〉k . (95)

The exponential notation is useful to understand the effect of successive
rotations. Addition can be implemented via consecutive controlled Ry(θ) gates,
as shown in calculating the effect from the circuit in Figure 15:

|q1〉 |q0〉 |0〉 7→ |q1〉 |q0〉 e−iθ2q0q1Y e−iθ1q0Y |0〉 (96)

= |q1〉 |q0〉 e−i(θ2q0q1+θ1q0)Y |0〉 (97)

= |q1〉 |q0〉 (cos(· · ·) |0〉+ sin (θ2q0q1 + θ1q0) |1〉), (98)

where q0, q1 ∈ {0, 1}.

Figure 15: Two controlled Ry(θ) gates.

Recall that adding Hadamards at the beginning of a circuit allows to cal-
culate simultaneously an operation on all basis states. Thus, with the circuit
represented in Figure 16 we can achieve the operation

|0〉 |0〉 |0〉 7→ 1

2

3∑
q=0

|q〉2 (cos(. . .) |0〉+ sin (θ2q0q1 + θ1q0) |1〉) (99)

=
1

2

3∑
q=0

|q〉2 (cos(p(q)) |0〉+ sin(p(q)) |1〉), (100)

where p(q) = θ2q0q1 +θ1q0 is a polynomial, q0, q1 ∈ {0, 1} and q1q0 is the binary
representation of q.

5.2 Implementation

Let nb ∈ N denote the size of the register which will contain the target state,
and N = 2nb . Here we only consider the quantum register on nb qubits that
will contain |b〉 and an ancilla qubit for the rotation appended at the end. The
outline of the algorithm is as follows:
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Figure 16: Two Hadamards before controlled Ry(θ) gates.

(i) Initialise the register in the state |0〉nb |0〉.

(ii) Apply Hadamards to the first nb qubits, i.e. the operator H⊗nb ⊗ I. This
gives

|0〉nb |0〉 7→
1√
N

N−1∑
i=0

|i〉nb |0〉 . (101)

(iii) Apply a rotation conditioned on the |i〉’s. Ideally, the state is now

1√
N

N−1∑
i=0

|i〉nb
(√

1− p(i)2 |0〉+ p(i) |1〉
)
. (102)

(iv) Measure the appended qubit in the computational basis. An outcome of
1 means we have the post-measurement state

|b〉nb =

N−1∑
i=0

p(i) |i〉nb , (103)

after dropping the ancilla qubit since after the measurement we know it is
|1〉.

In reality, the state we can efficiently achieve in Step (iii) due to the nature of
the quantum rotation gates, is

1√
N

N−1∑
i=0

|i〉nb (cos(p(i)) |0〉+ sin(p(i)) |1〉). (104)

Exploiting the near linearity of the sine function when the argument is close to
0, we prepare instead c |b〉. Then for c ∈ R small enough we have that

N−1∑
i=0

sin(cp(i)) |i〉nb ≈
N−1∑
i=0

cp(i) |i〉nb = c |b〉nb. (105)

We first show how to do it specifically for the base case: a two-qubit state
|b〉 and a polynomial of degree 2. And then indicate how to generalise the
implementation for an arbitrary number of qubits and arbitrary degree of the
polynomial.

Thus, we look for the circuit for p(x) = a2x
2 +a1x+a0, where x ∈ {0, 1, 2, 3}

is represented by two qubits and ai ∈ C, 0 ≤ i ≤ 2. In this case we have for
qi ∈ {0, 1},

x = 2q1 + q0 and q2
i = qi.
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So

p(x) = p(2q1 + q0) = (4a2 + 2a1)q1 + (a2 + a1)q0 + 4a2q1q0 + a0. (106)

The rotation from Eq. 104 can then be achieved with the circuit from Figure 17.

|q1〉 = |0〉 H • •

|q0〉 = |0〉 H • •

|0〉 Ry(2a0) Ry(2(4a2 + 2a1)) Ry(2(a2 + a1)) Ry(2(4a2))

Figure 17: Circuit preparing a state with amplitudes given by the polynomial
from Eq. 106.

For the general case, let |b〉nb be an nb-qubit state and p(x) =
∑d
i=0 aix

i,
a polynomial of degree d. In this context, x ∈ {0, 1, . . . , 2nb − 1} and for qj ∈
{0, 1},

x =

nb−1∑
j=0

2jqj and q2
j = qj . (107)

Substituting into p(x),

p

nb−1∑
j=0

2jqj

 =

d∑
i=0

ai

nb−1∑
j=0

2jqj

i

(108)

=

d∑
i=0

ai
∑

k0+...+knb−1=i

(
i

k0, · · · , knb−1

) nb−1∏
j=0

2jkjqj . (109)

The circuit is similar to that for the base case. Each product of qj ’s deter-
mines a controlled rotation, with controls the |qj〉 appearing in that product
and argument determined by its coefficient in Eq. 109.

To summarise, the key steps of the Polynomial State Preparation algorithm
(PSP) are:

(i) Hadamards to obtain a superposition of basis states.

(ii) Controlled Ry rotations to implement p(x).

(iii) Measurement of the ancilla qubit. Repeat steps (i) and (ii) until observing
|1〉. Then, the post-measurement state of the register on outcome 1 is |b〉.

We will now proceed to analyse the additional error induced in the overall
performance of the HHL from using an approximated initial state, and the
number of gates needed to implement the circuit.

5.3 Error analysis

Let ‖·‖ denote the 2-norm for the remaining of this section. The following is
Theorem 1 from [1], and it assumes efficient and accurate methods for the state
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preparation and Hamiltonian simulation. We will use |x〉 to denote the exact
solution to the system of linear equations and |x̃〉 to denote the quantum state
returned by the HHL representing an approximation to the solution |x〉.

Theorem 5.2 (HHL). Take t = O(κ/εH), and let |x〉 and |x̃〉 as defined above.
Then

‖|x〉 − |x̃〉‖ < εH . (110)

Definition 5.1. We will denote by HHL(A, |b〉) := |x̃〉 the normalised state
returned by the HHL algorithm assuming exact procedures for preparing |b〉
and simulating eiAt. And εH as defined in Theorem 5.2, will be the accuracy of
the algorithm with these assumptions. Thus,

‖|x〉 −HHL(A, |b〉)‖ < εH , (111)

where |x〉 denotes the exact answer.

Lemma 5.3. Let
∣∣∣b̃〉 denote the approximated state from the Polynomial State

Preparation algorithm, c the small parameter used in the procedure and κ the
condition number of A. Then∥∥∥|x〉 −HHL

(
A,
∣∣∣b̃〉)∥∥∥ = O

(
κc2 + εH

)
. (112)

Corollary 5.3.1. For an overall accuracy of ε, we can set the parameters in
the algorithm so that εH < ε/2 and take

c <

√
ε

2κ
. (113)

For the proof of Lemma 5.3 we will need the following result.

Proposition 5.3. Let |v〉 ∈ Cn be unitary and c ∈ R be a small, positive real
number. Then

n−1∑
i=0

sin2 (cvi) = c2 +O(c4) for c→ 0. (114)

Proof. The Taylor Series expansion for the sine function is given by

sin(x) = x− x3

3!
+
x5

5!
− . . . . (115)

Thus, for c→ 0,
sin2 (cvi) = c2v2

i +O
(
c4
)
. (116)

Hence
n−1∑
i=0

sin2 (cvi) =

n−1∑
i=0

c2v2
i +O

(
c4
)

for c→ 0. (117)

We now prove Lemma 5.3.
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Proof. Let p : [0, 1] → [−π/2, π/2] be a polynomial, let nb ∈ N, N := 2nb and
let

|b0〉 =
1

N

N−1∑
i=0

p

(
i

N − 1

)
|i〉 . (118)

Finally, since quantum states are normalised, let |b〉 := |b0〉 /‖|b0〉‖ be the state
we want to prepare. Instead, what we obtain is∣∣∣b̃〉 =

∑
i sin(cbi) |i〉√∑
i sin2(cbi)

=

∑
i cbi |i〉+

∑
iO(c3b3i ) |i〉√∑

i sin2(cbi)
, (119)

where bi denotes the ith component of the vector |b〉 and c ∈ R is small. After
simplifying using Proposition 5.3, this expression can be rewritten as∣∣∣b̃〉 = |b〉+ |ε〉 , where ‖|ε〉‖ = c2 +O

(
c4
)

for c→ 0. (120)

The overall error taking into account the initial state approximation is given by
the quantity

∥∥∥|x〉 −HHL
(
A,
∣∣∣b̃〉)∥∥∥ =

∥∥∥∥∥∥ A−1 |b〉
‖A−1 |b〉‖

−

 A−1
∣∣∣b̃〉∥∥∥A−1
∣∣∣b̃〉∥∥∥ +O(εH)

∥∥∥∥∥∥ (121)

≤

∥∥∥∥∥∥ A−1 |b〉
‖A−1 |b〉‖

−
A−1

∣∣∣b̃〉∥∥∥A−1
∣∣∣b̃〉∥∥∥

∥∥∥∥∥∥+O(εH), (122)

where we used the triangle inequality to derive the second line.
Expanding the first term of the right hand side of Eq. 122 gives∥∥∥∥∥∥ A−1 |b〉
‖A−1 |b〉‖

−
A−1

∣∣∣b̃〉∥∥∥A−1
∣∣∣b̃〉∥∥∥

∥∥∥∥∥∥ =

∥∥∥∥∥∥ A−1 |b〉
‖A−1 |b〉‖

− A−1 |b〉∥∥∥A−1
∣∣∣b̃〉∥∥∥ − A−1 |ε〉∥∥∥A−1

∣∣∣b̃〉∥∥∥
∥∥∥∥∥∥

≤

∥∥∥∥∥∥∥∥
A−1 |b〉

(∥∥∥A−1
∣∣∣b̃〉∥∥∥− ∥∥A−1 |b〉

∥∥)
‖A−1 |b〉‖

∥∥∥A−1
∣∣∣b̃〉∥∥∥

∥∥∥∥∥∥∥∥+

∥∥A−1 |ε〉
∥∥∥∥∥A−1

∣∣∣b̃〉∥∥∥
≤

∣∣∣∥∥∥A−1
∣∣∣b̃〉∥∥∥− ∥∥A−1c |b〉

∥∥∣∣∣∥∥∥A−1
∣∣∣b̃〉∥∥∥ +

∥∥A−1 |ε〉
∥∥∥∥∥A−1

∣∣∣b̃〉∥∥∥
≤
∣∣∥∥A−1 |b〉

∥∥− ∥∥A−1 |ε〉
∥∥− ∥∥A−1 |b〉

∥∥∣∣∥∥∥A−1
∣∣∣b̃〉∥∥∥ +

∥∥A−1 |ε〉
∥∥∥∥∥A−1

∣∣∣b̃〉∥∥∥
= 2

∥∥A−1 |ε〉
∥∥∥∥∥A−1

∣∣∣b̃〉∥∥∥
≤ 2κ

[
c2 +O(c4)

]
.

