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VECTOR FITTING BY POLE 
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NONRATIONAL TRANSFER 
MATRICES* 
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Abstract.  Often the information available for a state equation description in the form 2 = 
Ax + Bu, y = Cx + Du is via a transfer function matrix H(s) obtained by measurements 
or complicated computations for fi-equencies s = jo). Thus H(s) is nonrational or rational 
of high order. Its state equation approximation means obtaining A, B, C, D in the rational 
transfer matrix C(sl  - A ) - I B  + D ~ H(s). This approximation problem is difficult 
because it is nonlinear and often ill conditioned. This paper describes a methodology for 
fitting the columns h(s) of H(s) by two linear procedures. First O(s)h(s) is fitted with a 
set of prescribed poles, where O(s) is an unknown rational function with the same poles 
as O(s)h(s). Then the poles for h(s) are calculated as the zeros of O(s). With the poles 
known, the unknown residues and constant terms are calculated for h(s). If necessary, 
the procedure is repeated with the new poles taken as prescribed poles. The procedure is 
accurate and robust, and uses only standard numerical linear algebra computations. 

Illustrative examples for the application of vector fitting are given for a power trans- 
former, a transmission line, and a network of transmission lines. 
Key words: Rational approximation, rational fitting, state equations, transfer function, 
transmission lines, poles, residues. 

1. Introduction 

It is cus tomary  to use state equat ions in the standard form 

2 : A x + B u ,  y = C x + D u  (1) 

for l inear parts of  dynamic  systems. In the applicat ions o f  interest  to us, (1) is the 

form used for the mode l ing  and s imulat ion of  t ransmission lines, t ransformers,  
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and external system equivalents for the calculation of electromagnetic transients 
in power systems. In all cases, the information available is in the form of a 
frequency domain transfer function matrix H(s) ,  s = jco, obtained either' by 
computation (overhead lines, cables, external systems) or measurements (trans- 
formers). Thus H(s)  is not rational, but (1) leads to a rational matrix for its 
approximation: 

H(s)  ~ C ( s l  - A ) - I  B + D. (2) 

Our purpose is to obtain the matrices A, B, C, D for a low-order state equation 
approximation (1) such that (2) is satisfied with high accuracy over a wide range of 
frequencies co. The given transfer matrix H(s)  is either nonrational or it could be 
rational of high order. In the latter case, the result is an order-reduction technique. 

In the field of applications we have mentioned, it is often the case (e.g., in 
overhead lines [9], [17]) that H (s) is diagonalizable with transformation matrices 
that are real and almost constant. Then (2) leads to scalar (modal) subproblems. 
Many of the existing publications [9], [11], [!7], [20] dealt originally with the 
modal problem formulation or used it as a first step [3], [6], [10] to the complete 
(phase-domain) analysis [1], [13], [14], [18], [19]. Some recent work [1], [3], 
[5], [13], [14], [18], [19] has addressed the problem in its complete form (2). 
Our contribution to this topic consists in the development of a new methodology, 
vector fitting [4], [7], that is both practically useful and theoretically interesting. 
It is applicable to both modal and phase-domain analysis. Because the theoretical 
aspects of the new methodology have not yet been analyzed, we will address these 
in the present paper. 

The basic idea of vector fitting by pole relocation (VFPR) is that the nonlinear 
and notoriously ill-conditioned problem of rational approximation (2) can be dealt 
with in an efficient way if we do not attempt to find poles for fitting the columns 
h(s) of H(s)  but mold h(s) into a new vector g(s) = O(s)h(s), where O(s) is 
an unknown shaping function that makes it possible to fit g(s) using predefined 
poles. Thus A in (2) becomes known, and if the columns of B are normalized, then 
only C and D reraain unknown in (2). The end result is a very robust procedure, 
Its MATLAB code is freely available from the second author. 

