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Notation

V(t)()
DT,

vt =7(t)
M(Ty)
we = w(t)
V)
dJ(2;V)
G(2)

G

9(I)

g

yr

P

domain in RY with piecewise smooth boundary 8D
measurable set in R" or in D, or domain of class C*
boundary of 2

unit normal vector field on I', outward to {2
unitary extension of n to an open neighbourhood of I' in RN
function in W*?({2)

characteristic function of 2

=D\ (or RN\ )

characteristic function of 2¢

N-dimensional measure of 2

mean curvature of I"

= {x € L*(D) such that (1 — x)x =0 a.e. on D}
unit ball in RY

unit ball in RN~!, By c B

domain functional (or cost functional)

perimeter of £2 in D

continuous matrix functions on D

transpose of A(z)

transformation of RN or of D into RY

=V(t,z) speed vector field

Jacobian of T

= det(DT)

M(T:) = +(t)* DTy

= ||M(T;).n||g~ on I

= %(*DV + DV)

Eulerian derivative

shape gradient

density of the shape gradient

the density gradient

€ L'(R") a (non unique) distributed representation of g(I")
trace operator on I', e.g. yr € L(H'(2); H*(I'))
obstacle function
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Ce(R), C&(RY)

tangential gradient on I

normal derivative on I"

conormal derivative on I" associated to the matrix A
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Laplace-Beltrami operator on I

material derivative of y(2) at £2 in direction of the speed field -
shape (domain) derivative of y({2) at £ in

direction of the speed field V

transported distribution

boundary shape derivative of y(I') at I" in

direction of the speed field V

space of smooth functions (or of vector smooth functions)
with compact supports in £2



1. Introduction to shape optimization

1.1. Preface

This book is motivated largely by a desire to solve shape optimization prob-
lems that arise in applications, particularly in structural mechanics and in the
optimal control of distributed parameter systems. Many such problems can be
formulated as the minimization of functionals defined over a class of admissible
domains.

Shape optimization is quite indispensable in the design and construction of
industrial structures. For example, aircraft and spacecraft have to satisfy, at
the same time, very strict criteria on mechanical performance while weighing as
little as possible. The shape optimization problem for such a structure consists
in finding a geometry of the structure which minimizes a given functional (e.g.
such as the weight of the structure) and yet simultaneously satisfies specific
constraints (like thickness, strain energy, or displacement bounds).

The geometry of the structure can be considered as a given domain in the
three-dimensional Euclidean space. The domain is an open, bounded set whose
topology is given, e.g. it may be simply or doubly connected. The boundary
is smooth or piecewise smooth, so boundary value problems that are defined
in the domain and associated with the classical partial differential equations of
mathematical physics are well posed. In general the cost functional takes the
form of an integral over the domain or its boundary where the integrand depends
smoothly on the solution of a boundary value problem. The shape optimization
problem consists in the minimization of such a functional with respect to the
geometrical domain which must belong to the admissible family.

Much of the book is concerned with the shape sensitivity analysis for uni-
lateral problems describing such physical phenomena as contact problems in
elasticity, elasto—plastic torsion problems, and the obstacle problem.

An elastic membrane in the plane which is fixed along its boundary may
serve as a simple example. If a transversal force is applied, then the transversal
displacement of the membrane in the state of static equilibrium is a scalar func-
tion defined in the domain occupied by the membrane. The specific functional
that has been intensively studied for the purpose of structural optimization is
the compliance, i.e. the work an external force in that process. That functional
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proves to be the integral of the product of force and displacement over the
geometrical domain.

If arbitrarily small variations of the boundary of the geometrical domain
are taken into account, both the functional and the force’s displacement of the
membrane are perturbed.

To solve any shape optimization problem would ideally mean to find the
minimum — whenever it exists — of a specific cost functional over a set of admis-
sible domains. However, it turns out that very few adequate existence results are
available. In general, the existence results for such problems are obtained, pro-
vided that some unrealistic constraints are imposed on the family of admissible
domains. These constraints are often not satisfactory from the physical point
of view; for example, one cannot perform the modelling of a large ocean wave
by a graph without excluding the interesting phenomenon of a breaking wave.
The constraints under discussion also give no realistic framework for the devel-
opment of optimization algorithms; for example, one is unable to project onto
a tangent cone to the family of domains having a pointwise bounded curvature
of the boundaries.

In practice, engineers are interested in increasing the stiffness of a plate,
improving the drag of aircraft’s wing, decreasing the weight of a radiator, etc.
Many studies in the field of structural optimization have been undertaken for
the last thirty years. The results on mechanical formulation of the problems,
their functional analysis and on control theory have recently been combined.
For a review of such results the reader is referred to (Haug et al. 1981).

Let us recall that a structure to be optimized (considered in the structural
optimization) is generally an assemblage of different parts like beams, plates,
shells, and three-dimensional bodies. In this book we restrict our attention to
the continuous formulation of such optimization problems for general elastic
structures.

In such problems the sensitivity analysis plays a central role and was in-
tensively studied in the 1980s by the authors. The first results concerning the
differentiability with respect to perturbations of a geometrical domain were
obtained by Hadamard for the first eigenvalue of a membrane; assuming that
the boundary of a domain was smooth, he used perturbations of the bound-
ary along the normal direction. This technique cannot be extended to more
general situations, in particular, to domains with piecewise smooth boundaries.
A straightforward approach to perturbations of geometrical domain considers
hypographs in the Cartesian coordinates. In this case linear function spaces
can be used to parametrize the domains. Making use of such a parametriza-
tion one can obtain the existence results for the shape optimization problems
in a standard way. A more general setting of perturbations of geometrical do-
mains is to consider a one—parameter family of smooth transformations of the
N-dimensional Euclidean space. That general setting fails to have any linear
structure for transformations, however the associated vector field (whose flow
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is the transformation) does possess the linear structure of an appropriate linear
space. Usual constraints on the geometrical domain can be easily taken into
account by the choice of a linear subspace of the vector fields. In this tech-
nique, fluid mechanics developments have been of great importance for deriving
the shape analysis used in this book. For example, the prescribed volume of a
geometrical domain is preserved for the perturbed domains provided that the
vector field is divergence—free. The difference from fluid mechanics is that the
material derivative of a solution of a boundary value problem is not sufficient
for the sensitivity analysis of shape cost functionals.

In the book we introduce the shape derivative of solutions to linear and uni-
lateral boundary value problems. The shape derivative depends only on the nor-
mal component of the vector field on the boundary of the geometrical domain.
Then the boundary value problem whose solutions give the shape derivative is
characterized. In particular, for the linear case the existence of the so—called
shape gradient is proved and its form is derived.

Let us begin with a review of some concepts used in the book, such as the
material derivative, the shape derivative of solutions to PDE’s, the first and
second order derivatives of domain functionals.

For the sake of simplicity we restrict our considerations to the domain of
integration of ordinary differential equations. Let us consider a simple example:
2 = (0, a) is a domain in IR and y denotes the solution to the following boundary
value problem

_%(:ﬂ) +y(z) =sinz z€(0,a), y(0)=y(a)=0.

It is assumed that perturbations of a are in the form a + tv, t > 0, and the
mapping T; from 2 onto £2; = (0,a + tv) is defined by Ty(z) = 2z, The
solution y; on §2; is given by

1sin(a + tv)

1
- hz + —si t20.
2 sh(a+tv)S a o =

yi(z) =

Let y* be the solution transported to the fixed domain §2:

1sin(a+tv) , a+tv 1, a+tv
t = T = —— - .
Y=y, oT, > sh(a T 1) sh( " z)+ 2sm( )
Then the shape derivative takes the form
Ays v sha cosa — sina cha
"(z) = =(z)j4=0 = —= shz
y'(z) ot (2)t=0 2 (sha)2

while the material derivative is given by

. dyt , vz sina
y(z) = I(z)u:o =y'(z)+ Ea(cosa: - Echx).
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It can be verified that y' satisfies

d2y v sha cosa — sina cha
=0, ¥'(0)=0, y'(a)=—<
—4z T¥ =0 ¥(0) y(a)=~3 o
while g is the solution to the following equation

dz.
- e -Ecosz §(0) = g(a) = 0.

Both g and y' depend linearly on v, but y' depends only through the boundary
value.

Let us consider the variational inequality associated with mmumzatmn of
the following quadratic functional

0= " (%) - s

over the convex subset K; = {¢ € H;|$(0) 2 0} of the Hilbert space H; = {4 €
HY(0,1 + tv)]4(1 + tv) = 0}.

The minimum of I(.) over K, is achieved at the unique element z; in K,
characterized by the following variational inequality

1+tv dZ d¢ dZt 14ty
. L _ = > -

The minimizer z; can be evaluated explicitly using the solution u, to the linear
problem associated with minimization of I(.) over H;:

‘f;“;(x) f(z) z€02=(0,1+tv)

subject to the boundary conditions
du,
dz

It can be verified that 6(z) = 1 — 17, an element of H, is orthogonal to the

(0)=0, ue(1+tv)=0 .

subspace Hj(§2;); H; is equipped with the scalar product

/1+tv d¢ dl//'
0

dr dz dz—(¢¢)ﬂz .

Each element ¢ € H, takes the form ¢ = ¢(0)(1 — ;) + ¥, for some ¥ €
H{(£2;). The metric projection P, in H; onto K, satisfies P;(1)) = . Thus

Pi(¢) = ¢ ~min{0,6(0)} (1 - 135) = ¢ - 14O (1~ =)
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and we have z; = Py(u). Hence

24(z) = ui(z) - [us(0)]” (1 -1 ftv) .

Therefore, there exists the shape derivative
.1
2 (z;v) = ltlﬁ'l ;(zt(a:) — zo(z))
as well as the material derivative
. .1
Hzv) = lim 3 (200 T)(e) — 2(a) -

It is assumed that z,(z) = 0 for z 2 1 + tv.

To make our considerations more specific we suppose that ug(0) = 0. If u'
denotes the shape derivative for the linear problem, then u' is linear with respect
to v where v = 1, or v = —1. It follows that

"o _n 1
2/(270) = lim 1 (2(2) = 20(2))
= lim 3 (Pruc)(@) - (Pouo)(@)

= lim (ua(o) — (@) (1= 7o) — (@) + [w(0))(1 - 2)
= '(a) - WO "1 - 2) -

provided that we assume u(z) =0, for z 2 1 + tv.

Since the term [u'(0)]” = min{0, —u'(0)} is not linear with respect to v, it
follows that the shape derivative 2'(z; v) fails to be linear with respect to v. The
same argument applies to the material derivative z(z;v). On the other hand we
obtain

Z'(z;v) =u'(z) for up(0) <0
Z'(z;v) = u'(z) —u'(0)(1 —z) for up(0) >0 .

Let us consider a cost functional to be minimized with respect to the domain
2. The simplest example is as follows:

1 1+tv
J(t)=§/0 (ug —ya)’dz t>0 .

Then the semi-derivative is given by

T(0) = lim (J(t) - J(0)
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= (u(1) - ya(1))P0 + /0 (4 — ya)u'de .

It is obvious that J'(0) is linear with respect to v. Let us introduce the adjoint
state

d? d
~25(@) = u(z) - ya(e), £(0)=p(1)=0 .
Hence y ;
J'(0) = [(u(1) — ya(1))* + /0 d—:(m)—d—g(x)dx]v .
The second derivative is given by -

dZJ .1 ' !
22 (@ =lm (') - J'(0))

du,_ . dp V/du' dp  dudp
— — ' [E— — —_ e ——
= vl-2ya(1)u'(1) + vdz(l)dx (1) +/0 (dz & & dz da] .

Here p' denotes the shape derivative of the solution to the adjoint equation. In
the case of the unilateral problem with the functional

14ty
J(t) = / (z¢ — ya)dz,
0

we have
7'(0) = v(2(1) - ya(D))? + / (2(2) - yal2))2' (z;v)dz .

If the mapping v — 2'(.,v) fails to be linear, then the functional J(.) is not
differentiable at t = 0, and the adjoint state cannot be introduced.

Let us consider the general setting of the shape optimization problem. Such
a problem can be formulated as the following minimization problem:

2 €Upa : J(2*) = nlenlf., J(2) (1.1)

where the set U,q of admissible domains in RY, N = 1,2,3, ..., includes the
classes of all admissible geometries for the problem under consideration. Usually
the cost functional J(.) takes the form J(£2) = h(£2,y(2)), where the element
y(92) is given as the solution of a boundary value problem well posed in the
domain £2. In general, the element y(42) belongs to a functional space W({2),
usually a Sobolev space of functions defined in the domain 2. The existence of
a solution to the problem (1.1) is ensured, provided the set U,q is endowed with
a topology (convergence of domains) such that

(1) the mapping 2 — J(£2) is lower semicontinuous, and
(i) the set Uyq is compact.
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Roughly speaking, the compactness of the set of admissible domains U, 4 fol-
lows, if for example pointwise constraints on the absolute value of the curvature
of the boundary I = 342 are prescribed for any admissible domain 2 € U, 4. In
order to ensure the existence of an optimal solution to the problem (1.1), the
standard approach of control theory is proposed, i.e. a regularizing term can be
introduced. Therefore the cost functional takes the form

Jo(2)=J(2)+aE(R) a>0,

where the regularizing term E({2) enjoys the following property: the closure of
the set
{RIE(2) £ M}

is compact; M > 0 is a constant.

The main part of this book is concerned with the shape sensitivity analysis of
the mapping £2 — J(£2). It is supposed that the boundary I" of the domain 2 is
piecewise smooth. The infinitesimal perturbation §2; of the domain §2 is defined
as follows: £2; = Ty(12), where T is a smooth one-to-one mapping defined in a
neighbourhood of 2. The mapping T} can be considered as the flow of the vector
field V(t) = %‘ o T;,t 2 0; this point of view has been introduced in (Zolesio
1976). The Eulerian derivative of J(.) in direction V(.,.) at ¢ = 0 defined by

1
lim > (J(£2) - J(2))

depends on the vector field V(0). All the transformations T; considered in
Chapt. 2, can be constructed using vector fields in C°([0,¢); V¥(D)) (see
Sect. 2.10). For a differentiable domain functional the structure theorem (Theo-
rem 2.5), which defines the general form of the shape gradient, is given (following

(Zolesio 1979)) by
G(£2) =7(9) -

The gradient is an element of the space of distributions D'(IRY;IR"), supported
on the boundary I' = 0f2. In order to obtain the explicit form of G(§2) one
has to define: the material derivative y(£2;V'), the shape derivative y'(£2;V),
and the boundary shape derivative y'(I'; V). The forms of those derivatives
are derived for elliptic, parabolic, and hyperbolic problems. The material and
the shape derivatives are given as the unique solutions to the associated partial
differential equations. In particular, these equations involve tangential operators
on the boundary, e.g. the Laplace-Beltrami operator.

In Chapt. 3 the necessary optimality conditions for problem (1.1) are stated.
Moreover, related results on the shape sensitivity analysis for linear problems
including systems of equations of linear elasticity, the Kirchhoff plate, multiple
eigenvalue problems, heat transfer equations, and wave equations are presented.

Chapt. 4 is concerned with the shape sensitivity analysis of variational
inequalities. We present related results on the differential stability of the



12 1. Introduction to shape optimization

metric projection in Hilbert spaces due to Haraux (1977), Mignot (1976),
Sokotowski (1981c; 1985a,b,c; 1986b; 1987b; 1988b,c,d), Sokolowski and Zole-
sio (1985a,b; 1987a), and Zolesio (1985b).

For other results on the shape optimization the reader is referred to the
monographs by Banichuk (1983), Haslinger et al. (1988), Haug et al. (1981),
Haug et al. (1986), Pironneau (1984), Troicki et al. (1982) and Zolesio (1988).

We also provide a list of references at the end of this book.

The research of the first author was sponsored by the System Research

Institute of the Polish Academy of Sciences under the Research Programme
CPBP 02.15.



2. Preliminaries and the material derivative
method

This chapter is concerned with mathematical methods used in the shape sensi-
tivity analysis. In particular in Sect. 2.9 the so—called material derivative and
the speed method are introduced. The latter is applied in Chaps. 3 and 4 for
the shape sensitivity analysis of the boundary value problems of elliptic type as
well as for the initial — boundary value problems of parabolic and hyperbolic
types. In Chap. 4 the speed method is used for the shape sensitivity analysis
of nonlinear problems of elliptic type. In Sect. 3.3 of Chap. 3, the necessary
optimality conditions for a model shape optimization problem are derived using
the speed method. In this chapter we describe mathematical tools that can be
used to prove the existence of solutions to related shape optlrmzatlon problems,
e.g. the notion of the perimeter of a bounded domain in RN (see (DeGiorgi et
al. 1972)) is discussed. In Sect. 2.7 we introduce, following (Micheletti 1972), the
notion of the convergence of domains that ensures e.g. the convergence of nor-
mal vector fields on the boundaries, as well as the curvatures of the boundaries,
etc. In Sect. 2.1 the domain 2 C RN with the boundary I' = 812 is defined.
The notion of an integral on the manifold I' = 92 is discussed in Sect. 2.2.
Functional spaces used in the book are examined in Sect. 2.3, in particular
the Sobolev spaces (see e.g. (Adams 1975; Lions et al. 1968)) are introduced.
In Sect. 2.4 the notion of weak solutions to elliptic boundary value problems
is investigated using Stampacchia’s theorem, and the Lax-Milgram lemma in
the symmetric case. Several examples of the second order and the fourth or-
der elliptic problems related to applications, e.g. in structural mechanics, are
given. In Sect. 2.5 the notion of a functional depending on the domain 2 C RN
is introduced. In Sect. 2.6 a shape functional for an elliptic boundary value
problem is defined. The notion of the perimeter is used to define a regularizing
term occurring in the expression of the shape functional (see (2.46)) for the
transmission problem. The convergence of minimizing sequences for a model
shape optimization problem is studied. Sect. 2.7 is concerned with the analysis
of the convergence of domains in IRY; for this purpose the method introduced
by (Micheletti 1972) is applied. Furthermore under some specific assumptlons,
the explicit form of one-to-one transformations of domams in RN is derived.
In Sect. 2.8 families of perturbations of a given domain in RN are defined. Such
a family can be defined in a number of ways, in particular that proposed by
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Hadamard (1908) is presented. In Sect. 2.9 a general method of defining such a
family is described. Using the speed method, the shape gradient of a given shape
functional is defined in Sect. 2.11. In Sect. 2.12 the case of multiple eigenval-
ues is studied with the use of non—-smooth optimization technique. Differential
properties of the mapping T} associated with the speed method are obtained in
Sect. 2.13. Sect. 2.14 deals with the differentiability, with respect to the space
variables, of the composed functions f o T} for given mappings f : RN — IR or
given distributions. In Sect. 2.15 additional properties of the mapping T} are
obtained. In Sect. 2.16 the speed method is used to define the derivatives of
domain integrals in the directions of vector fields. In Sect. 2.18 the derivatives
of boundary integrals are derived. Tangential differential operators on I" are
defined in Sects. 2.19 and 2.20. Sect. 2.29 is concerned with elliptic problems on
the manifold I' = 842. Sect. 2.22 deals with the transformation of differential
operators, accomplished by means of the mapping T; associated with the speed
method. Formulae useful in the shape sensitivity analysis of partial differential
equations are given. The notion of the material derivatives of functions defined:

(1) on the domain £2,
(i1) on the boundary I" of £2

is introduced in Sects. 2.26 and 2.26, respectively.

The notion of the shape derivative is presented in Sect. 2.30. Finally, in
Sect. 2.31 the notion of the shape derivatives of functions defined on the manifold
I' = 312 is introduced. In Chaps. 3 and 4 the shape derivatives of solutions to
specific boundary value problems will be considered. It will be shown that these
shape derivatives actually depend on the normal component of the speed vector
field on I' = 812. This property of the shape derivatives is crucial for the shape
optimization.

2.1. Domains in IRV of class C¥

We denote by £2 an open set in RY which is generally assumed to be bounded;
hence 2 is compact. I" denotes the boundary of £2: I' = 2\ £2. Moreover it is
assumed that £2 is a smooth domain of class C*:

I' is a C* manifold and §2 is located on one side of I'; local coordinates are
defined as follows: there exists a family Oy, ...,Om, of open sets in R" and
mappings ¢; from O; onto

B={¢= (b, En-1,n) € RY such that ||¢]|lpv £ 1},
¢; is a one-to—one mapping,

ci € CF(O;; RY) with ¢! € C¥(B; RY)
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and
ci(OiN ) =By = {¢ € Bl¢y 2 0},

ci(O;nF)=BOE{§eB|§N=O} .

The family O;, i = 1,2,...,m, covers {2, it means that

It is also supposed that there is given a partition of unity r; € C§°(0O;) such
that 0 Sr; S1and Yo, r; =1 on I'. The local coordinates on I' are defined
by h; = c}'l. Hence for any z belonging to I' N O; we can write z = h;(£) where
¢ = ci(z). The tangent linear space 7,I" to I" at z is spanned by the N — 1
vectors
Dh(€)-e, i=1,2,...,N—1,
1

where e;,7 = 1,2,..., N, is the canonical basis of R", ¢; = (,...,0,1,0,...,0).
It can be easily verified that the vector * Dh(£)~!-ep is orthogonal to the tangent
space T, I':

(Dh(€) - i, " Dh(E)™ - enhw = (esyenmn = 0 .

It might be well to point out that the N — 1 vectors 7; = Dh(£) - ¢;, ¢ =
1,2,...,N —1, which form a basis of the tangent space 7T, I', are not orthogonal:

(ri, i)my = ("Dh(£) - Dh() - ei, ;)mn -

The normal vector field m on I' can be defined as follows

m

m(z) = Y ri*Dh(ci(z)) ™ - en

=1

and the unitary normal field on I' is given by
n(z) = [Im(z)||gvm(z) -

Furthermore we assume that the vector field n(z), z € I, is outward pointing
on I'. It is important to observe that the vector fields m and n are not only
defined on the boundary I', but m is also defined in U = Uj=1,.,.,mO;, U is an
open neighbourhood of I'. We denote by A an unitary extension of the normal
field n. Ny is defined in a neighbourhood of 2 in R". In fact, n(z) is only
defined in the neighbourhood U’ of I in IR",

U' = {z € U such that m(z) # 0}.
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Let us consider ry € C’°°(]RN), 0Srg<1,7p=00n ]RN\U' andro =1onU",
U" is an open set, U' D U" D I'; let a vector e € RN be such that ||e]|gy = 1.
Then the unitary vector field N} is defined as follows

Mi(z) = (1 = ro(z))e + ro(z)n(z) .

A vector field V' defined on I is said to be in C4(I"), 0 £ £ £ k, if and only
if (r;V) o h; is in C¥(By) for all 4.

If 2 is a smooth open set with C¥ boundary, k¥ 2 1, (in such a case ¢; €
C*(0;) and h; € C¥(B)), then the fields m and n defined on I" are only elements
of C¥=1(I';RN). This loss of regularity of the normal field on I' is due to the
contribution of the term Dh in the expressions for m and n. The same conclusion
is valid for the unitary extension N of the normal field n:

Ny is in CF"}(RY) .

Since coh is the identity, using the chain rule it can be shown that (Dh)™! =
(Dc) o h. Therefore we can also write that

m

m(z) = Zri(x)*Dci(x) “en .

=1

Mean curvature x of the boundary I"' = 912.

Let 22 C IR® be a domain of class C? in R®; 02 is located on one side of
I' = 8 and I is a manifold of class C2. With each point zo of I" the second
fundamental form of I' with the eigenvalues (k1, k2) is associated. The mean
curvature of I' at z¢ is defined as follows (DaCarmo 1976, p.146)

Fi(:l)o) = %(kl + ]Cz) .

The eigenvalues k; and k; are associated with the eigenvectors 71(z¢) and 72(zo),
the so—called principal curvature directions, which are obtained in the following
way.
Let zo € I' be a given point and denote by ng the unit normal field at zg, it
is assumed that ng is outward pointing on I". For any fixed unit tangent vector
T, 7 € Tz, I, one has to consider the two—-dimensional linear manifold spanned
by the vectors ng, 7 (this manifold is of the form E(r) =z + (R-n® R - 7)),
and the plane curve n(7) = I'NE(7), i.e. a curve in E(7) such that z¢ € (7). In
the local coordinates (7,n¢) , 7(7) is the graph of a function f(-):(—¢,¢) — IR,
€ > 0, such that f(0) =0 (i.e. zo € n(7)). Moreover the curvature

—f"(@)1+ f'(@)?)"F ae(-ce)
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is defined in a neighbourhood of zq on n(7). The sign of this expression is chosen
in such a way that the curvature is positive, provided that the osculating circle
to n(r) in the plane E(7) is located in {2, otherwise the curvature is negative.
The curvature of the plane curve n(7) at the point zo is denoted by k() =
—f"(0)(1 + f'(0)?)~%; we have also (Da Carmo 1976) that k(r) = R7!(r),
where R(7) is the radius of curvature of 7(7) at o, i.e. |R(7)| is the radius of
the osculating circle at zo to n(7) in E(7).

It can be shown (Da Carmo 1976) that there exist two tangential directions
71, T2 at o such that 7, minimizes (7, maximizes) |k(7)|. They are called the
principal curvature directions of I at z¢, and the mean curvature takes the form

K= %(k('rl) + k(Tz))

2.2. Surface measures on I'

The surface measure on I' can be defined with the use of the cofactor matrix
notation. For a mapping h: RY — R, we denote by M(h) the matrix of
cofactors of the matrix Dh, i.e.

M(h) = det(Dh)*(Dh)™",

where *Dh denotes the transpose of Dh. It is known that (*Dh)™! =
*((DR)™1), hence the form *(Dh)™! is well defined.

For any continuous function f defined on I" with compact support on I =
I' N O; the following relation holds

/ fdr = / £ o hillM(hs) - exllpn dé,
r Bo

where ¢' = (£1,&2,...,EN-1). The term |[M(h;) - en||g~ is continuous with
respect to z € I' (since (Dh)™! = (Dc) o h, h and c are C') and bounded
on _Bo,i, 1 £ 1 £ m, where the sets By ; = ¢(spt(r; N I')) are included in By.
Therefore f € L*(I) if and only if foh € L}, (Bo) for all integers i, 1 £ i < m.
Hence

/p far=3 /B (i) o Bl (he) -l

2.3. Functional spaces

Let £2 be an open set in RY. D(£2) is the linear space of infinitely many times
differentiable functions with compact supports in §2; a sequence ¢, converges
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to ¢ in D(£2) if and only if there exists a compact set O, O C £, such that for
all k = 1,2,..., spt¢x C O, and all derivatives (%)“qﬁk converge to (8%)"‘95
uniformly on O as k — oo.

The following notation is introduced

o\* 9% ...99N
(—3;) ¢= Ozt - Oy ¢
where a = (a1,...,an) and a;, 1 £i £ N, are integers.
The dual space D'(f2) is the space of distributions on 2. We denote by
(- )pr(2)xD(02) the duality bilinear form between spaces D'(2) and D(£2) (for
the sake of simplicity we shall write (-,-) whenever possible).

For any element F in D'({2) one can define, following (Schwartz 1966), the
derivative (2 )*F as an element of D'({2) such that

V6 € D(0): ((%)af,qs) = (), (3—3,1) &),

where |a| =a; +--- + an.

It should be emphasize that the space L} (2) can be identified as a subspace
of D'(£2) in the following way:
For any element f € L} (£2) we define the distribution F; of the form

(Frr ) = /n fédz Vo eD(2) .

We shall identify the distribution Fy with the element f.
For any measurable set {2 in RN , the characteristic function xg (for the
sake of simplicity we shall write x whenever possible) is defined by

_J1 forze
xa(z) = 0 forze2=R"\Q .

¢ is the complement of £ in RY. If the Lebesgue measure of 2 C RY is
finite, then xq is in L(IR"). In general xp is in LL (IRY), therefore x can be
identified with an element of the space of distributions D'(IR™). Let us consider

the gradient
5} 0

Vxo=|— ey —
xXn (3121 X2, 131:NX.0>

which is an element of D'(RY,IR") defined as follows
(Vxa, d)p(2)yxp(2) = — /n divgdz

Vé = (¢1,...,¢n) € DIRY;RY) .
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Let £ be a domain of class C¥, k 2 1, using the well-known Stokes’ formula

/ divgdz = / é-ndl’
o) r

(Vxa, 8) / ¢-ndr,

where n is the outward unit normal vector on I = 82. Making use of the trace
operator 7 € L(D*~1(2;RY); D*~1(I'; R")) introduced by Schwarz (1966),
where D¥(I") denotes the set of functions ¢ defined on I' such that Y i~ (ri¢)oh;
is in C¥(By), we have

we get

(VX.Q’ ¢) = _(*7I' N, ¢)
that is the gradient of x takes the form

Vxa=-"yr-n.
Vg is an element of D!~F(RN; RY) = (D¥-1(R";R"))', where *yr denotes
the transposed operator, and we have
*1r € L(O*H(RYRY); DHRYRY))

Let us consider a domain {2 of class C¥, k = 1.

For any p, 1 £ p < 400, and for s 2 0 the Sobolev space W*?(2)
(Adams 1975) is defined as the closure of the space C*°({2) in the following
norms:

if s is an integer

WWW—E/K>

|o|<s

P
dz

and for arbitrary s, s 2 0,

¢(z) — o(y)I”
Ses(ay = 1Tyt // dzdy,
Nl )~ 9115 wlelr(0) ax0 ”I y”N+(s (spp ¥V

where [s] is the integer such that
[]Ss<[s]+1.

For p = 2, W*%(£2) is a Hilbert space; it is denoted by H*(12).
Let 2 c R be a measurable set. Let us assume that 0 £ s < %, and
consider the W"P(]RN ) norm of the characteristic function x o given by

(N+
xallwes @y = 2 /ﬂ /n e — gz P dzdy |
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The following result holds true (Baiocchi et al. 1984).

Proposition 2.1 If 2 is a domain of class C! in RY, then the characteristic
function xq belongs to W*P(RN) for s < 1/p, 1 £ p < +00.

2.4. Linear elliptic boundary value problems

Let us consider an element y(§2) of W*?(f2) which depends on the domain
2 ¢ RY. In general this element is given in the form of a solution to a boundary
value problem defined in §2. The sensitivity analysis of the mapping 2 — y(£2)
will be carried on in an abstract way. However, we shall start with a simple
example of the linear elliptic boundary value problem that can serve as a model.
Two basic linear problems, to be formulated later on, are used as mathematical
models for the small displacements of a membrane and for the Kirchhoff plate
in the state of static equilibrium. First we consider the Laplace equation in {2
with two different boundary conditions: the Dirichlet boundary conditions on a
part Iy of the boundary I' = 812, where the displacement of the membrane is
prescribed, and the Neumann boundary conditions on Iy = I'\I'y. The Kirchhoff
model of the plate leads to the fourth order biharmonic equation with boundary
conditions of different types. Such examples of mathematical boundary value
problems are used only as models. The use of membrane as a model of the
Laplace equation is not of crucial importance in our considerations; many other
examples, arising in the shape optimization, can be related to the same boundary
value problem. For example, we can consider the steady state heat transfer
equation, or the steady irrotational flow of an incompressible perfect fluid giving
rise to the similar mathematical model.

Let A(z) = aij(z), z € 2,154, £ N, be a N x N matrix function such
that

—_— 2
A() e C(RY)

and

(A(2) & E)mn 2 alléllpn YE=(&,...,En) €RY
for some a > 0 and all z € 2.
Let f € L*(R), g € H3(T') be given, and denote by y € H!(£2) a solution
to the following problem
—div(A-Vy)+y=f inD'(2), (2.1)
y=g inH%(F) . (2.2)

We introduce the bilinear form on H!(£2) x H'(R2)
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a(¢,z) = / (A(x)-V¢(z),Vz(z))R~dm+/ ¢zdzx
n n
and the closed convex subset K of H'(f2) associated with the Dirichlet data g

K ={¢ € H(Q)hré¢ =g} .

To prove the existence and uniqueness of a solution to (2.1), (2.2) the use is
made of Stampacchia’s theorem.

Theorem 2.2 Let H be a Hilbert space, K a closed convez set in H, a(-,-)
a continuous bilinear form on H X H such that

3a>0: a(g,¢)Zallélly VéecH .

Then for any continuous linear form L(-) on H there ezists the unique element
y € K such that
a(y,d—y) 2 L(g—y) VoeK .

Remark. In general it is not assumed that the bilinear form a(:, -) is symmetric.
If it is the case, then y is also the unique solution in K of the minimization
problem J(y) £ J(¢) V¢ € K, where J(-) is the quadratic energy functional

T(9) = 5a($,9) ~ L(9)

For the linear form on H'(£2) defined by L(4) = [, fédz, where f is given
in L%(£2), we can prove using Theorem 2.2 the existence and uniqueness of an
element y € H(£2) with yry = g and

/ (A-Vy, V(6 - y)mnds + / W8 -wds 2 [ 18- y)da
n n n ’
for all ¢ in H'(f2) with ¢ =g on I.

Since an element z of the space H}(2) can be considered as the difference
z = ¢ —y, where § =y + z € K, we have

/ (A-Vy,Vz2)gndz + / yzdz 2 / fzdz Vze€ Hy(R2) .
n N n
H}(£2) is a linear space, therefore z can be replaced by —z and we obtain
y € K: / (A-Vy,V2)prdz -l-/ yzdz = / fzdz Vze Hy(R2) . (2.3)
N n 0]
Making use of the classical “variational interpretation” of (2.3) y can be iden-

tified as a weak solution in H'(£2) to the problem (2.1) and (2.2). To this end
we select z € D(£2) and then (2.1) follows from (2.3).
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Another approach to the solution of the boundary value problem (2.1) and
(2.2) can be formulated as follows, first the homogenous Dirichlet boundary
value problem is considered (i.e. with g = 0) using the well-known Lax-Milgram
lemma.

Theorem 2.3 Let H, a(:,-) and L(-) be such as in Theorem 2.2. There ezists
the unique element y € H which satisfies the boundary value problem

a(y,4) =L(¢) VoeH .

Proof. 1t is sufficient to apply Theorem 2.2 with K = H and for ¢ = y £+ 2
(with z € H) in the variational inequality of Theorem 2.3. 0

Let us suppose now that g is given in the space H({2), and consider the
following linear form defined on the space H}(£2)

L(z) = /n[fz —(A-Vg,V2)gn — gz]dz .

From Theorem 2.3 it follows that there exists the unique element u € H}(£2)
such that

—div(A-Vu)+u=f+div(A-Vg)—g inD'(R2) (2.4)
u=0 onl . (2.5)

Assume that y = u + g, hence y is an element of K and satisfies (2.1) and (2.2).

Non-smooth right—hand sides of elliptic equations

It is clear that it need not be assumed in (2.1) and (2.4) that the element
fisin L*(£2). For an element f € H~!(12), the existence of a solution to (2.1)
and (2.2) can be proved using the same argument as above for f € L?(£2). For
example, if f is given in L?(12), then we can prove the existence of the unique
solution y € H(§2) to the problem

—div(A-Vy)+y = aa—f in D'(02) (2.6)
1
y=g in H¥(T) . (2.7)

To eliminate the lower order term appearing on the left-hand sides of equa-
tions (2.1), (2.4) and (2.6), one has to make use of the Poincaré inequality. It
might be well to point out that the first (positive) eigenvalue of the second order
elliptic operator in Hj ({2) is defined as follows

3= mind [ (496, Vo)ndel 6 B, Welmm=1} . (29)
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Hence by the definition of A; we have the following inequality for any ¢ in
H3(92), 6 #0,
n S ([ (496 o)modz) N6lco

whence it follows that

1
6@ S 3 [ (4- V6, Tohmnde (2.9)

As a consequence of (2.9), without loss of the generality, the lower order term u
on the left-hand side of the equation (2.4) can be neglected. Hence the following
problem is to be considered:

Find u € Hj (£2) such that

—div(A-Vu) = ng +div(A-Vg)—g in D'(2), (2.10)
1
u=0 in H3(I) . (2.11)
From the inequality (2.9) it follows that the bilinear form

(8, 2) = [ (4 V6, Valnds

is coercive on H}(§2) equipped with the following norm

1y y = / V2[2dz
n
for we have

A
cal$,8) 2 LNl + 5 [ V6 Voda

. A] a
Z min (-27, '2') 1811410y V9 € Ho(%2) .
Therefore Theorem 2.3 ensures the existence and uniqueness of the solution u
to (2.10) and (2.11) in the space Hy(£2).

Let y = u + g; by direct calculation with the use of (2.10) we obtain that
y € K is the solution to the following problem:

—div(A-Vy) = ('?a—xfl in D'(R2), (2.12)

y=g inH%(F) . (2.13)

Finally, let us consider the Neumann boundary conditions for the problem
(2.12):
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a .
2V _0 ie. the homogenous Neumann condition on I'.

on

As far as applications in structural mechanics are concerned, the condition y = 0
on I" means that the displacement is prescribed on the boundary I"' = 812, e.g.
the membrane is clamped.

We introduce the vector field ng = A-n on I'; ny is a C¥~! transversal field
on I (here we assume that the mapping z — 4;j(z) is C¥(I")), the transversality
of n4 is derived from the positive definiteness of A

(na,n)ry = (A-n,n)py 2 a||"||12RN =a>0.

In particular, if n is outward pointing on I, then n4 is also outward pointing
onl.

The condition a—‘?}’; = 0 on I" means that the displacement y is not prescribed
on the boundary I'. In order to ensure the existence of a solution to the boundary
value problem under consideration, it is obvious that some additional conditions
on the right-hand side term of the equation (the source term) should be imposed.

Let f € L*(f2) be an element such that [, f(z)dz = 0, then the mapping
¢ — [, fédz is alinear continuous form defined on the quotient space H'(£2)/IR
(in other words, one has to identify in the space H'(2)/IR elements ¢ and z
such that there exists a constant ¢ with ¢ = 2 + ¢) equipped with the norm
6l = (ao(4,4))?. Hence it follows from Theorem 2.3 that there exists the
unique solution y € H(£2)/IR to the problem

—div(A-Vy)=f in £, (2.14)
9y
5‘7;:“ =0 onl. (215)

In the case of non-homogenous Neumann boundary conditions, i.e. 6—‘1-"; =g,it
is supposed that g € H!(£2) is an element with

/ng:O.
r

Moreover we introduce the linear form
16)= [ fods+ [ gpar
n r

which is continuous on the space H!(£2)/RR. Using Theorem 2.3 we can prove
the existence and uniqueness of a solution to the elliptic boundary value problem
in the space H!(2)/IR

—div(A-Vy)=f in £, (2.16)
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The source term of the equation (2.16) can be treated in the same way as it
was done for the Dirichlet problem, e.g. one can make use of a distribution
% € D'(2), where f € L*(£2). Let us introduce the linear form

_ 9
1¢) =~ [ famdat [ (a+ fm)sar

and assume that the condition L(1) = 0 is satisfied, hence

/F(y + fr)dl'=0. (2.18)

The equation (2.18) is well defined provided that f € H*(f2) for some s > 1.
This requirement results from the condition that the trace of f on I" has to be
in L¥(I") (see (Adams 1975)).

The compatibility conditions [, fdz =0, [ gdI" = 0 for the problem (2.16)
and (2.17) can be replaced with the equivalent condition

0=L(1)=/nfd:z:+/rgd1". (2.19)

In the next sections we shall consider the boundary value problems defined in
the perturbed domain §2;. It will be assumed that for the Neumann problem
defined on the family of domains, the functions f € L*(R") and g € H'(R")
are given. In general it is not supposed that the condition (2.19) is satisfied for
any domain §2. However for any given domain {2 with the boundary I' = 902
we define the elements

1

f(9)=f|n—m/nfd$ (2.20)
1

9(I')=glr - p——go) /ngr . (2.21)

Under these assumptions, the functions f(£2) and g(I") satisfy the conditions

/n £(Q)dz = /F g(R)dr = 0

and the problem (2.16) and (2.17) with the data f({2) and ¢(I") is well posed
in any domain f2.

Transmission problems

Let us consider the transmission conditions related to the problem (2.16).
In this case, the matrix A(z) is not supposed to be continuous with respect to
z, but it can possess the discontinuity lines or interfaces.

Let D C IR? be a fixed domain, B(z) and C(z) two continuous matrix
functions defined on D. We define on D the following matrix function
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A(2) = xa:B + xaC

for a given measurable set §2, 2 C D. It should be recalled that 2° = D\ 2 is
the complement of 2 in D, yg- and x» denote the characteristic functions of
sets £2¢ and £2, respectively.

Let us consider the following problem:

Find y in Hy (D) such that
o}
— div(A(R2) - Vy) = Ezi in H~!(D) (2.22)
1
and with the prescribed transmission conditions on the interface I' = 82 (it is
assumed that I' is smooth):
(C=B)-n,Vy)rz =g onl, (2.23)

where g € H'(D) is a given element. In addition, since y € H}(£2), we have
prescribed the homogenuous Dirichlet boundary condition on 8D

y=0 ondD. (2.24)

For the problem formulated we introduce the bilinear form

a($2;¢,2) = / (A(R) - V¢, V2)g2dz
D
defined on H}(D; ]Rz) and the linear form

_ of
L) =~ [ fgds+ /P ggdr .

It is assumed that the matrices B(z) and C(z) are uniformly positive def-
inite, B(z), C(z) 2 aZ for some a > 0, then A(z) = A(2)(z) 2 oZ, z € D.
Making use of Theorem 2.3 and Green’s formula, one can prove the existence
and uniqueness of the solution y € H}(D) to the problem (2.22) and (2.23).
Finally let us consider the boundary conditions on I" involving the tangential
derivatives of an unknown solution. For any element ¢ € C'(2), 2 c R, we
denote by V¢ the tangential gradient of ¢ on I, i.e. V¢ is the tangential
component of the gradient V¢ on the boundary I

Vp¢=V¢—g§n onl .

Let us consider the boundary value problem:

Find y € D'(£2) such that
_div(A(Q)- Vy) = f inD(Q), (2.25)

7]
En—Ay —Ary=g onl, (2.26)
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where A(-) is a continuous matrix function on I', Ar is the so—called Laplace-
Beltrami operator on I' (defined in Sect. 2.20). In particular for any ¢ in C*(T")
the following identity holds

—/ Apy¢d['=/pr-Vp¢dF . (2.27)
r r

It is assumed that y is such that Ary € L*(I") and Vy € L*(T}; ]RN). Let us
define the energy space W({2) for the problem (2.25) and (2.26) as the closure
of the space C1(£2)/R in the norm

6 = [ (4 V6, 98)mnds + [ (Vr6,rémndr .
n r

The linear form L(¢) = [, fédz + [ 94dI’, with the compatibility conditions
satisfied by the data [, fdz + [ 94l = 0, is continuous on the space W(12).
Therefore the existence and uniqueness of the solution y € W(2) to the problem
(2.25) and (2.26) results from Theorem 2.3.

Fourth order elliptic problems
Let f € L%*(f2) be a given element, let us consider the following elliptic
boundary value problem:

A(hAy) = f in D'(R2), (2.28)
y=0 onl, (2.29)
9y
an =0 onlI, (2.30)
where .
heC(R), hz)Zay>0 Ve . (2.31)

A weak solution to the system (2.28)-(2.30) is an element of the Sobolev space
H2(£2). It is assumed that the domain {2 is of class C*, k 2 1. The space HZ(2)
is the closed subspace of H?(f2) defined by two conditions (2.29) and (2.30), see
e.g. (Adams 1975) for the details.

Let us introduce the bilinear form

a(¢,z) =/ hApAzdz Vé,z € Hy(2) .

Making use of the elliptic regularity for the Laplace equation, one can show that
the norm a(¢ )3 is equivalent on the space H2({2) to the H%({2) norm.

Hence using the linear form L(¢) = [ o fédz, we can apply Theorem 2.3
and prove the existence of the unique solution in HZ({2) to the problem (2.28)-
(2.30). For h(z) =const, the problem (2.28)-(2.30) can be considered as a model
of the Kirchhoff plate of the constant thickness, clamped on I' = 912, see e.g.
(Washizu 1982).
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Now, let us consider the boundary conditions for the Kirchhoff plate which
is free on the boundary I' = 9f2. The problem is to find a weak solution in
H%(£2) to the elliptic equation:

A(hAy) = f inD'(2) (2.32)
with the following boundary conditions:
Ay=0 onl, (2.33)
b3}
-— =0 . .
o Ay on I' (2.34)

In order to assure the uniqueness of solutions to (2.32)—(2.34) the Hilbert space
H = H?(£2)/ M is taken into consideration, where M is the closed subspace of
H%(02) defined by

M= {¢€ H}(N)|As =0 in 2}

i.e. the subspace of the harmonic functions in H?(2). It is obvious that for the
space H with the quotient norm, the bilinear form a(¢, z) is coercive on H. Let
us characterize linear forms on H The linear form L(¢) = [, fédz is defined
on L%(R2); this form is defined on H if and only if the element f satisfies the
orthogonality condition

/f¢dz=0 VoeM .
K}

In order to have the orthogonality condition in an explicit form, let us consider
an element F € H2?(2) N H}(R2), depending on f € L%*(R), such that the
following equation holds

AF=f inf2, F=0 onl .

The orthogonality condition can be written as follows

/ AF¢dz =0 .
o}

Applying Green’s formula to this condition we can show that for ¢ € M

0 0
/11(57—1F¢_%¢F> drr =0 .

Thus we have the auxiliary condition for F, B%F = 0 on I'. Therefore f satisfies
the orthogonality condition if and only if

f=AF with Fe H}Q) . (2.35)

Finally we can conclude that for any f € L%(2), f satisfying (2.35), the problem
(2.32), (2.33) and (2.34) is well posed on the quotient space H = H%(2)/M.
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For the fourth order boundary value problems under consideration, it is not
necessary to assume that the right-hand side of (2.28) or (2.32) is in the space
L3(0).

For the Dirichlet problem (2.28)(2.30) one has to choose a linear form L(-)
which is continuous on the space H2({2). Hence we can use, e.g. the linear forms

2
/faza dr f e L*(R2),
since ¢ € H3(2), i.e. ¢ satisfies the conditions (2.29) and (2.30) then
o f
Li(#) = <39: i0z; ’¢>

(-,-) denotes the duality pairing between the Sobolev space H3({2) and its dual
H~%(£2) which is a closed subspace of D'({2).

But this means that one can prove the existence and uniqueness of the
solution y € HZ(£2) to the following problem

Athdy) = 25w D(2) (2.36)
v= Oz;0z; n ’ ’
)
y=5—ﬁy=0 onI'. (2.37)

for any f given in L(R2).

2.5. Shape functionals

Throughout this book any shape functional is denoted by J(£2), J(-):2 —
J(R2) € R, where £ is a domain of class C¥ for k¥ 2 1. Some examples with
non-smooth domains £2 will be also considered.

Very simple examples of the domain functionals are:

J1(2) = meas(2) = / dz, (2.38)

J2(2) = meas ( / dr, (2.39)

J3(£2) = total curvature of I' = / k2dI . (2.40)
r

Let us observe that the functional J1(§2) can be defined in terms of x g, the
characteristic function of 2,
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Jl(.()):/]RN xedzr .

In general for functionals having this property, i.e. those which can be defined
in terms of xgq, the following equality holds J(£2) = j(xn). The functional
§(-) can be extended to the larger class of functions w(-) € L(IRY) such that
0 £ w(z) £ 1 for almost every (a.e.) z € RY. Thus the extended functional also
denoted j(-) is defined on L®(IRM), and we can use the weak — () topology on
L®(IR") to define the continuity (or semi-continuity) of the functional £ —
j(xa) = I(2).

We can also make use of the Banach structure of the space L*(IR) to define,
in an appropriate way, the derivatives of J(-) with respect to the domain 2.

The following result characterizes the convergence of characteristic func-
tions.

Lemma 2.4 Let x be a sequence of characteristic functions such that xr — x
weak - (*) in L°(RY) as k - oo, i.e.