(123)

33



The last inequality comes from the definition of the condition number written as

the ratio of the relative error in the solution to the relative error in
∣∣∣b̃〉. Namely,

κ = max

‖A−1|ε〉‖
‖A−1|b̃〉‖
‖|ε〉‖
‖|b̃〉‖

.

I.e., ∥∥A−1 |ε〉
∥∥∥∥∥A−1

∣∣∣b̃〉∥∥∥ ≤ κ ‖|ε〉‖∥∥∥∣∣∣b̃〉∥∥∥ = κ
‖|ε〉‖

‖|b〉+ |ε〉‖
≤ κ‖|ε〉‖

1
= κ

[
c2 +O(c4)

]
using 120 and that |b〉 is normalised.

Combining 122 and 123 gives the bound∥∥∥|x〉 −HHL
(
A,
∣∣∣b̃〉)∥∥∥ = O

(
κc2 + εH

)
. (124)

5.4 Success probability analysis

In Step (iv) we saw that having prepared the right initial state depends upon
obtaining a 1 after measuring the last qubit in 104. We proceed now to study the
relation between the probability of preparing the desired state and the choice
of c. Thus, suppose we are in the state

|ψ〉 =
1√
N

N−1∑
i=0

|i〉nb (cos(cp(i/N − 1)) |0〉+ (sin(cp(i/N − 1)) |1〉). (125)

The following definition is Definition 3.6. from [32].

Definition 5.2. Let f : [0, 1] → [a, b] where a, b ∈ R. The L2-norm of f is
defined as

‖f‖L2
[0,1]

=

(∫ 1

0

|f(x)|2dx
)1/2

. (126)

Lemma 5.4. Let P[|1〉] denote the probability of successfully preparing the state
and p : [0, 1]→ [−π/2, π/2] the polynomial from the state preparation. Then

P[|1〉] = O
(
c2‖p‖2L2

[0,1]

)
. (127)

Set c as in Corollary 5.3.1. Then the number of expected repetitions of the PSP
algorithm behaves as O(κ/ε) for ε→ 0.

Proof. With the notation from Section 2.2, we take the collection of measure-
ment operators

M0 = Inb ⊗ |0〉 〈0| and M1 = Inb ⊗ |1〉 〈1| . (128)
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With |ψ〉 as in Eq. 125,

M1 |ψ〉 =
1√
N

N−1∑
i=0

|i〉nb (sin(cp(i/N − 1)) |1〉). (129)

Therefore, the probability of outcome 1 on measuring the last qubit is given by

P[|1〉] = 〈ψ|M†1M1 |ψ〉 =
1

N

N−1∑
i=0

sin2(cp(i/N − 1)) (130)

=
c2

N

N−1∑
i=0

p2

(
i

N − 1

)
+O

(
c4
)

= O
(
c2‖p‖2L2

[0,1]

)
. (131)

Here we used that

lim
N→∞

1

N

N−1∑
i=0

p2

(
i

N

)
=

∫ 1

0

p2(x)dx = ‖p‖2L2
[0,1]

. (132)

Therefore, the number of expected repetitions of the state preparation algorithm
before observing |1〉 behaves as O(1/c2) for c → 0. Which, with c = O(

√
ε/κ)

behaves like O(κ/ε) for ε→ 0.

5.5 Gate analysis

The complexity of a quantum algorithm is usually quantified in the number of
gates it requires. Let nb and d denote, respectively, the size of the register and
the degree of the polynomial as before, and let N = 2nb .

We will assume d < nb. This is a reasonable assumption because we are
interested in the asymptotic growth of the number of gates in the circuit as nb
increases. Since we keep the domain of the polynomial fixed, and only increase
the number of discretisation points as the size of the system grows, the degree
of the polynomial needed to approximate the function specifying |b〉 depends on
the accuracy desired and not on nb.

Table 1 shows the asymptotic number of CNOT gates, general single-qubit
gates and ancilla qubits needed in terms of N .

CNOTs one-qubit gates ancilla
O(polylog(N)) O(polylog(N)) d− 1

Table 1: Gate count for the Polynomial State Preparation algorithm.

The controlling sequences of qubits for the Ry gates are given by the mono-

mials in the expansions of each of (q0 + . . .+ qnb−1)
k
, 0 ≤ k ≤ d. Therefore, the

total number of controlled Ry, where the number of control bits ranges from 0
to d, is

d∑
k=0

(
nb
k

)
. (133)

In Section 2.2 we saw that a k-controlled Ry gate can be decomposed into
(k− 1) ancilla qubits, (20k− 18) one-qubit gates and (12k− 10) CNOTs. Since
the maximum number of controls is d, the circuit will require d−1 extra ancilla
qubits.
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Proposition 5.4. The number of CNOTs and one-qubit gates needed grows as
O(polylog(N)), where the power in “polylog”depends on d.

Proof. We first proceed to calculate the number of one-qubit gates. We have to
count the ones arising from the controlled rotations and an extra non-controlled
Ry gate. Therefore, this quantity is given by

1 +

d∑
k=1

(
nb
k

)
(20(k − 1) + 2) ≤ 1 +

d∑
k=1

nkb
k!

20k ≤ 20

d∑
k=0

log(N)
k

(k − 1)!
(134)

= O(polylog(N)). (135)

Similarly, the number of CNOTs is given by

d∑
k=1

(
nb
k

)
(12(k − 1) + 2) = O(polylog(N)). (136)

Finally, in from Lemma 5.4, we know that the expected number of repetitions
of the circuit is O(κ/ε), where ε is the desired accuracy for the complete HHL
algorithm. Therefore, Table 2, gives the expected total gate count.

CNOTs one-qubit gates ancilla
O(polylog(N)κ/ε) O(polylog(N)κ/ε) d− 1

Table 2: Expected total gate count for the Polynomial State Preparation algo-
rithm.
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6 Hamiltonian simulation of tri-diagonal sym-
metric matrices

Let A ∈ R2nb×2nb , nb ∈ N, be a tri-diagonal symmetric matrix. That is, of the
form

A =


a b 0 0
b a b 0
0 b a b
0 0 b a

 , a, b ∈ R. (137)

In this section we will show how to simulate eiAt, t ∈ R, when A has this
structure. These type of matrices are well studied. Their eigenvalues are given
by

λj = a− 2b cos

(
jπ

2nb + 1

)
, (138)

with respective eigenvectors

vj =

(
sin

(
1jπ

2nb + 1

)
, . . . , sin

(
2nbjπ

2nb + 1

))
, (139)

for 1 ≤ j ≤ 2nb .
We use the method presented in [17] for the simulation of sparse matrices

already introduced in the Literature Review section. It consists of three steps,
namely:

(i) Find a decomposition A =
∑
Hi, where each Hi is a 1-sparse matrix.

(ii) Find an efficient implementation for each eiHi .

(iii) Use a “Lie-Trotter”approximation to eiAt.

6.1 Implementation

Decomposition into sum of 1-sparse matrices

For arbitrary matrices A,B, the equality eA+B = eAeB holds if and only if A
and B commute. Since multiples of the identity operator commute with any
other matrix, we can take the first term in our decomposition to be

H1 =


a 0 0

0
. . .

. . .

. . . 0
0 0 a

 . (140)

And focus for the remainder of this subsection in A − H1. Even if this is a
simple case, we can use it to illustrate the general method. Since we will have
to simulate individually each element of the decomposition, and each noncom-
muting term will add an error, we look for a decomposition keeping minimal
the number of terms while still being able to efficiently implement each eiHit.

Before explaining how to find such decomposition in general, the following
definitions will be useful.
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Definition 6.1. A graph G is a pair G = (V,E) where V is a set of vertices
and E is a (multi)set of unordered pairs of vertices. The elements of E are
called edges. We write V (G) for the set of vertices and E(G) for the set of
edges of a graph.

Definition 6.2. Let G = (V,E) be a graph with V = {v1, . . . , vn}. The
adjacency matrix A = A(G) is the n× n symmetric matrix defined by

aij =

{
1 if (vi, vj) ∈ E,
0 otherwise.

(141)

In general, it is possible to view an n× n matrix A as the adjacency matrix
of a graph by taking as vertex set {1, . . . , n} and drawing an edge between i
and j whenever (A)ij is nonzero.