In order to introduce the new method, in Section 2, we give a characterization 
of the problem of state equation approximation (SEA). Then in Section 3, we 
describe the new methodology, vector fitting by pole relocation. 

2. Characterization of the state equation approximation 
problem 

2. I. Basic remarks 

For simplicity of presentation, we remove the term D in (t) and (2). The elements 
of H(s)  in (2) are rational polynomials with common poles p j, the roots of 
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det(sI  - A). Any column h(s) of H(s)  can be written as 

h(s) ~ C ( s I  - A ) - l b ,  (3) 

where b is the COlTesponding column of B. Note that normally A in (3) can be 
chosen diagonal via a similarity transformation. Then, for additional simplifica- 
tion, its elements are assumed to be complex conjugate (the poles pj  and p~ ). We 
can normalize b to "ones" by appropriately scaling the corresponding columns of  
C. Then any element of  h(s),  or the vector (or scalar) h(s) itself, takes the form 

Z r1 I2 r, h(s) ~ - -  + , ,  (4) 
. S  p j  . S - -  

J J PJ 

where the residues rj and r ]  are scalars or vectors, depending on h(s). We can 
thus make the following remarks. 

R e m a r k  1. If A is unknown, then the SEA is a nonlinear problem in the un- 
knowns. If  A is known, then the SEA becomes a linear problem. 

R e m a r k  2. Separating H(s)  into its columns permits us to remove the elements 
of B from the unknowns. If  in addition A is known, then the only unknowns in (4) 
are the residues rj (which correspond to the elements of C). 

R e m a r k  3. All elements in a column h(s) share the same poles. 

With si = jo)i, (4) can be written in the form 

h(i~ i) ] 

h 

i i 
si --pj  si - -p j  

�9 

] ri 
,l_! 

r 

(5) 

Note the resemblance of  G with the Hilbert matrix, with elements H/,j = 
1/(i + j - 1), and even more with the Cauchy matrix (with elements Ci, j = 

1/(xi + y j ) ,  where xi,  y j  E R, and of  which the Hilbert matrix is a special case; 
see [8, p. 515]; see also [15], [16]) which are known to become very ill condi- 
tioned with increasing size. Therefore, we expect that G too is ill conditioned. 
This will indeed be the case. 

Matrix G in (5) is a "basis" matrix related to the calculation of the residues r. 
The poles could also be calculated from (5) using nonlinear optimization. This 
would require linearization of G with respect to the poles, which leads to a basis 
matrix G'  for the increments A p j ,  A p ;  of the poles: 

G !  . . rj ' ]  
= " (si-pj? ~si-p~)2 " '  (6) 
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This too turns out to be just as ill conditioned as G. Consequently, we state that 

R e m a r k  4. Both the calculation of residues for given poles and of the poles 
themselves--which is anyway a difficult task because of nonlineari ty--is  fraught 
by ill conditioning. 

2.2. Singular-value decomposition: Analysis 

The effect of ill conditioning can be conveniently analyzed by singular-value 
decomposition (SVD) of the basis matrices G and G 1 of (5) and (6). This yields, 
for example for (5), 

G = USV* and h ~ Gr = USV* r = USq (r = Vq), (7) 

where U is a unitary basis matrix for h consisting of orthonormal vectors uk, and 
S is the diagonal matrix of the singular values Crk of G, in decreasing order. V 
also is unitary. The following remarks are now in order. 

If we solve (7) for q, as C~k decreases so wilt qk become accordingly larger. 
It is therefore customary (in order to avoid catastrophic numerical cancelations) 
to remove from the SVD the part related to extremely small singular values. We 
note however that to the extent that large values exist in the vector q, the residues 
r (=  Vq) will also become large (because V is unitary). But a good rational 
fitting (4) should certainly be obtained (unless a pole is very large) with residues 
as small as possible! Therefore, we conclude that 

R e m a r k  5. Good rational approximations are predicated on the possibility of  their 
realization with small residues. 

