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Abstract

In this thesis we solve a Dirichlet boundary value problem (BVP) on a
deformed domain, as the title suggests. Since this deformed domain
is only given by its boundary, we first need to solve another Dirichlet
BVP which yields a mapping of the unit disk to the given deformed
domain.

Then we can apply a Galerkin finite element discretization and solve
the problem numerically. Since we need to calculate the mapping from
the unit disk to the deformed domain, we only need a mesh of the
unit disk to solve the problem on the deformed mesh by using trans-
formation techniques. For the discretization a hybrid mesh is used that
contains elements of different orders, large elements of high order in
the center and small elements of low order closer to the boundary.

Finally a convergence study is conducted and convergence rates are
determined empirically. This all is implemented in C++ using the linear
algebra library Eigen [3].
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Chapter 1

Introduction

1.1 Motivation

Assume we have some domain Ω specified by a possibly large parameter
vector y. Our problem consists of not knowing these parameters exactly, i.e.
y follows some distribution with known or estimated uncertainty. Therefore
the geometry of Ω is not known exactly. Our goal is now to solve a PDE over
this uncertain domain and retrieve some information about the uncertainty
of the solution of this PDE. This problem is known as Shape Uncertainty
Quantification, an application of which can be found in [7]. One possibility
to solve such a problem uses a Monte-Carlo scheme where the PDE is solved
on many domains determined by samples from some distribution and then
from these solutions the statistics is computed. If we implement this directly,
we would need to generate meshes for every sampled domain and this might
be computationally expensive. In order to avoid this re-meshing, this thesis
describes a way of solving the PDE with the finite element method using
only one mesh, a mesh of the unit disk.

1.2 Notation

Here are some explanations about the notation used and some conventions
used to simplify the writing process. For any variable holds that if it is in
bold, it is vector. E.g. z is a vector, whereas z is just a scalar. The problem
discussed in this papper is in 2D and x = (x, y), x̃ = (x̃, ỹ) and x̂ = (x̂, ŷ)
are possible coordinates in some 2-dimensional domains. In general, the
letters u, v, g, f , w denote functions, if they are in bold they are vector valued
and scalar valued otherwise. Most of them take some coordinates as an
argument which will often be omitted to make the equations shorter, so
g = g(x) = g(x, y), what exactly is meant as argument should be clear from
the context. Further, ∇u denotes the gradient of u, whereas ∇ ·w denotes
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1. Introduction

the divergence of w. If Φ is a mapping from some space to another, then
DΦ denotes its jacobian. A short overview of the things discussed and some
more information can be found below.

Symbol Meaning
x, y, z, c, s, φ, α, µ scalar variable or constant
i, j, k, N, M integer
A, M matrix
x, y, z, ααα, µµµ vector
u, v, f , g, r scalar function taking a vector or a real number as argument
Ω, K, B1 2D domain
∂Ω, ∂B1 boundary of 2D domain
w vector-valued function
Φ, ϕ mapping from a 2D domain to another
∇u,∇v gradient of scalar function
DΦ jacobian of vector-valued function
∇ ·w divergence of vector-valued function

Subscripts usually denote elements of a vector, i.e. if c is a vector, then ci
is its ith element. If some symbol carries a superscript which is an integer,
it usually is a discrete approximation of some quantity, e.g. uN denotes an
N-dimensional approximation of u.

1.3 General Remarks

The code contributing to this thesis can be found at Gitlab at the following
url: https://gitlab.com/chbauman/Bachelor_Thesis_Christian_Baumann.
A description of how to execute the code is provided. All the plots in this
thesis were created with python’s Matplotlib [5], the corresponding plotting
files can also be found at Gitlab. There are even some Mathematica [6] note-
books, but they are not needed to run the code and reproduce the results
presented in this thesis.
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Chapter 2

Problem Description

2.1 Strong formulation

Given a 2D star-shaped bounded domain Ω ⊂ R2 with boundary ∂Ω, the
following boundary value problem needs to be solved. Find a function u ∈
H1(Ω), such that

−∆u = 0 on Ω
u = g on ∂Ω

(2.1)

for a given function g ∈ H1(Ω). This seems simple, but the problem is that
the domain Ω is only given by its boundary

∂Ω := {r(φ)(sin(φ), cos(φ))T ⊂ R2, 0 ≤ φ ≤ 2π} (2.2)

where r : [0, 2π] 7→ R is a continuous function which may be given through
a real Fourier series

r(φ) := 1 +
N

∑
j=1

(cjyj cos(jφ) + sjzj sin(jφ)) (2.3)

with parameters −1 ≤ yj, zj ≤ 1, which are collected in the parameter vector
y. We assume

∞

∑
j=1

(|cj|+ |sj|) ≤
1
2

(2.4)

In order to solve the original problem, 2.1, we apply a mapping approach,
transforming it to the unit disc B1 ⊂ R2 by means of the diffeomorphism
Φ : B1 7→ Ω(y), defined as

Φ(x̂) := x̂ + w(x̂) (2.5)

3



2. Problem Description
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Figure 2.1: Sketch of the situation.

and w can be found by solving the following problem

−∆w = 0 on B1

w =

(
(r(φ)− 1) cos φ
(r(φ)− 1) sin φ

)
on ∂B1

(2.6)

where φ is the polar angle coordinate on ∂B1. Figure 2.1 illustrates the
meaning of r(φ) for an example of such a domain Ω. This special Ω was
constructed only for visualization and will also be used later in this paper, the
corresponding coefficients cj, sj, zj and yj are unknown and may not fulfill
inequality 2.4.

2.2 Variational formulation

To be able to apply a Galerkin discretization, we first need the weak varia-
tional formulation of the problem 2.1. To get to that, we multiply the PDE
with a test function v ∈ H1

0(Ω) that vanishes on the boundary of Ω and
use integration by parts in 2D to get the following modified problem. Find
u ∈ H1(Ω) s.t. ∫

Ω

∇u · ∇vdx = 0 ∀v ∈ H1
0(Ω)

u = g on ∂Ω

(2.7)

Using transformation techniques from [4], we can transform this problem
back to the unit disk. If we do this, we get the problem. Find û ∈ H1(B1) s.t.∫

B1

DΦ−T∇û · DΦ−T∇v̂|det DΦ|dx̂ = 0 ∀v̂ ∈ H1
0(B1)

û(x̂) = g(Φ(x̂)) on ∂B1

(2.8)
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2.2. Variational formulation

where Φ is the transformation defined in 2.5 and it holds that û(x̂) =
u(Φ(x̂)), the same relation is true for v̂ and v. To find Φ, we need to solve
another Dirichlet BVP. We apply exactly the same techniques to find the vari-
ational formulation of the auxiliary problem 2.6 and get the following. Find
w = (w1, w2)T ∈ (H1(B1))

2 s.t.∫
B1

∇w1 · ∇v̂dx̂ = 0 ∀v̂ ∈ H1
0(B1)

∫
B1

∇w2 · ∇v̂dx̂ = 0 ∀v̂ ∈ H1
0(B1)

w =

(
(r(φ)− 1) cos φ
(r(φ)− 1) sin φ

)
on ∂B1

(2.9)

This means that for the transformation Φ we need to solve two decoupled
Dirichlet BVPs, one for each component of w. Since these problems are
posed directly on B1, no transformation to another domain is needed.

5





Chapter 3

Discretization

To solve the problem defined in the previous section numerically, we use a
Galerkin discretization with Lagrangian finite elements.