/ Xkd)da:—»/ x¢dz Ve LY (RY) .
]RN ]RN

If x 18 a characteristic function, then xx — x in L2 (]RN).

loc

Proof. Let ¢ € D(]RN) be a fixed element, then for any ¢ in L2(IRY) we have

[ awrpde— [ (oo

Hence xi% converges to xi weakly in L*(IR") as k — oo, but
Ikt sy = [ Vds
RN

This expression converges to [~ x¥2dz = |x¥|3, (RN)» Since ¥ € D(RY) is
arbitrary, that completes the proof. 0

Domain functionals such as J;(£2), depending on the characteristic function
x 2 of the domain 2, are only particular cases of functionals under consideration.
In general, we cannot expect that a domain functional J(2) enjoys this property.
Clearly, the functional J3(f2) depends on the boundary I' of the domain 2
and cannot be extended to the set of functions w(-) € L®(IRM) such that
0 £ w(z) £ 1 for a.e. z. Moreover let us observe that the functional J(£2)
can be extended to the following class of non-smooth measurable domains: a
measurable set E in IR" is said to have the finite perimeter P(E) provided that
meas(E) < oo and
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P(E) = sup{ [ divédz | 6 € DR™RY) | max [4(e)]lv < 1) < oo,
E z

where ’Dl(]RN ) denotes the space of functions continuously differentiable with
compact supports in R™.

The class of measurable sets E with finite perimeters has been introduced
by Caccioppoli (see e.g. (E. De Giorgi et al. 1972)).

If E is a C? domain, then the supremum appearing in the definition of
P(E) is attained for any extension Ay of the normal field n on O, such that
No € CY(RN,R™). Hence we have

P(E) = /E div(No)dI" = /a el (2.41)

and P(E) = J5(OF). This proves that the functional J2(§2) can be extended to
the class of measurable sets with finite perimeters as well as to the larger class
of functions w € L°(RY), 0 £ w(z) £ 1 for a.e. z, such that

sup{ /m wdiv(g)deld € DURY, RY),  max |4(a)lnv S 1}

is finite.

2.6. Shape functionals for problems governed by linear
elliptic boundary value problems

In many shape optimization problems the following situation occurs: a shape
functional J(§2) depends on the domain {2 via the solution y({2) to a boundary
value problem defined in 2. For the second order elliptic problems the functional
J(12) takes the form

J() = /!)Fl(x,y(x),Vy(m))dx+AFo(z,y(x),Vy(x))dF(z)+a8(.Q), (2.42)

where £(§2) denotes the regularizing term that ensures the existence of the
optimal domain minimizing the functional J(§2) over the appropriate class of
domains, a > 0 is a constant.

If Fy = 0, then it is said that J is a distributed cost functional; if F; = 0,
then J is referred to as a boundary cost functional. Examples of F; and F; are

Fi(2,y(z), Vy(z)) = 5(3(2) - ()", (24)

where y, is a given function in L2(1RN ),
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Fo(z, (@), V(@) = 5(u(2) = 2 ()

here 2, is a given element in H*(RY), s > 1.

2
One can assume that

Foe4(2), V(@) = 3  5(0) - 5(0))

provided that y = y(f2) is smooth enough, i.e. the normal derivative 8y/dn
is in L?(I"). The perimeter of the domain 2 can be taken as the regularizing
term £(2) in the domain functional (2.42). Such assumption is adopted in the
following example.

2.6.1. Shape functionals for transmission problems

Let us assume that y(f2) is a solution to the problem (2.22). Making use of
the variational form of the equation one can show that the following integral
identity holds for the element y = y(£2)

9¢
a—zldl'

V¢ € Hy(D),

ve D)« [ 4@y Voo =~ [ 1 (2.44)

where
AR)=(1-x9)B+xaC .

Moreover we introduce the set of characteristic functions
Char(D) = {x € L*(D)| x(1-x)=0 ae.in D}

equipped with the L?(D) topology.

Proposition 2.5 The mapping xo — y(12), where y(£2) denotes a solution to
the problem (2.44), is continuous from the set Char(D) into H}(D).

Proof. Let 2, k=1,2,..., and £y be measurable subsets of D C RY and let

vk = y(2), k =1,2,..., be the solution to (2.44) with the domain 2 replaced
by 2 in the definition of A(£2). We have, with yo = y(£2),

/D (A(2) - V(e o), V) dz = (2.45)

/D (A(2) — A()) - Vy(20), Vé)nde Vé € HY(Q) .
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The matrix A is uniformly positive definite, i.e. we assume.that there exists
ag > 0 such that

(B-&,€)ry 2 aoléllpy  and (C-€,8) 2 aollélipn

for all the vectors ¢ in RY.
By the Poincaré inequality for ¢ = yr — yo we get

I

2

eallve — vollay o) < ( [ xs, - x0,)B + (o, - Xno)C]'Vy(ﬂo)I|§~dz)

The family of domains {2;, k = 1,2,..., is said to converge in measure to the
domain 2y if and only if the sequence of characteristic functions {x ¢, } converges
to xq, in the set Char(D) i.e. in L?(D) norm or equivalently in L?(D) norm
for any p, 1 £ p < +00. Then the sequence of functions

fk = (Xno - X.Qk)B + (Xﬂk - XDD)C

converges to zero in L”(D;IRNZ) as k — oo. We have also || fk(z)||gy Sconst
Vz € D, because B and C are continuous matrix functions. By the Lebesgue
theorem there exists a subsequence fr, such that fi,(z) — 0 as ¢ — oo for
almost every z in D. Then the function on the right-hand side of (2.45) belongs
to L'(D), and converges to zero for almost every z in D. By the dominated
convergence theorem the right-hand side of (2.45) converges to zero as i — oo.
Making use of (2.45), one can show that the norm ||yx — yo||#1(p) is bounded
and converges to zero, the limit yo € H}(D) is uniquely determined. Therefore
the sequence {yx} converges yx — yo in the space Hj(D) as k — oco. Let £2 be
such that xo € Char(D), and define the shape functional

J(2) = / Vy(2)2dz + aPp(R), (2.46)
D
where
Pp(R2) = sup{/ divgdzr | ¢ € DI(D,]RN) , max|é(z)||gry S 1}
0 z€D

is the perimeter of £2 in D, a > 0 is a constant.

Since the mapping H 3 y — ||y||% € R is weakly lower semi-continuous
in any Hilbert space H, then the first term on the right-hand side of (2.46) is
lower semi-continuous on the set Char(D) C L%(D). The same remains valid
for the second term. a

Lemma 2.6 The functional xo — Pp(R2) is lower semi-continuous on the set
Char(D) C L*(D).
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Proof. For any ¢ € D'(D;IR"), the mapping
Xao— / divgdr = / xndivédr
n D

is continuous on the set Char(D) C L?(D). Therefore the supremum with re-
spect to ¢, appearing in the definition of the perimeter Pp(£2), is lower semi-
continuous.

Finally we have the following result:

Proposition 2.7 The shape functional defined by (2.46) is lower semi-
continuous on the set Char(D) C L?*(D).
a

Let us consider the shape optimization problem related to the transmission
boundary value problem (2.44).

In order to minimize the shape functional (or cost) J(£2) over the set
Char(D) C L?(D) we have to apply, in view of Proposition 2.7, the compactness
result given by E. De Giorgi et al. (1972).

Proposition 2.8 Let D be a bounded domain in RY. For any M > 0, the set
Char(D,M) = {xq € Char(D)|Pp(2) £ M}

is compact in L%(D).
O
This yields the following existence result for the shape optimization problem
under consideration.

Theorem 2.9 There exists a measurable set 2y in D such that
7(2) £ 7(9)
for all measurable sets 2 C D.

Proof. If for a given set {2 the supremum in the definition of perimeter Pp(f2)
is not finite, then we set

Pp(2) =400 and J(N2)=+o0 .

Let jo = J(0), (where 0 is the empty set, so xg = 0 on D), and jo > 0. It is
easy to show that the minimization of J(2) over the set Char(D) is equivalent
to the minimization of this functional over the set Char(D,jo). Since the set
Char(D, jo) is compact and J(-) is lower semi—continuous on the set Char(D, jo),
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then by the Weierstrass theorem there exists a solution {2y to the minimization
problem. a

The considered interface optimization in the transmission boundary value
problem is a particular example of shape optimization problems. It exemplifies
the “two fluids” problem where the state equation of the optimization problem
is defined in the domain {2 as well as in its complement £2° = D \ 2 in D. The
energy space for the state equation under consideration is the Sobolev space
H} (D), where D = 2UI'U¢; hence it is a function space independent of §2. For
more general shape optimization problems, i.e. such that the shape functional
J(£2) depends, e.g. on a weak solution to the Dirichlet or Neumann problem for
the second order elliptic equation defined in 2, the following principal difficulty
is encountered: the energy space for the state equation in the form of an elliptic
problem, e.g. the space Hj (£2) for the Dirichlet problem, or the space H!(£2)/IR
for the Neumann problem, depends on the variable domain 2.

In this case the notion of continuity of the mapping 2 — y(£2) (the element
y(92) is defined by the state equation) should be defined in an appropriate way.
A possible way of overcoming this difficulty in the case of the Dirichlet problem
is the penalization technique which enables us to construct an approximation of
the Dirichlet problem by means of a family of transmission problems depending
on a parameter.

2.6.2. Approximation of the homogeneous Dirichlet problem

Let 2 C RN be a domain of class C!, 2 C D, where D is a given sufficiently
smooth domain in R". Denote by y = y(2) € H}(12) the solution to the
Dirichlet problem

—div(A-Vy) = f in L*}(R), (2.47)
y=0 onl, (2.48)

where f € L%(f2) is a given element and A is a continuous matrix function,

A€ C(D;RY 2), A(+) is uniformly positive definite on D. Let ¢ > 0 be a real
parameter. Let us consider the element y.(£2) € H}(f2), given as the unique
solution to the following variational problem

Ye = 1(R2) € Hy(2):
1
;/ (A-Vye,V¢)Rndz+/ (A-Vye,Vo)grndz (2.49)
2¢ n
=/ fodz Ve HY(Q) .
D
It will be shown that under appropriate assumptions on the domain §2 the

sequence {y.(f2)} converges in Hj(2) to the element y° = y(2)° as ¢ | 0,
where
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way = {4 7.

Substituting ¢ = y. in (2.49) we get
a/ Vye|%ndz S e/ fyedz — e/ (A-Vye, Vye)pndz . (2.50)
e D n
Hence due to (2.49) y. is bounded:

1
1vellZ3 0y < <Ml fllz2p) €>0. (2.51)

Making use of (2.51) and applying the Cauchy-Schwartz inequality, in view of
(2.50), it follows that

1 G
/mllvyellzdﬂc Se [; + ;] I£1Z2(py» (2.52)
where
G = ”A”Loo(D;]Rhﬂ) .
A weak solution to (2.47) — (2.48) satisfies the following integral identity

y e HI(Q): /n (A-Vy, Vé)gpnds = /n fode Ve HN®Q) . (2.53)
Assuming that ¢ € H}(§2) and subtracting (2.49) from (2.53) we get
/n (A-V(ye —y), Vé)gude = 0 , (2.54)
that is for the scalar product
a(, 2) = /D (A-Vo, Vz)pwdz

the element y. — y is orthogonal to the following closed subspace of Hj(D):
HY(D;2°) = {¢ € H'(D)|¢ =0 a.e. in 2°} .

The element y(2) is the a-projection in H}(D) of y.(f2) on the subspace
HY(D; 2¢). 1t is seen from (2.51) that the element y. belongs to a bounded
subset of the space H](D).Therefore, there exists a weakly convergent subse-
quence {Ye, }, ye, — z weakly in H}(D) as k — oo. From (2.54) it follows
that z € H'(D; £2°). On the other hand, from (2.51) it is inferred that y., | o<
converges weakly in the space H'(£2°,0D) = {¢ € H'(2°)|¢ = 0 on 8D},
Yer |2 — w, where w € H!(£2°,8D). Making use of the compact embedding of
the Sobolev space H! into L? for a bounded domain, one can show that y., and
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Ye, |pe converge in L*(D) and L?(£2°), respectively. Thus w(z) = z(z) for a.e.
T € §2°
Since the mapping

w— | (A-Vw,Vw)grdz
nc
is weakly lower semi—continuous on H!({2¢,8D), then passing to the limit, we
we have that

/(A-Vz,Vz)Rnd:czo z € H(D; °) .

The a-projection is a linear mapping, therefore it is continuous from H}(D)-
weak into H'(D; 2°)-weak. Hence z = y(f2) and the sequence {y.({2)} con-
verges weakly to y({2)° as ¢ | 0. This proves the following result.

Proposition 2.10 For any f € L*(D) and any domain 2 of class C' in D, the
sequence {ye(2)}e>o0 of solutions to the transmission problem (2.49) converges
weakly in H}(D):

ye(2) = y(2)°

as € | 0, where y(2)° denotes a weak solution to the homogeneous Dirichlet
problem (2.47) and (2.48).
]
Using an extension operator P = Pge: H'(2°) — H'(D), we can improve
the convergence result given by Proposition 2.10. Let P € L(H!(£2¢); H(D))
be a linear mapping such that (P¢)|ge = ¢ for all ¢ € H(£2°). Assuming that
2 is smooth enough, so the mapping P exists, one can select the test function
é = P(ye|q<) in (2.49). It follows that

1
—/ (A-Vye, Vye)prrdz = /;fP(y,|nc)dx —/(A - Ve, VP(ye| <)) mdz .

€ c n
Using
IVP(yelae)llz2(ae) S I1P(Yelae)llzpy £ CrllPllllyel o<l (o)
we obtain
o
;”Vye”m(m) S (Ifllz2(py + C2IPINVYell L2(2¢)s
where
02 = CIHA”Loo(D;]RNz)
hence

IV¥ellz2(ae) £ el fllL2 () + C2lIPIl) -
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From the foregoing it is evident that %Vy, belongs to a bounded subset of the
space L2(£2°;RY) and we can suppose that the sequence {iVye,‘} converges

weakly to Vz € L%(2°%RY) with z € H'(£2°,8D) as k — oo. Passing to the
limit in (2.49) we obtain

[ (495 Vet + [ (4-93(@), Vpmnde = [ goie o€ mD)

Applying Green'’s formula to the integral identity it follows that

—div(4-Vz)=f in 02°,
0z dy
— = 0=
Bna - Ona on d I,
where ng = A-n, and 2 =0 on D.
Assuming that ¢ = y, — y® we obtain

/ (A : V(ytk - yO)’ V(ys,, - yo))]RN dz =

n
1
f(y!:k - yo)dx - (A ' Vyck ’ vyek)IRNdz .
D Ek Ne

The right-hand side converges to zero as k — oo.

Therefore
/D (A V(ge — 1), V(e — ) pode < /D F(ve —4°)dz + <C||PJ .

Proposition 2.10 implies that y. — y° weakly in H}(D), therefore y. — y°
strongly in L%(D). This yields the proof of the following result.

Proposition 2.11 Assuming that there ezists a continuous extension operator
P € L(H'(02¢°); H (D)) we have that y. — y°(£2) strongly in HY(D) as e | 0.
0
In Proposition 2.11 we assumed the existence of a continuous extension
operator to show that the elements 1y, |q- are bounded in H'(£2¢; D) uniformly
with respect to € > 0. This assumption requires an additional smoothness of I"
and can be avoided by the application of the Banach-Steinhaus theorem since
for any test function ¢ € HJ(£2) from (2.49) it follows that the term

1/ (A-Vy,Vé)gndz

€

is bounded uniformly with respect to € > 0. The space H!(£2¢;8D) is equipped
with the norm a(¢, ¢)% associated with the matrix function A4, and %ye is weakly
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bounded uniformly with respect to € > 0 hence by the Banach-Steinhaus theo-
rem, the term 1y, is bounded in the norm of the space H'(£2°;8D) uniformly
with respect to € > 0, and we have:

Proposition 2.12 Assume that {2 1s smooth enough, i.e. it can be supposed
that y° belongs to HY(D), then y. — y(£2)° strongly in Hy(D) ase | 0.
a
In order to ensure the existence of an optimal shape for the related shape
optimization problems an appropriate regularization can be used. First let us
consider the perimeter Pp(2) as the regularization term.
We shall consider a simple cost functional of the form

1@) =3 [ () e +aPo(2) (2.55)

however, the method of finding an optimal solution, worked—out for this func-
tional, is quite general and can be used for any cost functional of the form
(2.42).

Let y(2) denote a weak solution to (2.47) and (2.48), where 2 is a sufficiently
smooth domain, e.g. it can be assumed that 2 is a bounded domain of class
C!. Our aim is to determine the solution y({2) to the homogeneous Dirichlet
boundary value problem for any measurable set £2 in D. For this purpose the
following subspace of H}(D) is taken into consideration:

for any measurable set {2 in D we denote

HY(D;D\ ) = {¢ € H}(D)|V¢ =0 ae. on D\ 2},

H'(D;D \ ) is a closed linear subspace of the space H}(D). Furthermore, if
2 is a domain of class C? such that 2 C D, then H!(D; D \ 22) = H'(R2); here
each element y € Hj(12) is identified with its extension y° in H}(D), where y°
denotes the extension of y by zero on D \ £2.

The following cost functional

72 = 5 [ (4(2) 1y da + aPo()

is considered, where y. = y.(f2) denotes a weak solution to (2.49) for ¢ > 0.
Applying Theorem 2.3 to the penalized problem (2.49), one can show that there
exists a set {2, with the finite perimeter Pp(§2,) in D such that J.(£2.) £ J.(2)
for all measurable sets {2 in D.

From Proposition 2.12 it follows that

Je(2) > J(2) asel0

for any smooth domain 2.
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Unfortunately we cannot claim that there exists a cluster point of the family
of domains {§2,}.>0 which is a smooth domain. On the other hand there exists
a set £2* C D with the finite perimeter in D and a sequence {2, }$2,, ek | 0 as
k — oo, which converges to the set 2*. However in general the corresponding
sequence {yYk}52;, Yk = Ve, ({2, ), need not to converge to the element y(£2*) as
er 1 0.

Therefore we shall consider the continuity of the mapping 2 — y(£2) to
obtain an existence result for the shape optimization problem with the cost
functional depending on a weak solution y(§2) to the Dirichlet problem (2.47)
and (2.48). To ensure the continuity of this mapping the family of admissible
subdomains of D should be equipped with a suitable topology. As we have
seen in the case of the transmission problem the suitable topology is the L?(D)
topology for characteristic functions. In the case of the Dirichlet problem this
topology leads in particular to the notion of the Sobolev space H}(2) where 2
is only a measurable subset of D and cannot be used for our purposes.

We may expect that the Hausdorff topology would ensure the existence of
an optimal domain. We shall briefly explain why the Hausdorff topology is not
appropriate for the existence problem.

The distance between two closed subsets A, B C D is given by

d(A, B) = sup(e(4, B), o(B, 4)),

where
o(4, B) = maxmin ||z - yllr~ -

For a given sequence of open sets
2 = D\ A, with Ay = A , k=1,2,...,
2 is a limit, which we denote 2 2> £2, provided that

N=D\A, A=A
Jim d(4, Ax) =0 .

For a given open set {2, the Sobolev space H}(f2) is the closure in the norm
of H(£2) of the space C§°(£2). The space H}(f2) is a closed subspace of the
Sobolev space Hj(D), 2 C D.

Let f € L?(D) be a given element, {§2;} a family of domains such that
2 E 2 as k — co. Let us consider the Dirichlet problem defined in the
domain 2

vk € Hy () : Vyr-Véde = | fédz Vo€ Hy(%) .
Dk 2;
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It is easy to show that there exists an element 7 € H{}(D) such that for a
subsequence also denoted {yx}

yr =7 weakly in Hj(D)
as k — oo, furthermore
/ VY- Védr = / fédz Vée HI(RN) .
n n
Unfortunately we cannot claim that § € H}(£2) i.e. § solves the Dirichlet prob-
lem in £2. Let us observe that for j € H}(D), the set
Z = {z € D/ 5(z) = 0}

is not in general closed. Finally, let us describe the regularization method which
ensures the existence of an optimal domain for the Dirichlet problem. The reg-
ularization method leads to the stronger topology, compared to the Hausdorff
topology, on the family of subdomains §2 of D.

Let (z,zn4+1) € R¥?, and denote

D=Qx[0,L] L>0,

where Q C R” is a sufficiently smooth bounded domain and L is a positive
constant. Any admissible domain 2 takes the form of a hypograph in D

N=902s={(z,zn41) € IRNHI t€Q 0<znt1 < f(z)SL},
where f is an element of the convex set
Km={f €H™Q)|0<aSf()SL z€Q}.
The regularizing term is defined as follows
Em(2) = | fltm () -

We assume for simplicity that m > N, therefore by the Sobolev embedding the-
orem H™(Q) — C'(£2). We have the following lemmae, the proofs are omitted
here.

Lemma 2.13 If {f;} C K;n and
fx—=f ‘weakly in H™(Q)

then
25 B0y .
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Lemma 2.14 Let us assume

(i) {fr} C Km, frx — f weakly in H™(Q)
(i) ye € Hg(24,), lykllmypy £C

then there ezists a subsequence also denoted {yx} and an element y €
H}(925) such that
yr =y weaklyin Hy(D) .

]
Using the above lemmae we obtain that the mapping f — y(£2¢) is continuous
from H™(Q)-weak into H}(D)-weak and therefore there exists an element f* €
K, such that the following domain functional

129 =3 [ @@)= v ds+atn(2)

attains its minimum J(£2¢«) on the set of admissible domains

Upa = {2202 = 12 for some f € K,,} .

2.7. Convergence of domains

In the previous section the set Char(D) equipped with the L?(D) topology
was introduced and the compact sets Char(D, M) depending on a constant M
were defined. Unfortunately the convergence of characteristic functions does
not preserve the regularity of the domains. Stronger topologies on families of
domains are to be defined in order to ensure the convergence of normal fields,
curvatures, etc.

The principal idea used here for constructions of such topologies was intro-
duced by Micheletti (1972). Let us consider two domains £, and §2; of class C¥
in D c RY, we have to assume that there exists a transformation T' defined on
D, which maps D onto D, such that T and T~! are in C¥(D) and T(£2;) = £2,.
Such a transformation is not unique, therefore we shall restrict our consideration
to the transformation T' with the minimal norm

IT - Z)| + 1177 - Z| (2.57)

among all T such that T(§2;) = £2,. If the minimal value of the norm is zero,
then T' = 7T (the identity mapping) and 2; = ;. If this value is small, then 2,
is close to f2; in the sense of the topology defined here.

Therefore one has to construct the mapping T such that T'(12,) = §2; for a
given simply connected domains {2; and §2,.
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Let £2; and £2; be two bounded and simply connected domains in D (or in
RY ). The following two situations are to be distinguished:
(i) _ﬁl C £2,, (2.58)
(i1) §2; is starshaped with respect to a given point zo. (2.59)

Let us assume that £2; C (2; in order to construct the mapping T the
following boundary value problem is considered:

Find z € H'(£2; \ £2) such that

Az=0 in 2\ 7, (2.60)
2z=0 on Iy =20, (2.61)
z=1 only, =087, . (2.62)

The domain £2; \ 2; is not simpll connected. Two parts I} and I of the
boundary 82 of the domain 2; \ £2; can be considered as the level curves of
the solution 2z to the problem (2.60)-(2.62). Let us examine the family of level

curves _
7' t)={z € 2\ |2(z) =t} 0StS1.

It follows that
Ii=2z'0) and I =2z7'(1).

For a fixed t, 0 S ¢ < 1, the open set O; = {z € 2, \ 210 < 2(z) < t} is well
defined. It is assumed that this set has the following properties:

Oo =0,
O)=2\?,

and t — O, is a monotone increasing family of sets.

From (2.60)-(2.62) it follows that z is a harmonic function in O; which
attains the maximal value on the boundary z7!(¢) C 90y, i.e. the maximal
value of z in Oy is obtained at any point B of the set 2~!(¢). From the maximum
principle, see e.g. (Protter et al. 1984), it can be inferred that at any boundary
point B, where the maximum of z is obtained, we have %(B ) > 0. Furthermore,

since z71(t) is the level set of z, we get
0z -
% (B) = [V:(B)lww on=71(1)

Thus for 0 < t £ 1 we have

in |Vz(B 0.
ngl(t)ll Z(B)|lr~ >

z attains its minimum on Iy = 271(0), hence by the same argument as above
applied to —z, one can show that
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in ||Vz(B 0.
i [V2(B) v >

Whence for the gradient Vz on O; we have

min [V2(B)llgy >0 . (2.63)
B€O,

Following (Zolesio 1976), we introduce the autonomeous field
V(z) = | V2(2)llgh Va(z)
and the flow associated with this field:
Ti(X) = eV(X) . (2.64)
In other words, Ty(X) = z(t, X ), where z(-,-) denotes a solution to the system
of ordinary differential equations
%z(t, X) =V(z(t,X)), (2.65)
where X € I, and the initial condition is given by
2(0,X) =X . (2.66)
Proposition 2.15 The transformations Ty, t € [0,1], have the following prop-

erties:

To = I (the identity mapping on I7)
T; mapps Iy onto z71(t), that is
T(Iy) = 27(t) for0 <t £1
and in particular fort =1 we get

T()=1I3 .

Proof. Let X be a point in I'} and consider the solution z = z(¢, X) defined by
the system (2.65) and (2.66), we have to prove that 2(z(¢,X)) = t, in view of
(2.60)—(2.62) the initial condition becomes z(X) = 0, then it is enough to show
that the derivative of the mapping ¢t — z(xz(t, X)) is equal to the identity. But

d d
Ez(x(t’X)) = Vz(a:(t,X)) . Ex(t,X)

and J
76 X) = V(2(t, X)) = IV2(2) |5~ V()
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hence J
az(m(t,X)) =T.

From the classical results on the regularity of solutions to the Laplace equation
(2.60)-(2.62) (see e.g. (Necas 1967)) it can be inferred that if I'1 and I'; are C¥+1,
then 2 is in C¥(U) (with U = £2; \ 2;) and the field V is in C*~}(T; RY). By
the classical results of the theory of ordinary differential equations, the mapping
X — Ty(X) = z(t, X) and its inverse are in C*~'(R"; RY) (it is assumed here
that V is extended to R" as an element of C*~1(IRY; RY)).

In particular, if I is C*¥*!, then z7!(t) = Ty(I}) is C*~'. In the case of
the system of differential equations (2.65) and (2.66) one can assume that k 2 2
under the condition that the vector field V is in C¥~1(RY; RY).

If, e.g. I1 is a C3 manifold, then using the method of level sets of the solution
to (2.60)—(2.62), the resulting level sets z7!(¢), 0 < t £ 1, are a priori only C?!
manifolds. However, the level set z71(0) = I} is given as a C* manifold.

In fact for any t, 0 < t < 1, the level set 27!(t) is included in the interior
of the domain £2; \ 2, thus by the standard elliptic regularity result for the
solutions to (2.60)—(2.62) it follows that z(-) is C* in a neighbourhood of z~1(t).

()

Assuminﬁ that the field V is extended to IRY and this extension is in the
space C}(R ;RN ), one can show that the transformation T; maps 2, onto 2.

In the second case, i.e. when 2, is not included in the domain §2;, one has to
apply an appropriate transformation making it possible to reduce the case under
consideration to the first one. §2; is assumed to be the starshaped domain with
respect to the point zy. For simplicity it is assumed that zo = 0 and the domain
§25 is defined by £25 = r{2; with r > 0, r large enough, such that £2; C £25 (such
r exists, since £2; C RY is compact and 2, is an open set with 0 € 2;).

2.8. Transformations T; of domains

To carry out the sensitivity analysis of the shape functionals J(§2) one needs
to introduce a family of perturbations {f2,} of a given domain £ C R" for
0 £t < e. It is assumed that the domains 2 = 2 and §2; for 0 < t < € have
the same topological properties and possess the same regularity, e.g. £2, and £,
for 0 < t < ¢ are simply connected domains of class C*, where k = 1. Hence one
can construct a family of transformations Ty: RN — IRY for 0 £ t < & which
are one-to—one, and T; maps 2 onto §2;.

It is supposed that for this family of transformations the following conditions
are satisfied.

(A1) Ty(-) and T, }(-) belong to C¥(RY;RN) for all t € [0,¢).
(A2)  The mappings t — Ty(z) and t — T, *(z) belong to C([0,¢)) for
all z € RY.
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Equivalently, it can be assumed that a domain 2 C RY and the family of
transformations Ty: RY — IRY are given. The family of domains {£2;} is then
defined by 2, = Ty(R2). It is obvious that for a given family of domains {2;},
the family T; of transformations is not uniquely determined. Since only small
deformations (or perturbations) of {2 are considered, we can make use in fact
of the transformations which are defined as the perturbations of the identity
mapping 7 in IRY. An example of such transformations can be as follows

Tt = I + t@,
where @ is a smooth vector field defined on R
0 e Wh°(R",R") or ©eC*RY,RY).

The above parameterization of domains was studied, e.g. by Murat et al. (1976)
and Pironneau (1984).

A classical tool making it possible to construct the mapping T} is to con-
sider domains which are hypographs, but this approach is rather restrictive. We
denote z = (¢',zN) € RY, where z' = (z1,...,2N-1). Let Q@ C RM~! be a
bounded domain and suppose that f € C¥(Q),

min{f(z)lz € Q} >0 .
The domain 25 = 2(f) C RY associated with f is defined as follows:
2f)={zeRV )z’ e Q 0<zy< f(z')} .

The boundary 842(f) of the domain £2(f) is by definition only piecewise smooth.
The graph I'y = {(z', f(z')) € RY|¢' € Q} is the part of the boundary 8£(f)
which depends on f. For any element g given in C*(Q) there exists ¢ > 0 such
that

f+tg isadmissible for [t| <e

in the sense that .
min{(f +tg)(z)lz € Q} >0 .

The following notation is introduced

2= 0(f +1g) .
Thus the transformation T can be constructed,
£(z') + ta(a")
Tt(.’L",ZN) = (z',zNW— (267)

with the inverse

-1/, =z f(xl)
T; (x,yN)—( YN TN T ig(e) tg(z,)) (2.68)
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and it turns out that T} is a one-to-one mapping from Q x [0, %) onto @ x [0, o).
A particular case of the parameterization of domains relies on the use of the

polar coordinates.
Let fo and f be two periodic functions, fo, f € C¥([0,2II]), the domain
£2(f) is defined by

2f) = {(56) € RO 6 <211, fol6) < p< f(6)} -
It is supposed that
min{fo(6)|6 € [0,2II]} > 0

and

min{(f — fo)(9)|6 € [0,21T]} >0 .

For any admissible element g € C*([0,2IT]) with g(0) = g(2IT) there exists
e>0,
min{(f +tg — fo)(6)10 € [0,27]} > 0

for t, |t| < . We denote
2, = 0(f +tg) .

The transformation T} is as follows

U400 -5l0) )
fO-5® )

Numerous examples of parameterizations of domains can be described as follows.
The function f, used to define the domain 2(f) C IRY, depends on a vector
parameter a, i.e. f = f(a), (a € RY or a is an element of an open set 4 in a
Banach space). Hence 2(a) = £2(f(a)). Moreover let us consider an admissible
direction b of the parameter a and assume that

Ti(p, ) = (fo(o) +(o— H0))

2, = 2(t) = Qa +tb) .

The associated transformation T} is defined in the same way as before.

For the particular case of domains of class C* (the boundary I" of the
domain {2 is a smooth manifold, 2 is located on one side of I') we can apply
the parameterization of domains proposed by Hadamard (1908). This approach
has been used by several authors, e.g. Dems, Mréz, Murat, Pironeau, Rousselet
and Simon.

To present this method we describe briefly the Hadamard parameterization
for a smooth domain £ in R". The normal field n on I' is in C>=(I; RN ), let
g € C°°(I') be a given element; since I' is assumed to be compact, then there
exists € > 0 such that for any ¢, [t| < ¢,

I''=T+tgn = {yly = z + tg(z)n(z) forz € I'}
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is the boundary of the domain §2; of class C*. Making use of an extension
Ns to RY of the normal vector field n defined on I', Ny € C®(RN,RY), we
can define the transformation Ti(z) = z + tgo(z)No(z), where go denotes an
extension of g € C®(I') to RY, go € C(RM).

Thus the transformation constructed is a particular case of that considered
in the foregoing example. Let us assume that & = goNp, that is @ is proportional
to the normal field n on I'.

Observe that for any ¥ € W5°(IRN; RN), there exists ¢ > 0 such that for
t, |t| < €, the transformation T; = Z +t¥ is one-to—one. If ¥ is a linear mapping
then the inverse T, ! is defined by

T =) (—1)kkek, (2.69)
k=0

where ¥* denotes the composition ¥ o @ o...¥ of the mapping ¥: RN 5> RV,
k times. It is worth noting that the structure of the mapping T, is not the
same as that of the mapping T; and, in particular, T;™! is not associated with
the element —¥.

Equivalently for the linear mapping & € W*°(IR¥ IR") proportional to
the normal field n on I',

r, =z +tg(z)n(z) € Iy,

where z € I.

However, if n; is the normal field on I', then the vector y = z;—tg(z)n¢(z:) €
R is different from z € IR and in general the element y does not belong to
the boundary Iy of the domain 2.

If the domain 2 is of class C*, then the normal field n on I" = 812 is only of
the class C*¥~1, Hence the Hadamard parameterization results in the perturbed
domain $2; of class C*¥~1., Therefore the Hadamard parameterization preserves
the class of domains only for C* domains.

The parameterization of domains can be also associated with the level curves
of a given function. In fact, there are two possible cases that are of some interest
for our purposes. Let z be a smooth function

z € CY(D) with ||Vz(z)|gy >0

for all z € D\ {z.}, where z, is a given element and D is a smooth bounded
domain in R".
Suppose that z attains its minimum on D at the point z, and assume that

Iy =27Y(t) = {z € D|x(z) = t} (2.70)
0 = {z € D|2(z) < t}. (2.71)
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In the second case we assume that a family of functions {z:} depending on
the parameter ¢ is given. The function z; is defined on the fixed domain D for
each t € [0,6), in this case I, = 2;(1), and

2; = {z € D|z(z) < 1}.

For these two important situations we shall derive in the next section the explicit
expressions for the related transformations T;: D — D which map the domain
2 onto domains 2.

The domains defined by the level curves of a given function or a given family
of functions occur in problems, where the notion of the monotone rearrangement
is involved as well as in problems, where the controlability of the free bound-
ary is considered, e.g. the controlability of the boundaries of coincidence sets of
the solutions to obstacle problems (see Chap. 4). We have already introduced
in Sect. 2.7 the set z71(t) to construct the transformation T; which maps any
bounded simply connected domain 2; onto the given domain {2; using an au-
tonomous vector field V selected in an appropriate way. T} is obtained as the
exponential mapping Ty = e'V. This mapping has the following property: the
inverse T,! is associated with the vector field —V. Let us observe that for the
vector field V which belongs to W1’°°(]RN ;RN ) the differential equation

d
Za(t) = V(a(?) (2.72)

is locally well-posed. In the next section a generalization of this method is
presented. It relies on the use of time dependent vector fields (speed fields) V
(non autonomous vector fields V).

2.9. The speed method

Let us consider the general case of constructing the transformation T;. Let D
be a domain in RN (here D is not supposed to be bounded) with the boundary
dD piecewise C* for a given integer k > 0.

Let T; be a one—to—one mapping from D onto D such that

T, and T,! belong to C¥(D;RR") (2.73)
and
t = Ty(z), T (z) € C([0,¢)) Yz €D (2.74)

thus (¢,z) — Ty(z) € C([0,¢); C¥(D; RN)) = C(0,¢; C*(D; RY)).
For any X € D and t > 0 the point z(t) = T;(X) moves along the trajectory
z(-) with the velocity
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The point X may be thought of as the Lagranglan (or material) coordinate
while z is the Eulerian (or actual) coordinate. The speed vector field V (¢, z(t))
at the point z(t) is to be defined in the Eulerian coordinates; therefore it is
assumed that V(¢,z) has the form as follows:

V(t,z) = (%T,) o T () . (2.75)

It is obvious that from (2.73) and (2.74) it can be inferred that the vector field
V(t), defined as V(t)(z) = V(¢,z), satisfies the relation

V € C(0,;C*(D;RY)) . (2.76)

If V is a vector field such that (2.76) holds, then the transformation T; depending
on V, and such that conditions (2.73) and (2.74) are satisfied, is defined below.

x(t

= lam,

Let z = x(t,X) denote the solution to the system of ordinary differential
equations

%x(t,X) = V(t, z(t, X)), (2.77)
2(0,X) =X . (2.78)

Using the classical results, see (Dieudonne 1970), one can show the local exis-
tence of a solution to the system (2.77) and (2.78) in the following way.

For any z € D there exists a neighbourhood U, of z in D, an interval I(z)
in R4, 0 € I(z), and the mapping z:I(2) x U; 5 (¢,X) — z(¢,X) € D such
that for any X € U, the mapping ¢t — z(¢,X) is the unique solution to (2.77)
and (2.78) defined for ¢ € I(2).

If the domain {2 is bounded, then £ can be covered by a finite family of
open sets U; = U,;. Let U = U;U; and I = N;I(z;), hence there exists the unique
mapping z: I X U — D such that for any X in U, t — z(¢, X) is the solution to
(2.77) and (2.78), where U is a neighbourhood of §2 in D. The classical regularity
result, see e.g. (Dieudonne 1970), implies the existence of the partial derivatives

a a
(ﬁ) .'E(t,.X), |a|=a]+-'~+aN§k7
with 5\
ok-lel(y. mN
(——BX) 2(t, X) € C(I; C*1el(U; RM)).

If D ¢ RY is a bounded domain, then we set U = D and use the same argument.
In order to ensure that the mapping X — z(¢,X) maps D onto D, we need the
following assumption.



2.9. The speed method 51

Let the boundary D of the domain D be piecewise smooth, suppose that the
normal field n = n(z) exists for a.e. z € 8D and the vector field V(t) = V(¢,-)
satisfies the condition

V(t,z) -n(z)=0 forae =z€dD . (2.79)

If n = n(z) is not defined at a singular point z € 8D (i.e. D is non-smooth at

) we set
V(t,z)=0 . (2.80)

It is clear that if T; maps D onto D, and for T; holds (2.73) and (2.74), then
the vector field V defined by (2.75) satisfies (2.77), (2.78) (with z(t) = Ty(X)),
and (2.79), (2.80). Thus we can state the following theorem.

Theorem 2.16 Let D be a bounded domain in RYN with the piecewise smooth
boundary 8D, and V € C(0,; C¥(D;RN)) be a given vector field which satisfies
(2.79) and (2.80).

Then there ezists an interval I, 0 € I, and the one-to-one transformation
Ty(V): RN — RY such that T,(V) maps D onto D. Furthermore Ty(V') satisfies
conditions (2.73), (2.74) and (2.77), (2.78). In particular the vector field V' can
be written in the form

or,
ot
On the other hand, if Ty is a transformation of D, Ty satisfies (2.73) and (2.74)
and V is defined by the formula V = 8,T; o T, !, then (2.79) and (2.80) hold
for V. Furthermore V € C(0, e;C*(D;RY)) and the transformation Ty(X) =

z(t,X) is defined as the local solution to the system of ordinary differential
equations (2.77) and (2.78), that is T, = Ty (V).

V =9T(V)oT(V) ™ = ZX(V)o Ty(V)™" .

Proof. We give only the proof of the first part of Theorem 2.16. Therefore one
has to show that the inverse mapping 7,™! exists and has the same properties
as Tt.
Let V; be given,
Vi(s)=V(t—s) t>0.

It can be easily verified that the transformation T; ! is associated (via the
problem (2.77) and (2.78)) with the vector field -V, i.e. T{(V)™! = Ty(=Vo);
hence Ty(V)~! belongs to C*(D;RY). In order to prove the continuity of 1!
with respect to t, i.e. to show that Ty(V)~! belongs to C(I;C*(D; RY)), we
make use of the continuity of the solution to (2.77) and (2.78) with respect
to the initial data X and the vector field V € C%F, since the mapping t —
V; is continuous from I into C(I;C¥(D;RY)). To prove the regularity of the
derivative D, X, where X = X(t,z) = Ty(—V;)(z), with respect to X, we apply
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the above continuity of the mapping (t — V%) to the system of linear differential
equations whose solution is the partial derivative (a%)“X . In particular for the
first order derivatives we have

%D,X(s) = —DVi(s,X(s,z)) - D X(s) (2.81)
D,X(0)=T . (2.82)

a
For the transformation T; investigated in Sect. 2.8, we shall derive the formu-
lae for the associated speed vector fields. First, let us consider the transformation
T; = T + tP; hence
61Tt = @ .

Therefore
V(t,z) =P o (T +td)  (z) .

Furthermore, from (2.70) it can be inferred that for the domains £2; = £2(f +1g)
defined in Sect. 2.8, the following relation holds

& Ty(z',zn) = (0,2n9(z")/ f(z")) .

V(t,z) = (0”””%7?53_29(?)) .

Finally, if the domains §2; are defined by the level curves z7(¢), then as it was
already shown the speed vector field is defined by the formula

V(t,z) = | Vallgh(2)Vz(2),

Thus

here V(t,z) = V(z) is an autonomous vector field (independent of t). On the
other hand, if the domain §2; is defined by the level curves z;7}(1), then it can
be shown (see Chap. 4) that the speed vector field takes the form

V(t,2) = =2 ()| Vallgh (2)Va(2),

where z;(z) denotes the partial derivative 2 z(z).
In the next section we shall consider transformations defined by smooth
speed vector fields with compact supports

V € C(0,¢; D(D; ]RN)) .

For such a choice of the vector field V, no additional assumption on the open
set D (here D is not supposed to be bounded, its boundary 8D is not assumed
to be smooth) is needed to ensure the existence of the family

Ty(V) tel0,8] forsome &> 0.
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2.10. Admissible speed vector fields V*(D)

From Theorem 2.16, under assumption that the domain D C RY is bounded,
it follows that the one-to—one transformation T;(V) of D exists for any vector
field V € C(0,¢; C*(D; RY)) which satisfy the conditions (2.79) and (2.80).

The shape sensitivity analysis carried on in the next sections will not be
restricted to the domains {2 included in a given bounded domain D ¢ R™. In
particular, our analysis will include the case of D = RY.

Theorem 2.16, and conditions (2.79) and (2.80) make it possible to introduce
the notion of a set of admissible speed fields associated with the domain D in
R and corresponding to the required smoothness C of the constructed family
of domains {§2}, t € [0,¢).

Definition 2.17 Let D be a domain in RN whose boundary 8D is piecewise
CF, k 2 1. It is supposed that the outward unit normal field n exists a.e. on
dD, i.e. except for singular points T of dD. The following notation is used

VA(D) ={V e D*(RY;RY)|
(V,n)gry =0 on 9D except for the singular points T of 9D,
V(Z) = 0 for all singular points T} .

V¥(D) is equipped with the topology induced by DF(RN; RV).

If V € C(0,¢; V¥(D)), then there exists a compact set O in RN such that
the support of V() is included in O for all 0 £ ¢ < ¢. In such a case, one can
make use of Theorem 2.16 and define the transformation T;(V') in the form of a
one-to—one mapping on O. If the following conditions are satisfied: (V,n)g~ = 0
on 8D and V(%) = 0, then Ty(V) maps OND onto ®ND and (RY \ O)nD
onto itself. Finally, the restriction of the mapping T3(V') to D, Ty(V)|5 is a one-
to—one transformation of D possessing all properties required for the mapping

T,(V).

Theorem 2.18 Let D be a bounded domain in RN with the piecewise smooth
boundary D, and V € C(0,e;V¥(D)) be a vector field. Then there ezists an
interval I = [0,6), 0 < 6 S ¢, and a one-to-one transformation Ty(V') for each
t € I which maps D onto D and satisfies all properties listed in Theorem 2.16.
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2.11. Eulerian derivatives of shape functionals

Given the following data: an open set D in RN, a measurable subset 2 of
D, an integer k 2 0, a vector field V € C(0,¢;V*(D)), and the associated
transformation T3(V') from D onto D.

First we suppose that the functional J(£2) is well defined for any measurable
set £2 in D. Examples of such functionals have been given in Sections 2.5 and 2.6,
e.g. the functionals J; and J; discussed in Sect. 2.5, or any quadratic functional
connected with the transmission problem examined in Sect. 2.6.2. Let 2; =
Ty (V)(£2), t € [0,6), be a given family of deformations of 2, hence §2; is the
measurable subset of D for any t € [0, 6). The Eulerian derivative of the domain
functional J(§2) can be defined as follows.

Definition 2.19 For any vector field V € C(0,¢; V¥(D)), the Eulerian deriva-
tive of the domain functional J(§2) at {2 in the direction of a vector field V is
defined as the limit

dI(%V) =lm(J(2) - J(2)/t, (2.83)

where

0 =T(V)(2) .

Definition 2.20 The functional J(£2) is shape differentiable (or for simplicity
differentiable) at £2 if

(i) there exists the Eulerian derivative dJ(£2; V) for all directions V
(ii) the mapping V' — dJ(£2;V) is linear and continuous from C(0,¢; C¥(D;
RY)) into IR.

Ezample. Consider the functional J(§2) = measure of £2, and assume that

J(.Qt):/ dr ,

by the change of variables z = Ty(V)(X) we get

1(2) = /ﬂ A(t)(z)d,

where v(t) = det(DTy).
In the next section it will be shown that for ¢ > 0, ¢ small enough,

minv(t) >0
z€D
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and t — 4(t) is differentiable in D¥(D), i.e.
1 .
;('y(t) —1)—divV(0) as t—0.

The convergence takes place in the space D¥~1(D), and in fact in C*(O), where
O denotes the support of the vector field V for V € D¥(D; RY). Finally, we
obtain the Eulerian derivative

dI(2V) = / divV(0)dz |
N

that is

dJ(.Q, V) = (Xn,leV(O))p—k(n)ka(n) (284)
= (=Vx0,V(0))p-*(D;RV)xD*(D;RY) -

Similar results can be expected for all shape differentiable functionals.
Proposition 2.21 Let D be an open set in RY and suppose that the functional
J(£2) defined on the family of sets

{measurable set 2|2 C D C RY}

is shape differentiable. Then there ezists the distribution G(£2) € D) =
(D*(2))' such that

dJ(‘Q’ V) = (G(‘Q)’ V(0)>'D""(D;IRN)XD'°(D;]RN) (2 85)
YV € C(0,¢; D*(D; RY)) . '

Proof. We shall show that
dJ(2;V)=dJ(;V(0)) .

The continuity of the mapping V/(0) — dJ(£2; V(0)) on D¥(D; RY) yields (2.85).
For any V € C(0,¢; V¥(D)), m € IN, the following notation is used

V(@) fosts i
Vm(t)‘{v%) 1>

It is clear that for any m € IN we have £2,(Vi,) = 2:(V) for t, 0 < t £ &, where
2¢(Vin) = Te(Vn)(£2); hence dJ(£2; V') = dJ(2; Vi) for any m > 0.

For 0 £t £ L we have sptV(t) C O, where O is a compact subset of D.
Hence sptVi(t) C O for all ¢. Therefore for all & € INV and for s, 0 < s < €,
s> 1/m,
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sup
0St<s

(%)an(t,z) - (a—i)a voo)| |
z€0

sup “( ) (V(t,z) - V(0,2)) .

0t L
z€0

The last term converges to zero as m — oo, because V € C(0,¢; D*(D;
R")) and the derivatives
a a
— ) V(¢

are uniformly continuous on [0,s] x O for all a, |a| < k.
a
We denote by G(£2) the gradient of the domain functional J(§2) (or the shape
gradient of J(12), to dispel doubts if any). By definition G(2) € D~*(D;R™).
For J(£2) = [,dz we have G(2) = —Vxgq. One can see from this simple
example that the distribution G(£2) € D'(D;IR") is more regular since the
linear form

(G(£2),¢) =/I;div¢dz

is defined for any ¢ € D'(D;R"), thus G(2) € D~Y(D; RY) = (D'(D; RM))'.
If 12 is an arbitrary measurable subset of D, meas (§2) < +oo, then

x2 € L*(D) hence G(2)e H™Y(D;R"M) .
Furthermore, if {2 is a smooth domain, then
s 1
Xn € H (D) s < § .

