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1 Introduction

In this thesis the reduced basis method for parametrized elliptic boundary
value problems is discussed and applied to the Poisson equation with homoge-
neous Dirichlet boundary conditions on a parametrized domain. The method
is implemented based on the C++ finite element framework LehrFEM++
developed at ETH Zurich [1].

In section 2 the variational formulation of parametrized boundary value
problems is introduced and the example problem is described.

Section 3 focuses on the reduced basis method which allows to efficiently
solve a parametrized boundary value problem for a large number of different
parameters. The central concept of dividing the computational procedure
into offline and online stages in order to ensure efficiency and the compact
representation of the solution manifold by the reduced basis are discussed.

The efficiency of the reduced basis method relies on the possibility to
approximate the elements of the variational problem by affine forms, which
is provided by the Empirical Interpolation Method. This method is outlined
in section 4.

Another component of the reduced basis method is the efficient a pos-
teriori estimation of the reduction error, that is, the difference between
the Galerkin solution and its approximation provided by the reduced ba-
sis method. The methods used to estimate the reduction error are described
in section 5.

Section 6 deals with the implementation of the methods outlined in the
previous sections.

The last section 7 presents the results of the numerical experiments about
the reduced basis method as well as the Empiricial Interpolation Method and
the Successive Constraint Method, the latter being applied to estimate the
reduction error.
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2 Parametrized variational problems

Section 2.1 introduces the abstract formulation of parametrized stationary
variational problems as in [2, Section 2.1]. In section 2.2 the example problem
considered throughout this thesis is described.

2.1 Abstract formulation

We consider fields v : Ω → Rdv defined over the domain Ω ⊂ Rd with
d ∈ {1, 2, 3} where dv = 1 for scalar fields and dv = d for vector fields. The
field belongs to the space

V =
dv∏
i=1

Vi , Vi = {v ∈ H1(Ω) : v|Γi
= 0},

where the Γi are segments of ∂Ω. V is equipped with a scalar product (u, v)V
such that the induced norm ‖v‖V =

√
(v, v)V is equivalent to the (H1(Ω))

dv -
norm. Denoting the closed parameter space by P ⊂ RP , P ∈ N, we can
define the parametrized field variable as u : P→ V.

We also consider a parametrized bilinear form a(µ, ·, ·) : V× V→ R and
parametrized linear forms l(µ, ·) : V → R and f(µ, ·) : V → R for µ ∈ P.
The abstract variational formulation can then be stated as:
Given µ ∈ P, find u(µ) ∈ V such that

a(µ;u(µ), v) = l(µ; v) , ∀v ∈ V, (1)

and evaluate the output functional

s(µ) = f(µ;u(µ)). (2)

The above problem is assumed to be compliant, that is, ∀µ ∈ P, the bilinear
form a(µ; ·, ·) is symmetric and l(µ; ·) = f(µ; ·).

If the following additional conditions are fulfilled, problem (1) is well-
posed:

(i) a(µ; ·, ·) is coercive and continuous with respect to ‖·‖V for all µ ∈ P.
In particular, by the definition of coercivity, there exists α(µ) ≥ α > 0
such that

a(µ; v, v) ≥ α(µ)‖v‖V
2 , ∀v ∈ V,

where the coercivity constant is defined as

α(µ) = inf
v∈V

a(µ; v, v)

‖v‖2
V

. (3)
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(ii) f(µ; ·) is continuous with respect to ‖·‖V for all µ ∈ P.

The induced energy norm is denoted by

‖v‖a =
√
a(µ; v, v) , v ∈ V,

which is equivalent to the ‖·‖V-norm.

2.2 Example problem

We consider the boundary value problem

−∆u(µ) = 1 in Ω(µ)

u(µ) = 0 on ∂Ω(µ)
(4)

which depends on a parameter µ ∈ P = [−1, 1]P ⊂ RP for some P ∈ N. The
domain is defined as

Ω(µ) =
{
x = (r cos(ϕ), r sin(ϕ))T ∈ R2 : 0 ≤ r < rB(µ, ϕ), 0 ≤ ϕ < 2π

}
where

rB(µ, ϕ) = 1 +
3

π2

P∑
l=1

l−2µl sin(lϕ). (5)

The variational formulation of (4) reads:
Given µ ∈ P, find u(µ) ∈ H1

0 (Ω(µ)) such that∫
Ω(µ)

∇u(µ) · ∇vdx =

∫
Ω(µ)

vdx , ∀v ∈ H1
0 (Ω(µ)). (6)

The above variational problem is transformed to a fixed reference domain
which is independent of the parameters. The reference domain is chosen to
be the unit disk

Ω̂ =
{
x ∈ R2 : ‖x‖ < 1

}
.

The transformation is given by a mapping

φ(µ) : Ω̂→ Ω(µ)

x̂ 7→ x
(7)

such that (6) can be expressed on the reference domain:
Given µ ∈ P, find û(µ) ∈ H1

0 (Ω̂) such that∫
Ω̂

α̂(µ, x̂)∇̂û(µ) · ∇̂v̂dx̂ =

∫
Ω̂

β̂(µ, x̂)v̂dx̂ , ∀v̂ ∈ H1
0 (Ω̂) (8)
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where û(µ) = u(µ) ◦ φ(µ) and the coefficient functions α̂ : P × R2 → R2,2

and β : P× R2 → R are given by [3, Equation 4.3]

α̂(µ, x̂) = Dφ(µ)−1(x̂)Dφ(µ)−T (x̂)| det(Dφ(µ))|(x̂), (9)

β̂(µ, x̂) = | det(Dφ(µ))|(x̂), (10)

denoting the jacobian of φ by Dφ. The mapping (7) is chosen as

φ(µ, x̂) = x̂+ χ(x̂)
(
rB(µ, ϕx̂)− 1)

) x̂

‖x̂‖

with rB defined in (5) and ϕx̂ = arg(x̂) [3, Equation 3.2]. The mollifier
χ : Ω̂→ R≥0 is set to [3, Equation 3.3]

χ(x̂) =

{
0, ‖x̂‖ ≤ 1

4
‖x̂‖− 1

4

1− 1
4

, 1
4
< ‖x̂‖ ≤ 1.

