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1. Introduction

| Shape optimization problems have been intensively studied in the literature
throughout the last 25-30 years with vespect to various directions of investiga-
tion. A lot of methods for description of domain variation have been developed
and derivatives of functionals and solutions of state equations with respect to
these domain or boundary variations can be computed. Moreover, the necessary
| optimality conditions are given. and nmnerical algorithms for a wide variety of
i problems are applied (see the surveys in Pironneaw, 1983, and Sokolowski and
Zolesio, 1992). Nevertheless, due to some diffculties avising from the theoret-
! ical as well as technical point of view. the study of sufficient conditions seems
to be not very well developed at the moment. Ouly a few number of papers
are concerned with related investigations (Fujit. 1994, Belov and Fujii. 1997},
! Therefore. it seems to make sense to discuss the easiest case of shape tunction-
als only, m order to apply some of the ideas for the more interesting shape
optimization probleins.

:
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In Eppler (1998a, b, 1999) the author discussed an easy approach to the
description of the boundary variation for starshaped domains by the use of po-
lar coordinates. This allows the description of the boundary and the boundary
perturbation in the same way by functions of the polar angle ¢. Consequently,
a (global) Banach space embedding of the shape problem is possible, which al-
lows the investigation of Fréchet-differentiability using the standard differential
calculus for Banach spaces. In this way the existence of first Fréchet-derivatives
for domain and boundary integrals of the type

J(Q) = /hda: and Jy(§) = /gdSp, I'= 09, (g,h are given data),
Q T

is shown, which are equivalent to formulas for first {directional) derivatives for
other approaches.
As a starting point for this paper we have the following in the case of star-
shaped domains:
Similar to first derivatives d.J;()[r1], (4 = 1,2}, second derivatives can be
directly obtained in the sense of
dJi(Qsr, )[r1] — dJi(o)[r]

2 J(Q)[r1;72) = lim 3 , =12,

because the first derivatives can be expressed as integrals over the interval [0, 2x],
where only the intdgrand contains the perturbation parameter . These deriva-
tives are of Fréchet-type and therefore they have to be symmetric.

Following the ideas of Kirsch, Kress and Potthast, this is investigated for
boundary perturbations by smooth fields for the case of two-dimensionional
domains, too. Although this approach allows at least a “local” Banach space
embedding, the computation of second derivatives is not straightforward and
needs a special definition of the direction of boundary perturbation on perturbed
domains (in a neighbourhood of the reference surface). Furthermore, the normal
boundary variation method is investigated for the sake of completeness. The
derivatives of the area and boundary arc length are discussed as examples.

Based on this, second order sufficient optimality conditions are ol;)tained, at
first for the case of starshaped domains. After them, a comparison to other
approaches is also discussed. An extension of the results involving equality con-
straints is given and finally these conditions were applied to the Dido problem.

2. Domain perturbations and first derivatives

In this paper we shall study shape optimization problems for 2-dimensional
simply connected bounded domains © C D, where D is given. In the first part
we assume the domains satisfying a condition of starshapeness with respect to
a neighbourhood Us(zo) = {y € R* | |y — o] < &}. with some fixed § > 0.
Without loss of generality we assume in the sequel that zq = 0. The main
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advantage of this assumption is that the boundary I' = 9§} of such domains can

be described by a Lipschitz continuous function r = r(¢) of the polar angle ¢
) r(¢) cos ¢
€., = ==

‘ {”("” (r(qﬁ) sin¢>

domain (boundary) can be identified with this describing function.

¢ € {0‘271’]})‘ Moreover, vice versa, each

REMARK 1 Due to a result of Mazja (1979), the boundary function of a do-
main €2, starshaped with respect to an open subset Us, is Lipschitz continuous
with a constant, depending only on ¢ and on dg := sup{lz| | z € Q}. Con-
sequently, if we assume that all domains under consideration are uniformly
starshaped and bounded (i.e., there exists a bounded outer “security set” D),
then they have uniform Lipschitz continuous boundaries.

REMARK 2 The assumption I' € C*, (k € IN) is equivalent to
r(-) € CK[0,27] == {r(-) € C*{0,2n] | rO(0) = rD(2m), i = 0,...,k}. (1)

For transformations into polar coordinates we recall the well known formulae
for the (local) curvature x(-) (and related curvature radius R(-) = x~1(-) — for
I € C?), arclength I(-), and unscaled and scaled outer normal of the boundary,
given by

R™H¢) = w(¢)

_ 22B) + r2(¢) — r(P)r" ()
3 3
(g + 1(9)
and (@) = \/r2(8) + r*($),

and
a(¢) = (:giiiiﬁjj:féj;;ii) {unscaled)
) P — 7}
r2(¢) + 7 (¢)

In the following a reference domain Q € C* is given, where the boundary I is
associated with the describing function » € C}[0,27]. In this way, the “vari-
ables” (the admissible domains) are identified with elements of an open subset
of the Banach space C}[0, 27}, and differential calculus in Banach spaces can be
applied to the study of the problem.

LEMMA 1 Let h € C(D) and g € CY(D) be given. Then the functionals J, =
[hdz and Jy = [ gdSr are Fréchet-differentiable with respect to C}[0,2x] at
Q r

every admissible £ with the derivatives

27

VI (r)[re] = /r(¢)7‘1(¢>)/l(’f’(¢)=<f)) de. (2)

0
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and

o 5 1o
Vhmnl = [ Ve L r(4),8) + g(r(9), ¢) LD

I} 87‘ ,/712 + 7./2

REMARK 3 For the proof see Eppler {1998a or 1999). Admissible perturbed
domains (or boundaries) €. are now defined by the connection I'. & r.(¢) =
r(#) + eri(¢) with vy € C}[0,27] and ¢ > 0 sufficiently small, provided that
re(@) > 8, ¢ € [0.2x] is satisfied. Obviously, we have dircctional derivatives
given by (2) and (3), respectively, which are linear and continuous w.r.t. r;.
Moreover, the related operator-norm of the Gateaux-derivative depends con-
tinuously on the C}[0,27]-norm of r. This ensures the continuous Fréchet-
differentiability of the functionals by standard arguments from functional anal-
ysis (see Bogel and Tasche, 1974, loffe and Tichomirow, 1979).