This result implies that G(2) € H*(D) for any s, s < —3.
If the boundary I' of the domain {2 is smooth, then we can use Stokes’

theorem. Hence for
J(2) = / dz
n

dJ(2;V) = /n divV(0)dz = /F V(0)-ndl .

we obtain

Let yr: H(2) - H3(I') denotes the (restriction) trace mapping on I', ypu =
u|r (see e.g. (Lions et al. 1968)). In general we have

vr € LICKRN); c*(I)),
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for all integers k 2 0. Furthermore

dJ(V) =(n,vr - V(0) p-r41(r;RN) xDE-1 (IRN) =
("1 -, V(0)) p-rt1 (RN ;RN ) x D~ 1 (RN ;RN )5

where *yr denotes the transpose of yp.
It can be shown that the distribution

G ="*yr-n issupportedon I =9

and linearly depends on the normal vector field n on 92. We shall prove that
in general shape gradients of domain functionals defined on sufficiently smooth
domains have the same property.

Proposition 2.22 Let us suppose that the domain functional J(-) is defined
on the class of measurable subsets of D and is shape differentiable at £2. Then
spt(G(2)) C 12, where G(12) 13 the shape gradient of J(-) at £2.

Proof. Let V € D(D; RY) be a vector field such that (sptV) N2 = 0. Hence
TV = 2(V) = 2,

since Ty(V)lg = T is the identity mapping. Thus dJ(£2;V) = 0. Therefore it
can be shown that the distribution G(2) restricted to D \@_vanishes and, as a
result, the support of the distribution G(f2) is included in £2. O

Proposition 2.23 Let the domain functional J(-) be defined for any 2 C RN
with the boundary 892 of class C¥. Then the distribution G(R2) is supported on
r.

Proof. f V € D(2;RYN), then 2,(V) = 2 and dJ(§2;V) = 0. Hence the
restriction of the distribution G(£2) to the open set §2 is equal to zero, i.e.
spt(G(£2)) € 12°. From Proposition 2.22 it follows that spt(G(£2)) C 12, hence
spt(G(£2)) € I' = 2 N2 as was to be shown. a

Proposition 2.24 Let 2 be a domain with the boundary 32 of class C* and
V € D(D;RY) be an element such that

(Vin)gwn =0 on I
Then
(G(£2),V)p(D;rVyxD(D;RN) =0 .

Proof. Suppose that (V,n)gy = 0 on I' = 9. For any X € T, z(t,X) =
Ty(V)(X) € I'. The speed vector field V(z) belongs to the tangent space T, I,
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hence it follows that I" is globally invariant with respect to the transformation
T¢(V). From this it is inferred that 2, = 2 and dJ(2;V) =0 a

Consider the domain functional J(-) which is shape differentiable at any
domain of class C¥. Let £ be a given domain of class C*¥~!. The normal vector
field n on 92 belongs to C*(I';RY). Furthermore let us denote by Ap an
extension of the field n such that

N € C¥D;RY)
and by V) the following vector field
Vi = (V,No)r~vNo € C¥D;RY) vV € C¥D;RY) .

If
F(2) ={V e C¥D;R")|(V,n)gw =0 on T},

then F(£2) is a closed subspace of the space C*(D; RY).

Proposition 2.25 The mapping {V} — v = (V,n)gw
from C¥D;RM)/F(R) into CHI)

is an isomorphism.
The space C*(D;IRN)/F(£2) is equipped with the quotient topology of a
Frechet space (or a Banach space when D is compact).

Proof. The linear mapping {V} — (V,n)g~ is well defined because from V; —
V2 € F(£2) it follows that (V; — V,n)g~ = 0. To proceed further one has to
construct the inverse mapping defined as follows

m
v= Zv,- for any v € C¥(I"),

i=1
where v; = vr; (see Sect. 2.1), r; € D(U;), i = 1,2,...,m, is a partition of the
unity on I" = 3f2. Let us introduce the following notation

wi(€',0) = vi 0 hi(¢'),
where v; o h; € D¥(By). By is the unit ball in RN, and wi(€',0) can be
extended to B, the unit ball of IRY, in the following way

oi(€',6n) = wil€',0) €= (¢, En) €RY .

We define

m
Pv = E TW; 0 C;

i=1
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Puv € C¥(D) is an extension to D of the element v defined on I'. The mapping
v — {Pv Ny} is the required inverse mapping, as was to be shown. ]

In the following the space C*(I') is identified with the quotient space C k(D;
IRMN)/F(£2) using the isomorphism {V} — (V,n)g~. From Proposition 2.23 it
follows that the closed subspace F(£2) is included in the kernel of the continuous
linear mapping

(V = dJ(2;V)) € L(C¥(D; RY),R) .
Proposition 2.26 There ezists a linear continuous mapping
dJ(I;):CHI) - R
such that for all vector fields V € C*(D;R")
dJ(2;V) = dJ(T;(V,n)gw) -

Proof. The canonical mapping =V — {V}, from C¥(D; RY) onto
Ck(D; RN)/F(22) = C¥(I') is surjective. Furthermore

(V)= (Vlr,n)rw~ -
The closed set F(£2) is included in the kernel of the linear mapping dJ(£2,-).

Hence we have the following factorization:
dJ(I;-)=dJ(£25-) 01,
equivalent to dJ(§2;V) = dJ(I;(V,n)gr~) a

Let us introduce the following notation
dJ(T5on), va(@) = (V(@)n(@)ps z€T .

Finally the structure of the gradient is determined.

Theorem 2.27 (the Hadamard Formula) Let J(-) be a shape functional
which is shape differentiable at every domain 2 of class C¥, 2 C D. Further-
more let us assume that 2 C D is a domain with boundary of class C*¥~1. There
exists the scalar distribution

g(I) e D7X(I)

such that the gradient G(£2) € D*(2;RY) of the functional J(-) at 2 , with
sptG(£2) € I, is given by

G(2) ="yr(g - n), (2.86)
where Y € E(D(E;IRN), D(T; ]RN)) 18 the trace operator and *~yr denotes the
transpose of yr.
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From (2.86) it follows that
dJ(2;V) = dJI(I';vn) = (9,vn)D-*(r)xD*(I') -

In general g = g(2) € D~¥(I"), however for a specific class of shape functionals
one can assume that g({2) is an integrable function on I'. If this is the case,
then

dI(2V) = /P o(2)(V (0, 2), n(z)) gl . (2.87)

In the particular case of the functional J(£2) = [, dz, we proved that ¢ =1 on
I'. In general, if g € L'(I"), then g is obtained in the form of the trace on I' of
an element G € W11(£2). The element G is not uniquely determined while the
element g, the density of the gradient, is unique. We have

(G(92), V(O)>D—’°(D;RN)><D"(D;R") =
/FG(V(O),n)]RN(lF =

/n div(GV(0))dz = (x, div(GV(0))) =

—(GVx0a,V(0))p-+(D;RN)x Dk (D;RN) -
Hence the gradient G(12) satisfies
G(2) =*yr(gn) = —-GVxq . (2.88)

2.12. Non—differentiable shape functionals

In Chaps. 3 and 4 we shall consider the domain functionals J: 2 — J(£2)
such that the Eulerian derivative dJ(§2;V) exists at {2 in any direction V,
V € C(0,¢;C*¥(D; IRY)). However, some domain functionals are not shape dif-
ferentiable, because the mapping V' — dJ(£2; V) is nonlinear in such cases. An
example of non-differentiable domain functional is the multiple eigenvalue A(£2)
of an elliptic eigenvalue problem (see Chap. 3 for details), let us recall that an
eigenvalue problem can be stated as follows:

a_r)(y, ¢) = /\(.Q)bn(y, ¢) Vo,

where y denotes an eigenfunction, ag(-,-), ba(-,-) are bilinear forms. It can
be shown (see e.g. (Zolesio 1979a; 1981)) that the mapping V — dA(£2;V)
is concave. In Chap. 4 the unilateral problems will be examined. In general,
the mapping V — dJ(§2;V) associated with such problems is neither lin-
ear nor concave. Nevertheless the unilateral problems have the same proper-
ties as those derived for the shape differentiable functionals. In particular, if
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the mapping V — dJ(£2;V) is continuous in the appropriate topology, then
dJ(2;V) = dJ(£2;V(0)). Furthermore, if (V(0),n)g~¥ =0on I', and I" is suffi-
ciently smooth, then £2; = £2, and we have dJ(2;V) = dJ(£2;V(0)) = 0. In the
particular case of the multiple eigenvalues, the shape derivative of the domain
functional J(§2) = A(£2) enjoys the following property

—dJ(2;V) (G, V(0)) -+ (RN RNy x H*(RM;RY)

= sup

GEM
for some s > 0, where M is a given set of distributions with supports in £2.
Functions of the form are well known, they are used in the convex analysis (see
e.g. (Ekeland et al. 1976)). Let us recall that the support function of a convex

set M (here M is a convex set in the Sobolev space H~* = H~*(RY;R")) is
defined (Ekeland et al. 1976) as follows:

0 if G belongs to M
+00 otherwise .

Sm(G) = {

The conjugate function S : H $(RN;IR") > R is defined in the following way:

SuV) = sup [(G,V) - Su(@)] -

Hence
(V) = —dI(@V) .

If the set M is not convex, then (Ekeland et al. 1976, p.18)
Sm = Ses(Mm),

where T5(M) denotes the closure in the space H*(IR";IR") of the convex
hull of set M. In order to obtain the necessary optimality conditions for the

minimization problem
mr%n J(R2)

we should characterize the closed convex cone 8J(2) ¢ H=*(RN;RR"). This
cone is defined as follows

3J(R) ={G € H*(D;RY)| - dJ(2;V) 2 (G,V) VV € H*(D;R")}
In fact (Ekeland et al. 1976) the cone 8J(§2) can be defined equivalently by
aJ(22) = aS34(0) .

In this definition the use is made of the notion of subdifferential 85%,(0), which
is the convex cone with the elements G € H~*(D;R"). For this cone the
following condition is satisfied

Su(V) 2 S3(0) +(G,V) WV € H'(D;R")
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In particular §%,(0) = 0.
It can be inferred that (Ekeland et al. 1976)

G € 05%4(0) if and only if 0€ dS}H(G) . (2.89)

Furthermore it can be shown that Sg5(a4) is lower semi-continuous, thus Sy =
Szs(m) is lower semi-continuous and S} = Sa (it is evident that f** = f for
any convex semi—continuous function f).

Finally from (2.89) it follows that G € 8J(£2) if and only if

Sesm)(G) < Sesan)(G') VG' € H*(D;RY) .

By definition, Sx4 attains the value 0 or +00. Therefore the above inequality is
equivalent to the condition G € ©6(M). The foregoing result may be stated as
the following proposition:

Proposition 2.28 Let J(£2) be a domain functional such that

dJ(2;V) (G,V(0),

= inf

GEM
where Is,) denotes the duality pairing between the spaces H"’(]RN;IRN) and
H%IR ;]RN) for some s > 0, and M is a given subset of the space H—*(IRV;
R™).

If
8J(2) ={G € H*(RY;RN)|dJ(2; V) £ (G, V(0))
vV e H*(RM;RM)},
then
8J(2) = (M),

where T6(M) denotes the closure in H"(]RN; IRN) of the convez hull of the set
M c H*(RY;R") .

0

2.13. Properties of T} transformations

Given a vector field V € C(0,¢; D¥(D; IRN)), where D is an open set in R,
dD is piecewise C*F. D is not supposed to be bounded. Let us consider the
transformations

T, = Ty(V) € C¥(D; RN)
for fixed ¢.
It is assumed that (V(¢,z),n(z))gy = 0 a.e. on 8D, and V(t,z) = 0 at any
singular point z of the boundary 8D. It should be remarked that a normal
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vector n(z) does not exist at the singular point z € dD. T; is a one-to—one
transformation of D into RN, T;(8D) = 8D.

Let us denote by DTy (X) the Jacobian matrix of T} evaluated at X, * DTy (X)
is the transpose of DTy(X). It is evident that

(*DT)™ =*((DT)™")

s0, to simplify the notation, we shall write * DT;~!. The application of the chain
rule yields the following useful results

Proposition 2.29 We have

(i)
(V$)oT, =*DT;* -V(¢oT,) V¢e C'(RN),

(1)
D(T o S)={(DT)oS}-DS ¥(T,S)e CY(RY;R") .

Proof. Let DT be the Jacobian matrix function of the transformation T, hence

o]
a *
3z, 5 = (DT)ij -

First we shall prove the property (ii). It follows that

——-—(ToS) Z{ ToS}—Sk,

whence

N
D(T 0 S)ij =Y (DT)ij o S(DS); -
k=1

Finally we obtain
—(¢ oT)= Z —o :r—:r,c = Z‘(DT);k((VqS) oT)k ,
=1

thus
V(¢oT)="*DT-(V§)oT .

This proves the property (i). o

Lemma 2.30 We have
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D(T;/') = (DT) ' o Tyt . (2.90)

Let

4(t) = det(DTy) (2.91)
det D(T; ) = v(t) o T ! . '

Furthermore we shall prove that transformations Ti(-) have the following prop-
erties (see Sect. 2.1 for applications).

Lemma 2.31 The mapping t — DTy(V) (t — ~(t)) is differentiable in
CHYRN;RY) (in C¥~1(R)). The derivative at t = 0 is given by

(%DT,(V)) T DV(0), (2.92)

(#'(0) = divV(0)) . (2.93)

Therefore, for any compact set O, all integers I, 0 £ 1 < k — 1, and indices
N
a €NV
lo|=a1+--+ay 1,

we obtain ast — 0

0
max|(2) (2 @i - st - V.2 [ =0, o
@) st w0 em

Proof. First we shall prove the property (i).
The matrix DT; is determined by the solution to the following linear differential
system

t
DT(X)-T= / DV(s,T,(X)) - DT,(X)ds . (2.96)
0
But T, —» Ty = Z in C*(RY;IR") as s — 0, hence

%(DT,(x)—I):% /0 " DV(s,T,(X)) - DT,(X)ds .

The last term of the above expression converges in C¥~1(IR"; RN) to the limit
DV(0,X) - DTy(X) as t — 0, hence because of Tp = Z, we obtain (2.92) and
(2.94).
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The property (ii) can be proved by induction with respect to N. First, as-
sume that N = 2 and denote z = z;, y = z3, V =col(V;, V, and T =col(T%, Ty)
then

7(0) = 5 Vel0) 5 (T)o + 5 VO3 (Tl
o, 9 5, . 0
- %Vy(o)a_y(Tz)O - g(Ty)oa—sz(O) :

The two last terms on the right-hand side of this equation vanish, because T}
is equal to the identity for t = 0. Hence

o}

03]
E(Ty)o = a_y(T”)" =0.

Finally we consider the space RM*! let j =1,2,...,N + 1, and assume that
zn41 s fixed, z=(z',zN41)
We define a mapping RY - R" in the form:

T/:a' = [(Tih(2),- - (Tr)j=1(2), (T)j41(2), -, (T)N41(2)] -

Then

N+1
det[D, Ty(2)] = ) (-)N*'H det[D:'th((x',fN+1))]£(Tt)N+1(z)
j=1 ]
and

N+1

) : : 1]
—~(0,z) = —1)N+1H+idiv, VI(0, 2)6;
6t'7( ,.’L’) Z( ) v ( 71) j,N+1 + azN+l

VN+1(01 .’B)
J=1

= divy' Vv (0, (¢, 2v41)) + VNn4+1(0,2) .

o)
0z N1

2.14. Differentiability of transformed functions

Now we shall investigate the properties of functions of the form (f o T;)(-) where
T is a given transformation.

Proposition 2.32 If f € WUY(IRY) and V € DY(RN;RY), thent — foT; is
differentiable in LI(IRN) and the derivative is given by
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7]
(37 om)

Proof. First, we suppose that f € C°°(]RN ) and make use of the following
expansion:

= (VF,V(O))gw~ . (2.97)

t=0

1
f(Ti(2)) - f(z) = /0 Vflz +s(Ti(z) - )] - (Ti(z) — z)ds .

Hence
[(¢oTi= )= V- VO] @) =
[/0 (Vflz + s(Te(z) — z)])ds — Vf(x)] : T'_(’”Z_'_'_x+
Vi) (ﬂ# - V(O,z)) _
Let
z=1z+ 3(Ti(z) — z) = A(s,t)(z)
then

dz = det(D([(1 = $)T + sT¢]™"))dz .
One has to show that

y(t)=/nl

and that

/0 (Vo + 5(Tu() - 2)] - Vf(z))ds

dr—0 as t—0
IRN

o)< [ s ( | 195la + 5(Tiz) - 2)) - Vf(z)nm) o |

Taking into account that for any s the mapping ¢t — V f o A(s,t) is continuous
in L'(IRY), we can prove that for any s

h(s,t) = /n IV flz + s(Te(z) — z)] — Vf(z)|lgrndz - 0 as t— 0.

It should be remarked that h(s,t) £ h(1,t) for all s. Hence it indicates that
9(t) < h(1,t) — 0 as was to be shown. o

Proposition 2.33 Assume that
(t = f(t) € C(0,& WM (RY)) N CY(0,6; L' (RY))

and
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V e C(0,6;D*(RN;RY)), k1.
Then the mapping
t— f(t)o T = f(t, T("))
is differentiable in Ll(lRN), the derivative is given by

(FU0m)| =r@+7.50)-v0).

t=0

Proof. By our assumptions there exists an element f'(0) € L}(R"),

|s00 - ) -F O, =0 a5 =0

L1(RV)

Hence
AW o T - S0)] = 3 1£) = FO)] o Tu 4 31£(0) o Ts — £(0)] =
£1(€0) o Tu+ 5 1(0) o Ti = F(O)] = F/(0) + V2 f(0) - V(0) as ¢=+0..

a

Remark. From the proof of Proposition 2.33 it can be inferred that the following
convergence

1
|;¢®eT-p-vivVO),, 10 =0
takes place as t — 0. In specific cases an estimate for the speed of this con-
vergence is necessary. For this purpose one has to consider an element f, e.g.
f € Wz'l(IRN ) and use the same reasoning as before but applying the sec-
ond order expansion of f. Such an approach is much more technical but yields
Proposition 2.36.

Let us introduce the following notation

9(s) = f(e + s(Ti(z) — 7)) -

Lemma 2.34 We have

aa—gmrwwmr=473—mwwwp. (2.98)

Proof. Let
h(s) = g(s) — 9(0) — s¢'(0)

therefore we have
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R(0)=0 and A'(s)=g'(s)—g'(0) .

Furthermore the following relation holds

¢'() = ¢'(0) + / "(rr .

Hence it can be shown that

wey= [ [ "= [ 0" o)do

This proves our lemma. a
It is evident that

g'(s) = Vf(z + s(Te(z) - 7)) - (Tu(z) — z)
g'(0) = Vf(z) - (To(z) — o)
9"(s) = (D*f(z + 5(Tu(2) — 2)) - (Tu(2) — z), Tu(z) = 2)m -

Here D?f(-) denotes the Hessian matrix function of f, D?f(z) is a symmetric
matrix for all z. For s = 1 we have

[f(Ti(2)) — f(2)] = Vf(z) - (Te(z) — z) =
(] /0 (1= 5)D*f(a + s(T(#) ~ 2))ds| - (Ta) - 2), T) - =) (299)

oL = f = Vf - (L= I)lr e, < (2.100)
1
ST~ Tle max [ 1D f(e +s(Tia) - ),

here we denote L = L®°(RN; RY).
In this section an estimate of the left-hand side of (2.99) will be derived. The
right-hand side of the expression (2.100) involves the term sought

ITe = )| Lo (m¥ ;Y -

We have to derive a more explicit expression for the integral term on the right-
hand side of (2.100). For this purpose the following change of variables is to be
applied.

For a given s, we introduce the variable z, z = z + s(Ty(z) — «)). Then
z = [(1—s)I + sT¢]"!(z) and it follows that

dz = det(D[(1 — $)T + sT¢]})(2)dz = b(s,t)(2)dz .
Therefore
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/]RN ”sz(:l: + 5(Ti(z) — z))||prdz =
/‘IRN "D2f(z)”2£(]RN;]RN)b(s,t)(z)dz

It can be easily verified that for a given vector field

V € C(0,¢; DF(RY; RY))

(2.101)

there exists a constant C; > 0, C; = C(V), such that
max [b(s,t)(z)| £ C; .

0551
0<t<e
zeRY

Hence making use of (2.101) and (2.100) we have

S o T~ Tu = Vf - (T ~ I saemy <

! (2.102)
;CI(V)”Tt - I”ZI’,w”sz”Ll(mN,mN’) .

The term 3(foT, —T) is to be compared with V£-V(0). The inequality (2.102)
can be rewritten in the following way:

< (2.103)

H%(f°Tt ‘T*)‘Vf'v(0)| LI(RY) =

|5 =1 = V)| 19l +

1
ZCLVIT: = TN 1D fll 2w, cmmimmy)

Before proceeding further with a reasoning, we present the following result.

Proposition 2.35 For any vector field V(-,-),
V € C(0,e; D*(RY; RN)), k21,
there ezists the function u(V,t) 2 0 such that u(V,t) = 0 ast — 0 and

”%(T‘(V) -1- V(O)Hmw) S u(vit) (2.104)

Proof. For any €9, 0 < &g < ¢, the vector field V is uniformly continuous on
[0,€0] x O, where [0,&] x O DsptV (the support O(t) of V(t) is not fixed but
for 0 St < g there exists a set O such that O(t) C O, and O is a compact set
in ]RN)
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The modulus of continuity w(-) of the vector field V is used,
w(r) = max{||V(t,z) — V(s,y)llm~ |(s,2) € [0, 0] x [0, 0],
(2,9) €0 x0, |s—t|+ e —ylry 7} -

It follows that w(r) — 0 as r — 0, w(-) is continuous (i.e. V(:,-) is uniformly
continuous). Furthermore

”%(T,(x} —-z)-V(0, I)“]RN s
: V(5. Tule)) = V0, 2)llgwds <

2 | s =ue),

where the following inequality is used

51+ I:(2) = el < ol + [ "IVt @) lmode < [r(s)l,

here we denote
r(8) = (1 + [Vl Lo ((0,e0)xmN)) -
Since w(+) is continuous, w(0) = 0, hence u(t) — 0 as t — 0 as was to be shown.
a
Combining Lemma 2.34 and the estimate (2.103) we obtain the following
inequality:

|3 o Ti=T) =5 V), . SIVSlsmmuVii+

L1(RN)
CYVID? fll s e, cmm mmyy IV (Ol s + p(V,O)ITe = Tl

here we denote L! = L'(RN; R").

Thus we get

Proposition 2.36 For any vector field V € C(0,e0; D¥(RYN; RN)), k 2 1, there
ezists a function u(V,-) 20, u(V,t) = 0 as t — 0, and a constant N(V) such
that for any element f € W21(IRY)

1
|s¢em-p)-vivo) o S
IV fllwra [4(V;8) + N(V)|Ti = T 1] -

(2.105)

Proof. For any element f € D(]RN ) the inequality (2.105) directly follows from
our calculations. Thus for f € W2!(IR"Y) one can use the standard density
argument, because the space D(IRY) is dense in the space W21(RM). m]
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Proposition 2.36 gives the derivative of the mapping t = foT; in Ll(lRN )-
From the point of view of examples considered in this book it is advantageous
to show the differentiability of the mapping in W1!(IRY). Assume that the
element f is given in W“(]RN ). We shall examine, in the same way as in the
proof of Proposition 2.36, the following convergence

V(foT) - V] = V(VS - V(0)
in the norm of the space L! = L'(RY; RM) as t — 0. From
V(foT,) =*DT; - (Vf)oT
it follows that
UV(fo Ty~ Vi) = 1*DT,- [(Vf)o T - VS| + ['DT, = 7] V5 .

For the second term on the right-hand side of this expression we have

1[/af of of :
: [(5.£> oT, — 33:;] —V(EE) -V(0)—0 in LI(IRN) ast — 0.

On the other hand

*DT, — T in D*"{(RY; RV ) as t — 0.

The foregoing results may be stated as the following proposition

Proposition 2.37 Let there be given a vector field V € C(O,s;D"(lRN;lRN)),
k21, and an element f € W2(RY).
Then
1 .11 mN
‘t‘[fOTt —f]=Vf-V(0) strongly in W' (R"Y)
ast — 0.
' a
Finally the form of partial derivative of the mapping t — f(t) o Ty with
respect to ¢ will be determined.

Proposition 2.38 Let f be a given element in
C(0,e; WH (RY)) n C'(0,6; W (RY))

and let V be a vector field, V € C(0,e; DF(RN; RN)), where k 2 1 is an integer.
Then the mapping t — f(t)o T is differentiable in WV (IRYN), the derivative at
t =0 i3 given by

[%(f(t)oTt)] = f'(0) + (V£(0), V(0))rw - (2.106)

t=0
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Proof. We have
f@) o Te = £(0) = [f(t) o Te — f(1)] + [£(t) - £(0)] -

By our assumptions the second term on the right-hand side of this equation
converges to f'(0) in the norm of space W11(IR"). Hence one has to consider
the first term. From the inequality (2.105) appearing in Proposition 2.36 we get

[z ot s) - w5 VO, 10 S
9@l iV, ) + NOVIT: = Tl

Making use of our assumptions on f, we can show that the mapping

t = [V®)llwrr mwy

is continuous. O
In reference to Proposition 2.38 the following question can be formulated: let
D be a given domain, D C RY and let f be in L%*(D), is the mapping t — foT;
differentiable in H~!(D) ?
The answer to this question is positive provided that the weak topology of
the space H~!(D) is considered.

Proposition 2.39 Let f € L%(D), V € C(0,e;V¥(D)) be given, k 2 1, then
the mapping t — f o Ty is weakly differentiable in the space H=!(D) .

Proof. Let ¢ € H}(D) be given and let us introduce the following notation

St = Tt_l
At)=7(t)" o Ty =~(t) " o S
We have ) )
: /D(foT, ~ f)pde = /Df()\(t)q&oSt ~$)dz .
Furthermore

S80S~ 6) = MD3 (805~ ) + 1 (A1) - 4,

the right-hand side of this equality converges to —V¢ - V(0) + X'(0)¢ strongly
in L?(D) as t — 0. Moreover it is evident that

N(0) = —divV(0) .

It should be remarked that Sy = T,™! is the transformation associated with the
speed vector field —V;. Therefore
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1 .
[ 3¢ oT- bt — = [ fain(6vO)e = (£ V(O). O n-scommen
as t — 0; this proves Proposition 2.39. O

Remark. We present the following counterexample showing that one cannot
expect that the mapping t — f o Ty is strongly differentiable in H~!(D) for any
f € L*(D).

Let D = (-1,1), V(z) = 1-z? and Ty = ¢!, i.e. Tyz = z+ [, [1 - (Tyz)?)ds.
The transformation T; maps D onto E, because V = 0 on dD.

We have V(0) = 1 and for ¢t > 0, ¢ small enough, T;(0) = tZ + o(t), where
o(t)/t = 0in IR as t — 0. Let us assume that

_f1 ifz>0
f(z)—{O ifz<0.

Hence f € L*(D). For ¢ € H}(D) C C(D) it follows that

2 [oTi-noie=3 [ ey =3 [ 6z [ (6te) - 60

Obviously, the first term on the right-hand side of this equality converges to
#(0) = (6o, #) and the second one converges to zero as t — 0. However, this
convergence is not uniform with respect to ¢ on the unit ball of the space

H} (D). Let
t+% if -22Sg< -t
pi(z) = { -5 if 252250
0 elsewhere .
We have 2
2 1
/D[V¢¢| da:—-2/0 ﬁdz—-l
hence

el 20y = 1

whence it follows that the element ¢; belongs to the unit ball of the space
H} (D). For the element ¢,

#4(0) =0
1 [° 1% ¢ 11 1
= == —Zde==>-=[z2]", == .
t/_,qs‘(x)dx t/_, =7 5l =3

%/D(fon—f)qstdm

and

Therefore
Vt .

N =

Thus
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1
M oT- Aoy = sw | [ Jiromi ioas] 2]

$€H; (D)
"d’"ys(p)él

and we cannot show that

hm” [foT: - f]”

l(D)

This is why the conclusion of Proposition 2.39 is optimal for f € L?(D) and one
is not in a position to improve it.

Now we shall consider the differentiability of the mapping ¢t — f o T, where
f is a measure or a distribution and f cannot be represented in a form of an
integrable function. Let D C IRY be an open set with the piecewise smooth
boundary dD. We make use of the following notation:

H™/(D) = (Hy(D))'
= {h € D'(D)|h = f + divg, where f € L*(D) and g € L*(D;R")} .

Let h € H1(D) be a distribution, the transported distribution f * T; is defined
as follows:

(h* Tt, 8)p/(Dyx(D) = (b (¥(t) 7' 8) 0 Ty )0 (D) xD(D) =
Nog
[ tome- > oz,

Applying the change of variables ¢ = Ty(X) we have

0T VYdz V¢ € D(D) .

h+Ti=foT, +~(t)'div(DTy " -goTy) .

Let f € L*D), g € L*(D;IRN) be given, then from Proposition 2.39 it
follows that the mappmgs t - foT; t —» goT; are weakly differentiable in
H~'(D) and H~Y(D;RR"), respectively. For any distribution h € H~ 1(D) we
can prove the following result on the differentiability of the mapping ¢t — ho T

Proposition 2.40 Given an element h € H}(D) of the form
h=f+divg, where (f,g)€ L*(D;RN*) .

The distribution transformed to the fized domain 2, i.e. the mapping
t—ohxTy=foTy+~(t) 'div(DT, ! - goTy)

is weakly differentiable in H=1(D).
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The strong material derivative of an element f € L*(R") exists in the
Sobolev space H~2(RR™).

Proposition 2.41 Let f € L(RY), V € C(0,¢); DF(RN; RYN)) be given, then
the mapping t — 3[foT(V)—f] is strongly differentiable in the space H™ 2(lR )-

Proof. Using the same reasoning as in the proof of Proposition 2.39 and applying
Proposition 2.37 one can show that

%['y(t)¢ oT; — ¢] — div(¢V(0)) strongly in HY(RM)

as t — 0 for all ¢ € H2(RY). 0

2.15. Derivatives for t > 0

In the above section the derivatives of different terms with respect to ¢ were
determined at ¢ = 0. Using the formulae and Lemma 2.43 one can construct the
form of these derivatives for ¢t > 0.

First, the following lemma is to be proved.

Lemma 2.42 We have
Teye(V) = Te(V) = (Te(Ve) = I) o To(V), (2.107)
where V; stands for the translated speed vector field
Vi(s,z) = V(t +s,z) . (2.108)

Proof. It can be shown that
t+e
Tre(V)(X)=X +/(; V(s,Ts(V)(X))ds =
t t+e
X + /0 V(s, T(V)(X))ds] + /t V(s Ty(V)(X))ds =

T(V)(X) + / Vi, Ter (VX))

Thus
Ti4e(V)(X) = Te(V)(Te(V)(X)) - (2.109)

This proves Lemma 2.42. O
Making use of Lemma 2.42 we are in a position to construct the form of the
derivatives of transformations T;(V') with respect to ¢ for ¢ > 0.
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Lemma 2.43
Fort>0

FTV0 = (22.00)

,, (T(V)(X)) =V(t, T(V)(X)) . (2.110)

&

For the sake of simplicity, we write %Ti = V(t)oT:. Using the same approach
one can determine the derivatives with respect to t of the Jacobian matrix DT}
and the determinant v(t) = det(DT).

Proposition 2.44 Let D C RY be a bounded domain, and V € C(0,¢; C¥(D;
]RN)), k 2 1, be a vector field, (V,n)gy = 0 a.e on 8D. Furthermore it is
assumed that V = 0 at any singular point of 8D, i.e. at any point where the
normal vector field n is not defined. Then the mappings

t > DT(V) and t—~(t)
are strongly differentiable in C*~Y(D;IRYN) and C*~1(D), respectively. The
derivatives are as follows
7]
5 PT(V))(2) = D:V(t, Ti(V)(2)) - DT(V)(=) (2111)
and 9
E'y(t) =divV (¢, Te(V))y(t) . (2.112)
For the sake of simplicity we shall write

gt‘DTt = DV(t) (o] Tt . DTt N

and

%7(;) = A (O)divV(t) o T, .

Proof. 1t is sufficient to show that

DT.4(V) = DT,(V) = D[T.(V) o T(V)] = DT,(V)
= (DT.(Ve) = T) o T(V) - DT(V)

and

Y(t +¢€) = det DT, (V;) o To(V)4(t) .
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2.16. Derivatives of domain integrals

Let V e D*(RN;RN), k2 1,Y € WH(RY), and let 2 C RY be a measurable
subset. Moreover the standard notation is used,

We shall consider the following domain functional

J(Q):/nde .

Proposition 2.45 The domain functional J(§2) is shape differentiable,
0
dJ($;V) = 5 o Ydz

Proposition 2.46 If 2 is a domain with the boundary I' of class C¥, k 2 1,
then

= / div(Y'V(0))dz . (2.113)
t=0 n

dI(2;V) = / Y(V(0),n)gndl . (2.114)
r

Proof. First using the change of variables z = T}(V)(X) the integral defined on
£2; is transformed to the domain 2, hence

J(20) = / Yz = /n Y o Ty(V)y(t)da,

where v(t) = det(DT), DT is the Jacobian matrix of the transformation T;(V').
From Proposition 2.44 it follows that 4'(0) = divV/(0), thus

iJ(.Qt) = / (Vy - V(0) + ydivV(0))dz
dt =0 Jn
because of
Vy -V +ydivV = div(yV).
If I' is a C* manifold, then Stokes’ formula yields (2.114). ]

2.17. Change of variables in boundary integrals

Let I" be a C* manifold, and let V € C(0,e; DF(RN;RY)), f € LY(I'), where
I't = Ty(V)(I'). The manifold I is covered by the family of open sets Uf =
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Ty(U;). We define the functions ¢! = ¢; o T;"! from U* into B, i =1,...,m, and
h! = (c!)! = T, 0 ¢;’'. By the same reasoning as in Sect. 2.1 it follows that

[ qan=3 /B (#4)0 KIM(H)-enlln '

where rf = r; 0 T;!, i = 1,2,...,m, are such that Sm,rf =1in an open

neighbourhood of I'; in RY; we use the notation (r!f) o ht = [ri(f o T3)] 0 et
It can be verified that the following chain rule formula holds:

M(g o h) = M(g)o h- M(h),
where M is the cofactor matrix defined in Sect. 2.1. Hence
M(hf) = M(T;) o h; - M(h;)

and

/n fdr, = ;/Bo[n(fom] o hi|M(T.) o hi - M(h;) - en||gnde’ .

The normal field on I'; = I' N Uj; is given by
n=||M(h) - enllgn M(hi)-en .
Furthermore
IM(Te) 0 hi- M(hi) - enlln = IM(T) - nllgs o hillM(hi) - enllgn  (2115)
and

far=%" / rif o TIM(T,) - nllgndl .
I, i=1 r

The foregoing will enable us to derive, using the transformation T}, the formula
for the transformation of boundary integrals:

Proposition 2.47 For any f € L(I}),
/ fdr, = / f o T M(T,) - n||g~dT, (2.116)
Fg r

where M(T;) = det(DT;)*DT™! is the cofactor matriz of the Jacobian ma-
triz DTy,

Let
w(t) = |[M(DT:) - n||g~ (2.117)

or equivalently
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w(t) = 1OI'(DT) ™" - nllg~ (2.118)
where 7(t) = det(DTt), v(t) >0 on I'.

The unit normal field n; on I}
The normal vector field m; is defined locally on I3

my(z) = *D(T; 0 h)"l(f) - €N,

where

£ =(Tyoh) Y (z) for ze€ I NTYU;).

Hence the outward unit normal field on I} is given by

ne(z) = |M(Ti o h)- eN||;‘1NM(Tt oh)-en .
On the other hand it can be shown that

M(Toh)=M(T)oh-M(h)
whence
ne(z) = (IM(T,) 0 h- M(h) - enllgh M(Te) o b M(B) - en)(€) -

Since we have

n(Ty ' (2)) = (IIM(R) - enllgv M(h) - en)(E),

then the form of the unit normal vector field on I'; can be derived from (2.116).

Proposition 2.48 The unit normal vector field on Iy is given by

n(Te(X)) = (I"DT;" - nllgh*(DT) ™" - n)(X)

for X eI

2.18. Derivatives of boundary integrals

Let f € WHI(RYN), V € C(0,;DF(RY;IRY)), £ 2 1, and let 2 C RY be a
domain with the boundary I' of class C¥. We shall consider the following surface
integral on I:

J(2:) = /r sar, = /r f o Tuw(t)dl .

Making use of Proposition 2.45 we can state the following lemma
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Lemma 2.49 The mapping t — w(t) is differentiable from [0,6) into C*~1(RYN),
8 > 0, the derivative w'(t) at t =0 1s given by

w'(0) = divV(0) — (DV(0) - n,n)gw . (2.119)

Furthermore for any compact O C 2 and all multi-indices o € NV, la| =
a1+ +an 1,
A\ [w(t)-1 ,
(&) [ -0

Proof. From (2.118) it follows that

=0.
RN

lim max
t—0 266

w(t)? = (A(t) - n,n)Rw,
where A(t) is the N x N matrix,
A(t) =~*(t)(DT)™' - *(DT)™" .

Using the differentiability properties of v(t) and DT;! with respect to ¢, at
t = 0, one can prove the proposition as stated. O

Proposition 2.50 Let f € W“(IRN) andV € C(O,s;D"(IRN;IRN)), k21 be
given. The functional

J(2) = /P fdr

i3 shape differentiable. The Eulerian derivative is given by

dI(2V) = (% /p fdn) ]
- /p (VF-V(0) + fldivV(0) — (DV(0) - n, n) ] }dT -

(2.120)

Proof. Applying the change of variables, the same as used in (2.116), we obtain

1 1 t)—1
10@)=I@) = [ 3ori- petwar+ [ 1(20=2)ar .
t ot r t
From Proposition 2.37 it follows that
-:-(f oT;— f) = Vf-V(0) strongly in W"(RY)
as t — 0. For the trace operator on I" we have yr[3(foT,— f)] = vr-(Vf-V(0))

strongly in L'(I") as t — 0. It can be verified that w(t) — 1 strongly in L®(I")
as t — 0, hence
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: [toT=potar - [ vs-var

ast — 0. Since f € L}(I") and (w(t) — 1)/t — w'(0) strongly in L>(I") ast — 0
thus

1 '
A;(w(t)—l)fdfaﬁw(ﬁ)fdl‘

as was to be shown. ]

2.19. The tangential divergence of the field V on I

Let D be an open set in RN with the boundary 8D; it is assumed that 8D is
piecewise C!. For any bounded domain 2 C D, with the boundary I = 8D of
class C!, the domain functional

25 J(Q):/rfdl‘

is shape differentiable for any element f € W%!(D). In other words for any
vector field V € C(0,¢; C'(D; RY)),

(V(t,z),n(t))gy =0 for z €D,

(except for the singular points Z of the boundary 0D, at which it is supposed
that V(¢,Z) = 0), the mapping

t— det
T.(V)(I')

is differentiable. (2.120) implies that the Eulerian derivative

4 / fdr
dt \ Jt,(v)(r)

is linear and continuous with respect to the vector field V € C(0,¢; C1(D; RV)).
By the reasoning presented in the previous section it follows that the shape
functional J(-) is shape differentiable for I' = 82 of class C! and for V €
C(0,e;CY(D; RN)).

Now let us suppose that 2 is a given domain with the boundary I" of class
C*+1, In particular, if k = 1, then I is of class C2. From Theorem 2.27. it follows
that the shape gradient G can be given in the following form G = *yr(gn), where
g € D7Y(I) is a scalar distribution supported on I'. The outward normal field
n on I" is chosen as an orientation on I'. In particular, the transverse order of
the distribution G is zero and we have

=dJ(2;V)

t=0
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@ VO) = [ dVOmmwar .

It now remains to identify the element g, referred to as the density of the shape
gradient G.

Proposition 2.51 Let 22 C D be aNgiven domain with the boundary I" of class

C?. Suppose that V1,V; € CY(D;R"), and

(i) (Vi,n)r~ =0 on 8D ezcept for the singular points of D at which V; =0,
i=1,2.

(1t) Vi|lr = Va|r, where V;|r € CY(I'), i = 1,2.

Then for all z € I' the following identity holds

divVi(z) - (DVa(2) - n(z), n(a))m~ =

divVy(z) = (DVa(z) - n(z), n(z))mo - (2121)

Proof. Let V stand for V; — V;; hence V = 0 on I'. In particular (V,n)gy =0
on I' and

(G,V):/Fg(V,n)]RndF=0 .

From (2.120) it follows that
/ fldivV — (DV - n,n)gw]dl =
r
(0. V) - m)o-scrysoniry = [ V1 -var=o.

The element f € H'(I') is arbitrary, hence
divV — (DV -n,n)gy =0 on I .

a
From the foregoing it is evident that we are in a position to define the
tangential divergence of V on I'.

Definition 2.52

(i) Let £ be a given domain with the boundary I' of class C?, and V €
CY(U;IRY) be a vector field; U is an open neighbourhood of the mani-
fold I' ¢ IRYN. Then the following notation is used to define the tangential
divergence

divpV = (divV — (DV -n,n)gn~) |r€ C(U) .
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(ii) Let £ be a bounded domain with the boundary of class C?, and let V €
c\(T; RN ) be a given vector field on I'. The tangential divergence of V on
I is given by
divyV = (divV — (DV - n,n)g~)|r € C(I),
where V is any C! extension of V to an open neighbourhood of I" C RM.
It should be remarked that the notion of tangential divergence introduced
above is known in the differential geometry and in fact for any vector field

V € CY{(I';RY) we have
divpV = Ve,

where u|, is the so—called covariant derivative on the manifold I" (see e.g. (Kosin-
ski 1986)).
The notion of tangential gradient Vr on I’

Vr:CHI) —» CYI;RY)
is also introduced.

Definition 2.53 Let an element h € C*(I') be given and let h be an extension
of h, h € CX(U) and h|r = h on I'; U is an open neighbourhood of I" in RY.
The following notation is used:

- Oh
Vrh=Vh|r - %n . (2.122)
It can be shown that such an extension A exists: for this purpose we shall use

the notation of Sect. 2.1. Let z € U, £ = c¢(z) and & = (¢,0) € By, then
h(z) = h(c™1(&)). The functions ¢ and ¢! are in C?(U) thus h € C2.

Finally we can prove that the term VI~z| r— g—f‘ln on the right-hand side of

(2.122) is well defined and independent of the choice of the C? extension h of
h. For this purpose the functional

J(9) = / hdr
r
is to be considered, where A is an extension of k; for V € D'(D; RN ) we have

dJ(2;V) = / (Vh-V + hdivpV)dI =
r

/ (vﬁ - %n> -VdF+/ (-‘?ﬁv-n+ hdier> dr .
r 3n r 3n
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From Proposition 2.26 it follows that
dJ(2;V) = (9(h), V - n)p-1(ryxpr(r) -
The vector field V is chosen such that
V.n=(Vin)gwn =0 onI.

Hence

/ (Vh - %n) -VdI’ = —/ hdivpVdr . (2.123)
r on r

Now let us suppose that 2 = 0 on I', in view of (2.123),

/ (Vﬁ—-a—hn)-le“:O.
r 3n

Therefore (VA — ——n)(:c) is an element of the tangent space T, I for any z € I'.
Since 1t is supposed that h € C%(U), then one can choose V so that V =
Vi - n on I'. Hence

F7-5),,

. Oh
(Vh - %n) (z)=0

for all z € I". This indicates that the following proposition can be stated:

vﬁ-fﬁ

on

drr =0

Proposition 2.54 Let h € C*(U) be a given element. The restriction to I' of
the vector ﬁeld Vh- n depends on the restriction h = h|p, i.e. h = 0 implies

that Vi — 2 —n =0 on F.
a

Remark. divrV and Vrh are defined on I for fields V € c¥(U; RY) and
h € C*(U). These definitions can be easily extended to elements V and h in
the spaces H’+2(U,]RN) and H*(U) for any s > 1, respectively. It can be
accomplished by means of the usual density argument of the space D(U) in the
Sobolev space H s+3(U). Leta s sequence {Vi} c DU;RY) be given such that
Vi — V in the space H*(U; RN ) as k — oo. In other words, if divVi — (DVj -

No, No)mw converges to divV — (DV - No,No)mN (where Np is a C*¥~! extension
of n to U) in the norm of Sobolev space H*~3(U), then div; Vi converges in
the norm of Sobolev space H*~3(I") to divyV, where V is defined as follows
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V =V|r e B (I;RY)

Furthermore let a sequence {hx} C D(U) be given such thatjzk —>~7z in the
space H*+3(U) as k — co. Then Vh; — 2 hin converges to Vh — 2 hn in the
space H*~1(I'); the limit element is denoted by Vrh, where h = h|r € H*(I').

Proposition 2.55 For all V € H*(I;RY) and h € H*(I") with s > 1, divpV
and Vrh are well defined elements of the spaces H*~'(I; RY) and H*-Y(I),

respectively.
a

2.20. Tangential gradients and Laplace-Beltrami
operators on I'

First, an equivalent definition of the Sobolev space H!(I") on the manifold I' is
given. We introduce the scalar product

(6,8) iy = /F (¢ + Vg Vrg)dl

which is well defined for all ¢,% € C*(I'), I' is of class C*, k 2 1. The Sobolev
space H!(I) is the closure of the space C¥(I") with respect to the norm induced
by the scalar product. Therefore the space C¥(I') is dense by definition in the
space H!(I'), and the formula (2.113) can be extended to the space H!(I') in

the following way.

Definition 2.56 For any element h € H!(I'), Vrh is by definition an element
of the space L2(I';IR") such that for all vector fields

Ve cY(I;RY), (Vin)gy =0 on T

we have

/ Vrh-Vdl = — / hdivpVdI . (2.124)
r r

Remark. By means of (2.124) we can define the tangential divergence divpV of
any vector field V € HL(I; RY), where

HNI;RYN) = {V e HY(I;RY)|(V,n)gy =0 ae.on I} .
divpV € L*(I) is defined as follows

/dinVhdF=—/ Vrh- VdI,
r r
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for all h € HY(I).
Finally the foregoing result may be stated as the following proposition:

Proposition 2.57 Let 2 C RY be a domain of class C2%. For all elements
(h,V) € H(I') x HA(I; RN we have

/ Vrh-Vdl = - / hdivrVdl . (2.125)
r r

IfforV e H\(I; IRN) the tangential component of V is defined in the following
way
Vi =V —(V,n)gwn,

then
divp(V) = divp(Vr) + &(V,n)gw

here K stands for the mean curvature of I.
a

Proposition 2.58 Let £2 be a domain of class C* fork 22, N = 3,i.e 2 C R®.
If S C I is a smooth manifold with the boundary 8S, then (2.125) represents
the well known Stokes’ formula

/dierdF=/ V- vdt, (2.126)
s as

where v is the unit tangent vector to the manifold I', normal to the boundary
0S of S, v is outward pointing on 8S.
]

The identities (2.125) and (2.126) provide formulae for integration by part
on the boundary: the former for the manifold I" without boundary; and the
latter for a part S of the manifold I'; S has the boundary S which is a (N — 2)
- dimensional manifold.

In the next section the formula (2.125) will be extended to any vector field
V € HY(I';RY) which in general is not tangent to I'.

Definition 2.59 Let h € H%(I'), then we have Vrh € HL(I;RY). The
Laplace-Beltrami operator Ar on I' is defined as follows

Arh = din(Vrh) Vh € Hz([‘) .

Hence Arh € L*(I'), and from (2.125) it follows that the element Arh € LY(I)
is uniquely determined by the integral identity

/ Arhpdll = — / Vrh-Vydl Vg € H(T). (2.127)
r r
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It can be inferred from (2.127) that for any fixed element A € H!(I") the map-
ping
P — / Arhypdl’
r

is well defined as a linear continuous form on the Sobolev space H!(I"). Thus
for any element h € H!(I") we have

Arh e (H\(D)Y = H\(I) .