R e m a r k  6. A vector h can be satisfactorily fitted (by the above requirement), 
when G in (7) is indeed ill conditioned, only if it is in the range of the first few 
columns of U, i.e., if we can obtain it with small values qk: 

h ~ ~ ukcr~qk. (8) 
k 

2.3, SVD: Examples 

Two situations will be considered in the following, according to whether aH poJes 
are or are not well away from the imaginary axis. 

Case A: No poles close to the imaginary axis. 

Figure l gives the singular values crk of the basis matrices G and G I of (5) and (6) 
for two pole distributions. The location of the poles is shown in the left subplots. 
There are 5 x 5 poles in each case, plus their conjugates. In the upper plot, the poles 
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Figure 1. Singular values of matrices G and G t for two pole distributions away from the imaginary 
axis. 

are closer to the real axis (the lower row is on the axis), whereas in the lower plot 
the poles are further away. Thus we have two distinct patterns with the common 
feature that no pole is close to the imaginary axis. There are 101 equidistant 
frequency points on the imaginary axis (including the one at the origin), and 
they are shown in the figure. 50 points correspond to positive and 50 to nega- 
tive frequencies. The requirement for considering negative, as well as positive, 
frequencies stems from the fact that h(s) of  (4) has the property (h(s))* = h(s*) 
(because its poles and residues come in conjugate pairs). Therefore, if a partial 
fraction expansion is valid and accurate for h(s) at positive frequencies (s = jco, 
co > 0), then it must be valid also for (h(s))* and thus for h(s*), i.e., for negative 
frequencies. With these details, the results are readily reproducible. 

The middle subplots give the singular values of  G. They are scaled such that the 
first singular value is 1. The right subplots give the singular values of  G' where 
all residues, rj and r* in (6), are assumed to be 1 We note that, irrespective j 
of  the pole distribution, both matrices are very ill conditioned, and the details 
of  the pole distributions make almost no difference. Similar results are obtained 
with randomly chosen poles. The ill conditioning is such that in double-precision 
calculations (e.g., in MATLAB) all but at most  the first 25 singular values should 
be set to zero. However, as pointed out in Remark 6, only a few singular values 
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and, accordingly, only the first few vectors of  U (singular vectors or modes o~" G) 
should be kept for good rational fitting. This has the fol lowing implications. 

The mode shapes (plots of  the singular vectors uk of  the basis matrix G against 
the corresponding 101 frequency points) become more and more oscillatory as k 
increases. This is shown in Figure 2 for the first 15 modes corresponding to the 
upper plots of  Figure ]. We can see that the number of  oscillations is roughly 
proportional to the order k of  the mode. For the lower plots of  Figure 1, we obtain 
similar results regarding the increase of the number of  oscillations in the mode 
shapes with increasing k. Because the first modes are smooth and the oscillatory 
ones contribute less and less to h in (8) as ak becomes smaller, h must itself be 
fairly smooth for a good fitting. Thus, unless very large residues are permitted, 
we note that 

R e m a r k  7. Only smooth functions h can be fitted with poles that are not close to 
the imaginary axis. 

if  the residues are to be kept small, for instance if in (8) for k >__ 2 and K > ] 
(e.g., K = 3) we require that 

!qkl < glqlt, (9) 
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Fignre 3. Mode shapes, including real and imaginary parts, of the first five columns of U for the basis 
matrix G. 

then, taking into account the fast decrease of ak shown in Figure 1, h obtained 
fi'om (8) will be confined to a not too wide band, defined by only a few modes 
uk (k >_ 2) around the first singular vector u I. Figure 3 shows (for the upper part 
of Figure 1) the absolute values and the real and imaginary parts of the first five 
mode shapes uk of G. Then, based on (8) and (9) and normalizing ql to 1, these 
are combined according to 

kmax 

hreal/imag ---- ~tlreal/imagO-1 ~ K Z Ukreal/imagO-k 
k=2  

(10) 

to give the upper and lower limits for (the real and imaginary parts of) h. These 
are shown (for several kmax), for the upper part of Figure 1, in the left half of 
Figure 4. For the lower part of Figure 1, these limits are shown in the right half of 
Figure 4. 