Definition 6.3. A k-edge-colouring of G is a labelling f : E(G)→ {1, . . . , k};
the labels are “colours”. A proper k-edge-colouring is a k-edge-colouring
such that edges sharing a vertex receive different colours.

Remark. Given a k-edge-colouring for G, if we colour the nonzero aij entries
of A(G) with the colour of (vi, vj), then no colour can appear more than once
in any row nor column.

This would give a decomposition

A(G) =
∑
c

Ac(G), (142)

where Ac(G) denotes the matrix consisting of the entries of A(G) which were
coloured in c and all other entries set to 0. Furthermore, by the remark, each
Ac(G) is 1-sparse.

Going back to our A−H1, the idea now is to view it as the adjacency matrix
of a graph and find a proper edge-colouring for it. In this particular case, the
corresponding graph and two-edge-colouring are given in Figure 18.

Figure 18: A two-edge-colouring for the graph A−H1.

The Hi then correspond to the adjacency matrices of the subgraphs specified
by each colour with weight b. That is,

H2 =



0 b
b 0

. . .

. . .

0 b
b 0


and H3 =



0
0 b
b 0

. . .

0 b
b 0

0


.

An advantage of this method is that the decomposition can be found al-
gorithmically, and by Vizing’s theorem [35, Theorem 5.3.2.], the number of
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summands is ≤ s + 1. Where s denotes the sparsity of A. More precisely the
theorem states that for a simple graph of maximum degree d a d+ 1 colouring
can be efficiently found, and viewing A as an adjacency graph gives s ≤ d.

Simulation of eiHit

Here we show efficient implementations for the simulation of each term in the
sum, and give their corresponding circuit. We will start with the case A ∈ C4×4

and then extend it to higher dimensions. Thus, we have

H1 =


a 0 0 0
0 a 0 0
0 0 a 0
0 0 0 a

 , H2 =


0 b 0 0
b 0 0 0
0 0 0 b
0 0 b 0

 , H3 =


0 0 0 0
0 0 b 0
0 b 0 0
0 0 0 0

 .

Let Ik denote the 2k × 2k-identity matrix. We will use the following quantum
gates:

X =

(
0 1
1 0

)
, U1(λ) =

(
1 0
0 eiλ

)
and Rx(θ) =

(
cos θ2 −i sin θ

2

−i sin θ
2 cos θ2

)
.

Computing eiHit in each case yields the following circuits.

(1)

eiH1t =


eiat 0 0 0
0 eiat 0 0
0 0 eiat 0
0 0 0 eiat

 = I1 ⊗
(
eiat 0
0 eiat

)
(143)

Figure 19: Circuit for implementing eiH1t.

(2)

eiH2t =


cos bt i sin bt 0 0
i sin bt cos bt 0 0

0 0 cos bt i sin bt
0 0 i sin bt cos bt

 = I1 ⊗Rx(−2bt) (144)

Figure 20: Circuit for implementing eiH2t.
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(3)

eiH3t =


1 0 0 0
0 cos bt i sin bt 0
0 i sin bt cos bt 0
0 0 0 1

 (145)

Figure 21: Circuit for implementing eiH3t.

For a general n ∈ N and A ∈ C2nb×2nb , the circuits for H1 and H2 do not change
since they correspond, respectively, to

I2nb−1 ⊗
(
eiat 0
0 eiat

)
and I2nb−1 ⊗Rx(−2bt). (146)

However, the general case for H3 will make use of a number of CNOTs polyno-
mial in nb. The full circuit for it is given in Figure 22

Cnb−1

· · ·

C2
C1

Figure 22: Schematic representation of the circuit implementing eiH3t for the
general dimension case.

The circuit for each Cj-block, 1 ≤ j ≤ nb − 1, is shown in Figure 23.

•

• Ry(−2bt) •

•
•

· · · ...
· · ·

•

Figure 23: Detailed circuit for Cj .
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Approximation of eiAt

Let A and B be Hermitian operators, and t be real, then the Trotter formula
[3, Theorem 4.3.] states that

ei(A+B)t = lim
n→∞

(
eiAt/neiBt/n

)n
. (147)

Higher order approximations can be derived from this formula for simulating
ei(A+B)t. We will use the following result [18, Lemma 4.8].

Lemma 6.1 (Trotter formula.). Let H = A + B with H,A,B Hermitian and
‖A‖, ‖B‖, ‖H‖ ≤ ∆. Let m ∈ N and t ∈ R with m > t . Then

eiHt/m = eiAt/2meiBt/meiAt/2m +O(∆t/m)3. (148)

This result combined with Eq. 147, and with the notation from the previous
subsections, gives

eiAt = lim
m→∞

eiH1t
(
eiH2t/2meiH3t/meiH2t/2m

)m
. (149)

In the next section we will analyse the relation between the error tolerance
and the choice of m. One last thing to note is that for the QPE we will need
controlled applications of all the circuits mentioned in this section. Having that
in mind, to decrease the number of gates we can instead implement

eiH1te−iH2t/2m
(
eiH2t/meiH3t/m

)m
eiH2t/2m. (150)

Mathematically, 149 and 150 are the same, but the latter requires fewer gates.
The reason is that when drawing eiH2t/2meiH3t/meiH2t/2m as a circuit, we have
to build the gates from Figure 20, then Figure 21, and again Figure 20. Then
to obtain the circuit for Eq. 149, we have to repeat this construction m times.
The construction for simulating Eq. 150 is similar, but this time the initial
composition consists only on the circuit from Figure 21 and then Figure 20.

6.2 Error analysis

In this subsection we will analyse the approximation we use for the Hamiltonian
simulation to give a formula for the number of Trotter steps. Later on, we will
see that the main source of error for the overall algorithm will be the inversion
of eigenvalues and not the Hamiltonian simulation.

With the notation from Section 6.1,let

Ṽ := eiH1t
(
eiH2t/2meiH3t/meiH2t/2m

)m
(151)

denote the approximation to the Hamiltonian simulation, and let V := eiAt. Let
‖·‖ denote the 2-norm as before, and let a, b be the coefficients of the matrix

A as in the previous subsections. Let HHL
(
Ã, |b〉

)
denote the final state of

the algorithm assuming an exact procedure for preparing |b〉 and simulating Ṽ .
Then the following results hold.
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Lemma 6.2. With the notation above,∥∥∥V − Ṽ ∥∥∥ = O
(
t3b3

2m2

)
for t/m→ 0. (152)

Corollary 6.2.1. Let εA denote the target tolerance for the Hamiltonian sim-
ulation procedure, then we need to choose

m >

√
t3b3

2εA
. (153)

Lemma 6.3. Let εA as before and let εH denote the error from the HHL as-
suming exact oracles for state preparation and Hamiltonian simulation. Then∥∥∥|x〉 −HHL

(
Ã, |b〉

)∥∥∥ = O (εA + εH) for εA, εH → 0, (154)

where |x〉 denotes the exact solution.

We will prove first Lemma 6.2.

Proof. Let

U(t) := ei(H2+H3)t and Ũ(t) := eiH2t/2eiH3teiH2t/2. (155)

We want to bound the quantity∥∥∥V − eiH1tŨm(t/m)
∥∥∥. (156)

From the Taylor series expansion one finds that

Ũ(t/m) = ei(H2+H3)t/m + E
(3)
t/m, (157)

where

E
(3)
t/m :=

1

6

[
[H2, H3] ,

1

4
H2 +

1

2
H3

](
it

m

)3

+O
(
t

m

)4

for t/m→ 0. (158)

Here [H2, H3] = H2H3−H3H2 denotes the matrix commutator. Both U(t) and
Ũ(t) are unitary operators, hence of norm 1. Since U(t) = U(t/m)m, and using
the Cauchy-Schwarz and triangle inequalities gives∥∥∥U(t)− Ũ(t/m)m

∥∥∥ =
∥∥∥(U(t/m)− Ũ(t/m))

(
U(t/m)m−1 − . . .− Ũ(t/m)m−1

)∥∥∥
(159)

≤ m
∥∥∥U(t/m)− Ũ(t/m)

∥∥∥ = m
∥∥∥E(3)

t/m

∥∥∥ (160)

≤ t3

m2
CE +O

(
t

m

)4

for t/m→ 0, (161)

where

CE =
1

6

∥∥∥∥[[H2, H3] ,
1

4
H2 +

1

2
H3

]∥∥∥∥. (162)
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Using that
‖[H2, H3]‖ = ‖H2H3 −H3H2‖ ≤ 2‖H2‖‖H3‖, (163)

and that ‖H2‖, ‖H3‖ ≤ b, we calculate

CE ≤
1

3
‖[H2, H3]‖

∥∥∥∥1

4
H2 +

1

2
H3

∥∥∥∥ (164)

≤ b3

2
. (165)

Therefore, ∥∥∥V − eiH1tŨm(t/m)
∥∥∥ = O

(
t3b3

2m2

)
for t/m→ 0. (166)

However, the Quantum Phase Estimation uses powers of eiAt. The next
result will be useful to find the right number of Trotter steps for the implemen-
tation.

Proposition 6.1. Let m and εA as before. Let Ṽ ′ denote an approximation
obtained using m′ steps. Then for m′ = mb

√
kc, it holds∥∥∥V k − Ṽ ′k∥∥∥ = O (εA) for εA → 0. (167)

Proof. The proof is analogous as the one for Lemma 6.2, but instead of Eq. 159
we have∥∥∥∥U(t)k −

(
Ũ(t/m)m

)k∥∥∥∥ =
∥∥∥U(tk)− Ũ(t/m)km

∥∥∥ (168)

≤ km
∥∥∥U(t/m)− Ũ(t/m)

∥∥∥ = km
∥∥∥E(3)

t/m

∥∥∥ (169)

= O
(
k · t

3b3

m2

)
for t/m→ 0. (170)

Now we can prove Lemma 6.3.