The linear subspace H(I')/IR of H}(I') can be defined in the standard way.
The scalar product on H'(I')/IR is defined as follows

(6, 9)r = /F VréVrdl .

If (¢,%)r = 0 for a given element ¢ € H!(I"), then Vr¢ = 0 a.e. on I" and
¢ = constant. Since ¢ € H'(I'), then there exists (Lions et al. 1968) an element
@ € H3/?(0), the extension of ¢, and

i,
®|r = ¢, furthermore 5% =0 onl.

Therefore V@ = V¢ on I', and ¢ is a constant, that is ¢ = 0 as an element of
the quotient space H!(I")/IR.

Remark. It should be noted that on the right-hand side of (2.127) there is the
scalar product of vector fields Vrh and V1 tangent to the manifold I' = 812.
On the other hand, if 9 is a smooth function defined in an open neighbourhood
of I in RY, then

Vrh-(V¢|r)=Vrh-Vry
because of

oy
—n-Vrh=0.
Bnn r

Hence, if 1 is the restriction to I" of a given function % defined in IRY, then

/Aphz/)dl“: _/ Vrh-Vydl V€ BARV) .
r r

2.21. Variational problems on I'

Let us introduce the following bilinear form
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ar(é, %) = /F (A-Vré,Vrp)gadl, (2.128)

where A(z) is a N x N matrix defined for z eI, Ae L™(T; IRNZ) with
all€llzr = (A(z) - & Err = BllElIRn

for all £ € RY, where 0 < a < 8; a, 8 are given constants.
Let

L(:) e (HY(I)/R) (2.129)

be a given linear form. By direct application of Theorem 2.3 one can prove the
existence and uniqueness of the solution to the variational problem associated
with the bilinear form (2.128).

Proposition 2.60 There ezists the unique element y € H'(I')/IR such that
/ (A-Vry,Vrdypndl = L(4) Ve H\(I)/R . (2.130)
r

]
A simple example of the linear form L(-) € (H!(I')/IR)' is as follows. Let
the following condition holds

/ fdI =0 (2.131)
r
for a given f € L*(I').
We define the linear form
L@) = [ feir voe HI)R .

For such a choice of L(-) the corresponding solution y = y(I") to the problem
(2.130) satisfies the Laplace-Beltrami equation on the manifold I':

—divp(A-Vry)=f in L*(I) . (2.132)

Here it is supposed that I' is a sufficiently smooth manifold without boundary.
In Chap. 3 variational problems will be considered for I" only piecewise C* and
boundary conditions defined on the singular part of I'.

Finally the fourth order problem on the manifold I is discussed. The scalar

product ((4,%)) is given by

((6,9) = /F (Ar¢Ary +Vré -V + ¢p)dl’ (2.133)

for ¢, ¥ € C¥(I;RY)
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The Sobolev space H*(I') is the closure of the space C*(I'), I' is CF for
k 2 2, with respect to the norm induced by the scalar product (2.133).

For a given matrix function A(-) satisfying the same conditions as in (2.128),
and an element h(-) € L*(I),

0<apSh(z)S By forae zel,

where 0 < ag < By, the following bilinear form is constructed

o(,9) = [ {hAréArY +(4- 8, Vi) (2134)
Foular  Vé,pe BA(T) .

Using Theorem 2.3 one can prove the existence and uniqueness of the solution
to the variational problem associated with the bilinear form (2.134).

Proposition 2.61 Let f € L?(I') be given. There ezists the unique element
y(I') € HY(I") such that

Ar(hAry) —divr(A-Vry)+y=f in L¥(T) . (2.135)
a
The quotient space H%(I')/IR equipped with the scalar product

(¢,9) = /F (Ar¢Ar +Vré - Vrp)dl

can be examined in the same way as in the case of the second order problems on
I. For any element f € L%(I") satisfying the condition (2.131), one can prove
the existence and uniqueness of a weak solution to the problem

y€ H¥(I')/R: Arp(hAry)—Ary=f in L¥T) . (2.136)

2.22. The transport of differential operators

We have
(V¢)oTy =*DT; " - V(o Ty) .

Making use of the notation
A(t) =~(t)-(DT)™' - *DT,)™", ~(t) = det(DT;)

the following formulae can be derived.

Lemma 2.62 Let ¢ € HA(RY) and ¢ € HY(RY), then
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(Ad) o T; = ~(t)'div(A(t) - V(¢ o Tt))
(A%¢) 0 T, = 7(t) " div(A() - A(1(8) " div(A - V(00 T1)))) -
8]
Next the transport of tangential operators on the manifold I is to be consid-
ered. Let A € C2(IRN) be given and let I" be a manifold of class C2; for a given
vector field V € C(0,¢; ’D} (IRN ‘RN )) the transformed boundary is denoted by
Iy = Ty(V)(I). Let he = h|r, € C*(I}); the tangential gradient V, h; is defined
as follows

V["ht = Vil - (nt,Viz)]sznt on Ft .

Hence

(VR) o Ty =*(DT) 'V(hoT})
and we have
noTy = |*(DT) ™" n|gh*(DT)™ n on T .
Moreover
(Vrhe) o Ty =XDT)™ - [V(hoTy) — (B(t) - n,V(ko T,))gwn], (2.137)
where
B(t) = |"(DT)™ n|lg%(DT)™" - *(DTy) ™" .
Furthermore
(B(t) -n,n)gy =1, *B(t)=B(t) and B(0)=T .
Thus (2.137) can be rewritten as follows

(Vr,h,) (o} Tt =

7 . _ (2.138)
(DT)™' -V (hoT) + (B(t) —=I)-n,V(ho T,))grn(DT:)™" - n

By this means we get the formula for the transport of the tangential gradient
on the manifold I.

2.23. Integration by parts on I

For vector fields V € C!(I"; RN) the formula similar to (2.123) will be derived.
In general the condition (V,n)g~ = 0 on I' is not satisfied for such vector fields.

Let us consider the domain 2 C RN with the boundary I' = 892 of class
C?, hence the unit normal vector field n on I' is C!. For V € D'(RY;R") the
field (V,No)rnNp is defined in RY, where A} is a smooth unitary extension
to RY of the normal vector field n on I'. Let f € H2(IRY) be given. We shall

consider the following integral
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J(Q) = /F fdr .

For the Eulerian derivative of J({2) we have
dJ(T;vs) = dJ(2;(V,No)rnNo)

that is

/r (%vn + fdivr(v,,n)) dr = /r (Vf-V + fdivpV)dr, (2.139)

where v, = (V,n)g~ stands for the normal component of V on I'. Thus v, €
CY(I'). Using Definition 2.52 of the tangential divergence on I' the following
formulae are derived.

Lemma 2.63 Let ¢ € HY(I') and V € CY(I'; RY), then

divr(¢V) = (Vré, V)gw + ddivrV, (2.140)
divp(ven) = vpdive(n) . (2.141)

Proof. We show that (2.141) holds. From (2.140) we get
divp(van) = (Vrvp,n)gy + vpdiven .

Since Vv, is a tangent vector on I', it can be inferred that (V vp,n)gy =0,
which proves (2.141). a

To determine the form of divrn on I', one has to make use of the following
simple lemma:

Lemma 2.64 Let My € C’l(lRN; ]RN) be an unitary extension of the vector field
n on I, then

(D(Mo) nyn)gy =0 on I' . (2.142)
Proof. We have

(Mo, Mo)r~ =1 in an open neighbourhood of I

Therefore

V(N[),No)]RN =2*DNy - Ny = 0,

whence
(DNy - nyn)gny = (n,*DNg - n)gny =0 .
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Lemma 2.14 For any unitary extension Ny of the normal vector field n on I’
we have
divin =divNy on I . (2.143)

]
From (2.139), (2.141) and (2.143) the following identity is obtained

/(Vf -V + fdivpV)dI = / (-g;fvn + fvndivNo) dar . (2.144)
r r \on

This is the formula for integration by parts on the C? manifold I', where I is
the boundary of the domain 2.

When (2.144) is considered the element divAy = divpn € C(I') does not
depend on v, and f. We shall show that divrn is the mean curvature & of the
manifold I'.

From Lemma 2.65 it follows that the restriction to I" of divAj is independent
of the choice of an unitary extension Ny € Cl(]RN ;RN ) of the normal field n
to an open neighbourhood of the boundary I.

We shall construct, in a very simple way, an extension Ny such that we
shall be able to evaluate the term divyAp. First, let us consider £2 C 1R2, then
I’ = 812 is a one-dimensional curve on the plane. Thus, I is locally the graph
of a C? function p. For any point zo € I" we define the unit orthogonal vectors
7o and ng tangent and normal to I' at zy, respectively. Then there exist:

(i) a neighbourhood U of zo in IR? such that 2 N U is a hypergraph: z =
aty + fng for any point = € U,
(i) a mapping a — p(a), p(-) € C*(—¢,¢€), p(0) = 0,

UnN={z=ar+pPny for B<p(a)}

and

'nU={z=ar+pPny for f=p(a)}.
The normal field is of the form
n(a,p(a)) = (1+ [p'(@)) "3 (=p'(a) +1) .

We define
No(a, B) = n(a, p(a)) .

The direct calculations yield
div(Mo)(@, p(@) = =(1 +¢'(a)")73p"(a) = K(2) .

The particular case of N = 3 is discussed in (Zolesio 1979a).
Let us now direct our attention again to the formula for integration by parts
on I'. Taking into account that divpn = k, where « is the mean curvature of the
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surface I" and making use of (2.141), we get the following formula for integration
by parts on I':

. v _[ (¥ )
/F (VF-V + fdivpV)dl = /F ( 5 + i ) ondl (2.145)

where v, = (V,n)gr~ on F

KV =de; = ¢(0 0,...,0) in a neighbourhood of I, then

[ 5= ¢+fdwp(¢e,)]dr [ (Z 7 émar

It is known that divr(de;) = div(e;) — (D(de;) - n,n)gny on I'. However

div(de;) = Voe; = aaj,
D(dei)ki = (¢6 k= i( bik) = gj bi ks

where §; i is the Kronecker delta. Then

3}
(D (¢6)""RN—ZB knkm:a—inf.
Ki=1

Finally we have

2] o]
divp(ge;) = :9_;— - a_f:

From the foregoing it is evident that the following proposition can be stated.

Proposition 2.66 (Integration by parts on I') Let 2 be a domain of class
C? with the boundary I', f,¢ € H*(2). Then

of

03]
[ ohsar—- [ rgtar+ [ (—5,—1(f¢)+nf¢) midl .

Proposition 2.67 Let f € H%(2) and ¢ € H*(R2). Then
/Vf . Vgdl = —/fA¢dF+

af o
(2% 1 o]
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Proof. We have

gigz dr = — /f—dl"+/ (ai(f—fi)mfg—i)mdr.

Furthermore

N o9 af o¢
Z%( '(,E) '—%—+f(D2¢ n)RN -

n (55) =S (a2)

2 (08, _y &
on \ Oz; = o 39:;3.7:jn'n] )

i=1

Since

then

In the particular case of 3‘2'; f=0on I" we obtain

9¢
. dI' = — 2.n N+ K— .
/F Vrf-Vré /F fA$dI + /F f[(D $nn)pw +w-| dT

Moreover o2
a—n‘f = (D*¢-n,n)gy on I

and

/F Vrf Vr¢dl = — /P fAgdI

from which the following representation of the Laplacian on I’ can be derived.
Proposition 2.68 Let I' be of class C? and let ¢ € H*(R2), then

2
Ad=A ¢+n%+%’ onT .

a

Proposition 2.69 Let us suppose thaty € H*(12) is the solution to the Dirichlet
problem on £2:

—Ay=f i,
y=g onl,

where f € H*=2(£2) and g € H*~3(I") are given elements. Then we have
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oy 8%
K%+W—_f_Arg onF

provided that s is sufficiently large, say s > %

Proposition 2.70 Let us suppose that y € H*(2) is the solution to the Neu-
mann problem on £2:

-Ay=f 02,
%y
=Y on I

where f € H*~2(£2) and g € H*~3(I") are given elements. Then we have
d%y
Apy-i-—a?——f—ng on I’

provided that s is sufficiently large, say s > %

2.24. The transport of Laplace-Beltrami operators

Let h € H¥/2(RY), then
hlr, € H¥(I}) and Arhe€ L¥(I}),

where Ar, is defined as follows

Ar,hpdly = -/ Vrh- Vydly
T, I,

for all ¢ in D(IRN ). To derive the formula one has to make use of the identity
Vrh-Vy=Vrh -V .

Using the change of variables z = Ty(V')(X),
/ (Anh) o Tiw(t)dl = — / (Vrh)oT,* DT, - Veu(t)dl =
r r
for all ¢ € D(RY); from (2.132) and (2.137),
= - [ (€19 T) = (B®) -, V(b T)mrn, V)gondr,

where
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C(t) = w(t)DT; ! - *DT Y,
B(t) = |*DT; ! - n||g% DT - * DI Y,
w(t) =v@®)|* DTy - nllgw,
v(t) = det(DTy) .

Finally integration by parts on I yields
/(A[“h) o Tipw(t)dI =
r
_ / divr(C(2) - [V(h o Ty) — (B(t) - n, V(h o T,)) gwn])édl
r

9¢
+/P (b—r{ + ,c¢) (C(t)-[V(hoTy) - (B(t) -n,V(kho T;))gyn],n)grdl .

Let ¢ be an element such that g?; = 0on I', hence the Laplace-Beltrami operator

transformed to the domain {2 using the standard change of variables is of the
form:

(Ark) o Ty = w(t) ™ {=divr(C(t) - [V(h o Tv) = (B(t) - n, V(h o Ti))grwnl)
+ kC(t) - [V(hoTi) — (B(t) - n,V(h o T}))g~n]} (2.146)
This expression may be of advantage in calculations however the transformed
Laplace-Beltrami operator is not in the divergence form. The equivalent expres-

sion in the divergence form can be derived in the following way.
Let ¢¢ € H3/2(IRN) denote for any t an extension of ¢ € HY(I),

d

¢elr =¢ and 3CE) )

¢t=0 onl .

It is evident that the vector field C(t) - n is transverse on I, i.e.
(C(#) - n,n)gy =w(®)||* DT - nffy >0 .
Hence the extension ¢; exists. We define v, € H3/2(R") by
$e =0 Ty(V)™' for VeD(RV;RV).

Let h € H2(RY), then
/ (Arh) o Typw(t)dl = / Arhpdly = — | Vph-Veydly .
r T I,

This follows from the fact that the gradient V), is a tangent vector field on
I'. Accordingly we have
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(ne, Vipe)pn o Ty =
(*(DTt)_l n, I.:(I)Tt)—l . ¢t>]RNw(t)—l =
“’(t)—2<c(t) n,Vé)gry =0 .

Making use of the assumption d¢;/3(C(t) - n) = 0 on I' which implies that
C(t)- V¢, is a tangent vector field on I, we get

“/ Vrh-Vrdly =
I
—/ Vh Vi dly =
I
_/ (C(t) ) V¢:,V(h 0 Tt))IRNdF =
r
C(t) - V4 is also a tangent vector field on I,
== / (C(t) ' V¢ta VF(h o Tt))lRNdF =
r

—/F(Vqﬂg,C(t)-Vp(hoTt))]RNdF=

Integration by parts on I" yields
=/(Ap,h)oth$w(t)dI1 =
r
/ bdivr(C(t)- Vr(hoTy))dl .
r

On the other hand, ¢ = ¢; on I'; therefore

0=(C-n,Vé)pn = (C-n,Vrd)mn + (C- n,n)m%
whence 0
5, = —(Cn M) (C - n,Vré)rn
Thus
/—qs, (Cn,Vr(hoT)gndl =
/F E-Vrdl = /, (—divrEd + k6E - n)dl
where

=(C-n n) ~{(C n,Vp(hoT;))gnC-n .

In particular
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E-n= (C'n,VI"(hOTt))]RN .

Therefore two terms involving the mean curvature s cancel each other. As a
result we obtain

/ (Ar,h) o Tedw(t)dl = / ¢divy(C(t) - Vr(h o T;))dl
r r

—/ édivr((C - n,n)i‘N (C-n,Vr(hoTy))gnC -n)dl .
r
This leads to the transported Laplace-Beltrami operator in the divergence form:

(Ar,h) o Ty =w(t) ' divr[C(t) - (Vr[ho T))-

1 (2.147)
(C(#) - nyn)gn (C(t) - 1, Vr(h o Ti))gn),

where
C(t) = w(t)DT! DT .

2.25. Material derivatives

Let £2 C D be a bounded domain, where 8D is piecewise smooth, 82 = I' is
CF (i.e. £2 is a domain of class C¥, see Sect. 2.1) and let V be a vector field
such that (V,n)gr~ = 0 on 8D, except for the singular points of D where we
suppose that V' = 0. Moreover we assume that an element y(£2) € W*?(02),
s €[0,k],1 S p < +00, is given.

From Theorem 2.3 it follows that

Y(2¢)oTy(V) e W*P(2) for 0St<e . (2.148)

Definition 2.71 The element y(2; V) € W*?(2) is the material derivative of
y(2) € W*P(R2) in the direction of a vector field V € C(0,¢; V¥(D)) if there
exists the limit

#(V) = lim S (U)o TuV) - y(2).

As far as this limit is considered we can take into account the strong or weak
convergence in W*?(£2). In the first case y(£2;V) is called the strong (s,p)
derivative, in the second - the weak one.

Remark. In general, we shall be concerned with an element y(£2) € W(£2), where
W(#2) is a Banach space. It is said that §(£2; V) is the weak (strong) material
derivative of y in W if 1(y(£2;) o Ty — y(2)) is weakly (strongly) convergent to
y(;V)in W(2) as t | 0.

A simple but useful example of the material derivative is as follows:
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Let Y € W™?(D) for some m € IN, p 2 1, and let y({2) = Y|q denotes the
restriction of Y to §2; hence y(2) € W™?({2) and

y(.Qt) = Yi_r)‘ thus y(ﬂt) (¢] Tt = (Yln,) 0 Tt

that is
y(2)o Ty =Y oTy)|p € W™P(2) .

Using the same arguments as in the proofs of Proposition 2.32 and 2.39, one
can show that the mapping t — y o Ty is strongly differentiable in W™~1?(D)
at t = 0 for m = 1, and weakly differentiable in W™~1?(D) for m < 0. Hence
the regularity of the mapping ¢t — (y o Tt)| can be described as follows:

Proposition 2.72 Let Y € W™?(D), m £ k, m € N, where k determines the

regqularity of the vector field V. Then

(i) For m 2 1 the mapping 2 — Y|q is differentiable in the sense that there
ezits the strong (m,p) material derivative of the form:

¥(2:;V) = VY|a-V(0) .

(i) For m £ 0 the mapping 2 — Y|q is weakly differentiable in the sense that
there ezits the weak (m,p) material derivative of the form:

¥(2¢;V)=VY|q-V(0) .
Here it is assumed that V(0) € C¥(D), k 2 1.

Proof. It is evident that for m 2 1 we have

<
Wm=1p(0)

2@ o Tota = Y1) - 9¥10-v00)

H%(YOT,——Y)—VY-V(O)‘

Wm-1r(D) '

From the assumptions adopted it follows that the last term on the right-hand
side of this inequality converges to zero as t — 0.
ii) For m £ 0 by our assumptions we have

1
(Y oT,—Y) = VY- V(0) weakly in wm=12(D)

as t — 0. Since for t > 0, 3(Y o T; — Y') remains bounded in Wm=LP(D), then
for some C > 0, C independent of ¢,

1
I o Tl = Ylallwm-1r(a) S €
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whence it follows that there exists a subsequence t,, | 0 such that
1 . -
t_[(Y oTy, —Y)|lg] = 2z weaklyin W™ 12(0) .
n

Since
(2,8)p(DyxD(D) = (VY - V(0), $) D/ (D)xD(D)

for all ¢ € W—(m=1):2(), the dual space of W(m=1:?(Q), here we recall that
m —1 £ 0, it follows that z = VY|q - V(0). ]

2.26. Material derivatives on I'

Let us define the material derivative of an element y(I") € W"?(I"), it is assumed
that this derivative is well defined for all the boundaries I" of domains {2 of class
C*. Hence for a given domain £ with the boundary I' and for

L =T(V)I') with V € C(0,¢;D¥(RN;RN))
y(I}) is well defined as an element of the space W™P(I%)

Definition 2.74 We say that
y=y(I;V) e WHA(I')

is the weak (strong) (r,p) material derivative of an element y(I") at I, in the
direction of a field V, if there exists the limit

1 .
;W) o T(V) = y(I) = 4(I; V),
as t — 0 for weak (strong) convergence in the space W™?(I').

Proposition 2.75 Let y(£2;V) be the weak (strong) (s,p) material derivative
of an element y(f2) at 2, in the direction of a field V. Then for s > % there

exists the weak (strong) (s — %,p) material derivative y(I'; V') of the element
y(I) =y(D)Ir ‘
y(I5V) =9(V)lr e W»H(I) .

Proof. Since
1 .
2t = ?(y(Qt) oT: —y(2)) — y(;V)

weakly (strongly) in the space W*?(f2) as t | 0, then we can make use of the
continuity of the trace operator on I" which implies that
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zt — y(12; V)| weakly (strongly) in W”%'P([‘)

ast | 0. O
Using this result we can determine the form of the Eulerian derivative of a
given domain functional J(2) depending on the element y(I').
For a given vector field V' tangent to I" one can derive the explicit form of
the material derivative.

Proposition 2.76 Let V € D"(D;IRN) be a given vector field such that
(Vin)gy =0 on I' = 392 and let y(12; V') be the weak (s,p) material derivative
of y(£2). If it is supposed that the derivative y(£2;V) ezists for all admissible
directions V, then for the vector field V we have

y(; V) = Vy(2) -V e WHH(Q)

Proof. The condition (V,n)g~ = 0 on I' implies that Ty(V)(2) = 2; = 2 and
y(2¢) = y(£2), hence

%(y((),) oTy —y(R)) = %(y(ﬂ) oTi —y(%2)) .

The weak limit in W*?(§2) of the left-hand side of this equality is equal to

y(2; V) by our assumption, the weak limit of the right-hand side is equal to

Vy(£2) - V, this concludes the proof. O
The same result remains valid for the boundary material derivative.

Proposition 2.77 Let y(I'; V) be the weak (r,p) material derivative of y(I"),
and suppose that the material derivative y(I'; V) ezists for any admissible di-
rection

V € C(0,¢; D(D; RY))
such that (V,n)gny =0 on I' = 812, then
y(I;V)=Vryl)- Ve Wre () .

2.27. The material derivative of a solution to the Laplace
equation with Dirichlet boundary conditions

Let us consider the homogeneous Dirichlet problem

-Ay(2)=h in HY(Q)),
y(2:)=0 onI} .
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This section is concerned with the particular case of the Dirichlet problem for
h € L*(£2;). For this case the form of the material derivative §(£2; V) of the
solution y(§2) can be derived in a simple way.

Assume that V € C(0,¢; C2(RY;RY)), i.e. k = 2. We shall determine the
form of the weak (0, 2) material derivative y(£2; V') of the solution y(£2) to the
Dirichlet problem.

First the Dirichlet problem is transformed to the fixed domain 2 using the
change of variables T;(V), in other words the form of boundary value problems
for elements y* = y(2;) o Ty, t € [0,¢), is derived.

The right hand-side of the Laplace equation is transformed to the fixed
domain §2. Hence one has to consider two elements:

hlo, € H'(92;)

and

(hla,)xT: € HY(R).
We shall derive sufficient conditions for the mapping
t — (hlg,)*T:

to be weakly differentiable in the Sobolev space H~!(D).
Let h € H~'(D) be a given element, the transformed distribution k % T €
H~1(D) is defined as follows

(h % T2, 6) n-1(pyxH3(D) = (B (7(£) " 8) T, ') -1 (Dyx HA(D)
Vé € Hy(D) .

The restriction
hlo € D'(2)

of the distribution h € H~!(D) is given by
(hla, 8)p'(Dyxp(D) = (h,8°)D/(DyxD(D) Y € D(£2),

where ¢° denotes the extension of ¢ € D(£2) to D, ¢°(z) = 0 on D \ £2. Since
hlg € H~1(£2), then

Ihlallz-1@y=  sup  |(R,@)|S  sup  [(h,8)| = ||h||lr-1(D) -
"¢"}13(n)§1 "¢"};é(p)§l

Let 2, = Ty(V)(£2) and
hlo, = xah€ H(2,) .
The transformed distribution is defined by
(hla)*T: = (xa,h)x T € H7'(R2) .



2.27. Dirichlet boundary conditions 103

Proposition 2.78 Let 2, = Ty(V)(12) then
(hla,)*xTe = (hxTy)la - (2.149)

Proof. For any ¢ € H}(12) we have
(Rla, xTs, &) -1 ayxai(a) = (Rlao, (V)7 8) 0 T V-1 xmy(20)

Making use of the extension ¢° of ¢ one can show that

= (h,(7(t)7'¢%) o T;) -1(Dyx HA(D)

= (hxT;,4°) g-1(D)yx HI(D) =
and since ¢° =0 on D \ 2

= ((h*To)la, ) -1(2)xHY2) -

For the element y(£2;) = y: € HE(£2;) the following integral identity holds:

/n Vye - Vodz = (h, ") g-1(pyxmapy V6 € Ho(2e) (2.150)

or equivalently
(—div(x2, Vye), ) -1 () xHi(2) = (blae, O m-1(2)xHi(2:) -
Applying the standard change of variables, i.e. replacing z by Ti(z) in the left—
hand side of this equality,
[ (40 9o T), V(g Topmnde = (bl 4),

where A(t) = v(t)DT;! - *DT;". Thus
(—div(xnA(t) - V(ye o Tb)), ¥) n-1(2) x HY(2) =
(hlae, ¥ o T g-1ayxmi(ay V¥ =¢0T, ' € Hy(f2) .

Let us observe that for any element A € D'(D), the element A x T, ! is defined
as follows:

(A*T{'l,l/)) =(A,(v()yp)oT:) Yy € D(D) .
Therefore
(—7(t) " div(xaA(t) - V(ye 0 To)), Y()¥) -2 () x i) =
(hla,, (Y()9) o Te) g-r(@)xHi(2:) -
Whence it follows that
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[—7(8) " div(xA(t) - V(ye o T)) * T, = hlg,

or
—y(t)'div(xeA(t) - V(yi o T1)) = (hla,) x Te = (hx Te)|a -

Let y* = y(§2;) o Ty € H}(R2) be a solution to the following problem

L(A(t) -V, Vé)rrdz = (Y(t)(h* T))la, 8) u-1(ayxray Vo € Ho(R2) .

It has been already shown that the mapping ¢t — h x T} is weakly differentiable
in the space H~2(D), however the mapping t — (h x T¢)|q fails to have this
property in the space H~%(D). In order to obtain the required differentiability
of the mapping ¢ — y, it is necessary to introduce additional assumptions on
the distribution A, the domain 2 and the speed field V.

It is assumed that the support of the singular part of A is included in 2
and in £2; for ¢ > 0, ¢ small enough. For any element » € H~1(D) one can find
elements f € L?(D) and g € L*(D; RN) such that h = f — divg. Therefore we
assume that there exists a compact set O, O C 2 U 02°,

g(z)=0 forae.z€D\O . (2.151)

Lemma 2.79 Let us suppose that the condition (2.151) is satisfied, then the
mapping t — (hxTy)|o is weakly differentiable in (H)(2) N H2(R2))', the dual
space of the space H}(2) N H*(02).

Proof. Let ¢ € H}(£2) N H%(12) be a given element, then on the set 2\ O the
element ¢ can be modified, i.e. there exists an element ¢ € H%(£2) such that

¢—¢eHY(D\O).
From (2.150) it follows that

(Vg,8)u-1(DyxHY(D) = (Vg,‘l;)H—l(D)ng(D)
thus 5
(A% Ti)la,¢) = (h* Tv)l2, 6°) -2(D)x H2(D) -

o

Proposition 2.80 Let V € C(D;RN), and h = f + divg, where f € L*(D)
and g € L*(D; ]RN) are given elements. Moreover it is assumed that for a given
compact set O, @ C U N°, g satisfies the assumption (2.151). Then the
mapping t — yt = y(12¢) o Ty € H'(N) is weakly differentiable in L?(12), its
derivative 13 given by
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Yy € L3(0) : /ng(rz; Vydz =
- /n (( divV(0)T — 26(V(0))) - Vy(82), V(= A)~ ) mwda+

[ v Ay e + [ IV(-2)9)- V() gds -
n n

Proof. For a given element ¢ € H}(2) N H2(2) we have
[ (4)- 96,94 0mwds = [ foTuttiots~ [ 9(3)oT)- gt

where ¢ € H 2(£2) is an element such that ¢ = ¢ in an open neighborhood in
IRY of the compact set O. Let ¢° be an extension of ¢ to D. Using Green’s
formula one can show that

—/ y' Addz = / y'div([A(t) — I)- Vé)dz — / V[(¢°) o Ty - gdz . (2.152)
n o] D

Since the inverse (—A)~! of the Laplace operator with the homogeneous Dirich-
let boundary condition is an isomorphism from L?(2) onto H?(2)N H}(R2), the
right-hand side of (2.152) is differentiable with respect to t at t = 0. The deriva-
tive of the right-hand side of this equation is given by

/ ydiv(A'(0) - V)dz + / V(V$®-V(0))-gdz .
n D

On the other hand
V(V4®-V(0)) =V(Vé-V(0) onO.

Since ¢ = 0 on 2\ O, then it can be assumed that ¢ # 0 on O. Therefore the
integral on D can be written in the form, ¢ € H(£2) N H} (1),

/ V(V$® - V(0))- gdz = / V(V¢-V(0))-gdz .
D n

Let ¢ € H?(2) N H}(N2), —A¢ = 9, or equivalently ¢ = (—A)"'4), where
¥ € L%(12). Therefore

/y(Q;V)d)dz =/ ydiv(A'(O)-V¢)dz+/ div(fV(0))¢dz
n n n

+ [ 996 V(0)- gz

where
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A'(0) = (%A(t))t=0= divV(0)Z — 2¢(V(0)),
€(V(0)) is the symmetrized part of DV(0),
{(V(0)) = 5(*DV(0) + DV(0)),

i.e ¢(V(0)) is the strain tensor associated with the speed V(0). Applying Green’s
formula we obtain

/ y(12;V ypdz = / —(A'(0) - Vy, V@) gndz
n n
+ /n div(fV(0))pdz + /,, V(Vé-V(0))- gdz,

as was to be shown. a
For the particular case of the homogeneous Dirichlet boundary value prob-
lem with the right-hand side f € L%({2), the following corollary can be stated.

Corollary 2.81 Let y(2) € H}(§2;) be the solution to the problem:

—Ay(2) =f in 12y,
y(2:) =0 on Iy,

where f € L*(D) is a given element. Moreover, let V € C1([0,¢); C2(D; RN)) be
a given vector field. Then the mapping t — y(£2;) o T} is weakly differentiable in
L?%(2) and the weak (0,2) material derivative is given by the following formula

[ i@vysds =
o
- / (divV(0)T — 2¢(V(0))) - Vy(2), V((~A) " - ¥))gwdz  (2.153)
2
+ / div(fV(0)(~A)"p)dz Ve € LX) .
a
The right-hand side of (2.153) is linear and continuous with respect to
v € H™'(f2), because the inverse operator (—A)~! is an isomorphism from
H71(2) onto H}(£2). Thus the material derivative y(§2;V) is defined for any

vector field V € CY([0,¢); C*(D; RY)). In fact for f € H'(D) it is easy to show
that the strong material derivative exists.
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2.28. Strong material derivatives for Dirichlet problems

It is assumed that f € H'(D) is a given element, {2 is a given domain of
class C¥ in D, k 2 1, and V € C(0,¢;V¥(D)) is a given vector field; the
transformed domain is denoted by £2; = T(V)(£2). Let us consider the element
y(2;) € H}(£2;): a weak solution to the homogeneous Dirichlet boundary value
problem in §2;,
—Ay(.(l,) = f in .Qt,
y(Qt)=0 on I‘t =3.Q¢ .

The element y; = y(2;) satisfies the integral identity

(2.154)

/ Vy, . V¢tdl‘ = f¢¢d$
ng nt

for all ¢; € H(12:).
Using the change of variables z = Ty(V)(X) one can show that for the
element transformed to the domain 2,

y' =y(2) o Ty € Hy (),

the following integral identity holds
[ 40) i i = [ at)g0Tubds ¥ = 4eoT: € HY(9) . (2155
0 Ke]

Let us assume that

Zt=

(v' ~v) € Hy(%)

~ | =

then

/ V2t Vidz = —% / ((A(t) = I)- Vy', Vi)pndz
0]

a (2.156)

1
+7 [(0F 0T~ vz
From (2.155) it follows that
Iy* |22y S C -

Moreover, using (2.156) we can show that y' converges strongly to y(£2) in
H}(D) as t — 0. Applying this convergence result to the right-hand side
of (2.156) we have

1

?(A(t) —TI)— A'(0) strongly in L®(D;R")

and



108 2. Preliminaries and the material derivative method

%('y(t)f oT; — f) — div(fV(0)) strongly in L%(D),

it is assumed here that k 2 1. From the foregoing it can be inferred that 2! is
bounded, i.e.

Iz a3y S C .

We can suppose that zF = z'* — 2 weakly in H} () (for a sequence {t;},
tx — 0 as k — oo); for the weak limit z the following integral identity holds

/ V2. Vods = — / (4(0) - Vy, Vg dot
2 2 (2.157)
/n div(fV(0))gdz Vo € HA(%) .

Let us assume that in (2.156) ¢ is taken as z¥ = z%. It is known that the se-
quence {Vy*} converges strongly to Vy in L?(£2; IRN) as k — +4o0; furthermore

—tl;(A(tk) —-I)-Vy™* — 4'(0)- Vy strongly in L*(2;RN),
VzF - V2 weakly in L*(2;RY) .
We can pass to the limit in (2.156) and obtain
”Zk”iI;(n) = lellfz(n) as k= +oo .

As it has been already shown, the convergence of z* to z in H}(2) assures the
strong convergence; the element z is uniquely determined, hence from (2.157) it
can be inferred by usual reasoning that 2* converges to z strongly in H}(D).

Proposition 2.82 Let 2 be a given domain of class C¥ in D, k 2 1, and let
V € C(0,6;V¥(D)) be a given vector field. Suppose that f € H'(D) is given,
then the solution y(12;) of the homogeneous Dirichlet boundary value problem
(2.153) has the strong (1,2) material derivative z in the direction V, that is

1
W) o Ty(V) —y(R)) >z strongly in Hy(£2)
ast — 0; the element z is uniquely determined as the unique solution to (2.157).

We now turn to the case k 2 2. Taking into account the classical implicit
function theorem one has to consider the mapping

@ :[0,¢) x (H3(2) N HY(R)) - L*}(R)
which is given by
d(t,y) = —div(a(t)Vy) = y(t)f o T} .
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By standard regularity results applied to the elliptic problem defined in the
domain £ with the boundary I' of class C¥ (see e.g. (Netas 1967)), it follows
that for any t, 0 S ¢t < ¢, y — &(t,y) is an isomorphism from H*(£2) N H}(2)
onto L?(£2).

On the other hand, from our assumption that f € H(D) it follows that
the mapping t — &(t,y) is differentiable in the L%(£2) norm. By the implicit
function theorem it follows that the mapping ¢ — y!, where the element y? is
given as the unique solution to (2.154) and satisfies ¢(¢,y') = 0, is differentiable
in H%(2) N H}(£2). The derivative at ¢ = 0 is of the form

-1 0P
2= -Dy8(0,y)" - 2-(0,) .
This proves the following result:

Proposition 2.83 Let 2 be a domain of class C¥ in D, k 2 2, let V €
C(0,¢; V¥(D)) and f € H'(D)) be given. Then the solution y(£2;) to the homo-
geneous Dirichlet boundary value problem (2.153) has the strong (2,2) material
derivative z in the direction V, that is

%(y(ﬂt) oTy(V)—y(R)) = z  strongly in H*(2) N HY(2)

as t — 0; the element z is given as the unique solution to (2.157).

2.29. The material derivative of a solution to the Laplace
equation with Neumann boundary conditions

Let 2 be a domain in D with the boundary I" of class C*, k = 1, let V €

C(0,¢; V¥(D)) and let f € L?(D) be given elements. It is assumed that y(§2;) €
H'(2)/R is the solution to the following Neumann boundary value problem

—AY(2) = f - — / fdo in g, (2.158)
|92¢] Ja,
9y
%(Qg) =0 on Ft y (2159)

where |2| = meas(12).
For all elements ¢; in H!(2;)/IR. we have

/m Vy,~V¢,dz=/n‘(f—|—$‘—l/n‘ fdx)qs,dx.

Applying the usual change of variables to the above integral identity,
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e=T(V)X), y'=yeoTs, ¢ =¢:0T: € H (),

we obtain

/n (A(t) - Vy', Vé)pnde = /ﬂ 7(t)(foTt— /n ‘ fdz)¢dx .

The element .
F(t) = 1()f o Th - —— / +(t)f o Tudz
|92:| Jo

satisfies
1

/n F(t,2)de = /n e [ g /n 2(t)dz =0 .

This result is due to the fact that

/{)7(t)foTtdx =/n. fdz and /n'y(t)dxz o dr = |£2] .

Assuming that in (2.160) ¢ is taken as y* we have

Iyl 2ym S C
because k£ 2 1 and

”A(t)uwl.oo(p;]RN2) SC forte [0,¢) .

(2.160)

(2.161)

For f € L*(D) we have that F(t) — F(0) strongly in L%(D) as t — 0, where

F(0)=f—|—;2|/nfdz .

From (2.160) it follows that y* — y strongly in H(£2)/RR.
First assuming that ¢ = y* in (2.160) we get

Iy N aym S C -
Let us consider a subsequence
y*=y"* tx > 0as k — oo,

then
y* =y =y(0)

weakly in H'(£2)/IR as t — 0, hence y* — y(£2) weakly in H'(2)/R as t — 0.

For 2* = 1(y* — y) one obtains

/ V. Vedz = — / LAy = 1) vy, Vo) dat
7] ot

/n %(F(t) — F(0))¢dz V¢ € H'(2)/R .
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Furthermore 1 (A(t) — I) - Vy* converges weakly in L*(£2; R") to the element
A'(0) - Vy. For f € H'(D) we have

1 . . 1
HF) = F(O) — div(£V(0) + vV (0) /n fdz

- ﬁ / div(fV (0))dl’ = F'(0) € L12) strongly in L*(£2) ast — 0 .
n

Thus
/ F/(0)dz = / AV (@) mhwwdl + 1 / (V(0), n)grdl’ / fdz
- /,, FIV(0), n)gwdl" = W /P (V(0), n)grdl /n fdo .

From the foregoing we obtain

Proposition 2.84 Let 2 be a given domain of class C*¥ in D, k 2 1, and
let Ve C(0,6;D(D;RY)) be a given vector field. Then for a given element
f € HY(D) and the field V,

/F (V(0), n)gdl /n fdz =0,

the solution y(12) to the Neumann boundary value problem (2.158) and (2.159)
has the weak material derivative in H'(2)/IR in the direction of the speed vector
field V.

2.30. Shape derivatives

We denote by D a given domain in RY. Let £2 be a domain of class C* in D,
and let y(42) be an element of the specific Sobolev space denoted by W(£2). It
is assumed that the following conditions are satisfied:
The weak material derivative y(£2; V) exists in W(2) and Vy(£2) - V(0) €
W(£2) for all vector fields V € C(0,¢; V¥(D)), k 2 1.

Definition 2.85 The shape derivative of y(§2) in the direction V is the element
y'(£2;,V) € W(12) defined by

¥' (V) =g4(2;V) = Vy(£2) - V(0) . (2.163)

Proposition 2.86 If the mapping V — y(£2;V) 1s continuous from C(0,¢;
Vk(D)) into W(£2), then
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Y'(2V) =y (% V(0) . (2.164)

Proof. Let us consider the domain functional
1) = [ s

where ¢ is an element given in W(D). Applying the change of variables 2 =
Ty (V)(X) to the above integral we have

J(2) = / y(12;) 0 Ty o Tyy(t)dz .
n
The Eulerian derivative of this functional is of the form
dJ(2;V) = / y(2;V)pdz + / y(£2)div(¢V(0))dz .
n n

By Proposition 2.21 it follows that dJ(£2; V) = dJ(£2;V(0)). Therefore y(£2; V)
= y(£2; V(0)) and we obtain (2.164). 0

Proposition 2.87 Let us assume that the mapping V — y(£2;V) is linear and
continuous from C(0,&;D*(D;IRY)) into W(R2). If Vi and V; are two vector
fields in C(0,¢; D*(D; RY)),

(V1(0),n)r~y = (V2(0),n)gn  on I' = 312,
then
y'(2BV) =y'(2 V) .
Proof.
V'(2V) =y (2 V2) = ¢'( V1 = V2) = ¢/ (12, V4 (0) — V2(0)) .

We have ((V;(0) — V3(0)),n)g~ = 0 on I', then from Proposition 2.25 it fol-
lows that y(§2; V1(0)) — V2(0)) = Vy(£2) - (V1(0) — V2(0)); hence as a result we
get (2.165). a

2.31. Derivatives of domain integrals (II)

We shall extend the results obtained in Sect. 2.16 to the case of y(§2) having
the weak material derivative in L(2).

Let D be a given domain in RN and let y(2) € L!(£2) be a given element
such that there exists the weak material derivative y(£2; V) in L(£2) as well as
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the shape derivative y'(£2; V) in L!(£2) for any vector field C(0,¢; D*(D; RM)).
In other words

/ L y(@2) o (V) - y(2))dz — / J2VVbde V€ I°(Q)
.Qt n

as ¢t — 0. Furthermore it is assumed that Vy(2) € L'(§;R"N). Let us consider
the domain functional

J(.Q):/ny(ﬂ)dx .

Applying the change of variables z = T;(V)(X) to the integral we obtain

J(.Qt)z/n'y(t)y(ﬂt)oTtdz .

It is assumed here that the mapping t — 4(t) is differentiable in the norm of
the space L(D) (for k 2 1). The Eulerian derivative of J(§2) has the form

dJ(.Q;V):/ng](Q;V)dx-{-/ny(.Q)divV(O)dx . (2.166)
From (2.163) it follows that
dJ(;V) =/;};;'(.Q;V)dx+/ndiv(y(Q)V(0))dx. (2.167)

In other words, (2.167) constitutes a generalization of (2.113).
Finally, if £ is a C¥ domain, k¥ 2 1, then by Stokes’ formula it follows

dJ(.Q;V)=/;)y'(Q;V)d:c+Ay(9)(V(0),n)R~dF . (2.168)

2.32. Shape derivatives on I"

We denote by D a given domain in R"; for any domain 2 in D with the
boundary I of class C¥, k 2 2, an element z(I") of the specific Sobolev space
denoted W(I') is considered. It is assumed that the following conditions are
satisfied:

(i) The weak material derivative y(I'; V') exists in W(T).
(i) Vrz(I') - V(0) belongs to the space W(I') for all vector fields V €
C(0,&D*(D; R™)),

where k 2 3 is a fixed integer.
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Definition 2.88 The shape derivative of z in the direction V is the element of
W(I') defined by

Z(L;V)=2(T;V)=Vrz(T)-V(0) . (2.169)

Proposition 2.89 Assume that the mapping V — y(£2; V) is continuous from
C(0,&; D*(D;RY)) into W(I'). Then

Z(I; V) =2(I;V(0)) . (2.170)

Proof. Let us consider the domain functional
3(9) = [ «rysar,
r

where ¢ is an element given in D(D).
Using the change of variables z = Ty(V')(X) we have

J(.Qt) = / Z(Ft) o Tt(.U(t)dF
r
Hence the Eulerian derivative is given by
dI(2V) = / AT V)gdl + / 2Vé-V(0)dr . (2.171)
r r

According to our assumptions C(0,e;D*(D;RY)) 5 V — dJ(2;V) € RY is
a continuous mapping, thus from Proposition 2.26 it follows that dJ(£2;V) =
dJ(£2;V(0)). Moreover by (2.171) it follows that z(I'; V) = 2(I"; V(0)) as was
to be shown. O

Proposition 2.90 Let us assume that the mapping V — 2(I'; V) is linear and
continuous from C(0,&;D*(D;RN)) into W(I'). If Vi and V, are two vector
fields in C(0,¢; D*(D; RY)),

(Vl(o)’n)IRN = (V2(0)’n>]RN on I,
then we have

2 () =2(T V) .

Proof. Denote by V the difference V, — V;, then (V(0),n)gy = 0 on I" and
2'(I; V) = 2'(I; V(0)). It can be inferred that T:(V'(0))(£2) = £2. Hence from
Proposition 2.87 it follows that

4(I;V(0)) = Vrz(I) - V(0) .
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Making use of (2.169) we can conclude the proof. a

2.33. Derivatives of boundary integrals (II)
We extend the results obtained in Sect. 2.18 to the case of z(I") having the weak
material derivative in L*(I").

Let D be a given domain in RN and let z(I') € L(I') be an element such
that there exist the weak material derivative z2(I'; V) in L'(I') and the shape
derivative z'(I"; V) € L)(I") for any vector field V € C(0,¢; D¥(D; IRN)), where
k 2 2 is an integer. Therefore

/%&Uﬂﬂwm—zuwww—ﬂ/%ﬂVwﬂ“V¢6Uﬂﬁ
r r

as t — 0. Furthermore
Vrz(I) € LI RY) .

Let us consider the domain functional
J(2,) = /P 2(I)dr .
The change of variables z = T4(V)(X) yields
J(2)= /]"Z(Ft) o Tyw(t)dr,

where t — w(t) is differentiable in the norm of the space L°(I") for k 2 2.
Therefore the Eulerian derivative of J is of the form

4V = / HD VYT + / (D)divr(V(0))dT . (2.172)
r r
From (2.163) it follows that
dI(2V) = / (I3 VYT + / [Vr2(T) - V(0) + 2(I)div(V(0))|dr,
r r

that is
dJ(12 V)=/l:z'(1";V)dI"+/ divp(z(I)V(0))dI" .
r

On the other hand, in view of (2.141), we have
[ dveWVO)Mr = [ A, nigrdr,
r r

where & is the mean curvature on the manifold I'. Finally we obtain
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dJ($;V) = /F[z’(I“;V)+ kz(I')(V(0),n)gn]dl . (2.173)
In the particular case of 2(I") = y(£2)|r we obtain
2(I3V) = y(%V)lr + 22V (O),nhr
and (2.173) can be rewritten in the form

dJ(2;V) =/I:y'(.Q;V)|de’+/r(a—iy(.Q)+rcy(.Q)) (V(0),n)gndl . (2.174)



3. Shape Derivatives for Linear Problems

In this chapter the form of the material derivatives and the shape derivatives
for linear boundary value problems as well as initial boundary value problems
is derived.

In Sect. 3.1 the form of the shape derivative for a second order elliptic boundary
value problem with non-homogeneous Dirichlet boundary conditions is deter-
mined. In Sect. 3.2 the same problem but with non-homogeneous Neumann
boundary conditions is considered.

In Sect. 3.3 the necessary optimality conditions for the general shape optimiza-
tion problem are established, and two specific examples are presented. In par-
ticular, the form of the second order shape derivative of the integral domain
functional discussed in the first example is obtained. In the second example,
the same as in Sect. 2.6.1, the domain functional involves the perimeter of a
given domain. Such a term is essential for the applications, in particular, to free
boundary problems. Parabolic equations are considered in Sect. 3.4.

The shape derivative of the solution to the system of equations of linear elas-
ticity is determined in Sect. 3.5. In Sect. 3.6 the multiple eigenvalue problem is
investigated by means of non-smooth analysis. In Sect. 3.7 the shape derivative
of the solution to the Kirchhoff plate problem is derived. Domains with corners
in the plane, and in IR® are studied in Sect. 3.8. Sect. 3.9 presents results on the
shape sensitivity analysis of elliptic boundary value problems with singularities.
Finally in Sect. 3.10 an initial boundary value problem of hyperbolic type is
considered.