3.1 Meshes

3.1.1 Notation and Conventions

Let N denote the number of interpolation nodes and M the number of el-
ements in the mesh. N∂ denotes the number of interpolation nodes on the
boundary and N0 denotes the number of interpolation nodes that do not lie
on the boundary. So it follows that N = N∂ + N0. The ith interpolation node
is denoted as di, i = 1, ..., N. As a convention and to simplify the program-
ming part, we constrain the interpolation nodes that lie on the boundary of
our domain to have the lowest indices, i.e. di lies on the boundary if i ≤ N∂.

3.1.2 Mesh Used for Convergence Study

For the whole problem a hybrid mesh containing small linear elements at
the boundary and large high order elements in the center was used. Figure
3.1 shows the four coarsest meshes of this kind that will be used for conver-
gence study. The black dots denote the interpolation nodes. Note that on
the boundary of the domain only linear elements are used, this means that
only a piecewise linear boundary approximation is used. Note also that the
corresponding FE spaces are not strictly nested because of this boundary
approximation.

Another set of meshes is shown in figure 3.2. These meshes contain quadratic
triangular elements only. The boundary approximation is also piecewise lin-
ear as for the previous meshes. Since the elements at the boundary are not
linear but quadratic, a better boundary approximation would have been pos-
sible, but the main task of this set of meshes is to validate the code, i.e. we
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Figure 3.1: Coarsest Hybrid Meshes

want to see if the empirical convergence rates for this set of meshes coincide
with the ones from theory.

3.2 Auxiliary problem

Let’s first discretize the auxiliary problem 2.9. We use a mesh containing
Lagrangian finite elements of varying orders. Since we need to solve two
problems that are the same except for the Dirichlet boundary conditions,
we will just discuss how to find an approximation of w1(x̂), then w2 can be
found in the same way using the corresponding boundary conditions. As
basis functions we use piecewise polynomial functions, denoted by bi, that
are different from zero at only one interpolation node, more precisely they
satisfy the condition:

bi(d̂j) =

{
1 if i = j
0 if i 6= j

(3.1)
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3.2. Auxiliary problem
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Figure 3.2: Coarsest Quadratic Triangular Meshes

where d̂j denotes the jth interpolation node of the discretized domain B1. If
we restrict such a basis function to an element, say K, then we can describe
it as a polynomial, i.e. bi|K ∈ Pn for some n ∈ N depending on the order of
the basis functions used. Now we can approximate the function space H1 as
H1,N := span{b̂i|i = 1, ..., N}. The other space H1

0 is approximated similarly
as H1,N

0 := span{b̂i|d̂i does not lie on the boundary}. Now we need to find
an approximation of w1, denoted as wN

1 in H1,N s.t. the equations of 2.9 hold
for all vN ∈ H1,N

0 . For this purpose, we write wN
1 as a linear combination of

our basis functions b̂i(x̂), i = 1, ..., N, i.e.

wN
1 (x̂) :=

N

∑
i=1

α1,i b̂i(x̂) (3.2)

with unknown coefficients α1,i, i = 1, ..., N. Since the problem is linear in
the test functions v and its gradients ∇v, we only need to test the equations
of 2.9 for the basis functions. If we plug 3.2 into 2.9 we get the discrete

9



3. Discretization

problem:

N

∑
i=1

α1,i

∫
B1

∇b̂i · ∇b̂jdx̂ = 0 ∀b̂j ∈ H1,N
0 (B1)

α1,i = (r(ϕ)− 1) cos ϕ if interpolation node i lies on ∂B1

(3.3)

The boundary condition is equivalent to α1,i = (r(arg d̂i)− 1) cos(arg d̂i) for
i ≤ N∂ according to the convention in 3.1.1 and ϕ is just the argument of
interpolation node di. Similarly the first equation of 3.3 has to be true for all
b̂j with N∂ < j ≤ N since the first N∂ interpolation nodes are those that lie
on the boundary. We can rewrite 3.3 as

N

∑
i=N∂+1

α1,i

∫
B1

∇b̂i · ∇b̂jdx̂ = −
N∂

∑
i=1

α1,i

∫
B1

∇b̂i · ∇b̂jdx̂ for j = N∂ + 1, ..., N

(3.4)

and we get a linear system of equations with N − N∂ = N0 unknowns
α1,N∂+1, ..., α1,N and N0 equations. Next we define Aw1 ∈ RN,N ,

(Aw1)i,j =
∫
B1

∇b̂i · ∇b̂jdx̂ i, j = 1, ..., N (3.5)

and partition it similarly as in [4, Chapter 3, Section 3.6.6] in the following

way, Aw1 =

(
Aw1

∂,∂ Aw1
∂,0

Aw1
0,∂ Aw1

0,0

)
with Aw1

∂,∂ ∈ RN∂,N∂ and Aw1
0,0 ∈ RN0,N0 . We also put

the coefficients α1,i into a vector ααα1, (ααα1)i = α1,i for i = 1, ..., N, and partition

it similarly, i.e. ααα1 =

(
ααα1,∂
ααα1,0

)
. In this case ααα1,∂ ∈ RN∂ is known from the

boundary conditions, and ααα1,0 ∈ RN0 are the unknown coefficients we want
to find. With these definitions, we can rewrite 3.4 in linear algebra notation:

Aw1
0,0ααα1,0 = −Aw1

0,∂ααα1,∂ (3.6)

This can be solved easily, the only problem remaining is the evaluation of
the entries of Aw1 , as described in equation 3.5. This will be discussed in
chapter 4, which is about implementation. Similarly as described above, we
can find wN

2 and by equation 2.5 we can find an approximation of Φ:

ΦN(x̂) := x̂ + wN(x̂) (3.7)

where wN(x̂) = (wN
1 (x̂), wN

2 (x̂))T.
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3.3. Real Problem

3.3 Real Problem

The problem addressed in the previous section was only needed because we
didn’t have a mesh of the domain Ω, so we need to apply the mapping ap-
proach described in 2.1. If we discretize the problem 2.8, which was mapped
to the unit disk, in the same way we did in the previous section, we get

ûN(x̂) :=
N

∑
i=1

µi b̂i(x̂) (3.8)

Aû =

(
Aû

∂,∂ Aû
∂,0

Aû
0,∂ Aû

0,0

)
, µµµ =

(
µµµ∂

µµµ0

)
(3.9)

Aû
0,0µµµ0 = −Aû

0,∂µµµ∂ (3.10)

where this time the unknown coefficients are µi, i > N∂. The sizes of the
matrices are the same as in the previous case, just the entries are calculated
differently:

(Aû)i,j =
∫
B1

(DΦN)−T∇b̂i · (DΦN)−T∇b̂j|det DΦN |dx̂ i, j = 1, ..., N (3.11)

Note that we used the discrete transformation ΦN here which we computed
in the previous section.

11





Chapter 4

Implementation

4.1 Mesh Data Structure

To represent a mesh in the code, a class named mesh is used, it is defined as
follows.

Listing 4.1: Mesh Class

1 typedef unsigned int index_t;

2 typedef std::vector <element > element_vec_t;

3 struct mesh {

4 element_vec_t elements;

5 const index_t numEls;

6 const index_t num_dofs;

7 const index_t num_boundary_dofs;

8 // and some constructor

9 };

As the names suggest, numEls = M denotes the number of elements con-
tained in the mesh, num_dofs = N denotes the total number of interpola-
tion nodes in the mesh and num_boundary_dofs = N∂ denotes the num-
ber of interpolation nodes that lie on the boundary. elements finally is a
std::vector of instances of class element. These elements contain informa-
tion about the connectivity of the mesh and look as follows.