We note now that, whereas the singular values shown in Figure 1 depend very 
little on the distribution of poles, the mode shapes do depend on the pole distri- 
bution even if their features of smoothness and oscillations are similar. Therefore, 
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Figure 4. Upper and lower limits (for several kmax) for 17 that can be titted with the two-pole 
distributions of Figure 1. 

the functions h that can be fitted are different, as shown in Figure 4. The result is 
that 

R e m a r k  8. Any given set of poles determines a limited range within which a 
function h can be fitted. 

Thus, 

(a) On one hand, for a given h, a set of poles cannot be located, due to the ill 
conditioning of G'. Also, from a larger set of  given poles one cannot select 
a convenient subset for fitting by calculating the residues in (4), due to the 
ill conditioning of G in (5). 

(b) On the other hand, by Remark 8, a function h cannot be fitted with prede- 
fined poles, unless it happens to be in their fitting range. In any case, with n 
singular vectors, only n points of h can be reached exactly. 

Our solution to this dilemma is, as mentioned, to mold h(s)  into a new vector 
g (s) = 0 (s)h (s), which is in the range of a chosen set of poles. Before showing (in 
Section 3) how this is done, we discuss another particular case of pole distribution. 
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Case B: Some poles close to the imaginary axis. 

Figure 5 shows the relative (with respect to crm) singular values for four pole 
distributions with at least some poles close to the imaginary axis. The location 
of the poles is shown in the upper subplots (but with the scale of the figure the 
vertical separation between poles is not distinguishable). There are 101 frequency 
points (including the conjugates), as before. In the first two cases there are 5 poles 
(plus their conjugates): in Case 1 their distance d to the imaginary axis is 0.2, in 
Case 2 it is 1. In Case 3 and Case 4, four more sets of poles have been added to the 
previous two cases (to a total of 25, plus their conjugates), respectively, distanced 
by 10d. 

The pattern of singular values shows in all cases that the first 10 decrease more 
slowly than the rest. This is related to the 10 poles (including the conjugates) 
that are close to the imaginary axis. The singular values for the second set of 
poles in Figure 5 come in almost equal pairs corresponding to the poles and their 
conjugates. (If only positive frequencies were used, then only five singular values 
would decrease slowly because the conjugate poles are not close to the points of 
observation on the positive branch of the imaginary axis.) The smaller the distance 
d of the poles to the imaginary axis, the slower is the decrease. The presence of 
additional poles in Cases 3 and 4 does not make much difference, except that there 
are now more singular values. When d is really small (in Cases 1 and 3, d = 0.2), 
the first 10 singular values are nearly equal. 

Consequently, the first 10 singular vectors may potentially constitute a good 
basis for obtaining a given vector h, and more singular vectors are available for 
this purpose than in the case of poles that are all far from the imaginary axis 
(Figure I). However, as shown in Figure 6, the first five mode shapes, represented 
against the 101 frequency points (including the negative frequencies), have their 
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Figure 6. Mode shapes of the first five columns of U for the basis matrix G, Case 3 of Figure  5. 

main variation concentrated to the vicinity of  the five poles close to the imaginary 
axis. This, of course, is intuitively clear. The consequence of this fact is that the 
fitting of functions h with sharp variations is fraught with less ill conditioning 
than that of more general functions. However, it may still not be easy to locate 
the poles that would give a very good fit. Because of this, the method of pole 
relocation to be described in the next section is of practical significance even in 
this case. 

3. Vector fitting by pole relocation 

3. I.  P r o c e d u r e  

Our objective is to calculate the unknown poles a j ,  residues c j ,  and the constant 
term d in the expression 

N cj 
h ( s )  ~ - -  + d ,  (11) 

j = l  S - -  a j  
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where h(s) can be a vector or a scalar. To explain the method, we now assume 
that h (s) is a scalar. The summation limit N is the order of the approximation, 
assumed to be known. 