This choice of φ(µ) guarantees the well-posedness of (8) [3, Theorem 4.3].
Further, (8) fits the setting of section (2.1) with

a(µ; û(µ), v̂) =

∫
Ω̂

α̂(µ, x̂)∇̂û(µ) · ∇̂v̂dx̂ , (11)

l(µ; v̂) = s(µ) =

∫
Ω̂

β̂(µ, x̂)v̂dx̂ , (12)

V = H1
0 (Ω̂) and Ω = Ω̂.
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3 Reduced Basis Method

The procedure of the reduced basis method (RBM) consists of two stages.
During the offline stage the reduced basis is determined which should ac-
curately represent the space of solutions to the parametrized problem. In
the offline stage the problem is also approximated by an affine structure to
allow the rapid evaluation of the reduced basis approximation for any ad-
missible parameter during the online stage. In section 3.1 the reduced basis
approximation is introduced. In section 3.2 a way to determine the reduced
basis is presented and section 3.3 discusses the online stage. The information
presented in this section can be found in [2, Section 2.2 & Chapter 3].

3.1 Reduced Basis Approximation

The finite element Galerkin discretization of the abstract variational formu-
lation (1) results in a discrete variational problem:
Given µ ∈ P, find uh(µ) ∈ Vh ⊂ V such that

a(µ;uh(µ), vh) = l(µ; vh) , ∀vh ∈ Vh. (13)

The output functional is evaluated as

sh(µ) = l(µ;uh(µ)).

Let Nh denote the dimension of Vh which is spanned by some basis {b(l)
h }

Nh
l=1.

Problem (13) is called the truth problem as it is assumed that the error
‖u(µ)− uh(µ)‖V can be made as small as desired for any µ ∈ P. The discrete
solution manifold is defined as the set of solutions to (13)

Mh = {uh(µ) : µ ∈ P}.

The goal of the reduced basis method is to represent Mh by a low number
of basis functions so that any element of Mh can be approximated with
a small error. The set of such basis functions is called the reduced basis.
Given Nr � Nh reduced basis functions we denote them by {b(n)

r }Nr
n=1 and

the subspace they span by Vr ⊂ Vh. The reduced basis approximation ur(µ)
is the solution to the problem:
Given µ ∈ P, find ur(µ) ∈ Vr such that

a(µ;ur(µ), vr) = l(µ; vr) , ∀vr ∈ Vr, (14)

which is called the reduced problem. The reduced output functional is eval-
uated as

sr(µ) = l(µ;ur(µ)).
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In terms of linear algebra, the truth problem (13) can be expressed as:
Given µ ∈ P, find uµh ∈ RNh such that

Aµ
hu

µ
h = lµh , (15)

where

(Aµ
h)i,j = a(µ; b

(j)
h , b

(i)
h ) , (lµh)i = l(µ; b

(i)
h ) , i, j ∈ {1, . . . , Nh}.

The output functional is computed by

sµh =
(
uµh
)T

lµh

and the Galerkin solution is

uh(µ) =

Nh∑
l=1

(
uµh
)
l
b

(l)
h .

Analogously, the reduced problem (14) can be written as:
Given µ ∈ P, find uµr ∈ RNr such that

Aµ
ru

µ
r = lµr , (16)

where

(Aµ
r )m,n = a(µ; b(n)

r , b(m)
r ) , (lµr )m = l(µ; b(m)

r ) , m, n ∈ {1, . . . , Nr}.

The reduced output functional is computed by

sµr =
(
uµr
)T

lµr , (17)

and the reduced basis approximation is

ur(µ) =
Nr∑
n=1

(
uµr
)
n
b(n)
r . (18)

Since Vr ⊂ Vh the matrix B ∈ RNh,Nr can be defined by the equations

b(n)
r =

Nh∑
l=1

(B)l,n b
(l)
h , n ∈ {1, . . . , Nr}. (19)

Thus, the following relations hold

Aµ
r = BTAµ

hB,

lµr = BT lµh.
(20)
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3.2 Reduced Basis Space Generation

The reduced basis can be generated by a greedy algorithm. The greedy
algorithm is an iterative method. At each iteration the reduced basis space
is enlarged by adding a new basis function to the reduced basis. The new
basis function is selected in way such that the basis becomes optimal in terms
of the maximum norm over P. Concretely, given some Vr of dimension n,
the next basis function b

(r)
n+1 is determined by

µn+1 = arg max
µ∈P

η(µ)

as uh(µn+1) where the error estimator η(µ) provides an upper bound on the
reduction error in the energy norm, that is,

‖uh(µ)− ur(µ)‖a ≤ η(µ) (21)

for all µ ∈ P. Thus, one truth problem has to be solved per iteration. The
computation of the error estimator is discussed in section 5. Given that it
can be computed efficiently, the parameter space can be represented by a
dense discrete set Ph ⊂ P.