Listing 4.2: Element Class

1 typedef unsigned short el_type_t;

2 typedef unsigned short el_order_t;

3 typedef Eigen::Matrix <index_t , -1, 1> index_vec_t;

4 struct element {

5 const el_type_t el_type;

6 const el_order_t order;

13



4. Implementation

7 const el_order_t num_missing_dofs;

8 index_vec_t nodes;

9 element (...) {};

10 index_t corner(index_t i) const {...};

11 };

In this case, el_type determines what type of element it is, i.e. el_type is
either 3 for triangles or 4 if the element is a quadrilateral. order denotes
the order of the element, i.e. 1 for linear elements, 2 for quadratic elements
etc. num_missing_dofs = 0 for normal elements and num_missing_dofs

= 1 for elements that are missing an interpolation node on one edge of
the element. The latter are needed because the mesh contains elements
of different orders, so the mesh needs to contain some elements that have
two different orders. This will be discussed in more detail later. nodes

finally describes the element by containing the indices of the interpolation
nodes that are contained in the element, it is just an index vector and does
not contain the coordinates of the interpolation nodes. These interpolation
nodes are stored independently of the mesh in an Eigen::Matrix as shown
below.

Listing 4.3: Dofs

1 typedef double numeric_t;

2 typedef Eigen::Matrix <numeric_t , 2, -1> nodes_t;

3 nodes_t nodes;

4.2 Mesh Construction

This section describes an algorithm that produces a mesh of the unit disk B1.
The function returning the mesh has the following signature:

Listing 4.4: Signature

1 template <class Vector , class Layers , class Func >

2 mesh construct_mesh(const Layers & layer_vec ,

3 const Vector & orders ,

4 const index_t n_tria_in_center ,

5 nodes_t & nodes , const Func & r,

6 const bool center_higher_order = false)

7 {...};

It takes some parameters which are described later and returns an object
of class mesh. The mesh essentially is a collection of elements which are
just indices referring to columns in the matrix nodes. This 2 by N matrix
contains the coordinates of the interpolation nodes of the mesh columnwise.

14



4.2. Mesh Construction

The parameter layer_vec is a std::vector of Layers that will be descibed
later.

4.2.1 Center of the Mesh

The codes takes an argument n_tria_in_center which specifies the number
of triangular elements in the center. These will be the center of the mesh,
further elements will be added later. This may look as follows in the case of
n_tria_in_center = 7:
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Figure 4.1: The center of the mesh.

4.2.2 Adding layers

Then the code adds layers around the center. These are specified by a vecor
of Layers, which are structs containing an index vector ids_vec with indices
in {1, 2, 3}.

Listing 4.5: Signature

1 struct Layer {

2 const double offset;

3 index_vec_t ids_vec;

4 index_t num_inner_els;

5 index_t num_outer_els;

15



4. Implementation

6 Layer (...){...};

7 };

These indices have the following meaning:

1. Quadrilateral element.

2. Triangular element pointing towards the center.

3. Triangular element pointing away from the center.

The algorithm then puts the elements in the specified order around the pre-
vious layer and repeats that until the layer is closed. So we can e.g. define
our layer with the index vector: {2, 1, 2} which means that the layer will
consist of a triangle pointing inwards, a quadrilateral and again a triangle
pointing inwards, and then this pattern will be repeated again until no more
elements can be added. Fiugre 4.2 shows the mesh after the first part of the
layer and after the whole layer is added.

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

0

1
2

3

4
5

6

7

8

9

1.0 0.5 0.0 0.5 1.0

1.0

0.5

0.0

0.5

1.0

0

1
2

3

4
5

6

7

8

9
10

111213

14

15

16

17

18

19

20
21 22

23
24

25

26

27

Figure 4.2: Construction of first layer

Concerning the other fields of the Layer class, num_inner_els denotes the
number of elements that have a common edge with the previous layer, sim-
ilarly num_outer_els denotes the number of elements that have a common
edge with the next layer. These integers can be computed from the index
vector ids_vec, this is done in the constructor of the struct Layer. In the
above case num_inner_els = 1 and num_outer_els = 3.

Note that not any layer can be added to the mesh, they need to be compat-
ible, i.e. if in the previous layer k elements share an edge with the current
layer, then num_inner_els of the current layer needs to divide k. There can
also be an offset specified, this means that the new layer will be shifted by
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4.2. Mesh Construction

offset elements in angular direction. In the case of offset = 0.5 this would
look like in figure 4.3. This offset might also be negative.
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Figure 4.3: First Layer with Offset

One has to be careful when choosing the layers and the function r, the el-
ements should not have too big angles. This might have an impact on the
convergence behavior discussed later.

4.2.3 Thickness of layers

The thicknesses of the layer is indirectly specified by a real valued function
r(x) : [0, 1] 7→ [0, 1]. Given there are n layers without including the center,
then the center has radius r( 1

n+1 ) and then the ith layer, i ∈ {1, ..., n}, will
occupy the part of the unit circle between r( i

n+1 ) and r( i+1
n+1 ), so it will have

thickness r( i+1
n+1 )− r( i

n+1 ). If r(x) = x then the layers will all have the same
thickness i

n+1 . To get a mesh that is not overlapping in some parts this
function r must be strictly increasing. Figure 4.4 show a mesh with r(x) = x,
i.e. uniform thicknesses of layers, and figure 4.5 a mesh with r(x) = sin(πx

2 ),
i.e. the thickness is smaller for layers closer to the boundary.

4.2.4 Order of Elements in Layer

The order of the elements in a layer can be specified by a vector orders, the
length of this vector has to be the same as the number of layers in the mesh.
Then the i-th component of this vector specifies the polynomial degree of
the i-th layer. If center_higher_order is false then the elements in the
center will just have the same order as the elements in the layer next to it,
else their order will be one order higher. For simplicity the order of the
elements in the ith layer can either be the same as the order of the elements
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Figure 4.4: Uniform layer thickness.
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Figure 4.5: Thickness decreasing.

of the previous layer or it can have decreased by one, i.e. the order can
only decrease by at most one in each layer when going from the center of
the mesh to the boundary. This convention ensures that only one special
kind of shape functions have to be implemented, namely ones that have one
degree of freedom less on only one side. Figure 4.6 shows a mesh that was
constructed with orders = {3, 2, 1} and center_higher_order = true:

1.0 0.5 0.0 0.5 1.0

1.0

0.5
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0.5

1.0

Figure 4.6: Example mesh.
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4.2.5 Some example meshes

Figure 4.7 shows a radial mesh containing only a few triangles and many
quadrilaterals with constant order 1. Figure 4.8 shows a mesh containing
triangles only but with elements of higher order in the center. The maximum
order of this particular mesh is 4.
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Figure 4.7: Radial mesh, constant or-
der 1
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Figure 4.8: Triangular mesh, max. or-
der 4

4.3 Shape Functions

Since we do not have the basis functions we need on any degree element
everywhere in R2, we need to map the integrals needed for the computation
of the entries of our matrices back to some reference element, denoted by K̂.
All the basis functions used in this thesis satisfy the nodal condition already
seen in 3.2. But this time we look at the basis functions on the reference
element, this means that we now have

b̄i(d̄j) =

{
1 if i = j
0 if i 6= j

(4.1)

where d̄j denotes the j-th local interpolation node and b̄i the i-th shape func-
tion, both on the reference element.

