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PREFACE

Rational functions are a classical tool for approximation. They turn out to
be a more convenient tool for approximation in many cases than polynomials
which explains the constant increase of interest in them. On the other hand
rational functions are a nonlinear approximation tool and they possess some
intrinsic peculiarities creating a lot of difficulties in their investigation. After
the classcial results of Zolotarjov from the end of the last century substantial
progress was achieved in 1964 when D. Newman showed that |x| is uniformly
approximated by rational functions much better than by algebraic poly-
nomials. Newman's result stimulated the appearance of many substantial
results in the field of rational real approximations.

Our aim in this book is to present the basic achievements in rational real
approximations. Nevertheless, for the sake of completeness we have included
some results referring to the field of complex rational approximations in
Chapters 6 and 12. Also, in order to stress some peculiarities of rational
approximations we have included for comparison some classical and more
recent results from the linear theory of approximation. On the other hand,
since rational approximations are closely connected with spline approxi-
mations, we have included as well some results concerning spline
approximations.

As usual the specific topics selected reflect the authors' interests and
preferences.

We now sketch briefly the contents of the book. Chapters 1 and 3 contain
some basic facts concerning linear approximation theory. A basic problem
in approximation theory is to find complete direct and converse theorems.
In our opinion the most natural way to obtain such theorems in linear and
nonlinear approximations is to prove pairs of adjusted inequalities of Jackson
and Bernstein type and then to characterize the corresponding approxima-
tions by the K-functional of Peetre. This main viewpoint is given and

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781107340756.001
Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:21, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.001
https://www.cambridge.org/core


X Preface

illustrated at the end of Chapter 3 and next applied to the spline approxima-
tion in Chapter 7.

Chapter 2 is devoted to the study of the qualitative theory of rational
approximation such as the existence, the uniqueness and the characterization
problems, the problem of continuity of metric projection and numerical
methods.

The heart of the book is contained in Chapters 4 to 11. Chapter 4 presents
the uniform rational approximation of some important functions such as |x|,
yjx, ex. In Chapter 5 the uniform rational approximation of a number of
classes is considered. The exact orders of approximation are established.
The basic methods for rational approximation are given. In Chapter 6
some converse theorems for rational uniform approximation are proved. In
Chapter 7 complete direct and converse theorems for the spline approxima-
tion in Lp, C, BMO are proved using Besov spaces. Chapter 8 investigates
the relations between the rational and spline approximations. Chapter 9 deals
with rational approximation in Hausdorff metric. A characteristic particulari-
ty of rational approximation is the appearance of the so-called 'o small' effect
in the order of rational approximation of each individual function of some
function classes. This phenomenon is investigated and characterized for some
function classes in Chapter 10. The exactness of the proved estimates is
established and discussed in Chapter 11.

Chapter 12 considers some special problems, connected with Pade approxi-
mants - some of the so-called direct and converse problems for convergence
of the rows and diagonal of the Pade-table. Finally some numerical results
and graphs are presented in the Appendix.
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1

Qualitative theory of linear
approximation

We shall begin with a short survey of the basic results related to linear
approximations (i.e. approximation by means of linear subspaces) so that
one can feel better the peculiarities, the advantages as well as some
shortcomings of the rational approximation. In this chapter we shall consider
the problems of existence, uniqueness and characterization of the best
approximation (best polynomial approximation). At the end of the chapter
we shall consider also numerical algorithms for finding the best uniform
polynomial approximation.

1.1 Approximation in normed linear spaces
Let X be a normed linear space. Recall that X is said to be a normed linear
space if:

(i) X is a linear space, i.e. for its elements sum, and product with real numbers,
are defined so that the standard axioms of commutativity and associativity
are satisfied',

(ii) X is a normed space, i.e. to each xeX there corresponds a nonnegative real
number \\ x \\ satisfying the axioms
(a) llxH^O, | | x | | = 0 # x = 0,
(b) || Ix || = | X11| x ||, k a real number,
(c) || x + y || ^ || x || + || y || (the triangle inequality).

Let {(Pi}ni= i be a system of n linearly independent elements of X. Let us
consider the linear subspace of X: G = {cp: (p = X?= I ai<Ph ai r e a l numbers},
generated by the system {<pJ?= x. For each element feX we denote by EG(f)
the best approximation to / by means of elements of G:

EG(f) = mf{\\f-cp\\:cpeG}. (1)
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2 Linear approximation

The following basic problems (basic not only for linear approximation
theory, but for the theory of approximation in general) arise.

(i) Existence problem: does an element cpeG of best approximation for fe X
exist, i.e. is there cp = cp(f)eG such that

(ii) Uniqueness problem: if there exists an element of best approximation for
feX, is it unique!

(hi) Characterization problem: in the case where the element of best approxim-
ation for feX exists and is unique, can we characterize it in some way!

(iv) Can we estimate how big EG(f) is!
(v) Numerical methods: assuming that we know that the answer to the first two

(or three) problems is positive, how can we find cp(f) in practice!

The whole theory of approximation represents full or partial (for the
present, unfortunately) answers to the above problems when we approximate
different classes of functions in different normed linear spaces (or, more
generally, in metric spaces) with respect to different approximation tools (e.g.
algebraic polynomials, trigonometric polynomials, rational functions, spline
functions, linear combinations of exponential functions).

In the case of approximation in a normed linear space by a finite
dimensional subspace we can give a positive answer to the first question.
More precisely the following theorem holds.

Theorem 1.1 (Existence theorem). Let G be a finite dimensional subspace of the
normed linear space X. For every feX there is an element of best approximation
in G.

Proof. The proof of this theorem is based on the following well-known
fundamental property of finite dimensional normed spaces: every bounded
closed subset in a finite dimensional normed linear space is compact. The
idea of the proof is to show that the inf in (1) may be taken over a compact
subset of G.

Let cp0eG be arbitrary. Then the set A c G:

is nonempty (<p0e4), closed and bounded (since if cpeA then ||cp || ^ \\q>— f\\ +

II / II ̂  II <Po ~/ II + II / II )• Therefore A is compact and obviously

EG(f) = inf{||/-cp\\:cpeG}=inf{||/-cp\\:cpeA}.

The norm || /— cp || is a cont inuous function of cp (by the triangle inequality
III / - <P II - II / - ty III ̂  II (p - <A II), therefore || /— q> || at tains its inf on the
compact set A at some point cp(f)eA aG. •
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1.1 Approximation in normed linear spaces 3

If the set G a X has the property that every feX has an element of best
approximation in G, we shall call G an existence set. Obviously every existence
set must be closed (every boundary point of G must belong to G). Theorem
1.1 gives us that every finite dimensional subspace of a linear normed space
is an existence set.

Unfortunately the element of best approximation in an existence set G is
not always unique. Let us denote by PG(f) the set

PG(f) = {cp:cpeG,\\f-c p\\ = EG(f)}

of all elements of best approximation of / .

Theorem 1.2. Let X be a normed linear space and G a subspace of X, G an
existence set. Then for every feX the set PG(f) is convex and closed.

Proof. Indeed, if cpePG(f) and ijjePG(f) then for every ae[0,1] we have

EG(f) < II / - (*q> + (1 - o# ) K < a || / - cp || + (1 - a) || f - i || = EG(f).

From this it follows that

i.e. occp + (1 — oc)il/ePG(fX therefore PG(f) is convex
If || cpm — cp || -• 0, cpmeG, then cp also eG, since G is closed. If cpmePG(f) the

m-+ oo

EG{f)<\\f-(p\\<\\f-<pm\\ + \\<pm-<p\\ - EG(f),

i.e.

E<M)=U-<PI
therefore cpePG(f). •

We shall see now that, when the normed linear space is strictly normed,
there exists a unique element of best approximation in every subspace of X,
which is an existence set (in particular in every finite dimensional subspace).
Let us recall that a normed linear space X is said to be strictly normed if
the equality ||x + y|| = \\x\\ + \\y\\ implies that x = ay, a a real number.

Theorem 1.3 (Uniqueness theorem). Let X be a strictly normed linear space
and G a subspace of X, G an existence set. Then for every feX there exists a
unique element of best approximation in G, i.e. PG(f) consists of exactly one
element.

Proof. Let cpePG{f) and ij/ePG(f). In virtue of theorem 1.2 (cp + i/>)/2ePG(/)
and therefore

EG(f) = II / - (cp + 1/0/2 K \ II / - <P II + \ II / - *A II = E

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781107340756.002
Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:21, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.002
https://www.cambridge.org/core


Linear approximation

From this it follows that

f-<p
2

+ /-•A
2

Since X is strictly normed, the last equality implies /— cp = cc(f— I/J). If
a # 1 it follows that feG and in this case PG{f) = {/}, i.e. cp = \j/. If a = 1 we
obtain (p = ij/. •

Corollary 1.1. Let G be a finite dimensional subspace of a linear strictly normed
space X. Then for every feX there exists a unique element of best approximation
in G.

In this book we shall use mostly the following function spaces.
(i) The space C[a, b~] of all functions which are continuous in the closed

finite interval [a, &]. This space becomes a normed one (even a Banach space,
i.e. a complete one) if we introduce the so-called uniform or Chebyshev norm,

The approximations in C[a, b~\ are usually called uniform or Chebyshev
approximations.

(ii) The space Lp(a, b\ 1 ^ p < oo, (a, b) a finite or infinite interval,1
consisting of all functions / such that \f\p is Lebesgue-integrable in the
interval (a, b). If we consider all equivalent (in the sense of Lebesgue) functions
as one, Lp(a, b) becomes a normed (even Banach) space with respect to the so-
called Lp-norm

II / IILP,..»» = II / K = II / II, = I j l / M I ' d x j . (2)

The approximations in Lp(a, b) will be called ./^-approximations,
(iii) We shall use the notation (2) also in the case 0 < p < 1 when \\ f \\p is

not a norm (since the triangle inequality does not hold), but only a quasinorm

\\f+g\\p^c{p){\\f\\p+\\g\\p).

(iv) The space Lx[a,b~\ consisting of all essentially bounded functions in
the interval [a, b~\ supplied with the norm

II/I ,.„[„« = II / 11 ,„ = II / II oo = ess sup. | /(x) | = inf {A: mes {x: | /(x) | > 2} = 0}

where mes {A} denotes the Lebesgue measure of the set {A}.
If feLm then || f\\p-> | | / | L when /?->oo. Furthermore it is clear that if

/eC[a, b] then | | / | | c = H/J^,. Sometimes we shall use the notation | | / | | c

also for bounded functions and we shall interpret it as sup{\f(x)\:xe[a,b]}.

* We shall use also the notation Lp[a, /)].
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1.1 Approximation in normed linear spaces 5

Beside these spaces we shall use in some paragraphs Orlich spaces, Besov
spaces, Hardy spaces and BMO spaces.

The spaces C\_a, b\ Lp(a,b\ 1 ^ p < oo, L,x[a,b] are normed linear ones.
Therefore, in virtue of theorem 1.1 for each of their elements there exists an
element of best approximation with respect to an arbitrary finite dimensional
subspace of theirs. The main subspace used is that of algebraic polynomials
of nth degree, denoted by Pn. It is the (n + l)-dimensional subspace generated
by the functions 1, x,... ,xn. Applying theorem 1.1 in this case we obtain the
following.

Theorem 1.4 (E. Borel). LetfeC[a, /?] (or Lp\a, b], 1 ^ p < OO). Then for every
natural number n there exists an algebraic polynomial pePn of best uniform
(orLp) approximation in Pn.

It is often necessary to approximate 27r-periodic functions. Without
pointing it out explicitly every time, we shall use the notations we introduced
in the case of an interval also for linear spaces of 27t-periodic functions,
namely C[0, 27C], Lp[0, 27i], 1 ^ p ^ OO . The tools used most often in this case
are the trigonometric polynomials. We shall denote by Tn the set of all
trigonometric polynomials of nth order, i.e. Tn is the (2n+ l)-dimensional
subspace generated by the functions 1, cosx, sin x, . . . , cos nx, sinnx. In the
periodic case theorem 1.1 implies the following.

Theorem 1.4'. Let f be a 2n-periodic function and /eC[0, 2n\ (/eLp[0, 2TI\\
For every natural number n there exists a trigonometric polynomial qeTn of
best uniform (Lp) approximation in Tn.

Let us consider now the question of uniqueness. One can show that the
spaces Lp, 1 < p < oo, are strictly normed (see for example S.M. Nikol'skij
(1969)). Then theorem 1.3 implies the following.

Theorem 1.5. Let feLp(a, b) (let f be 2n-periodic and feLp[0,2n\), 1 < p < oo.
Then for every natural number n there exists a unique algebraic (trigonometric)
polynomial of nth degree of best Lp-approximation in Pn (in Tn).