Proof. We will denote U1 the unitary matrix corresponding to the application
of the powers of V ; U2 the unitary matrix corresponding to the QFT†, inversion
of eigenvalues and QFT; and U3 to the application of powers of the inverse of V .
Similarly, Ũ1 and Ũ3 will denote the matrices corresponding to the same parts
of the algorithm but using Ṽ (U2 is the same in both cases).

Then we can write

HHL(A, |b〉) = U3U2U1 |b〉 , (171)

and
HHL(Ã, |b〉) = Ũ3U2Ũ1 |b〉 . (172)

We can express Ṽ as

Ṽ = V + E, where ‖E‖ < εA. (173)
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Then, for N = 2nl , nl ∈ N, and using Proposition 6.1,

Ũ1 =
1√
N

(
N−1∑
k=0

|k〉 〈k| ⊗
(
V k + E

))
= U1 +

1√
N

(
N−1∑
k=0

|k〉 〈k|

)
⊗ E. (174)

Similarly,

Ũ3 =
1√
N

(
N−1∑
k=0

|k〉 〈k| ⊗
(
V −k + E

))
= U1 +

1√
N

(
N−1∑
k=0

|k〉 〈k|

)
⊗ E. (175)

Thus, expanding and using that the Ui are unitary,

∥∥∥U3U2U1 − Ũ3U2Ũ1

∥∥∥ = O

(∥∥∥∥∥ 1√
N

(
N−1∑
k=0

|k〉 〈k|

)
⊗ E

∥∥∥∥∥
)

(176)

= O(‖E‖) = O (εA) for εA → 0. (177)

Finally, ∥∥∥|x〉 −HHL(Ã, |b〉)
∥∥∥ ≤ (178)

‖|x〉 −HHL(A, |b〉)‖+
∥∥∥HHL(A, |b〉)−HHL(Ã, |b〉)

∥∥∥ (179)

= O (εH + εA) for εA, εH → 0. (180)

6.3 Gate analysis

This subsection is dedicated to analyse the gate cost of the procedure described
above and to investigate how the number of gates escalates with the dimension
of the matrix.

Let nl ∈ N denote the size of the register storing the representation of
the eigenvalues, nb ∈ N denote the number of qubits used to represent the
solution, N = 2nb the size of the matrix and m the exponent of the Trotter
formula as above. For the quantum phase estimation (Section 4.2), we require
20, 21, . . . , 2nl−1 controlled applications of eiAt, with Trotter exponent m(i) =

mb
√

2ic for the ith iteration. The circuit for the ith controlled application, with
the notation from the previous subsections, is shown in Figure 24. We can
apply eiH2t/2m uncontrolled because if |qi〉 = |0〉, with the notation from the
Figure, then the terms inside the dashed box are not applied and therefore the
uncontrolled gates cancel each other.

Proposition 6.2. Let f(nl) denote the number of repetitions of the terms inside
the dashed box from Figure 24, and m the number of Trotter steps. Then

f(nl) ≤ 3m

(
23

nl+1

2 − 1

7

)
. (181)

Proof. The Trotter step at the ith iteration is

m(i) = mb
√

2ic = m2bi/2c. (182)
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/nl−i−1

|qi〉 • • •
/i

|b〉 eiH1(t2i) e−iH2(t/2m) eiH2(t/m) eiH3(t/m) eiH2(t/2m)

2im repetitions

Figure 24: Circuit for eiAt2
i

controlled by |qi〉 from the eigenvalues register with
m(i) = m.

Then,

f(nl) =

nl−1∑
i=0

2imb
√

2ic = m

nl−1∑
i=0

2i2bic ≤ m

nl−1

2∑
i=0

2i
(
22i + 22i+1

)
(183)

= 3m

nl−1

2∑
i=0

23i = 3m

(
23nl+1

2 − 1

7

)
. (184)

In Section 7 we will show that nl = O(log2(1/ε)), therefore f(nl) = O(m/ε),
where ε is the tolerance of the complete HHL. As for the polynomial state
preparation, we show first the table with the different gate counts for the general
case and afterwards the calculations, where the decompositions used are those
from Section 4.2.

CNOTs one-qubit gates ancilla
H1 6nl 8nl 0
H2 0 nl 0

H2, H3 O(m log2
2(N)/ε) O(m log2

2(N)/ε) nb − 1
H2 0 nl 0

Total O(m log2
2(N)/ε) O(m log2

2(N)/ε) nb − 1

Table 3: Gate count for the Hamiltonian simulation.

We begin analysing the controlled applications of H1. Its controlled version
consists on two CNOTs and two controlled one-qubit gates, and we use it a total
of nl times. A controlled one-qubit gate can be decomposed into 2 CNOTs and
4 one-qubit gates. Therefore, the total cost of H1 is

nl(2CNOTs + 2(2CNOTs + 4{ one-qubit gate })) =
6nl · CNOTs + 8nl · { one-qubit gate } . (185)

Since we use the non-controlled version of H2, it only needs one-qubit gates,
which after nl iterations gives a total of nl one-qubit gates.

Proposition 6.3. The total cost of the terms inside the dashed box from Fig-
ure 24 is

O(m log2
2(N)/ε), for ε→ 0, (186)
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CNOTs and one-qubit gates.

Proof. The cost of a controlled H2 is

2nl · CNOTs + 4nl · { one-qubit gate }. (187)

To calculate the cost of H3 we need to take into account each Cj block, 1 ≤ j ≤
nb − 1. For the controlled version of the circuit shown in Figure 23, instead of
adding an extra control to each gate, we can just add the extra control to the
rotation gate. This is to reduce the number of gates, and can be done because
the CNOTs will cancel each other if the rotation is not applied.

Thus, the Cj controlled block will need 2j CNOTs and a j-controlled Rx.
The latter can be decomposed into (j− 1) ancilla, 20(j− 1) + 4 one qubit gates
and 12(j − 1) + 2 CNOTs. Giving a total of

(14j − 10) · CNOTs +(20j − 16) · { one-qubit gate }. (188)

Summing over all Cj gives the total cost of one controlled application of H3,

nb−1∑
j=1

(14j − 10) · CNOTs +(20j − 16) · { one-qubit gate } = (189)

=

{
(nb − 1)(7(nb − 2)− 10) · CNOTs
+(nb − 1)(10(nb − 2)− 16) · { one-qubit gate } (190)

Using that nb = log2(N) and Proposition 6.2 gives the result.
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7 Inversion of Eigenvalues

Let nl ∈ N denote the size of the register storing the binary representation of the
eigenvalues, nb ∈ N the size of the register containing the solution and N = 2nb .
After the QPE, and assuming no errors in the computations, the computer is
in the state

N−1∑
j=0

bj |0〉
∣∣∣λ̃j〉

nl
|uj〉nb , (191)

Here λ̃j is the nl-bit representation of
λjt
2π , and λj denotes the jth eigenvalue

of our matrix A for λmin := λ0 ≤ λ1 ≤ . . . ≤ λN−1 =: λmax.
We are now in Step (iii) from Section 4.1. The goal is to find a circuit

performing the simultaneous transformation

N−1∑
j=0

bj |0〉
∣∣∣λ̃j〉

nl
|uj〉nb 7→

N−1∑
j=0

bj

(√
1− 1

λ̃2
j

|0〉+
1

λ̃j
|1〉

)∣∣∣λ̃j〉
nl
|uj〉nb .

(192)
Let |x̃〉 denote the approximated solution to the system of linear equations.
Then, after restoring the eigenvalues register back to |0〉nl by applying the
inverse QPE, if we measure the first qubit in the computational basis and obtain
1, we know that the post-measurement state is

N−1∑
j=0

bj

λ̃j
|1〉 |0〉nl |uj〉nb = |x̃〉 . (193)

To achieve this, we can use the Polynomial State Preparation procedure and
approximate the function

f(x) = arcsin

(
t

2πx

)
, x ∈

[
0, 2nl−1

]
, t ≤ 2π

λmax
. (194)

Thus, we take a polynomial p :
[
0, 2nl−1

]
→ [−π/2, π/2] such that

p(x) ≈ arcsin

(
t

2πx

)
. (195)

Then, applying the PSP algorithm to the nl register results in

N−1∑
j=0

bj |0〉
∣∣∣λ̃j〉

nl
|uj〉nb 7→

N−1∑
j=0

bj

(
cos
(
p(λ̃j)

)
|0〉+ sin

(
p(λ̃j)

)
|1〉
) ∣∣∣λ̃j〉

nl
|uj〉nb

(196)

≈
N−1∑
j=0

bj

(
cos(· · ·) |0〉+

t

2πλ̃j
|1〉

)∣∣∣λ̃j〉
nl
|uj〉nb (197)

≈
N−1∑
j=0

bj

(
cos(· · ·) |0〉+

1

λj
|1〉
) ∣∣∣λ̃j〉

nl
|uj〉nb , (198)

where in the derivation of the last line we used that λ̃j is the nl-bit representa-

tion of
λjt
2π . Finally, after measuring the ancilla qubit in 198 and obtaining an
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outcome of 1, the post-measurement state is approximately

N−1∑
j=0

bj
λj
|1〉
∣∣∣λ̃j〉

nl
|uj〉nb , (199)

which after restoring the nl-register back to 0, represents an approximation to
the exact solution of the system |x〉.