Consequently, the greedy algorithm reads as follows

Input: The targeted error tolerance tol ∈ R and some µ1 ∈ P.
Output: A reduced basis space Vr.

Set n = 1.

1. Compute the solution uh(µn) to (13) and set
Vr := span{uh(µ1), . . . , uh(µn)}.

2. For every µ ∈ Ph compute η(µ) and set µn+1 := arg maxµ∈Ph
η(µ).

3. If η(µn+1) < tol terminate, otherwise set n := n+ 1 and go to 1.

3.3 Online stage

To solve the reduced problem (16) for some µ ∈ P during the online stage, it
is necessary to evaluate the relations (20). As these relations are operations
depending on a possibly large Nh, they do not allow the fast computation of
the reduced basis approximation. This difficulty can be resolved assuming
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that the following affine decompositions are available

a(µ;w, v) =

Qa∑
q=1

θ(q)
a (µ)aq(w, v) (22)

l(µ; v) =

Ql∑
q=1

θ
(q)
l (µ)lq(v) (23)

with forms
aq : V× V→ R , lq : V→ R

being independent of the parameters and

θ(q)
a : P→ R , θ

(q)
l : P→ R.

If such decompositions are not given, they can be approximately established
by the Empirical Interpolation Method which is outlined in section 4.

Given a reduced basis space, the affine decompositions are used to pre-
compute the following matrices and vectors during the offline stage

A(q)
r = BTA

(q)
h B , q ∈ {1, . . . , Qa},

l(q)r = BT l
(q)
h , q ∈ {1, . . . , Ql},

where

(A
(q)
h )ij = aq(µ; b

(j)
h , b

(i)
h ) , (l

(q)
h )i = lq(µ; b

(i)
h ) , i, j ∈ {1, . . . , Nh}. (24)

Then, during the online stage, due to the relations (20), the linear systems
of equations (16) is built as

Aµ
r =

Qa∑
q=1

θ(q)
a (µ)A(q)

r (25)

lµr =

Ql∑
q=1

θ
(q)
l (µ)l(q)r (26)

for any µ ∈ P.
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4 Empirical interpolation method

In general, the Empirical Interpolation Method (EIM) provides the approxi-
mation of some parametrized function by an affine decomposition. In section
4.1 the EIM for the case of a scalar function is presented while section 4.2
treats the case a matrix function which differs slightly from the scalar case.
Section 4.3 discusses the application of the EIM to the RBM 3. The methods
discussed in this section are found in [2, Chapter 5].

4.1 Scalar EIM

We consider a parametrized function

f : P× Ω→ R

such that fµ := f(µ, ·) ∈ C0(Ω) for all µ ∈ P. The aim is to approximate
this function by a sum of separable terms

fµ(x) ≈ IQ[fµ](x) :=

Q∑
q=1

cq(µ)hq(x) , µ ∈ P, x ∈ Ω,

with basis functions hq : Ω → R and coefficients cq : P → R. The inter-
polant IQ[fµ] of fµ is obtained by interpolating fµ at interpolation points

{xi}Qi=1 ⊂ Ω where the basis functions and the interpolations points are to
be determined. Assuming they are given, the coefficients can be calculated
from the interpolation conditions

IQ[fµ](xi) = fµ(xi) , i = 1, . . . , Q . (27)

Conditions (27) are equivalent to the linear systems of equations

Tcµ = fµ (28)

with

(T)i,q = hq(xi) , (cµ)q = cq(µ) , (fµ)i = fµ(xi) , i, q ∈ {1, . . . , Q}.

The basis functions and interpolation points are selected empirically by a
greedy algorithm where in each iteration a new basis function and a new
interpolation point are determined. Denoting the discrete set of samples by
PEIM ⊂ P, the algorithm is given by
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Input: A function family fµ : Ω→ R, the targeted

error tolerance tolEIM and 1 ≤ p ≤ ∞ specifying

the norm ‖·‖Lp(Ω) to be applied.

Output: The basis functions {hi}Qi=1 and the interplation points

{xi}Qi=1.

Set i = 1. By definition I0[fµ] = 0.

1. Find

µi = arg sup
µ∈PEIM

‖fµ − Ii−1[fµ]‖Lp(Ω)

and use µi to find

xi = arg sup
x∈Ω

|fµi(x)− Ii−1[fµi ](x)|.

2. Use µi and xi to build the new basis function

hi =
fµi − Ii−1[fµi ]

fµi(xi)− Ii−1[fµi ](xi)
. (29)

3. Compute the error

ei =
∥∥∥‖fµ − Ii−1[fµ]‖Lp(Ω)

∥∥∥
L∞(PEIM)

(30)

4. If ei < tolEIM terminate, otherwise set i := i+ 1 and go to 1.

By the choice of (29) it holds

(T)i,q =

{
1 , i = q

0 , 1 ≤ i < q ≤ Q ,

such that T is invertible and the linear system of equations (28) is uniquely
solvable.
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4.2 Matrix EIM

Similarly as in section 4.1, we consider a function

F : P× Ω→ RK,L

for which we seek an approximation of the form

Fµ(x) := F (µ, x) ≈ IQ[Fµ] :=

Q∑
q=1

cq(µ)Hq(x) , µ ∈ P, x ∈ Ω,

with Hq : Ω→ RK,L and cq : P→ R.
In contrast to the scalar case, given the set of basis functions, the interpo-

lation conditions are not merely specified by the interpolation points {xi}Qi=1,
but additionally by index pairs {(ki, li)}Qi=1 where 1 ≤ ki ≤ K and 1 ≤ li ≤ L

for the iteration numbers i ∈ {1, . . . , Q}. The tripels {(xi, ki, li)}Qi=1 can be

encoded in interpolation functionals {σi}Qi=1 which are defined by

σi : {Ω→ RK,L} → R
{x 7→M(x)} 7→ (M )ki,li(xi).