However, the spaces C, Lx>, L = Lx are not strictly normed. Let us show
this for instance for C[0,1]. If we consider the functions 1 and x, we have

II 1 + xllc[o,i] = II1 llc[o,i] + IIxllc[o,i] = 2

but the functions 1 and x are not linearly dependent.
It is easy to see by examples that in the general case in Lx we do not have

uniqueness. Let us consider the function

- 1 , - l < x ^ 0 ,

In Lx(— 1,1) every constant c, — 1 ^ c ^ 1, is a polynomial of degree zero
of best approximation to o.
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6 Linear approximation

Fortunately enough it turns out that the algebraic polynomial of nth degree
of best uniform approximation is unique. This follows from the Chebyshev
theorem, which gives a characterization of the algebraic polynomial of best
uniform approximation by alternation. This theorem as well as its proof can
be modified for the best rational uniform approximation. That is why it will
be of special interest of us.

1.2 Characterization of the algebraic polynomial of best
uniform approximation

Now we are going to solve the third basic problem of the theory of
approximation in the case of uniform approximation by means of algebraic
polynomials - characterization of the algebraic polynomial of best uniform
approximation. This problem was solved by P.L. Chebyshev in the last
century with his famous alternation theorem.

Let/eC[a,b] . We shall denote by En(f)c the best uniform approximation
of the function / by means of algebraic polynomials of nth degree:

En(f)C[a,b] = E„(f)c = inf {|| / - p ||C[a,b]'pePn}.

In what follows in this section we shall write En(f) instead of En(f)c and
|| /1| , | | / - p | | instead of ||/| |c, | | / - p | | c .

Definition 1.1. Let feC[a, b~]. The polynomial pePn is said to realize Chebyshev
alternation (or simply alternation) for fin \a, b\ if there exist n + 2 points xh

i = l , . . . ,n + 2, a < x1 < ••• < xn + 2 ^ft, such that

where the number e is + 1 or — 1.
The Chebyshev alternation has the following geometric interpretation: let

pePn realize Chebyshev alternation for /eC[a,5] in [a, /?]. Let us consider
the functions <p(x) =f(x) + || /— p || and \j/(x) =f(x) — \\ f— p ||. Then the grap
of the polynomial lies in the strip between cp and \//, touching alternately the
upper function cp and the lower function \j/ at least n + 2 times.

Theorem 1.6 (Chebyshev alternation theorem). Let feC\ja,b~\. The necessary
and sufficient condition for the algebraic polynomial pePn to be a polynomial
of best uniform approximation for f in Pn is that p realizes Chebyshev alternation
for f in [fl, fe],

Proof Let pePn realize Chebyshev alternation for / in [a, fc]. Assume that
p is not a polynomial of best uniform approximation, but qePn is. Then

£ „ ( / ) = II / - q II < II f - p II.

The above inequality implies that the polynomial s = p — qePn has the
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1.2 Best uniform algebraic polynomial approximation 7

sign of p —f in the points xh i = 1,... ,n + 2, since \p(xt) — /*(x£)| = || /— p || >

11/-4II, P(*i) ~ q(xt) = p(xt) - f ( x t ) - (q(xt) -/(xf)). Therefore seP „ will
change its sign at least n + 1 times, i.e. s must have at least n + 1 zeros in
[a, b~\. Since S E P „ , it follows that s = 0, i.e. p = q, which is a contradiction
with the assumption.

Let now pePn be an algebraic polynomial of best uniform approximation
for / i n Pn. We shall show that p realizes Chebyshev alternation for / . Let
us assume, contrary to this, that m + 2 is the highest number of points
xx < x 2 < ••• <xm + 2 in [a,fr] such that

(1)

where e = 1 or — 1 and m<n. Then there exist m + 3 points £0,
which satisfy the inequalities

and are such that for every X E [ ^ _ 1 , ^ 1 ] we have

s(-l)'(/(x)-p(x)) > - E a ( f ) , /=1 , . . . ,m + 2. (2)

From (1) it follows that the continuous function f — p changes its sign in
the interval [xf,x i + 1], therefore the points £l5 £2,...,£m+1 c a n be chosen so
that

Md = P(a i=l,...,m+l. (3)
Since [ ^ _ i , ^ J , i = l , . . . , m + 2, are a finite number of closed intervals

and /— p is a continuous function in each of them, from (2) it follows that

there exists 3 > 0 such that for every xel^i-1,<^i'], i= 1,...,m + 2, we have

the inequality

e(-l)'(/(x)-p(x))>5 -£„( / ) . (4)

Let us set

where

Since m < n, we have QeP„.
From this definition of Q it follows also that

|Q(x)|<«5/2 for xe [a, ft], (5)

> 0 forxE(^.,^+ 1), / = O, . . . ,m+l , (6)

)>0, ( - l ) m + 1 6 ( ^ + 2)>0, (7)
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8 Linear approximation

Q(Q = 0, ;=l,...,m+l. (8)

Since p is an algebraic polynomial of best approximation to / in Pn, we have

-E„(/K / ' M - P ( x ) < £ „ ( / ) forxe[a,fe]. (9)

Let us consider the difference

/ (x ) -p (x ) -£g(x ) .

In view of (4), (5) and (6), for every xe [£,, £i+, ], we have, for i = 0,... ,m + 1,

£( - 1)'(/(x) - p(x) - eQ(x)) = B( - \K f(x) - p(x)) - ( - \YQ(x)

>S- EJLf) - S/2 = d/2 - EJLf). (10)

From (5)-(9) we also obtain that, for every xe(ch c i+ J and x = c0, cm + 2,
we have

- ( - l ) ' e W <£„(/) . (11)

For x = £;, i = 1,... ,m + 1, we have, from (8),

m)-p(Q- £<2(Q = o. (12)

Consequently the inequalities (10)—(12) give us that, for every xe[a, fc], we
have

|/(x)-p(x)-e(2(x)|<£„(/). (13)

Since /— p — eQ is a continuous function in [a, b], from (13) it follows that

|| f-p- EQ || <£„(/),

i.e. a contradiction, since p + £,QePn. •
From theorem 1.6 there follows easily the uniqueness of the algebraical

polynomial of best uniform approximation as follows.

Theorem 1.7. Let feC{a,b\ For every natural number n there exists a unique
algebraic polynomial pePn of best uniform approximation to f in Pn.

Proof. Let pePn and qePn be two algebraic polynomials of best uniform
approximation to f:

II/-PII = 11/-9II =£»(/)• (14)

From theorem 1.2 the polynomial g = (p + q)/2ePn is also a polynomial
of best uniform approximation to / . By theorem 1.6 g realizes Chebyshev
alternation for / , i.e. there exist n + 2 points xh i = l , . . . , n + 2, a^x1<
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1.3 Numerical methods

x2< ••• < xn + 2^b, such that

where e = 1 or — 1.
From (14) it follows that

Therefore the equality (15) can be fulfilled only if we have

/(*»)-P(*.-) =/(*») -tf(*i),

i.e. if p(xi) = q(xi) for i = 1,..., n + 2.
We thus have that the algebraical polynomials peP„ and qePn coincide

in n + 2 different points. Consequently p = g. •
The following theorem of de la Vallee-Poussin is very useful in the numerical

methods for obtaining the polynomial of best uniform approximation.

Theorem 1.8. Let/eC[a,b], pePn and xhi=l,...,n + 2,a^x1<x2<---<
xn + 2 ̂  b, be n + 2 different points in [a, b~\. If the difference f — p has alternate
signs at the points xh i= 1,...,n + 2, t/zen

En(f)^n = min{|/(x,.)-p(xi)|:i=l,...,n + 2}.

Proof Let us assume that £„(/) < \i. Let geP„ be the algebraic polynomial
of best uniform approximation to / , i.e. || /— q \\ = En(f) < \i.

From this it follows that the difference p — q must have the sign of
P(xt) —f(xi) at tne points xh i= 1,...,n + 2. By the conditions of the theorem
therefore p — q must have alternate signs at n + 2 points xh i = 1, 2,. . . ,n + 2,
i.e. the algebraic polynomial p — qePn must have at least n + 1 different zeros
in [a, b]; consequently p — q = 0 which contradicts

•
1.3 Numerical methods

We shall describe in this section the so-called Remez algorithms for numerical
solution of basic problem (v) from section 1.1 -finding the polynomial of
best uniform approximation. The algorithms are more general and can be
used for best uniform approximation by means of arbitrary Haar subspaces
of C[fl,fc

Definition 1.2. The system {<pj?= i of functions (pteC[a, b], i = 1,... ,n, is said
to be a Chebyshev system on the interval [a, b] if every generalized polynomial
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10 Linear approximation

cp = X" = 1 ai<Pi can have at most n—\ zeros in \a,h\ (every zero calculated with

its multiplicity).

Let C(fc)[a, b~] denote the space of all functions in the interval [a, b~\ which
have /cth derivative f(k) in [a, b], which belongs to C[a, b].

We shall say that xoe[a, i ] is a zero of/eC(fc)[a, fo] of order k (or multiplicity
fc)if

/(*o) =/'(*o) =••• = / ( k - " ( x o ) - 0 , / * > ( x 0 ) # 0 .

Definition 1.3. A subspace G a C[a, b], G = {cp'.cp = X"= i aWi}, generated by
the Chebyshev system {cpi}1=1, is said to be a Haar subspace.

Let {(Pi}1= i be a Chebyshev system. In this section we shall use the following
notations. Let /eC[a,b]. Then

i= 1

A(a) =
C[a,b]

n

" the rc-dimensional Euclidean space.
Our aim is to find real numbers {cf}"=1 such that

/ -
\C[a,b]

First Remez algorithm

The algorithm consists of the following recursive procedure.

(i) Select n + 1 points Xm = {xf}o, w/jere a ^ x0 < xx < • • • < xn ^ fr;
(ii) Set k = 0;

(iii) Gwer cthe set X{k) find a vector c{k)eUn such that if we denote A(fc)(c)
max{|r(c,x)|:xeX(fc)} then

(iv) Find a point xn + k + 1e[a,fr] such that A(c(k))= \r(c(k\xn+k+1)\;
(v) Form the set X{k + 1) = Xw\j{xn + k+1};
(vi) Set k = k+1;

(vii) Go to (iii).

The choice of the initial set X° can be done in different ways (equidistant
point in the trigonometrical case, the roots of the (n + l)-th polynomial of
Chebyshev in the algebraic case and so on) and there exist no strong rules
for this.
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1.3 Numerical methods 11

At step (iii) we have to find in fact the polynomial of the best uniform
approximation on a set which consists of a finite number of points.

Step (iv) is usually the most laborious point in the algorithm.
The execution of the algorithm stops when the polynomial obtained at the

/cth iteration satisfies some demands.
The method (i)-(vii) generates a sequence of vectors {c(k)}£°=0 for which we

have the following.

Theorem 1.9. Let c* be a cluster point of the sequence {c(/c)}£°
=0. Then

£„(/) = A(c*).

Proof. Let us set |c| =YH=i\ci\ and

1 = minmax

Since X{0) contains n + 1 different points and {(?;}"= x is a Chebyshev system
on the interval [a, b~\ we have 6 > 0. From X(k) c X(k+ u c [a, fr] we get for
every ceUn that

and consequently (c: A(c) = En(f))

+ ") < A(fc+ "(c) < A(c) = En(f).

The last inequalities show that the sequence {A(/c)(c(k))}J is monotone
nondecreasing and bounded from above. This means that there exists e > 0
such that l i m ^ A(fc)(c(/c)) - En(f) - e. We shall show that e = 0.

First we prove that the sequence {c(/c)}£°=0 is bounded. Indeed,

A°(c) = max Z Ci<Pi(

and if |c| > 21| / | | / 0 then A(fc)(c) ^ A°(c) > || / 1 | = A(fc)(0), i.e. c can not minimize
any of the functions A(fc). So the sequence {c(/c)}£°= x generated by the algorithm
is bounded.

Further let us set M = max U K n || (PT\\C[A,B]' Then for an arbitrary vector b

|r(b,x)-r(c,x)| =
i = 1

and therefore | r(b, x) | < | r(c, x) | + M | b — c |, i.e.

A(b)= | |r(br)| |C[0] = |r(b,x)|<|r(c,x)| + M | b - c | < A ( c )

(1)
Let us suppose now that e > 0 and C*G(R" is a cluster point of the sequence

{c(fc) }j*L 0. For every S > 0 there exists an index k such that |c* — c(fc)| < S and
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12 Linear approximation

an index i > k such that |c* — c(0| < 3. Then |c(/c) — c(0| < 23 and, using (1).
setting c* in place of b, we obtain

£„(/) < A(c*) < A(cw) + M3 = \ r(c{k\ x{k +1)) \ + MS

==: | r(c ( i
U

( k + 1))| + IMS< A(k + 1)(c(0) + 3M3

< A(i)(c(0) + 3M3 < £„(/) - e + 3M<5.