7.1 Error analysis

Let A ∈ C2nb×2nb be a Hermitian matrix and N = 2nb . Let λj denote the jth

eigenvalue, with λmin := λ0 and λmax = λN−1. Let nl = log2(ε) denote the size
of the register for the lambdas, where ε is the error we want to allow for the
HHL.

Definition 7.1. We denote by λ̃j the integer in the interval [0, 2nl − 1] such

that
λj
2nl is the best nl-bit binary approximation to

λjt
2π which is less than

λjt
2π .

For now and until stated otherwise we will relabel
λjt
2π as λj . Then

0 ≤ δj := λj −
λ̃j
2nl
≤ 2−nl (200)

With the following proposition we show how to pick t to obtain the best ap-
proximation.

Proposition 7.1. Let δj, λ̃j and λj as above. Then∣∣∣∣∣ 1

λj
− 2nl

λ̃j

∣∣∣∣∣ ≤ 2nl

λ̃2
j

. (201)

Proof. From the definition of δj we have that∣∣∣∣∣ 1

λj
− 2nl

λ̃j

∣∣∣∣∣ =

∣∣∣∣∣ λ̃j − 2nlλj

λj λ̃j

∣∣∣∣∣ =

∣∣∣∣∣2nlδjλj λ̃j

∣∣∣∣∣ . (202)

On the other hand,

λj λ̃j =

(
δj +

λ̃j
2nl

)
λ̃j ≥

λ̃2
j

2nl
. (203)

Therefore, using that δj ≤ 2−nl ,∣∣∣∣∣ 1

λj
− 2nl

λ̃j

∣∣∣∣∣ ≤ 2nlδj2
nl

λ̃2
j

≤ 2nl

λ̃2
j

. (204)

Hence, the approximation is better the closer the λ̃j are to 2nl .
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8 Observables

After running the algorithm, the solution to the system of linear equations will
be encoded in the amplitudes of the final state |x̃〉. In this section we will study
how to obtain information about the solution from this quantum state.

Let nb be the size of the register containing the solution, N = 2nb and nl
the size of the eigenvalues register. After restoring the nl-register back to |0〉,
but before measuring whether the inversion of eigenvalues has been successful,
the state is

|ψ〉 =

N−1∑
j=0

bj

(√
1− 1

λ̃2
j

|0〉+
1

λ̃j
|1〉

)
|0〉nl |uj〉nb . (192)

For this section, |x〉 and |x̃〉 will denote, respectively, the exact and approxi-
mated solutions to the system before normalisation, and ‖·‖ the 2-norm.

The following result states that the norm of the solution is given by the
probability of seeing a 1 in the conditioned rotation of the eigenvalues.

Proposition 8.1. Let P [|1〉] denote the probability of measuring |1〉 for the
inversion of eigenvalues. Then

P [|1〉] = ‖|x̃〉‖2. (205)

Proof. Since we only measure the ancilla qubit, we take the collection of mea-
surement operators Mi = |i〉 〈i| ⊗ Inl+nb for i ∈ {0, 1}. Furthermore, we are
looking for an outcome of 1, which means we are interested in the operator M1.
Thus, we calculate

M1 |ψ〉 =

N−1∑
j=0

bj

λ̃j
|1〉 |0〉nl |uj〉nb . (206)

Therefore,

P [|1〉] = 〈ψ|M†1M1 |ψ〉 =

N−1∑
j=0

|bj |2∣∣∣λ̃j∣∣∣2 = ‖|x̃〉‖2. (207)

We will proceed to show how to compute different functions of the solution
vector. The idea is always the same: add some extra gates at the end of the
HHL and then measure in the computational basis. By varying the gates and
the qubits measured, one can compute different functions.

Average

We can write the solution vector in the standard basis as ˜|x〉 =
∑N−1
i=0 xi |i〉.

The goal will be to compute the quantity∣∣∣∣∣ 1

N

N−1∑
i=0

xi

∣∣∣∣∣. (208)

To do so, we can append the circuit shown in Figure 25 at the end of the
algorithm and measure the each qubit from the solution register in the compu-
tational basis.
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|qnb−1〉 H
...

|q1〉 H

|q0〉 H

Figure 25: Hadamards to compute the average of the solution.

Proposition 8.2. Let P [|0〉] denote the probability of measuring all 0’s in Fig-
ure 25. Then

P [|0〉] =

∣∣∣∣∣ 1

N

N−1∑
i=0

xi

∣∣∣∣∣
2

. (209)

Proof. First, we compute explicitly

H⊗nb ⊗ ˜|x〉 =
1√
N

N−1∑
i=0

xi

N−1∑
k=0

(−1)k·i |k〉 . (210)

We will use the collection of measurement operatorsMi = |i〉 〈i|, i ∈ {0, 1, ..., N−
1}. We are interested in M0. Thus,

M0H
⊗nb ⊗ ˜|x〉 =

1√
N

N−1∑
i=0

xi |0〉 . (211)

Therefore,

P [|0〉] =

∣∣∣∣∣ 1√
N

N−1∑
i=0

xi

∣∣∣∣∣
2

. (212)

Since N is a known quantity, we can then obtain Eq. 208.

Compliance output functional

Let A be an N ×N tri-diagonal symmetric matrix of the form

A =


a b 0

b
. . .

. . .

. . . b
0 b a

 , a, b ∈ R, (213)

and let

F (x) = 〈x|A |x〉 = a

N−1∑
i=0

|xi|2 + 2b
∑
i6=j

Re
(
xix
∗
j

)
, (214)

where |x〉 ∈ CN and where Re(z) denotes the real part of z ∈ C.
In this subsection we will give an algorithm to calculate F (x̃) for a given

A with nb different measurements. The algorithm consists on nb steps, at each
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step we use a different measurement. At this point, it will be useful to write
the Hadamard gate as

H =
1√
2

∑
i,j{0,1}

(−1)i·j |i〉 〈j| . (215)

Let i denote the step of the algorithm, then the detailed description of the
algorithm is as follows.

i=1

This step consists of adding a single Hadamard gate on the last qubit as shown
in Figure 26. Then measure the last qubit in the computational basis applying
the map 0 7→ 1, 1 7→ −1. Denote by n0 the number of times we observe |0〉 and

|qnb−1〉 ...|q1〉
|q0〉 H

Figure 26: Single Hadamard gate. First step towards calculating F (x).

by n1 the number of times we observe |1〉 in the circuit from Figure 26.

Proposition 8.3. Let n0 and n1 as above with n0 + n1 →∞. Then

E

(
n0 − n1

n0 + n1

)
= P [|0〉]− P [|1〉] = 2

N/2−1∑
i=0

Re
(
x2ix

∗
2i+1

)
. (216)

Proof. The operator associated with the circuit from Figure 26 is Inb−1 ⊗ H.
We will use the collection of measurement operators Mi = Inb−1 ⊗ |i〉 〈i|, for
i ∈ {0, 1}. Then,

Mi (Inb−1 ⊗H) |x̃〉 =

Inb−1 ⊗

 1√
2

1∑
j=0

(−1)i·j |i〉 〈j|

 |x̃〉 (217)

=
1√
2

N/2−1∑
k=0

((−1)0x2k + (−1)ix2k+1) |2k + i〉 . (218)

Therefore,

P [|i〉] =
1

2

N/2−1∑
k=0

(x2k + (−1)ix2k+1)∗(x2k + (−1)ix2k+1) (219)

=
1

2

N−1∑
k=0

|xi|2 + (−1)i2

N/2−1∑
i=0

Re
(
x2ix

∗
2i+1

) . (220)

Hence,

P [|0〉] + P [|1〉] = 2

N/2−1∑
i=0

Re
(
x2ix

∗
2i+1

)
. (221)
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i=k

The circuit for the kth step, k > 1, is shown in Figure 27. Now we will measure
the last k qubits in the computational basis. We want to see |q0〉 = · · · =
|qnb−2〉 = |1〉 and apply the same mapping as before for the results of measuring
|qk−1〉.

|qnb−1〉 ...|qk−1〉 • • • • H

|qk−2〉
· · ·

|q2〉

|q1〉

|q0〉

Figure 27: kth step towards calculating F (x).

Proposition 8.4. Let Pk [|i〉] denote the probabilty of outcome |q0〉 = · · · =
|qk−2〉 = |1〉 and |qk−1〉 = |i〉, for i ∈ {0, 1}. Then

Pk [|0〉]− Pk [|1〉] = 2

N−2∑
i=−1 mod 2k

Re
(
xix
∗
i+1

)
. (222)

Proof. Note that with the circuit from Figure 27, the outcome |q0〉 = · · · =
|qk−2〉 = |1〉 can only happen when originally either

|q0〉 = · · · = |qk−2〉 = |1〉 and |qk−1〉 = |0〉 , (223)

or
|q0〉 = · · · = |qk−2〉 = |0〉 and |qk−1〉 = |1〉 . (224)

That is, for those basis state |i〉 such that i = 0 mod 2k or i = −1 mod 2k.
Parting from the point at which we have already measured |q0〉 = · · · = |qk−2〉 =
|1〉, calculating the probability of |qk−1〉 = |0〉 or |qk−1〉 = |1〉 can be done as in
Proposition 8.3. Therefore,

Pk [|i〉] =
1

2

 N−1∑
i=0 or −1 mod 2k

|xi|2 + (−1)i2

N−2∑
i=−1 mod 2k

Re
(
xix
∗
i+1

) ,

(225)
and the result follows.

Finally,

nb∑
k=1

2

N−2∑
i=−1 mod 2k

Re
(
xix
∗
i+1

)
= 2

∑
i 6=j

Re
(
xix
∗
j

)
. (226)

Both a and b are known parameters. And
∑N−1
i=0 |xi|

2
= ‖|x̃〉‖2 can be calculated

from Proposition 8.1. Therefore, we have a method to compute F (x) with only
nb = log2(N) different measurements.
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9 HHL error analysis

The goal of this section is to prove the following theorem.