4.3.1 Quadrilateral elements

For a quadrilateral element, the reference element is the unit square K̂Q :=
[0, 1]2 with subscript Q indicating that it is the reference element of the
quadrialteral elements. Let’s consider the general case of order p elements.
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4. Implementation

Since we consider a quadratic element, we have NLD := (p + 1)2 interpola-
tion nodes and the same number of shape functions. Figure 4.9 shows how
the interpolation nodes are distributed on K̂Q.
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Figure 4.9: Dofs of a quadrilateral element of order 4.

Further it shows how the local ordering of the interpolation nodes was cho-
sen for this thesis: Let d̄j = (xdj , ydj)

T, then the index j is smallest for ydj the
smallest, and among those with the same ydj , the ones with the smallest xdj

have the smallest index. This also allows us to find a nice expression for the
interpolation nodes in terms of j.

d̄j =
1
p
(j mod p + 1,

⌊
j

p + 1

⌋
)T (4.2)

Now there are two different ways to construct the actual shape functions.
Since 4.1 has to hold for every one of the NLD shape functions, we have NLD
conditions on every shape function. If we make the ansatz b̄j ∈ Qp(R2),
where Qp(R2) is the space of tensor product polynomials described in [4,
Chapter 3, Section 3.4.2], then we also have the same amount, namely NLD,
of coefficients that we can now determine uniquely to get our shape func-
tions by solving a linear system of equations. This has been done using
Mathematica [6], for p = 1, ..., 6. Listing 4.6 shows the signature of these
functions which are implemented in the file shape_functions_quad.hpp.

Listing 4.6: Low Order Shape Functions and Gradients for Quadrilateral
Element
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4.3. Shape Functions

1 typedef Eigen::Matrix <numeric_t , 2, 1> coords_t;

2 Eigen::Matrix <numeric_t , -1, 1>

3 b1_quad(const coords_t & x);

4 Eigen::Matrix <numeric_t , -1, 2>

5 gradb1_quad(const coords_t & x);

6 Eigen::Matrix <numeric_t , -1, 1>

7 b2_quad(const coords_t & x);

8 Eigen::Matrix <numeric_t , -1, 2>

9 gradb2_quad(const coords_t & x);

10 /// ...

11 Eigen::Matrix <numeric_t , -1, 1>

12 b6_quad(const coords_t & x);

13 Eigen::Matrix <numeric_t , -1, 2>

14 gradb6_quad(const coords_t & x);

bp_quad(x), p = 1, ..., 6 returns a length NLD = (p + 1)2 vector whose
entries are all the shape functions of the quadrilateral reference element
with corresponding order p evaluated at point x. grad_bp_quad(x) returns,
as the name suggests, the gradients transposed of the corresponding shape
functions, all evaluated at point x in a NLD by 2 matrix. For p > 6 the
following method, which works for any p, was used. The shape functions
can almost directly be written down as a product of linear functions.

b̄i(x, y) = aibx
i (x)by

i (y) = ai

p

∏
k=0

k 6=i mod p+1

(x− k
p
)

p

∏
k=0

k 6=
⌊

i
p+1

⌋(y−
k
p
) (4.3)

where ai is a normalization constant that needs to be chosen such that
b̄i(d̄i) = 1, i.e.

1
ai

=
p

∏
k=0

k 6=i mod p+1

(xdi −
k
p
)

p

∏
k=0

k 6=
⌊

i
p+1

⌋(ydi −
k
p
) (4.4)

where again d̄i = (xdi , ydi)
T. It can be shown that b̄i(x, y) chosen according

to 4.9 satisfies the nodal condition 4.1 and that it lies in the space Qp(R2).
Therefore it will be the exact same function as we would have computed
using the first method. Using 4.9 and 4.4 we can write an algorithm that
computes shape functions of arbitrary order. But this is not all, yet, we also
need the gradients of these shape functions, so we apply the product rule
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and get

∇b̄i(x, y) = ai

(
(bx

i )
′(x)by

i (y)
bx

i (x)(by
i )
′(y)

)

= ai



p
∑

j=0
j 6=i mod p+1

p
∏

k=0
k 6=j

k 6=i mod p+1

(x− k
p )

p
∏

k=0
k 6=
⌊

i
p+1

⌋(y−
k
p )

p
∏

k=0
k 6=i mod p+1

(x− k
p )

p
∑

j=0

j 6=
⌊

i
p+1

⌋
p

∏
k=0
k 6=j

k 6=
⌊

i
p+1

⌋
(y− k

p )


(4.5)

where the ai can be calculated as above. These shape functions were imple-
mented in the file very_high_order_regular_shapefunctions.hpp. Listing
4.7 shows the signature of these function.

Listing 4.7: Arbitrary Order Shape Functions and Gradients for Quadrilat-
eral Element

1 typedef Eigen::Matrix <numeric_t , 2, 1> coords_t;

2 template <index_t order >

3 Eigen ::Matrix <numeric_t , -1, 1> bi_quad

4 (const coords_t & x);

5 template <index_t order >

6 Eigen ::Matrix <numeric_t , -1, 2> grad_bi_quad

7 (const coords_t & x);

The first one, bi_quad<order>(x) returns a length NLD = (order+ 1)2 vector
whose entries are all the shape functions of the quadrilateral reference ele-
ment with corresponding order evaluated at point x. grad_bi_quad<order>(x)
returns, as the name suggests, the gradients transposed of the shape func-
tions, all evaluated at point x in a NLD by 2 matrix.

4.3.2 Triangular elements

We again have the same two possibilities, solving a LSE or constructing the
shape functions explicitly. The first case is very similar to what was done for
the quadrilateral element, the only difference is that we have another num-
ber of interpolation nodes NLD := (p+1)(p+2)

2 . So we choose b̄j ∈ Pp(R2),
where Pp(R2) is the space of multivariate polynomials, also found in [4,
Chapter 3, Section 3.4.2]. Then again the nodal property 4.1 leads to a linear
system of equations which can be solved easily. And of course this was done
and the signatures of the corresponding functions can be found in listing 4.8.

Listing 4.8: Low Order Shape Functions and Gradients for Triangular Ele-
ment
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4.3. Shape Functions

1 typedef Eigen::Matrix <numeric_t , 2, 1> coords_t;

2 Eigen::Matrix <numeric_t , -1, 1>

3 b1_tria(const coords_t & x);

4 Eigen::Matrix <numeric_t , -1, 2>

5 gradb1_tria(const coords_t & x);

6 Eigen::Matrix <numeric_t , -1, 1>

7 b2_tria(const coords_t & x);

8 Eigen::Matrix <numeric_t , -1, 2>

9 gradb2_tria(const coords_t & x);

10 /// ...

11 Eigen::Matrix <numeric_t , -1, 1>

12 b6_tria(const coords_t & x);

13 Eigen::Matrix <numeric_t , -1, 2>

14 gradb6_tria(const coords_t & x);

These functions are also found in the file shape_functions_tria.hpp. But
as in the case of the quadrilateral, we still need shape functions of arbi-
trary high order. On the triangular reference element, they are even more
complicated to compute in a general way than the ones on the quadrilat-
eral reference element, but basically the derivations are similar, one can just
write down the shape functions in terms of linear factors.

b̄i,j(x, y) = ai,jbx
i (x)by

j (y)b
xy
i,j (x, y)

= ai,j

i−1

∏
k=0

(x− k
p
)

j−1

∏
k=0

(y− k
p
)

p

∏
k=i+j−1

(x + y− k
p
)

(4.6)

To be able to write this down relatively easily, we used shape functions
b̄i,j(x, y) with two subscripts, i and j. This means that b̄i,j(x, y) is the shape
function corresponding to interpolation node

d̄i,j = (xdi,j , ydi,j)
T = (

i
p

,
j
p
)T for 0 ≤ i, j ≤ p, i + j ≤ p (4.7)

An example of the ordering of the interpolation nodes used in the implemen-
tation can be seen in figure 4.10, which shows the interpolation nodes of a
triangular element of order 5. It is similar to the ordering of the interpolation
nodes of the quadrilateral element.