The number 8 > 0 was arbitrary, so for e > 3M3 this leads to a contradic-
tion. Therefore e = 0 and A(c*) = En(f). D

Corollary 1.2. Let {<p,-(x)}? = {xl}o-1- Then there exists lim^^c1*' = c*.
This follows from the uniqueness of the best uniform algebraic approxima-

tion (theorem 1.7).
Corollary 1.2 gives that the first Remez algorithm is convergent for the

case of approximation by means of algebraic polynomials.

Remark. The uniqueness theorem is also valid for approximation in the
uniform metric by means of a Chebyshev system. So we have convergence
of the first Remez algorithm also in the general case of a Chebyshev system.

Second Remez algorithm
We shall describe the second Remez algorithm again for an arbitrary
Chebyshev system and we shall prove the order of convergence for the case
of uniform approximation by means of algebraic polynomials.

(i) Take w + 1 different points x h i = 0,...,n, a ^ x o < x 1 < ••• < x n < b;
(ii) Solve the linear system

f(xj) ~ 1 ct(p,{x}) = ( - ] y A ; = 0 , 1 , . . . , w ,
i= 1

with respect to the unknowns cl9... 9c„ and / ;

(hi) Find the points {zJ?=o sucn tnat zo = a> zn + i = b and r(zt) = 0 for

1 = 1 , . . . , ^

(iv) Select the points yie[_zi,z i+1], i = 0, l,...,n, such that

(sign r(xf))rCvf) - max {r(x) sign r(xt): xe[z f, zi+ J } ,

(v) // | |r(c;•)\\C[a,b]> max {k(c5yd\:O ^i^n} then there exists a point
ye\_a,b~\ such that \r(c

\y)\ = l k(c?')llc[a,b] ~ we Put tne point y in place of
some point among y0,y1,...9ynso that the function r(c; x) would preserve
the alternating signs on the newly obtained points which we denote again
by y0, yi,-.-,yn;

(vi) Go to (ii) and instead of the points {x j"= 0 consider the points {)>;}?= 0-
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1.3 Numerical methods 13

This procedure can be easily carried out using computers and numerical
experiments show that it is not very sensitive to the choice of the initial points.

Usually we go out of the iterative process and stop the calculation when
on the /cth step || r(c; •) || differs negligibly from \ X\. This stop-condition comes
from the Chebyshev theorem of alternation.

The second Remez algorithm has quadratic convergence under some
restrictions on the smoothness of the function / (see L. Veidinger (I960)). We
shall prove here the linear convergence of the algorithm for every /eC[a,/?]
in the case of polynomial approximations.

Theorem 1.10. Let {(Pi}ni= x = {X1}"=Q and let feC[a,b~]. The polynomial p(k) =
YH=o cixl generated on the kth step by the second Remez algorithm satisfies
the condition \\ p{k) — p\\C[a,b] ^ c®k-> where p is the algebraic polynomial of best
uniform approximation for f of (n — \)-th degree, 0 < 0 < 1 and c is a constant,
independent of k.

Proof We again use the abbreviation r(x) = r(c; x). Since we described a single

cycle of the second Remez algorithm let us denote a = |r(x0)| = ••• = |r(x„)| =

|A|, P = max{\r(yt)\:i = 0 , . . . ,n} = ||r(c;•)||c, y = min{\r(yi)\:i = 0,...,n},

P = \\f-p\\c-
From de la Vallee-Poussin's theorem (theorem 1.8) we get a ^ y ^ j? ^ p.

Let us agree that on the next cycle of the algorithm the constants correspond-
ing to a, /?, y, X and the coefficient vector c will be denoted by a', /?', y\ X
and c'. According to this convention it is clear that the vector c' is selected
by the system

Z (-1)'/(J',)M;

A =

i = 0

and

f(y0) i 3V--/0-1

f(yj i yn---fn~
x

' 1 .Vo ' ' ' .Vo
-1 1 y.-yr1

I l) l In yn

where M, are the minors corresponding to the first column of the matrix in
the denominator.

If / has the form / = £"=o ajXJ t h e n t h e approximation has to be exact
and X = 0, i.e.

n n - 1

i = 0 7 = 0
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14 Linear approximation

Thus we may replace f(y() by

Hyd=f(yd-"ilcjyi
J=0

in the expression for X'. Taking into account that signr(yt) = — signr(yi+1)
we obtain

Since M, > 0,

k - y j ) , ( 2 )

where the product is taken over all kj such that k > j , kj = 0,1,...,i— 1,
i+ 1,...,n and yk > yj for k >j.

Now let 0t = MJEUoMi. Then

> 7 t 0 i = y > o L . ( 3 )
i = 0 i = 0

We shall show that there exists 0, 0 < 8 < 1, such that for all numbers 9t

generated at the /cth iteration of the algorithm we have

1 - 0 < 0 £ < 1 , f = 0,l,...,n. (4)

From (2) it follows that this will be true if there exists 8 > 0 independent
of k such that

yUi-$)>fi>0, i = 0 , . . . , w - l , ik = 1,2, (5)

Let us assume that this inequality is not true. Then the sequence
{;y(o*)

>--->};iik)}fc0=i wiU nave a cluster point (yo,yu...,yn), where at least two

points yt coincide. Consequently there exists an algebraic polynomial
<?M = YS=o a i * 1 which interpolates / at the points y0, y l , ... ,yn (the number
of the different points is at most n). By definition oc{k+1) is the best
approximation of/ at the points yff, y{i\...,y(n} at the A;th iteration and

m a x { \ / ( # ) q(yf)\ , , }

= max{|/(#>)-q(y¥>)-f(yt) + q(yi)\:i = 0,...,n}9 (6)

since f(yt) = q(yt\ i = 0,...,n. This inequality contradicts the fact that a' > a

(see (3)), i.e. au > ^ a ( 2 ) < ••• ^aik+u ^ •••. Really, if k is such that

max{|yf ] — yi\:i = 0 9 . . . ,n} is small enough, then ( a ( * ) > 0 )

max {|/(y{«) - / ( ^ ) - (9(yj*») - ^ ) ) | : i = 0, . . . , « } < a(1) (7)

since q and / are continuous functions. From (6) and (7) we get the

contradiction a(/c+1) < a(1).
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1.4 Notes 15

Therefore (5), and consequently (4), hold true. Using (4) we obtain

/ - y ^ a ' - y = t ^ l K y , - ) | - y ) > ( l - W - 7 ) ^ ( l - 0 ) 0 8 - 7 )
; = o

and

P- i = 0? - y) - ( / - y) < 0? - y) - 0 - 0)03 - y) = eos — y),

i.e. j8 - y w < 0*03-y(0)) and

Finally we shall apply the strong uniqueness theorem 2.5 from Chapter 2
(obviously the theorem remains true for P„_l5 i.e. when m = 0). By this
theorem if p is the polynomial of best uniform approximation for/of (n — l)-th
degree, then there exists a constant c(f) > 0, depending only on / , such that
for every polynomial qsPn^v we have:

\\f-q\\>\\f-p\\ + c(f)\\q-p\\. (9)

Denoting by p(k) the algebraic polynomial generated at the /cth step of the
algorithm (at the /cth iteration), we obtain, from (8) and (9),

II P{k) - P K - ^ ( II / - P{k) II - II / - P II ) = ^ y O * * ' -

which completes the proof. D

Remark. Theorem 1.10 remains valid also for an arbitrary Chebyshev system.

1.4 Notes
The classical theorems for characterization and uniqueness of the best
polynomial uniform approximation are given by P.L. Chebyshev (see P.L.
Tchebycheff (1899), see also Ch.de la Vallee-Poussin (1910)).

The abstract theory of linear approximations is a very developed domain.
We recommend the following books, which contain some more details than
given here: I. Singer (1970), E.W. Cheney (1966), J. Rice (1964), (1969), Collatz,
Krabs (1973).

Usually uniform approximation by means of a Chebyshev system is
considered. We shall give only the formulations of some theorems.

Let K be compact and let C(K) be the set of all continuous functions on

t y(k); p(k) a r e ^ p a t t h e k t h i t e r a t i o n
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16 Linear approximation

K (real- or complex-valued). The following characterization theorem is known
as the Kolmogorov criterion (A.N. Kolmogorov, 1948).

Let feC(K) and let G be a linear subspace of C(K). A function <p0eG is a
best approximation of f with respect to G if and only if the inequality

min Re (f(x) — (p0(x))(p(x) ^ 0
xeA

holds for every cpeG, where A is the set of the extremal points off— cp0, i.e.

A = {x: xeK,\f(x) - <p0(x)\ = || / - q>0 \\C(K)},

and a is the conjugate of ca.
The uniqueness theorem 1.7 has the following form.
Let G be a Haar subspace ofC(K) (see section 1.3). Then for every feC(K)

there is exactly one best uniform approximation of f with respect to G
(A. Haar, 1918, A.N. Kolmogorov, 1948).

The theorem (1.6) of Chebyshev also is true for Chebyshev systems (Haar
subspaces), as follows.

Let G be a Haar subspace ofC[a,b] with dimension n. Let cpeG be the best
uniform approximation to feC[a,b] with respect to G. Then there exist n + 1
points xh i = l , . . . ,n + 1, a ^ x1 < ••• < xn+1 ^ b, such that

/(x,.) - cp{xd = £ ( - 1)' | | / - cp \\C[aM, i=\,...,n+\,s=±\.

For the first and second Remez algorithms see Remez (1969). There are
many modifications of these algorithms, see the books of Cheney (1966), Rice
(1964,1969), Meinardus (1967). We have used in section 1.3 the book of
Cheney (1966).
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Qualitative theory of the
best rational approximation

The most essential problems in the qualitative theory of the best approxi-
mation are the problems of existence, uniqueness and characterization of the
best approximation. Finally the problems connected with the continuity of
the operator of the best approximation, or, as is mainly used, the continuity
of the metric projection, are considered. In this chapter we shall consider
these questions for the best rational approximation. The difficulties arise from
the fact that the set Rnm of all rational functions of order (n, m) (see the exact
definition in section 2.1) is not a finite dimensional linear space and the
bounded sets in Rnm are not compact in C[a, b~\ or in Lp(a, b). Nevertheless
we shall see that there exists an element of best approximation in C[a, £>]
and Lp(a,b) (section 2.1). Moreover in C[a, b~] we have uniqueness and
characterization of the best approximation by means of an alternation, as in
the linear case (see section 2.2). Unfortunately in Lp(a,b), 1 ^p < oo, we do
not have uniqueness (section 2.3). In section 2.4 we consider the problem of
continuity of the metric projection in C[a, b] - the metric projection is
continuous only in the so-called 'normal points' (see section 2.4). In section
2.5 we consider numerical methods for obtaining the rational function of
best uniform approximation. We should like to remark that we examine only
the usual rational approximation. Some references for the qualitative theory
of generalized rational approximations are given in the notes at the end of
the chapter.

2.1 Existence
We shall denote by Rnm the set of all real-valued rational functions with
numerator an algebraic polynomial of degree at most n and denominator an
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18 Best rational approximation

algebraic polynomial of degree at most m, i.e. reRnm if r has the form

where ah i = 0,.. . , rc, bh i = 0,.. . , m, are real numbers.
If reRnm has the form (1) with a n # 0 , or ftm#0, we say that r is

nondegenerate.
If r = p/q, p and q algebraic polynomials without common zeros, we say

that r is a reduced rational function, or r has a reduced form, or r is irreducible.
Since the set Rnm is nonlinear when m ^ 1, we cannot apply the general

theory of linear approximation to obtain the existence of the best rational
approximation in the spaces C[a, b] and Lp(a, b),\^p<co. So we shall prove
its existence directly.

We define the best rational approximation in C{a, b~\ and Lp(a, b\ l < p < co,
of order (n, m) as usual:

Km(f)c[a,b] = inf {II / ~ V II C[atb]' rsRnm},

Rnn,(f)Lp(a,b) = "if { II / ~ ^ ||Lp(fl,i,): '
-6^n m}-

When it is clear we shall write briefly Rnm(f)c or Rnm(f) and Rnm(f)Lp or
RnJ(f)p- when m = n we sha11 use the notations Rn(f)C[aw

 R
n(f)c

 o r # „( / )

Theorem 2.1 (Existence theorem). Let f eC\_a,b] (or feLp(a,b\ \^p< oo).

Then there exists a rational function reRnm (respectively rpeRnm) such that

\\ J ~ r \\C[a, b] = RnmU )c[a,b]

(respectively

11./ ~ rp\\Lp[a,b] — Rnm(J)Lp[a,b])-

Remark. The rational function r, respectively rp, is called a rational function
of best approximation t o / i n C[a, fc], or of best uniform approximation to
/ , respectively a rational function of the best Lp-approximation t o / , of order
(ft, m).