Theorem 9.1. Let |x〉 denote the exact solution to the system, and HHL
(
Ã,
∣∣∣b̃〉)

the solution returned by the HHL algorithm using approximations for the initial
state and Hamiltonian simulation. Then∥∥∥|x〉 −HHL

(
Ã, |b〉

)∥∥∥ = O(κc2 + εA + εH) for c, εA, εH → 0. (227)

There are two parameters that we can adjust in the algorithm. In Section 9.1
we show how to choose them to achieve a solution within a target tolerance.
For the error analysis we take into account the Polynomial State Preparation
approximation given in Section 5, the Hamiltonian simulation shown in Section 6
and assume that the function for the eigenvalues inversion is exact. Throughout
this section, A will denote the tri-diagonal symmetric matrix associated to the
system of equations we want to solve.

9.1 Parameters

There are two parameters which can be adjusted to improve the performance
of the algorithm: t and m.

From Proposition 6.1, we have that for the jth power within the QPE, the

number of Trotter steps should be adjusted to mj =
⌊
m
√

2j
⌋
, and

⌈√
t3b3

2εA

⌉
,

where εA is the error from the approximated Hamiltonian simulation.
The values represented in binary in the eigenvalue register are

λjt
2π rather

than λj . Thus, the goal is to find t ∈ R such that:

(i)
λjt
2π ∈ [0, 1)∀j.

(ii) From Proposition 8.4, the quantities
λjt
2π should be as close to 1 as possible.

(iii) λmint
2π should be represented exactly since it has the largest contribution in∑ bj
λj
|uj〉.

The largest value representable in binary with nl digits is
(
1− 1

2nl

)
. Thus, to

satisfy (i),

t ≤
2π
(
1− 1

2nl t

)
λmax

=: T. (228)

Now let λ̃min ∈ [0, 2nl − 1] be such that λ̃min

2nl is the best nl-bit binary approxi-

mation to λminT
2π which is less than λminT

2π .
To satisfy (iii), we will set the time of the simulation to

t =
1

2nl
· λ̃min2π

λmin
. (229)
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9.2 Error analysis

Let nl ∈ N denote the size of the register storing the binary representation
of the eigenvalues, nb ∈ N the size of the register containing the solution and
N = 2nb .The state of the computer after the Quantum Phase Estimation is

N−1∑
j=0

bj |uj〉

(
2nl−1∑
l=0

αl|j |l〉

)
, (230)

where

αl|j =
1

2nl

2nl−1∑
k=0

(
e

2πi
(
λjt

2π −
t

2nl

))k
. (231)

The first step towards finding a bound for the overall error of the algorithm
will be to bound these coefficients αl|j . We can relabel the second register in

Eq. 230 so that αl|j denotes the amplitude of
∣∣∣l + λ̃j ( mod 2nl)

〉
. So now,

αl|j :=
1

2nl

2nl−1∑
k=0

(
e

2πi

(
λjt

2π −
l+λ̃j

2nl

))k
. (232)

With this notation, the best possible scenario occurs when α0|j = 1 ∀j and
αl|j = 0 ∀l 6= 0 ∀j.

Remark. Note that fixing j, from the fact that all the gates used were unitary,
we have the identity

2nl−1∑
l=−2nl−1+1

∣∣αl|j∣∣2 = 1. (233)

The following result will be needed for the proof of Lemma 9.2.

Proposition 9.1. Let θ ∈ R, then∣∣1− eiθ∣∣ ≥ 2|θ|
π

for − π ≤ θ ≤ π. (234)

Proof.∣∣1− eiθ∣∣ = |(1− cos(θ)) + i sin(θ)| =
√

(1− cos(θ))2 + sin2(θ)

=
√

2− 2 cos(θ) =

∣∣∣∣2 sin

(
θ

2

)∣∣∣∣ . (235)

Since sin(θ) is concave for θ ∈ [0, π/2], and it takes the same values as 2θ
π at the

endpoints of the interval while sin
(
π
4

)
=
√

2
2 > 1

2 , we have that sin(θ) ≥ 2θ
π for

θ ∈ [−π/2, π/2]. Then, by symmetry of the functions, we obtain that | sin(θ)| ≥∣∣ 2θ
π

∣∣ for θ ∈ [−π/2, π/2].
Hence, for −π ≤ θ ≤ π,∣∣1− eiθ∣∣ =

∣∣∣∣2 sin

(
θ

2

)∣∣∣∣ ≥ 2|θ|
π
. (236)
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Lemma 9.2. Let δj as defined in Eq. 200 and t as in Eq. 229. For −2nl−1 <
l ≤ 2nl−1 it holds that ∣∣αl|j∣∣ ≤ 1

2nl+1 (δj − l/2nl)
, (237)

where 1 ≤ j ≤ N − 1. Furthermore, α0|0 = 1 and αl|0 = 0 for l 6= 0.

Proof. Since t is chosen such that δ0 = 0, we have that

α0|0 =
1

2nl

2nl−1∑
k=0

1 = 1. (238)

And for l 6= 0,

αl|0 =
1

2nl

2nl−1∑
k=0

(
e2πi 1

2nl

)k
= 0. (239)

Let now j > 0. Since the αl|j are the sum of a geometric series, one has

αl|j =
1

2nl

1− e
2πi

(
λj−

l+λ̃j

2nl

)
2nl

1− e
2πi

(
λj−

l+λ̃j

2nl

)
 (240)

=
1

2nl

1− e2πi(λj2nl−(l+λ̃j))2nl

1− e
2πi

(
λj−

l+λ̃j

2nl

)
 (241)

=
1

2nl

(
1− e2πi(2nlδj−l)

1− e2πi(δj−l/2nl )

)
. (242)

Using that for θ ∈ R,
∣∣1− eiθ∣∣ ≤ 2,

∣∣αl|j∣∣ ≤ 2

2nl
∣∣1− e2πi(δj−l/2nl )

∣∣ . (243)

On the other hand,
∣∣1− eiθ∣∣ ≥ 2|θ|

π for − π ≤ θ ≤ π by Proposition 234. And
−2nl−1 < l ≤ 2nl−1 means that −π ≤ 2π (δj − l/2nl) ≤ π. So we obtain the
result ∣∣αl|j∣∣ ≤ 1

2nl+1 (δj − l/2nl)
. (244)

Proposition 9.2. Let k be an integer with 0 ≤ k ≤ nl − 2 and fix j. Then

2k+1∑
|l|=2k

∣∣αl|j∣∣2 ≤ 1

2k+2
. (245)

55



Proof. From Lemma 9.2, and using that 0 ≤ 2nlδj ≤ 1,

2k+1∑
|l|=2k

∣∣αl|j∣∣2 ≤ 2k+1∑
|l|=2k

1

4 (2nlδj − l)2 (246)

≤ 1

4

 −2k∑
l=−2k+1

1

(l − 1)2
+

2k+1∑
l=2k

1

l2

 (247)

≤ 1

2

2k+1∑
l=2k

1

l2
≤ 1

2

∫ 2k+1

2k

1

l2
dl (248)

=
1

2

(
1

2k
− 1

2k+1

)
(249)

=
1

2k+2
. (250)

The following will be the last intermediate result before the proof of Theo-
rem 9.1.

Proposition 9.3. Fix j. Let λj denote the jth eigenvalue of A. Define f(l) :=
2nl

l+λ̃j
· t

2π for −2nl−1 < l ≤ 2nl−1 and define f(λj) := 1/λj. Then

2π

t

∣∣∣∣∣∣f (λj)−
2nl−1∑

l=−2nl−1+1

∣∣αl|j∣∣2 f(l)

∣∣∣∣∣∣ = O

(
nl

2nl

λ̃2
j

)
for j ≥ 1, (251)

and ∣∣∣∣∣∣f (λ0)−
2nl−1∑

l=−2nl−1+1

∣∣αl|0∣∣2 f(l)

∣∣∣∣∣∣ = 0. (252)

Proof. From Proposition 9.2,

2π

t

∣∣∣∣∣∣f (λ0)−
2nl−1∑

l=−2nl−1+1

∣∣αl|0∣∣2 f(l)

∣∣∣∣∣∣ = |f (λ0)− f(0)| =
∣∣∣∣ 2π

tλ0
− 2nl

λ̃0

∣∣∣∣ = 0. (253)

From now on, let λj be a label for
λjt
2π . For j ≥ 1, using the identity from

Eq. 233,

2π

t

∣∣∣∣∣∣ t

2πλj
−

2nl−1∑
l=−2nl−1+1

∣∣αl|j∣∣2 f(l)

∣∣∣∣∣∣ =

2nl−1∑
l=−2nl−1

∣∣αl|j∣∣2
∣∣∣∣∣ 1

λj
− 2nl

l + λ̃j

∣∣∣∣∣ (254)

≤
∣∣α0|j

∣∣2 ∣∣∣∣∣ 1

λj
− 2nl

λ̃j

∣∣∣∣∣+

2nl−1∑
|l|=1

∣∣αl|j∣∣2
∣∣∣∣∣ 1

λj
− 2nl

l + λ̃j

∣∣∣∣∣ . (255)

First, from Proposition 7.1,

∣∣α0|j
∣∣2 ∣∣∣∣∣ 1

λj
− 2nl

λ̃j

∣∣∣∣∣ ≤ 2nl

λ̃2
j

. (256)
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And using Proposition 9.2,