dg. (3)

REMARK 4 Shape derivatives are usually denoted by d - [r1} or V- [ri] in the se-
quel. Spatial gradients V, and partial derivatives with respect to polar co-

ordinates (especially 5; = (V.- &.)) or boundary normals often occur in the

formulae and should not be confused with shape derivatives. Furthermore, be-

7 Cos . ) ‘
cause of €, - 7l = ————== >0, (& = | . AT the radial unit vector), the
Ve 42 sin ¢

perturbations are always regular, i.e., the perturbation field is a tangential field
if and only if 1(-) =0

The description of boundary perturbations by smooth fields can be used
for more general domains. Especially for 2D-problems boundaries and pertur-
bations can be described by vector parameter functions, based on the usual
Cartesian coordinates, more precisely, we have for some 7' > 0

e = () o)

with v(t) = 4(t + T), and ~(-) € C*(R).

Moreover, we assume (1) = y(fz) & t; = to, 1.tz € (0,71, i.e., the curve
is free of double points The curvature {-radius), arclenght and the normal

VAR
W) =i+ 42, d(t) = (:l:)( §() ) = 7i(t) = (—i—)a(t),

~2(t) It

where the sign for outward normal is “+”, if I' is positive oriented for increas-
ing t. Furthermore, differentiation with respect to arclength is connected with

d 4 _vd

at Y ds T ihdt T it

direction are given by —— = k() =

R(t)

Second derivatives and sufficient optimality conditions 489

The description of perturbed boundaries . is similar to :

e o= () o) ecom)
(d= (Zj) suff. smooth),

because at least for sufficiently small ¢, the same parameter interval for . as
for 2 can be taken. In order to have a nontrivial perturbation we additionally
assume (dIE 3) fi(-) # 0. Although, there are some problems with nonuniqueness,
an additional degree of freedom and the existence of smooth tangential fields,
the approach is useful and allows at least a “local” Banach space embedding
in a neighbourhood of Q. Formulae for first derivatives are obtained similar to
Lemma 1 in terms of integrals on [0, T].

LEMMA 2 Let h € C(D) and g € CY(D) be given. Then the functionals J; =
[ hdx and Jo = [ gdSr are Fréchet-differentiable with respect to {C1[0,T]}? at

%) IF
Q1 with the derivatives

T
V() = Ay h dSr = [ h{z(t), y(t))(dat) — dy)(t) dt, (4)
[ s [
and
’ d + d
z ]
VJQ(’Y)[d-]:'O/g( m
+ (o0 (§) Jov T T FD 5

REMARK 5 Relation (5) is directly clear from

T
bsz&:/awmm» T .
0

r

Moreover, for I' € C?, (5) is equivalent to (see (11)),

dJ?.(’Y)[Uq = /(Cz" V.g) + gdivp ddSr,

where divp d = divp{d ~ (71 - d)ii} + k(7 - d) — for the definition of divp (or
Div) see Sokolowski and Zolesio (1992} or Colton and Kress (1992).

*
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From the historical point of view the first approach (sce Hadamard, 1910)
was the method of normmal boundary perturbation by using

P (t) = y(8) + ep()if(t), 1€ [0,T],

However, this approach does not allow a direct embedding of the optimization
problemn into a Banach space, because at each step of approximation one degree
of sinoothness is lost. Nevertheless, directional derivatives exist for sufficiently
smooth domains.

LEMMA 3 Let h € C(D), g € CH{D) and Q € C* be given. Then the functionals
Jy(+) and Jo(-) are directional differentiable with respect to p{-) € C1 at 0 unth
the derutives
‘ T
dJy(p] = / phdSr = /h(:x(z‘,),y(t))p(t)\/it? + 2 dt, (6)
T

0

and

s}
wsill = [ o ( 09, %)(zsr

r
.
= [ st (stngto) + 540 ) VD 70 . 7

0

REMARK 6 Because of d = rié, and ((Z 7#)dSr = r(d)ri(¢)d¢ for the polar
coordinates, we have the equivalence of (2) and (4), as well as (3) and (5),
respectively. Moreover, for I' € G2, (3) is similar to (7), which can be seen after
integration by parts.

REMARK 7 The assumptions on the data fields f and g can be weakened to

fields with weak singularitics (see Eppler. 1998a). Furthermore, regularity of
the boundaries can be reduced, but this will not be studied in the paper.

The next result contains some technical details, useful for the computation
and the transformation of higher order derivatives.

LEMMA 4 Let Q@ and the perturbations be sufficrently smooth. Then it holds for

the shape derivative dit of the normal (7, and r. are related to I, )

~ d .i:d:t - ’ya;,l; . L d Lo
dadj(t) = (—[;‘n,s(\tﬂgzo = ~37:;?‘-?——(\1‘) () = (R, ;Z—:J) -7 L (),
d)(8) = Lita(@)emo = TE 00 g) - 7(9) L (), ()
) de 72 g
B d 14 S dp L
(]?l[[)](f/) = :/v/g I,g(\i) cm{) &= — ———]——:2—-;/:2:(#) 7 (t) = —7/; -7 L /(f)
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where 7(@/t) denotes the unit tangential vector on I directed to increasing ¢(t).
Furthermore, the shape derivative di of the curvature 1s qiven by

d | idy + ijdy = jd, — id, ; id, + 4d,

T Rele=0 = : — oK = g s

de™* VT &2+ 92

d P I A I st I S S o

E“Ns[e:() = 3 O (9)
£ \ /7.2 + 7./2 r +

d _ P plyg + 28]

wh’f[E O*‘““Q 3 D IV K

de T4+ (22 +9*)

d ta S22 2
“7{/) ¥ +I} v [/)dz<\/”b‘2+J } {FQ—FQ%;(\/UE +J )}

\/E2+J /I'2+y

REMARK 8 Tle relation %ﬁg(tﬂgzg 1 7 is also known for more general cases
(see Sokolowski and Zolesio, 1992). The last transformation of (9) needs obvi-
ously © € C*. Moreover, a well founded derivation of the derivative formula in
the case of normal variation needs formally also @ € C?. However, the result is
valid for C*-boundaries, too.