(31)

Thus, the interpolation conditions read

σi
(
IQ[Fµ]

)
= σi(Fµ) , i = 1, . . . , Q ,

which again determine the interpolant IQ[Fµ] of Fµ.
Consequently, the adapted greedy algorithm reads
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Input: A function family Fµ : Ω→ RK,L, the targeted

error tolerance tolEIM and 1 ≤ p ≤ ∞ specifying

the norm ‖·‖Lp(Ω) to be applied.

Output: The basis functions {Hi}Qi=1 and the interplation functionals

{σi}Qi=1.

Set i = 1. By definition I0[Fµ] = 0.

1. Find

µi = arg sup
µ∈PEIM

sup
1≤k≤K
1≤l≤L

‖(Fµ)k,l − (Ii−1[Fµ])k,l‖Lp(Ω)

and use µi to find

σi = arg sup
σ∈Λ

|σ
(
Fµi − Ii−1[Fµi ]

)
|, (32)

where Λ denotes the set of all possible interpolation functionals.
An equivalent formulation of (32) reads

(xi, ki, li) = arg sup
(x,k,l)∈

Ω×{1,...,K}×{1,...,L}

|(Fµi)k,l(x)− (Ii−1[Fµi ])k,l(x)|.

2. Use µi and σi to build the new basis function

Hi =
Fµi − Ii−1[Fµi ]

σi
(
Fµi − Ii−1[Fµi ]

) . (33)

3. Compute the error

ei =

∥∥∥∥∥∥ sup
1≤k≤K
1≤l≤L

‖(Fµ)k,l − (Ii−1[Fµ])k,l‖Lp(Ω)

∥∥∥∥∥∥
L∞(PEIM)

(34)

4. If ei < tolEIM terminate, otherwise set i := i+ 1 and go to 1.
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Using the definitions

(T)i,q = σi(Hq) , (cµ)q = cq(µ) , (Fµ)i = σi(Fµ) , i, q ∈ {1, . . . , Q}.

and the linearity of the interpolation functionals, the coefficients for some
parameter µ ∈ P can be obtained by solving the linear systems of equations

Tcµ = Fµ . (35)

Again, due to the construction (33), it holds

(T)i,q =

{
1 , i = q

0 , 1 ≤ i < q ≤ Q ,

ensuring the invertability of T.

4.3 EIM and RBM

To derive the affine decompositions (22) and (23) for our example problem,
the EIM is applied to the coefficient functions of the forms (11) and (12)

β̂(µ, x̂) ≈
Ql∑
q=1

θ
(q)
l (µ)hq(x̂)

α̂(µ, x̂) ≈
Qa∑
q=1

θ(q)
a (µ)Hq(x̂)

where µ ∈ P and x̂ ∈ Ω̂. We then obtain the parameter-independent forms

aq(ŵ, v̂) =

∫
Ω̂

Hq(x̂)∇̂ŵ · ∇̂v̂dx̂ , q ∈ {1, . . . , Qa}

lq(v̂) =

∫
Ω̂

hq(x̂)v̂dx̂ , q ∈ {1, . . . , Ql}

with ŵ, v̂ ∈ H1
0 (Ω̂).
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5 Error estimation

As mentioned in section 3.2, the generation of the reduced basis space in the
offline stage of the RBM relies on the availability of an estimator bounding
the reduction error from above. The results presented in this section can be
found in [2, Chapter 4].

5.1 Error bounds

We recall from (36) that we seek an error estimator η(µ) which guarantees
that

‖uh(µ)− ur(µ)‖a ≤ η(µ) (36)

for all µ ∈ P.
The error estimation makes use of the discrete coercivity constant defined

by

αh(µ) = inf
vh∈Vh

a(µ; vh, vh)

‖vh‖2
V

. (37)

As Vh ⊂ V, it holds that α(µ) ≤ αh(µ) with the continuous coercivity
constant α(µ) given in (3). We also introduce the residual as

r(µ; vh) = f(µ; vh)− a(µ;ur(µ), vh) , ∀vh ∈ Vh.

By the Riesz representation theorem, the unique Riesz representation r̂h(µ) ∈
Vh of r(µ; ·) fulfills

(r̂h(µ), vh)V = r(µ; vh) , ∀vh ∈ Vh,

as well as

‖r̂h(µ)‖V = ‖r(µ; ·)‖V′
h

= sup
vh∈Vh

r(µ; vh)

‖vh‖V
.

Further, assuming the existence of a lower bound on the discrete coerciv-
ity constant αLB(µ) ≤ αh(µ), we can state the following theorem.

Theorem 1. For a compliant problem it holds

‖uh(µ)− ur(µ)‖a ≤
‖r̂h(µ)‖V
α

1/2
LB(µ)

, ∀µ ∈ P.

Thus, the required error estimator is obtained as

η(µ) =
‖r̂h(µ)‖V
α

1/2
LB(µ)

. (38)
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It remains to find efficient ways to compute the quantities constituting
the error estimator, that is, with computational effort independent of the
supposedly large truth dimension Nh. This is an essential goal since it allows
a large training set Ph for the generation of the reduced basis. Sections 5.1.1
and 5.1.2 describe the computations of the residual in the dual norm ‖r̂h(µ)‖V
and the lower bound αLB(µ), respectively.