2nl−1∑
|l|=1

∣∣αl|j∣∣2
∣∣∣∣∣ 1

λj
− 2nl

l + λ̃j

∣∣∣∣∣ ≤
nl−2∑
k=0

nl−2∑
|l|=2k

∣∣αl|j∣∣2
∣∣∣∣∣ 1

λj
− 2nl

l + λ̃j

∣∣∣∣∣ (257)

≤
nl−2∑
k=0

∣∣∣∣∣ 1

λj
− 2nl

2k+1 + λ̃j

∣∣∣∣∣
2k+1∑
|l|=2k

∣∣αl|j∣∣2 (258)

≤
nl−2∑
k=0

1

2k+2

∣∣∣∣∣ 1

λj
− 2nl

2k+1 + λ̃j

∣∣∣∣∣ =

nl−2∑
k=0

1

2k+2

∣∣∣∣∣∣2
k+1 + λ̃j − 2nlλj

λj

(
2k+1 + λ̃j

)
∣∣∣∣∣∣ (259)

=

nl−2∑
k=0

1

2k+2

∣∣∣∣∣∣ 2k+1 − 2nlδj

λj

(
2k+1 + λ̃j

)
∣∣∣∣∣∣ ≤

nl−2∑
k=0

1

2k+2

∣∣∣∣∣∣ 2k+1

λj

(
2k+1 + λ̃j

)
∣∣∣∣∣∣ (260)

≤ 1

2

nl−2∑
k=0

∣∣∣∣∣2nlλ̃2
j

∣∣∣∣∣ =
nl − 1

2
· 2nl

λ̃2
j

. (261)

Combining Eq. 256 and Eq. 261 gives∣∣∣∣∣∣f (λj)−
2nl−1∑

l=−2nl−1+1

∣∣αl|j∣∣2 f(l)

∣∣∣∣∣∣ ≤ nl + 1

2
· 2nl

λ̃2
j

. (262)

Proposition 9.4. Let f(l) as before. Suppose that the eigenvalues register has
been restored back to |0〉nl and that the eigenvalues inversion has been successful.
Then the post-measurement state is

N−1∑
j=0

2nl−1∑
l=0

∣∣αl|j∣∣2 f(l) |0〉nl |uj〉nb . (263)

Proof. The state after the conditioned rotation has occurred is

N−1∑
j=0

bj

(√
1− 1

λ̃2
j

|0〉+
1

λ̃j
|1〉

)
2nl−1∑
l=0

αl|jf(l)
∣∣∣l + λ̃j

〉
nl
|uj〉nb . (264)

We are going to analyse the effect of the inverse QPE on this state. For this
analysis, we will ignore the case where the rotation has failed. Thus we work
instead with the state

|ψ〉 =

N−1∑
j=0

bj

λ̃j

2nl−1∑
l=0

αl|jf(l)
∣∣∣l + λ̃j

〉
nl
|uj〉nb . (265)

The reason we can do this is the following. Suppose we have a quantum state

|y〉 = {good} |1〉 |good〉 |x〉m + {bad} |0〉 |bad〉 |x〉m . (266)
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Then we apply the inverse QPE on the second register, obtaining(
I ⊗QPE† ⊗ Im

)
|y〉 = {good} |1〉QPE† |good〉 |x〉m+{bad} |0〉QPE† |bad〉 |x〉m .

(267)
Finally, suppose we measure the first qubit in the computational basis and
continue working with the post-measurement state only if the outcome is 1.
Thus we only consider the post-measurement states of the form

{good} |1〉QPE† |good〉 |x〉m . (268)

Therefore, to calculate analytically Eq. 268 starting from |y〉, we can ignore the
parts with a |bad〉 register appended.

Returning to |ψ〉 from Eq. 265, after applying the QFT on the eigenvalues
register it becomes

N−1∑
j=0

2nl−1∑
l=0

αl|jf(l)

2nl/2

2nl−1∑
y=0

e2πiy(l+λ̃j)/2nl |y〉 |uj〉 . (269)

The next part of the inverse QPE is powers of e−iAt, giving

N−1∑
j=0

2nl−1∑
l=0

αl|jf(l)

2nl/2

2nl−1∑
y=0

e
2πiy

(
l+λ̃j

2nl
−
λjt

2π

)
|y〉 |uj〉 . (270)

Finally, applying H⊗nl yields

N−1∑
j=0

2nl−1∑
l=0

αl|jf(l)

2nl/2

2nl−1∑
y=0

(
e

2πiy

(
l+λ̃j

2nl
−
λjt

2π

))y 2nl/2∑
h=0

(−1)y·h |h〉 |uj〉 . (271)

The state corresponding to h = 0 is then

N−1∑
j=0

2nl−1∑
l=0

αl|jf(l)

2nl/2

2nl−1∑
y=0

(
e

2πiy

(
l+λ̃j

2nl
−
λjt

2π

))y
|0〉 |uj〉 (272)

= .

N−1∑
j=0

2nl−1∑
l=0

αl|jα
∗
l|jf(l) |0〉 |uj〉 (273)

=

N−1∑
j=0

2nl−1∑
l=0

∣∣αl|j∣∣2f(l) |0〉 |uj〉 . (274)

We can now prove Theorem 9.1.

Proof. Let |x〉 be the exact solution to the system and let f defined as in Propo-
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sition 9.3. From Proposition 9.4,

||x〉 −HHL (A, |b〉)| =

∣∣∣∣∣∣
N−1∑
j=0

bj

(
1

λj
−

2nl−1∑
l=0

∣∣αl|j∣∣2 f(l)

)∣∣∣∣∣∣ |uj〉 (275)

=

∣∣∣∣∣∣
N−1∑
j=0

bj

(
f(λj)−

2nl−1∑
l=0

∣∣αl|j∣∣2 f(l)

)∣∣∣∣∣∣ |uj〉 (276)

≤
N−1∑
j=0

bj

∣∣∣∣∣
(
f(λj)−

2nl−1∑
l=0

∣∣αl|j∣∣2 f(l)

)∣∣∣∣∣ |uj〉 (277)

=

N−1∑
j=1

bjO

(
tnl2

nl

λ̃2
j

)
≤
N−1∑
j=1

bjO

(
tnl2

nl

λ̃2
2

)
(278)

≤ O

(
tnl2

nl

λ̃2
2

)
≤ O

(
tnl2

nl

λ̃2
min

)
= O

(
nl

λ̃minλmin

)
(279)

= O
(
nl2
−nl

λmax

)
= O (log2(1/ε)ε) =: εH . (280)

where we have used that |b〉 is normalised, the definition of t from Eq. 229, that
λ̃min ≤ 2nl/κ and taken nl = blog2(1/ε)c.

Finally, from Lemma 5.3 and Eq. 177,∣∣∣|x〉 −HHL
(
Ã, ˜|b〉

)∣∣∣ (281)

≤
∣∣∣|x〉 −HHL

(
A, ˜|b〉

)∣∣∣+
∣∣∣HHL

(
A, ˜|b〉

)
−HHL

(
Ã, ˜|b〉

)∣∣∣ (282)

= O(κc2 + εA + εH). (283)

In Eq. 280, a bound O (ε) can be achieved by only inverting values which
are larger than 1/κ, as it is shown in Section 2 of [1].
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10 Simulations

The algorithm was implemented using the Qiskit software from IBM ([42]). The
results are simulations run locally, where the output is a vector array containing
the theoretical amplitudes of the final state of the algorithm. In all plots cases,
the matrix used was

A =


2 1/2 0

1/2
. . .

. . .

. . . 1/2
0 1/2 2

 , (284)

which is well-conditioned. Throughout this section, keeping with the notation
from the previous sections, the size of the matrix is 2nb , its condition number
is κ; the size of the eigenvalues register is nl; c is the small constant used in
the Polinomial State Preparation algorithm, with polynomial p; m the initial
number of Trotter steps; εH the error from the HHL algorithm assuming exact
initial state and Hamiltonian simulation; εA the error from Hamiltonian simu-
lation; |x〉 the exact solution to the system and |x̃〉 the solution returned by the
HHL algorithm.

Polynomial State Preparation

Proposition 17 states that if
∣∣∣b̃〉 is the state prepared by the algorithm, and |b〉

the target state then ∥∥∥|b〉 − ∣∣∣b̃〉∥∥∥ = O(c2). (285)

Figure 28a shows the error fixing the number of qubits and decreasing c in
preparing the state for the polynomials

p1(x) = x4 − x3 + x2 − 1/2, (286)

p2(x) = π/2, (287)

p3(x) =
3 +
√

109

80
x2 − 23 +

√
109

80
x− 1/8. (288)

On the other hand, Figure 28b shows the error fixing c and varying the
number of qubits in preparing the quantum state with amplitudes given by the
polynomial

p3(x) =
3 +
√

109

80
x2 − 23 +

√
109

80
x− 1/8. (289)

Lemma 5.4 shows that the probability of successfully preparing the state
behaves as

O
(
c2‖p‖2L2

[0,1]

)
. (290)

Figure 29 shows the squared amplitude returned by Qiskit associated to the |1〉
qubit defined as a success flag for the algorithm.
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(a) Fixed nb, varying c and plotted against c2.

(b) Fixed c, vary the dimension of the state. The error is constant
with the dimension.

Figure 28: Error in state preparation varying different parameters.

Lemma 5.3 states that the overall error in the HHL behaves as O
(
κc2 + εH

)
.

In Figure 30, the full algorithm was run varying c and compared against the
analytically calculated solution.
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(a) Fixed nb, varying c and plotted against c2‖p‖2.

(b) Fixed c, vary the dimension of the state. The probability is
constant with the dimension.