The results discussed in this chapter can be applied, in particular to shape op-
timization problems for linear partial differential equations or systems of equa-
tions of elliptic, parabolic and hyperbolic types.
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3.1. The shape derivative for the Dirichlet boundary
value problem

Let D be a given domain in IRMN. It is assumed that for any domain £
of class C*¥ in D there are given three elements h(£2),z(£2),y(£2) such that
h(£2) € L?(2),2(I") € H3(I'), and y(£2) € H'(£2) is a solution to the Dirichlet
boundary value problem

—Ay(2) =h(N) in L*}(2), (3.1)
y(2)=2(TI) onl. (3.2)

It is assumed that for any vector field V € C(0,¢; D*(D;IR")) and for the given
elements h($2), z(I"), y(2), there exist the shape derivatives h'(£2), 2'(I"), y'(£2)
in L*(2), H 3 (I"), H'(R2), respectively. In particular we have

() o T(V) - y(2)) = YD V) weaklyin BY(2)  (3.3)

ast — 0, and

Vy(2)-V(0) € H'(2) . (3.4)

Let us consider the weak form of the equations (3.1) and (3.2) written as the
integral identity

/ y(2)Addz = / «(02ar vee mA Q) EN D) . (3.5)
n r on
Let ¢ € D(IRY), then from (3.2) it follows that

/I‘. y(£2¢)dI: = /I} 2(92¢)¢dI, .

Taking the derivative with respect to t at ¢t = 0 of both sides of this identity, we
obtain

[y @viirear+ [ | 206+ s@4] (V) mpwar =
r rLon

[ Dy @viar + [ oy, mpndr

r r

For a given element ¢ € D(IR™) we have

H(T5V) = PV (0),mmr

If it is assumed that %?; =0on I', then
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0
[ v @viirsar+ [ (5ov@)+ (@) (V) mgrdr =
r r\on
/ (5 V)gdT + / k2(D)$(V/(0), n)gwdl .
r r
From (3.2) it follows that
0
Y(&V)Ir = —5-y(Q)(V(0),n)g~ +2(I3V) onl . (3.6)

On the other hand, since ¢ € D(§2), then ¢ € D(§2;). Thus for ¢t > 0, ¢t small

enough, we obtain

/ Vy(2)) - Véds = / h(2)dds . (3.7)
2, 2,

Taking the derivative with respect to t at ¢ = 0 of both sides of this identity we
have

/ Vy'(2;V) -Védz = | h'(2;V)¢dz ,
0] 2,
that is
Ay (2;V)=h'(2;V) inD'(R) . (3.8)

Proposition 3.1 Let (h(£2),2(I")) € L*(2) x H3(I') be given elements such
that there exist the shape derivatives (h'(R2),z'(I')) in L*(2) x H/*(I"). Then
the solution y(12) to the Dirichlet boundary value problem (3.1) and (3.2) has
the shape derivative y'(2;V) in H(£2) determined as the unique solution to the
Dirichlet boundary value problem (8.6) and (3.8).

3.2. The shape derivative for the Neumann boundary
value problem

Let D be a given domain in RN . It is assumed that for any domain £ of class C*
in D there are given three elements h({2), z(I")andy(£2) such that h(£2) € L%(12)
and z(I") € H¥(Q)/RR,

/ h(2)dz +/ z(Idl'=0 . (3.9)
0 r

In this section y(§2) denotes a solution to the Neumann boundary value problem



120 3. Shape Derivatives for Linear Problems

~Ay(2) = k() in L¥(£2),

%y(n) =2(2) inHI().

Let us consider the following integral identity
/ V() - Vds = / h(92:)ddz + / A)¢dl,  (3.10)
2 nt F‘

where ¢ € D(IR") is a given element and y(£2;) € H'(02,)/R.
Taking the derivative of (3.10) with respect to t at ¢ = 0 we obtain

/Vy'(.Q;V)-V¢dz+/Vy-VqS(V(O),n)]RndI':
n r

/ R(2;V)ddz + / h(2)$(V (0), n)prdT'+

n r

/ [z'(r;V)¢+z(r)§f + 52TV (0), )| dI .
r n

Assuming that ¢ is in D(£2) we get
—AY'(2,Y)=h'(2;V) inQ . (3.11)

If the test function ¢ is such that g% = 0 on I', then Green’s formula yields
/ iyl(.Q; V)QSdF - / din((V(O),n)mNpr)¢dF =
ron r
/ [A(2)(V(0), n)mw~ +2' (I3 V) + 62(D)(V(0), n)g~] ¢dT .
r

If v, = (V(0),n)g~ on I', then the following Neumann boundary conditions
can be set out for y'(2; V)

2 (@) =divr(oaV ry(2)+ (3.12)

on
[R(2) + k2(T)) v + (V) on I .

We shall show that the compatibility condition (3.9) is satisfied in an appropriate
way for the problem (3.11) and (3.12).

Proposition 3.2 For the terms on the right-hand side of formulae (8.11) and
(8.12) the compatibility condition (3.9) holds, i.e.

/ R(2;V)dz — / divr(vaVry(2))dl+ (3.13)
n r

/[y(.Q)+K,z(F)] v,,d['+/ Z(I;V)dr =0,
r r
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hence there ezists the unique solution y'(£2;V) € H'(2)/IR to the problem
(8.11) and (3.12).

Proof. From (3.9) it follows that in (3.10) ¢ can be replaced with ¢+ ¢, where ¢
is any constant. Differentiation with respect to ¢ does not change this property.
Therefore ¢ can be replaced with ¢ + ¢ in the integral identity obtained by
differentiation of (3.13) with respect to t. This yields

/h'dx+/ hv,.d['+/ z'dF+/ kzvadl =0 .
n r r r

On the other hand we have
/ divp(vaVry)dl' = —/ vaVry -Vrldl'=0
r r

as was to be shown. @]

Proposition 3.3 Let (h(2),2(I')) € L*(2) x Hi(I') be given elements such
that there ezist the shape derivatives (R'(2;V),2'(I';V)) in L?(R2) x H/*(I').
Then the solution y(f2) to the Neumann boundary value problem has the shape
derivative y'(2; V) in H'(2)/IR. This derivative is given as the unique solution
to the Neumann boundary value problem (3.11) and ($.12).

3.3. Necessary optimality conditions

Let us consider the domain functional J(f2) defined for any domain §2 of class
C* in D and depending on an element y(2) € W*?(12)

5(@) = / Fi(z, y(2)(2), Vy(2)())da+
2 (3.14)
/F Fo(z,y(2)(z), Vy(2)(z))dT .

We assume that for any vector field V € C(0,¢; V¥(D)), where s > 3/2, 1 <
p < 00, there exists the shape derivative y'(£2;V) in W*P(R2) of y(R2) €
Wer(£2).

Furthermore, it is assumed that the elements Fy(z,vy,q) and Fi(z,y,q) are suf-
ficiently smooth with respect to y = y(£2)(z),q¢ = Vy(£2)(z), respectively. The
Eulerian derivative of J(£2) in the direction of a vector field V € C(0,¢; V¥(D))
has the form
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dI(2;V) = /n %%(z,y(ﬂ)(xwy(n)(m))y'(rz;v><z>dx+ (3.15)
/ﬂ Y Fi(2, 9(2)(2), Vy(2)(2)) - V(& (2 V))da+

/P Fy(2,5(2)(z), Vy(2)(2))(V (0,2), n)gw dT'+

O (e, U(2)(@), V(D))< (T V(@) +
r 9y

[ VeFu(eu@)(e), Vu@)(=) - Vi (25v)ar+
[ (Fao(a,u(2)(2), T @)(2)), D*¥(@) - w)gr (VO) v T+
| K@) @)e), TUD@NV(0,2) (e
where 2(I") = y(£2)|r. Moreover for z € I' we have
AT V@) =Y (B V) 4 LDV G n@)mr - (3.16)

Let us assume that the shape derivative y'(£2; V) € W*?(2) = W is determined
as the unique solution to the following linear problem

(AY (B V), o)wxw = L(V,8) Yoe W, (3.17)

where A € L(W;W') and L(V,-) € W' are given elements.
Let p(£2) € W' be the adjoint state defined as a weak solution to the following
adjoint problem

(%, A" D) wsew: = /n %%(x,ym)(z),Vy(rz)(x>>wdx+ (3.18)

/anFl(a:, y(2)(z), Vy(2)(z)) - Vipdz+

[ SR, T )pdr+
r 9y

[ VeFo(au@)(@), Vu(@)(@) - Todr e W .

To obtain the Eulerian derivative dJ(2; V') of the domain functional J(§2) we
have to make use of the identity

(' (2V),A%p) = (AY'(2; V), p) = L(V,p) .

Hence
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aH(@V) = LV + [ AEy@@)V O ngedl+ (319
r

[ 22 U@ GV 0) T+

[ 94Fo(e (@), Dy s (V0), T+
/p x(z)Fo(z, y(2)(2)(V (0), n)gdT .

In general, the mapping V — L(V, p) is linear and continuous on C(0, ¢; Vk(D))
and depends only on v, = (V(0),n)gn~. As far as the second order elliptic
boundary value problems are concerned, see Sects. 3.1 and 3.2 for details. Let
us consider the following example of the shape functional (3.14):

1
J(2)=35 /n (¥(92) — z9)*dz, (3.20)
where z, is a given element in H'({2), i.e. we have

1
Fy(2,p,9) = 5(4(%2) = 2(2))* (3.21)
and
F1 =0.
Here y(§2) denotes the solution to the following Dirichlet boundary value prob-
lem
—Ay(N) =h(2) in £, (3.22)
y(2)=0 onl . (3.23)

Using the results of Sect. 3.1 one can show that the domain derivative y'(£2; V)
is given as the unique solution to the following problem

—-Ay'(2;V)=R'(2;V) in £, (3.24)
y'(2;V)= —g%(ﬂ; V)V(0),n)gy on I . (3.25)

In particular, if the element h(§2) is defined as the restriction to {2 of an element
f € H(D), then h'(£2;V) = 0 and the adjoint problem is of the form

—Ap(2) =y(2) —z, in £, (3.26)
p(2)=0 onl . (3.27)

Therefore we have
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@V) = [ (U2 - 2@ )i
+3 [0 - %V, mprar
and from (3.26) it follows that
dI(%V) = — /n Ap(2)y' (2 V)dz
+ % /F (¥(2) — 29)(V(0),n)gndl" .
Using Green’s formula we obtain
| ana(@a;vyie = [ vot2)- vy
[ o @;viar |
Making use of (3.25) it is possible to show that
oy

3 1o _
/P ooV (@V)ar = - [ LV, mgvar,

and

!
/Vp-Vy'da::—/ Ay'pd:c+/a—ypd1"=0 .
n n r on

Finally we get
a1(@V) = [ o(v(o),mpnar,
r

where

9(2) = ~VU(D)() - VAD(@) + 5(4(D(x) - () on T

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

here y(2) and p(£2) are given as the unique solutions to (2.183) and (2.185),

respectively.

The results of Sect. 2.13 enables us to show that the derivative with respect to

t at t # 0 of the mapping ¢ — J(§2;) is of the form

d

d—tJ(.Qt) =dJ (2, V),
with Vi(s) = V(¢ + s); hence from (3.33) it follows that

23020 = / (V) nmadl

(3.34)
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where
VeC(©0,6VHD), 2=T(V)@), L=T(V)I), I=an,

y(2¢) and p(2;) denote solutions to (2.183) and (2.185), respectively. These
solutions are associated with the domain §2; of class C*.

Let us consider the particular case of an autonomous vector field V (i.e. V is
independent of t). From (3.34) it can be inferred that the second order derivative
of J(§2;) with respect to t is defined as follows

d2 d £ £
T @m0 =1 ([ 1B vy T+ (3.39)
1
E(ye — 240 Tz)zw(e)] (V o Ts,ne>]RNdF) le=0 y
where
ys = y(‘(zf) o TS [}
p*=p(f2)oT.,
n®=n.oT,,
B(e) = w(E)DTE_l -X(DT.)™,
w(e) = |M(T.) n|r~ ,
M(T.) = det(DT,) "‘DTE_1 .
It should be remarked that
w'(0) =divpV, B'(0)=divpVI —2¢V), (3.36)

where ¢(V') is the symmetrized part of DV
{(V)=5(DV +°DV) .
Furthermore we have
neoT, = |M(T.) -n|lzwM(T.)-n onT .

Therefore

d 3
Y =(=divyVI +divVI - *DV)-n
de Je=0 (3.37)

= (DV -n,n)gvn— *DV -n .
Lemma 3.4 We have
M d & *
n(I; V)= 22 Me=0 = —(*DV -n), , (3.38)

where (*DV - n), is the tangential component of the vector field *DV -n on I.
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Finally we shall derive the form of the second order derivative of the domain
functional J(§2;) with respect to the parameter ¢:

d? . . '

(@)= [ 193 Vo4 9y Vi + (B(0)- V. Vyhur] V,m)dr

+ / [(y —2z)(y—Vz- V) + %(y — zy)2diveV | (V,n)gndl (3.39)
r

+ /P [Vy-w+ S~ z,)z] ((DV -V, nygw = (V,(*DV -n))gn) dT

where y = y(£2; V) and p = p(£2; V') denote the material derivatives of y(2) and
p(£2), respectively.

In.order to the derive necessary optimality conditions for the minimization
problems formulated in Sect. 2.6.1 with the domain functional (2.46), we have
to determine the shape derivative of the perimeter Pp(2;). Assuming that £ is
a domain of class C¥ we have

Pp(2:) =/ drly , (3.40)
and
d
d—PD(Qt) = / nt(V,ng)]RndI'} y (341)
t I
where k; is the mean curvature of the manifold I;. Let us recall that
K¢ = dinn, (3.42)
that is
= le(Nt) - (DM . n,,m)mu y (343)

where M; is any smooth C¥~! extension of the normal field n; to a neighbour-
hood of I';. The following identity will be used below.

Lemma 3.5 For any eztension N of the normal vector field n on I' we have
divN oT =Tr [D(NoT)- *DT7'] . (3.44)
In a similar way one can show that

div(M;) o Ty = Tr [D(M; o Ty) - *DT;'] . (3.45)

Remark. Making use of (3.43) and (3.45), an explicit form of the material
derivative £(I'; V) on I' can be determined.
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Necessary optimality conditions. We derive necessary optimality condi-
tions for the shape optimization problem with the cost functional (2.46). Let us
suppose that 2y is a smooth domain included in D,

dz = ||, (3.46)
2

and
J(20) + aPp(20) £ J(2) + aPp(R) (3.47)

for all domains 2 in D, where a > 0 is given.
Then for all vector fields V € V¥(D) with

/(V, n)gnvdl’ =0, (3.48)
r
the following necessary optimality conditions hold
dJ(£2;V) + a/ k(V,n)gnvdl' =0, (3.49)
r

d? .
(ZEEJ(.Qt))Itzo +a /F k[ (divrV)(V,n)gw + (DV -V, n)gw .

—(V,(*DV - n))gw~ |dl" + & /P KT V)(V,n)gwdl 20 .

3.4. Parabolic equations

In this section the standard notation of (Lions et al. 1968) is used. Let 2 C RY
be a bounded domain with the sufficiently smooth boundary I" = 942.
Let H C H'(f2) be a closed subspace such that

H)(2)cHCH\(2) .
Moreover the following notation is introduced
I = (to,tl)
9¢

W(L,H) = {¢ € L*(I; H) | o € L*(I; H")}, (3.51)

where H' denotes the dual space, ¢y < t; are given.
Furthermore the following Cartesian products are defined

Q=0xI,  =IxI.

Using these products the space H%!(Q) is introduced



128 3. Shape Derivatives for Linear Problems

2,1 2 3¢ 3¢ ¢ 2
R O e AU
i,j = 1,...,N} .

3.4.1. Neumann boundary conditions

Under the assumption that H = H'(2) the following parabolic initial-boundary
value problem is formulated

dy

e —Ay=f inQ, (3.53)
% =0 onlX, (3.54)
y(to,z) = 2(z) in £, (3.55)

where f € L%(Q) and z € L%(Q) are given elements.
The weak form of (3.53)-(3.55) is as follows

W e @) [ (Rws+9u0) ve)iz= [ fypts  (a50)

for a.e. t € I = (to,t1) and for all ¢ € H!(£2),
y(to)=yo in 2.

It can be shown, see e.g. (Lions et al. 1968), that any weak solution y € W(I; H)
to (3.56) has the property

y() € CI; L)) . (3.57)

Let us suppose that f € L2(RV*!) and 2z € H!(IRM); under this assumption
parabolic problems, defined in the cylinders Q, = .Q x I with 2, = T,(V)(R2),
are formulated, here V(-,-) € C(0,¢;C(R";IR")) is given and s € [0,¢) is
a parameter. For a given parameter s the parabolic problem has the following

form:
Find an element y, € W(I; H!(§2,)) such that

ye(t) € H'(2,) : / (ay’(t)¢+Vy,(t) Vg)ds = / fo(t)dde (3.58)

for a.e. t € I = (to,t) and for all ¢ € H'(£2,),

ys(to) =2z in £2,

where
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2 = z|n,, fs = f|n, . (3.59)

In order to determine the form of the material derivative y = y(§2; V') of the
solution to (3.53)-(3.55) in the direction of a vector field V(:,-), it should be
remarked that for the element y, € W(I; H(£2,)) the following integral identity
holds

/ l / {—ys(t, z)%(t,z) + Vys(t,z) - Vé(t,z)}dzdt = (3.60)
0o Y2,

t

/tl fs(t,z)é(t, z)dzdt +/ z5(2)¢p(to, z)dz Vo € H>'(Q,)
to 2,

with ¢(t1, ) =0.

Let us assume that the integral identity (3.60) is transformed to the fixed cylin-
der Q = 2 x I using the change of variables z = T,(V)(X); this yields the
element y* = y, 0T, € W(I; H(R2)). It can be shown that the following integral
identity is satisfied:

/ 1 / {—7(8)(w)y’(x,t)%(x,t)+ (3.61)
to JN

(A(s)(m) ' Vy’(z7t)» V¢(z»t))]RN }dxdt =
/l/fa(zvt)¢(t3$)dxdt+/ 23($)¢(t0,z)dz
to JN2 n

for all ¢ € H?(Q) with ¢(t;,z) =0 in £2,

where

fP=9)foT,, z° =~(s)z0T, .

Lemma 3.6 The strong material derivative y = y(§2; V) in W(I; H1(£2)) of the
solution to (3.53)-(3.55) is given as the unique solution to the following system

W Ay = (OP +dv(4(0) V) +dv(fV) nQ  (362)
_g?y. + (A'(O) . Vy’ n)IRN =0 on Z, (3’63)
y(to) = div(zV) in 02 . (3.64)

Proof. Let s € [0,6) be given. From (3.61) it follows that the element y, €
W(I; H'(£2)) satisfies the following system of equations

7(3)‘93-’1’ — div(A(s)- Vy') = f* in O, (3.65)
(A(s) - Vy*,n)gpy =0 on X, (3.66)

y’(to)=2" inf2. (3.67)
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Multiplying (3.65) by y° and integrating over §2 x (0,%) we obtain

t s t
/ /'y(s)aiy"dzdt+/ /(A(s)-Vy’,Vy’)mnd:tdt (3.68)
to /02 ot to /2

t
=//f’y’dzdt
to JN2

for all ¢ € (to,t1]. From this identity it can be inferred that

ly* @ Mlz2cy + 1" |21y S (3.69)
C{ll£* Nlz2crycmayyy + 12 L2z ()} -

This inequality is due to the fact that for s > 0, s small enough, we have
Y(s) =145y (0)+o(s) in L) . (3.70)
From (3.65), (3,69) and (3.70) it follows that
|
ot

Therefore

< C{If leaamayn + 12" 2y} - (3.71)

L¥(I;(H' (1))

Ny llwrm oy + 1y (BllLzcay) £ (3.72)
C{If 2y + 112° L2y} -

Let us consider the following system of equations

o) (4~ 4) — div(A(s) - V(u" ~ 1)) = (373)
£ = f A=A D +div(A9) 1) V) nQ,
Y —y=2"-2z inf. (3.74)

By the same reasoning as above it follows that

ly* = yllwaarayy S {IF° = Fllzascaayyy + 110 =v(8)| Le(a) (3.75)
+ |1A(s) = Tl (a:mnzy + |2° = 2|l 12(2)} -

Let w® stands for

@ | =

(v —vy) -1, (3.76)

then the element w® € W(I; H(£2)) is a weak solution to the following linear
parabolic problem

w® =
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/ O iz + / V' - Vodz = L,(¢) (3.77)
N ot 0]

for a.e. t € I = (to,t;) and for all ¢ € H'(R2),
w*(to) = %(z, _2)—div(zV) in 9, (3.78)

where
Lu(#) = [ = (0) 6+ 56 + S(40) = D)V, V) (3.7

— (A Vy, Vol +<(f* = 1§~ dv(fV)g)do

From (3.79) and (3.75) it follows that
1
| Ly(8) ISC{I (1 = 1(s) =7 (O)ll = (o + (3.80)
1
”;(A(S) - I) - AIIle(Q;mN2)+

1 .
||;(f — ) = div(fV)||l L2y +
ly® = yllwr;mr @) Ml 252 (2)) — O

as s — 0.
Furthermore
lw*(to)llL2(2y = 0 as s—0 (3.81)

hence

lwllwrmr a2y S C{ILs|| L2(r,mr @)y + lw’(to)llL2(2)} = 0 (3.82)

as s — 0, which concludes the proof of Lemma 3.6.
(m]
Let us consider the shape derivative y' = y'(£2; V') of the solution to the
system (3.53)—(3.55).
It should be emphasized that the shape derivative exists

Y =y—Vy-VeW(;H(2)) (3.83)

provided that Vy belongs to W(I; H!(2; R™)). To satisfy this requirement some

regularity assumptions are to be imposed upon the solution to (3.53)-(3.55). In

order to determine the form of ', we make use of the following integral identity
9¢

t
/ {=ys—= + Vy, - Vo}dzdt = (3.84)
to n, 3t

,/t:l /n, fodzdt + /n. z(z)¢(to, z)dz .
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Differentiation with respect to s at s = 0 yields

/ h/ { y'gf +Vy' - Veldrdt+ (555
to J2

/l/{ y?f Vy - VoV, n)gndldt =

to JI

/1/ fé(V,n)grndl dt+/Z(x)d’(to’x)(V(it),n(x))mNd[‘

o JT r

for all § € H21(Q) with ¢(t1,") =0 in £2 .

Considering the boundary integrals we have to note first that the Neumann
boundary condition gﬁ =0 on Y implies Vy = Vpy on X, hence

/Vy-quS(V,n)mndF: (3.86)
r

/FVy-quS(V,n)RNdF:

/divr((V,n)mNprdI"-{-/ k¢y(V,n)gndl .

r r

The first equality results from the assumption %ﬁ = 0, and the second one is
obtained by integration by parts.
Thus we have the following result

Lemma 3.7 The shape derivative of the solution to the system (3.53)-(3.55) is
determined as the solution to the following parabolic problem

oy’

o Ay =0 inQ, (3.87)
oy Oy .

B = (_E —ky+ f){(V,n)rny +divp((V,n)gv) on X,  (3.88)
y(t)=0 in . (3.89)

Proof. Integration by parts of (3.85) with ¢ € D(Q) yields (3.87). The initial
condition (3.89) follows from (3.55) because of (3.83). Finally the boundary
condition (3.88) is obtained by integrations by parts of (3.85), in view of (3.87)
and (3.86). 0

3.4.2. Dirichlet boundary conditions

Let U € H¥(RN!), U = U(t, z), be given; we shall use the following notation



3.4. Parabolic equations 133

u="Ulg (3.90)

and suppose that ‘?,—Z =0on Y.
Let us consider the following parabolic problem

%’?" —Aw=f 0, (3.91)
w=u onlk, (3.92)
w(to,z) = z(z) in £, (3.93)

where f € L*(R¥*!) and z € H'(IR") are given elements.

Lemma 3.8 The strong material derivative w € W(I; H(R2)) of the solution
w € HYY(Q) to (8.91)-(3.93) is determined as the unique solution to the fol-
lowing parabolic problem

%b- - Aw = ——7(0)%%) +div(4'(0)- Vw) +div(fV) mQ, (3.94)

w=Vru-V, onZ, (3.95)

w(to, z) = div(z(z)V(0,z))) in £, (3.96)
here V, stands for the tangential component of V on I,

Ve =V —(V,n)gvn  on I . (3.97)

Proof. Let 2, = T,(V)(R2), and let w, be a solution to the parabolic equation
(3.91)~(3.93) defined in the cylinder Q, for a given s € [0,6); if it is assumed

that
€s=ws—Ulo, (3.98)

then ¢, € W(I; H} (82,)). Furthermore

/ ) / {—(¢+ U)% + V(& + U) - Vg}dzdt (3.99)
to JN2,

_ / [ fededt + / Az)y(s)d(to, z)dz
to JQ, a,
for all ¢ € H>'(Q) with ¢|x = 0 and ¢(t;,z) = 0 in £2, .

Applying the change of variables ¢ = T,(V')(X) to the integral identity (3.99)
we have the following integral identity, £* = &, 0 Ty € W(I; H} (£2,)),

/t 1 /n {—(£’+U")%v(s)+(A(s)-V(g’+U3),v¢>m~}dxdt (3.100)

- / ’ / 2 ddzdt + / 2(@)1(s)d(to, z)de
to n n
for all ¢ € H>!(Q) with ¢(t;,2) =0 in £,
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where U =UoT, .
By the same reasoning as in the proof of Lemma 3.6 it follows that for the strong
material derivative ¢ € W(I; H}(£2)) the following integral identity holds

/th /n{‘(f + U)% +(V(E+U),Vg)gn }dedt+ (3.101)

“ ! a¢ 1
/ / {—’7 (O)ME + (A . Vw, v¢)lR” }dxdt =
to n
/ 1 / div(fV)pdzdt +/ div(zV)¢(z,0)dz
to n n

for all ¢ € H?!(Q) with ¢(t;,2z) =0 in £,
where U = VU -V in Q. Moreover

U:VU-VT+%Z(V,n)RN =Vru-V; onl . (3.102)
We have
w =+ U . (3.103)

Hence from the existence of the strong material derivative U € W(I; H'(R2)), it
can be inferred that the strong material derivative w = £ + U € W(I; H'(R2))
exists. Furthermore, from (3.101) it follows that (3.94) and (3.96) are met. Fi-
nally using (3.102), (3.95) is obtained.

The shape derivative w’ € W(I; H1(2)) of the solution w € H*!(Q) to (3.91)-
(3.93) exists and is of the form

w=w-Vw-V (3.104)

provided that Vw € W(I; H'(£2;IR")). Therefore to derive the form of w' we
shall use the integral identity (3.99).
First let us note that (3.96) and (3.104) yields

w'(to,z) =0 in 2 . (3.105)
Furthermore by means of (3.95) we have

ow
w' = —-%(V, n)gry  on X . (3.106)

Finally let ¢ € D(IRN+1), then spt¢ C @, for s > 0, s small enough.
Differentiation of (3.99) with respect to s at s = 0 results in the following
integral identity
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t1 a¢
/ / {—w'= + V' - Vg}dzdt+ (3.107)
to n at
138 a¢
/ /{—w——-— + Vw - VoV, n)gndldt =
to r ot

/, " /F fo(V,n)pwdldt Vo € D(Q) .

Thus 5w’
% —Aw'=0 Q. (3.108)

Therefore we have the following result.

Lemma 3.9 The shape derivative w' € W(I; H'(£2)) for the solution to (8.91)-
(3.98) is given as the unique solution to (3.105),(8.106) and (3.108).
a

3.5. Shape sensitivity in elasticity

This section is concerned with the elliptic boundary value problems in elasticity.
The standard notation is used (e.g. (Washizu 1982)):

¢,;=3¢/3x;, t= 172)3’
V¢ = COI(¢,1,¢,23 ¢,3) .
It is assumed that ¢ € H!(2). If I' = 812 is a smooth manifold, then

7]
Vé=Vré+gon,
n

where

% =Vé-n=4¢,ni= 2?:1711'33—2 ;
and

Vré is a tangent vector field on I'.
In these equations we have made use of the summation convention over repeated
indices 1,7, k,! = 1,2,3. For any vector function ¢ € H 1(R?,IR®) the following
notation is used

(D@)ij = bij, (*De)ij =¢ji 4,7 =1,2,3.

The linearized strain tensor €(¢) is of the form

€(¢) = %(D¢ +*D¢), €ij= %(¢m‘ +8ji) -
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Let us consider the fourth order tensor function C(-) = {cijxi(-)}, ¢, 7,k,1 =
1,2, 3, such that the following symmetry conditions are satisfied

c,'jkz(:t) = c,-.-kz(z) = ckl,'j(x) T € IRa, 7,k 1=1,2,3. (3.109)

Furthermore c;jxi(-) € L;’;’C(IRN), i,7,k,1 =1,2,3, and there exists ap > 0 such
that
£:C:€ = cijr(@)Eijbrt 2 aobiju = aob: € (3.110)

for all z € IR® and for all second order symmetric tensors ¢. The stress tensor
o = o(¢) is defined by

o=C:¢(¢), (3.111)

le. 0ij = cijrien = cijudi; 1,5,k 1=1,2,3.
The normal component o, of the stress tensor on the boundary I',
Op =MN-0-N=0;jnn; (3.112)

and the tangential component o,

Or =0:N—0pn (3.113)
are well defined, e.g. for ¢ € H2(IR*; R®). Let us assume that
oed) = [ dRCd)is Vs HGRY),  (3114)
2
(F,¢) = / f-¢dz +/ P - ¢dI, (3.115)
2 r

here 2 C R} is a given domain with the smooth boundary I' = ToUT,UT,,
Iinlj=40,1i# j,measly >0; f € L*(2;R?) and P € H'(I};R?) are given
elements.

Under these assumptions there exists a weak solution to the variational
equation

ue€H: a(u,¢)=(F¢) Vo€H, (3.116)

where
H={¢c H' (2;R*|¢=0 only, ¢o=¢-n=0 onlp}. (3.117)

It can be shown (Fichera 1972) that for the weak solution u, the following system
of equations is satisfied

—dive = f in £2, (3.118)
u=0 onlyp, (3.119)
o-n=P onl, (8.120)
u-n=0 only, (3.121)

o,=0 only, (3.122)
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in the weak sense.
It has been known (Fichera 1972) that for measIy > 0 the bilinear form af(,-)
is coercive, i.e. there exists a constant a > 0 such that

| o(0):C:0(6)da 2 alolfniamey VéEH - (3.123)

This implies the existence and uniqueness of the weak solution to (3.118)-
(3.122) defined by (3.116). The equivalent form of (3.118)-(3.122) expressed
in terms of the displacement u is for i=1,2,3, as follows

—(cijui(z)ur(2)),; = fi(z) in £, (3.124)
u;=0 only, (3.125)
cijri(z)uri(z)ni(z)nj(z) = Pi(z) on Iy, (3.126)
ui(z)ni(z) =0 on I3, (3.127)
cijki(z)ur,nj(z) = on(z)ni(z) only . (3.128)

Frictionless contact problems and contact problems with given friction for linear
elastic solids are formulated in Sects. 4.6 and 4.7, respectively. The contact
problems take the form of variational inequalities.

Let us examine the linear model (3.124)—(3.128). The principal aim of our
consideration is the shape sensitivity analysis of the system (3.124)—(3.128),
therefore it is assumed that data are smooth enough, e.g.

P(), f(-) € CY(R%; R?), (3.129)
ciju(-) € CY(R®) 4,j,k,01=1,2,3 . (3.130)

The system (3.124)—(3.128) is to be defined in the domain £, € R®, with the
boundary Iy = T(t) Ufi UT; fort € [0,6). For this purpose the following notation
is introduced

a(z,9) -—-/ Dz:C:D¢dx Vz,6 € Hy (8.131)
2

Ho={¢ec H(2;R*|¢=0 onI}, ¢-n,=0 onlI}}, (3.132)

(Fy, )¢ = / f-¢dz +/ P-¢dI' Vé€ H, . (3.133)
2, r

The following variational equation holds
us € Hy : at(ut,¢>) = (Ft, ¢)t V¢ € Hy (3134)

for a weak solution to (3.124)—(3.128).
For the transported solution
ut=uoTy (3.135)
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the following equation is satisfied

ute H: a'(u',¢)=(F'¢) Vo€ H, (3.136)
where

a'(z,4) = a(z0 T, Y, ¢ o T, )

=/ v(t)e'(2):Ct: €'(¢)dz  Vz,¢ € H, (3.137)
n
(Ft, ¢> = (Ft’ ¢ o Tt—l)t
=/ft-¢d:v+/ P'.¢dI' Vo€ H . (3.138)
ko] In

In these equations the following notation has been used
1 - * -1 =*
¢(¢) = 5{D¢- DT;" +*(DT)™" - *D¢}, (3.139)
ff=4)foT,, P'=w(t)PoT; .

It can be shown that the derivatives a'(:,-), (F',.) of the bilinear form a'(,-)
and the linear form (F*,.) with respect to ¢ at t = 0 are given, respectively by

a'(z,4) = /n{e'(z): o(¢) + €(4):0(2) + €(2):C": () }dz (3.140)

Vz,¢ € H,
(F',¢) = /n{diva~¢+ ¢-Df - V}dz+ (3.141)
| {divrVP -4+ ¢:VrP- VI Vg€ H(®; R?),
where
é(4) = —%{Dd) .DV +*DV -*Dg}, (3.142)
C'={ciu}r Ciju=divVeiju+ Ve -V . (3.143)

Theorem 3.10 The following variational equation
i€ H\ZRY) ¢ a(i,¢)=(F,¢)—d(u,¢) VoeH (3.144)
withu=0 only, w-n=n-DV.u, only (3.145)

holds for the strong material derivative u € H'(£2;IR?) of the solution u(R2) to
(3.124)-(3.128) in the direction of a vector field V(-,-).
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Proof. From our assumptions it follows that the mappings

[0,6)5t— foT; € LA R, (3.146)
[0,6) 5t — PoT, € L*(I;R?) (3.147)

are strongly differentiable.
Moreover
(Df-V)i=Vf;-V,
(DrP-V,);i=VrP;-V,, V.=V —n(V,n)gs .

Therefore we can differentiate the integral identity (3.136) with respect to ¢ at
¢ = 0. This yields the integral identity (3.145). Since u' = 0 on I}, then « =0
on I). On the other hand, u; - n¢ = 0 on I}, thus

ut-n'=0 only,

where
n'=(noTy) = ||"DTt'1 -n||];~13"DT,_l ‘n.
Hence p
E(ut ‘n)=0o =0 on I}, (3.148)
or equivalently
u-n—u-*DV-n=0 only . (3.149)
Taking into account (3.127), one can show that (3.144) holds. o

Finally the form of the shape derivative u' = u'({2; V') of the solution u(£2) to
(3.124)—(3.128) is derived. It is assumed that the following regularity assumption

is satisfied
Du-V € H'(2;R?) . (3.150)

Therefore the shape derivative exists, is defined by
uw'=14-Du-VeH(2;R? (3.151)
and satisfies the following variational equation
a(u',9) = (F',4) — d'(u,¢) —a(Du -V, 9) . (3.152)

Let us suppose that V. =0on ToNT,,T1NT2,ToN T2, (V,n)gs =0on I,
then 2 = £2;. Thus v’ =0 and

(fla ¢) - a’(ua ¢) - a(Du * V’ ¢) =0. (3153)
Let us recall, that for u; € H!(£2;;IR®) the following integral identity holds

/o,:e(«ﬁ)dz: f-¢d:z:+/ P.¢dl . (3.154)
o) 2 rt
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Differentiation of (3.154) with respect to t at ¢ = 0 yields
/ o' e(¢)dz +/ vpo:€(@)dl’ = / vnf - dl +/ vakP-¢dl’  (3.155)
2 r r n

for all 4 € H2(2;R%).
Let us assume that 3¢/0n =0 on I', and let ¢, = ¢ — ¢ - n, then

/vna: e(@)dr =/ vpo: DgdI’ =/ vno: Drédll = (3.156)
r r r
/ {=divr(vao)d + vpkn-o - $}dI =

r

/ {=@ndivr(vpo)n — ¢rdivr(veo) + vpkn - o - @}dI" .
r

Hence

/!;a':e(tﬁ)dz=—/ndiva"¢+/rn-o'-¢d1’=

(3.157)
/{—¢-divr(vna)+vnnn-a-¢+vnf-¢+vnfc-P-¢}dI‘=
r

In this equation the use has been made of the conditions: ¢ = 0 on Iy and
¢-n=0on I, Hence ¢ =¢,on 3,0 -n=Ponl)and o-n=0,no0n I,
because of 0, = 0 on I . Thus using (2.125) we have

= [ ¢ [vaf +vakP —divr(vpo,)]dl + / Vs frdl . (3.158)
n r

]
Theorem 3.11 If for the vector field V(-,-) the following conditions are satisfied
V=0 onT’oﬂ-I—‘l y T]ﬂ?z , To ﬂfg y (3159)

then the shape derivative u' = w'(2;V) € HY(2;IR?) of the solution u(R2)
to (3.124)-(3.128) satisfies the following system of equations (representing a
boundary value problem)

dive' =0 in 02, (3.160)
17/

u = _v"b% onIy, v, =(V(0),n)Rs, (3.161)

o' n=v,f +v,kP —divp(vpo,) on I, (3.162)

v n=u, -*DV-n only, (3.163)

or =vnfr only . (3.164)
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Proof. The equation (3.160) follows from (3.157) for the test functions ¢ €
D(£2;R?). We derive the boundary conditions (3.161)~(3.164). We have

o 0
u'=i4—Du-V=—v,.a—Z—V,.~Dpu=—vn5—:t; only . (3.165)

Hence (3.161) is obtained. The condition (3.162) follows from (3.157). In order
to derive the condition (3.163), the following equation

ug-ng =0 on I =Ty(}) (3.166)

is to be used; from (3.166) it follows that

v n=-u-n" only . (3.167)

On the other hand
n'=n-Vrn-V,=-*DV-n . (3.168)

Since V; = 0, then
v n=u-*DV.n . (3.169)
Taking into account that (3.166) holds on I'; we get (3.163). Finally (3.164)
follows from (3.157), which concludes the proof. m]

3.6. Shape sensitivity analysis of the smallest eigenvalue

Let us consider the following eigenvalue problem :

Find (), z) € R* x H such that

a(z,8) = Ap /n h(z)z(z)p(z)dz Vo € H(R2) . (3.170)

In this formulation we use the notation of the previous section; it is assumed
that p > 0 is a given number, and h(.) € C(IR?) is a given function such that
0 < Amin S h(z) £ hmag forall z € R3.

Let A(£2) be the smallest eigenvalue and M(£2) C H(f2) the set of eigen-
functions corresponding to A(£2). It is assumed that for the elements of the set
M(£2) the following identity holds

) / h(z)p(x)p(z)ds =1 Vé € M(2) . (3.171)
n

It is well known that the smallest eigenvalue can be determined as follows
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A(£2) =min{a(4, 8)/(p /n MePd)lé e H 40}  (3.172)
—min{a(¢, $)lo / MéPdz =1, ¢ € H} .
n

Since a(4, ¢) 2 a||¢||g1(a;rs) for all ¢ € H, then from (3.172) it follows that
A(£2) > 0. Let the family {£2;} c R?, t € [0,6), be given and let \; be defined
as follows

Ae = A(@2:) = min{as(¢, 8)|6 € Hi| /n hléfPds = 1} . (3.173)

We shall derive the form of the directional derivative

A=d\N@2;V) = 1ti§)1(x(rzt) - A)/t . (3.174)

Since the bilinear form ay(.,.) is coercive and continuous uniformly with re-
spect to t € [0,6) we can assume that there exists a constant C such that
I|¢¢"H1(n‘;m8) é C fOI’ allt € [0, 6)

Lemma 3.7 We have

A = inf{d'(4, 6) — p /n div(hV)|¢[*dzlé € M(2)} . (3.175)

Proof.
Since

A = inf{ai(9, )/ (p /n hlgl2dzlé € He, ¢ £ 0}, (3.176)

then the transformation of the integrals defined on 2; to the fixed domain 2
yields
Ae = inf{F(t, )¢l ame) < C), (3177)
where
F(t,9) = a'(8,0)/(o [ 10k18Fds) .
Let us assume that
M, = {¢ € H|\ = F(¢,6)}, (3.178)

then
¢eM, ifandonlyif oT; ' e M(2,) telo,6), (3.179)

and by (3.177) it follows that
4|l g1 (ame) S C  for all ¢ € M, and for all t € [0,6) . (3.180)
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Let {tx}32, be a given sequence such that t; — 0 as k — co. For any sequence
{zx} C My, C H, there exists a subsequence also denoted by {zx} such that

zr — 2% weakly in H'(2;R?), where z* € My = M(R) . (3.181)
F(.,$) is right-differentiable at t=0 for any fixed element ¢ € H!(£2;R?),

2(0,6) = lm(F(s,8) ~ F(0,6)/ (3.182)

= d(6,6) - [ (V)i

The right-derivative of A; at t = 0 is determined in two steps.
Step 1 :
At — Ao =F(ta ¢t) - F(Oa ¢)

<F(t,¢) - F(0,4) Vo€ M(2), (3.183)
thus
lim sup(A¢ — Ao)/t §ltilr{)1(F(t, ) — F(0,¢))/t
: oF (3.184)
2_3;(0»45) Vo € M() .
Step 2 :

)‘t_)\o =F(ta¢t)_F(0’¢) gF(ta¢t)_F(0’¢t)
Vé. € Myand Vée M(2) . (3.185)

There exists s, 0 S s S ¢,
F(t,¢:) - F(0,¢) _ OF

t = E(S, ¢t) . (3.186)
For t | 0 we have that s | 0 and there exists an element ¢* € M(£2) such that
¢: — ¢* weaklyin H'(2;R?) . (3.187)
Hence OF OF
. OF s OF *
iy inf (5, 60) 2 50,69 (3.188)
d
" liminf(A — Ao)/t 2 @(0 ¢*) . (3.189)
t10 =06t ’

Finally from Step 1,

%7(0, #) Stiminf (220 < limsup (™ —)

t—0

§%§(0, ) ¢ € M(®)andVée M(2) .  (3.190)
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Therefore

= Em(x — o)/t = inf{ 52 (0,8)l¢ € M(2)) (3.191)

which concludes the proof of Lemma 3.12. 0
Let us observe that from (3.191) it follows that

A=d\(2V) = min{%(o, $g € %M(Q)} (3.192)

(see Sect. 2.12 in Chap. 2 for details), where
H D toM(£2) = weak closure of co(M(£2)) . (3.193)
In (3.193) the following notation is used
co(M(2)) ={¢ € H|p = aidi, @i 20, Zia; =1, ¢; € M(2)} . (3.194)

Since the set M(£2) is bounded, then the weak closure of co(M(f2)) can be
determined in the following way

¢ € coM(2) if and only if I{dx} C co(M(£2)) such that
¢r — ¢ weaklyin H'(2;R*) ask — oo .

It may be useful to characterize the subdifferential of A as

—A(2) = max{a(¢, d)|¢ € H with p/nh|¢|2dz =1} . (3.195)

The form of this subdifferential can be used to derive the necessary optimality

conditions for related shape optimization problems.
From (3.183),(3.192), and Propositions 2.36 and 2.38 in Sect. 2.14 it follows
that

A = min{(G(4), V(0))p:(m¥)xp(®N) |4 € TM(2)}, (3.196)

where for any ¢ € H the distribution G(¢) € D'(IR") which is supported on I,
sptG(¢) C I' = 812, is defined by the identity

(G(4),V(0))pr m¥yxp(®mN) = a'($,6)—

pA /n div(hV(0))|¢|?dz Vo€ H . (3.197)

From (3.196) using the classical result of non-smooth analysis, see e.g. (Ekeland
et al. 1976) we obtain:

Lemma 3.13 The subdifferential of A\(2) has the form
d(\)(2) = {-G(¢) € D'(RY)|¢ € oM(%2)} . (3.198)
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For ¢ sufficiently smooth the form of the distribution G(¢) can be identified
as follows.

Let us suppose that V =0 on [y NIy, I} NI} and I, N I, furthermore let
us assume that V; = 0 on 8f2. We have

F(t,8) = ai(é,6)/(p /n hlgPdz), (3.199)

where the bilinear form ay(.,.) is defined by (3.114).
Let ¢ be a sufficiently smooth function defined in R?, ¢ = 0 on I'{, ¢-ny =0
on I'}. Then

B_F = [ vo(d):e - v 2
—(0,4) = /P (9): ($)dl" — A /P nph|o|%dI . (3.200)

For the first term on the right-hand side of this equation we have

/vna:edf=/vna: D¢dI’ = / vnn-a-%dl‘+/ va0:DrédI’ = (3.201)
r r r on r

Integration by parts on I' yields

=/ vnn-a-%d['—/divr(vno)-¢d1"+/ vpkn-o-¢dl =  (3.202)
r on r r

Taking into account (2.125) and the boundary conditions: ¢ = 0on Iy, 0-n =0
only,d-n=0,0, =0o0n Iy, we get

=/ Vpn o - 6¢ / divp(vpor) - ¢dI'+
Io 3" n

(3.203)
—Upkn -0 - ¢, }dI .

{vpopn -

9¢

I, on

Therefore the following representation of G(¢) € D'(R") can be obtained for
¢ sufficiently regular:

(G(4), V(0))pr ]RN)x’D(]RN) = (9(8), vn) D (r)xD(I) = (3.204)

=/ Vpn -0 —dF /{dwr Vn07) + Avpphd} - ¢dI’

/ {vnan A —Unkn -0 ¢r - Avnph|¢1'| }dp

Remark. If 02 = I, then ¢ =0 on Iy and

A = max{ / Upn -0 - gj‘-;dm € coM(2)} . (3.205)
r
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3.7. Shape sensitivity analysis of the Kirchhoff plate

In this section the linear model of thin, solid elastic plate is considered. The
static response of the plate w = w(£2)(z), z € 2 C R?, can be determined
using the Kirchhoff plate equation

(bijr(z)w,ui(z)),i = f(z) in L2 (3.206)
with the following boundary conditions given on I' =92 = LU U T,
i}
w =0, 5% =0 only, (3.207)
w=0, M,=0 only, (3.208)
M,=0, Q=0 onl;, (3.209)

i.e. the plate is clamped, simply supported and free on the portions Iy, Iy and
I, of the boundary 8. M, denotes the moment and Q is the effective shear
force given by
M, = M,-J-nmj R (3.210)
a
Q = —My,ni — E(Mnr)’ (3.211)

where
M;i; = bijuiw ik, Mpr = Munmy .

For the tensor function B(.) = {biju(.)} € C*(R*;R'"), i,5,k,1 = 1,2, the
usual symmetry conditions hold

bijki(z) = bjini(z) = bruij(z) z €0, 4,5,k1=12. (3.212)
Let us assume that there exists a constant v > 0 such that
b,’jkz(:t)f,'jfu g 1/{,‘]‘{,‘]‘ forallz € R? (3.213)

and for all the symmetric second order tensors £. For a weak solution w € H%(2)
to (3.206)(3.209) the following integral identity is satisfied

weH®): a(w,4)=(f,¢) VéeH(®), (3.214)

where
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HR)={p € H()|¢=0 onHUI, %=0 on Iy}, (3.215)

a(z,4) = /nbiju(x)Z,.'j(z)¢,kz(x)dx Vé,z € HX (), (3.216)
(18)= [ fle)ela)s Vo e H) . (3.217)

The following Green’s formula holds for all z € H*(£2) and ¢ € H*(2) :
a(z,¢) =/n(biju(x)Z,lk(x)),ijtﬁ(:v)dx +/F{Q¢+M,,%}dl“ ) (3.218)

Using the formula (3.218) it is possible to define the weak form of the equation
(3.206), along with the nonhomogeneous boundary conditions prescribed on
Iy, Iy and Iy, respectively. However for the sake of simplicity we restrict our
considerations to the system (3.206)—(3.209) with the homogeneous boundary
conditions.