5.1.1 Residual computation

We start by plugging the affine decompositions (22) and (23) as well as the
reduced basis approximation (18) into the residual

r(µ; vh) =

Ql∑
q=1

θ
(q)
l (µ)lq(vh)−

Qa∑
q=1

Nr∑
n=1

θ(q)
a (µ) (uµr )n aq(b

(n)
r , vh).

Let Qr = Ql +QaNr. Defining

rµ =
(
θ

(1)
l (µ), . . . , θ

(Ql)
l (µ),−((uµr )T θ(1)

a (µ), . . . ,−((uµr )T θ(Qa)
a (µ)

)T
∈ RQr

(39)
and

R =
(
l1, . . . , lQl

, A1, . . . , AQa

)T ∈ (V′h)Qr

where
Aq =

(
aq(b

(r)
1 , ·), . . . , aq(b(r)

Nr
, ·)
)
∈ (V′h)Nr

the residual can be written as

r(µ; vh) =

Qr∑
q=1

(rµ)q Rq(vh).

Using the Riesz representation r̂
(q)
h of Rq we conclude that

r̂h(µ) =

Qr∑
q=1

(rµ)qr̂
(q)
h

and thus

‖r̂h(µ)‖V
2 =

Qr∑
q=1

Qr∑
p=1

(rµ)q(r
µ)p(r̂

(q)
h , r̂

(p)
h )V.

On the level of linear algebra, the above steps can be summarized and
grouped into offline and online stages as follows. First, let a reduced basis
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space Vr represented by the matrix B defined in (19) be given. During the
offline stage assemble the matrices

R =
(
l
(1)
h , . . . , l

(Qf )

h ,A
(1)
h B, . . . ,A

(Qa)
h B

)T
and

G = RTM−1
h R (40)

where (Mh)i,j = (b
(j)
h , b

(i)
h )V for i, j ∈ {1, . . . , Nh}. Then, during the online

stage, for any µ ∈ P, compute

‖r̂h(µ)‖V =

√
(rµ)TGrµ,

where r(µ) is given in (39). The cost of the last operation does not depend
on Nh.

5.1.2 Successive constraint method

The discrete coercivity constant αh(µ) defined in (37) can be computed as
the smallest eigenvalue of the generalized eigenvalue problem

Aµ
hvh = λMhvh,

where

(Aµ
h)i,j = a(µ; b

(j)
h , b

(i)
h ) , (Mh)i,j = (b

(j)
h , b

(i)
h )V , i, j ∈ {1, . . . , Nh}.

It can be used in place of the lower bound αLB(µ) in the error estimator (38),
but solving generalized eigenvalue problems for the entire training set Ph is
associated with a too high computational cost. The Successive Constraint
Method (SCM) solves a few generalized eigenvalue problems during its offline
stage and allows to compute αLB(µ) for any µ ∈ P with a cost independent
of Nh during its online stage.

By the affine decomposition of the bilinear form (22) the discrete coer-
civity constant is expanded as

αh(µ) = inf
vh∈Vh

Qa∑
q=1

θ(q)
q

aq(vh, vh)

‖vh‖V
2 .

The SCM rewrites the above minimization problem as

αh(µ) = min
y∈Y

S(µ,y),
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where

S : P× RQa → R

(µ,y) 7→ S(µ,y) =

Qa∑
q=1

θ(a)
q (y)q

and

Y =
{
y ∈ RQa

∣∣∃vh ∈ Vh : (y)q =
aq(vh, vh)

‖vh‖2
V

, q ∈ {1, . . . , Qa}
}
.

Lower and upper bounds αLB(µ) ≤ αh(µ) ≤ αUB(µ) can be established by
respectively enlarging and restricting Y using the sets YUB ⊂ Y ⊂ YLB(µ),
such that

αLB(µ) = min
y∈YLB

S(µ,y) and αUB(µ) = min
y∈YUB

S(µ,y).

The SCM applies a greedy algorithm to construct at each iteration with index
n the sets Y(n)

LB and Y(n)
UB such that

Y(1)
UB ⊂ · · · ⊂ Y

(n)
UB ⊂ Y ⊂ Y

(n)
LB(µ) ⊂ · · · ⊂ Y(1)

LB(µ).

Thus, the indication for the sharpness of the bounds

1− αLB(µ)

αUB(µ)

decreases with every iteration.
The set Y(n)

UB is constructed given that at iteration n a set of discrete
coercivity constants {αh(µi)}ni=1 related to another set Cn = {µi}ni=1 ⊂ P is
known. It is then chosen as

Y(n)
UB =

{
y(i) ∈ RQa : 1 ≤ i ≤ n

}
where

(y(i))q =
aq(v

(i)
h , v

(i)
h )∥∥∥v(i)

h

∥∥∥2

V

and v
(i)
h denotes the eigenfunction associated with αh(µi) of the generalized

eigenvalue problem

a(µi; v
(i)
h , vh) = αh(µi)(v

(i)
h , vh)V , ∀vh ∈ Vh. (41)
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The construction of the set Y(n)
LB(µ) requires {αh(µi)}ni=1 as well as lower

bounds {α(n−1)
LB (µ)}µ∈PSCM

from the previous iteration where PSCM ⊂ P de-
notes the discrete set of parameter samples used by the SCM. Further, it
requires the mapping

PM(µ;A) =

{
M closest points in A to µ ∈ A , |A| > M

A , |A| ≤M

with the discrete set A ⊂ RP . The enlarged space is then defined for some
Me,Mp ∈ N by

Y(n)
LB(µ) =

{
y ∈ B

∣∣ S(µ̃,y) ≥ αh(µ̃) , ∀µ̃ ∈ PMe(µ;Cn),

S(µ̃,y) ≥ α
(n−1)
LB (µ̃) , ∀µ̃ ∈ PMp(µ;PSCM\Cn)

}
where the set B can be precomputed once as

B =

Qa∏
q=1

[
inf
vh∈Vh

aq(vh, vh)

‖vh‖2
V

, sup
vh∈Vh

aq(vh, vh)

‖vh‖2
V

]
by solving generalized eigenvalue problems involving the bilinear forms
aq(·, ·).