Similar formulas for the first directional derivatives hold for the velocity
field (or material derivative) method, developed by Sokolowski and Zolesio. We
present for the sake of completeness the main idea of the approach (for a detailed
mvestigation see Sokolowski and Zolesio, 1992):

Given a so called “velocity field” V(t,z) : V € C(0,;C*(D,R™)), one
direction of perturbation of a reference domain Q is described by a family of
domains (2, defined by

dz(r, X)

dr

Qp:{MtX)GRN

=V(r,X), 2(0,X)=X ¢ Q}

The main advantage is that the direction of the domain perturbation is well
defined on D, where V(0 0)|r can be viewed as the boundary perturbation in
comparison to other approaches. The first directional derivatives are given by

LEMMA 5 Let h € C(D) and g € CHD) and Q@ € C? be given. Then the

functionals J1(+) and Jo(-) are directional differentiable with respect to V() € C*

al € with the derivatives

dJ (O[V(0)] = }E}(L) M = /(V(O),ﬁ)/z dSr, (10)
r
and
dJo(V(0)] = /(V(()),Vg) + g(div V(0) — [DV(0)i.7i}) dST. (11)
r
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REMARK 9 DV(0) denotes the Jacobian of the mapping = € R? — V(0,2)
€ IR?. Furthermore, the following transformation of (10)

dJ(Q)[V(0)] = /(ﬁ - V(0))h dSr

= /div[hn V(0)]dz, heCt, (he Whiy,
Q

shows that the velocity method allows the definition of shape derivatives under
essentially weaker assumptions on the domains. Additional degrees of freedom
(Vi(0)|r = Va(0)lr = both “velocity fields” represent the “same boundary vari-
ation”) cause no difficulties.

3. Second derivatives

As we had already announced, the second shape derivatives for starshaped do-
mains can be computed “straight forward”, if the data ficlds are smooth enough.

THEOREM 1 Let h € CYD) and g € C*(D) be given. Then the function-

als Jy = [hdx and Jy = [ gdSp are twice Fréchet-differentiable with respect
) r

to C}f [0.2n] at Q@ with the second derivatives

2m
V2 ()] = / e $)(B)h(r )+ 1O (B)rald) ol 6) s, (12)

0

and

) = 02 ;
V2 Ja ()i 7ol / (Z(U{Tg(gb)m(gb)\/ r2 4 e 0?:,‘(2/
0
/
2

5 / )
(}Ag{ rry 4y . 7!11—7 rl} (13)
2 4 r’“ Pt
(rirs + ,,./17,;))“‘3 + 7,/’2) ~ (rr + 7./7,11)(‘,,,7.2 + ,,./,,J?)
+g- N 53 :
/

ReEMARK 10 Due to the Banach space embedding. the boundary variation rs
on perturbed boundaries U, and on [ 15 defined in the same way without any
additional problent. Thercfore, differentiation can be carried out and leads oh-
viously to syvmumetry with respect to 71 and r2. Moreover. we need no additional
regularity of the boundary for the definition of higher order derivatives of shape
frunetionals.
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In order to investigate higher order derivatives for the other cases, a defini-
tion of the boundary variation on perturbed boundaries is necessary. Following
Potthast and Kirsch, in the case of bouudary variation by smooth fields we
may proceed for N = 2 as follows, in some sense similarly to the case of polar
coordinates:

We compute the derivative of d.J;( ~) (i =
au integral over the fixed interval [0.T] with

[t £.(1)
Ib =8 Y = s
{ o{8) (y(t)) * S(mw) " €l T]}

because a smooth parametrization of the perturbed domain exists on the same
interval {0,T7] for 6 sufliciently small. The “transformation” of direction d onto
['s is defined by an “unchanged translation”, i.c.. d(ys(t)) = d(4(t)) = (f(f)
From

1, 2), after the transformation into

1
dh[d}lg e //1(15 ysWdyyis — dyds ) dt = /}Ié d dsy(tydt

0

and
T

" i(s(i —+ 1 jé(i d, - -
(”’W“é* <V1~95~< >>1/a:'+y“dt
\/Jé + Ja dy 8 4

we immediately obtain

COROLLARY 1 Let h € CYH{D) and g € C*(D) be given. Then the functionals
Jp o= j/z de and Jy = j g dSr are twice Fréchet-differentiable with respect to

{c,o. T]}2 at Q0 with 1‘,/1,(% second derwalives

T

V2L f] = / hdof, - dyf)

0

(e ()

T ) . . .
V2L f] = / <vjvg«, [J- ety | o e ¥ idy D
J NS 22+ g2

and

+(Vigf.d)

oy A fod) (02 4 2 Lo 4 d, ) ,
(,V(f“‘- + fyd )@ +y7) — (u3 +gd W fe + 0], . (15)
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The symmetry of VQJZ(W){(Z; ﬂ can be seen directly from (15). However, after
integration by parts of the first part I1(d; f) of V2J1(¥)[d; f] we obtain (boundary
terms at ¢ = 0 and ¢ = T vanish, because all functions are periodic in t)

T T

L(d f)= / Wdpfy —dyfo)dt = / ~[hd, ] fy + [hd,] f. dt
0 0
r )
= I(f:d)+ / <v$h. <1> >(~«1If‘y +dy fo)dt.
1
0 Y
T
An casy caleulation shows (with Ir(d: f) = [(V,h, f (d.@)dt) that
0

/T<v " <J>>( defy + dy fe) dt = B(fid) = Lo{d: ),

ie., symmetry holds,

REMARK 11 As a natural method for the definition of domain variations on
perturbed surfaces one may use any smooth extension of the boundary field d.
which is very close to the velocity field approach for autonomous velocity fields.
However, this is not equivalent to the above, because it leads to

T >
AT ldlls = /m(t)(&,aw)dt
0

T

= 420 (V[ fl = V2 (9)[d: ﬂ+/ <ddb|a o(t). do(t )>dt,
[¢]

where the additional part in the derivative implies nonuniqueness (it depends
on the way of extension) and destroys the symmetry of second derivatives in
general.