The normalization constant ai,j can be computed as

1
ai,j

= b̄i,j(xdi,j , ydi,j)

=
i−1

∏
k=0

(xdi,j −
k
p
)

j−1

∏
k=0

(ydi,j −
k
p
)

p

∏
k=i+j−1

(xdi,j + ydi,j −
k
p
)

(4.8)
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Figure 4.10: Interpolation Node Ordering of a Triangular Element of order
5.

The gradient of the shape functions can directly be derived using the product
rule

∇b̄i,j(x, y) = ai,j

(
by

j (y)[(b
x
i )
′(x)bxy

i,j (x, y) + bx
i (x) ∂

∂x bxy
i,j (x, y)]

bx
i (x)[(by

i )
′(y)bxy

i,j (x, y) + by
i (y)

∂
∂y bxy

i,j (x, y)]

)

= ai,j



j−1
∏

k=0
(y− k

p )[
p

∏
k=i+j−1

(x + y− k
p )

i−1
∑

l=0

i−1
∏

k=0
k 6=l

(x− k
p )

+
i−1
∏

k=0
(x− k

p )
p
∑

l=i+j−1

i−1
∏

k=0
k 6=l

(x + y− k
p )]

i−1
∏

k=0
(x− k

p )[
p

∏
k=i+j−1

(x + y− k
p )

j−1
∑

l=0

j−1
∏

k=0
k 6=l

(y− k
p )

+
j−1
∏

k=0
(y− k

p )
p
∑

l=i+j−1

i−1
∏

k=0
k 6=l

(x + y− k
p )]



(4.9)

These shape functions and their gradients are implemented in the same file
and are named similarly as the corresponding functions for the quadrilateral
elements which shows listing 4.9.

Listing 4.9: Arbitrary Order Shape Functions and Gradients for Triangular
Element

1 typedef Eigen::Matrix <numeric_t , 2, 1> coords_t;
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4.3. Shape Functions

2 template <index_t order >

3 Eigen::Matrix <numeric_t , -1, 1> bi_tria

4 (const coords_t & x);

5 template <index_t order >

6 Eigen::Matrix <numeric_t , -1, 2> grad_bi_tria

7 (const coords_t & x);

4.3.3 Transition Elements

It was already mentioned that our mesh contains elements of different or-
ders, this means that we have elements with edges that do not all have the
same number of interpolation nodes on them. For simplicity, we only allow
elements of this type that have exactly one edge that has exactly one interpo-
lation node less than the others. Then we define our reference element to
have this missing interpolation node on the first edge which lies at y = 0.
Let’s assume our element has order p, this means that on all edges but on
the first there lie p + 1 interpolation nodes. For the case of an element with
p = 5 it looks as in figure 4.11.
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Figure 4.11: Interpolation Node Ordering of a Triangular and a Quadrilat-
eral Transition Element of order 5 .

Let Np,1
LD = Np

LD − 1 be the number of local interpolation nodes of such
a transition element of order p, Np,1

LD = (p + 1)2 − 1 for quadrilateral and
Np,1

LD = (p+1)(p+2)
2 − 1 for triangular transition elements. Let b̄p

i be the i-th
shape function of a regular order p element and b̄p,1

i be the shape functions
of a transition element of order p, with the 1 indicating the missing interpo-
lation node. Since the regular order p shape function which do not lie on the
first edge are identical to zero on the whole mentioned edge, we can choose
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these also for the transition element, i.e. b̄p,1
i = b̄p

i+1 for i = p, ..., Np,1
LD. The

remaining shape functions are constructed as a linear combination of the
shape functions used just before and the shape functions of a regular order
p− 1 element wich lie on the y = 0 edge. If we choose for i = 0, ..., p− 1

b̄p,1
i = b̄p−1

i −
Np,1

LD

∑
k=p

b̄p−1
i (dp,1

i )b̄p,1
i (4.10)

then it can be shown that these b̄p,1
i fulfill the nodal property 4.1 and that

these polynomials are of order p− 1 if we restrict them to y = 0 which en-
sures continuity. This procedure can be used to construct shape functions
for the quadrilateral as well as for the triangular transition element from
the regular shape functions. An algorithm doing exactly this is also imple-
mented in the file very_high_order_regular_shapefunctions.hpp and the
functions take the following forms

Listing 4.10: Arbitrary Order Shape Functions and Gradients for Transition
Elements

1 typedef Eigen::Matrix <numeric_t , 2, 1> coords_t;

2 template <index_t order >

3 Eigen ::Matrix <numeric_t , -1, 1> bi_1_tria

4 (const coords_t & x);

5 template <index_t order >

6 Eigen ::Matrix <numeric_t , -1, 1> grad_bi_1_tria

7 (const coords_t & x);

8 template <index_t order >

9 Eigen ::Matrix <numeric_t , -1, 2> bi_1_quad

10 (const coords_t & x);

11 template <index_t order >

12 Eigen ::Matrix <numeric_t , -1, 2> grad_bi_1_quad

13 (const coords_t & x);

where the 1 indicates the missing interpolation node and quad is used for
quadrilateral and tria for triangular elements. The name and the purpose
of these functions is analogous to the previous cases. It is also possible to
compute the shape functions directly from the nodal property by solving a
LSE as discussed for the regular shape functions, this was done for transition
elements with low order, precisely for p = 2, ..., 6 as seen in listing 4.11.

Listing 4.11: Low Order Shape Functions and Gradients for Transition Ele-
ments

1 typedef Eigen::Matrix <numeric_t , 2, 1> coords_t;

2 Eigen ::Matrix <numeric_t , -1, 1>
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3 b2_1_tria(const coords_t & x);

4 Eigen::Matrix <numeric_t , -1, 2>

5 gradb2_1_tria(const coords_t & x);

6 /// ...

7 Eigen::Matrix <numeric_t , -1, 1>

8 b6_1_tria(const coords_t & x);

9 Eigen::Matrix <numeric_t , -1, 2>

10 gradb6_1_tria(const coords_t & x);

11 /// And the same for quadrilaterals

12 Eigen::Matrix <numeric_t , -1, 1>

13 b1_1_quad(const coords_t & x);

14 Eigen::Matrix <numeric_t , -1, 2>

15 gradb1_1_quad(const coords_t & x);

16 /// ...

17 Eigen::Matrix <numeric_t , -1, 1>

18 b6_1_quad(const coords_t & x);

19 Eigen::Matrix <numeric_t , -1, 2>

20 gradb6_1_quad(const coords_t & x);

4.4 Local transformations

Since the basis functions are only available on the reference element and the
same is true for the quadrature points, we need to transform the integral
over an arbitrary element to the corresponding reference element. To do
so a suitable transformation from the reference element to an arbitrary ele-
ment in the mesh is needed. This transformation will be denoted as ϕi, it
transforms the reference element to the element K̂i in the mesh of the unit
circle.