We can now describe offline stage of the SCM as follows

18



Input: The targeted error tolerance tolSCM and some initial set

C1 = {µ1} containing one point µ1 ∈ PSCM.

Output: The points Cn = {µi}ni=1 with corresponding constants

{αh(µi)}ni=1, the vectors {y(i)}ni=1 and the set of bounds

{α(n)
LB(µ)}µ∈PSCM

.

Set i = 1 and α
(0)
LB(µ) = 0 for all µ ∈ PSCM. Compute αh(µ1)

and y(1).

1. For all µ ∈ PSCM

(a) Find α
(i)
UB(µ) = min

y∈Y(i)
UB
S(µ,y).

(b) Find α
(i)
LB(µ) = min

y∈Y(i)
LB(µ)

S(µ,y).

(c) Compute e(i)(µ) = 1− α
(i)
LB(µ)

α
(i)
UB(µ)

2. Choose µi+1 = arg maxµ∈PSCM
e(i)(µ).

3. If e(i)(µi+1) ≤ tolSCM, terminate, otherwise go to 4.

4. Compute αh(µi+1) out of (41) where the left hand side matrix
A
µi+1

h is assembled as

A
µi+1

h =

Qa∑
q=1

θ(q)
a (µi+1)A

(q)
h .

Calculate y(i+1). Then set i := i+ 1 and go to 1.

Then, during the online stage, given {αh(µi)}ni=1 and {α(n)
LB(µ)}µ∈PSCM

from the offline stage, the desired lower bound is computed for any µ ∈ P as

αLB(µ) = min
y∈Y(n)

LB(µ)

S(µ,y)

with the additional constraint S(µ,y) ≥ 0. Computing lower bounds in the
offline and online stages means solving linear programs with Qa variables and
2Qa +Me +Mp constraints.
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6 Implementation

The procedure of the RBM builds upon two independent components, namely
the computation of the truth solution and the transformation of the truth
problem into an affine form. The implementation of these two basic com-
ponents is outlined in section 6.1 and 6.2, respectively. In section 6.3 the
implementation of the reduced basis method is discussed.

6.1 Truth problem

The solution to the truth problem (15) is computed by the class
TruthSolver. It is tailored to the example problem (8) and thus needs
to be provided with the necessary information about it, for example, the
coefficient functions α̂ and β̂. This information is collected in a struct called
TruthData which is passed to the constructor of TruthSolver. The infor-
mation encapsulated in TruthData can also be retrieved from objects of type
TruthSolver.

6.2 EIM

The EIM can be applied to a scalar function by the function ApplyScalarEIM.
To decompose a matrix function Fµ : Ω̂ → R2,2 the function
ApplyMatrixEIM is used. Both of these functions are overloaded as
they either use the L2(Ω̂)-norm or the L∞(Ω̂)-norm depending on
whether a mesh together with a quadrature rule for the computa-
tion of the L2(Ω̂)-norm are provided. They return objects of type
ScalarEIMBasisProvider and MatrixEIMBasisProvider, respectively. The
class ScalarEIMBasisProvider stores as members the interpolation points
and the basis functions of the interpolant which are determined by the EIM.
It provides the evaluation of the basis functions and computes the coeffi-
cients of the interpolant such that the interpolant can be retrieved. The
class MatrixEIMBasisProvider offers the same functionality but in place
of the interpolation points it stores the interpolation functionals. Further,
the pair ApplyMatrixEIM and MatrixEIMBasisProvider is implemented for
symmetric functions as the coefficient function α̂ defined in (9) is symmetric.
A symmetric function reduces the amount of work carried out by the EIM
since three instead of four components need to be determined to make up
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the basis functions

IQ[Fµ](x̂) =

Q∑
q=1

cq(µ)Hq(x̂)

=

Q∑
q=1

cq(µ)

(
(Hq)1,1(x̂)

(
1 0
0 0

)
+ (Hq)1,2(x̂)

(
0 1
1 0

)
+ (Hq)2,2(x̂)

(
0 0
0 1

))
.

Both classes precompute and store as a member the matrix T defined in (28)
for scalar functions and in (35) for matrix functions.

6.3 RBM

The class ReducedBasisHandler takes care of the reduced basis. Together
with the function PerformGreedyAlgorithm it is in charge of the construc-
tion of the reduced basis space and it provides the reduced basis approxima-
tion.

We recall that the EIM as well as the offline stage of the SCM have to be
performed only once during the offline stage of the RBM. Thus, upon con-
struction, objects of type ReducedBasisHandler perform the EIM and the
offline stage of the SCM. They have access to the coefficient functions α̂ and β̂
since they are given a reference to an object of type TruthSolver. The func-
tions ApplyScalarEIM and ApplyMatrixEIM are applied and the resulting ob-
jects of type ScalarEIMBasisProvider and MatrixEIMBasisProvider are
stored as members of the class. The latter objects are also used to assemble
and store the matrices {A(q)

h }
Qa

q=1 and vectors {l(q)h }
Ql
q=1 of the affine decompo-

sition. Similarly, the quantities supplied by the offline stage of the SCM are
stored.

