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AMG Part 1: Setup (AMGSetup)

• Choice of coarse variables

• Determination of interpolation matrix P

(=⇒ restriction and coarse-grid matrix)

• Determination of smoothing matrix M

• Input: matrix A, options

• Output: structures L (results) and times

(timing information)
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AMG Part 2: V-Cycle (AMGVcycle)

• Multigrid algorithm

• Pre-Smoothing

• Coarse grid correction

• recursive call of V-Cycle algorithm on next

level

• Restriction back to fine level

• Post-Smoothing
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Data structures

• Store data in structures

• Initialize: structname.fieldname=.. ,

Access: structname.fieldname

• Advantage: easier data management

• Options on parameters and algorithms used in a

matlab structure (see AMGDefaultOptions)

• Structure L{l} contains entire data of AMG

processes, with l being the level number, so that

there exists a structure L{l} for each level
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Choice of coarse variables (AMGSelectCoarseGrid)

• Starting point: matrix A whose elements aij 6= 0

represent the existence and strength of a coupling

between variables i and j

• Splitting of all variables in Ω according to strength of

coupling

• Definition:

A variable i is strongly n-coupled to another variable,

j 6= i, if

− aij ≥ θ max
aik<0

|aik| with fixed 0 < θ < 1

(1)

(Note that all positive connections are weak).
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• Create a matrix Astr containing only those aij with i

being strongly n-coupled to j, all other elements of A

are set to 0

• The set of all strongly negatively couplings of

variable i is denoted as Si:

Si = {j ∈ Ω : i strongly negatively coupled to j}
(2)

whereas

ST
i = {j ∈ Ω : i ∈ Sj} (3)

consists of all variables j which are strongly

n-coupled to i.
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• C/F splitting in principle: choose i ∈ C, all j ∈ ST
i

become F-variables, define new k ∈ C, ...

• But: Try to avoid randomly distributed C/F -patches

• Define a measure of importance, λi, of any undecided

variable i to become the next C-variable,

λi = |ST
i ∩ U |+ 2|ST

i ∩ F | (i ∈ U) (4)

i.e. the more strong n-couplings in U or F a variable

i has, and the more of them have already been

assigned to F, the bigger λi is.
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The C/F splitting algorithm

• C/F Splitting

{

C = ∅; F = ∅; U = Ω;

while (U 6= ∅)
{

get i ∈ U with maximum λi;

C = C ∪{i}; U = U \{i};
for (j ∈ ST

i ∩ U)

{
F = F ∪{j}; U = U \{j};
for (k ∈ Sj ∩ U) λk = λk + 1;

}
for (j ∈ Si ∩ U) λj = λj − 1;

}

}
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Modification of the λi within the algorithm

• Initialize all λi in a vector of length n (number of

elements in Ω, i.e. length of A) by setting all aji 6= 0

in Astr, setting all other elements to 1 and summing

up over all those aki in a column i

• Direct modification of the λi in a vector: too much

time needed for search of maximum λi, what to do

with already assigned variables...?

• Linked List: easy to remove elements

• Clever modification of two matrices, so that finding

maximum λ needs less time
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Coarsening algorithm, continuation

• Initialize a vector of length n with all entries set to U

(undecided)

• C/F splitting changes all elements of this vector to

either C or F

• The set of equations can now be permuted and

written in block form:

A u =

 ACC ACF

AFC AFF


 uC

uF

 =

 fF

fC

 = f. (5)
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Considerations on efficiency

• Overall efficiency determined by
a) the speed of convergence

– depends from approximation of algebraically smooth
error by interpolation

– the stronger the F-to-C connectivity, the better the
interpolation is (⇐⇒ uniform C/F-splittings)

– strong F-to-C connectivity also via strongly coupled
neighboring F-variables (−→ Aggressive coarsening)

b) the amount of work needed per cycle

– directly related to the total memory requirement

– better with fewer C-variables

• Goal is to fulfil both of these requirements
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Interpolation (AMGMakeInterpolation)

• Interpolation

el
i = (Pel+1)i =

 el+1
i i ∈ C l∑
k∈Pi

wikek i ∈ F l
(6)

with the interpolatory points k ∈ Pi = C ∩ Si

• Ruge-Stueben interpolation characterized by the

approximation

eiaii ≈ −
∑
j∈Ni

aijej (7)

where Ni = {j ∈ Ω : j 6= i, aij 6= 0} indicate all

couplings of a variable i ∈ Ω.
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• Ni = Si ∪ Wi, where Wi are the variables j which are

weakly connected to i

• aij with j ∈ Si contribute most to ej

• =⇒ Lumping: ∑
j∈Wi

aijej ≈ (
∑

j∈Wi

aij)ei (8)

Eq. (7) now is

(aii +
∑

j∈Wi

aij)ei = −
∑
j∈Si

aijej (9)
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• Lumping (left side in (10)) implemented as∑
j∈Wi

aij := (DFF )ii

=
nF ,nC∑
m,n=1

[(AFF )im + (AFC)in]−
nF ,nC∑
m,n=1

[(Astr
FF )im + (Astr

FC)in]

(10)

• Include strong F-F connections into interpolation, i.e. eliminate
all ej where j ∈ FS

i (FS
i = F ∩ Si)

• =⇒ replace ej (where j ∈ Si) with weighted average of those
coarse grid errors, which are strongly n-coupled to both ei and
ej :

ej =

∑
k∈Ci∩Cj

ajkek∑
k∈Ci∩Cj

ajk

for j ∈ Fi (11)
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• The resulting interpolation formula is:

(aii +
∑

j∈Wi

aij)ei = −
∑

k∈Si∩C

aikek−
∑

j∈Si∩F

aij

∑
k∈Ci∩Cj

ajkek∑
k∈Ci∩Cj

ajk

(12)
(Ci = C ∩ Si)

• Can also be written as:

(DFF )iiei = −(Astr
FC)ikek −

∑
j∈Si∩F

(Astr
FF )ij(Astr

FC)jk∑
k∈Ci∩Cj

(Astr
FC)ik

ek

(13)
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• =⇒ Prolongation operator:

P = − Âstr
FC

DFF
(14)

where Âstr
FC is the modified AFC according to eq. 14.

• Note that DFF is easy to invert

• Restriction R = P T , if A is an M-matrix

• Coarse grid matrix now equals to

Al+1 = Rl Al P l (15)

• Setup done for all levels l, until a minimum number of
coarse variables or a maximum level is reached

• Call of V-Cycle
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