Let w € H(£2;) denote a solution to the system (3.206)-(3.209) defined in
the domain 2, C R?, 2, = TW(V)(R), t € 0,9),

we € He:  ay(we, ¢) = (f,¢)e Vo€ He, (3.219)
where
Hi={¢€ H*(2)|¢=0 onI,UIY, gﬂ =0 onI,}, (3.220)
Nt
ay(z, ¢) = _/_;) b,'jkl(z)zl,'j(:l:)tﬁ,u(x)dx Vz,¢0 € HZ(.Qt), (3.221)
(58 = [ S@az VéeH . (3.222)

To proceed further with a discussion we have to derive the form of the material

derivative

From (3.219) it follows that for w' = w, o Ty € H?(12) the following variational
equation is met

w' € H2): d'(v',¢)=(f',¢) Y€ H(A), (3.224)
where

a'(z,4) = /n £4(2): B:€{($)dz Yz, € HX (), (3.225)

¢(z) = D(*DT;! - V2) - DT, (3.226)

B' = {bi;i}, biju =v(t)(bijki o T), (3.227)

fi=qt)(foT) . (3.228)
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Lemma 3.14 For the strong material derivative w the following variational
equation is satisfied

weHR): aw,$)=(f,¢)-d(w,¢) Y¢eH), (3.229)
where
f'=div(fV), (3.230)
¢(ed) = [ (EG1BE0) + B

§(2):B:€'(9)}dz Yz, ¢ € H* (D),

¢'(z) = —=D(*DV - Vz) — D(Vz) - DV, (3.231)
B' = {Ou)s b = div(bijuV), (3.232)
£(¢) = D(V¢) = {4,i;} - (3.233)

Proof. Since the mapping
[0,6)3t— foT: € (H(R)) (3.234)

is strongly differentiable (see Proposition 2.41), then we can prove this lemma
using Theorem 4.30 of Chap. 4. 0
Finally the form of the shape derivative w' is to be determined

w=w-Vw-V. (3.235)

It is supposed that
Vw-V € H}(2), (3.236)

therefore w' € H%(12).
Differentiating (3.219) with respect to t at t=0 and assuming that ¢ €
H*(IR?) is a given function, ¢ € H2(£2;) for t > 0, t small enough, we have

d
Ezat(wt,¢)|t=0 =/ bijkzwfu¢,ijdz+/ Vnbijriw e i;dl,  (3.237)
0 r
d
(P = / vnfédI, (3.238)
r

here it is assumed that the trace yrf € L?(I) is well defined.

Integration by parts of the first integral on the right-hand side of (3.237),
yields
M'J = b;’jkl'w:kl . (3.239)

Hence



3.7. Shape sensitivity analysis of the Kirchhoff plate 149

/n ij0.ijde = / ij,jidde + / {M;n;¢;— M;; ini¢}dl . (3.240)
It should be remarked that on I' = 312 we have
¢i= nig- 9¢ + (Vré)i . (3.241)
Therefore
/PM,fjnjq},.-dI’ / M; dF +/ n-M'-Vrédll =
and integrating by parts on I" we get
= /P {M;,Qiz —divp(M' - n)¢ + M, ¢}dI" (3.242)
= [ (0,52 - dive(M,))ar,

where
M, = M;;nin; (3.243)

M, =M -n-Mn . (3.244)

Integration by parts on I" accomplished for the second term on the right-hand
side of (3.237) leads to

/ vnM,'j¢’,'de = (3.245)
r

accompanied by the appropriate extension N of the normal vector field on I"
with N /dn = 0, and for ¢ such that 82¢/8n? = 0 on I, yields

= [ oMl Vr(Go )+ Vrlnge + (Vralar = (3246)
r
Integrating by parts on I" we have
) 06 .. 09 ..
— | {divr(vaMpr) = + divr(vaM:) - n— + divp(va M;) - Vo }dI'

r on on

99, .. )
= — | {==(divp(vaM;) — divp(vn Mp;)

r 3n

+ divp(vaM;) - n) + ¢divp(divp(va M), ) }dI .

From (3.237) and (3.238) it follows that
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1] ! 6¢ : ! : !
M;; i¢dz + | (Mp—= — ¢(n - divM' + divr(M,,,))dl+
a r on
/ {—%(divr(vnMnr) + divp(va M) - n) (3.247)
r 3n
+ ¢divp(divr(va M), )}dl = / vnfédl .
r

Hence the shape derivative w' is a solution to the following boundary value
problem

(bijki(z)w'(z),),ij =0 in 2, (3.248)
ouw' w
! - - _ v
w =0, ™ Ung—y on I, (3.249)
a
w' = —v, o M, = divp(vaMy.) + dive(vaM;)-n on Iy , (3.250)

E9
M, = divr(vaMyr + div(vaM:)-n on I},
Q' = —n-divM' —divp(M}.)

= —divp(divr(vaM;)r) + vof on Iy . (3.251)

The boundary conditions for w' and dw'/dn in (3.249) and (3.250) are derived
from (3.235).

3.8. Shape derivatives of boundary integrals: the
non—-smooth case

Let us consider a non-smooth domain 2 C ]RN, N = 2,3. First a non-smooth
domain in the plane will be examined. Let 2 C IR? be a given domain with
the piecewise smooth boundary I', i.e. it is supposed that there exist a; € I,
1 £1 X m, m an integer, such that I' = I' \ {a1,...,amn} is of class C*, k > 1.
Moreover it is assumed that I" has corners located at points a;, ¢ = 1,...,m;
therefore the unit tangent vector 7 on I' is not continuous at these points. The
tangent and normal vectors at a; are defined as follows

=17 —71%, ni=n7 -n}, (3.252)
where, e.g. n} (n]) denotes the right (left ) limit at a; € I' of the outward unit
normal vector field n on I'. It should be remarked that the existence of limits %
at a; is equivalent to the existence of limits n* of the normal field n at a;. Here
it is assumed that the unit tangent vector 7 on I" corresponds to the natural
orientation on I'.
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Let V € C(0,¢; D¥(IR?, IR?)) be given and let T;(V') be the associated trans-
formation of IR?. We shall examine the domain 2, = T;(V)(£2) with the bound-
ary It = T(V)(I') and corners located at the points a! = Ty(V)(a;),1 S ¢ S m.

Let f € H3/2(IR?) and let us consider the shape functional J(£2;) = J r, fdl.
Applying the change of variables z = Ty(V)(X) to the shape functional we
obtain

J(2) = /Ff o Tyw(t)dI'

(see Sect. 2.17 of Chap. 2).

Let I'; = (aiai41),i = 1,...m — 1, be the part of I" which joins the points
ai,ait1, in the positive direction of I'. For i = m we set I', = (am,a;). Finally
by the application of Stokes’ formula on I; we obtain (see Chap. 2, Sect. 2.34)
for1<:Sm,

[ eV ONE =@ V(O aze0), (i

I;
— f(ai)(V(0,ai41), 7 (ai))ms,

where _ _
7~ (ait1) = z_l}}gl 7(z),
z€li=(a;,ai41)
H(a;) = lim () .

z—ay

:EI‘.-:(n.-,a;+1)

For 7%(ap) and 77 (a;) the same formulae on I'y, = (am,a;) can be used. Here
w(t) = |M(T}) - n||rz. Furthermore the mapping t — w(t) is differentiable in
C*1(RM), and the derivative at ¢ = 0 is of the form

w'(0) = divV(0) — (DV(0) - n,n)g2 on I .
Hence

dJ(2V) = /P (V£ - V(0) + fdivpV(0))dT,

where divV(0) is defined everywhere in IR?, thus almost everywhere on I'. Using
the identity
diV[‘(fV) =Vr-V+ fdivpV

we obtain

dI(2;V) = /r divp(fV(0))dI + /F -g;(V(O)-n)]deI' .

Therefore the following proposition can be formulated

Proposition 3.15 Let us suppose that f € H3/2(RYN), then
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€ /F L)l = /F (2 4+ 5f) (v(0) mmsar+
. (3.253)

Y (V(0,a:), 77 (ai) = 7 (ai))mre

i=1

Finally let us consider an example of a non-smooth domain in R3. Let 2 C
IR? be a given bounded domain, and let I' = 812 be piecewise C*. Furthermore
it is assumed that 82 = I UT, U S, where S = T'; N T, is a one-dimensional
manifold without boundary of class C¥ and T;, i = 1,2, are of class C¥. For
any point z € I';, T,I'; stands for the tangent space to I'; at ¢ € Ty, 1 = 1,2.
Let 7 € C*¥~1(S) be a vector field,

T(.’L‘) € ’TzTI N 7;?2

for any z € S; 7 is a unit tangent vector on S oriented along S according to
the positive orientation. Let us assign to each z € S a unit vector u;(z) € T, T;
such that

(r(z), pi(z))rs =0 .

We assume that p;(z) is outward pointing on I';. From Stokes’ formula it follows
that

/F div(fV)dI = /S FV - pide

Thus
/ div(fV)df'=/f(V,y1 + p2)radl .
or S

This result makes it possible to determine the form of the shape derivative of
the surface integral on 942

Proposition 3.16 Let us suppose that f € H3/2(IR®), then

- /a n(a_ +6f) (VO mgedl+  (3.25)

(3 /,,, )

t=0

/Sf(V(O)»ltl + p2)radl .

If the boundary 82 of the domain 2 is piecewise C¥, k > 1, then the form of
the shape derivatives of surface integrals on 942 can be derived in the same way.
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3.9. Shape sensitivity analysis of boundary value
problems with singularities

Let 2 C IR? be a given domain with the sufficiently smooth boundary I' = 612.
Let I' = FoUF]U{A}U{B}, with I'y = FQU{A}U{B} and I'; =
It U {A} U {B} (see Fig.3.17). We shall make use of the following notation

Hi(2)={¢ € H'(?)|$ =0 on Iy} .

It is well known, see e.g. (Temam 1985), that there exists a > 0 such that
[ 196fda 2 aléllng) Vo€ Hh(9)

provided that |, Iy d¢ > 0.

I

I

Fig.3.17. Domain 2 € R?

The following boundary value problem is considered

—Au=f in 02,
u=0 only,
du
5;:0 onFl,

where f € L*(IR?) is a given element.
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For a weak solution to this problem the following integral identity holds

u € Hp, (2) : /nVu-Vqﬁd:c:/nquda: V¢ € Hr, (92) .

Lemma 3.18 The weak material derivative
u=u(;V)€ H}O(Q)

of the solution u € H}o(ﬂ) is given as the unique solution to the following
integral equation

ie HL (D) :
/Vit-Vqua::/ div(fV)quz—/(A'-Vu,V¢)]dez
n n n

Vé € H} () .

Proof. Let

us € H}-;(.Q,,) : /

Vu, - Védz = / fodz Vo€ Hps(£25),
2, n,
where 2, = T,(2) and I'§ = T,(I). Let u® stand for

u.’ = Ug OT, € HII‘O(-Q) .

Then
u® € H}o(.()) : / (As - Vu® V@ )Rradz = / fPédz (3.255)
2 I}
V¢ € H}O(Q),

where f* =v(s)f o Ty, s € [0,9).
The mapping
[0,6) 5 s — f* € (HL,(2))

is weakly differentiable at s = 0, its derivative is given by
f =div(fV) .

Therefore we can differentiate (3.255) with respect to s at s = 0, as was to be
shown. 0

Remark. In order to ensure the existence of the strong material derivative
w(2; V) € H}, (2) the following assumption is necessary :
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The mapping
[0,6)5 s — foT, € (Hp,(R2))

is strongly differentiable. If f € H "(IR?), r > 2, then the assumption is satisfied.
Let us consider the shape derivative u’ = u'(£2; V) of the solution u €
H},(2) to the above elliptic equation. Since Vu -V € L%(R2) for all admissible

vector fields V thus
' =u-Vu-VeL}R).

Let ¢ be a given smooth function, then for u® € H }O(Q) we have

/ Vu’® . Védz = —/ u’Addz +/ u"'gﬁ-dl1 .
n n r On
If it is assumed that

ApeL}(2), ¢=0 onlp, %g=o on Iy,

whence

/ Vu® - Védz = —/ u’Addz
n n

because u® = 0 on I'y. From the foregoing it can be inferred that
/Vﬂ-Vquz = —/ 1Addz
n
hence
—/ wAddz = / div(fV)édz — / (A" Vu,Vé)Rradz .
n n n
It should be noted here that we use the same symbol for the scalar product in

L?*(£2) and the duality pairing between (HF, (2))' and H}, (£2).
Therefore the following integral identity

/ u'A¢dzr = L(u,V,¢) = —/ Vu-VAddz
2 0
- / div(fV)dz + / (A" - Vu, V) padz

n n

holds for the shape derivative u' € L?(f2). For any sufficiently smooth vector
field V' with
V(A)=V(B)=0, vo=(V,n)gz2=0 onI
we have that u' = 0. Thus there exist:
distributions 14(4), 1(¢) € D™} (I;R?),
g0(¢) € D7} (Lo), g1(¢) € D7 (1)
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such that
S‘pt IA(¢) = {A}a

spt lg(¢) = {B} .
Furthermore

/n u! Addz =(£4(8), V(A)) g + (€5(8), V(B)) g+

(90(#)s V) D=1 (o) x D1 (1) + (91(8), va) D=1 (1) x D1 (1Y)
for all ¢ € HX () with Ag € IX(®),

where we denote (£4(4), V(A))r2 = (1a(4), V). If it is assumed that ¢ € D(R2),

then
/ u' Agdz :/ Au'gdz =0 .
7] n

Au'=0 inD'(R) .

Hence

The boundary conditions for u' are non-smooth, because we have
. o
u' :u—vna—z eHYV¥I) onT .

Thus 5
u' = —vn——u on Iy,

on
u'=4u onlj .

In order to determine the form of distributions 14,15, go, g1, the form of the
singularity of u is to be obtained first, i.e.

u =uy + us

where u — u; € H?(2), uy is the singular term, see (Grisvard 1985) for the
details.

The form of distributions l4, Ip can be determined making use of the term
L(u,V, ¢) provided that the explicit form of the singular part u, of the solution
u is known.

3.10. Hyperbolic initial boundary value problems

Let 2 ¢ RN be a given domain of class C¥, k integer, k¥ 2 1; the following
notation is used: I = (to,1), t1 > to, @ = I x 2 C RN*!. For a given vector
field V € C(0,e; D*(RY,R"Y)), T,(V) denotes the associated transformation.
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In this section ¢ denotes the time variable, t € I, while s is the transformation
parameter, s € [0,6),0< é <e.

Let 2, = To(V)(R2), s €[0,6), and let Q, = I x 2, c RN*™.

For any s, 0 < s < §, we have to consider a partial differential equation of
the hyperbolic type, i.e. the wave equation defined in the cylinder Q,.

Let f € L'(I; LZ(IRN )) be given, and denote by [] the wave operator :

%4

O¢=-a¢+ -7 Vée CHRNTY) . (3.256)

Let y = y,, s € [0,6), be a solution to the following mixed hyperbolic problem
Oy=f inQ,, (3.257)

y(to) = %(to) =0 inf2,, (3.258)

y=0 onlX,, (3.259)

where Xy = I x I, is the lateral boundary of Q,, and I's = 012,.
We derive the standard a priori estimates for solutions to (3.257)—(3.259).

Proposition 3.19 For any ¢ in C*®(Q,) such that |5, = 0 we have

||¢||L°°(I;H;(n,)) S 108l r;L2a.) (3.260)
9¢
ot

Proof. Let us assume that the quadratic energy functional is defined by

E(t) = % /n '(|V¢>(t,z)|2 + (%?(t,z))z)dz .

Since ¢ = 0 on I, then using Green’s formula we get

and

SO0l 2y - (3.261)
Lo (I;L%(02,))

0¢ 0¢
E’t=/ 062240 < |0 6|laca |22 .
( ) o 9t ” ”L (R2,) ot L(2,)
From E(to) = 0, it follows that for any t € I
t
a
BOS [ 108l | 5| e
to L*(,)
t a¢
< [ 106 |5
to L*(92,))
9¢
J[erae 1 .
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Hence for any ¢t € I we obtain

9%
at

1 ay\*
2 [ (%) e<m0 10010y
n, Lee(I;L%(82,))

which leads to (3.261).
For any t € I we also have

1 24, < [|2¢
2/’7‘IVy| d“”=”at

This proves (3.260). a
Let the problem (3.257)-(3.259) be defined in the cylinder Q,. We denote
by

10 8l rL2(a.)) -
Lo (;L%(02,))

ys € L=(I; Hy (92,))
a weak solution to the problem (3.257)—(3.259).

Proposition 3.20 Let f € L'(I; L2 (RY)). For any bounded domain of class

Ck, k 21, and for any s € [0,6), there ezists the unique solution y, to (3.257)-
(8.259) such that

ys € L®(I; HY (2,)) (3.262)
% € L=(I; L*(1,)) . (3.263)

Proof. Applying Galerkin’s method and making use of a priori estimates (3.260)-
(3.261), one can show that (3.262) and (3.263) hold. a

Proposition 3.21 Let y, be the solution to (3.257)-(3.259), then the following
inequality 1s met

9ys
ot

S 2| 0Oysllrrizay) - (3.264)
L*>(I;L*(R2,))

Nysllzeo (r; 20, + ’

Let y* = ys o T, denote the element transported to the fixed domain 2, i.e.
defined by
y'(t,7) = vs(t, To(2)) .
It can be shown that for all s, 0 £ s < §, we have
y* € L®(I; H}()) (3.265)
dy*

o € L=(I; L*(R)) .

The transported wave operator [1, is defined in Q,
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(O¢)oT, =0,(¢0Ts) . (3.266)
Since the variables t and s are independent, then

o? o2
(Wf oT,) = 55(¢0T.)
It should be remarked that

(Ag) o Ty =~(s) ™ div(A(s) - V(¢ 0 T2)),

where

A, =~4(s)DT;!-*DT ' .
Thus
0%*¢
a2
Using the change of variables z = T,(X) in the estimate (3.264) we obtain the
following estimate of the transported solution y°.

O,¢ = —y(s)" div(A(s) - V¢) + (3.267)

Lemma 3.22 There ezists a constant a > 0 such that for any 3, 0 £ s < 6,

s

<
= (3.268)

L (I;L%(92)) -

2‘/;tl (-/n") [— (\/'y_(s_)>_l div(A(s) - Vy°) + \/’_y@a;tyz,’]zdz)%dt =
2|lVA(8)0sy’ |1 (1;22(2))

ally’ll Lo (r;H1(2)) +

Proof. Applying the change of variables z = T,(V)(X) in (3.264), it follows that
(3.268) holds. By the assumptions adopted, a > 0 is a given constant,

As(z) = A(s,z) 2 o

1(s)(z) =(s,2) 2
for all s € [0,6) and z € 12. g
Let us assume that z* = y* — y. Hence, from (3.268) it follows that

9z°

ot

<

Lo (I;L%(2))

o||2°|| oo (r;H2(02)) + @

1
20 v( oo (I8 s2° L2 (1;222)) -

On the other hand
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O,z* =0,y* -0,y (3.269)
= (D y,)oT, _Day
=(foT, - f)+@-0,)y

In order to determine an estimate of the norm of the element 12* (as s ap-
proaches zero) for s > 0, it is sufficient to examine the last two terms.

Proposition 3.23 Let ¢ € L'(I; H(12)) be given such that 3¢ € L*(I; L*(2)).
Then the mapping s — [, - ¢ is differentiable in the norm of the space
LY(I; L*(2)), and the derivative at s = 0 is given by

(disD, : ¢) =0'¢ = divV(0)Aé — div(4'(0) - V), (3.270)

8=0

where

A'(0) = divV(0)T — 2¢(V(0))
(V(0)) = %(DV(O) +*DV(0)) .

Proof. Under our assumptions the mappings s — 7(s,-) and s — A,(-) are
differentiable in C*~1(12) and C*~1(12; R"), respectively. Then from (3.267) it
follows that (3.270) holds. a

Proposition 3.24 Let us suppose that f € L(I; H}OC(IRN)), then the map-
ping s — f(t,Ts(-)) is differentiable in the norm of the space L)(I; L*(12)), the
derivative at s = 0 13 given by

& (FoT)maltrz) = Vaf(t2) - V(0,) - (3211)

The proof of Proposition 3.24 is similar to that of Proposition 2.32 given in
Chap. 2, Sect. 2.14. Therefore it is omitted here. O

Lemma 3.25 Let us assume that O'y € L'(I; L*(R2)). The material derivative
y € L>®(I; H}(2)), with 8y/dt € L>(I;L*(12)), of the solution y to (3.257)-
(3.259) satisfies the equation

Oy =div(fV)-0O'y inQ,
y=0 on X,

. Y _
Y(to) =0, Ey(to) =0 .

Proof. We shall show that
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1 s . : oo 1
-(y*'—y)—y—0 strongly in L*(I;Hy(12))
S

% (ai - @) - % — 0 stronglyin L®(I;L*(2)) ass—0 .

Let us assume that

1
s __ = 8 —- - *
2=~y -y) -9
then
U,z°=F, inQ,
2°=0 onJX,
a 8
2(t) =0, ;t(to)=0 in 2,
where

Fo=S(0(9)f o T, - f) = div(fV) + 2@ -0,)y - O'y
From Proposition 3.22 and 3.23 it follows that
F,— 0 stronglyin L(I;L*(2)) ass—0 .
Using a priori estimates we obtain

9z°
ot

S OOz prrL2()) =

2°l| Lo (1; 2 (2)) +
L (I;L2(R2))

C\|Fsllr(z;L2(2)) = O -

This concludes the proof of Lemma 3.25. O
Now we are able to determine the form of the shape derivative y' = y'(£2; V).

Lemma 3.26 Let us suppose that
O(Vy- V) e L'(I; IX(2)),

then the shape derivative y' is given as the unique solution to the following
hyperbolic problem

Oy =0 nQ,
9y
y' = _%(‘/’n)IRN on E’

d .
y'(t) =0, Ey(to) =0 inf2.

Proof. Since y' =y — Vy -V, then
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Thus
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Oy =0y -0O(Vy- V) e LY(I; L*(2))

]
y'(to) = %—yt-(to) =0 in .Q,

. %
Yy =y-Vy-V= —%(V,n)mn on XY .

y' € L®(LH'(12))

3y' co/T. T2
5 €Lo(IAQ) .

Finally in order to show that [1y' = 0 in Q, we have to consider under assump-
tion that s € [0, §) the following integral identity

t a¢ _ ty
./to /n'{y,b—t; -i-Vy,-Vz;S}dzdt—/tO /n, fédzdt

for all ¢ € D(RN*!) such that ¢|g, € D(Q,) .

Differentiating with respect to s at s = 0 we obtain the integral identity

t a2¢
/ / {y'w + Vy' . Vd)}dxdt =0 V¢ € D(Q),
to n

as was to be shown.



4. Shape Sensitivity Analysis of Variational
Inequalities

This chapter is concerned with the shape sensitivity analysis of variational in-
equalities. First we shall examine a simple example.

Ezample 4.1 Let y denote the deflection of an elastic membrane of the reference
configuration 2 C IR? subjected to the pressure f. It is assumed that the deflec-
tion of the membrane is constrained by an obstacle v, therefore the following
unilateral condition

y2 ¢ (4.1)

must be considered.
The deflection y is determined by minimizing the energy functional

19)=3 /n IV [2dz - /n féds (4.2)

subject to (4.1). This problem has a unique solution provided that, e.g. y = 0
on 8f2. Therefore y minimizes the functional (4.2) over the convex closed set

K ={¢ € Hy(2)|¢(z) 2 ¢(z) in 2} .
This set is non—-empty for ¢(-) € L}, (£2), ¢ < 0 on 802. The necessary and suffi-

loc
cient optimality conditions for the minimization problem under discussion have

the form of a variational inequality. The problem considered can be formulated
as follows:

Find an element y = y(£2) € K = K(£2) such that
[ 562 [ fo-is Ve x:
here it is assumed that f € L(2),

or in an equivalent way:

Find a solution to the following complementary problem
y_"pgo, _Ay_fgo in.Q,
(y—9¥)(Ay+f)=0 ing2.
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From the regularity results obtained by Brezis et al. (1968) (see also (Kinder-
lehrer et al. 1980)) it follows that

ye HX ()N H}(2) .

Let us denote by Z C 2 the so—called coincidence set
Z = {z € Oly(z) = P(z)} .

Fig.4.1. Domain 2 Cc R?

It is evident that ¢ + y € K for any ¢ € H}(R2), ¢ 2 0, therefore
/ Vy-Vqu.z—/ fédz 20 V420 .
n 2
Hence there exists a non-negative Radon measure p given by
/¢du =/n(—Ay = f)gdz
= [V V6- )iz voe o)
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with the property that for Z compact
wR\Z)=0.
It should be noted that in general the set Z is not closed.

Let IT : H™1(2) 3 f — y € H}(R2) be the non-linear mapping associated with
the unilateral problem under consideration.

It can be shown (Mignot 1976; Haraux 1977) that the mapping T is directionally
differentiable and the differential of IT in a direction h € H~1(12), denoted by
IT'(h), minimizes the quadratic functional

J(4)=1 / Vo|2ds — / héds
2Ja 2
over the convex cone
S={¢€H(N)|$20 qe. on2Z, / ¢du =0} .
]

Here q.e. means quasi-everywhere, i.e. everywhere possibly except for a set
of capacity zero. The definition of capacity is given in Sect. 4.3 by the formula
(4.54).

Making use of the approach relying on the material derivative method it can
be shown (Sokolowski et al. 1985a; 1987a), that the domain derivative y' of the
solution y to the unilateral problem is the unique minimizer of the functional

. 1
i6)=7 [ IVofds
N
over the cone

S,(R2)={4c H'(R)|¢ = —vnz—z onT, $20q.e. on Z,/(bdu =0}

provided that the obstacle 1 is sufficiently smooth (see Sect. 4.3 for the details).
Finally let us observe that the solution y to the unilateral problem can be
characterized as the metric projection in the Sobolev space H}(2) of an element

F € H}(92) onto the convex set K C H}(R2)
y = PcF: / IV(y = F)[2dz = min / IV(u - F)|2ds,
n uEK n
where F = A~'f, ie.

Fe H\(D): /DVF.wdz:/nfgbdx Vé € HI(R) .
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It should be noted that we use the same symbol for the duality pairing between
H=1(2) and H}(£2) and for the scalar product in L*(R2).

We shall briefly outline the main results on the differential stability of the metric
projection in a Hilbert space onto a closed and convex subset. They will be used
in the shape sensitivity analysis of variational inequalities. First we shall discuss
some examples.

Ezample 4.2 Let us consider the projection mapping in IR onto the set K = [0, 1].
We have

1 z>1
VzeR: PK(x)={:c 0sz=1
0, z<0.

It is evident that the mapping z — Pk(z) is differentiable everywhere except
at z =0 and z = 1. For h = 1 and for € > 0, € small enough, it can be shown
that at the point y = 0 we have

Pk(y +€h) = Pxy + et

where

pt o [h R20
10, h<o.

Thus for € > 0, € small enough, the following equality holds
[Px(y +eh) — Px(y)l/e = h* = lim{Py(y +¢h) ~ Px(y)]/e -
Hence at y = 0 we have

Pk(y + €h) = Pk(y) + eQ(h) + o(¢),

where the mapping Q(-) : R — IR is defined by Q(k) = h* for all A € R.

The mapping Q(:) is called the conical differential of the projection Pk(-) at
y = 0, this name will be used throughout.

Let us recall a way in which a variational inequality can be used to characterize
the mapping Pg(-). Since for a given z € IR we have

(Pk(z)—z)? L (v— z)? WweK,

then by the standard reasoning it follows that the element Pk/(z) is given as the
unique solution to the following variational inequality:

K > Px(z): (Pk(z)—=z)(v—Pk(z))20 YveK .

Ezample 4.8 Let K C RY be a compact, convex set with non-empty interior
and 0K of class C2. It is assumed that a convex function ¢ € C%(IR") is given
such that 9(Z) < 0 for some Z € RY and
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0K = {z e RN |y(z) = 0} .

It can be shown, e.g. using the results obtained by Malanowski (1985), that the
projection in IRY onto the set K is directionally differentiable, i.e. for given
elements f,h € RY and for € > 0, ¢ small enough, we have

Pk (f +¢h) = Pk(f) +€Q(h) + o(¢) ,
where the element Q = Q(k) € IRY is given as the unique solution to the
following variational inequality
Q€ Sk(f) :
(AQ,E - Q)]RN ; (h,.’t - Q)]RN Vz e SK(f) .

In this inequality the following notation is used:

A=1I+)D*(u),
u = Pk(f),
A= {gf —ullgy/|IDY(u)lrr  f € K;

otherwise
_[zeRM: Dy(u).z £0and A\Dy(u).c =0 if f ¢intK
Sk(f)‘{m"’ if f € intK .

In the case under consideration Q(-) : RY — RY is the metric projection
onto Sk(f) with respect to a scalar product in IRY depending on the Lagrange
multiplier A.

4.1. Differential stability of the metric projection in
Hilbert spaces

We shall briefly outline the main results on the directional differentiability of
the projection in a Hilbert space onto a convex, closed subset.

Let H be a separable Hilbert space, and let K C H a convex, closed subset.
Moreover, it is assumed that there is given a bilinear form

a(,):HxH->1R
which is coercive and continuous, i.e.

a(v,v) 2 efol|l; YweH

4.3
la(v, 2)| < Mlollzlle Vo,z € B, (43)

where a > 0 and M are given constants.
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For the sake of simplicity, it is assumed that the bilinear form is symmetric
a(v,z) = a(z,v) Vv,z€ H . (4.4)

Let Pg(f) stand for the a—projection in H of an element f € H onto the convex
set K. The element y = Pk(f) minimizes the quadratic functional

I0) = 5alv~ Sy~ f) (45)

over the set K. Therefore to characterize y the following variational problem
can be stated:

Find y € K such that
aly—f,v—f)20 YvekK .

It can be shown that the mapping Px(-) : H — K C H is Lipschitz continuous

(4.6)

1Px(f) - Plln S 2 fs ~ folw Vi foeH . @7)

Therefore by a generalization of Rademacher’s theorem (Mignot 1976), there
exists a dense subset I’ C H on which Pk(-) is Gateaux differentiable, i.e. for
any f € T we can find a linear continuous mapping Pj(-) = Pj.(f,): H - H
such that

VYh € H : Px(f + ¢h) = Px(f) + ePg(h) + o(¢) , (4.8)
where ||o(¢)||n/e = 0ase | 0.
Below we shall use the concept of the conical differential of the projection Pg(-).

Definition 4.4 The mapping Pk(-) is conically differentiable at f € H, if there
exists a continuous mapping

Q(ah) = aQ(h) forall @ >0 and for all h € H )
such that for € > 0, € small enough,
Vh € H : Pk(f +€h) = Px(f) + €Q(h) + o(e), (4.10)

where ||o(¢)||#/e — 0 as € — 0, uniformly with respect to h on compact subsets
of H.

In order to determine the form of the mapping Q(-) defined by (4.10) for a
class of sets K we need the following notation.
For a given element y € K, Ck(y) denotes the radial cone

Ck(y) = {¢ € H|3e > 0 such that y + ¢4 € K} . (4.11)
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In general the convex cone Ck(y) is not closed, we denote by Tk (y) =cl(Ck(y))
its closure in H, Tk(y) is the tangent cone. Nk (y) denotes the normal cone to
K at y € K of the form

Ni(y) = {¢ € Hla($,z ~y) S0 Vz€ K} . (4.12)

The normal cone is convex and closed. Finally we denote by Sk (f) C H the
convex and closed cone of the form

Sk(f) ={v € Tk(y)la(f —y,v) =0}, (4.13)

where y = Py(f) with f € H. Let us assume that there is given a continuous

mapping

which is right differentiable at 0, i.e. there exists an element f'(0) € H such
that

lim (£(6) = FO)/s = FO)l =0 .
The following notation is used
y(s) = Px(f(s)) s€l0,9),
e(s) = (y(s) — y(0))/s .
It evidently follows from (4.7) that
le(s)lla £ M/a Vs € (0,6) .

It can be shown, the reader is referred to the proof of Theorem 4.6, that for every
weak limit point g of the function s — o(s) at s = 0% the following condition is
satisfied

e € Sk(£(0)) .
The orthogonal subspace in H to the element f — y € H is denoted by
[f =" ={¢ € Hla(y - ,4) =0} .
We denote (i, v) = a(p,v) for all p,v € H, |lo|lx = a(e,¢)3.
Proposition 4.5 Let K C H be a closed, convez subset of the Hilbert space H.
Then for any f € H, and any element w € Ck(u) N [f — u]t, u = Pg(f) we

have

Pg(f +tw) = Px(f) +tw . (4.14)
Therefore

Px(f +tw) = Px(f) +tw+o(t) VYwe (Cr(u)N[f—ult) .  (4.15)
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Proof. Since the projection Pg(-) is Lipschitz continuous, then by means of the
density argument one can see from (4.14) that (4.15) holds. Before proceeding
further with the proof we have to show that (4.14) is met.
Since w € Ck(u), then

uttwe K

for t > 0, t small enough.
On the other hand for all v € K

(f +tw— (u+tw),v = (f +tw)) =
(f—u,v—u)—t(f—u,w)=
(f—u,v—u)_f_O.

Hence for t > 0, t small enough,

Pg(f+tw)=u+tw=Pgxf+tw VYwé€ Ck(u)N[f—u]* .

0O
Theorem 4.6 Let f € H be a given element, and let u = Pk f.
If for any element w € Sk (u),
Pg(f 4+ tw) = Pk (f) + tw + o(t) ,
then fort > 0, t small enough,
Vh € H: Px(f +th) = Pxf +tPsh + o(t), (4.16)

where Pg(-) is the metric projection in H onto Sk(u).

Proof. (Haraux 1977) Let z € H be given, then

1Pk (f +tz) = Pk fllm S tllzllu -
By the definition of Ck(u), if

%(PK(f+tz)—PKf) — ¢ weaklyin H ast | 0,

then ¢ € Tk(u) = cl(Ck(u)). Furthermore, we shall show that £ € [f — u]*. It
should be remarked that for any element ¢ € H we have

(9 — Pkg,v—Pgg) S0 YveK .

Let us assume that
g=f+tz, v=Pxf=u,

then
Pyg = P f+t£(t) .



4.1. Differential stability of the metric projection in Hilbert spaces 171

Hence

(f +1z — (Pxf +t€(t)),u — Prf +1£(1))) S0
and
2(£(t),£(t) — 2) S#(f = P f,€(t)) = (f — Pxf,Px(f +12) - Pkf) S0 .
As a result, the following inequalities are obtained:
0> lintll%up(é(t),ﬁ(t) —-z)2> lil?l%)nf(f(t),ﬁ(t) -2)2(§€-2) .
Moreover
t(6(t),€(t) —2) S (f —u, (1)) S0 .
Let £(t) — ¢ € S weakly in H as t | 0, then £ € Tk(u) and
(f - ‘U.,{) =0 )

i.e. £ € S = Sk(u), the latter remains valid for any weak limit of the function
t — £(t) at t = 0. Let f € H be fixed, u = Pxf, S = Sk(u). Then for any
element w; € S,
lim sup(€(t), w1) S0 .
10

For a given element z € H, S* = {v € H|(v,p) S0 Vy € S},
z=w+w; withw€ S andw; € S*.
For the projection Pk(-) the following inequality holds
(Pkh— Pig,h—g) > ||Pxh— Pxgly Vhg€H .
Therefore
1Pk (f +tz) = Px(f +tw)ll}y < t(ws, Pre(f +12) — Pr(f + tw))
= t*(w,w1) + t*(w1, (1)) = t* (w1, £(2)) -
This result makes it possible to show that

i [P )= P 00
t10

lim sup(w, £(t)) S0 .
t10

H

Hence

P(f +1z) = Px(f +tw) +o(t) =

Proposition 4.5 implies
= Pxf +tPsz + o(t)

= Pgf+tw+o(t) .
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]
For some specific convex sets K, the explicit form of the tangent cone
Tk (u) = cl(Ck(u)) will be determined.

Ezample 4.7 (Rao et al. 1990) Let us consider the space H = H?(2) N H}(£2),
2 c R¥, N £ 3, with the scalar product

(y,2)n = / AyAzdz Vy,z€ H .
n

Let us denote by K the following convex cone
K={ypeHp>y 0,

where 1 € H is given.

Proposition 4.8 Let u € K be and = = { z € 2u(z) = ¢(z)} be compact.
Then
Tk(u)={¢€Hlp20 onZ}.

Proof. For N < 3, by the Sobolev embedding theorem, it follows that Hg(£2) —
Cc(n).
It is evident that

Tr(u) C {p € BX(2) |o(z) 20 on 5} .

To proceed further with our proof, it is therefore sufficient to show that any
element ¢ € HZ(2), ¢(-) 2 0 on =, belongs to Tk (u).

Since = is compact, then there exists 0 < n € C§°(£2), n = 1 on =. From the
Sobolev embedding theorem it follows that u,, ¢ € C(£2). Hence for any ¢ > 0
there exists £ > 0 such that

tp+en)+u—1¥ 20 inf2.

Thus
¢+en€Ck(u) €>0
and
¢+en— ¢ in H2() strongly ase | 0 ;
hence ¢ € cl(Ck(u)) = Tk(u). a

Ezample 4.9 Let us introduce the following notation

H=1IL*2), £ cR" isa given domain,
K ={¢ € L*(2)|¢(z) 2 0 for a. e. z € 2} .
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Let
feL*(n),
then
u= PKf=f+ =max{f’0}
and
E={z € nf(z)=0} .
Therefore

Tx(u) = {¢ € L} (2)|¢(z) 20 forae z € =} .

Ezample 4.10 (Mignot 1976)

Let
H= H(}(.Q) ,

K ={¢ € H(2)|¢(z) 2 0for ae. z € 2} .
For any element f € H}(2) we have

w=PxfeK: / V(u—f) V(¢—u)dz 20 VéeK .
0
Then
Tx(u) = {¢ € Hy(2)|¢(z) 2 0 for qe. z€ Z}, (4.27)
where = = {z € 2u(z) = 0}.

Definition 4.11 A convex and closed set K C H is called polyhedric, if for all
f € H the following condition is satisfied

Sk(f) = c({v € Ck(y)la(f — y,v) = 0}), (4.28)
where y = Pk f, and the cone Sk(f) is defined by (4.13).

It should be noted that the inclusion

cd({v € Ck(y)la(f — y,v) = 0}) C Sk(f)

holds for any element f € H.

The sets K in Examples 4.2, 4.9 and 4.10 are polyhedric, however in general the
sets K in Examples 4.3, 4.7 fail to be polyhedric.

For any polyhedric set K C H the form of the conical differential of the metric
projection onto K has been derived by Mignot (1976), see also (Haraux 1977).

Corollary 4.12 Let f(:) : [0,6) — H be right-differentiable in the norm of H
at s =0.
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It i3 supposed that for the convez and closed set K C H the following condition

18 satisfied
Tk(f) N [f = gI* = l(Cx(H) N[f - g,

where f = f(0), g = Pk(f(0)).
Then for s > 0, s small enough,

P (£(s)) = Px(£(0)) + sPs, (50y)(f'(0)) + o(s), (4-29)

where ||o(s)||a/s — 0 as s — 0. a

In particular, it follows from (4.16) that the projection Pg(-) is conically
differentiable at f = f(0) € H. Moreover we have

Q(h) = Ps,(s)(h) VYheH . (4.30)
It should be noted that in general
Q(h) # —Q(=h) .

Theorem 4.6 remains valid for a non-symmetric, coercive bilinear form a(-,-)
provided that the Hilbert space H is the so—called Dirichlet space (Mignot 1976).
It should be emphasized that from Stampacchia’s theorem, see e.g. (Kinderlehrer
et al. 1980), it follows that in the non-symmetric case there exists the unique
solution to the variational inequality (4.6) — the reader is referred to Chap. 2
for applications of the theorem to elliptic boundary value problems.

In this chapter we present an example of the set K C L?(£2, RN ) that is not
polyhedric, nevertheless it is possible to derive the form of the conical differential
of the metric projection onto K (Sokotowski 1985a).

Ezample 4.13 Let us consider the metric projection in the space H = L?(2; RN )
onto the set

N
K ={veLl*% IRN)% Zam?({) < 1forae. £ € 2}, (4.31)
i=1

where a; >0, i =1,..., N, are given constants. Let

N
1
¢(z)=52a,~m?—1 zeRY

=1

and
U={zeR"|p(z) 0} .

Let Py(-) : RY — RY denote the metric projection in RN onto U, f(-) €
L=(2;R") be a given element, and u(¢), £ € £2, be the projection of f(¢) € RN
onto U. We have
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u(€) = Pu(f(€))
Let A(¢) be the associated Lagrange multiplier

£(6) = w(Ollrn /I DY(u(@))llmy  for f(€) €U
AE) = {ll() (Ol /DY (u(é))llr pArg

and introduce the symmetric matrix
A(6) = [(1 + A(&)ai)bij]lnxn,

where £ € 2, §;j =1for i =j, 6;; =0 fori#j.
In the particular case of the set U C RY, the cone (4.23) is of the form

Su(£(€)) = {e € RN |Dy(u(€)) - = £ 0 and M) Dp(u(€)) - z = 0} .

It can be easily shown, in the case under consideration, that the condition (4.28)
is not satisfied. It is evident that the projection Py(-) is differentiable at f(¢)
provided that the associated Lagrange multiplier /\(f ) # 0. In general the rxght—
derivative ¢ = q(E) € RN of Py(-) at f(¢) € R, in any direction h € R", is
given as the unique solution to the following varlatlonal inequality

q € Su(f(¢)) :
(A(€) - g—h,v—q)ry 20 Yo € Sy(f(£)) -

Therefore the projection Pk(-) in L2(2;RY ) onto the set (4.31) is right-
differentiable at f in any direction h € L2(2; R").

The right—derivative ¢(-) € L2(£2;R") is obtained as the unique solution to the
variational inequality

q(-) € Sk(f) = {v(-) € L*(2; RN)| Dyp(u(¢)) - v(€) £ 0 and
AE)Dp(u(€)) - v(€) =0 a.e. in 2}

/n (AGE) - a(6) — h(E), v(E) — a(€))mmdE 20 Vo() € Sk(f) -

O

One can easily check that g # Pg,(5)(h), hence the set K in Example 4.13
is not polyhedric. This indicates that Theorem 4.6 in its present form cannot
be extended to convex sets for which (4.28) is not satisfied.

In the following sections of this chapter we shall examine the boundary-
values problems which can be formulated as variational inequalities, w1th convex
sets defined by unilateral conditions prescribed in a domain £2 C R" or on the
boundary I' = 812. Sect. 4.3 deals with obstacle problems, defined in the Sobolev
space H'(§2), with non-symmetric bilinear forms. The domain derivatives of
solutions to the obstacle problems are obtained. Furthermore, we provide a
result on the shape differentiability of the capacity, and we consider the shape
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sensitivity analysis of the free boundaries (i.e. the boundaries of the coincidence
sets) associated with the obstacle problems under consideration. In Sect. 4.4 the
Signorini problems with unilateral conditions on the boundaries are investigated.
In Sect. 4.5 we introduce the variational inequalities of the second kind cor-
responding to the minimization problems with non-differentiable integral func-
tionals. Using the classical approach of Cea et al. 1971, we introduce the saddle-
point formulations of the variational inequalities. The differential stability of so-
lutions for such formulations is investigated following (Sokolowski 1988d). The
form of the shape and material derivatives of the solutions to the variational
inequalities is obtained.

In Sect. 4.6 and 4.7 the unilateral problems in elasticity are considered in two
cases:

(i) frictionless contact problems
(i) contact problems with given friction.

We establish the abstract results on the differential stability of solutions to
a class of variational inequalities. In particular, in the case (i) we shall show,
using the abstract results, that the following convex set is polyhedric

K={¢eH (R, =0 ¢-n20 only}.

In the case (ii) we use the saddle point formulations of the variational inequalities
of the second kind for the purposes of the sensitivity analysis.
In Sect. 4.8 elasto—plastic torsion problems are considered. Finally in Sect. 4.9
we provide the results on the shape sensitivity analysis of elasto-visco—plastic
problems.
We suppose that 2 C RV, N = 2 or 3, is a bounded domain with the sufficiently
smooth boundary I' = 2. For a given vector field V(-,-) € C(0,¢; DF(RY;
IRM)),k 2 1, the family {2} ¢ R", t € [0,6), 0 < § < ¢, is defined by
2, =T(V)(£2).

It should be remarked that for a solution u; € K(§2;) of a specific unilateral
problem, e.g. the Signorini problem in elasticity, defined in the domain 2; =
Ty (V)(£2), t € (0,6), in general

W=uoT, ¢ K(),

therefore we cannot obtain a unilateral problem for u; o Ty, applying the change
of variables Ty(V)(-).

We can circumvent this difficulty by the use of an appropriate transformation
F(-,-) with the following property

2t = F(t,u, 0 T;) € K(R) if and only if u, € K(£2;) .

The element 2* € K(§2) is determined as the solution to an auxiliary variational
inequality defined in 2. We shall prove that the right-derivative
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z =lim(z* - 2°)/¢t
10

exists in the appropriate Sobolev space; in general this is equivalent to the
existence of the strong material derivative

ST t_ .0
u—ltllr(l)l(u u’)/t .

Finally in the scalar case, making use of the relation
u' =u—-Vu-V,

it is possible to show that the shape derivative exists.
In the case of a system of elliptic equations, we use the relation

v'=u—Du-V,

to derive the form of the shape derivative u' = u'(£2;V) for the variational
inequality under consideration.

First we present some results to be used below for the differential stability
analysis of solutions to variational inequalities. They constitute an extension of
the implicit function theorem to the case of variational inequalities.

4.2. Sensitivity analysis of variational inequalities in
Hilbert spaces

Let K C H be a convex and closed subset of a Hilbert space H, and let (-,-)
denote the duality pairing between H' and H, where H' denotes the dual of H.

We shall consider the following family of variational inequalities depending
on a parameter t € [0,6), § > 0,

y€K: at(Ye, 0 — ye) 2 (frr 0 — ye) Voe K . (4.32)

Moreover, let y; = Py(f;) be a solution to (4.32).

Theorem 4.14 Let us assume that

(1) the bilinear form ay(-,-) : Hx H — R is coercive and continuous uniformly
with respect to t € [0,6). Let A, € L(H;H') be the linear operator defined
as follows ay(d,¢) = (A, ) Vb, € H; it is supposed that there exists
A' € L(H; H') such that

Ar=Ag +tA +o(t) in L(H;H') . (4.33)

(i1) for t >0, t small enough, the following equality hols
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fe=fo+tf' +ot) inH, (4.39)
where fi, fo, f' € H'

(i) K C H s convez and closed, and for the solutions to the variational in-
equality

Of=P(f)eK: ao(llfyp—If) 2 (f,p—If) VpeK (435)
the following differential stability result holds
Vhe H : O(fo+eh)=IOfy+ell'h+o(c) in H (4.36)

for e > 0, & small enough, where the mapping I' : H' — H 1s continuous
and positively homogeneous.
Then the solutions to the variational inequality (4.32) are right-differentiable
with respect tot att =0, i.e. fort > 0, t small enough,

ye=vyo +ty' +o(t) in H,
where

yl = Hl(fl _-A'yO) .