Once an object of type ReducedBasisHandler is created, it is passed to
the function PerformGreedyAlgorithm to assemble the reduced basis by the
greedy algorithm. The class ReducedBasisHandler stores the set of basis
functions determined during the greedy algorithm and provides a method
to add a new basis function. Whenever this method is called, the new basis
function is computed by using the object of type TruthSolver and the offline
stage of the residual computation is rerun, that is, the matrix G given in (40)
is recomputed.

Computing the error estimator for the training set Ph in each iteration
of the greedy algorithm corresponds to the online stage of both the residual
computation and the SCM. The error estimator is provided by the class
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ReducedBasisHandler as it stores the quantities related to the offline stages
of the SCM and the residual computation.

When the greedy algorithm terminates, the object of type
ReducedBasisHandler holds the reduced basis space and provides methods
to compute the reduced output functional (17) as well as the reduced basis
approximation (18) which is provided by its coefficients with respect to the

truth basis {b(l)
h }

Nh

l=1.
To solve the linear programs occurring in the SCM, the implementation

relies on the numerical C++ library PNL [4].
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7 Numerical experiments

In this section the results of some numerical experiments for the example
problem outlined in 2.2 are presented. In all experiments, the number of
parameter samples of the different algorithms are chosen as |PEIM| = P · 100
and |PSCM| = |Ph| = P · 500 where P stands for the number of parame-
ters. The samples are generated uniformly at random. Further, the error
tolerances are chosen as tolEIM = 10−4 and tolSCM = 0.05. A triangular
mesh M over the unit disk Ω̂ is used that counts Nh = 13071 degrees of
freedom. We choose linear Lagrangian finite elements to compute the truth
solution uh(µ) ∈ Vh = S0

1,0(M). The parameters of the SCM are set as
Me = Mp = 10.

7.1 Truth problem

It is important to ensure the correct implementation of the truth problem
such that the error between the truth solution and the exact solution can be
made small. Otherwise the reduced basis approximation will converge to a
solution deviating from the exact solution.

The method of manufactured solutions is applied for validation [5, Section
5.8]. We define the solution on Ω(µ) as

u(x1, x2) = (x2
1 + x2

2) sin(x1) sin(x2)

and compute the discretization errors

‖û− ûh(µ)‖L2(Ω̂) and |û− ûh(µ)|H1(Ω̂)

on a sequence of regularly refined meshes over the reference domain Ω̂ for
the parameters µ = (−0.6, 0.1, 0.9). We expect algebraic convergence

‖û− ûh(µ)‖L2(Ω̂) = O(N−1
h ) and |û− ûh(µ)|H1(Ω̂) = O(N

− 1
2

h )

due to the regular mesh refinement and the 2D problem. Figure 1 reports
the results. The corresponding algebraic convergence rates are estimated as
1.01 in the L2(Ω̂)-norm and as 0.51 in the H1(Ω̂)-semi-norm, matching the
expected rates.
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Figure 1: Convergence of the discretization error in the L2(Ω̂)-norm (a) and
in the H1(Ω̂)-semi-norm (b)

7.2 EIM

The convergence of the EIM is tested for P = 3. Figure 2 compares the
convergence of the interpolation errors (30) and (34) for scalar and matrix
functions as well as for the norms ‖·‖L2(Ω̂) and ‖·‖L∞(Ω̂). It can be observed

that for both the scalar and matrix case the EIM using the L2(Ω̂)-norm
requires less basis functions to reach the prescribed accuracy. Assuming an
exponential decay of the interpolation error of the form

e = O(e−γQ) , with rate γ > 0,

where Q denotes the number of basis functions, the rates of the four combi-
nations can be approximated as

‖·‖L2(Ω̂) ‖·‖L∞(Ω̂)

scalar EIM 0.39 0.37
matrix EIM 0.24 0.22

Due to the above result, the EIM with the L2(Ω̂)-norm is applied in the
remaining experiments.
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Figure 2: Convergence of the interpolation error with respect to the number
of basis functions Q

7.3 SCM

The offline stage of the SCM is tested for P = 3. Figure 3 shows the con-
vergence of the accuracy of the estimated lower and upper bounds on the
discrete coercivity constant, that is, for each iteration i of the SCM greedy
procedure it reports the error quantity

max
µ∈PSCM

{
1− α

(i)
LB(µ)

α
(i)
UB(µ)

}
,

where a smaller value indicates sharper bounds. We recall that one general-
ized eigenvalue problem needs to be solved per iteration. It can be seen that
after 20 iterations the convergence starts to slow down significantly. The al-
gorithm could be stopped at this point since already reasonable bounds have
been obtained.
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Figure 3: Convergence of the error quantity with respect to the number of
solved generalized eigenvalue problems

7.4 RBM

In this section the reduction error of the RBM is examined. We are interested
in the convergence of the relative reduction error in the energy norm

max
µ∈Ph

‖uh(µ)− ur(µ)‖a
‖uh(µ)‖a

for different numbers of parameters P = 1, 2, 3, 4. The results of this com-
parison are shown in figure 4 where the targeted relative error is 10−4. The
number of reduced basis functions required to achieve the targeted accuracy
increases significantly with an increasing number of parameters.