Proof of theorem 2.1. Let X denote the space C[a,fr] or Lp(a,b), \ =gp< co.
Let /GX and rNeRnm be such that

\\f~rN\\x^Rnm(f)x+l/N, N = l , 2 , . . . . (2)

Then it follows that

\\rN\\x^Rnm(f)x+\\f\\x+l=A, JV=1,2 (3)

Let rN = pN/qN, where pNePn, qNePm. We can assume that rN is normalized

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781107340756.003
Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:21, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.003
https://www.cambridge.org/core


2.1 Existence 19

so that

l l c [ f l , * ] = l , AT = U , . . . .

Now (3) and (4) give us

II PN\\X = II W i i I I x < I I r N L I I 4N\\c[a,b] < A .

(4)

(5

From (4) and (5) it follows that the sets {pN:N =1,2,...} aPn and
{qN:N = 1,2,...} a P m are sequences in compact sets (Pn,Pm are finite
dimensional spaces), so there exists a subsequence Ni9 i= 1,2,....,oo, and
pePn,qePm such that

IIP ~ PN< II 0; V< II c [ a ,b ] 0;
(6)

(all norms in a finite dimensional linear normed space are equivalent).
From (4) and (6) we obtain

II? c[fl,fc] = 1. (7)

If x is not a zero of q, in view of (6) qNi(x) —• g(x) and therefore qNi(x) # 0
for sufficiently large JVf. Using (6) we obtain (r = p/g):

\r{x)-rN.(x)\--
1

UWCWP-PN,\\C} 0-

Therefore, for every xe[a,6], x not a zero of q, we get from (2) and (8)

\r(x) -f(x) \rSl{x) -f{x)\

or

(9)

(10)

On the other hand we have from (3) for every

\A or \pN.(x)\^A\qN.{x)\.

The last inequality together with (6) gives us

\p(x)\^A\q(x)\, ] . (11)

The inequality (11) shows that every zero of q in [a, b~] is also a zero of p
with at least the same multiplicity. Therefore r = p/q is a continuous function
in [a,b~\. Then, since (10) is valid for xe[a,b] which are not zeros of q, (10)
is valid for all xe[a,b], so (10) gives us
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20 Best rational approximation

Now let X = Lp[a,b~\. Let K be some collection of intervals Af = [af,jSJ< =
[a, b] such that A, does not contain a zero of q. Then, by (10), (6), (2), we have

1/-̂ ,1 \ f

i.e.

for every such compact K. Since the number of the zeros of q is finite, it

follows from the definition of the Lebesgue integral that || / — r \\p ^ R„m{f)p,

and since reRnm we must havenm

\\f-r\\p = Rnm(f)p. •

The proof of this existence theorem shows the difficulties which arise
when we work with rational functions. Roughly speaking, we must think in
terms of the poles of the rational function - the proof of theorem 2.1 is so
long because we have to consider the poles of r. Indeed it follows from the
proof that in the uniform case it is not possible that r has poles on [a, ft],
because, if q has a zero, on [a, ft], p should have the same zero at least with
the same multiplicity. But from here follows the possibility for the best rational
approximation r to be degenerate: this means that pePn-l9 qePm.1 if
r = p/qeRnm.

We shall see that in questions connected with the continuity of the metric
projection in C{a, b~\ on Rnm this possibility of degeneracy will be the main
problem.

2.2 Uniqueness and characterization of the best
uniform approximation

We have seen that if /eC[a,b~\ then there exists a rational function reRnm

of best uniform approximation. The set of rational functions Rnm is a nonlinear
one; nevertheless it still has uniqueness of the rational function of best uniform
approximation and also characterization of this best approximation by means
of alternation. In order to formulate this theorem we shall need the notion
of the defect of a rational function.
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2.2 Best uniform approximation 21

Let rERnm and the reduced form of r be r = p/q, i.e. p and q have no
common zeros. The defect d(r) of r is given by

minltt—degp, m — degg}, r ^ O

(m, r s O ,

where degp denotes the exact degree of the algebraic polynomial p (degp = k
if pePk and p$Pk-J.

It follows directly from the definition that:

(a) r is degenerate if and only if d(r) > 0;
(b) d(r) is the greatest number s for which rE#(„_s)(m_s).

Theorem 2.2 Let feC[a,b"]. For all natural numbers n and m the rational
function rsRnm is a rational function of best uniform approximation to f of
order (n, m) if and only if there exist N = n + m + 2 — d(r) points xh i = 1,..., N,
a^xl<x2<--<xN^b, such that

f(xi) - r{xd = e{- l)1| / - r \\C[atb]9 i = 1,..., N, e = ± 1.

Moreover the rational function of order (n,m) of best uniform approximation
to f is unique.

In other words r is the rational function of order (n9 m) of best uniform
approximation to / if and only if /— r alternates at least n + m + 2 — d(r)
times in the interval [a, fc].

Before proving theorem 2.2 we shall give some lemmas.

Lemma 2.1. Let (peCl[a,b~\ and let xh i — l,. ..,/c + 1, a ^ x 1 < x 2 < - - <
xk+1 ^ b, be k + \ different points in the interval [a, b~] such that

<p(xt)#0,q>{x2)= ... = q>(xk) = 0, <p(xft+1)#O,
sign cpixj = (-\)k sign <p(xk + 1). (1)

TTien <p has at least k zeros on (xuxk+l), if we compute every zero with its

multiplicity.

Proof. The function cp has k— 1 zeros on (xl9xk+1) x2,x3,...,xk. We must
show that there exists in (x1,xk+1) a zero z of cp, different from x 2 , x3,...,xk9

or that one of the zeros x2,...,xk has multiplicity at least 2.

If there does not exist a zero of q> in (xl9xk+1) different from x2,...,xk,

then in each interval (xt,xf+x), i= 1,...,fc, the function cp has constant sign.

If the sign of cp is the same in two adjacent intervals (xt-,xI+1), (xi+1,xi + 2),

then xf+1 must be at least a double zero of cp, since cpeCl\_a,b~]. If we assume

that in all adjacent intervals (xf,x/ + 1), (x l + 1 , x I + 2), / = l,...,fe— 1, (p has a

different sign, we obtain that sign cp{xx) = (—\)h+i sign cp(xk+1) and we come

to contradiction with the condition (1) of the lemma. •

Lemma 2.2. Let {(pj"=1 be a Chebyshev system on the interval [a, b],
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22 Best rational approximation

cpieC1[a, b\ f=l,...,n, and G = {<p: <pZ"= i <W;} be the Haar subspace,

generated by cpl9...9cpn. Let xi9 i = 0,...,n,a^xo<x1<---<xn^b,ben+l

different points on [a,b~\. If for cpeG we have

or

then (p = 0.

Proof. Let us assume that cp # 0. Let us have for example

>0 , i = 0,...,n. (2)

We shall prove that cp has at least n zeros in the interval [a, ft], every zero
counted with its multiplicity, which contradicts the assumption of the lemma,
that {(?,•}"=! is a Chebyshev system on [a, ft].

If (p(xf) # 0 , / = 0,.. . , n, from (2) and the continuity of the function cp it
follows at once that cp has at least n zeros in [a, ft]. Let now cp(xt) = 0 for some
i. If cp(xi) / 0 for only one value of i, then the same result follows. There
remains the case when <p(xf) # 0 for at least two values of /. Let the first two
be j and j + /c, i.e.

< P ( * 0 ) = • • • = < ? ( X j - l ) - p ( j ) , 0

From the hypothesis (2) it follows that

sign cp(Xj) = ( - l )k sign q>(xj+k). (4)

Since cpeCl[a,b\ from (3), (4) and lemma 2.1 it follows that cp has at least
k zeros in the interval (xj,Xj + ) and therefore cp has at least j + k zeros in
the interval [_a, xj+k]. Going on in this way, we obtain that there exist n zeros
of cp in [a, x J , every zero counted with its multiplicity. •

In the proof of theorem 2.2 we shall use also the following modification
of the well-known Vallee-Poussin theorem for polynomials.

Theorem 2.3. Let f eC\a, ft]. Let pePn, qePm and let q have no zeros on [a, ft].
Let there exist N = H + W + 2 — d(p/q) points {xj?L1 ua^x1<x2<-<xN^
ft, in [a, ft] such that

f(xi)-~ = ^\)iXi, E=±l,ki>0,i=l,...,N. (5)

Then

Rnm(f)claM>™m{?H:i=l,...,N}.
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2.2 Best uniform approximation 23

Proof Let us assume that there exists a rational function r1 =Pi/<71e/?nm,
(P i Ah 1 )-irreducible, such that

II / - rx || C[a,b] < min {Xt: f = 1,..., N}. (6)

Let us consider the values of the difference s = p/q — r1 at the points x,,
(= l , . . . , N. We obtain from (5) and (6) that

signs(xt.) = sign | ( ^ r - f(xt) ~ ( ' i W - /(*;)

Hence s has at least N — 1 different zeros yh i = 1,.., J V — 1, in the interval
[a, b\ i.e.

s(y.) = 0, / = 1,..., N — 1.

Let us note now that rx = Pi/qx has a reduced form and || rx \\C[a,h] < oo, and
consequently qx has no zeros on [a, ft]. So from

it follows that

pti
diiiyd- - P i i y i H y d = o, / = 1 , . . . , N - 1 ,

i.e. the algebraic polynomial pqx — PiqsPM, M ^ n + m — d(p/q) = N — 2, has
at least N — 1 > M different zeros in the interval [a, ft]. This contradiction
proves the theorem. •

Let us mention that later on we shall use theorem 2.3 in the numerical
method of Remez for finding the rational function of best approximation
(see section 2.5).

Proof of theorem 2.2. First we shall prove that if reRnm realizes an alternation,
then r is a rational function of best uniform approximation to / of order
(n, m). If we apply theorem 2.3 to / and r with

we obtain that I < Rnm(f)c[a,b]i a n d s i n c e rG^nm w e must really have
X = II / — r \\c[a,b] = RnmifX i-e- r *s a rational function of best uniform approxi-
mation to / of order (n, m).

Now let r be a rational function of best uniform approximation to / of
order (n, m). We shall prove that f — r must alternate at least N = n + m +
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24 Best rational approximation

2 — d(r) times in [a, ft]. Let us assume the opposite, that M ^ N — 1 is the

highest number of points xx < x2 < ••• < xM in [a, ft] such that

/ (x , . ) - r (x ; ) = £ ( - 1 ) ' | | / - r||ctfl.fc, = s ( - l R j / W / = 1,.. . ,M, e = ± 1.

(7)

Then there exist M + 1 points £f,i = 0 , . . . ,M , a = £0 < ^ < ••• < £M = b

such that for every x e ^ . ) , ^ we have

e ( - l ) ' ( / ( x ) - r ( x ) ) > - Rnm(f)C[a,b], i=1,...,M. (8)

In view of (7) the continuous functionf—r changes its sign m [x f , x f + 1 ] ,

therefore we can assume, as in section 1.2, that the points £f,i = 1 , . . . , M — 1,

are such that

/(&)-r(&) = 0, i = l , . . . , M - l . (9)

Let us consider the algebraic polynomial

M - i - (10)

Let r = p/q.and p and q have no common zeros. Since sePN_2,

qePm-d{r), there exist two algebraic polynomials p1ePm,qlePn, such that

Let us consider the rational function

r = l ^ e R n m , (11)
q - s3p1

where s (s = 1 or — 1) is the same as in (7), and 3, 3>0, will be chosen later.

Since \\f — r \\C[a,b] < °°> P a n d 4 have no common zeros, and q has no zeros
in [a, ft], we can find 3X so that for 0 < S < ^ the polynomial q — sdpl has
the same sign as q in [a, ft].

Let us consider the difference / — r. We have

P p-£<$<?! E5(pPl-qq,) F.6S
f-r=f-r + — =j ~r i—r-=./ - r -q q-8dp1 q(q-s3p1)

 * q{q-&3px)

Let S2 ^ S1 be such that for 3, 0 < 3 < 3 2 , we have for xe[C,_ i , c j

(12)

This is possible in view of (8), s i n c e / — r is a continuous function in [a,ft].

On the other hand for xe(^ i_1 ,£;) , i= 1,...,M, x = £0 , x = £M, we have
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2.2 Best uniform approximation 25

for 0 < S < 82

«(- l)'(/(x) - f(x)) = e ( - \)'(f(x) - r(x)) - £( -1) ' - , ,. . , ' . .,
q(x)(q(x) - edp1{x))

q(x)(q(x)-eSp1(x))

< RnJLfha.bV (13)

since by (10) we have ( - l )\s(x) > 0 for x e f c _ t , £,-), i = 1,..., M, x = £0, x = £M.
In view of (9) we have also (13) for x = £f, / = 1,.. . ,M—1, i.e. for all

xe[a, ft]. Since / — f is a continuous function on [a, ft], the inequalities (12)
and (13) give us

Wf-r\\c{aM<Rnm{f)cVaM' (14)

By (11) reRnm, and therefore (14) is a contradiction. Consequentlyf —r
must alternate at least N times.