Proof. The usual argument leads to

ao(yo — Y, yo — ye) S(fet — fo,vo — ye)+

4.38
ao(ye,ye — Yo) — ae(ye, ¥e — yo) - ( )

Using (4.12) we obtain

allyo — yell3r Sl fe — foll arllvo — vellu+

(4.39)
lao(ye, ye — yo) — ae(ye, ye — yo)| -

From the assumption (i) it follows that there exists a constant C such that for
t > 0, t small enough,

lao(ye, ye — v0) — ae(ye, ye — yo)| < Ctllyell mrllye — vollar - (4.40)
Therefore from (4.39) and (4.40) we have that
lye — ol = Ct tel0,é) . (4.41)

With simple calculations it is possible to show that for the element y; € H the
following variational inequality holds

yw€K:
ao(ye, 0 — ye) > (fo +t(f' — A'wo), 0 — ye) + (e(t), —yt) Vo €K,

where

(4.42)
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3

(e(t),0) = ) (0i(t)9) Vo€ H,

i=1
er(t) = fi — fo —tf', (4.43)
(02(),#) = ao(Yor p) — at(yo, ) + t{(A'yo, ) Vy € H, (4.44)
(e3(t), ) = ao(yt — Yo, ) — ar(ys — Yo, ) Yo € H . (4.45)

Assumptions (i) and (ii) imply ||i(¢)||a+/t = 0 ast | 0, ¢ = 1,2. Furthermore,
from (4.33) it follows that for ¢ > 0, ¢ small enough,

[{e3(®), o) = r(V)llye — vollllelln Ve € H, (4.46)

where r(t) | 0 as t | 0. Therefore taking into account (4.41) we obtain

les(llar/t >0 astloO. (4.47)
Thus
le()lls:/t +0 ast |0 (4.48)
and
ye = Po(fo +t(f' — A'yo) + e(t))
= Po(fo +t(f' — A'yo)) +o(t) (4.49)
= Po(fo) + tII'(f' — A'yo) + o(t),
where ||o(t)||#/t = 0ast|O. o

We shall present several examples of convex sets in the Sobolev spaces for
which the assumption (iii) of Theorem 4.14 is satisfied.

4.3. The obstacle problem in H!(2)

We assume that there are given elements g € H'/%(I") and ¢ € L} (£2) such
that the convex and closed set of the form

K={¢cH(2)|d=g onT, ¢(z)21(z)ae. in 2} (4.50)

is non—empty.
In order to define an obstacle problem we introduce the bilinear form

al 0z
o(18) = [ {(AG)- Vo(2), Vool + 3 (o) (a)ole)+

ao(2)z(z)¢(z)}dz Vz,4 € H'(2)

(4.51)

and the linear form
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SPYRN:L, :
(1.8 = [ (@) + 3 f@gm @) VeeH(@),  (452)

where A(-) = [ai;(")lNxn, ao(*),a1(-), ..., an(:), fo(*), fi(-), ..., fn(") are contin-
uous functions in R, aij(z) = aji(z) for all z € RY andi,j =1,..,N. It is
assumed that the condition (4.12) is satisfied.

Let us consider the following problem:

Find an element z € K such that
a(z,¢—2) 2 (f,¢—2) V€K . (4.53)

It should be remarked that the bilinear form (4.51) is not symmetric. Therefore
we cannot apply Theorem 4.6, which was stated only for symmetric bilinear
forms,. to the variational inequality (4.53).

In order to define the cone (4.23) for the convex set (4.50) and the bilinear
form (4.51) we have to direct our attention to the notion of capacity of a set in
RY (Ziemer 1989).

Let A C 12 be a set such that there exists ¢ € H!(£2) with ¢(z) 2 xa(z).
The following notation is introduced

cap,(4) =inf{a(4,¢) |6 2 xa ¢ € C7°(2)}. (4.54)

It is said that a given condition is satisfied quasi-everywhere on 2 (q.e. on £2)
if this condition holds everywhere on {2 except for a set of the capacity zero.
We denote by z = IT(f) the unique solution to the variational inequality (4.53)

with the non-symmetric bilinear form (4.51). One can show that the mapping
f — II(f) is conically differentiable.

Theorem 4.15 (Mignot). For ¢ > 0, ¢ small enough, we have
I(f + eh) = I(f) + eII'(h) + o(¢), (4.55)

where ||(o(¢)|| a1 (2)/e = 0 as e — 0. The element Q = IT'(h) € H'(R2) is given
as the unique solution to the following variational inequality

Q€ Sk(f):

o(Q, 4~ Q)2 (h,¢—Q) Ve Sk(f) . (4.56)
Here .
9¢

ho(-), hl(')’ ey hN(') € L2(.Q)

are given elements, and
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Sk(f) =€ H'(@) | 6=0n T, -
Hx)20ge on 2, al,y) = 1,8),

where Z = {z € 2 | y(z) = P(z)} for Y € HY(N2).
a

Proof of Theorem 4.15 was given by Mignot (1976). Theorem 4.15 com-
bined with Theorem 4.14 will be used below to derive the form of the material
derivatives and the shape derivatives of solutions to the variational inequality
(4.53).

Let {£2;} € IRY be the family of domains given by 2, = Ty(V)(2) , t € [0, ),
depending on the vector field V(-,-) € C(0,&; D¥(RN,RN)),k 2 1. Let K(£2;)
stand for:

K(2)={¢€ H ()| =g on d2;, ¢(z) 2 ¢(z) ae. in ¢} .
The following variational inequality parameterized by t € [0, §) is considered

2t € K(.Qt) :
at(zt,¢ - zt) g (fh¢ - zt)t V¢ € K(‘Qt)’
where it is assumed that g(-),%(-) € CY(RY); (,,-); is the duality pairing

between (H(£2,))' and H!(£). The bilinear form ay(-,-) and the element
fi € (H'(£,))" are defined, respectively by

(4.59)

a(s,9) /{ (¢) - V2(a), Vo(a m~+2a, e (@)a) (460)
o)+ (2)o(z)) v¢ : Hlmt),

(i ) = / {fo(z)¢(w>+2f. 2 (@)de Vée H(®). (46D

We shall determine the form of the shape derivative z' € H(£2) of the
solution z to the variational inequality (4.53). In the particular case of the vari-
ational inequality (4.53) with non-homogeneous Dirichlet boundary conditions,
the shape derivative z' can be defined as follows

Z(z) = %tz—(0+,:1:) z € £, (4.62)
where @ _Q 0.6)
z(z) z€ t € |0,
#(t,2) ={ o(z) c€RV/Q, te[0,6) . (4.63)

Theorem 4.16 Let us assume that
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(1) K(£2;) is a non—empty, closed and convez subset of the space H'({2;) for
allt €[0,6),
(1) aij(-),ai(), fi(-) € CY(RN) fori=0,1,..,N and j =1,...,N,
(i11) there exists a constant a > 0 such that for any t € [0,6)

a($,4) 2 alldli(a,)
for all ¢ € H'(£2,) with ¢ = g on Y,

(iv) —B(z) = g(z) — () > 0 for allz € RY, B(-), 1/8(-) € CY(RN), ¢ €
C(RM).

Then the domain derivative z' € H(2) of the solution z to the variational

inequality (4.53) is given as the unique solution to the following variational

inequality

(4.64)

2 €S5,(R): a(z,4d—2")20 Ve S,(2), (4.65)
where the convez closed cone S,(£2) C H'(R2) is defined by

SU@) = {6 € (D) | 6= —vanc(z~g) on T, 620 e onZ,

a(z,¢) = (£,4)} .

Here
Z={z€ 2] (z) = p(@))
vn(z) = (V(0,2),n(z))gn,z € [ =002 .
(m]
Theorem 4.16 was given by Sokolowski et al. (1987).

The proof of Theorem 4.16 will be given for the particular case of the following
variational inequality

yEK ={g€H() | ¢(z) 2 $(z) in 2}

| (736, V6(2) - Va(mrds 2 (467)
/n f@)($(z) - y(@))dz Ve K,

where ¥(-) € CY(IR") is a given element, ¢)(z) < 0 on I' = 812.
We denote by §(z,t) the extension of y; € Hl(£2;) to R

5 _fw(z) zen, telo,9)
y(z,t)—{g ceRY/0,, te0,6) (4.68)

then 5
y'(z) = ay(o+,$) TeR . (4.69)

From Theorem 4.16 the following corollary can be inferred.
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Corollary 4.17 For t > 0,t small enough, we have
jlo=y+ty' +o(t) in H'(9), (4.70)

where ||o(t)||m1(a)/t = 0 as t | O and the element y' € H'(R2) is given as the
unique solution to the following variational inequality

y € So(9): / (V' V(6 -y mrde 20 VEES,(2),  (4T1)
n
where the cone Sy(£2) C H'(R2) is of the form

So(2)={p € H(R) | ¢= —v,,—a—y onT, $20ge on Z,

on (4.72)
/ Vy-Védz = / fodz}
2 o}
and
Z={z€ 2| y(z) =1(z)} . (4.73)

Proof. Let y; € HL(£2;), t € [0,6), denote a solution to the variational inequality
(4.67) defined in the domain §2;

ye € K(2) = {¢ € Hy(2) | $(z) 2 ¥(z) in 2}
[ 90,9 -l 2 [ 6 -upde e K@) (@78
2
First, the form of the material derivative y € Hg(f2) will be derived. Let
y' =y, 0Ty € Hy(2) te0,6) . (4.75)

Taking into account (4.74) and (4.75), one can show that for y* € K the following
variational inequality holds

[ 494, 9 = v 2 [ £y veex. @m0
From Theorems 4.14 and 4.15 it follows that
yES:
[ (90,96~ w2 | 116 iree W
- [ S —inis Vs

where
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S={¢ € H(?)| $20qe on 2, /n (V0, Vo) de = /n féda} . (4.78)

Using the formula
Y =9-Vy'.V (4.79)

for any vector field V' with the compact support in a sufficiently small neigh-
bourhood of I' = 812, we obtain

y' € 5,(2):
(99,96 - i 2 [ 16-vie
2 2 50)
- /n(A' -Vy°, V(¢ - y'))rrdz *
- /n (V(V4°- V), V(¢ — ¢ ))mndz Vo€ 5,(R2) .

The regularity result y = y® € H?(£2) derived by Brezis et al. (1968) for the
solutions to the variational inequality (4.67) was used in (4.80).

Therefore, taking into account (4.22), one can show that y' € H1(£2).

The following notation is introduced

G(y°,V;¢)=/n{f'¢—(A'-Vy°,V¢)m~ (4.81)

—(V(VY° - V), Vd)rndz Vée HND) .

For any vector field V(-,-) with v,(z) = (V(0,z),n(z))g~ =0 for all z € I" we
have that y' = 0. Hence from (4.80),

02 G, Vi) Vo e {Si(R2)—Su(R)} . (4.82)

So taking £V in (4.82), we obtain G(y°, V, ¢) = 0. Therefore there exists the dis-
tribution g,(¢) € D~!(I') such that for an arbitrary vector field V' the following
equality is satisfied (see Chapt. 2, Sect. 2.11)

G(°,V;8) = (gn(9), va)D-1(r)yxD1(I) - (4.83)

Applying Green’s formula to (4.81) for test functions ¢ sufficiently smooth, e.g.
¢ € H?(£2), we have that g,(¢) = 0.
This concludes the proof of Corollary 4.17. a

4.3.1. Differentiability of the Newtonian capacity

We shall consider the following particular case of the obstacle problem. Let
D c RY be a given domain with the smooth boundary 9D and let 2 C D. We
denote by K(2) the convex set
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K(2) = {¢ € Hy(D) | §(z) 2 xa(z) in 2} .
Let y(£2) be the unique solution to the following variational inequality
y=y@DeK@: [ Vy-V(-y)dz20 Yo K(@),
D
here it is assumed that K(£2) # 0.
Let V(:,-) be a given vector field with the compact support sptV C D such that

2 C sptV, and let {2}, t € [0,6), denote the associated family of domains.
The following variational inequality is introduced

ye = y() € K(2) = {¢ € Hy(D) | 4(z) 2 xa,(z) in 2}

/DVyt V(¢—y)dz 20 Vée K(2) .
It is assumed here that K(§2;) # 0 for t > 0, ¢t small enough.
Lemma 4.18 There exists the strong limit

i =limv - w)/t in HY(D)
given as the unique solution to the following variational inequality
jes: /nvy-vw—y)dxz
[0 96 - mnda voes,

where

S={¢eHyD)| ¢(x)20 ge. on Z, / Vy - Védz = 0}
2

Z={ze2|y()=xal@)} .

4.3.2. The shape controlability of the free boundary

Let 22 € IR? be a given domain, 2; = T;(V)(£2), t € [0,6).
We shall consider the variational inequality (4.67) defined in the domain §2;,

v € K(2) = {6 € HX(20) | 4(a) 2 ¥(z) in 2.}
[ 9= vlmede 2 [ 8-z Vo K(2) .
2, 2,
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It is assumed that the elements f, ¥ € C(IR?) satisfy the following conditions:
f(z) < 0 in an open neighbourhood of £2, max,c¥(z) > 0 and ¥(z) < 0 on
I' = 912. Furthermore it is supposed that f and 3 are smooth enough. So using
the result of Brezis et al. (1968) we get

y € WPo(0,) forallteo,6) .

From the Sobolev embedding theorem it follows that in this particular case
y¢ € C(£2;). Therefore the coincidence set Z; C §2; is closed

Zi={z € 2 | yi(z) = ¢(z)}

and under assumptions made we have meas(Z;) > 0 for all ¢ € [0,§). The Radon
measure g is defined by

[ o = /n (Vy,-99 = fo)de = [ (~au- gtz =

2,

_/Z(A¢+f)¢dz V¢ € Co(£2:) N Hy (1) .

We denote by X; the boundary of the coincidence set Z;. If £ is a C! manifold,
then y; is a solution to the following system

—Ayt=f in.Qt\Zt,

yt=0 OnFt,

Oy _ Oy
Yye =19 o on on Xy ,
ye=1v% onZ .

Corollary 4.17 implies that the shape derivative y; € H'(2), t € [0,6), of the
solution y; € H1(2) to the obstacle problem under study, in the direction of a
vector field V(-,-), is given as the unique solution to the following variational
inequality

v, € S(20): / (V4! V(6 — y)made 20 Vo € S(2),

t

where the cone S(f2;) is of the form

3yt

5(2:) ={¢ € H'(2) | 4(z) = -‘%(1)(V(t,$),n¢(x))mz for = € 812,

¢(z) = 0 for yi(z) = ¥(z) and A(z) + f(z) <0,
#(z) 2 0 for yi(z) = ¢(z) and A¢(z) + f(z) =0} .
Let us observe that the set Z, is defined by the condition y(z) — ¥(z) = 0, so

on Xy = 82, we have y;(z) — ¥(z) = 0 for all ¢ € [0,5). We shall construct the
vector field W(-,-), see Theorem 4.20, with the following property
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T,(W)(Zo) = Lt

for all t € [0,6), i.e. the field W(-,-) defines the evolution of the free boundary

L.
Let us consider the family of functions z(.) € C%(£2;), t € [0,6), and suppose
that for some s > 0 the level sets

Di={e e | ux)=s}=2"(s)
are C! manifolds for all ¢ € [0,6). We shall construct the vector field W,(-,)
which defines the evolution with respect to ¢ € [0,6) of the manifold .

Lemma 4.19 Let us assume that

(i) z(.) € C*(£2;) for allt €[0,8), where 2; =T (V)(2),
(i) |Vze|lg2 > 0 on B = z;7'(s) for some s >0,
(i4i) there ezist the material and shape derivatives

n=zV)e HY (),
2 = 2)(V) € CH ().

Then
I =Ty (W,)(Z5) for allt €[0,0),

where = 251 (s).
The vector field W,(-,-) is given by

Wit ) = —2(V )@ V205 V()
for allt € [0,68) and all z in an open neighbourhood of X7 C R?.

Proof. For simplicity s is omitted in superscripts and subscripts, e.g. we shall
write W(-,+), Z¢ and Xy for W,(-,-), T and X7, respectively.
It suffices to show that for

2, =T(W)(Z) teo,6)

we have )
Zt((t)=s T €N .
Let U be the vector field defined as follows:
U=mV+nW, n=ntz), i1=12

where 7; = 1 in an open neighbourhood of It = 82, n2 = 1 in an open
neighbourhood of Z¢, 1 2 ni(t,z) 20 for i = 1,2, m +n2 = 1.
We have
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/ zo(z)g(z)dl = s/ g(z)dl VYge C™(R?),
o Zo

because of zo(z) = s on Xy. We define the function
£O= [ 2@ (00T () @) (@ T )T @) ()de
It is evident that
sO)=s [ o@ar.
Furthermore
=] oL @)@

Evaluating the derivative of f(-) at ¢ we have

flt+e)= /2 (2tre 0 Tore (U)) (2) g (<) de .

Therefore

(7 (449 - f0) /e = [ 2@,

where

Zt(U) =Z;(U)+V2t U
and for ¢ > 0, ¢ small enough,
U=W = -z, (V)|Vz|™ V2 .

in an open neighbourhood of Xj.
Moreover
7 (U) =2/(V)

since z; depends on the restriction U|r, = V. Thus
z(U)=0
and for ¢ > 0, ¢ small enough,
f(t) = const .

Finally
£0) =10 =s [ g(c)dt
—s /Z (60T (1)) (2) e (T, (1)) de,
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where

wi (7 (V) =i (T (U)o T (U)
Hence by the definition of f(t) we get

s/ gtd€=/ z¢ (z) gedl
PN P3N

for all g given by
ge=go T, (U)w: (T7H(U)) .

Therefore R
zi(z)=s on Xy

as was to be shown. u]
On the free boundary Z; = 8Z,, that is the zero level set z;(0) for the family

2t=y¢—'¢‘ tE[O,&)

we have
zi(z) =0 and Vzy(x) =0forz € Ly .
Therefore Lemma 4.19 cannot be directly applied to the obstacle problem.
Let us suppose that for the cone S(£2;) C H'(£2;) the following condition is
satisfied
(A3) {S(£2;) — S(£2;)} is a linear subspace of Hj({2) .
Thus the shape derivative y; is linear with respect to the normal component
(V(t,z),ns(z))r2 of the vector field V(t,-) on 8£2;. The condition (A3) holds
provided that, e.g.
Ap(z) + f(z) <0 forallz .

In this case the shape derivative y, is given as the solution to the following
boundary-value problem in £2; \ Z;

Ay;=0 in.Qg\Zt,
9y
yi:—Ef(V(t),n,)]Rz on Iy,
]

yp =0 on X, .

Furthermore y; = ¢ on Z;.
Let s > 0 be small enough, and let us consider the level curve X7 of z; = y: — ¢

D ={z € Y|z (z) = s} .

Due to the assumptions imposed on z; € C%(2;), this curve is a C' manifold
located in a small neighbourhood of the free boundary Xy C IR?. For any point
z € X} there exists the unique point £ € Xy such that for r > 0, r sufficiently
small,
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x:{—}-rnt({)-{-o(r),

where n; is the unit normal vector on the C! manifold X, n, is outward pointing
on Y.
Expanding in the Taylor series on X} we have

Ye (@) = 42 (&) + 5V (€) - ne (€) +0(5),
Vz(2) = Vze (€) + 5Dz (€) - ne (€) + o(s)
Taking into account that on the free boundary X, the following conditions are
satisfied
zz=y—9P =0,
Vz, = 0,
yy=2,=0 fory' =0

one can show that

vt (z) = sVy; () - ne(€) +o(s) forall( € I,
Vz(z) = sD*2 (€) -ne(€) +0(s) forallé € I, .

Applying Lemma 4.19 to the level set X} of z(-) it is possible to prove that the
evolution of the manifold X with respect to ¢t € [0, 6) is defined by the vector
field

Vi (z) Vzi(z)
Welt2) = -2 @) 1o oy = 4 O on o

oy (D22 (€) - ne (€) + 0(s))
< (©)+ols )) 1072 (6) - me (6) + 0 (&) [ n

for all z € X} and for all £ € X,.
We obtain the limit as s | 0

D%z (£) - ne (€)
AGRAGIEY

Therefore we can define the vector field W(t,£) on X,

D2 (€) - ne(€)
2 (€) - ne (6) 122

W3 (t,.’t) - yt (f) ”D2 6 € zjt .

W(t,¢) = By, (f) iD? for all £ € X2y

using the above limit.
This form of the vector field W(t,€), £ € Xy, t € [0,6), can be further simplified.
Let us recall that on the free boundary X'; we have

7] 9 [0z
v (3_2:,'Zt) = % (‘55:) ng for Vzt =0.
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Hence the following equation holds on X

Pu 0 (2
0z;0z; ~ 8n \Oz;

Thus

) nj, where n; is the j — th component of n; .

From the foregoing it follows that
D%z, -ny = (D*2 - nyyne)gane on Iy .

On the other hand, X is the level set of 2, then from the general formula (see
Proposition 2.66) it follows that on Xy we have

9z
Az = Ag,z¢ + Kto— Ly (Dzzt ‘N, Ne)R2,
2

where Ay, is the Laplace-Beltrami operator on Iy (see Sect. 2.20), & is the
mean curvature of the free boundary ;. Let us observe that on X,

2¢=0 hence Axz =0

and
Vz;=0 thus 8z/dn,=0 .

Finally we get
Az = (D2zt ‘ng,ng)r2 on g .

On the other hand

Azg=A(ye—y)=—(f+4¢) onX,
thus

W(t, f) = —Vy;[(Dzzt . nt,nt)mz|_2(D22t . n,,nt)mz =
— Vyldz| Az = (F(O) + A% ()7 Vui(6) (€T

This result makes it possible to state the following theorem:
Theorem 4.20 Let y; € C%(£2;) be a solution to the obstacle problem and let
the shape derivative y, be linear with respect to the normal component of the
vector field V(t,-) on I3.

The evolution, with respect to t, of the free boundary Ty = 82, is defined by the
vector field

W(t,z) = (f(2)+ A9 (2)) " Vi (2) z €Ty,
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where the shape derivative y; is given as the unique solution to the following
linear boundary-value problem

Ay£=0 in.Qt\Zt,

9y
y; = —57—:(‘/ (t) ,nt)]Rz on Ft y
yy=0 on X .

]
This theorem can be used to determine the form of the shape derivative dJ(£2; V)
of the following shape functional

J(2) =/ dz:/ dz . (4.85)
z {y=¢}
Corollary 4.21 The shape functional (4.85) is shape differentiable

dJ(Q;V)=/Zw(o,x).n(g;)d}j=Lz[f(x)+A¢]—1%%dZ,

where y' is given as the unique solution to the following boundary value problem

Ay' =0 2\ 2Z,
y':—%(v,n)mz onI' =981,
Y =0 onX=0Z .

a
Let us observe that the form of the shape derivative dJ(£2; V) can be simplified
provided that an appropriate adjoint state equation is introduced.
If p is the unique solution to the following boundary value problem

—Ap=0 in\2Z
p=0 onl =00
p=[f+A4¢]™" onX=20z,

then iy 0 &
V) — Yoy —_ | 9P%Y
dJ(2;V) = /Epan dr on an(V,n)mzdI‘ .

Remark. Here we have the particular situation for free boundary problems,
where the shape derivative V. — dJ(2;V) is a linear mapping of the form
dJ(2;,V) = (G,V)pxp. It should be remarked that for the distribution G €
D'(IR* R?) given by
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G ="y (gn)
the element g, is as follows
__ %Y
"= "Gnon

On the other hand, one cannot expect for an arbitrary shape functional J(2)
depending on solutions to variational inequalities to obtain the shape derivative
V — dJ(2;V) as a linear mapping, we refer the reader to the preface of this
book in Chap. 1 for an elementary example. Furthermore it can be seen, e.g. from
(4.81) that in general the shape derivative y'(§2; V) for the obstacle problems
fails to be linear with respect to the normal component of the vector field V(0, -)
onl.

4.4. The Signorini problem

Let us assume that an obstacle is located on the part Iy of the boundary I" of
the sufficiently smooth domain 2. Moreover, it is supposed that

K={¢ecH (2)|$=0 onIh=r\IN, 620 onIi} (4.86)
a(z,) = /n (Vz(z), Ve (2)prde V2,6 € H(2), (4.87)

(f, ) = /n (@) é(x)de Ve H'(), (4.88)

where f € L%(2).
In this case the Hilbert space H is given by

Hp, ={¢ € H'(R)|¢ =0 on Iy} .

We denote by z = II(f) the unique solution to the following variational inequal-

ity
z€K: a(z,6-2)2(f,d—2) VoeK, (4.89)

by Z C 942 the coincidence set
Z ={z € I|z(z) = 0}, (4.90)
and by p the Radon measure supported on I', and defined as follows

/ ddu=a(z4) - (f,4) 0SéeC'(TD). (4.91)

It can be shown that x 2 0 and if Z is closed, then



194 4. Shape Sensitivity Analysis

/l/(zc) =0, (49

where Z¢=T"\ Z.
By the results of Mignot (1976) it follows that the set (4.86) is polyhedr
and we have

Sk(f) =0 HL@I620 qeonZ, [odu=0). (a0

Therefore using Theorem 4.6 one can show that for any element h € (H}, (£2),
and for € > 0, € small enough,

O(f+eh)=H(f)+el'(h)+o(e), (4.94

where |lo(¢)||g1(2)/e — 0 as € | 0. The element Q = II'(h) is given as the
unique solution to the following variational inequality

Qe Sk(f) :

4.95
2(Q4-Q) 2 (ho-0Q) Vo Sk(f), (499
where the cone Sk(f) C HJ, (£2) is defined by (4.93).
From (4.94) and (4.95) it follows that
I' (h) = Ps,(s)(Gh) Vhe (HL(R2), (4.96)
where
¢ =Gh € Hp,(2), (4.97)

a(p,8) = (h,¢) V€ HL(2) .

We now turn to the shape sensitivity analysis of the variational inequality (4.89).
It is assumed that the condition

Vz-V e H\() (4.98)

is satisfied for a given vector field V (-, ).
We denote by 2: € Hy = {¢ € H'()|¢ =0 on I'{} a weak solution to the
variational inequality (4.89) defined in the domain 2, = Ty(V')(R2), ¢t € [0, 4),

2 €K (2)={¢€H'(2)|$=0 onI§, ¢20onlIY} (4.99)
/ (Vat,V (¢ — z))gwdes 2 / fo-z)de VEEK(2) . (4100)
!?, nt
Let 2 = 2,0 T; € H}, (2); the standard change of variables yields
2 eK(2) :

/ (At . Vzt,v (¢ — zt))]RNd.'L' :>= / ft (¢ _ Zt) dz v¢ cK . (4101)
? n
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Using Theorem 4.14 one can determine the form of the material derivative z €

HE (2).

Proposition 4.22 The material derivative z € HJ, (2) of the solution z € K to
the variational inequality (4.89) in the direction of a vector field V(-,-) is given
as the unique solution to the following variational inequality

z€Sk(f) :
/n (V,V (¢ —2))gndz 2 /n fl(¢-2)dz (4.102)

—/ (A'- V2,V (¢ —2))gnvdz Vo€ Sk (f) .
2
In (4.102) it is assumed that z = 2° = z,.

In order to derive the form of the shape derivative 2’ € H!(§2) we shall use
the following definition, see Chap. 2, Sect. 2.30,

d=:-Vz-V . (4.103)

Taking into account the assumption (4.98), one can determine 2’ € H!(2).
Using the same argument as for the obstacle problem we obtain

Proposition 4.23 The shape derivative z' € H'(2) of the solution to the vari-
ational inequality (4.89), in the direction of a vector field V(-,-) for which (4.98)
holds, is given as the unique solution to the following variational inequality:

Oz

2 €8,(N)={¢ e H ()¢ = ~vnz= on I,
62 _v,,g_fl on Z, (4.104)
[ (#+0ng) du=0)
/n (V2 V(¢ )gude 20 Vo€ S, (L) (4.105)

a
The reader is referred, e.g. to the paper of Neittaanmaki et al. (1988) for the
related numerical results.

Remark. Let us observe that the existence of the material derivative z € H!(2)
implies the interior regularity of the solution z to the variational inequality
(4.89). Let V(-,-) € C(0,e;D*(R™;R")) be given with V(0,-) € D(2;R"),
then
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Z=0 thus 2=Vz-VeH}(N),
but V(0,-) € D(2;R") is arbitrary, therefore
Vz e HL (% RY) .

The same argument can be used to establish the interior regularity of solutions
to all variational inequalities considered in Chap. 4.

4.5. Variational inequalities of the second kind
This section is concerned with the sensitivity analysis of variational inequalities
of the second kind.

Let us consider the following problem:

Problem (P): Find an element u € H(2) that minimizes the functional

T(9)=30(6.9) - (19)+5 () =5 [ (Vo) +16(2) P

(4.106)
- [$@e@dz+ [ 16@)lr
n an
over the space H!(2).
It should be noted that the convex, non-smooth functional
@)= [ 1@lr ¢eron (4.107)

can be defined as follows
i ($) = max{ / 1(2)$(z)dl) — 1S u(z) S 1for ae. z € A2} . (4.108)
on

Let us introduce the following notation

A={peL®(0R)|-1Zpu(z)S1 forae z€dNR} . (4.109)

Hence
j (¢) = max{(u, $)|¢ € 4}, (4.110)

where
d) = [ w@(@)dr vuser(on) . (4.111)

It is evident that the functional
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I@)=50(6:9) - (f,9) +max{mdlue 4)  (@112)

is non—differentiable on the space H'({2). For the unique solution u € H'(2)
to the problem (P) the following variational inequality of the second kind is
satisfied

a(u,¢—u)+(f,¢—u)+j(¢)—j(u)20 Vée H(R) . (4.113)

We shall show that the solution u(2) € H!(f2) to the variational inequal-
ity (4.113) is directionally differentiable with respect to f € (H'(£2))', and also
that the shape derivative u'(§2; V') exists.

First, let us observe that due to (4.110), the element u € H!(£2) can be
obtained by solving the following problem

Problem (PL): Find (u,)) € H'(£2) x A such that
L(u,p) S L(u,A) S L(p,A) forall u€ Aandforall ¢ € H'(2), (4.114)

where

L(g) = 50(8,9) = (£,9) + (1 709) (4115)
for all ¢ € H'(£2) and for all u € H™3(30),

here (-,-) denotes the duality pairing between H~%(812) and H?(312);
H~3(892) = (H%(892))' stands for the dual space.

The second inequality of (4.114) is equivalent to the variational equation
ue H'(2: a(u,9)=(f,¢)~(\r¢) VoeH(R) . (4.116)

Therefore
u=—z+w, (4.117)

where the elements z = z()\), w = w(f) € H'(f2) are given as the unique
solutions to the following equations

a(z(A),4) = (\rg) Vée H'(R), (4.118)
a(w(f),$)=(f,4) Ve H'(N), (4.119)

respectively.
On the other hand, the first inequality of (4.114) can be simplified to obtain

AeA: (uyru) S (A yru) Vuea. (4.120)

Taking into account (4.117), we have the following variational inequality
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AeA: (u=Xyrz(A) Z (k= Arw(f)) Yued. (4.121)
We denote by b(:,-) : H~3(£2) x H"%(8£2) — IR the symmetric bilinear form
b(u,n) = (n,yrz(p)) p,ne€ H3(80) . (4.122)
The bilinear form (4.122) is coercive, i.e. there exists a > 0 such that
> 2 -3
b(p,p) 2 allullH-;(am Vp € H™2(002), (4.123)

due to the fact that (i, vr#(u)) = a(s(k),2()) 2 aollo(u)ps(q) for all 4 €

H~3(842), where ag > 0.
We now turn to the analysis of the differential stability of solutions to the
variational inequality (4.121) written in the form

AEACH™3(00R) : b(Au—-N)2(u—Ayrw) Yued. (4124)

It can be shown that the set (4.109) is a closed and convex subset of the Sobolev
space H™3(842). We use the following notation.

5% = {z € 80|\ (z) = 1}, (4.125)
So={z€EtUE|u(z)=0} . (4.126)

Moreover, it is assumed that

meas (5% \ int=%) = 0 (4.127)
meas (Zp \ int=Zp) = 0, (4.128)

where meas(Z) is the one-dimensional Lebesgue measure of the set = C 802
and intFE for a set E C 82 means the relative interior.

We need the assumptions (4.127) and (4.128) to obtain the closure in H~3(912)
of the following sets:

Ki={¢€L*2)|4(z) 20 ae onZt, (4.129)
#(z)£0 ae on="}
K, ={¢€ Ki|¢(z) =0 a.e.on =y} (4.130)
in the form
K, = {¢ € H~3(892|(¢,n) 2 0 for all n € Co(dR) such that (4.131)

sptn C Z¥ and n(z) 20 on =,

orsptn C =~ andn(z) £0 on =7},
clK; = {¢ € clK;|(¢,n) = 0 for all n € C, (8£2) with sptn C =y} (4.132)

We denote by C4(\) C H~%(342) the radial cone
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CaA)={pe€ H™3(80)[3e > 0 such that A +ep € 4} . (4.133)
It is obvious, because of (4.109), that
Ca(A) C L™ (802) . (4.134)
Finally we introduce the notation

M = {u € H™3(39)|(s,yru) = 0} , (4.135)

M is a linear and closed subspace of the space H _%(30).
The following result was proved by Sokolowski (1988d).

Lemma 4.24 Let us assume that the sets =%, =~ and =, are sufficiently
regular. Then
S =cl(Cx(4)) N M = cl(Ci(A) N M)
={u € H"3(82)|(u,1) 2 0 for all n € Co(892)
such that sptn C =% and 7 20 or sptn C =~ and n £ 0,
(1, ) = 0 for all p € Cy (812) with spte C Zp} .
]
Lemma 4.24 implies that the set A C H ‘%(39) is polyhedric. Therefore,
according to Theorem 4.6, the metric projection in the space H -3 (02) with re-
spect to the norm ||4||_1 r = (b(¢, 4))* onto the set A C H~%(812) is conically

differentiable. ’
The following theorem was proved by Sokolowski (1988d).

Theorem 4.25 Let
fe=f+ef +o(e) in (H'(R) (4.137)
and let A, € A denote the solution to the variational inequality

Ae €4 :
b(Aeypt = Ae) 2 (1= Ae,yrw(fe)) VpeA .
Then for e >0, ¢ small enough,
Ae=A+eX +o(e) in H3(802), (4.138)
where ||o(e)||H_§(am/e —0ase 0.

The element \' € H'%(aﬂ) i3 given as the unique solution to the following
variational inequality
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NeS : (4.139)
b(/\',#—/\')z-(ﬂ—/\',’)’l‘w(fl)) vlu'es . ‘

]
Finally we turn to the shape sensitivity analysis of the problem (P). For this
purpose the problems (P;) in the domains 2, t € [0, ), are defined.

Problem (P,): Find an element u; € H'(f2;) that minimizes the functional

(9 =+ / (IVé () P + 16 (2) [2)d

2o (4.140)

—/ f(z)¢(z)dx+/ 16 (<) |dT
2 I

over the space H'(2;) .

It can be shown that there exists the unique solution u; € H(2;) to the problem
(Py) for any t € [0,6); for t = 0 the problem (P,) becomes the problem (P).

In order to determine the form of the strong material derivative @ =
u(2;V) € H'(2) of the solution u to the problem (P) in the direction of a
vector field V(:,-) we introduce the notation

u=uoTy e H'(2) te0,6) . (4.141)

The element u* € H'(R2), t € [0,6), is given as the unique solution to the
auxiliary problem (P?). The form of this problem will be derived.

To this end, by the change of variables ¢ = Ty(X), X € 2,z € 2, in (4.140),
we obtain the integral functional defined in 2

JH ) =Ji(¢o TS ') Vée H'(N) (4.142)
and given by
J*(¢) =%a' (¢,9) = (f',¢) +4e(8) (4.143)
= | (14:0)- V6(2), T @s +16(2) P (8)2))

- [F@é@di+ [ p@WOE@T vser @) .
In (4.143) the following notation has been used

A (z) = det (DT; (z)) DT, ' (z) - *DT; ' (z) z € 2, (4.144)
v(t)(z) = det (DT (z)) =z € 12, (4.145)
w(t)(z) = || det (DT; (z))*DT; ! (z) - n(z) |gy = € 092, (4.146)
fie)=(foT)(2)v(t)(z) z€R. (4.147)
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The auxiliary problem, defined in the fixed domain {2, can be stated as follows.

Problem (P!): Find an element u* € H!(2) that minimizes the functional
J*(4) over the space H!(2).

To obtain the form of the material derivative u({2;V) we shall use the same
reasoning as in the proof of directional differentiability of solutions to the prob-

lem (P) with respect to f € (H'(£2))' (see Theorem 4.25).
It is assumed that

ut ==zt () + 0 (ff) = -2 + v, (4.148)
where

w' e H'(2) : d! (wt,¢) = (ft,gé) V¢ € HY(R), (4.149)
=2 (\) € HY(R) :a' (2%, ¢) = (\',vré) Ve H(R) . (4.150)

The element \* € L®°(82) ¢ H~3(812) is given as the unique solution to the
following variational inequality

Med:
be (Mo =AY 2 (u— A w(t)yrw') Vue 4, (4.151)

where the bilinear form
b () H1(82) x H"1(802) » R (4.152)
is defined as follows
b (&) = (myr=' (€)) VmEe€ HT3(Q) . (4153)

For any ¢ € H~%(02) the element z(¢) € H'(£2) introduced in (4.153) is a
solution to the equation '

at (2 (8),4) = (€, rd) Voe H'(R) . (4.154)
The use of (4.146) implies that the material derivative u is given by
d=—2'(\) =z (A) b (4.155)

The elements z' (\) and v € H'(£2) can be determined, according to (4.149),
(4.150) and (4.154), by solving the following equations:
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Z=20\)eH (D) :
a(?',¢) = / A(z)¢(z)dl —ad' (2,4) V¢ € HY(N), (4.156)
an

we H HY(N) :
a (i, $) = /n flodz —d (w,4) Vée H'(R), (4.157)
where it is assumed that A = A%, 2z = 2%, w = w?,
¢ 0,9 = [ {4 @) Iy(=), V9 (@)mr+ (4.158)
)
7 (2)y(z) ¢ (z)}dz Vy, ¢ € H'(R),
7' (z) = div(V (0,z)), (4.159)
A'(z) =divV (0,2) T — DV (0,z) = *DV (0,z) . (4.160)

Finally we shall characterize the material derivative A € H~%(812) of the solu-
tion A(I') to the problem (4.124) in the direction of a vector field V(-,-). The
form of this derivative was obtained by Sokolowski (1988d).

Lemma 4.26 Fort > 0, t small enough,
M=X+th+o(t) in H3(00), (4.161)

where |lo(?) || /t—0ast]O.

H 3 (00)
The element A € H_%(G.Q) 18 given as the unique solution to the following
variational inequality

Ae SN
b (x, u— A) > (4 — A yrth + w'yrw) — b (,\, - A) Vi € S4())(4.162)

In (4.162) the notation is used

b (A k) = (urz' (N +w'vrz(V) YAue H3(30),  (4.163)
w'(z) = divV (0,z) — (DV (0,2) - n(z),n(z))gr~ . (4.164)

The proof of Lemma 4.26 relies on the application of Theorem 4.14 combined
with Theorem 4.20.

Let us observe that from (4.116) and (4.148) it follows that the element
u' € H'(£2) is a solution to the equation

a' (u',¢) = (f%¢) —(w®@) X,vrd) Voe HY(R) . (4.165)
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Therefore
a(i, @) +a' (u,0) = (f,4) — (A+w'\rd) Voe H'(R) . (4.166)

In (4.166) it is assumed that u = u® and A = A%,
Moreover we have

f'(z) =div(f(z)V(0,z)) z€R . (4.167)

The material derivative « € H!(2) minimizes the quadratic functional, in view
of (4.165),

I(¢) = %a (,6) +4a (u,6) = (f,6) + (A +w'\ vre) (4.168)

over the space H(12).
On the other hand, (4.162) implies

(A0 + w'yrw) - (J\, J\) - (,\, ,'\) (4.169)
2 (v + w'yrw) — (;\,u) -V (\p) Vned.
Hence on the basis of (4.155) to (4.157) and (4.163) we obtain
(A ri +w'yru) 2 (4, ri +w'yru) (4.170)
Thus we can replace the term (A, yr¢) in (4.168) with the following one
max{(g, yru + w'yru) | p € S4(\)} . (4.171)
This leads to the following result obtained by Sokolowski (1988d).
Theorem 4.27 For t > 0, t small enough,
ut=utti+o(t) in H(N), (4.172)

where ||o(t) || 1(2)/t = 0 ast | 0.
The element & € H'(§2) minimizes the functional

I(9) =5a($,6)+ (1, 6) + (£,6) + WA, 1ré)+
max{(g,yré¢ +w'yru) | p € Sa(A)}
over the space H(12).

(4.173)

We shall determine the form of the domain (shape) derivative u' = u' (£2; V)
€ H'(R2) of the solution u(2) to the problem (P) in the direction a of vector
field V(:,-). We have
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uv'=u—-Vu-V(0) . (4.174)
Therefore the shape derivative u' € H'(£2) is well defined provided that
Vu-V(0) € H'(R) . (4.175)
For any vector field V(-,-) € C(0,e; CY(RY; RY)) with
vp (z) =(V (0,2),n(z))gy =0 z €802 (4.176)
it follows that
u'=0,ieu=Vu-V(0) . (4.177)

Furthermore A = V; - VA = (V, VrA)gw, where V) is the tangential gradient
of N(I') on I' = 812; V; denotes the tangential component of V(0) on I'.
If the condition (4.176) is satisfied, then from (4.166) and (4.177) we obtain

a(Vu-V(0),4)+ad' (u,¢) =

(f,8) = (Vs - VA + W'\ vrd) Vo€ HY(Q) . (4.178)
Thus
u' € H(2) :
a(u,9) = (9n (9),vn)p-1(00)xD* (22) (4.179)

+ (“"/\,’7F¢) + (’\’77F¢) V¢ € Hl ('Q) .

This equation results from (4.166), (4.174) and (4.178) for any vector field
V(.,-) € C(0,&; CY(IRN;RY)). The linear mapping

H'(2) 5 ¢ — gn(4) € D7'(002)
is continuous.
Here X' = X'(I'; V') denotes the boundary shape derivative of the element A(I")
in the direction of a vector field V(-,-) given by
N=XA=V, -VrA,
where V;(z) =V (0,z) — v, (z)n(z) z €N .
The element \' € H~%(302) is given as the unique solution to the following
variational inequality

MNeSs(N) :

9
b(N,p—XA) 2 (p = Ny varyru + vn'rra—:: +rw' —rz' (X)) Vp € Sa(N),

where £ denotes the mean curvature of the boundary 942.
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Therefore the shape derivative u' = u' (£2;V) € H!({2) can be determined
as the unique solution to the variational problem derived by Sokolowski (1988d).

Theorem 4.28 Let us assume that (4.175) is satisfied. Then the shape deriva-
tive u' € H'(2) minimizes the functional

I(¢) =%a(¢,¢) — (gn (8) ,vn)D-1(202)x D" (892)

15]
+ max{(u,y7ré + vnkyru + vnvra—Z)Iﬂ €Sa(N)}

over the space H'(2).
The distribution g,(9) € D~1(812) has the following representation

(gn (¢)avn)‘D—1(an)x‘D1(6n) = [’)n v,.[Vpu . V[‘¢ - f¢ + n/\(ﬁ]df'

for any ¢ € H2(2) N HY(R2) such that 8¢/3n = 0 on 812.

4.6. Sensitivity analysis of the Signorini problem in
elasticity

This section is concerned with the sensitivity analysis of solutions to the sys-
tem of equations describing the deformations of plane elastic solids. First, the
mathematical model will be presented. For simplicity, it is assumed that N=2,
however the same results can be obtained for N=3.

Let us consider the deformations of a plane elastic body of reference con-
figuration 2 C IR? . It is assumed that the body is subjected to body forces
f = (f1, f2) and that surface tractions P = (P, P;) are applied to a portion I}
of the boundary I' = 342 of the body. Moreover, it is assumed that the body is
fixed along a portion Iy of the boundary, and that frictionless contact conditions
are prescribed on a portion I'; of the boundary 012.

Let u = (u1,u2) and o = {0y;},4,j = 1,2, denote arbitrary displacement
and stress fields in the body. We consider Hookean elastic materials

Oij (.7:) = C,'jkz(x) uk,z(a:) T € .Q,

where {cijxi(z)}, 1,7,k,0 = 1,2, denote the components of Hooke’s tensor C
at . € £2, uxy = Oux/0z;; the summation convention over repeated indices
t,J,k,1=1,2is used.

It is assumed that
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cijki (2) = cjini () = crij(z) 2 € R,
ciju (") € L®(R2) foralli,j k,1=1,2 .

Furthermore it is supposed that there exists a positive constant ag > 0 such
that

Cijkl (:lt) €ij€kl g ape;je;; forall z € 2

and for all symmetric matrices [e;j]ax2 -
It is said that a stress field o = o(z) is in equilibrium at a point z in the interior

of 12 if
(dive (z)); = —0ij (2),;= fi(z) z€N,i=172,

where

do;;j .
Oijj = 2 31, 1,2 .

It is said that a displacement field v = u(z) satisfies the kinematic boundary
conditions on I if
ui(z)=0 z€lp, i=1,2.

If P is the traction applied on I, then for stress produced the following relation
(0(z) n(x)); =0ij(z)nj(z)=Pi(z) zelh, i=12,

must hold.

If the body is unilaterally supported by a frictionless rigid foundation and
the portion I'; of the boundary 842 is a candidate for the contact region, i.e.
the contact occurs at a portion Z C I which is not known a priori, then the
unilateral boundary conditions on I are given by:

u-n<s0, 0,50, opu-n=0,
or =0,

where 0, and o, denote the normal and tangential components of the stress
o -n on I, respectively.

Let u denote a specific displacement field of the body, corresponding to the
equilibrium state of the body determined for given data: body forces f and
tractions P . The displacement field u is given as the unique weak solution to
the following nonlinear system:

— (cijr (z)uky(z)),j=fi(z) inf, i=1,2,
u;=0 onlp, 1=1,2,
cijriugn; =P; only, 1=1,2,
uin; £0, 0p = cijruk,mini S0, opuin; =0,

CijklUknj = 0an; on Iy .
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Let us recall that for a weak solution to the system under consideration the
following variational inequality is satisfied

ue K :

a(u,¢—u) 2 (F,¢—u) VYé€K, (4.180)

where the bilinear form a(-, ), the element F € (H'(2;IR?))', and the convex
and closed set K C H'(£2;R?) are defined as follows:

a(z,¢) = /nDz:C: Dédz = /an cijr () zi j (z) Pk, (z) dz
Vz,6 € H'(2 : R?),

(Fig) = [ f-oto+ [ Pgar voem (AR,
n n,
K={¢cH'(2;R*)|¢=0 only, 6-n<0 onlp}.

It is assumed that f € L%*2;R?), P € L*};IR?) are given, and that
meas(I) > 0; therefore there exists (Fichera 1972) the unique weak solution to
the variational inequality (4.180).

In order to determine the form of the material and shape derivatives of
solutions to the variational inequality (4.180) we have to direct our attention to
the following abstract result.

4.6.1. Differential stability of solutions to variational inequalities in
Hilbert spaces

Let H,H be Hilbert spaces, and let H', H' denote the dual spaces. Moreover
it is assumed that a linear and continuous mapping R € L(H;H) is given. We
denote by K the closed and convex subset of the space H defined as follows:

K={¢eW|R¢ e KCH} . (4.181)
Let the bilinear form a(:,-) : H x H — IR be coercive, continuous and symmetric

a(¢,9) 2 alldll; V€ H, (4.182)
la(6,9)| S Blldllulldlla VYo,4 € H, (4.183)
a(¢,¥) =a(¥,¢) Vo9 € H,

where a > 0 and 3 are constants.
We shall study the differentiability of the mapping

H>f-—1I(f)eKCH, (4.184)
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where for each f € H', the element II(f) € K is determined as the unique
solution to the following variational inequality:

I(f)eK :
a(I(f),¢-1(f)2(f,6-IO(f)) V6€K .