Additionally, figure 5 provides a visual comparison between the truth
solution, the reduced basis approximation and their absolute difference
|uh(µ)−ur(µ)|. The targeted error tolerance of the greedy algorithm is set as
tol = 10−4. The functions are plotted on the original domain Ω(µ) depending
on P = 3 arbitrarily chosen parameters µ = (−0.6, 0.1, 0.9). The illustrations
confirm the expected accuracy of the reduced basis approximation.
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Figure 4: The maximal relative reduction error with respect to the number
of reduced basis functions for different numbers of parameters
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(b) Reduced basis approximation
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Figure 5: Visual comparison between the truth solution and its reduced basis
approximation
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8 Conclusion

The results of the numerical experiments suggest that the reduced basis
method was implemented correctly for the considered example problem on
a parametrized domain. The L2-norm seems to be more suitable to be used
by the EIM than the L∞-norm. We observed that increasing the number of
parameters of the example problem decreases the speed of convergence of the
reduction error, at least with regard to the first four parameters.
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Appendix

Running the code on your PC

The code performing the experiments described in section 7 is available from the following link:
https://gitlab.ethz.ch/bohnhofl/rbm

In order to run the code, it is necessary to have the ARPACK library installed.

The documentation of the code is made by Doxygen and can be found in:
rbm/thesis/documentation/html/index.html

Having compiled the code, figure 4 from section 7.4 can be generated by:
cd rbm/thesis/build/experiments/reduced basis convergence
make thesis.experiments.reduced basis convergence.run

Figure 4 is then located at:
rbm/thesis/build/experiments/reduced basis convergence/plots

The components of figure 5 are generated by:
cd rbm/thesis/build/experiments/reduced basis visualisation
make thesis.experiments.reduced basis visualisation.run

They will be located at:
rbm/thesis/build/experiments/reduced basis visualisation/plots

Running the code on the Euler cluster

Conducting the experiments for the parameters specified in section 7 will take a considerable
amount of time. Therefore, they were conducted on the Euler cluster of ETH Zurich. To this
end, the code had to be adjusted to the environment of the cluster. Both experiments from
section 7.2 and 7.3 lasted for around 18 hours. The experiments related to figures 4 and 5 took
around 6 days (in total) and 1 day, respectively. The code provided above is not the adjusted
version that can run on the cluster. The adjusted version differs from the above version in some
respects. Instead of using the Arpack support module provided by Eigen, it uses the Spectra
library to solve sparse generalized eigenvalue problems. It has not been corrected by clang-tidy.
Further differences become apparent when going through the instructions listed below.

The adjusted version is available from the following link:
https://gitlab.ethz.ch/bohnhofl/rbm_euler
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In the following, instructions for conducting the main experiment (i.e. generating figure
4) on the Euler cluster are given (valid for April 2020):

1. Clone the adjusted version onto your PC.

2. In the following files, replace the word ”bohnhofl” by ”your username” (your ETH-
username):

rbm euler/thesis/utility/test/main.cc
rbm euler/thesis/problem/test/main.cc
rbm euler/thesis/method/test/main.cc
rbm euler/thesis/experiments/empirical interpolation method/main.cc
rbm euler/thesis/experiments/successive constraint method/main.cc
rbm euler/thesis/experiments/reduced basis visualisation/main.cc
rbm euler/thesis/experiments/reduced basis convergence/dP1/main.cc
rbm euler/thesis/experiments/reduced basis convergence/dP2/main.cc
rbm euler/thesis/experiments/reduced basis convergence/dP3/main.cc
rbm euler/thesis/experiments/reduced basis convergence/dP4/main.cc
rbm euler/thesis/experiments/reduced basis convergence/dP5/main.cc
rbm euler/thesis/experiments/reduced basis convergence/main.cc
rbm euler/thesis/experiments/reduced basis convergence/plot.py

3. Transfer the code from your PC to your home directory of the Euler cluster using scp:

scp -r rbm euler your username@euler.ethz.ch:

4. Switch to the new software stack and load the required modules:

env2lmod
module load gcc/8.2.0
module load cmake/3.11.1
module load python/3.6.4
module load eigen
module load boost

32



5. Create a build directory and compile the code:

cd rbm euler/thesis
mkdir build
cd build
cmake ..
make

6. Run the code for generating the data contained in figure 4 by submitting the following jobs:

cd rbm euler/thesis/experiments/reduced basis convergence/dP1
bsub -n 1 -W 6:00 ./thesis.experiments.reduced basis convergence.dP1.main

cd rbm euler/thesis/experiments/reduced basis convergence/dP2
bsub -n 1 -W 24:00 ./thesis.experiments.reduced basis convergence.dP2.main

cd rbm euler/thesis/experiments/reduced basis convergence/dP3
bsub -n 1 -W 48:00 ./thesis.experiments.reduced basis convergence.dP3.main

cd rbm euler/thesis/experiments/reduced basis convergence/dP4

bsub -n 1 -W 120:00 -R "rusage[mem=16384]" ./thesis.experiments.reduced basis convergence.dP4.main

7. (After 4 days) regularly check the progress of the jobs by:

bjobs

8. When the jobs have finished, the convergence data for P = 1, . . . , 4 are stored in the files
rbm euler/thesis/build/experiments/reduced basis convergence/dPP/output PP.dat.
Generate figure 4 by:

cd rbm euler/thesis/build/experiments/reduced basis convergence
python /cluster/home/your username/rbm euler/thesis/experiments/reduced basis convergence/plot.py

9. Figure 4 is then located at:

/cluster/home/your username/rbm euler/thesis/build/experiments/reduced basis convergence/plots
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