4.4.1 Affine and bilinear transformations

The mesh of the unit disk constructed as described in 4.2 only contains ele-
ments with straight edges, this means that we do not need any complicated
transformations, we can just use the affine transformation for triangular el-
ements and the bilinear transformation for quadrilateral ones. The affine
transformation of the reference element to a specific triangular element in
the mesh with corners d̂j, j = 1, 2, 3 is defined as follows

ϕi(x̄) := d̂0 +
(
d̂1 − d̂0 d̂2 − d̂0

)
x̄ (4.11)

It is easy to see that the corners of the reference element are mapped to the
corners of the element in the mesh, d̂j . The Jacobian of this transformation
is

Dϕi(x̄) :=
(
d̂1 − d̂0 d̂2 − d̂0

)
(4.12)
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The bilinear transformation of the reference element K̂Q to a quadrilateral
element in the mesh with corners d̂j, j = 1, 2, 3, 4 is given as

ϕi(x̄) := d̂0 +
(
d̂1 − d̂0 d̂3 − d̂0

)
x̄ +

(
d̂2 − d̂0 − d̂1 − d̂3

)
x̄ȳ (4.13)

Its Jacobian is given as

Dϕi(x̄) :=
(
d̂1 − d̂0 d̂2 − d̂0

)
+

(
ȳ
x̄

) (
d̂2 − d̂0 − d̂1 − d̂3

)T
(4.14)

4.4.2 Higher order transformations

One possibility is to parametrize the transformation needed by the shape
functions of the reference elements in the following way.

ϕi(x̄) :=
NLD

∑
j=1

d̂jb̄i(x̄) (4.15)

Here NLD denotes the number of local interpolation nodes in the element
and d̂j is the j-th interpolation node (coordinates) of the element in the
mesh. It is easy to see that this transformation maps the interpolation nodes
of the reference element d̄j to the interpolation nodes of the element in the
mesh d̂j. The Jacobian of this transformation can be easily computed from
the gradients of the shape functions.

Dϕi(x̄) :=
NLD

∑
j=1

d̂j∇b̄i(x̄)T (4.16)

4.5 FE Solution

As mentioned in section 4.3, we need to map the integral for every element
to an appropriate reference element to be able to compute it. The following
figure shows the setting for a triangular element.
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4.5.1 Auxiliary problem

To solve the auxiliary problem 3.6 numerically, we again use transformation
techniques described e.g. in [4, Chapter 3, Section 3.7.3]. So we get

(A)i,j =
∫
B1

∇b̂i · ∇b̂jdx̂

=
M

∑
k=1

∫
K̂k

∇b̂i · ∇b̂jdx̂

=
M

∑
k=1

∫
K̄

Dϕ−T
k ∇b̄i · Dϕ−T

k ∇b̄j|det Dϕk|dx̄

(4.17)

where ϕk maps the reference element K̄ to K̂k which denotes the k-th element
of the mesh of the unit disk. As seen in section 4.4, we can express ϕk in
terms of the shape functions on the reference element. This means that we
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can compute the above expression for the entries of the system matrix using
quadrature.

4.5.2 Original problem

For the original problem this is not as easy. One difficulty is that we already
transformed the integral using Φ, but from this Φ only an approximation,
denoted by ΦN , is available as a numerical solution to the auxiliary problem.
Therefore it can’t be easily evaluated at any point in B1. We want to compute

(Aû)i,j =
∫
Ω

∇bi · ∇bjdx

=
∫
B1

(DΦN)−T∇b̂i · (DΦN)−T∇b̂j|det DΦN |dx̂ i, j = 1, ..., N
(4.18)

But again, we have to transform this to a sum of integrals over reference
elements only. We will look at two different, but mathematically equivalent
ways to do this.

Direct Method

If we use the first part of the above expression 4.18, we get:

(Aû)i,j =
∫
Ω

∇bi · ∇bjdx

=
M

∑
k=1

∫
Kk

∇bi · ∇bjdx

=
M

∑
k=1

∫
K̄

Dϕ̃−T
k ∇b̄i · Dϕ̃−T

k ∇b̄j|det Dϕ̃k|dx̄

(4.19)

where Kk denotes the k-th element of the deformed mesh and ϕ̃k = ΦN(ϕk(x̄))
with ϕk defined in the previous subsection. This means that ϕ̃k maps the ref-
erence element directly to the element of the deformed mesh. So to be able
to compute the entries of Aû, we only need Dϕ̃k.

Recall that the problem is ΦN , which is partly only given through a FE
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4.6. Deformed Elements and Interpolation Node Ordering

solution, i.e. ΦN(x̂) = x̂ + wN(x̂) with wN(x̂) :=
N
∑

i=1

(
α1,i
α2,i

)
b̂i(x̂). We have:

ϕ̃k(x̄) = ΦN(ϕk(x̄)) = ϕk(x̄) + wN(ϕk(x̄))

= ϕk(x̄) +
N

∑
i=1

(
α1,i
α2,i

)
b̂i(ϕk(x̄))

= ϕk(x̄) +
N

∑
i=1

(
α1,i
α2,i

)
b̄i(x̄)

(4.20)

And from this it follows immediately.

Dϕ̃k = Dϕk +
N

∑
i=1

(
α1,i
α2,i

)
∇b̄T

i (4.21)

This expression can be computed since it only contains the shape functions
on the reference element and the transformation which can be expressed in
terms of them. If we plug this into 4.19, we can compute the entries of Aû

using quadrature.

Mesh Deformation

This method is essentially the same as the previous one. The idea is that
we take the interpolation nodes of the mesh of the unit circle and thansform
them using ΦN , in this way we just get a mesh of Ω. Let di := ΦN(d̂i) =

d̂i +

(
α1,i
α2,i

)
for i = 1, ..., N. Since the d̂i denote the interpolation nodes of

the mesh of the unit circle, the di are the interpolation nodes of a mesh
of the original domain Ω with the same connectivity. This means that we
can directly compute ϕ̃k and Dϕ̃k using the modified interpolation nodes .
Thus we can compute the entries of our system matrix according to 4.19 in
a similar way as we did for the auxiliary problem.

4.6 Deformed Elements and Interpolation Node Order-
ing

4.6.1 Interpolation Node Ordering

In section 4.3 the ordering of the interpolation nodes of all element types
is shown for some example elements. Additionally, all the elements in the
mesh of the unit disk are constrained to have the same orientation, i.e. there
are no elements that are flipped. This is handled by the mesh constructor,
all the elements of the constructed mesh will have the orientation of the ele-
ments shown in the section mentioned above. Problems might arise if we ap-
ply the mesh deformation technique described in section 4.5, the computed
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4. Implementation

deformation might switch the orientation of some elements. Therefore we
need to detect such deformation since this will prevent convergence.

4.6.2 Detecting Bad Deformations

The orientation constraint defined above makes this task quite easy. Since
all the elements have the same orientation and it is also the same as the one
of the reference elements, we only have to check if the determinant of the
transformation from the reference element to the element in the deformed
mesh is positive, i.e. if

det Dϕ̃k(x̄) > 0 (4.22)

for all x̄ within the corresponding reference element. If this is the case, then
there’s no problem, else our computations will fail. Since the mesh of the
unit disk does not contain such badly deformed elements, it is enough to
test if

det DΦN(x̂) > 0 (4.23)

for all x̂ within the corresponding element in the mesh of the unit disk. In
the code inequality 4.22 is tested at all quadrature points since there we need
to evaluate det Dϕ̃k anyways for the assembly. In this way this won’t slow
down the computations a lot.