REMARK 12 For tangential directions of perturbation d= a(t)r. and j = /3( )
we formally obtain

iy
szl(v)[(ff] = /CYﬁth\/;i‘Q + g2 dt = / af xh dSr,
0

r
T
V2]>(7 ; ] /aﬂ[
0

/ l/j[ +thl ( /3)—(15[“ = /CY/;;‘(]HFZSF.

r r

and

} 22 4+ g2 + o + dmfzi dt
ar
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For the definition of second derivatives for the normal variation approach. we
use the following transformation of direction d = p-ionto Iy o= '+ év - 10
We define d{-s(t)) by d{vs(t)) 1= p(t)ii{+s(2)). where only p(-) is “unchanged
translated”, but the “whole direction” is perturbed. Therefore, we get

COROLLARY 2 Let h € CHD), g € C*D) and Q1 € C* be given. Then the
Junctionals J1() and Jo(Q2) ave twice directionally differentiable at Q with re-
spect to p(-).v(-) € C* with the second derivatives

-
EI)p;v] = / [pu <h,/{, + ?ﬁ>}
. an
0

oh h .
r

and

T
Y ..
d? Jo(v)p: v) /{ﬂl/[a 5 + 2K %—“ﬂ +g_‘py,2}s/:ir'2+y2(lt. {17
0

22+

Proof. By making use of (8} and
d

(Z(‘) 2492l = o= v(t)(r(t), Jiﬁ(f)) = v(t)s(t)
we obtain (16) from
dJ1(ys)]p] = / phs dSy
L
T T
= //zé(t) o(t)r /a3 + yi(t) dt = /hb (15 ds)(t)dt
0 b

and

T
~d -
d ]1 /) 1295 :/ [ —(ié‘(),d> + <([ ‘;;ﬁbll)>} -+ <VU/J,U77> g <(f(?> (H,
826
9]

where d = p - 1. For (17) we obtain by differentiation of d.J2(vs)[p]

PRI ' d dg 7 .
A T2 (y) [ v] = / p{dS [hug e B }h} + I/(hj + ﬁ) }dbp
iy

T
d D e 2,
= //){W{(Vrg. Y + g‘ﬁﬁ,(\'!(, + v{NVogn. i)
. i
0
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d d : -
+ <V.,,J, 7% Vl(s‘()> + VK <f;,g + 5%) } VvV +ytdt

7" ,
g dyg
_ SNy 5,99
= / oV iEc+ Yy (H,{z/[@nz + Zh,an
0

Ll

or

i + i iy
2 KoR T2 4 yz .

by (8) and (9). For further transformations we split d2Jslpiv] = Lipiv) +
I5(piv) into the direct symmetric part

.
’ e,
Lipiv) = / /W{

0

an? In

2 ) (/12
¥ QI';(—}g - 2g ’“' +J D, }\/JEQ + g2 dt,

”L+J

and the (formal) nonsymmetric part

T
e —/n{
)

v—=—+4gq

d -
0‘] At l:l/

FEE - 0T b
ai.

ar 2 4 42

Integration by parts of Ir{p; ) leads to (boundary terms vanish)

Tag PVEFE-wEVTEP] g
lz(f)ﬂ/):' e oy -y
0
[0/ = 20 (VEE )] - [T+ - 20 ()] )
+9 ; ‘.
12 ‘|“U2

An easy calculation shows that

dt

hence, —=

7 a : =
<V;[-g., <7>> = g—ql\/:c? + 93,
7 T
dg VAT S y~d—g

a2t Par

i.c.. symmetry holds for the second derivatives of J,. Morcover, we continue
with a further transformation of

T
L(p:iv) — /2/7 U ¢ peace b
0

T
. /)1/
=g N
. :L‘“+"

0

tz(\/L +y)

(22 + §2)?
oL )——W(;it(m> + pv (V47D
dt (332 + ) /32 ¢ !'/23
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2 . s
9%7(\/;1;2—{-%’)}} o d‘](“<\/ +4?)

@1 ) @ ()

Iutegration by parts of ~2(-}’;(p1/){. ..} shows that all terms except of the first
term vanish. The transformations are formally valid only for I' € C®. However,
for I' € C? we use an easy continuation argument by an approximating sequence
{I',} © C°. Hence. we arrive at (17). |

dds
REMARK 13 Now —!g, —qu is formally present. but the related term for d*.J;

vanishes, because ot ~—n (t}e=o L 7 (sce Remark 8 and Lemma 4), whereas for
d?Jy some of such tel ms have opposite sign and therefore they vanish.