Now let us prove the uniqueness of the best rational approximation of
order (n, m).

Let us assume that there exist two different rational functions rx =
}Rnm and r2 = p2/q2eRnm such that

11/ ~ rl\\C[a,b]— II J ~ r2 \\C[a,b] = Rnm )C[a,b]'

We can assume that rx =p1/q1 and r2 = p2/q2 have a reduced form and
ql9q2 have no zeros in [a,ft].

Let Nl = n + m + 2 — d^-^), N2 = n + m + 2 — d(r2) and let us assume for
definiteness that N1^N2, or, which is the same, d(r^)^d(r2). Let xh

i = \,...,Nl9 a ^Xj < ••• < XNL ^ &, be the points of alternation for r1? i.e.

f (X i)-r 1(xd = 8(-l)iRnm(f)C[atb]9 i = l , . . . , N l 9 e = ± l. (15)

Let us consider the difference s = r l — r2 at the points xh i= l , . . . ,N1 .
There are two possibilities:

(a) s(xi) = 0, i = \ , . . . , N 1 ,
(b) 5(x,) ^ 0 for some i.

In case (b), since |/(x;) — r1(jci)| = Rnm(f), we must have

^(x, . ) -/(*,.)) < %i(x,) - /(x,-)), e = sign(r!(*,.) - / (x , ) ) ,

and therefore

signs(x;) = sign(r,(x;) - / (x ; ) ) . (16)

From (15) and (16) it follows that

£(-1) i + 1s(x,-)2s0, / = 1,2,..., TV x. (17)
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26 Best rational approximation

On the other hand s can change its sign on [a, b~] at most Nl — \ times, since

P iPi Pi _
s — r t — r 2 — —

and ptq 2 — P2<7i CPM> where M = n — d(rx) + m — d(r2) ^n + m — d(r2) =
N2—2 and therefore s belongs to the Haar subspace

I11 •
L < 7 I < ? 2

From here, (17) and lemma 2.2 it follows that s = 0, i.e. r1 = r2. •

2.3 Nonuniqueness in Lp(a,b),1</>< oo
One of the unpleasant facts in the theory of the rational approximation is
the nonuniqueness of rational functions of best approximation in Lp,
1 ^ p < oo. More precisely there exist functions feLp(a, b\ 1 < p < oo, which
have more than one best approximating rational function of order (n, m) in Lp.

Next, we get a function which has at least two best approximating rational
functions of order (0,2) in Lp(— 1,1), 1 ̂  p < oo.

Fix A > 1. Choose s such that 0 < e < \ and when p > 1

1/(1 + (6£) 1 / ( p - i y- 1 > 1 --*-( arctanyl - j \ (1)

Obviously such a choice of 8 is possible.
Consider the function

( 1 ,

Clearly / is an even function. We shall show that there is no even best
approximating rational function of order (0,2) to / in Lp. This fact, obviously,
implies the required nonuniqueness.

Consider the rational function r*(x) = B2/((x -\)2 + B2\ B = e/A, r*E#0?2
Clearly 0 < r*(x) ̂  1, x e ( - oo, oo), and hence

£ B2dx „ f°° B2dx V "

• (2)
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2.4 Rational metric projection in C[a, b~\ 27

Now, let reR02 and r be an even function. It is readily seen that r is
monotone on [0,1]. Suppose that r is nondecreasing on [0,1] (the case when
r is decreasing is considered similarly). Consider the case when 0 =$ r(x) < 1,
xe{\ — e,1) (the other possible cases are trivial). Let p>1. Then we get

f i/P

2 (1-r(i + s))
pdx + 2 r )

21 /2 -e J l/2 +E
/ f l / 2 + a ' 1 \ l / p

inf 2 (l - cYdx + 2 cpdx
« c < l \ J l / 2 - e J l / 2 + £

1 \1/P
inf (1 - c ) p + — c")

6 /

When p = l we have immediately || / — r ||Ll(_ l a ) ^ 4e. The last estimates, (1)
and (2) imply that any even rational function reR0 2 is not best approximating
t o / in Lp(— 1,1). Consequently, there exist at least two best approximating
functions.

2.4 Properties of the rational metric projection in C[a, b~]
Let X be a metric space with a distance d. The set G c I is called a Chebyshev
set if for every feX there exists a unique geG such that

d(f,g) = inf{d(/,<p):<peG}.

This unique element is usually denoted by PGfor P/and is called a metric
projection of / on G.

Here we shall discuss the problem of continuity of the metric projection
from C[_a, b~] on the set Rnm. We define the operator P of the metric projection
in C[a, b] on Rnm in the following way:

Iff$Rnm, then Pf = r where r is the rational function of best uniform
approximation of order (n, m).

I f / eR „ m wese tP /= / .
The metric projection is said to be continuous at the point / if from fk ->f

(in the corresponding metric) it follows that Pfk -* Pf (in the same metric).
The interesting fact about the problem of continuity of the metric projection

in C[a, fc] on Rnm is that the continuity is connected with the degeneracy of
the rational function of best approximation to / , i.e. with the degeneracy of
Pf We repeat that the rational function reRnm is degenerate if its defect
is >0, i.e. d(r) > 0 (see section 2.2).

In this section we shall write ||/| | instead of ||/||C[a,6]-
The following theorem holds.
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28 Best rational approximation

Theorem 2.4. The metric projection in C[a, b~\ on Rnm is continuous at
feC[a,b] if and only ifd(Pf) = 0.

The points /eC[a, b~\ for which d(Pf) = 0 are often called 'normal points'.
Theorem 2.4 is connected with the names of Maehly and Witzgall (1960),

Cheney and Loeb (1964), Werner (1964) (see the notes at the end of this
chapter).

We shall obtain the part 'if' in theorem 2.4 as a consequence of another
property of P / a t points where d(Pf) = 0 - the strong uniqueness of the best
approximation.

Let X be a metric space with a distance d and let Pf be the metric
projection of feX on the Chebyshev set G a X.

The metric projection is called strongly unique at the point feX if for
every (peG we have

d(f9<p)>d{f9Pf) + yd{(p9Pf)

where y > 0 is a constant, possibly depending on / .
Let us remark that the last statement of theorem 2.2 can be reformulated,

using the notion of Chebyshev sets, as follows: the set Rnm is a Chebyshev
set in C[a,fe

The following theorem holds.

Theorem 2.5. The metric projection Pf in C\_a, b] on Rnm is strongly unique if
d(Pf) = 0.

In the proof of theorem 2.5 we shall use the following lemma.

Lemma 2.3. Let R = S/QeRnm9 Q(x) > 0 for xe[a,ft]. The set A = {p + Rq:
pePn9qePm} in C{a,b~\ has dimension k — n + m+ 1 — d(R). Moreover A is a
Haar subspace on the interval [a, b].

Proof Let dim D denote the dimension of the set D c C[a, b]. Evidently we
have

dim A = dim Pn + dim RPm - dim (Pn n RPm)

= n+1+m+1-dim(PnnRPJ, (1)

where RPm denotes the set RPm = {(p:cp = Rq:qePm}. If S = 0 then d(R) = m
and dim A = n+1. Let S =fc 0. An element cpeRPm belongs to Pn if and only
if (p = R\j/ where ^ = Qq1. Let us estimate the degree of qx. Since il/ePm,
QePm-defQ, qx must belong to Pdef(2, where defQ is the defect of the
algebraical polynomial Q in Pm, i.e. def Q = m — deg g.

On the other hand, cp = Rij/ = Sqx must belong to Pn, therefore ql must
belong to Pdefs. Consequently qi.ePi(R), d(R) = min(defS,defQ), and the
dimension of PnnRPm is exactly d(R) + 1. From (1) we obtain that dim A = k.

Now let us prove that A is a Haar subspace. Suppose that cp = p + Rq9
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2.4 Rational metric projection in C\_a, b] 29

pePn, qsPm, has at least k zeros in [a,b]. Then the algebraic polynomial
pQ + SqePn + m-d(R) has k = n + m + 1 — d(R) zeros in [a,b], which is
impossible. •

Proof of theorem 2.5 (Cheney, 1966). Let us set for r=£Pf

n Wf-r|| - | | / - f / | | | | / - r | | - R B J / ) C [ B , t ]

We must prove that

Let us suppose the contrary: y = 0. Then there exists a sequence {rk}j?= 1

such that rk = pk/qk, rk =£ Pf pkePn,qkePm and y(rk) —• 0. We may assume

that
i (3)

(if we multiply pk and qk by a constant rk does not change).
Let Pf=p/q,pePn,qePm. From condition (3) it follows (passing to

sub-sequences if necessary) that there exist p*ePn, q*ePm such that

Let us first remark that \\p*/q*\\C[a,b]< °°. Indeed, in the opposite case
from (2) it follows that y = 1.

We shall show that

p*/q* = r*=p/q = Pf. (4)

In fact if r* ̂  p/q = Pf then from (2) the contradiction follows:

0 = y = hm y(rk) = hm
\rk —

r*-Pf\
U,

since ||/ — r*||>||/ — Pf || if r* # Pf by the uniqueness of the best uniform
approximation (theorem 2.2).

Since d(Pf) = 0, Pf = p/q is irreducible and p has degree exactly n or q
has degree exactly m. So from (4) it follows that p* = cp, q* = cq, c a constant.
Since we can set \\p\\ + ||g|| = 1 by (3), it follows that we can set c = 1.

Let

= sign(/(x)-(P/)(x)).
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30 Best rational approximation

For every ye Y we have

y(rk)\\rk-Pf\\ = \\f-rk\\-\\f-Pf\\

- rk(y))- a(y)(f(y) - (Pf){y))

(5)

Now since \\qk — q|| —•0 and \q{x)\ > 0 for xe[a,b] it follows that there
k-*oo

exist e > 0 and N > 0 such that for fc> N we have |gfc(x)| ^ £ > 0 for xe[a,b~\.

We have

f{maxc7(y)(§P/-p)0;):§ePIII,pePII,||5P/-p||=l}=c>a (6)

Let us assume the contrary, that c = 0. Since the set || gP/ — p || = 1, qePm,
pePn is compact, there exist qePm, pePn, \\qPf — p\\ = 1, such that

maxa(y)($P/-#00 = 0. (7)
yeY

By theorem 2.2 the set 7contains N = n + m + 2 points xh i=l,...9N,

a^x1<x2< ••• <xN^b (remember that d(Pf) = 0), such that

)) = s ( - \ ) \ i = l,...,JV,e = ± 1. (8)

From (7) and (8) we obtain

' - p ( x i ) K 0 , i = 1 , . . . , N . (9)

But qPf — peA = {cpicp= p + qPf,pePn,qePm}. By lemma 2.3 the set A is
a Haar subspace with dimension k = n + m+ 1 — d(P/) = n + m+ l. So (9)

and lemma 2.2 give us qPf — p = 0, which contradicts \\qPf — p\\ = 1 .

Therefore c > 0.

From (5)-(7), using that ||gk|| < 1 (see (3)), \qk{x)\>s for k> JV,

we have

> c || 9 t P / - p t || >C61| P / - r t II,

i.e. y(rk) ^ ce which contradicts y(rfc) —>0. D

Theorem 2.6. Let feC\a,b~] and d(Pf) = 09 where P is the operator of the
metric projection in C[a9 b~] on Rnm. Then there exists a constant c(f) such that
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2.4 Rational metric projection in C[a, 6] 31

for every geC[a, b~] we have

\\Pf-Pg\\^c(f)\\g-f\\.

Proof. Using the strong uniqueness of the metric projection in C[a, b] on
Rnm (theorem 2.5) at the normal point f(d(Pf) = 0) we obtain that there exists
a constant y(f) > 0 depending possibly o n / such that for every reRnm we have

Setting r = Pg we obtain

= 2\\f-g\\,
i.e.

f-gh n

The part 'if of theorem 2.4 immediately follows from theorem 2.6. Now
we shall prove the part 'only if. This part follows immediately from the
following theorem.

Theorem 2.7. Let / eC[0 ,1 ] and let

realize an alternation ofn + m + 2 — d points, d(r) = d > 0.
There exists <5>0 such that for every s,0<e<d, there is a function

/eeC[0,1] such that

RJLtt = IIL ~ rc llctci], rEeRm, d(rE) = d - 1

and

\\r-rj>3.

In the proof of theorem 2.7 we shall use the following lemma.