4.7 Quadrature

With all these transformations our problem boils down to computing inte-
grals over the reference elements. To do so we use numerical quadrature.
The class containing all necessary information about a specific quadrature
rule looks as follows

Listing 4.12: Quadrature Rule Class

1 typedef unsigned short el_type_t;

2 typedef unsigned short n_quad_p_t;

3 typedef Eigen::Matrix <numeric_t , -1, 1> quad_weights_t;

4 typedef Eigen::Matrix <numeric_t , -1, 2> quad_points_t;

5 struct quadRule {

6 const el_type_t el_type;

7 const n_quad_p_t n;

8 const quad_weights_t weights;

9 const quad_points_t points;

10 quadRule(const el_type_t el_type ,

11 n_quad_p_t n,

12 quad_weights_t weights ,

13 const quad_points_t points ){...}

14 };
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4.7. Quadrature

where n denotes the number of quadrature points, points is a n by 2 matrix
storing the quadrature points and weights a length n vector storing the
corresponding weights. el_type determines whether the quadrature rule
corresponds to the triangular reference element, in this case el_type = 3, or
to the quadrilateral one, i.e. el_type = 4.

4.7.1 Quadrature Rules for Quadrilateral Reference Element

The specific quadrature rules for the quadrilateral reference element are im-
plemented as seen in listing 4.13.

Listing 4.13: Quadrature Rules for Quadrilaterals Elements

1 typedef unsigned short quad_ord_t;

2 quadRule quad_qr(const quad_ord_t k){

3 if(k == 1){

4 quad_weights_t weights (1);

5 quad_points_t points (1,2);

6 weights << 1.;

7 points << 0.5, 0.5;

8 return quadRule (4,1,weights ,points );

9 } else if(k == 2){

10 quad_weights_t weights (4);

11 quad_points_t points (4,2);

12 weights << 0.25,

13 0.25,

14 0.25,

15 0.25;

16 points << 0.2113248654051871 , 0.2113248654051871 ,

17 0.2113248654051871 , 0.7886751345948129 ,

18 0.7886751345948129 , 0.2113248654051871 ,

19 0.7886751345948129 , 0.7886751345948129;

20 return quadRule (4,4,weights ,points );

21 }

22 /// And so forth

23 }

quad_qr takes an integer k as an input and returns a quadrature rule which
is exact for polynomials in Q2k−1(R

2). This code returning quadrature rules
was created from 1D Gaussian quadrature rules implemented in Mathe-
matica [6] in the function GaussianQuadratureWeights from the package
NumericalDifferentialEquationAnalysis.
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4.7.2 Quadrature Rules for Triangular Reference Element

For the triangular reference element it looks quite the same as can be seen
in listing 4.14.

Listing 4.14: Quadrature Rules for Quadrilaterals Elements

1 typedef unsigned short quad_ord_t;

2 quadRule tria_qr(const quad_ord_t k){

3 if(k == 1){

4 quad_weights_t weights (1);

5 quad_points_t points (1 ,2);

6 weights << 1;

7 points << 0.33333333333333298 ,0.33333333333333298;

8 return quadRule(3, 1, weights , points );

9 } else if(k == 2){ // # of points: 3

10 quad_weights_t weights (3);

11 quad_points_t points (3 ,2);

12 weights << 0.33333333333333298 ,

13 0.33333333333333298 ,

14 0.33333333333333298;

15 points << 0.66666666666666696 ,0.16666666666666699 ,

16 0.16666666666666699 ,0.16666666666666699 ,

17 0.16666666666666699 ,0.66666666666666696;

18 return quadRule(3, 3, weights , points );

19 }

20 /// And so forth

21 }

The main difference is that the function tria_qr with input k returns a
quadrature rule which is exact for polynomials in Pk(R

2). The quadrature
rules implemented here are derived in [2] and the implementation found
here [1] was used to construct an implementation in Eigen [3].

4.7.3 Choosing Quadrature Order

Let’s consider an element of order p. In this case, if we compute the integral
over the corresponding reference element, we use a quadrature rule of order
2p, i.e. one that it is exact for polynomials of order up to 2p − 1. Note
that these polynomials need to be chosen from a suitable space according to
whether the element is triangular or quadrilateral. Since there is a difference
in the implementation of the quadrature rules for the triangular and the
quadrilateral element, we have to choose k in the code in the following way.
k = 2p − 1 for triangular elements and k = p for quadrilateral elements,
each of order p.
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4.8 Error Computation

To measure the convergence behavior of our problem, we need to compute
the error between our numerical solution and an exact solution. Let u be
the exact solution that can be evaluated anywhere on our domain and uN =

∑
i

µibi the FE approximation.

4.8.1 L2-Error

The L2-error is defined as follows.

||u− uN ||2L2(Ω) =
∫
Ω

(u− uN)2dx (4.24)

The problem here is that we cannot evaluate the discrete solution uN at any
point in Ω and we also do not have a quadrature rule for our domain Ω. We
proceed in a similar way as we did when we computed the entries of the
system matrix, we split the domain into finite elements.

||u− uN ||2L2(Ω) =
∫
Ω

(u(x)− uN(x))2dx

≈∑
k

∫
Kk

(u(x)− uN(x))2dx

= ∑
k

∫
K̄

(u(ϕ̃k(x̄))− uN(ϕ̃k(x̄)))2|detDϕ̃k(x̄)|dx̄

(4.25)

We plug in the discrete solution as uN = ∑
i

µibi(x) and get the following.

||u− uN ||2L2(Ω) = ∑
k

∫
K̄

(u(ϕk(x̄))−∑
i

µibi(ϕk(x̄)))2|detDϕ̃k(x̄)|dx̄

= ∑
k

∫
K̄

(u(ϕk(x̄))−∑
i

µi b̄i(x̄))2|detDϕ̃k(x̄)|dx̄
(4.26)

In this way the error can actually be computed using an appropriate quadra-
ture rule since the transformation ϕ̃k is the same as we saw in section 4.5
when the assembly of the system matrix was discussed. Note that in the
inner sum indices i only needs to be considered if di is contained in element
k, this means the error computation can be done element-wise.
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4.8.2 H1-Error

Equivalently we derive for the H1-error the following.

||u− uN ||2H1(Ω) =
∫
Ω

∇(u− uN) · ∇(u− uN)dx

=
∫
Ω

||∇(u− uN)||22dx

=
∫
Ω

||∇u−∇uN ||22dx

≈∑
k

∫
Kk

||∇u−∇uN ||22dx

= ∑
k

∫
K̄

||∇u(ϕ̃k(x̄))−∑
i

µiDϕ̃−T
k ∇b̄i(x̄)||22|detDϕ̃k(x̄)|dx̄

(4.27)

Of course we need the exact gradient ∇u to compute this error.

4.8.3 Boundary Approximation

The error arising from the approximation of the boundary is not taken into
account in this thesis. One can see that in the previous two error computa-
tions there was an approximation even without using quadrature, we just
assumed that the elements cover the domain Ω exactly, the error on the part
of Ω which is not covered by elements is just ignored to make the implemen-
tation easier.
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Chapter 5

Results

5.1 Convergence on Unit Disk

To validate the code, we conduct a convergence study on the unit disk.
Thereby we solve the following problem

−∆u = 0 on B1

u = g on ∂B1
(5.1)

To measure the convergence, we choose the Dirichlet boundary condition as
a harmonic function, in that way the sought after function u is identical to
the boundary condition g.