In the case of the Signorini problem (4.180) we have
H =H}, (%R?), K ={¢ € W|R$ € K},
H={¢o=Ré€H ()| H(2R?), $=0 on Iy}, (4.186)
K Cc H¥(Iy), K={h € Hh(z) S0 on I}}, (4.187)

(4.185)

def

2
(Re)(z) = ¢n(2)=) si(z)ni(z) z€l (4.188)

i=1
Vo =(41,42) € H'(ZR?) .
We shall prove that the conical differentiability of the mapping (4.184) is equiv-

alent to the conical differentiability of the projection Px : H — K C H.
Since the operator R maps H onto H and 0 € K C H, therefore

kerRNK =kerR . (4.189)
Introducing the notation
H, =kerR, H, = H} (4.190)
we have
H=H &H, . (4.191)

It can be shown that there exists the inverse operator R~ € L(H; Hz). The
scalar product ((-,-))» is defined in the following way:

((hl, hz))'){ =a (R_lhl,R_lhz) Vh], h2 € H . (4.192)
We denote by Px the orthogonal projection
Px:H— KCH, (4.193)

i.e. for a given element £ € H, the element p = Px(£) is determined as the
unique solution to the variational inequality:

{p:Px(E)GIC

(p-€&h—-p)20 Vhek . (4.194)

Let f € H' be a given element, and let $(f) € H be the unique solution to the
variational equation:
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(B(f),h) = (f,R7'h) VheH, (4.195)

where (-,-) denotes the duality pairing between H' and H.
It should be remarked that the linear mapping

H>f—ed(f)eH (4.196)

is continuous.

The foregoing results allow to decompose the variational inequality (4.185)
in the following way: the solution y = IT(f) to (4.185) can be written in the
form:

I(fy=wni+y: wi€H,i=12, (4.197)
where y; € H; is given as the unique solution to the variational equation:
y1 € Hy @ a(y,n)=(f,n) VneH . (4.198)
The element y; € H is defined as follows:
y2 = R™'Pc (2(f)) - (4.199)

The results obtained may be stated as the following lemma:

Lemma 4.29 The mapping (4.184) is conically differentiable if and only if the
metric projection (4.193) is conically differentiable.
a

Finally let us consider the variational inequality:

ye €K :

ae (Yer @ — Ye) g (fe’¢ - y:) V¢ € K,
where ¢ € [0,6) is a parameter, § > 0, and a.(+,-) : H x H — IR denotes the
family of bilinear forms such that (4.182) and (4.183) are satisfied uniformly

with respect to the parameter ¢ € [0,8). We denote by A, € L(H;H') the
linear operator defined by

(Aez, ) = ac(2,6) Vz,6 €H . (4.201)

(4.200)

Furthermore we denote by ((-,-))» the scalar product of the form: ((h,n))n

S a(Rh,R~'y) Vh,neH.
It is assumed that the mapping (4.193) is conically differentiable, i.e. for
€ > 0, £ small enough,

Vhe H: Pc(E+eh)=Px(€) +eQ(h)+0(e), (4.202)

where ||o(¢)||#/e =+ 0ase | 0.
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Theorem 4.30 Let us assume that
(i) there ezists an operator A' € L(H; H') such that

lim | (Ae = o) /e = Al =0 (4.203)
(ii) there ezists an element f' € H' such that
. neoo_
lim | (fe = fo) /e — f'lla» =0 (4.204)

(#13) the relation (4.202) holds.
Then for € > 0, € small enough, the solution to (4.200) is of the form

Ye =yo +ey +o(e) in H, (4.205)

where ||o(¢)||a/e = 0 ase | 0.
The element y' € H is given by:

y' =L (f' = Ay) + R7IQ(S(f' - A'wo)), (4.206)

where for any 6 € H', the elements I1,(60),8(0) are determined as the unique
solutions to the following variational equations:

{ i101(1_7 11»77;)(1) (69,171:)1 Vn € H (4.207)
and . o6
{ao—(R‘(‘d)Sﬁ;f‘h) =(0,R"'h) VheH, (4.208)
respectively.
a

To prove Theorem 4.30 one can use the same reasoning as that of the proof of
Theorem 4.14 provided that the condition (4.202) is satisfied.

In order to show that (4.202) holds, it suffices to prove that the set (4.180)
is polyhedric.

From the results obtained by Mignot (1976) we have that the set

K ={h € H(})|h £ 0}
is polyhedric for H(I2) C L?(I3), the linear subspace with the scalar product
((-,+)), if conditions (A4)-(A6) are satisfied:
(A4) 77+a77_ € H(FZ) Vn € H(F2)7
(A5) ((n*n7)) =0 VneH(I3),
(A6) H(I3)N Co(I3) is dense in Co(I2),
where n* = max{0,7}, n~ = max{0, —n}.



4.6. Sensitivity analysis of the Signorini problem in elasticity 211
If this is the case, then {H(I32), ((,-))} is the so—called Dirichlet space.

Lemma 4.31 The assumptions (A4)-(A6) hold for the space H defined by
(4.186) with the scalar product (4.192).

Proof. Tt is evident that the assumption (A4) is satisfied, because the space
H(I:) is a closed linear subspace of the Sobolev space H 3(I3). The general
properties of the Sobolev spaces H 3 given by Lions et al. (1968) imply that the
assumption (A6) is also satisfied.

Hence we have to prove that (A5) holds. First, we suppose that the outward
unit normal vector on I is of the form n = (1,0), whence

(RO =G()eH() Y =((,0)€H . (4.209)
Let n € H(I:) be a given element, and let n* be defined as follows
¢C=R""n, =(G) - (4.210)
Making use of the definition of the scalar product in ‘H we have
((n,n)) = inf{a((,¢): ¢ € H,RC =n} =a((*,() . (4.211)

On the other hand
a(¢,¢) = a1 (1,61) + a2 (¢1,¢2) + a3 (C2,C1) + a4 (G2, C2), (4.212)

where a;(-,-), ¢ = 1,...,4, are the appropriate bilinear forms. Taking into ac-
count the necessary and sufficient optimality conditions for the minimization
problem (4.211), we obtain

a(¢*¢") = a1 ({1, ¢7) —aa (G5, G3) - (4.213)

Let
P* =Rl (4.214)

where || = nt —n~ for n € H(I3?).
Furthermore, since (! € H'(£2), i = 1,2, then |(}| € H!(£2), i = 1,2, where

Il =G IG) e H . (4.215)
It should be noted that

IC*] — " € Hy =kerR, (4.216)

$ € Hy = (ker R)* . (4.217)

Thus
a($p* ¢t —9*)=0 (4.218)
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and

a($*,9") —a(IC*],1C7) =
20 (97, 9" — [C7]) —a (9™ = 1|97 - IC7]) = (4.219)
a(y* = |¢*Ly* =) 0.
Hence from (4.219) it follows that
((Inl, InD) = a(¥*,%*) < a(I¢*], IC*]) = ax (171, IG31)
—as (1G] 161) = a1 (¢, €7) — aa (G2, G2) = ((mm)) -

The condition ((n*,77)) £ 0 for all n € H(I3) results from (4.220).
If the condition (4.209) is not satisfied, then one can use the following trans-

(4.220)

formation:
1 = Mié1 + Nady
P2 = —Nag1 + Mgz,
where
N =(N,N2) M,Np € WH(92),
N(z)=n(z) forae. z €I}y,
NE(z)+N2(z)2c>0ae on 2 .
Hence
¢ ‘n= ’(/)1 on FQ .
This concludes the proof of Lemma 4.31. O

4.6.2. Shape sensitivity analysis

The foregoing results make it possible to derive the form of the functional sensi-
tivity coefficient for solutions to the variational inequality (4.177). The following
notation is used

H={¢ecH (2;R*)|¢=0 on Iy} = H}, (% R?) .
Let F € H' be a given element of the form (4.179), and let
u=1II(F)

be the solution to the variational inequality (4.177).

Theorem 4.32 Fort > 0, t small enough,
Yhe H' : II (F +th) = I (F) +tII' (k) + o(t), (4.221)

where IlO(t)"Hl(n;]RZ)/t —0ast l 0.
The element Q = II'(h) is given as the unique solution to the following
variational inequality
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QesS :
a(Q¢-Q)2(h,¢4—-Q) V€S, (4.222)
where
S={¢ € HL (B R*)|¢-n20 onZ, a(u,¢)=(F4¢)} (4.223)
={¢€H11~°(.(2;]Rz)|¢-n§0 onZ’ ¢.n=0 onzZt}
and
Z ={z € I3Ju(z) n(z) =0}, (4.224)
Z% = fine spty, (4.225)
20=2z\zt* . (4.226)

The Radon measure u 2 0 concentrated on I'y is defined as follows

[#endu=a(ué)-(Fé) 0<éeC'@mR) . (4.227)

a
Theorem 4.32 results from Theorem 4.30, because from Lemma 4.31 it follows
that the set (4.181) is polyhedric. This proves that the assumption (4.202) holds
for the Signorini problem.
Finally let us consider the shape sensitivity analysis of the problem (4.177).
We denote by u; a solution to the variational inequality (4.177) defined in the
domain £2; C IR?,

Uy € K(.Qt) :
a; (ue, ¢ —ue) 2 (Fr, ¢ —ue)e Vo€ K(82e), (4.228)
where
K(2)={6€ B QR4 =0onTE, ¢-n200nT}), (4229)

(Ft, )t = f-¢dz+/ P.¢dI' V¢ € H'(2;R?) (4.230)
Q2. r

with f € L? (R*;R?) and P € H' (R*;R?),
a:(z,9) =/!; Dz:C: D¢dz =/ cijkl () zij (z) dra(z)dz (4.231)

t

Vz,4 € H'(2;R?) with ciju € L (R?) Vi, j,k,01=1,2 .

Theorem 4.33 The mapping
0,6)5t — woT € H (4.232)
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is differentiable at t = 0%, i.e. fort >0, t small enough,
ut=u 0Ty =u+ti+o(t), (4.233)

where ||o(t)|| g1 (ar2)/t =0 as t]0.
The strong material derivative u € H'(£2;R?) is the unique solution to the
following variational inequality

ieS(R) (w234
a(i,¢—u) 2 (F —Bu,¢—u)+a(DV-u,¢—1u) Ve S(92), .
where
SM)={peW|p-n<n-DV-u on Z, (4.235)
a(u’¢)_ (Fa¢> =a(DV'u7¢)}’
(Bz,4) = / {e(2):C":e(d) + € (2):C:e(9) + (4.236)
n
€(2):C:€ (¢)}dx Vz,6 € H'(2;R?),
«(4)=3 (D4 +"D3), (4.237)
¢ (¢)=5{D(DV - $)+*(D(DV -4))~ Dé- DV —*DV -*Dg}, (4.238)
C'= {C;jkl}a cijm = divVeijm + (Veiju, Vg2 , (4.239)
(F,8) = [ (3@ (V)60 +1-DV - $)ds+ (4.210)

2
/ {3 (div(P,V)¢:)) = (n-DV -n)P-¢+P-DV - $}dl

1 4=1

Vé € H(2;R?) .

Proof. We have
é: € K (£2,) if and only if ¢ = DT, - (¢: 0 T2) € K(2) . (4.241)
The following notation is used
22 =DT7 ' (utoTy) . (4.242)

It can be shown that the element 2! € H is the solution to the variational
inequality
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deK :
at(,¢-2) 2 (F(t),4-7") Vo€K, (4.243)

where the bilinear form a’(-,-) and the linear form F(t) € H' are defined as
follows:

a'(z,¢) = / € (2):C": € (¢)dz V2,4 € H, (4.244)
n
¢(4) = %{D (DT.-¢)- DT +*DT;" -* (D(DT; - 9))},  (4.245)
C' ={c}ju} with c{;y = det (DTy)cijro Tt (4.246)
(F(t),4) = / ftdr + / P'.¢dl' V¢ € H, (4.247)
n n
ft=det(DT})*DT; - (fo Tp), (4.248)
P'=||M (DT;) - n||gs"DT; - (PoTy), (4.249)
M (DT,) = det (DT,)*DT;! . (4.250)

Applying Theorem 4.30 to (4.243) we get that the mapping

[0,6)5t— '€ H (4.251)
is differentiable at ¢ = 0%, i.e. for ¢ > 0, t small enough,

=24tz 40(2), (4.252)

where ||o(t)|| g1(a;r2)/t — 0ast 0.
Z is given as the unique solution to the variational inequality

zeS :

4.253
a(z,6—2) 2 (F' —Bu,¢—3) VoeS . ( )
In the foregoing the substitution 2° = u is used.
On the other hand, since
u'=uoTy = DT, 2 (4.254)
then
Uu=:-DV.-2'=2-DV.u. (4.255)
Therefore from (4.253), in view of (4.255), it follows (4.234). This proves Theo-
rem 4.33. o
To derive the form of shape derivative u' we use the relation
w'=u-Du-V . (4.256)

It is evident that u' € H'(£2;R?) provided that
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Du-V € H'(2;R?) .

It is assumed that the vector field V = 0 on Ty N Ty, Iy N T3, Ty N T'5, and
this vector field is of the form

V=v,Ny, where \y=non T . (4.257)

Theorem 4.34 For the shape derivative u' of the solution u to the Signorini
variational inequality (4.177), in the direction of the vector field v, Ny, the fol-
lowing system holds:

oij(u) ;=0 in®, i=12, (4.258)
along with the boundary conditions
on Iy:
u' = vn% (4.259)
on
on I:
o(u') n=v,(f +kP)—divr (v P;) . (4.260)
Furthermore, if I'; is divided into three subsets:
L\Z, 2% 2°=2z\z2* (4.261)

defined by (4.224), (4.225) and (4.226), respectively, then there ezist the follow-
ing sets of the boundary conditions on I5:

(i) on Z°:
v nlu-Vrv, —v.n- % (4.262)
— an b
on(u') 20, (4.263)
0
on(u)|u' - n—u-Vyv, —v,n- a—u =0, (4.264)
n
or(u') =vnfr . (4.265)
(1) on Z%:
) Ou
' n=u-Vyrv, —v,n-—, (4.266)
on
or (W) =vafr +0n(u)Vro, . (4.267)

(i) on I\ Z:
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o(u') n=v.f . (4.268)
O

4.7. The Signorini problem with given friction

In this section we shall consider, following Sokotowski (1988d), the contact prob-
lem with given friction on the part I; of the boundary I" = 812 of the domain
2 CR%.

We denote by u € H'(£2;IR?) a solution to the following system

— (cijri (z) uk, (z)) j=fi (z) inf, i=12, (4.269)
u;=0 only, 1=1,2, (4.270)
cijuukanj =P onlIy, 1=1,2, (4.271)
uin; 20, 0, 20, opuin; =0 only, (4.272)
or-u+u-7|=0, -150,51 only, (4.273)

i.e. the stick-sleep condition (4.273) is prescribed on I;. A weak solution to
(4.269)—(4.273) minimizes the functional

7(6)=30(6,) = (Fd)+ [ 1g-7lar, (4219)

over the convex and closed cone
K={¢cH(2;R})|¢=0 only, ¢-n<0 onlp}. (4.275)

It should be emphasized that u is also the unique solution to the following
variational problem :

Find an element u € K such that

a(u,¢_u)+L{|¢-T|—|u-'r|}d[‘g(F,¢—U> Vée K . (4.276)

It is assumed that the boundary 82 of £ is sufficiently smooth and 802 =
'yuryur,.
Let F,h € H' be given, and let F* stand for

F*=F+¢eh €€(0,6) . (4.277)
We shall consider the following variational problem:

Find an element ©* € K such that
a(u®,¢—u) +/ {l¢-7|=|u®-7]}dl 2 (F*,¢ —u®) Vé€ K (4.278)
I,
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The saddle-point formulation of the variational inequality (4.276) will be intro-
duced. To this end, we need the following notation

U={peH}I})3z€ Hsuchthat p=z-7 on I}}, (4.279)
U' denotes the dual space with the dual norm ||.||z4s. The symbol

/u(:::)(p(a:)dl1 VueUl Voelu
I,

is used for the duality paring between spaces &' and U, the latter is obtained by
the extension to ', U of the scalar product in L?(I3). Furthermore we introduce
the notation

(U')+={u€U'|/ u(z)p(2)dl 20 Voel,
I,

p(z) 20 forae. z€ I3}, (4.280)

o' =w)t -t . (4.281)
In this section we denote by A C U’ the convex, closed set of the form
A={pe @Y |-124$1 oIy}
= the unit ball of L*° (I3) . (4.282)
We define the functional

L(Fib) = 308,8)-(F8) + [ 0@ @@ (1259)

I,

VFeH' V¢eH Vuel

Let (u®, A*) € K XA be the unique element for which the saddle-point conditions
are satisfied,

L(F*u®,p) S L(F5us,X) S L(FS6,0°) YueAd YoeK . (4.284)

In order to determine the form of the right-derivative of u® with respect to
¢ at € = 0, the following cones are defined:

Sk = Sk(u®) = {p € H|¢(z) -n(z) =0 onZ\ 2, (4.285)
¢(z)-n(z) 20 on 2y},

Sp=SsA) ={pel'|u(z) 20 on =V, (4.286)
p(z) S0 on =3,
p(z)=0 on =ZfUZS},
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where

Z1={z€ I’2|)\0 (z) = -1},

Z9 = {:D € Fglx\o (I) = +1},

5= {z e Sl (5) =0}, i=1.2,
=H=5\2), i=1,2.

. = = 3
i —1 \ =3

Theorem 4.35 For ¢ > 0, € small enough,
u*=u'+eq+o(e) in H'(2;R?), (4.287)

where ||lo(¢)|| p1(a;r2)/e = 0 ase | 0.
The element g € H'(£2;R?) minimizes the functional

I(¢)= %a(dn ¢) — (h,$)+ (4.288)
max{ /r 4 () (8- 7)(z)dTu € S4 ()}

over the cone Sk (u®).
Proof.

Taking advantage of (4.278), (4.277), (4.279) and using the standard arguments
one can show that

lu® — u®|| g arey SCe € €]0,6) . (4.289)

Let
(R14) (z) = 6(2) - n(z) = ¢un(z), (4.290)
(R29)(z) = (¢-7)(z) (4.291)

for z € I; and for all ¢ € H.
For simplicity, it is assumed here that the boundary 82 of the domain 2 is

smooth enough and we have
$nyd-TEHI(IZ) VéeH . (4.292)

However, the condition (4.292) can be weakened. We define the linear and closed
subspaces H; C H ¢ =1,2,3 such that

H=@H (4.293)

and
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H, ={¢EH|G(¢,T])=0 Vn € Hs , R2¢=0}, (4294)
Hy={$€Hla(én)=0 VneHs, Ri¢=0), (4.295)
Hy = {$ € HR1¢ =0, Rod =0} . (4.296)

It should be noted that (4.295) and (4.296) imply that
KNH;=H; i=1,2. (4.297)
Therefore the symbol K will stand for the convex and closed set:
K ={¢ € Hy|(R14)(z) 2 0 for ae. z € I3} . (4.298)
Furthermore we use the notation

S={¢ € H|pa(z) =0 forae. z€ Z\2Z, (4.299)
¢n(z) 20 forae. z € Zp},

where a.e. means almost everywhere with respect to the one-dimensional
Lebesgue measure on I%.
The functional (4.275) can be written in the form

J(¢) =Z%a(¢‘,¢‘) — (F, ¢ +/P (6-7)(z) |dT (4.300)

Vo=¢"+¢*+¢*cH .

Hence the saddle—point conditions (4.284) can be formulated:
Find (ul u? ud /\’) € K x Hy x H3 x A such that

&) ey e

a(ul,¢—ul)—(F,¢—ul)20 VéeKCH, (4.301)
a(ul,¢) — (F*,¢) +/F X (2)(¢-7)(z)d =0 Vo€ H,, (4.302)
/P p(z) (ul-1)(z)dl 2 '/F X (z) (u2-7)(z)dl Ype A, (4.303)
a(;§,¢) —(F*,¢)=0 V¢ esz : (4.304)

In order to prove (4.287), it suffices to show that for ¢ > 0, € small enough,
ul =ul +eqi+o(e) inH;i, i=1,23, (4.305)

where |lo(¢)||g1(a;r2)/e = 0 as e | 0, and ¢; € H;, i = 1,2,3, are uniquely
determined.
For each case under study, i.e. for : = 1,2 and 3, the specific proof will be given.

Case 1 = 1.
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Let us consider the variational inequality (4.301). We can apply Theorem 4.10

to (4.301) and obtain (4.305) for ¢ = 1. Therefore the element ¢; € H; is given

as the unique solution to the following variational inequality
QG € SCH 1

a(q, 6 —q1)— (h,¢ —q1) 20 VoeSCH . (4.306)

Case 1 = 2.
Let an element z(p) € Ha, p € U', be a solution to the following variational
equation

o(:(0), )+ [ (@) ($-r)@)dr =0 Vo Hy . (4:307)

2

If

wezui_z(/\e)’

then
w® € Hy: a(w¢)=(F°,¢) Vo€ H, (4.308)

and for € > 0, € small enough,
w® =w’+ew' 4+0(e) in Hy, (4.309)

where ||o(¢)||n,/e = 0 as € | 0. The element w’ € Hj is given as the unique
solution to the following variational equation

w e€Hy: a(w,d)=(h,¢) Vo€ H, . (4.310)

The condition (4.303) is equivalent to the variational inequality

AXeA:
4.311
b =3+ [ (W) =X @)t D @arzo vues,
I,
where the bilinear form b(-,-) : Y’ x U' — IR is given by
b(1, ) =/ A=) (2(u;2) - 7 (2))dl Vu AU’ . (4.312)
r »

Under the same assumptions as in Sect. 4.5, one can prove, making use of the
results obtained by Sokotowski (1988d), that for the cone (4.286) associated to
the set A of the form (4.282) the following condition is satisfied

S4(\%) =cCs (X°) N M, (4.313)

where Cy (/\0) is the radial cone to A at A°, and the set M is defined by
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M={pe U'|/F p(z) (u®-7)(z)dl =0} . (4.314)

Applying Theorem 4.6 to the variational inequality (4.311) one can show that
for € > 0, € small enough,

A =20 4eX+o(e) inld, (4.315)

where ||o(¢)||ur/fe =+ 0ase | 0.
The element ' € U’ is given as the unique solution to the following varia-
tional inequality

e Sa (/\0) :

sVou=X)+ [ W@ -N@)W @z @)

2

VYu € Sa (/\0) .

From (4.302) it can be inferred, taking into account (4.277) and (4.315), that for
€ > 0, € small enough, (4.305) holds for : = 2, where g¢; is given as the unique
solution to the following variational equation

@ €H;:
a(qz,9) — (h,9) +/1: N(z)(¢-7)(z)d =0 Vo€ H, . (4.317)

Case 1 = 3.

It is easy to show that for ¢ = 3 the equations (4.277) and (4.304) yield (4.305),
where g3 € Hj is given as the unique solution to the following variational equa-
tion

s €Hy: a(q’,¢)—(h,¢)=0 Vo€ H; . (4.318)
From (4.305), (4.306), (4.316), (4.317) and (4.318) it follows that (4.287) holds.
This concludes the proof of Theorem 4.13. O

4.7.1. Shape sensitivity analysis

Let us consider the shape differentiability of the solutions to the Signorini prob-
lem with given friction. Let

2: =T, (V)(9),

where V € C(0,e;CY(IR* R?)) is a given vector field. The notation I' t =
T,(V)(Ii), i =0,1,2, is used, and 892, = T UT; UT,.
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We shall examine the contact problem in the domain §2; for ¢ € [0, ).

Problem (P;): Find an element u,; € K(f2;) that minimizes the functional

Je(4) = %at (6,8) — (Fe,$) + je (4) (4.319)

over the set K(2:) C Hy, where
H;={¢ € H'(2;R?)|¢ =0 on I3}, (4.320)
ac(2,4) = /n Gin (2)45 (2) ua(2) o V2, € e (4.321)

(Fi,¢) = | fi(2)¢i(z)dz + / P;(z)¢i(z)d V¢ € Hy . (4.322)
2, ry

In (4.321) and (4.322) the restrictions to 2; of the elements
ik (), fi (), Pi(-) € H'(R?) 1,5,k 1=1,2

are also denoted by cijki, fi, Pi , respectively.
Finally let

(@)= [ 167 @lar, (4329)

where (), = € I'f , denotes the unit tangent vector on I'y; n(z),z € 42 ,
is the outward unit normal vector on 92, .

It can be shown that there exists the unique solution to the problem (P), t €
[0,6); for t = 0 the problem (Pp) becomes the problem (P). Therefore we denote
its solution by ug = u. Let ii; be an extension of the element u; € H 1(.Qt; IRZ) to
an open neighborhood of £2; C IR? such that the restriction i,|p € H'(£2;IR?)
is well defined for ¢ > 0, t small enough.

Theorem 4.36 Let us assume that Du - V(0) € H'(£2;R?), and the sets =°,
ZF, E are sufficiently regular.
Then fort > 0, t small enough,

glg=u+tu' +o(t) in H'(2;R?), (4.324)

where ||o(t)|| g1(a,r2)/t = 0 ast ] 0.
The strong shape derivative u' € H'(£2;IR?) is given as the unique solution
to the following problem.

Problem (P'): Find an element u' € Sy(2) that minimizes the functional

I(¢) = 2a(6,6) +9(V3 ) +5'(V;9) (4.325)
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over the cone Sy(£2) C H'(£2;R?).

We use the following notation:

Sy(R2) = {¢ € H' (2 R?)|¢ = —vnDu-n—v,Du-7 on Iy, (4.326)
¢-n2um-DV-1—vn-Du-n—vn-Du-7 on Z7,

¢-n=un-DV-T—van-Du-n—vn-Du-7 on 2°},

i'(Vi¢) = max{/r [¢r + ur(divV —n- DV -n) + v,7- Du-n (4.327)
v.7-Du-7]dl’ | € € Sx(A)} .

A representation of the linear functional g(V;-) for dlan € H?(2;R?) can be
given in the form

9(V;¢) = (4.328)
/an{v,,o(u): @) +vn(f @)+ da(f V)= (o(u)-n)-(DV - ¢$)}dI'+

/ {div(PiV)$i — (n-DV -n)P-¢+P-DV - g}dl .
n

Proof (Sokotowski et al. 1987a). Let

u'=uoTy, (4.329)
2= DTt -t (4.330)

where DT; ' is the inverse of the Jacobian matrix of the mapping Ty(V).
From (4.329) and (4.330) it follows that

AT .
u_ltlﬁ)l?(u —u)=z2+4+DV-u (4.331)

provided that there exists the limit

1
= 13%1;(# —-u) in HY(2;R?) . (4.332)

Therefore we have to show that there exists the limit 7 € H(£2;IR?) defined
by (4.332). Finally the shape derivative u’ is determined from the equation

u'=u—-Du-V=:4+DV-u—Du-V . (4.333)
Since

¢ € K(£2;) if and only if DT, - (4o Ty) € K(22) Vt€ [0,6), (4.334)
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then for the element z' € H(£2;IR?) defined by (4.330) we have that 2* € K(£2)
for all ¢ € [0,6); however, in general u* ¢ K(£2).

Applying the change of vanables in (4.319), and making use of (4.330), one
can show that the element 2! is given as the unique solution to the following
problem

Problem (P*): Find an element 2* € K({2) that minimizes the functional
J'(¢) = Eat(¢, $)— (F',¢) +5'() (4.335)
over the set K(12).

We use the notation:

a'(z,¢) = ay(DTy - (z 0 T;"), DTy - (4 o Ty 1)), (4.336)
(F',4) = (F,, DT, - (¢ o T, ')) Vz,6 € H'(2R?), (4.337)
)= [ (60T rtear (4338)
*DI[' - n
/ {“DTt ¢ — dur(t )m w} ar

Vé € H'(2;R?) .

The explicit form of a*(-,-) and (F",-) is given by (4.244)—(4.250). Let a(2,¢)
stand for the following limit

(=, 9) = lim 1 ((2,9) — a(z,4) (4.339)
=d'(z,6) +a(DV - z,4) + a(z,DV - ¢) Vz,6 € H'(2;R?) .
In (4.339) the notation is the same as that used in Sect. 4.7, e.g.
d'(z,¢) = /n {div(cijuV)zi, ik, — cijrleij(2)er(4) (4.340)
+ €j(2)exi(9)]}dz .

Furthermore
(F,8) = [ (@n(V)éc+ £ DV - g)de+
/ {div(P;V)¢ — (n-DV -n)(P-¢)+ P-DV - ¢}dI'
I

Vé € H'(2;R?) .
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It can be shown that
o1
(F’?¢) = l:ﬁl?{(Ft,DTt ' ¢) - (Fv¢>} .

By standard reasoning it follows that the solution 2! to the problem (P?!) is
Lipschitz continuous with respect to t € [0, §).

Lemma 4.37 For t > 0, t small enough, we have

" = ullisamsy S Ct - (4.341)
Therefore, from (4.329) and (4.330) it follows that

llw* — ull grr(a;mey S Ct, (4.342)
where the constant C is independent of t € [0,6).

Finally, let us examine the non-smooth term (4.338). It is assumed that for
t > 0, t small enough, the following condition

*DT -
DT; -n—y(t)y——H—— ® =0 (4.343)
I*DT" - nlg-

is satisfied by the vector field V(-,-); for ¢ = 0 the condition (4.343) reduces to

the equality n —n = 0.
We can simplify (4.338); from (4.343) it can be inferred that

§(4) = /P (6 7)(@)re(z)dl, (4.344)

where
re = ||DT; - 7llmellv(t)* DT - n|g2 . (4.345)

For t > 0, ¢t small enough, we have that
re=141tr+o(t) in C(I3), (4.346)
where

# =(||DT; - 7||2) + (||det(DT;)* DT - n||g:)’ (4.347)
=7-DV-14+divV —n-DV .n .

The functional (4.344) can be written as follows

7%(¢) = max{ /F E(z)(¢ - T)()re(z)dl| €€ A} . (4.348)
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Furthermore it is possible to show that there exists the unique pair (2%, \!),
t € [0,6), such that

LY, 6) S L(24, M) S LY, \!) for all € € A and for all ¢ € K(12), (4.349)
where
£'(6,8) = 50'(8,9)~( / E@)¢ @@l (4.350)
for all ¢ € H'(2;IR*) and forall £ € A .

The element A\* € L*°(I3), t € [0,8), is given as the unique solution to the
following variational inequality

NeAa:
#O4E- 292 [ (€~ Nutrdl Ve, (4:351)
I,
where
B €)= / AWL(E)@)ru(2)dT, (4:352)
¥r(E)(z) =9 (z) 7’(-“Jr zel;, (4.353)
veH: a'(y / E(z)(¢ - 7)(z)re(z)dl’ Vo€ H, (4.354)
and
w =w'-T,
w'e H: a(w' ¢)=(F',¢) VocH. (4.355)

The solution ! to (4.351) is right—differentiable with respect to the parameter
tatt=0.

Lemma 4.38 Fort > 0, t small enough,
AN =X+th+o(t) in (HI(I)), (4.356)
where Ilo(t)"(ﬂi({“))r/t —0ast]O0.
The element X\ is given as the unique solution to the following variational
inequality

A€ Sa(N) :
b E—A) + b\, =) 2 /F (€ = N (s + 7w, )l VE € Sa(N),(4.357)
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where the cone Sa()) C (H3(I})) is defined by (4.286)

60,6 = [ o)+ uerdear, (4.358)
r;
Y € H:a(,4) +a(p,4) = / Mp.rdl’ V¢ € H, (4.359)
I,

W € H:a(y,$) + a(w,¢) + a(w, ) = (F,§) Vo€ H . (4.360)

To prove Lemma 4.38 one can use the same reasoning as that of the proof
of Theorem 4.35. Therefore, the proof of this lemma is left to the reader.
Let us observe that the element z! € K(£2) minimizes the functional

I'(¢) = %a'(¢,¢)—(F‘,¢)+ / X rrdl (4.361)

I,

over the set K(§2). Furthermore, from Lemma 4.38 it follows that
( / A mdr)' - / {(Ad- T + Nig,}dr . (4.362)
Fz F2

Therefore, taking into account (4.342), and using the same argument as in the
proof of Theorem 4.35, we obtain the following result.

Lemma 4.39 For t > 0, t small enough,
Z=u+ti+o(t) in H(2;R?), (4.363)

where ||o(t)|| g1 (a2;r2)/t = 0 as t | 0.
The element z € H(2; IRZ) i3 given as the unique solution to the following
problem.

Problem (P): Find an element z € Sk(u) that minimizes the functional
1 , .
I(¢) = 5a(4,¢) + a(u, ¢) — (F, ¢)+ (4.364)

max{ [ €(¢-7+7u.)dTJE € Sa(\)} + / Ao - ridl
I, r,

over the cone Sk (u).

Proof. Using the reasoning of the proof given for the shape sensitivity analysis
presented in Sect. 4.6, one can show that the element z € Sk (u) minimizes the
functional
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1 . . : .
B($) = 30(6,6) + w8~ (F,6) + [ (4 x)orar
2

over the cone Sk(u) of the form (4.285). From (4.357) it follows that
/ A(er +#20)dl 2 / E(ir +72,)AT VE € Sa(N) . (4.365)
r; I

Making use of (4.365) and taking into account that z, = u,, one can show that
the functional I;(-) can be replaced with (4.364). This proves Lemma 4.39.

In order to conclude the proof of Theorem 4.36, it should be noted that
from (4.331) and (4.333) it follows that u' € {Sk(u) ~ DV -u+ Du-V}. On
the other hand, if we select V(:,-) with compact support in {2, then u' = 0 and
2 = Du - V. Hence the following equation holds

a(Du - V,$) + a(DV -u,¢) — (F,¢) =0, (4.366)

for any V = V(0) with compact support in f2.
Using (4.366), the linear form (4.328) can be determined. This proves The-
orem 4.36.

4.8. Elasto—Plastic torsion problems

Let 2 C R? be a given bounded domain with the smooth boundary I = 812.
We shall examine the following variational inequality :

Find u € K(£2) such that
[ 9ue)- V(8(0) - ez 2 [ (6(2) - ula)de Vo€ K(@), (a36)
n n

where p > 0 is a given constant and K(2) is a closed and convex subset of the
Sobolev space H}(£2),

K(2) = {¢ € HY(R)||[Vé(z)| £ k for ae. z € 2} . (4.368)

Here k > 0 is a given constant, it is assumed that k£ = 1 in (4.368).
It can be shown (Friedman 1982) that there exists the unique solution
to (4.367). Let us denote by P C f2 the so—called plastic region:

P={z¢€N||Vu(z)| =k}, (4.369)
then E = 2\ P is the so—called elastic region and we have
-Aulz)=p ME . \2.31V)
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The elastic region E and the plastic region P are not known a priori and should
be determined; therefore the problem (4.367) is a free boundary problem. Let
us recall that for the solutions to the variational inequality (4.367) the following
regularity result

u € H} Q)N HY(N) (4.3711)

is obtained (Brezis et al. 1968; Friedman 1982).
On the other hand, it can be shown (Brezis et al. 1968) that the solution
to (4.367) is also the unique solution to the variational inequality

u€ K,() :
| V(@) 9(62) - uteyie 2 [@@ -t @)
n n

Vo € K,(12),
where
K,(2) ={ ¢ € Hy(2) | ¢(z) £ p(z) for ae. z € 02}, (4.373)
plz) = min o ~{lr: €2 . (4.374)
Material derivative u(£2)
We denote by p(-) the distance function:
pi(z) = E’élgg‘ |z —¢€llr: =€ 802, (4.375)

where 2, = Ty(V')(£2), V(-,-) is a given vector field.
It is assumed that the following condition is satisfied

pe(+) € Hy(£2;) for t >0, t small enough,
and there exists an element p(-) € HJ (£2) such that

lim [|(pe 0 Tt — po)/t = fll () = 0 - (4.376)

Here p denotes the material derivative of the distance function p in the direction
of the vector field V(-,-).
Let us consider the following variational inequality defined in the domain 2,

us € KP:(‘Qt) :
/ Vu(2) - V($(z) - ul))dz 2 / (6(z) — ue(z))dz
2, 2,

Vo e K, (12¢) .
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Theorem 4.40 Fort > 0, t small enough, we have
ug o Ty = ug + tu + oft), (4.378)

where ||o(t)|| ga(ay/t =0 ast — 0.
The strong material derivative u € H}(£2) is given as the unique solution to
the following variational inequality

u € Sy(02):
/nViz(:r) -V(¢(z) — u(z))dz 2 (4.379)

[ (6 - i)s-
/,,(A'(z) -V(#(z) — i(2))medz V4 € 5p(92),

where
5,(2) = {$ € HD)| (z) £ i() g.e. on P, (4:380)
/ Vug - V(z)dz = p/ #(z)dz},
P P
F'(z) = pdivV(0,2) z € 0, (4.381)
A'(z) = divV(0,2)T — DV(0,z) — *DV(0,z) . (4.382)

Proof. Let ut = u;0T; € H}(£2), t € [0,6). The element u’ is the unique solution
to the following variational inequality

u' € Kpe(2) :
/;)(At(a:) - Vul(z), V(d(z) — v'(z)))r2dz 2 (4.383)
/!)F,(x)(zi)(:t) —ul(z))dz Vo € K (R2),

where

Ky(2)={¢€ Hy(2)| ¢(z) = p'(z) forae z€ R}, (4.384)

p'(z) = (peo Te)(z) =€, (4.385)
Ay(z) = det(DT,(2))DT;} (z) - *DT; (), (4.386)
Fy(z) = pdet(DTy(z)) . (4.387)

We shall prove that there exists an element @ € Hj(£2) such that
. 0 .
ltlﬁ)l (v = u®)/t =il g2y =0 - (4.388)
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In order to apply the results on the differential stability of solutions to the
obstacle problems, we introduce the inequality

w'e K(2) :
/ (Ad(z) - Vu'(2), V((z) - w'(z))pade 2 / Fi(z)(#(z) — w'(z))de
n n

- [[(4de) Vo), V((a) ~ '@l V6 € K(2), (4.389)

where

K(2)={¢€ Hy(2)| ¢(z)S0ae in 2} . (4.390)

Hence for t > 0, ¢ small enough, we have
w' = w® 4t + o(t) in HY(R), (4.391)

where the element ¥ is given as the unique solution to the following variational
inequality

b € So(2) :
/n Vi(z) - V((z) — i(z))dz 2 /n F'(z)(w(z))dz— (4.392)
4@ Vna) + 52), V(6@ ~ iloNmads V6 € So)

In (4.392) the use has been made of the notation

So(R2) = {4 € HY(N)|4(z) £0qe.on =, | Vw(z)- Vé(z)dz (4.393)

o

—u [ #(a)iz ~ [ Vola)- Vo(a)dz),

Z={z € 2uw(z) =0} . (4.394)

Since
u' = w' 4 p, (4.395)
then (4.377) and (4.391) yield (4.378). This concludes the proof of Theorem 4.40.
a

Remark. In order to use the material derivative u in the shape optimization,
the form of the material derivative p(z), z € P, should be determined. We have

p(z) = —(n(z(2)),V(0,z) — V(0,2(z)))g> =z € P, (4.396)

where
2(z) = arg min{||¢ — z||r:[{ €0} z € P (4.397)
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and n(€), € € 802, denotes the outward unit normal vector on 942.

Domain derivative u'({2)
Let y(z) ,z € £, t € [0,8), denote an extension of u; € Hy(2:) to IR? defined

by

~ _ ut(z) T € .Qt,t € [0,6);
ut(-‘li) - {0 z€ IR2 \ Qt,t € [0’5) . (4.398)
For t > 0, t small enough, we have
Gy = uo +tu' +o(t) in H'(R), 4.399
I

where ||o(t)|| g2 (a)/t = 0 as t = 0.
We shall derive the form of the domain derivative u'. It is assumed that the
set

{8,(2) - S,(2)} N H* ()
is dense in the set {S,(2) — S,(22)} C H}(2).
Theorem 4.41 The shape derivative u' = u'(2,V) of the solution u = u(R2)

to the variational inequality (4.367) in the direction of a vector field V(-,-) is
given as the unique solution to the variational inequality

u' € 8y(N) :
/n Va'(z) - V(o) — u'(2))de 20 Vo € 8,(2), (4.400)
where
So(2) = {4 € H'(2)|4(z) = va(z) on 812, (4.401)
é(z) 2 p'(z) g.e. on P,
[(@0(o) + )é(a) ')z = ),
vn(z) = (V(0,z),n(z))g2 z € 092, (4.402)
p'(z) = va(2(z)) z € P, (4.403)
p(z) =1/(p(z) - R(x(z))) z € P, (4.404)

R(-) is the radius of curvature of 912.

The proof of Theorem 4.41 is omitted here. To prove this theorem one can
use the same reasoning as that of the proof of, e.g. Theorem 4.16.
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4.9. Elasto—Visco—Plastic problems
Let 2 C R? be a given domain with the sufficiently smooth boundary I' =

Iy UI}. We denote by £ the set of symmetric tensors of the second order. For
a given element o € £ we use the notation

3
tro=Y i, (4.405)
=1
1
oP=0- 3 tr(o)T . (4.406)

We shall examine the following problem:

Problem (P): Find an element 0 = o(2) € L%*(£2;€) that minimizes the
functional

I(o) = %A(a, o) / (0 -n)-uodl (4.407)
r
subject to
dive+ f=0 in £, (4.408)
oc-n=g only, (4.409)
oP(z) e KP forae z €, (4.410)

where f,uo,g9 € H'(IR?;IR?) are given elements, K2 Cc P, £ = P @ RT,
KP is a convex subset such that 0 € KP. For simplicity, it is assumed that

KP = {0 € €P| F(6P) L 0}, (4.411)
where

1
F(oP) = 5|aD|2 —k? (4.412)

and k > 0 is a given constant, i.e. we consider the Huber-Von Mises yield
condition. The bilinear form A(:,-) is defined as follows

A(a,C):611;-/0&(0)-tr(()dz+2—1ﬂ/naD:(Dd:c
Vo,( € L*(82;€),

(4.413)

where k, 1 > 0 are given constants.

The solution o of the elasto-plastic (i.e. elastic perfectly plastic) problem
(P) can be considered as the stress field in the body of reference configuration
£2 with prescribed displacement field u¢ on Iy and prescribed tractions g on I';
f denotes the vector of body forces. We replace (4.410) by a penalization term
in the functional (4.407) and therefore we obtain the so—called Perzyna model.
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Let Pg denote the metric projection in £ = EP @RI onto K = KP 9 RT
and let a > 0 be given. We shall examine the following elasto-visco—plastic
problem:

Problem (P,): Find an element o € L?(£2; ) that minimizes the functional
I,(0) = %A(a,a) —/ (0-n)-uedl'+ (4.414)
To

1 2
Z;/n|o — Pg(0)|zdz
subject to
divo+ f=0 in £,

o-n=g¢g inly.

For any a > 0, there exists the unique solution to the problem (Py). It is
assumed that a > 0 is fixed. We denote by o the solution to (Py).

In order to determine the form of the material derivative ¢ of the solu-
tion to (Py), we define the elasto-visco—plastic problem (P}) in the domain £2;
depending on the vector field V(-,-).

Problem (P}): Find an element oy € L?(§2;; £) that minimizes the functional
1
Ii(o) =§A,(U, o)— / (0-n¢) - updl (4.415)
I

1
+ e /n. |o — Px(0)|%dz

subject to
dive+ f=0 in £, (4.416)
o-ng=g inIy. (4.417)

We denote by f, uo, g the restrictions to 2, I'{, I'f of elements f €
HY(R?;IR?), uo, g € H'(IR?;IR?), respectively. Furthermore, it is assumed that
there exists an element o* € H'(IR*;IR?) such that

dive*+ f=0 in 8, te€][0,§, (4.418)
o*ny=g onlI{ te[0,é]. (4.419)
It can be easily shown that for fixed @ > 0 and under the assumptions intro-

duced, the solutions to the problems (P%), t € [0,8), are Lipschitz continuous
with respect to ¢, i.e.
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“Ut o Tt - Uo”Lz(n;g) é Ct . (4.420)

However, in order to obtain the form of the material derivative ¢ one has to
assume that for a given field V() the following condition holds

(A7) There exists the strong limit

ltile)l(at oT;—o)/t=¢ in L*(;€) . (4.421)

We shall show below that the element ¢ is uniquely determined as the solu-
tion to the auxiliary elasto—visco—plastic problem.

Remark. Let us observe that (4.421) implies the interior regularity of the stress
field o. In particular, for any vector field V(:,-) with compact support in £2, we
have

6=Vo-V . (4.422)

Therefore, ¢ € H'(£2;€) is the necessary condition for (4.421) to be satisfied
for any vector field V (-, ).

Remark. The condition (4.420) is not sufficient for the existence of the material
derivative 7.

Theorem 4.42 The material derivative & of the solution o to the problem (P,),
in the direction of a vector field V(-,-) such that the condition (A7) is satisfied,
solves the following problem:

Problem (P): Find an element & € L*(2;€) that minimizes the functional
. 1 1
Q=540+ [ 7'aD=chx+
1o [ 16=B=Ps(c= P+ g [ ylapa(Oyda

g {¥'(¢-n)uo = (¢ (*DV -n)) - ug + (¢ n) - (Vuo - V)}dI'

subject to
/(:e(d))d:c=/((:B’)-e(é)dm+/(Vu.-V)-e(¢)da:
1] n n
V¢ € H (2 R?) .
In the formulation of the Problem (P) the following notation is used: f =

4'(Pxo—a), Ps is metric projection in EP onto the cone Sk defined by (4.437),
v =divV, B'=-divWI+*DV.
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Proof. Let
ne=0y—0", (4.423)

where o, is the solution to (P;) and o* denotes the restriction to £2; of the
element 0* € H'(IR?; ). Therefore, for the element 7, the following relations

divng =0 in £2;, (4.424)
ne-ne=0 on Iy (4.425)
are satisfied.
Hence
/ nee(¢)dz =0 Vo € HE (2R’ . (4.426)
2,

Applying to (4.426) the usual change of variables, the following system in the
fixed domain §2 is obtained

[ medboTia =5 [ a0’ (D6 DI + DT D} =

a2 2Ja

/ A()(n':* DT, ): (d)de = / ote(@)ds Ve HN(ZRY), (4427)
n n

where

ot =yt * DT = 4(t) (o o T) :*DT;* —4(t)(0* o Ty) :*DT,! . (4.428)

Thus )
UtOTt=mUt'*DT1+U*OTt=O't'Bg+0': (4429)
and
ol=0"0Ty, (4.430)
1,
Bi= o5 DT, . (4.431)

pplying again the change of variables to the functional (4.412) to §2, the resulting
functional I'*(-) defined on {2 is derived,

1
18k J,
1
+@Pods + oo [ 2O BI® + () - dulloda
n

I'(d") = y(t)[tr(o*: By) + trat]?dz + le: Ly(t)”(a': B,)P (4.432)

—-/ u} - o' - ndI" + const,
Io
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where the element ¢; is determined as the unique solution to the following
variational inequality

P ek :
/ V(@D = (0 B)P — (01)P, (P — ¢P)epdz 20 (4.433)
n
V¢P(2) € K,

¢t = ¢P +tr(a")T . (4.434)

Making use of Example 4.2, and taking into account the assumption (A7),
it is possible to show that for ¢t > 0, ¢ small enough, we have

¢t = do +o(t) in L*(£2;€), (4.435)
$=6P +u(4)1,

where the element ¢° € L*(2;EDP) is given as the unique solution to the fol-
lowing variational inequality

#P € Sk c L*(2;€P) -
/n((l +2)(¢P —+v'6P —4'(6*)P — 6P - (: B)P (4.436)

= (Va*:V)P),¢P — ¢P)endz 20 V(P e Sk .

Here
Sk = {n € L*(2;€P)| Mz)¢P(2) :n°(2) = 0, (4.437)
£P(2) :nP(z) 20 in 0},
¢P(z) = Pk (0P (z) + 0*P(z)), (4.438)
L_|6P(z) 4+ 0*P(z)|ep for oP(z)+0*P(z) g K
_la
Az) {3 ) for 0P(z)+0*P(z) € K . (4.439)
The functional (4.433) can be written in the form
I'(o!) = AY(d%,0t) — (F',0f) (4.440)

with the appropriate bilinear form A'(-,-) and linear form (F",-), respectively;
the element ¢; is considered as the data. The necessary and sufficient optimality
conditions for the problem (P}) transported to the fixed domain {2 are of the
form

Al(a',¢) = (F',¢) V(e L*(9€), (4.441)
/ o':e(¢)dz =0 V¢ € H} (2R%) . (4.442)
7}
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Differentiating (4.442), (4.443) with respect to ¢t yields
A(o",¢) + A'(0,¢) = (F',() V(€ L(€),
/ oe(d)ds =0 Ve H(%RY)
2

as a result the problem (P) is obtained.
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