RemARK 14 Formula (17) can be rewritten as

a2 P
d* Ja(y)[piv) = /pv[(f) S 2/»?3‘(1} + ipiizdSr
r

In? on ds ds

Therefore, a conjecture for an extension for N > 2 may be the following

2 ‘ &g E) N
Ty piv) = | pv oz 2 +g(Vrp, VrrydSr, QC R
r

Due to the definition of velocity fields on D. second derivatives in the sense
of

A J{(Q)[Vi; Vo] = lim A iy, ) V1] = dTi()[V1]

s2=12
t—0 t

can be obtained straightforwardly by using the unitary extension Ay of the unit
normal field 7 on T

COROLLARY 3 Let h, g and Q be sufficiently smooth. The second directional
derwatives of the functionals Jy and Jo at  with respect to autonomous vector

fields Vi,V are grven by

d* Ty (Q)[Vy; Va] = /(vg, i) div[h - V1] dSr
ro
= / div[div[h - V1] - Vo) da, (18)
Q2
and
& o ()[Vi; Vi) :/% Vol (Vi Vo) + g(div Vi — [DVING, No])}

r
+{(Vi - Vag) + g(div V) — [DVii, i)} (div Vi — (DVyit - 7)) dSp. (19)
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REMARK 15 For nonautonomuos velocity fields additional terms from —‘d‘z‘ﬁlt:“
occur in the formula. Morcover, d2J; contain a symmetric part aud one from
AV (v,
;—M——tlf—) (see Remark 11).
dt )
Some examples. For the volume J; = / dr of a domain we have
Q
2w
o d*J[riiry] = /'7‘1(¢)‘7‘2(¢) dg,
0

o P[] = / L (de(8) £y (8) = dy(0) fult)) dt
8]

T
o Jyp:iv] = //)uf-@\/yz + @2dt = /pz/ﬁ dSr,
i r
o 42, (Vi Vo) = / div{div V; - V] dz.
9
The second derivative of the volume does not depend on the reference domain
in the first two formulae, hence. third derivatives will vanish (for 2D-domains).
This is not the case for the normal perturbation approach, becausc the boundary
variations depend on the domain. For the velocity method the nonsvmmvtric
part “destroys” the independence. Especially for Vi = d = (1, 0T (parallel
shifting in x-direction) and Vy = f = (0.522,0)7 (“blow up/shnnkmg in x-
direction) we get
0 = d*Ji(d; f) = & Ju(f;d),
whereas 0 = d*Jy (Vi; Vo) < 2y (Vs V) = / dz,
0
holds for the velocity method. Similarly for the perimeter J; = [ dSp we obtain
r

2 . 5. P
ryrg + )% ) = (rry ) (g 1)
L4 ([ [)11‘/0 / S )( ) ( L 1>< z 2) (l'/(,b.

) ‘/i2+7‘/23
i /T (o Jyd) @ 4 02) = G )G e+ 9Fy)
4]

0({]),

3
:-+1/~

T

. 1p
. (fle{p:I/]:/ i it 4 gdt = /(‘p(—K dSr.

A more general formulation in terms of boundary integrals seems to be not

directly clear for the case of smooth perturbation fields (sce Remark 14).
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4. Optimality conditions for shape functionals

In the first two subsections we shall study only the case of free minima. We
denote by Qg a local minimuim, where related neighbourhoods are meant in
the sense of C1 for domain integrals, and in the sense of 02 for boundary
functionals, rospe‘chvcly Moreover, the subscript “0” donotes in the sequel
all quantities {rg, ['g...), connected to Qy, whereas directions of domain- or
boundary perturbations, lke 7, d and p are used without any subscript.

4.1. Volume functionals

Wlhereas necessary optimality conditions can be easily obtained by using direc-
tional derivatives of first and second order, the situation for sufficient condi-
tions is generally more complicated in shape optimization. Due to the special
approach for starshaped domains, standard methods are applicable. From the
standard necessary condition it follows immediately (“all r € C! are admissi-
ble”) that

2
aJ1(Q20){r] = Vi (ro)lr] = /To(¢5)7“(¢)/l(7‘0«¢)df/’ =0= h|r, =0. (20)
0
Moreover, according to (12) we get for a domain, satisfying the necessary con-
dition

2

Al

V2 Iy (ro)[r; 7] :/7'2((/>)TO(¢)%%I0(¢)(1¢~ (21)

0

Optimality can be guaranteed often by some coercivity of the second Fréchet-
derivative. However, it is impossible to have coercivity with respect to C! (the
“space of differentiation”), only an estimate

; dh
Vi (ro)fr, 7] > eollr||3,, (where ¢p > 0 is ensured by E;!g((,b) >0, V)

can be expected. This is known from other control problems as the so-called
“two-norm-discrepancy”.

. - oh dh i
REMARK 16 The conditions jfo > 0 and —é—lo > 0 are equivalent for star-

2o =02 o= 2jo(e 7
840 0.‘0 ol€r. 1

~—

).

shaped domains (we have (&, 7) > 0 V¢ and

i
()

THEOREM 2 For Qg € Ct{ry € C/'; [0.27] and h € C? the conditions hir,

dh . T
and Br lo = 0 are sufficient for optimality.
s
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Proof. We have (from differential calculus): Jy(rg+7)~J1{rg) = %[(l Jrlredr. 7]
02(r)
]2
optimality. Nevertheless, by a more careful estimate of the remainder #2(r) =
AT (r )\ ror) — d2 I (ro)[rr) (where v, = rg + v7) it follows that

+ 9(r).], where -+ 0 for |lrilcr = 0, but this is not cnough to ensure

oh

1} = [ {/l Ty (f) - O’Y‘ <IU)O'F[V

Y

oh
— Ty E; ‘()j] (ld)

2

< max |r{ )] / rler(h, ) + ealh.on) + calhon)] dg
0

< (:(/z,77)[[1'|$Cv|['r‘{%2. with [[r7lle < 1.

We arrive (for n sufficiently small) at

Jilro + 1) = Jilre) 2 H 12, if firlle <.

which ensures the optimality of €. n

REMARK 17 The easy situation allows an interpretation as follows: From the
necessary and sufficients condition we have for the data field h
1) hlp, =0,

(i) h(z) > 0, Yo € Us(Ty) \ Qo,

(iit) h < 0, Vo € Us(Ig) N Q.
Therefore, each perturbation of the boundary increases the functional value. In
spite of being intuitively trivial, this shows that sometimes the results, obtained
for a restrictive approach, can be valid also for more general situations.