5.1.1 Constant order element mesh

To verify that the code works for high order elements, we use a mesh with
elements of constant order p and an analytic harmonic function:

u(x, y) = g(x, y) = ey sin(x) (5.2)

That allows us to get an asymptotical error depending only on the order
of the elements used. In [4, Chapter 5, Section 5.3.5] and in [4, Chapter 5,
Section 5.6.3] the following can be found

||u− uN ||H1 ≤ C1N−
p
2

||u− uN ||L2 ≤ C2N−
p+1

2

(5.3)

for some constants C1, C2 and with the number of interpolation nodes N
large enough. The mesh used for this first convergence study is described in
section 3.1.2, the one containing only triangular elements of constant order.
The boundary of the unit circle is approximated piecewise linearly for any
order elements, the error from the approximation is neglected for simplicity.
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Figure 5.1 shows that the code achieves this exact asymptotic error behavior,
in the first case the mesh consisted of linear finite elements and in the second
of cubic.
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Figure 5.1: Convergence on unit disk using triangular mesh with constant
order elements.

This study suggests that the implementation is correct since we get the ex-
pected order of convergence.

5.1.2 Hybrid Mesh with Elements of Different Orders

Since we’ll use a hybrid mesh containing elements of different orders for the
original problem, we also test this mesh with the problem of the previous
section. In this way we gain some insights about the convergence we can
expect if we treat the original problem. Figure 5.2 shows the convergence
behavior of the problem using the hybrid mesh described in section 3.1.2.
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Figure 5.2: Convergence using hybrid mesh.
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5.2 Convergence Study

In this section we will look at the original problem posed on our deformed
domain Ω using the techniques discussed in 4.5. The problem is the follow-
ing, as already seen in section 2.1

−∆u = 0 on Ω
u = g on ∂Ω

(5.4)

As in the previous section, we choose the Dirichlet boundary conditions
as the smooth harmonic function g(x, y) = ey sin(x) for the convergence
studies such that the solution will be the same, i.e. u(x, y) = ey sin(x) and it
will be easy to measure the convergence.

5.2.1 Small Deformation

The first deformation discussed is only small, it is described by the coeffi-
cients

s =

(
0.1
0.05

)
, c =

(
0.06
0.12

)
, y =

(
0.6
−0.8

)
and z =

(
−0.4
0.9

)
(5.5)

If the mesh deformation technique from section 4.5 is applied, we find that
the mesh deformed according to the coefficients above looks approximately
as in figure 5.3

Note that the mesh in figure 5.3. does not represent the true deformation in
the interior since the mesh contains elements of up to order 7 and they were
actually deformed such that their edges would not be straight anymore, but
this was too complicated to visualize. This should just give an impression
of what the deformation looks like. Figure 5.4 shows the convergence of the
discrete solution for this specific case.

One can see that the convergence behavior for this particular deformation is
very similar to the case of no deformation.

5.2.2 Star Shaped Deformation

A second deformation that was tested is determined by the following coeffi-
cients.

sj = 0, j = 1, ..., N

cj =

 3(−1)
j
4

( j
4 )

2π2
if 4 divides j

0 else

yj = zj = 1, j = 1, ..., N

(5.6)
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Figure 5.3: Slightly Deformed Mesh
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Figure 5.4: Convergence on Slightly Deformed Mesh

If the mesh deformation method is used, the resulting deformed mesh looks
as in figure 5.5. In this case N = 100 was used.

Despite the rather sharp corners, the algorithm converges with a slightly
smaller rate as in the previous case as figure 5.6 shows.

If we solve the same problem using a mesh with elements of constant order
we observe the convergence behavior seen in figure 5.11. One can observe
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Figure 5.5: Star Shaped Mesh
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Figure 5.6: Convergence on Star Shaped Mesh

that the asymptotic error behavior is also in this case slightli worse that the
optimal behavior observed with the non-deformed meshes.

5.2.3 Deformations Causing Problems

Not all deformed meshes that were tested showed the nice convergence be-
havior as seen in the previous subsection. The condition 2.4 in section 2.1
does not suffice for the mesh transformation Φ to be bijective, there are cases
for which parts of the deformed mesh overlap with themselves. This hap-
pens e.g. when using the following coefficients which satisfy the condition
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Figure 5.7: Order 1
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Figure 5.8: Order 2
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Figure 5.9: Order 3
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Figure 5.10: Order 4

Figure 5.11: Convergence on star-shaped mesh containing only triangular
elements of constant order.

mentioned above.

sj = 0, j = 1, ..., N

cj = −2 ∗ 1− cos(djπ)

d(2− d)j2π2 , d = 0.15, j = 1, ..., N

yj = zj = 1, j = 1, ..., N

(5.7)

The deformation that these coefficients describe can be seen in figure 5.12.

As one can see the elements of the mesh overlap at the crack on the right.
This causes problems, i.e. the solution will not converge as figure 5.13
shows.

We see that if the mesh is fine enough, the error won’t decrease any further.
Note that this will not be different when using another mesh since overlap-
ping is caused by the definition of the transformation Φ, seen in section 2.1,
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Figure 5.12: Deformed Mesh Causing Problems
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Figure 5.13: Convergence on Badly Deformed Mesh

even if we knew the true solution, this would still lead to the overlapping
of the mesh. If we wanted to avoid this problem, we would have to find
another method to find a better transformation from B1 to Ω. This problem
can also occur if the re-entrant corner is not as sharp.

Figure 5.14 shows such a case. One could conjecture that if the deformed
mesh is convex, then there won’t be any problems with the discussed method
since this is what was observed in the examples that were tried out for this
thesis. But then it might still be hard to find a condition on the parameters
describing the deformation that ensure that the resulting domain will be con-
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Figure 5.14: Another Deformed Mesh Causing Problems

vex.. Another aspect is that there are non-convex deformations where this
method works as was observed for the star shaped mesh from the previous
subsection.

5.3 Timing and Efficiency

The code developed for this thesis is based only on Eigen [3], there were no
FEM-specific libraries used, these algorithms were all written from scratch.
This also means that it is certainly not the most efficient code, since the
focus of this thesis was primarily on the convergence analysis and not on the
efficiency of the code. Figure 5.15 shows the time needed for the assembly of
the matrix for the auxiliary problem, the time needed for the direct assembly
as described in 4.5.2 and the time needed for solving the resulting LSE with
Eigen’s SimplicialLDLT direct solver.

One can see that much more time is needed to assemble the matrices than
to solve the LSE. It is a bit different if a mesh with only triangular elements
of which all have the same order is used. Then the timing looks as in figure
5.16. In this case the mesh contained only elements of order 3.

In this case the assembly is quite a lot faster, though it is still slower than
the solving of the LSE.
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Figure 5.15: Timing using hybrid mesh
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Figure 5.16: Timing using triangular order 3 mesh

5.4 Conclusions

We have discussed a method that allows to find a solution of a Poisson equa-
tion on some deformed domain without having to mesh the actual domain
by mapping the PDE to the unit disk. It could also be shown empirically
that the convergence on the deformed domain can be almost as fast as the
one on the unit disk given the deformation is not too severe, in this case,
this method can fail, or if the deformation is not too bad, the convergence
might just be a bit slower.
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5.5 Extensions

Possible extension of this work include the following. The code could easily
be modified to also be able to solve Neumann boundary value problem on
these deformed domains. Also one could extend the code in such a way that
it is possible to solve any elliptic PDE on the deformed domains. The code is
already able to solve a Dirichlet BVP on any domain given a suitable mesh,
though the meshes would have to be converted to be compatible with this
code. What is still unclear is when does the deformation cause problems?
One could try random deformations using this code and maybe find out
when the deformation is too severe and impose a stronger condition on
the coefficients describing the deformation. Perhaps a better way would
be to find a way to compute a better mapping from the unit disk to the
deformed domain where these deformations do not lead to the overlapping
of elements.

There is certainly much more that can be done, but this is enough for this
thesis.
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