Figure 29: Probability of measuring |1〉 in the flag-qubit associated with the
state preparation.
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Figure 30: Overall error varying c for f(c) = κc2 + εH .
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Hamiltonian simulation

The definition of the norm of a matrix, as given in Definition 2.12, is

‖A‖ = max
‖|x〉‖=1

‖A |x〉‖ forA ∈ Cm×n, |x〉 ∈ Cn×1. (291)

Therefore, to test the approximation obtained for the Hamiltonian simulation,
one option is to run the algorithm with several unitary initial states which can
be exactly prepared and plot the results.

Lemma 6.2 stated that ∥∥∥V − Ṽ ∥∥∥ = O
(
t3b3

2m2

)
. (292)

Figure 31 shows the results from calculating∥∥∥V |b〉 − Ṽ |b〉∥∥∥, (293)

where Ṽ is the Hamiltonian simulation from the algorithm and V = eiAt, and

plotting them against f(t,m) = b3t3

2m2 .

(a) Vary m.
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(b) Vary t.

(c) Vary nb.

Figure 31: Error in Hamiltonian simulation varying different parameters. (c)
shows that it is independent of the dimension. Here error1 seems to decrease
because |b1〉 = H⊗nb |0〉, and so the vector components decrease with nb.

Finally, in Lemma 6.3 it was proved that the overall error assuming an exact
procedure for preparing the initial state would be in O (εA + εH). Thus, by only
decreasing m and leaving everything fixed, we expect to see the error decrease
at first and then constant dominated by εA. Figure 32 shows the simulation
results.
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Figure 32: Overall error from the HHL varying m and with an exact initial
state.
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11 Outlook and Conclusion

In this thesis we have presented a quantum algorithm to solve systems of linear
equations. We have achieved an implementation that runs simulations on large
systems and non-trivial initial states. As an addition, we have extended the the
idea from [45] to load data to a quantum computer via polynomials. The idea,
which applied originally to 2-qubits, was extended for an arbitrary number of
qubits and an arbitrary degree of the polynomial. Using the scheme to decom-
pose Hamiltonians into a sum of 1-sparse matrices from [17], we have provided
a means to simulate general symmetric tri-diagonal matrices. All the circuits
for this stage of the algorithm are original. Finally, in this thesis we introduce
an algorithm to compute specific functions of the solution without loosing the
exponential runtime improvement.

Several paths could be explored to improve the construction of the algo-
rithm. One option would be to investigate an optimal Hamiltonian simulation.
Any improved implementation for this stage of the algorithm could be easily
integrated and tested with the existing code, as explained in the Appendix.

During the course of this thesis it was considered to include the Richardson
Extrapolation, a small description of the method and the findings are included
in the Appendix. This is a direction which would be worth probing and which
may allow a reduction in the overall complexity of the algorithm.

Further work on the inversion of eigenvalues would be to include the error of
the approximating polynomial in the final analysis. In the HHL paper they only
perform the inversion for larger values, however, in the given implementation
we do not make such difference. Therefore, the overall performance could be
improved by doing so and avoiding inverting values that are too close to zero.
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12 Appendix

Richardson Extrapolation

One way to speed up the computation is applying the Richardson extrapolation
[43, Chapter-2.2.]. Suppose an algorithm A(h) approximating A∗ with error hn,
i.e. A(h) = A∗ + Chn +O

(
hn+1

)
. And define the function

R(h, T ) :=
TnA(h/t)−A(h)

Tn − 1
. (294)

Then the Richardson extrapolation of A(h) is

R(h, T ) :=
Tn
(
A∗ + Chn +O

(
hn+1

))
−
(
A∗ + Chn +O

(
hn+1

))
Tn − 1

= A∗ +O
(
hn+1

) . (295)

used as a recurrence relation for even higher-order error estimations of A∗.
It can be used in conjunction with the HHL to reduce the parameter m

and therefore the number of gates and time of the computation. Here we have
h = t/m, and so for a one step Richardson extrapolation we could take T = 2
(that is to minimise the increase in m). Then we run the algorithm once with
m and once with 2m and compute R(t/m, 2) from the results obtained in the
measurements.

This method was tested to calculate the norm of the solution and gave
promising results, however no analysis of the total number of gates nor the
error was carried out and that is why it has not been included in the main of
the thesis.

Implementation

In this section we show how to use the code. To run the algorithm one needs
to specify the dimension of the system, the coefficients of the matrix and the
polynomial for the right hand side.

The code consists of the main HHL algorithm and circuit factories. The lat-
ter are subclasses of circuit factory, which has available methods for controlled,
inverse and powers and is provided by Qiskit.

Suppose we want to prepare a state given by the polynomial p(x) = a0 +
a1x + . . . + adx

d. The PolynomialState circuit factory takes as input for the
constructor method the array [a0, a1, . . . , ad]. Then the method ?build? is for
constructing the circuit. The inputs are, in this order, the quantum circuit,
the register where we want the state, a flag qubit and a list of ancillas. The
following is the simplest version for building a state.

# State preparation. The first step is to put the register in a

superposition of bases states.

for qu in qrb:

qc.h(qu)

# qrr[0] will be a flag. A measurement of 1 of this qubit means the

procedure has been successful.

PolynomialState(self.px).build(qc, qrb, qrr[0], q_ancillas=qra)
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The Polynomial State Preparation algorithm needs two important meth-
ods: get controls method computes the possible k-tuples of qubits, 1 ≤ k ≤
min(deg, nb) and the get thetas method computes the coefficient of each mono-
mial, which will later be the angle of the rotation.

def get_controls(n, d):

t = [0] * (n - 1) + [1]

cdict = {tuple(t): 0}

clist = list(product([0,1], repeat=n))

index = 0

while index < len(clist):

tsum = 0

i = clist[index]

for j in i:

tsum = tsum + j

if tsum > d:

clist.remove(i)

else:

index = index+1

clist.remove(tuple([0]*n))

# For now set all angles to 0

for i in clist:

cdict[i] = 0

return cdict

def get_thetas(cdict, p, n):

# For p1 to pd, we have pj*(q0+2q1+...+2^nqn)^j. Thus we calculate

the coefficients

for j in range(1,len(p)):

# List of multinomial coefficients

mlist = multinomial_coefficients(n, j)

# Add angles

for m in mlist:

temp_t = []

powers = 1

# Get controls

for k in range(0, len(m)):

if m[k] > 0:

temp_t.append(1)

powers *= 2**(k*m[k])

else:

temp_t.append(0)

temp_t = tuple(temp_t)

# Add angle

cdict[temp_t] += p[j]*mlist[m]*powers

return cdict

The TridiagonalSimulator Circuit Factory approximates eiAt using the Trot-
ter formula from Eq. 150. It takes as constructor parameters the coefficients of
the matrix, the number of qubits where it is acting and the number of Trotter
steps.

Currently, the factories for simulating each element from the decomposition
are encoded. However these could be taken as constructor parameters too if one
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wished to simulate different types of matrices or had more efficient implemen-
tations.

Below are the construction and build methods for the implementation of
eiAt.

class TridiagonalSimulator(CircuitFactory):

"""

Simulates exp(iAt), where A is a tridiagonal symmetric matrix of

dimension 2^n x 2^n. When no time is provided the simulation runs

for t=1.

"""

def __init__(self, number_of_qubits, m, a, b):

super().__init__(number_of_qubits)

self.m = m

self.a = a

self.b = b

# Construct a1 and a23 factories

self._a1_factory = A1Factory(number_of_qubits)

self._a23_factory = A23Factory(number_of_qubits)

def build(self, qc, q, q_ancillas=None, params=1):

# Since A1 commutes, one application with time t*2^{j} to the last

qubit is enough

self._a1_factory.build(qc, q[0], params=self.a*params)

# exp(iA2t/2m)

qc.u3(self.b*params/self.m, -np.pi/2, np.pi/2, q[0])

for _ in range(0, self.m):

self._a23_factory.build(qc, q, q_ancillas=q_ancillas,

params=self.b*params/self.m)

# exp(-iA2t/2m)

qc.u3(-self.b*params/self.m, -np.pi/2, np.pi/2, q[0])

The following is the build method for eiH1t.

def build(self, qc, q, q_ancillas=None, params=1):

qc.x(q) qc.u1(params, q)

qc.x(q) qc.u1(params, q)

The following is the build method for eiH2teiH3t inside the bracket from
Eq. 150.

def build(self, qc, q, q_ancillas=None, params=1):

# Gates for A2

qc.u3(-2*params, -np.pi/2, np.pi/2, q[0])

# Gates for A3

for i in range(0, self.num_target_qubits-1):

q_controls = []

qc.cx(q[i], q[i+1])

q_controls.append(q[i+1])

# Now we want controlled by 0

qc.x(q[i])

for j in range(i, 0, -1):
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qc.cx(q[i], q[j-1])

q_controls.append(q[j-1])

qc.x(q[i])

# Multicontrolled x rotation

if(len(q_controls)>1):

qc = cn_gate(q_controls, qc, q_ancillas, -np.pi/2, np.pi/2,

-2*params, q[i])

else:

qc.cu3(-2*params, -np.pi/2, np.pi/2, q_controls[0], q[i])

# Uncompute

qc.x(q[i])

for j in range(0, i):

58qc.cx(q[i], q[j])

qc.x(q[i])

qc.cx(q[i], q[i+1])

Finally, below is the code to implement the observables from Section 9.

# This observable gives the squared average of the entries on condition

seing |0>

def observable_average(self, qc, qr):

for q in qr:

qc.h(q)

return qc

# kth iteration of the observable <x|A|x>

def observable_func(self, qc, qr, k):

for i in range(0,k-1):

qc.cx(qr[k-1], q[i])

qc.h(qr[k-1])

return qc
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