REMARK 18 The same discussion is obviously possible using the second deriva-
tives for normal variation. After the transformation of the second derivatives
for the smooth field approach we sce that

<l2(ll('y()){(z (ﬂ = /(V;phos 1Z> ~do (5 + a5t

0

T
' af ah (
= / {l,l ( - L |O( o~ t()(/ ) m(lf / (]’*)I 0 ' U

3

ye + wadi),

oh - . .
hecause of )—lg = (). Hence. second order sufficient conditions are similar for a
ar

free minimum, whereas the second derivatives are different in general.
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4.2. Boundary functionals

The pecessary condition for a free minimum can be directly seen from the
derivative for the case of normal boundary variation. if we additionally assume

Qo€ C?
\ a )
dJ2 (o) [p] = //), <——q—+ )dS =0 = {frg+gﬁ]fgzo,
) R dn
To

Nevertheless, this follows also from derivative formulae for the other approaches.
We have

/ ror + 1o’
V]Q ’I() / 70+/‘00”[0+J0—0——~———Q—4—d¢
Vgt
")
o= ToT
J o O}dSr

: 08 o t+2
/ HJTW 9, +7/.2_ddfu}+goro m

s a
where { E )d 0 - 0 } r072|0,
/ r2 4 ,,(7)(1 /’0+T,2 an
and analogously
i {, i
, . © o dody + yod, dy . .
Vh(yo)ldl = | go—mts 0 0 (Vfg() : < >> \ 32+ R dt
4 Vg + U dy

T
:/g0 ;Ed+wvw0¢gﬁ+dmmﬁg) 52 dt
0
= / dy (QOHU + #fo)dsn
on

r 0

For the derivation of sufficient condition we investigate the second derivative

BT (Qo)rsr] = V2 Ja(rg)[ri 7).

V2 Ja(ro)[ri 7] / 3+ ’83;2/

dg ror + 1y’
o7

(7, 7 — 7.0,,,/‘)2
Nt 7 do.

B
irs i




502 K. EPPLER

By integration by parts of the “mixed terms” r'r - f($) we arrive at

27

V:ZJ?(TO)[T; ’I'} = /7.2 ) fl(v.zrg vrg»gv TO) + 7-/2 ) fz({],To) (lQl)ﬂ (22)
0

where fi and fo are given by

8 [y a rory
f1(Vi9. Vg0, 70>W)~ro——< J) +~-‘i———“~°—3

O do [
U
T3, 12 2,02
dg 208 + drhrg — rar] +g(),6 +orgrly — 2rery ey — rir'y
O

oF & =
3+ r3 4yt
7‘2
and falg, ro)(p) = ——n02

——
[2 o
T

REMARK 19 Here, only a H'-estimate
V2 Ja(ro)ri 7] > collrlld . with some ¢g > 0 (23)

is possible. For the venflcatlon of such an estimate a Riccati equation technique
may be used.

. 3
THEOREM 3 For Qg € C2[0,27] and g € C® the condition Ié_ﬁi + grc}[o =0
n

and estimate (23} ave sufficient for optimality.
Proof. Similar to the volume case we have to estimate J2(7) = d?Jo(r, )[r, 7] —
d®Jy(ro)fr,7]. From (22) it follows that

2w

wx!</ﬂﬁw~ﬁwwwﬁmw~£WM¢

[

whete f(6) = fi(V20.Vg,g.m,)(#) and f¥(#) = falg.7,)(). respectively.
Moreover, with ¢ € C* and (22) we get (because of

2
Ty

I lo
[r2 4 3()'7‘2 /2+ /2872

28 4 dr'? rzz“ (}‘J 23 + 417} 7‘0 0 'dgi

Uﬁw—ﬁwnq

T

i v 0

2 /2 .2 ,/2
riAry LAl i A
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and so on)

020 = [ realrl + cal|+ eale )+ ealr] o
g

with ¢; = ¢;{g,r0.m), 1 = 1{1)4.
< &g,ro.m) - lirlles llrllz . for ffrfje: <.
Summarizing up, we are able to estimate (for sufficiently small > 0)
‘ co L g X
oo + 1) = Jo(re) = “%H'"Hf{l« for {irflce <n. u

ReEMARK 20 If ¢ < 0 holds somewhere on the boundary 'y, g cannot be
optimal.

The similarity of the sufficient conditions can be seen by the following trans-
formation of V2 .J3(~)[d: rf] We use

. R = Cod L a s d
d= (. dyii + (7, )F = dii 4+ do 7 (dyo= (), dy = (;wzn
42

. L\ : d
= d, = YR+ 2id, + <fi éid>, dy = —r\/y* + &%d, + <T Ed>

and obtain
V2 (o) d] = /W’fgu d.dy/ &% + 32
0

= d tod i
+2{(V.g0.d) - (T —~d> + g0 w dt

¢t Vg + yo
-
' - OQQU d - azgo L
o 2 2 o) 72
a / (d”ET + Zdndr o dT e or2 JV I 9%
0

+ gU(ClI'L — hg ZI% -+ y(Z)dT)L’
VS + g

dy J
B3+ 1/0/1,,)< n-FQ + (Z,(LZL%)(H

on
7
= /11 '%'!3'%‘1\;(1’[‘

¢

+2(dy + o

.llllIIIllllllllllllllIIIIIIIIIIIlIIIII-I----J-lI------------------------



504 K. EPPLER

Here we introduced

5 [ &7 Jg
di(dq(o 210 Jo) /Lo+Jo+d; g
L Ve o+7/0

9? 90 ‘ . Iy
I =d? ( + h()go> JED 2+ 2dd,y ()TJ
. g0 Igo\ /55 5, Yo ~
2d,,d; (f)nf)”r + Ky—— e ) 45 -+ I//é + 2d.d,, —07; - Qd,,([Th'Qg().