We recall that the difficulty in fitting h(s) is due to the (unknown) poles aj 
which appear in the denominator, thus causing (11) to become a nonlinear prob- 
lem in the unknowns. However, if the poles had been known, then (11 ) would have 
been linear in the unknowns c j, d, which could then have easily been calculated 
by solving a linear, least-squares problem. 

Vector fitting solves (11) in two steps. Each step amounts to solving a linear 
system of the same form as (11), but with known poles. 

Step 1: Pole identification. 

Instead of fitting h (s) directly, h (s) is multiplied with an unknown rational func- 
tion O(s) of order N: 

N ~j 
O ( s ) = )  - + 1 .  (12) 

j=l~ S - - a j  

The poles of 0 (s) are assigned a set of initial values fi, which span in an almost ar- 
bitrary way the domain of interest (see Section 3.2 for details). We then postulate 
that the function 0 (s)h (s) can be fitted with the same set of poles ~ as 0 (s): 

N ~j 
O(s)h(s) = j~=l s aj + [l. (13) 

Combining (12) and (13) gives 

- + 1 = - + d .  (14)  
j= l  S - - a j  

Equation (14) is linear in the unknowns cj, cj, ar which are calculated by 
solving a linear least-squares equation of the form Ax = b. 

From (14) we get 

E N - 1  

= - - ( 1 5 )  

-F ] l~Y=l (s-2j) ]-IY-1 (S -- Z j )"  (s--d j) 

It is seen from (15) that the initial poles 8j cancel out, and that the zeros zj of 
O(s) become the poles of h(s)! The zeros of O(s) are calculated by input/output 
interchange from its state equation obtained from (12) (see [7] for details). 
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Step 2: Residue identification. 

With the poles of h(s) known from Step l, (1 l) is solved with respect to the un- 
known residues cj and constant term d by solving a linear least-squares problem 
of the type Ax  = b. 

Steps 1 and 2 may have to be repeated several times with the new poles as 
starting poles, in order for the method to converge. As convergence is achieved, 
O(s) becomes unity (i.e., all Cj become zero). With a good set of starting poles, 
we usually need fewer than five iterations for our applications. Thus, vector fitting 
solves (11) as follows. 

1. Choose a set of starting poles ~1 �9 �9 �9 fiN. 
2. Solve (14) with respect to ~j, gj, d. 
3. Calculate the poles al . . . a N  of h(s) as the zeros of O(s) �9 O(s) is given 

by (12). 
4. Solve (1 l) with respect to c j,  d. 
5. If necessary, repeat procedures 1-4 with the new poles as starting poles. 

Details regarding the implementation are given in [7]. 

3.2. Starting poles 

In general, iterations are needed to shift the starting poles into their final positions. 
Generally, the farther away the starting poles are from their final positions, the 
more iterations are needed. 

Assume that h(s) is to be fitted in the range o)1-o)2. The starting poles 
should be chosen as complex conjugate pairs with weak attenuation (e.g., 
/Re{~j } I/lIm{~j } [ = 0.01) and linearly spaced over the considered frequency 
range o)I-o)2. This selection of starting poles gives a basis G(s) in (5) which is 
usually well conditioned. This has the effect of reducing the required number of 
iterations. 

In some applications, a different choice of starting poles may be advantageous. 
For instance, in transmission line modeling based on modes [9], [17], it is known 
a priori that the final poles are usually real and approximately logarithmically 
spaced. We then use real, logarithmically spaced starting poles, as a faster conver- 
gence is then achieved. 