Lemma 2.4. Let x > 0 be given. There exist a, /?, y such that the function
q>(x) = y(x — a)/(x — /?) has the following properties:

= a, q>(x) = b, 0<b<a; (p'(x)<0, xe[0,oo)
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32 Best rational approximation

Proof. From the conditions on cp we obtain

Oi X — Ot

h

We get

ya = fia,

yx — ya = xb — /?/?,

yx — fia — xb — jSb,

0(b-a) = x(ft-y),

x(b - 7) ax(b - y)
b — a y(b — a)

Since a > b, for 0 < y < b we have a < P < 0 and

q>\x) = y- 7 p < 0 for x e [0,oo). •

Proof of theorem 2.7. Let the points of alternation of / — r be xf, i = 1,..., fc,
0 < x 1 < x 2 < - - < x t ^ l , k = n + m + 2 — d. Without loss of generality we
can assume that the first extremum off — r is positive, that x2 is the first point
in [0,1] for which f(x2) - r(x2) = -Rnm(f) and that

/(xj - r(xx) = RnJtflXi = max {x: /(x) - r(x) = Rnm(f),x < x2}.

Let z = min {x: f(x) - r(x) = 0, xx < x < x2}. Let us denote

From the assumption given above it follows that

f(x)-r(x)>-Rnm(f) forxel,

and therefore there exists 5 > 0 such that

/(x) - (r(x) + <S)>- iC,C0 for xe/i.

We can assume also that S < Rnm(f). Let 0 < e < 5. Let xx be such that

x\ = max {x: XE[XUZ], /(X) - r(x) = Rnm{f) - e}.

Let r = p/g, g(x) > /1 > 0 for XE[0, 1].

From lemma 2.4 it follows that there exists a function <pa(x) = y{x — a)/
(x - P) such that

<pfl(0) = a,(pixj = min f e//,-

and
(p'a(x)<0 for XE[0,1].

Set ipa = cpjq.
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2.5 Numerical methods for best uniform approximation 33

From these properties of cpa it follows that

Since q>a is a continuous function of a, when a increases we shall have an
a for which there is a point xoe[0, xx) such that

f{x0)-{r(x0) + Mx0)) =-Rm,(f)

and for every XELX we have

\f(x)-(rix) + <Plix))\^Rnm(f).

Obviously we must have a ̂  S.
In the interval [x1?z) there is a point x\ for which

fix,) - (rfo) + tjixj) = max {/(x) - (r(x) + ^-(x)): xe[x l fz)} - Rnm(f) - L

and, since (p'd(x) < 0, (po(iq) = min (e/i, a/2), it follows that 0 < £ < 2e.
Let us define

r£(x) = r(x) + iA.(x).

Then r£efl„_d+l5m_d+ 1
In the interval 72 we define /£(x) =f(x) + IA^X). In tne interval 7X we define

/£(x)=/(x) for xe[0,xo], in [x0,z] we define fe so that /£(x1)=/(x1) + £,
|| / - / . | | c < 2£, / , E C [ 0 , 1], || / , - re||C[iiiZ] ^ l U / W i ] -

From the construction given above it follows that the points x0, x l J x2,...,
xfe are points of alternation for/£ — r£, and, since r£eK„_d+1?m_d+1, from
theorem 2.2 it follows that

RJLDc = II / . " rjc = II / - r ||c = JU/ ) C

Since \\ r — re \\c = \\ cpd || ^ 8 and || / —fE || < 2e, the theorem is proved. •

2.5 Numerical methods for best uniform approximation
Best rational approximations with respect to uniform distance are often used
for representation of functions because of their perfect approximation
properties and the possibilities which we have with the advent of high-speed
digital computers. Two algorithms have turned out to be suitable - the
differential correction algorithm and the second Remez algorithm.

Differential correction algorithm
This algorithm for finding the rational function of order (n, m) of best uniform
approximation to /eC[a, b~] is due to Cheney and Loeb (1961).

In this paragraph we set

A ( r ) = | | / - r |
C [ a t f c ] .
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34 Best rational approximation

The algorithm can be described by the following iterative process:

(1) Choose an initial approximation r0 = p0/q0 such that r0eRnm;
(ii) Set k = 0;

(iii) Compute the number Ak = A(rk) = \\f — rk \\C[atb]l
(iv) Form the following function ofr = p/q9 reRnm-

Sk{r) = max {\ f(x)q(x) - p(x) \ - Akq(x)};
xe[a,b]

(v) Select rk+1=pk + 1/qk+1,rk + 1eRnTn, so as to minimize the function Sk(r)
subject to the constraint \\qk+1 \\c[a,b] = 1 ~

&k(rh + 1) = min isk(r)' reRnm, || q \\c = 1};

(vi) IfSk(rk+1) ^Ogoto (viii), if 5k(rk + 1) < 0 go to (vii);
(vii) Set k = k+1; go to (iii);

(viii) Stop; rk is the rational function of order (n, m) of best uniform approxi-
mation to f

Remarks (1) r0eRnm may be arbitrary (for example r0 = 0/1).
(2) The minimization of 5k(r) is a problem of convex programming and

there exist effective methods for its solution. Evidently this step of the
algorithm is the most difficult to carry out.

(3) In the differential correction algorithm originally given by Cheney and
Loeb (1961), in step (iv) the function 3k(r) is defined as

dk(r) = max
xe[a,b]

lf(x)q(x)-p{x)|-Akq{x)\

In Barrodale, Powell and Roberts (1972) it is shown that this algorithm is
quadratically convergent if / is (n, m) normal (see section 2.4) in contrast to
the algorithm described which exhibits a linear convergence rate - theorem
2.8 below.

(4) In practical applications the constraint ||g||c[„,&] = 1 is less convenient
t h a n |b;| < 1, i = 0 , . . . , m , w h e r e q(x) = b0 + bxx + ••• +bmxm, a n d th i s c o n d i -
tion does not change the proof of convergence.

(5) In practical calculations step (vi) is changed to

(vi) IfSk(rk+l) ^ — s go to (viii), where e is a sufficiently small positive number.

The following theorem shows the effectiveness of the suggested method.

Theorem 2.8. Let feC\a,b~\. Then the sequence {At}^°=0 generated by the
differential correction algorithm satisfies

0 ^ A k + 1 - Rnm(f)C[aM < 0k+1(Ao - Rnm(f)C[a,b]),

where 0<6< l.
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2.5 Numerical methods for best uniform approximation 35

Proof. First we shall prove that if go(x)>0 for xe[a,ft] then qk(x)>0 for
xe[a, ft] if rk_ x is not the rational function of order (n,m) of best uniform
approximation to / . Let us assume that k0 is the smallest index for which
there exists a point x0e[a, ft] such that ^ o t l ( x 0 ) < 0 , If rkoeRnm is not the
rational function of best uniform approximation to f in Rnm, then there exists
r = p/q,reRnm, || q \\c = 1, such that A(r) < A(rko) and

<Wrk0 + i X KM = m a x {(I /W " ''Ml " AJq(x)} < 0.
xe[a,b]

But from qko + 1{X0) < 0 we get

K(rk0 + i) > \f(xo)<lko + i(xo) ~ Pk0+ i(xo)\ ~ Ako<zko+ 1(x0) 5= 0,

which contradicts the previous inequality. Thus we have proved that qk(x) > 0
for xe[a, ft] if rfc_x is not the best rational approximation to / .

Now we shall prove that dk(rk+l) ^ 0 , and dk(rk + 1) = 0 if r t is the best
approximation to / . In fact

and if rk is not the best approximation to / then as above there exists reRnm,
r = Pl<l> IIQ lie = 1>

 s u c n t n a t A(r) < A(rk) a n d consequently (5t(/-k+ J ^ <5k(r) < 0.
From

0 > <5*(rk+J = m a x {(|/(x) - rk + I W I - Ak)gk+ i

- r k + 1(x)\ - Ak:xe[a,ft]} = Ak+x - Ak

we find that the sequence A0, Ax, A2 , . . . converges downward to a limit L. If
we suppose that L > Rnm(f)c then there exists reRnm, r = p/q, || g ||c = 1, such
that A(r) < L and

On the other hand

Urk+i) < 5k(r) = max {(|/(x) - r(x)| - Ak)g(x):xe[a,ft]}

^ min (g(x): xe[a, ft]} max {|/(x) - r(x)\ - Ak:xe[a,ft]}

= a(A(r)-Ak),

where a = min{q(x):xe[a,ft]}. Therefore

Afc + ! ^ 5k(rk+J + Ak ^ a(A(r) - Ak) + Ak

and setting k -+ 00 we get L < a(A(r) — L) + L, i.e. the contradiction A(r) ̂  L.
Thus we obtain that

lim Ak = Rnm(f)c{aM• •
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36 Best rational approximation

Let reRnm, r = p/q, ||q\\c= 1, be the best approximation t o / . From above
we have Ak + 1-Ak^5k(rk + 1) and Sk(rk+1) < ct(Rnm(f)C[a,b] - Ak), hence

Ak +1 - K„m(/)c = (Ak - K„m(/)c) + Ak+ x - At

< Ak - KBm(/)c + a(Knm - Ak) - (1 - a)(Ak - Rmn(f)c)

= 6(Ak- Rnm(f)c)

and recursively

Since 0 < q(x) < 1, it follows that 0 < a ^ 1 and 0 ^ 0 < 1. Thus the theorem
is proved. •

Theorem 2.9. Let feC[a,b~\ and r be the rational function of order (rc,m) of
best uniform approximation to f. Suppose we have d(r) = 0 (i.e., / is a normal
point with respect to Rnm). Then for the sequence {*•&}*=o of rational functions
rkeRnm generated by means of the differential correction algorithm we have:

where 0 < 0 < 1 and the c o n s t a n t y~1(f) depends only on f.

Proof Since d(r) = 0, using theorem 2.5 we obtain from the strong uniqueness
ofr

y{f)\\rk-r\\c^\\f-rk\\c+\\f-r\\c = \-KJf)c

< 6k(A0 - Rnm(f)c),

Remez algorithm
The idea of the Remez algorithm is the determination of the alternation
according to the Chebyshev theorem (E. Remez, 1934a, b).

We shall describe the Remez algorithm in the case when feC{a, b] is a
normal point with respect to Rnm (see section 2.4).

(i) Set k = 0 and N = m + n + 2;
(ii) Choose a point set a ^ x^ < xf] • • • < xff sg b;

(hi) Solve the nonlinear system of equations

•«'-ssN-*4 '-1 "•
for the unknowns ak

Q,..., ak,b%,..., bk
m,Xk, where

n m

Pk(x) = X a\x\ qk(x) = X yix1;
i=O i = O
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2.6 Notes 37

(iv) If \\f-rk \\C[atb] = \Xk\ go to (vii), else go to (v);+

(v) Select the points a < x(k+1) < • • • < x$ + " ^ b such that

sign(/(xj* +1()) - r t(xf+1))) = - signf/ix^V') - r^xjVi1')),/ = 1,..., N - 1,

\ fMk+ 1 ) ) - rA t f
+ 1 ) ) \> \ l k \ , i=l,...,AT,

andfor some s, I ^s^N, we have

I7(.xs J ~~' fclxs ;l — 11/ ~~ rk llc[a,6]>

(vi) Set k = k + 1; go to (iii);
(vii) Stop; the function rk is the rational function of best uniform approximation

in Rnm to f

Remarks. (1) The initial points {x\0)}f=1 can be chosen to be the extremal
points of the iVth Chebyshev polynomials translated to [a, o].

(2) at step (iii) for solving the system one may write the system in the form

Pki^) - (Ax^) - ( - TO(ft(xj«) - 1 )

= A x V ) - ( - m s k + \ I=I,...,JV, S = O , I , . . . ,

and, setting A£ = 0, we solve the linear system for a%,...,ak
n, bk

0,...,b
k
m, X\.

Then substituting the X\ obtained in place of Xsk we find X\ and so on. Usually
the sequence {A.sk}™=0 converges. The other approach is to use Newton's
method to solve the nonlinear system at step (iii).

(3) The convergence theorems for the Remez algorithm are given by H.
Werner (1962) and A. Ralston (1965).

(4) In the practical applications step (iv) is usually changed to

(iv) If | | | / - r t | | C [ O j i ) ] - | A t | K e go to (vii), else go to (v), where e is a
sufficiently small positive number
If | | | / r t | | C [ O j i ) ] | A t | K e go to
sufficiently small positive number.

(5) The numerical experiments show that if the Remez algorithm works
without failure it converges faster than the differential correction algorithm.

2.6 Notes
Usually the qualitative theory of rational approximation considers the
so-called generalized rational approximation, i.e. approximation by means
of expressions of the type

anq>n+ •••aocpo

where {<Pi}?=0> {^i}T=o a r e Chebyshev systems. Almost all results of Chapter 2
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38 Best rational approximation

can be generalized for approximations of this type, see the books of Cheney
(1966), Rice (1969), Collatz and Krabs (1973), Meinardus (1967), Braess (1986).

The existence theorem 2.1 and the characterization and uniqueness theorem
2.2 go back to Ch.de la Vallee-Poussin (1910).