. . . .. 0(/0 . .
By using the necessary optimality condition kogy + —— = 0 on I'y. we inmmedi-
i & an 0

Iy

i

!

i

I

ately get

o5 o
/ I5 dt = 0 and / I3 df =0,
0 0

because of

’ ’ H%g Jdg

JO Jo . iy
(/_d ufz‘« / ( —/00n>\/1:g%—ygu’,f7
0 0

for the second part, and the third part vanishes by

dgo d Jd
2, d, =2 5 —2d,,d, Koo = 2d [d, d,z]f%q and
dgo I o ddgy
<é)n8¢ O o7 i+ b dt on

Hence, we arrive (for a domain €, satisfying the necessary condition) at

V212 (y0)ld; d]

] 2 (%% 121 2 + (dn)? 57 | /25 + 3 dt (24
= . 2K In T+ yg di. 2
.U n 0'712 o an ) LU + JO o LA ¢ )

The same can be directly obtained from (17).

REMARK 21 The equivalence between (24) and (22) is also obvious for star-
shaped domains. Moreover, coercivity holds simultaneously.

4.3. Problems with equality constraints

The “standard results™ for free local minima can be extended to problems with
finitely many (mixed) equality constraints like (C) {J(£2) — inf. subject to

Ji(§1) = 0, ¢ = 1{1)k} where J(-} and J;(-) are arbitrary shape functionals of

[
<
[
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domain or boundary integral type with sufficiently smooth data fields. Whereas
this can be done along the lines of standard techniques (for example, see Casas,
Trolszsch, Unger, 1996), we present it for the sake of completeness. To this
aim we assume that Qg is a regular solution of the system of the first order
necessary conditions, Le. there exists a A% = (A, A9, .. AT # 0, satisfying
together with Qg(rg)

YV L{re, \D)[r] = 0. ¥r € C?%. Ji(Qo) = 0. i = 1(1)k.

Here the Lagrangian L{2, A) = L{r, A\) = 2 A Ji(r) s defined as usual,

and regularity means that

o \Y = 1 holds, i.e., the necessary condition is of Kuhn-Tucker and not of
Fritz-John type. We do not discuss this assumption in detail, sometimes
for special applications it can be shown explicitly (see the section below).

e The gradients of the constraints are linearly independent at rg, imply-
ing that VJ(ro)[] = (V1 (ro)[ ). .., VIk(ro)[])T is a mapping from C?
onto R*. Moreover, this is sufficient for the coincidence of the tangent
cone and the lincarizing cone Tn(rg) = {r € C*|VIi(ry)[r] = ... =
ViJi(ro)[r] = 0}.

COROLLARY 4 Let Qq be a regular stationary point of problem (C). Then the
condition

V2 L(re; M[r, 7] > collr I7,, for all v € Te(ro), (25)
1s sufficient for the optimality of g of only domain integrals occur in prob-
lem {(C). For a “mized” formulation, the coercivity condition (25) has to be
required with respect to H'.

Proof. The main “difficulty” of the constraint case is as follows: For some
admissible v (J;(r) = 0, i = 1(1)k) from a neighbourhood Bjs(ry) we have in
general r—rg & Te(rg). Consequently. we need for the comparison of J(r)—.J(rp)
the existence of a v € T.(rg) satisfying in addition to [|v — (r — ro)llce =
ofljr — rollcz) for {|r — rollee — 0

”’U . ('7- = 1"0)”[/3 . 0,
llr = rollz,
”U = (7* = 7’U)HH1 0. (26)

[l = rolla

This can be obtained by using the first order remainder of the coustraints.
We have: 0 = J;(r) = Ji(ro) + VJilrg)r — vo] + 9i(r — v¢), ¢ = 1{1)k, and
define a ry € C? (and related v 1= r — 1o + 7y) as a solution of (note that
VJ 0?2 RF)

VJ(ro)[re] = 91(r — ro) := (91,...95)T

= Vj(ro)['n] =0, rg =v—{r—1g).

or, in the “mixed” case
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Moreover, by the concrete structure, the remainders satisfy for boundary inte-
grals (after integration by parts)

[y (r = ro)l = [V{Ji(rv,) = Jilro)}fr = roll < eillr — o

e2llr = rollz,

(r,. = 1o+ vi(r — 7o), v; € (0.1}), whereas for domain integrals the related
estimate is

[Wi(r = ro)l = [V{Jilr,) = Jilro)Hr = ro]l < eillr = roliclr = rollz..
Consequently. for all ¢ = 1{1)k we obtain in addition
[93(r = ro)l < eillr = rollcalir = rolla.

These estimates carry over to {|ry]l, because V.J is also a continuous mapping
{more precisely: V.J can be continuously extended) with respect to Lo or H!,
ie., it holds (26). At the end we present a short outline of the remaining
estitates for the “mixed” case (replace H'-norm by La-norm for the other case
with 94 denoting the second order remainder of the Laplacian — see Sections
4.1 and 4.2)

Sy = 1
J(r)y— J(rg) = §V2L(7'0, A —rgir —ro] + 0%, v~ 1o = v ~ 1y,

i

: -
%VZLO[”VU] = VLA ra] 4+ 5 VAL ras o] + 0%

v

Dol = ellvlian lirsllas ~ ellralls ~ 1951

C 9 . .
2 ol = 95 il = rolles <
c ‘
= I = ro+rollin - V3]
co 2 lrolla: |95 <o >
> - 1 - b D gl
> D rolf {1 - Il - s S
where the last inequality holds once again for {jr — rollez < 1. ]

REMARK 22 For the stronger norm-requirement in the mixed case we get also a
stronger estimate for the difference of the functional values.