3.3. Robusmess and ill conditioning 

In order for the rational approximation to be useful for time-domain simulations, 
all poles have to be stable. If, for some reason, an unstable pole is calculated, 
we simply invert the sign of the real part before proceeding with the residue 
calculation. Typically, unstable poles occur during the first few iterations but 
vanish as convergence is achieved. 
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VFPR relies on solving two linear problems of the form A x  = b, with A 
corresponding to G in (5). In the following, we explain the fact that VFPR remains 
a robust procedure, also when A is ill conditioned. 

Typically, A is ill conditioned when there are many real poles. When fitting a 
function using real starting poles, the residues calculated in the first step of VFPR 
are slightly inaccurate, and so the new poles become inaccurate. However, if the 
function we are trying to fit is smooth (has real poles only), then the new poles 
will still give a good fitting because the accuracy of the fitting is then only weakly 
dependent on exact pole locations. 

On the other hand, when fitting a function containing many peaks (due to 
complex poles), the use of real starting poles gives a set of new poles that cannot 
yield a good fitting. But as shown in [7], some of the new poles are accurate 
(and complex). By repeating the fitting procedure with the new poles as starting 
poles, more and more poles become accurately located as the increased presence 
of complex poles with weak attenuation gradually removes the ill conditioning. 
Thus, after several iterations, accurate fitting is achieved. However, using complex 
starting poles as recommended in Section 3.2, A becomes well conditioned from 
the beginning, and convergence is obtained in only a few iterations. Thus, in 
general, VFPR is a very robust procedure for the fitting of functions containing 
real or complex poles, or both. 

3.4. Overview 

We have the following important result of pole relocation. 

Remark 9. The original, very approximate, poles are replaced by the zeros of the 
shaping function 0 (s) which can be easily calculated by input/output interchange 
in the state equations. 

Based on Remarks 3 and 9, we can now describe the essential features of VFPR 
as follows. 

Remark 10. VFPR achieves a column-wise state equation approximation of a 
nonrational transfer matrix that resembles traditional minimal realizations. It is 
well conditioned because the poles are not initially handled as unknown but are 
reassigned in a robust way by basic procedures of numerical linear algebra. 

"With these 10 remarks (results, and rules), the presentation of VFPR is now 
complete. 

3.5. Examples  

Example 1: Recovering the Coefficients of  a Rational Scalar Function. 

Consider the function 

2 30 + j40  30 - j40 
f (s) -- + + +O.5. 

s + 5  s -  ( - 1 0 0 +  j500) s -  ( - 1 0 0 -  j500) 
(16) 
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F i g u r e  7. Approximation of rational function contaminated with noise, 

The frequency response was calculated numerically from (16) in the interval 10 ~o 
105 rad/s, f ( s )  was then fitted using VFPR with four initial (logarithmically dis- 
tributed) negative real poles, almost arbitrarily chosen to cover an equal interval 
of the real axis. The coefficients of the calculated approximation were as follows: 

Poles Residues Constant term 

-5.0000E+000 2.0000E+000 5.0000E-001 
-l.0000E+002 +j5.0000E+002 3.0000E+001 +j4.0000E+001 
-I,0000E+002-jS.0000E+002 3.0000E+001-j4.0000E+001 
- 1.0000E+005 1.2428E-010 

Thus, all coefficients in (16) have been identified with very high accuracy. The 
"surplus" pole (-1.0000E+005) has a very small residue (1.24E-10) and does 
therefore not contribute to the response. The root mean square (RMS) of tile 
deviation was 1,2217;-15. Note that real starting poles worked well in this example 
because the order of fitting is very low. In general, complex starting poles should 
be used, as explained in Section 3.2. 

This example shows that VFPR is capable of identifying the paramemrs of 
a rational function from its frequency response. We next demonstrate that the 
method also works when the frequency response has been contaminated with 
noise. Figure 7 shows the fitted response when random noise between 0 and 1E-3 
has been added to f ( s ) .  