The generalizations of theorems 2.2 and 2.3 for approximations of the type

are given by Ahiezer (1930); see also Ahiezer (1970) and section 4.3.
For approximations by means of generalized rational functions, concerning

existence, characterization and uniqueness, besides the books given above we
want to mention the papers of B. Boehm (1965), Cheney and Loeb (1961),
Newman and Shapiro (1964), L. Collatz (1960). There exist also generaliza-
tions of the Kolmogorov criteria, see for example Meinardus and Schwedt
(1964), B. Brosovski (1965a, b, 1969), Brosovski and Guerreiro (1984).

There are many investigations concerning the properties of uniform metric
projection with respect to a given generalized rational system of functions.
Besides the books given above and the works of Cheney and Loeb (1964)
and H. Werner (1964) we want to mention the work of Goldstein (1963); see
also Chalmers and Taylor (1983).

For other details on numerical methods for obtaining the best uniform
rational approximation see the books given above and Veidinger (1960),
J. Maehly (1963), L. Collatz (1960), Cheney and Loeb (1962), Wetterling
(1963), Werner (1963), Ralston (1965), Barrodale, Powell, Roberts (1972),
Kaufman, Leeming, Taylor (1978), Dunham (1967a, b).

Let us mention finally some interesting results regarding real and complex
uniform approximation by rational functions on an interval and on the disk.

We have considered till now real uniform rational approximation on the
interval [a, fc]:

wherefis a real-valued function on [a,ft], and reRnm has real coefficients.
We can consider also complex uniform rational approximation:

where / is also a real-valued function, but R%m is the set of rational functions of
the type

< x n x " + - - - + o t 0

where ah i = 0,...,n,j?f, i = 0,...,m, are complex numbers.

Lungu (1971) and Saff and Varga (1977, 1978) found that for all n and m
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2.6 Notes 39

there is a function / with

RnmU)C[a,b] < "nmU)c[a,b]- U)

From here, using symmetry arguments, it is easy to see that the best uniform
complex rational approximation of a real valued function is not always
unique; see also Ruttan (1977).

Trefethen and Gutknecht (1983a, b) have many results in this topic. For
example let us set

ynm = wf {Rc
nM(f)/Rnm(f): feC[a, ft], / real-valued}.

Then

ynm = 0 for n ^ 0, m > n + 3.

Trefethen and Gutknecht have shown also that for the complex rational
uniform approximation on the disk there are analogs of (1) and of non-
uniqueness.
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Some classical results in the
linear theory

The most essential question in the quantitative theory of approximation is
the connection between the degree of the best approximation to a given
function/by means of some tool for approximation (algebraic polynomials,
trigonometric polynomials, rational functions, spline functions and others)
with respect to a given metric (uniform, Lp and others) and the smoothness
properties of / (differentiability, Lipschitz conditions etc.).

The solutions of these questions in linear approximations usually use the
moduli of continuity and smoothness. So we shall begin in section 3.1 with
some definitions and properties of the moduli of smoothness in C\_a, b] and
in Lp[a, b~\. In section 3.2 and 3.3 we give the classical theorems of Jackson
and Bernstein for best trigonometrical Lp approximation. In section 3.4 we
consider briefly the best approximation by means of algebraical polynomials
in [—1,1] and the singularities connected with them. Finally in section 3.5
we consider the iC-functional of J. Peetre, which is the abstract version of
the moduli of smoothness, and its application for the characterization of the
degree of the best approximation in the abstract case, using abstract Jackson
type and Bernstein type theorems.

3.1 Moduli of continuity and smoothness in C and Lp

Let the function / be bounded on the interval [a, b].

Definition 3A, The modulus of continuity (in C[a,/>]) ofthe function f is the
following function of Se[0, OO):

(o(f;S)claM = sup{\f(x')-f(x")\:\x'-x"\^d,x',x"e[_a,bl}. (1)

We shall write, when it is clear, a>(f;5) or a){f;5)c instead of a)(f;S)C[ab].
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3.1 Moduli of continuity and smoothness in C and Lp 41

Obviously the necessary and sufficient condition for the function / to be
continuous in the finite closed interval [a, b~] is co( f; S) —> 0.

A natural generalization of the modulus of continuity is the moduli of
smoothness.

For every bounded function and every natural number k we define the /cth
difference with step h in the point x by

Aj/(x)= t(-l)m + k(k)f(x + mhl A1hf(x)= Ahf(x); (2)

(k\
where I = k\/(ml(k — m)\) are the Newton binomial coefficients.

Let / be defined and bounded in the interval [a, b~\ and k be a natural
number.

Definition 3.2. The modulus of smoothness in C\a, b] ofkth order of the function
f is the following function ofSe[0, oo):

,b]= sup{\Ak
hf(x)\:\h\^S,x,x + khe[a,b']}. (3)

We shall write, when it is clear, cok(f; 3) or cok(f; 3)c instead of cok(f
 ; 3)C[ab] .

In some cases we shall also use the notations:

cok(f; A) = a)k(/;[a,b]) = sup {| A*/(x)|:x,x + khe[_aM = A}. (4)

From definition 3.2 it follows immediately that the modulus of smoothness
of first order is exactly the modulus of continuity: &>i(/;<5)c[a,&] = u>{f\8)c[a,by

The second modulus of smoothness oo2(fl 3)c *s often called the modulus
of smoothness or Zygmund's modulus.

The moduli of smoothness have the following basic properties

(i) o)k(f;8')^cok(f;S")ifS'^S".
(ii) (ok(f + g;5)^ (ok(f; 8) + cok(g; 6).
(iii) (»ik(/;5)<2(B/k_1(/^),k>2.
(iv) I f f exists and is bounded in [a, b~], then

(iV) (oi(f;S)^5\\f'\\claM

(v) If n is a natural number, then

cok(f; n3) ^ nkcok(f; 3).

(v') cok(f; xd) < ( M + 1 fojk{f- s) < (/ + i ) W / ; ft * > o.

The proofs of properties (i) and (ii) follow directly from definition 3.2. The

* [A] denotes the integer part of L
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42 Some classical results in the linear theory

proof of property (iii) follows from the equality

Properties (iv), (iv') make sense for functions with bounded first derivative.
For every h, \h\ ^ 5, we have

AJT1 f\x+t)dt
o

min(O,h) min(O,/i)

Consequently

For k = 1 we obtain, for | h | < d,

\\f(x)\ = f\x + t)dt

In the proof of property (v) we shall use the equality

A n n / W = " L " E - " lAj/(* + hh + i2h+- + ikh). (5)

It is easy to prove this equality by induction with respect to k. For k = 1 we
have

Anhf(x)=f(x + nh) -f(x) = £ (f(x + ifc + h) -f(x + ife))

= "% Ahf(x + ih).
i = 0

Let us assume that (5) is true for a given natural number k. Then

AX1f(x)=Ak
M(x + nh)-f(x))

n - l n - l

= A ' n ( A n n / ( x ) ) = V ••• y A k J A n h f i x + i 1 h + - - - + ikh))
t i = O ik = 0

n - l n - l /n-l

= E ••• E A

i i = O ik = 0

n - l n - l

= E - E •
11 = 0 * f t + i = o
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3.1 Moduli of continuity and smoothness in C and Lp 43

From (5) for \h\ < 5 it follows that

A*/(x + 1^ + - + ikh)\ < nkwk(f;5),
»i =0 ik = 0

hence property (v).
Property (v') follows immediately from properties (i) and (v):

1)<5) < ([1] + \f<oJJ;S) < (A + l ) H

From properties (iv) and (iv') it follows that

(vi) If pk)eC[a,b] (orf{k) exists and is bounded on [a,fo]), then

Later on (in section 7.1) we shall prove the following more complicated
property of cok.

(vii) Theorem of Marchaud. For every m< k we have

%(b-a)/k

where the constant c(k) depends only on k.

Using the integral norms Lp, 1 <p < oo, instead of the uniform norm, it
is possible to obtain analogues of the moduli of smoothness, which are usually
called integral moduli of continuity or smoothness, Lp-moduli or p-moduli.

Let the function / belong to Lp(a, b).

Definition 3.3. The integral modulus (Lp-modulus, p-modulus) of order k of the
function f is the following function of de[0, oo):

r n-kh •) i/p

«*(/; 8)Lria.» = »*(/; 3)Lp = coJLfl S)P = sup I A \f(x) \"Ax\ . (6)

It is easy to see that <ak(f; S)p has the following properties.

(i) (ok(f; 8%
(ii) cok(f + g;S)p ^ cok(f;5\ + ojk(g; S)p.

(iii) o)k{f;3)p^2cok.l{f;3)p.
(iv) IffeLp{a,b)then

(iv') Iff'eLp(a,b)then

(v) a>M;n8)p^nka>Af
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44 Some classical results in the linear theory

(v') cok(f; A8)P < ([A] + 1 f(ok(f; 5)p < (A + 1 )*to4(/; <%

(vi) J//(k) exists and f(k)eLp(a,b) then

Property (vii) has the form

(vii) IffeLp(a,b), then for every m<k we have

The proofs of properties (i)-(vi) are similar to the uniform case.
We shall give one specific property of col(f;S)1 = co(f;5)l.

(viii) Let the function f have bounded variation on the interval [a, b~\. Then

<*f;8)i<SVbaf, (7)

where Vb
af denotes the variation of the function f in the interval [a, b].

Proof In fact, we have

[ "
Vx

ndxrb-h Vx
adx^\ Vxfdx^hVbJ. D

a+h Ja Jb-h

It is very essential that it is possible to have a converse of the inequality
(7) in the following sense.

Theorem 3.1 (Hardy, Littlewood, 1928). Ifco(f;8)1 = 0(3) then the function
f is equivalent to a function of bounded variation.

Proof. Let feL(a, b) and co(f; S)1 =g MS. Let us set c = (a + b)/2 and

1 f
- f(x + t)dt, xe[a,c]

- (x + t)dt, xe(c,b]
h \ - h

where he(0,(b — a)/2). Since feL(a,b) then for every xe[a,fc]\<2, where
2 c [a, b] is a set with Lebesgue measure zero, we have

(8)

For the variation of fh we have

l/i(x)|dx=-
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3.1 Moduli of continuity and smoothness in Cand Lp 45

Analogously

On the other hand

Since

we obtain

-A(c+ 0)

V

from the

= h

b f —
aJh ~

above

| = f(c + t)dt-
=0

f(c + t)-f(c +
0

V'af„+VhJh + |f

estimation

Vbfh ^ 3M

lim h ~

x -> c + 0

t — li) \ Q t

(c)-fh(c+

f°

^-(»(/; h

+0)1

+t)dt

(9)

On the set [a, fr]\2 the function / has bounded variation. In fact, if
x i < x2 < "' < XN are points from [a, £>]\Q it follows from (8) and (9) that

J V ^ l , V - 1

l imVb J h<3M. (10)

Let us set

f(x), xe{la,f]\Q}\{b} = A,

lim f(y),
y^x + O.yeA

lim
\—b-0,ysA

x = b.

We note, that from the fact that Q has measure zero and / has bounded
variation on A it follows that lim^^^+o {f(y):yeA} exists. It follows from (10)
that

VJ^ 3M.

Since J i s equivalent to / , the theorem is proved. •
Finally we shall consider the 27t-periodic case. For 27i-periodic functions

the modifications of the definitions of the moduli of continuity, moduli of
smoothness and Lp-moduli are evident.

The definition of the /cth modulus of smoothness is

cok(f;S) = cok(f;d)C[0,2n] = s u p {I A * / ( x ) | : \h\ < 5

For the Lp-moduli we have

|A*/(x)|'dx
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46 Some classical results in the linear theory

The properties of these moduli are the same as in the nonperiodic case, i.e.
properties (i)-(viii) remain valid.

Finally we give without proof the following property of col(f;8)p (see
Zygmund (1959) or Timan (I960)).

(ix) We have co1(f;d)p —• 0 if and only iffeLp(a,b).

3.2 Direct theorems: Jackson's theorem
Let / be a function belonging to some metric space X with a distance d. Let
the family {Gn}f, be given, where every Gn is an existence set in X and an
n-parameter set, n = l, . . . ,oo. The best approximation to / by means of
elements of Gn is given by

EGn(f)x = M{d(f,g):geGn}.

As a direct theorem in approximation theory we understand an equality
of the type

where <j>(f\ n) is a functional of / , depending only on the number n of
parameters of Gn.

A classical example of such a direct theorem is the famous Jackson theorem
for the best uniform approximation En(f) to a function feC[0 , In] by means
of trigonometric polynomials of nth order with respect to the uniform distance:

En(f) = En(f)C[0,2n] = inf {|| / - t ||C[0,2jt]: teTn}.

Theorem 3.2 (Jackson, 1911). Let /eC[0,27c]. For every natural number
n > 1 we have

where c is an absolute constant.

Remark. If/ is an even function then there exists an even teTn such that

If we compare (2) with (1), we see that here the functional 0 is the value of
the modulus of continuity of/ at the point d = n~l (multiplied by a constant).

The Jackson theorem has many generalizations. One of them is the
following.