5. The Dido problem

As an illustrating example we want to apply the foregoing investigations to
the Dido problemn of maximizing the volume (area) of a domain subject to a
given length of the perimeter. There are two elementary proofs known for the
optimality of the circle {(see, for example, Tichomirow, 1990). One of them is
mainly based on investigations of Zenodorus in ancient Greece. The second proof
was developed by Steiner in the 19th century. Moreover, several formulations
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of the problem are given in the calculus of variation {sece loffe and Tichomirow,
1979). If we restrict our considerations to starshaped domains only, the problem
seems to become

2m
J(r) = /»] de = /-—%7‘2(@ d¢ — inf,
0 0
(P) subject to
27
Ji(r) = /1dSF = /s/r?((/)) + (@) de = L.
r 0

However, the problem is invariant with respect to parallel shifting. Hence. for
the investigation of sufficient condition we additionally fix the baricentre, for
convenience at the origin, which “forbids” the parallel shifting and does not
influence the original problem otherwise. We arrive at the following modified
problem

2m
J(r) = /-ld:}; = /—%7‘2(«15)@3 -+ inf,
Q 0
subject to
27
.]1(r):/1(15p~10=/ r2(p) + % (@) dd — Iy = 0,
(PM) r 0
2w ()
Jo(r) = /:cl dz = /cos¢> / pdpdp =0,
Q 0 0
27 r()
Js(r) = /.TQ dr = /Sinqb / prdpdp = 0.
Q 0 0

Whereas the discussion of necessary conditions is known from calculus of vari-
ation, we repeat it in terms of shape funtionals. We define the Lagrangian

3
L(rid) = J(r) =Y Aedi(r),
k=1

and obtain for r € Cg

27

QLN = [ =@ @)1+ dar(g) cosd + dar() s d
0

oy rry 4] (6) do

| /7.2 + 7./2

*
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e Proof. Aun casy calculation yields
= [ =R+ d - 5(8) + dzcos (o)

’ ; V2 Lirg. A% 1] = / r2(g) = r2(6) do.
+ Agsin ¢r(d)) do = 0, 4

= 14+ XA - rm(d) + Aocosdr{@) + Agsindr(ed) =0, ¢ € [0, 2x]. ) ]
' b) orie) y (¢) | ] Moreover, the system of trigonometric functions {1.cosng.sinnd.n > 1} s

With A9 = A} = 0 and according to our constraints, we get complete in C* and a orthonormal basis in Y, hence.
25 .
Ko = const. £ 0= ro{d) = ro. X = —kg! = =g = — o . e L 2 20y 2 = 2 2
\ 2 il = [ 77 (@) +r7(¢) do = pglr) + (1 +n7) E p () + ().
. ~ . 0 =
REMARK 23 The assertion Ay = A} = 0 makes sense, because the optimal
value function is obviously constant with respect to a variation of the value of 2
the second and third constraint. Moreover, a vanishing Lagrange multiplier The Fourier-coefficients of 7 are given as usual po(r) = —— / () dp.
. . - 3 R . . . hy .> N 1 e
of the objective (i.e., A = 0) implies Ay = 0 or kg = 0. Therefore, regularity of ver 4
the Lagrangian can be assumed. '
2 27
REM'A.RK 24 The additional constraints are formally not needed for the necessary v )= —== | r(¢jsinnddp. p,(r) = e r{g) cosng de.
condition. Also for Problem (P) we obtain VT VT
0 Gl
1o = const. # 0 and A) = k7! = _Z_O‘ Forthermore, the tangent cone is contained in the closure of the linear hull of
2m {eosnd.sinng. n > 2} Therefore. we are able to estimate as follows for r e T
However, we cannot conclude uniquely ro{¢p) = ry, because all “shifted” circle , . N
. — T . . . .y 2 2 ‘2 . X X
entre ¢ = satisfies the necessary condition for € g5 < 7 2L 2, - R T 'y
with centre at £ = (e1,e2)" satis cssary i+ es 5 P2 (G) = 12(B) dep = Z“"A DR + 2]
(= r.(¢) = g1 cos ¢+ ea8in ¢ + \/78 — e2sin? ¢ — £3 cos? ¢ — 12510 2¢). % n=2
For the validity of a sufficient second order condition we need 302+ 1) 3
o 2 2 3 T vl = Sl
Vo L{rg A rir] = eollrlls P v '
. . 38 L T = T o o Tape e L RIRER O (3 AN I,
for all  from the tangent cone T at £y of the constraints. Due to the regular- Hence, we have the desived cocrcivity of V= L(rg. AV){ri7]. n

ity, the tangent cone coincides with the linearizing cone, ie., according to the
derivatives of J;,,

ReEMARK 25 Irom calenlus of variation the validity of

5

& A # B . ( ) | 8 .
T) = T.(Q) V2 L(ro A1 > 0. Vr e TY =< e (2 | w(d)do =0

2 2w 2
= {7* e 64

LEMMA 6 1t is true that

0

r@)p = 0. [ r(ycosgds =0. [ r(a)singas =0}, . o | -
is known. However, this is divectly clear from the discussion above. Morcover,

0 0 0 SO e 1 S . . . . i
the functions ry{o) = cosd and rold) = sind are associated with the “linearized

directions of parallel shifting™ at Qg with respeet to oy and ao. respectively.

REMARK 26 Sufticient conditions for shape functionals only are not too impor-

VQL(/"O-/\O)["’W'] 2 g“’“”fﬂ? tant, bhecanse some ol the results are obviously or intuitively clear. Neverthe-

less, it can be afirst step for the study of more interesting shape optimization

for all v € TY. ensuring that a sufficient second order condition s satisfied for problems. For example, 1t seets to be possible to combine the presented tech-
the cirele. nigue with B or porential methods (Colton and Kress: 19920 Giinter. 1957,

*
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Hackbusch, 1989) for the computation of shape derivatives for elliptic equations
{Potthast, 1994a, 1994b, Fujii and Goto, 1994, Eppler, 1998a), also related to
investigations of Fujit (Fujii, 1986, 1990, 1994, Belov and Fujii., 1997). This will
be discussed in a fortheoming paper.
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