The resulting coefficients of the approximation are listed below: 

Poles Residues Constant term 

-5.0035E+000 1.9996E+000 5.0047E-00 t 
-9.9937E+001 +j5.0002E+002 2.9996E+001 +j3.9983E+001 
-9.9937E+001-j5.0002E+002 2.9996E+001-j3.9983E+001 
- 1.8308E-002 4.9442E-004 

The coefficients are now slightly in error. This simply reflects the fact that the 
modified coefficients give a better approximation of the contaminated response 
than those of the original response. 

Similar results were obtained for an 18th-order response [7]. 
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Example 2: Approximation of Measured Transformer Response. When cal- 
culating electromagnetic transients in power systems, the frequency variation in 
electrical parameters should be taken into account. In the case of a transformer, 
the frequency variation is given as a measured frequency response at its terminals. 
To include the transformer in a simulation of transients requires the matrix of 
measured admittance functions to be approximated with rational functions. 

As an example, we consider one element of the admittance matrix for a dis- 
tribution transformer. Figure 8 shows the approximation of the element using 10 
poles. The approximation is seen to be quite accurate. Note that the response is 
contaminated with an unknown amount of measurement errors and contributions 
from nonlinear effects. 

Example 3: Approximation of Calculated Transmission Line Propagation 
Matrix. In electromagnetic transient studies, transmission lines are modeled 
using frequency-dependent distributed parameters. The distorting effects of wave 
propagation between two line ends is taken into account by a propagation matrix, 
H. This is a square, frequency-dependent matrix with dimension equal to the 
number of conductors of the line. 

Figure 9 shows the fitted elements of one column of H, for an eight-conductor 
overhead line. Note that all elements were fitted simukaneously using 30 poles. 
This has the effect that all elements get identical poles. The feature of identical 
poles is desirable because for a given order it leads to computational savings in the 
time-domain (transient) simulations [4]. Increasing the order led to a further in- 
crease in accuracy. Similar results were achieved for the remaining four columns. 
Note that the "oscillating" behavior in Figure 9 occurs because the elements 
contain uncompensated time delays. 

Example 4: Approximation of Network Response. Time-domain simulations 
of electromagnetic transients can be very time consuming as a large number of 
power system components may need to be considered and because the required 
number of time steps can be very high. To overcome this problem; network re- 
duction techniques [12] are sometimes used, where portions of the network are 
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Figure 10. Approximation of zero sequence admittance function by VFPR. (a) admittance function, 
(b) error of approximation. 

represented by their terminal equivalent (admittance matrix). These techniques 
require rational approximation of the frequency responses seen at the terminals of  
the equivalent. 

To demonstrate the technique, we consider the zero sequence admittance func- 
tion for a network of transmission lines, shown in Figure 10a. Figure 10b shows 
how the RMS error of the approximation by VFPR decreases as the order of the 
approximation is increased. 

The time-domain simulation of power system transients has traditionally been 
based on trapezoidal integration [2]. Figure 11 shows the time-domain step re- 
sponse calculated by trapezoidal integration when the order of  the rational ap- 
proximation is 50 and 100, respectively. The two responses are virtually identical. 

4. Conclusions 

The paper has two main parts. In the first part, we analyze the ill conditioning 
characteristic to the problem of rational fitting. The main conclusions of this 
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Figure 11. Step response of network equivalent of Figure 10a. 

analysis are that in general the poles needed for state equation approximation 
cannot be located directly because of the ill conditioning, and if one does not 
have the right poles, then, with the poles at hand, a given (scalar or vector) transfer 
function cannot be represented in the form of a rational expansion. 

The second part of the paper gives a solution to this dilemma. It describes 
a fitting methodology based on modifying the given transfer function by scaling. 
This in effect relocates the initial poles to much better new positions. Even though 
the problem of state equation approximation is both nonlinear and intrinsically ill 
conditioned, the new method of Vector Fitting by Pole Relocation uses only robust 
standard methods of numerical linear algebra. It is thus both reliable and accurate. 
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