Let En(f)p be the best Lp-trigonometrical approximation to / :

En(f)p = En(f)Lpi0t2n) = inf {|| / - t \\LP{0,2NY teTn}.

Theorem 3.3. Let feLp(0,2n). Let k ^ l be a natural number. There exists a
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3.2 Direct theorems: Jackson's theorem 47

constant c(k) depending only on k such that for every natural number n > 1 and
every number p, 1 < p < oo, we have

En(f)p^c{k)ah(f;n-% (3)

Let us mention that there exists an analog of (3) for 0 < p < 1 (see the notes
to Chapter 3).

We shall show somewhat later on that (2) as well as (3) result from the
following version of Jackson's theorem, which we shall call the natural
direct theorem of Jackson type.

Theorem 3.4. Let f be a In-periodic function with a derivative f'eLp(0,2n).
Then

(4)

where c is an absolute constant.

Remark. If / i s even, then there exists an even teTn such that

IIf-f ,11/'II
n

The proofs of (2) and (4) are very similar, but we prefer to derive (2) and
(3) from (4) by means of the classical method, using intermediate functions
which we shall also use later on.

Now there are many different proofs of (4), but we shall give here the
original proof of Jackson (1911).

Proof of theorem 3.4. Let us consider the following operator on the function

x + t)KH{t)dt9 (5)

where

Kit) ( / ) y
in (t/2) Jsin

is the so-called Jackson kernel.
The constant k~ l is chosen in such a way that

Kn(t)dt = l.

From this equality it is possible to obtain the exact value of kn, which is
A"1 = 3/{2nn(2n2 + 1)), see for example Natanson (1949), but this involves
some calculations. It will be sufficient for us to have an estimate for k„. In
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48 Some classical results in the linear theory

order to obtain this estimate let us remark that

t/n sj sin(f/2) < t/2 for 0 < t sj n. (6)

Since the kernel Kn is even, we have

253. (

We shall need two lemmas.

Lemma 3.1. We have

I tKn(t)dt^cn-\ (8)
Jo

where c is an absolute constant.

Proof Using the inequalities (6) and (7) we have

tKn(t)dt = X

0 e = 0 J kn/n

(fc+ l)n/n(l, _i_ 1 W / 1 \ 4

dt

6

n

= a l

where c is an absolute constant. •

Lemma 3.2. For every function feL(0,2n), 3n(f
>x) *s a trigonometrical

polynomial of order 2n — 2. Iff is even, then 3n(/;x) i s a l s o even.

Proof We have KneT2(n-i). Indeed, from the equalities

sin((2m +
1/2 + cos x + • • • + cos mx =

2 sin (x/2)

sin (x/2) + • • • + sin ((2n - l )x/2) = s i n

sisin (x/2)

it follows that

sin(nx/2)Y sin(nx/

sin(x/2)
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3.2 Direct theorems: Jackson's theorem 49

(since the square of a trigonometrical polynomial of order m is a trigono-
metrical polynomial of order 2m).

Since KneT2{n-u, 3 n also belongs to T2(n-U
 s m c e

n(x - t)dt

and K„(x — 0 is a trigonometric polynomial of order 2(n — 1) with respect to
x with coefficients functions (also trigonometric polynomials) of t.

The second part of the lemma is evident, since Kn is even. •
Now we continue the proof of theorem 3.4. Let us estimate || / — 3 „ / IIP-
Using $n_nK„(t)dt= 1 we obtain

3,(/;x) -f(x) = (f(x + t) -f(x))Kn(t)dt.
J — n

Hence, using the generalized Minkovski inequality

g(x, t) dt \g(',t)\\Pdt

(see for example Nikol'skij (1969)) and the fact that Kn(t) ^ 0, we obtain

I 3 „ / - / Ilp < T \f (- + 0 - f \LKn(t)dt. (9)

Iff'eLp(0,2n), we have, again using the generalized Minkovski inequality,

! / ( •
u)du <\t\\\f'\\P. (10)

Using (8) (lemma 3.1), (9) and (10) and the fact that Kn is even, we obtain

I 3 . / - / L< f \t\\\f'\\pKJLt)dt

I /'UP

Since (n_1) (lemma 3.2), (11) gives us

(U)

n

The remark after theorem 3.4 follows from (11) and the second part of
lemma 3.2.

In order to obtain the classical Jackson theorem (2) from (4) we shall use
intermediate approximation by means of the Steklov function.
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50 Some classical results in the linear theory

The Steklov function fh for /*EL(0, 2n) is given by

1 f*
fh(x) = 1 f(x + t)dt, h>0.

fh(

Using the generalized Minkovski inequality we have

i r*
\f-fk\\P = (f(x)-f(x + t))dt

since | | / - / ( • + 0 lip < co(/; A)p if 0 < t < /i.
On the other hand f'h exists almost everywhere and

f'hWp — h)-f(x))

From (4), (12) and (13) it follows that

(12)

(13)

Setting h = n 1 we obtain theorem 3.2. •
We shall also use the generalized Steklov function for /EL(0,2n) (see

G. Freud, V.A. Popov (1970)),

o Jo

(14)

Theorem 3.5. Let feLp(0,2n). Then

where the constant c(fe) depends only on k.

Proof. From the definition (14) using the generalized Minkovski inequality
we obtain

II A.*-/
JO JO

<o)k(f;h)p, s ince \(tl +

• +tk)/kf

if 0 s£ t{ ^ h, i = 1,...,k.
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3.2 Direct theorems: Jackson's theorem 51

For almost all xe[0,2n] we have for the sth derivative f(ks\ of fkh

hence

k

k-l

h

0 JO

k k-1

k-l
ks

+ (k-

(if geLp(0,2n) then

Il3(- + «)llp=ll9llp)

i.e. property (ii) with a constant c(fc) = (2fc)k.

Theorem3.6. Let feC[0,2n] have a derivative f'eLp(0,2n). Then

where c is an absolute constant.

Proof. L e t qeTn b e s u c h t h a t \ \ f ' - q \ \ p = E n ( f ' ) p . L e t

n

q(x) = a0 + YJ (ak c o s k* + bk sm kx) — flo + r(x)
k= 1

and let seTn be such that s' = r. Then we have, using theorem 3.4,

i7 i r \ T7 i r _\ ^ \ \ f ~ S' U p l l / ' ~ r L
= c-

•

(15)
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52 Some classical results in the linear theory

Let us now estimate \a0\. Since f'eLp(0,2n) is a derivative of the 27c-periodic
function / , we have

2TT

f'(x)dx = 0
o

and also obviously jlnr(x)dx = 0. Therefore

\f'{x) — r(x))dx = 0,
)o

'• J o ' V M ~ q(x) + a0)dx = 0, or 2na0 = — \20n{f\x) — q(x))dx.
Hence

2n\a0\ ^ ( 2 T C ) 1 " 1 / P | | / ' — q\\P = (2n)1-llpEn(f)p. (16)

Theorem 3.6 follows from (15) and (16). •

Corollary3.1. lff(k)eLp(O,2n),k^l, then

(k) II
^ I I )

p(

II f(k) I

where the constant c(k) depends only on k.

Proof. Using theorems 3.4 and 3.6 we obtain

f ( f'\ p ( f(k-l)\

i.e. (17) with a constant c(/c) = ck.
Finally we shall prove theorem 3.3 - the general case of the Jackson type

theorem.
Let feLp(0,2n) and fkh be the function from theorem 3.5 for / . Using

theorem 3.5 and (17) we have

mk[m''. ( 1 8 )M ) p ( W ( ) ^
n

Setting h = n~l in (18) we obtain theorem 3.3. D

Remark. Let us note that this method, using intermediate functions li
cannot give a good constant c or c(k). Since in the book we shall be interested
mainly in the order of approximation, we shall not give here good estimates
of the constants or their exact values (which are known only in a few cases).
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3.3 Converse theorems 53

3.3 Converse theorems
We have seen that estimation of the type

), (1)

where n is the number of the parameters of the elements of the approximating
family G„, and 0 is a functional depending only on / and n, is the so-called
direct theorem in the theory of approximation. For example in the estimation
(2) in section 3.2 we have (/>(/;n) = ca>(f',n~ l).

The so-called converse theorems are not of so simple a type as (1). Usually
it is not possible to estimate some functionals of / (of course important
functionals) only by EGn(f). The typical converse estimations are of the type

where F is a function of EGl(f),...,EG NJf).
In order to be explicit we shall present at once the classical converse

theorem of Bernstein in the form given by Salem (1940) and Stechkin (1951).

Theorem 3.7. LetfeLp(0,2%). Then for every natural number n,n^\,we have

c(k) n

^k(f;n-%^^ X (s+\)k-1Es(f)p, (2)
n s = 0

where the c o n s t a n t c(k) depends only on k,k^\.
Usually we have good direct and converse theorems that give characteriza-

tion of the order of the best approximation by means of some properties of
the function / . In this sense theorems 3.3 and 3.7 are some of the best: it is
easy to see that there results from them the following characterization of the
best trigonometric approximation of the function / in Lp by means of
Lp -moduli of smoothness of/.

Theorem 3.8. LetfsLp(0,2n). We have En(f)p = 0(n ~a) if and only ifojk(f; S)p =
k>a.

Proof Setting Es(f)p = 0(s"a) in (2) for k > a we obtain

^ ( / ; ) ^ X ^ ) ( ) ¥ ( )
n s = o n

which gives cok(f; 5)p = 0(Sa).
The converse follows directly from theorem 3.3. •
All converse theorems are connected with the differential properties of the

elements of the approximating family Gn. Usually the basic property is an
inequality of Bernstein type. We shall obtain here the classical Bernstein
inequality for trigonometrical polynomials.
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54 Some classical results in the linear theory

Let
a n

*«(x) = — + X (ak cos k* + bk sm kx) (3)

be a trigonometric polynomial of nth order. If we substitute

gifct , e " ik

, sin/cx =, sin/cx
2 2i

we obtain

" .. ak + ibk ak — \bktJix)= Z cke
kx, C(t = ^ — A c-k = -*—A k=\,...,n,co = ao/2.

k=-n I I

(4)

From the representation (4) it is evident that we can have at most In zeros
in [0,In) (or in (0,27i]) since (4) can be written as

In
ikxrll(x) = e 2̂  Ck-ne

k = 0

or

/c = 0

If zk, k = 1,..., 2w, are the zeros of tw(z), we see that

f„(z) = c„e
~iwzf2 n (eiz - eiZk) = c e ^ 1 " ' * f ] (eni(z~Z

fc=1 t=i

(5)

where A is a constant.
Now we shall obtain the interpolation formula of M. Riess, following

S.M. Nikol'skij (1969).
Let us set 6k = (2k — \)n/2n, k=1,...,2n. The points 9k9 k = 1, . . . ,2n, are

the zeros of the polynomial cos n6, so using (5) we have

2N 6 — 6
cos n6 = AY\2N6 sin k — A (6)

* 2
Hence

2« 2 2n sin ̂ (0 —

is a trigonometrical polynomial of a degree n, since we have

Qm(x) = const.! n s i n — ) ( sin
\ 2 / \

s i n ^
i n 2
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3.3 Converse theorems 55

We have, for the trigonometrical polynomial Qm{9),

0, k^m,

1, k = m

(that Qm(9m) = 1 it is possible to obtain directly letting 0->0m in (7)).
Consequently, for every trigonometric polynomial tneTn we have, for the

trigonometric polynomial t*eTn,

cos n9 | « e -0k
In \v> — T / I II COl - l»|t/l l ,

the interpolation conditions

tn(0k) = t*(6k), k=l,...,2n.

Since f„(0) — r*(0) h a s ze ros in the p o i n t s 0fc,fc=1,...,2n,by (5), (6) we h a v e
tn(0)~tf(0) = A cos n0> or

fB(0) = A cos n0 + t*(0).

So we obtain

Lemma 3.3. For every tneTn we have

X (-\)kcot—^tn(0k)- (8ft)X ( \ ) c o t t n ( 0 k ) -
in k=i £

It is possible to show that the constant A is equal to an in the representation
(3) (see NikoPskij (1969)). We shall not make use of this fact.

From (8) by differentiation and setting 0 = 0 we obtain

Since £MeTM is an arbitrary trigonometric polynomial of order n, (9) applied
to tn(9 + x) gives us the M. Riess interpolation formula

1 2n 1 2k — 1
t»W = ^ , ? / - 1 ) t + 1 s i n W 2 ) ^ + ^ e' = ^n-«> fc=1'-'2"-

(10)

Using this formula, it is easy to prove

Theorem 3.9 (Bernstein inequality). If'tneTnthenf

II ?n \\LP(0,2N) < n II ln ILp(0,2n)> Kp^CO-

t Again we set LJO, In) = C[0,2TC].
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56 Some classical results in the linear theory

Proof. If we set tn(x) = sin nx, from (10) we obtain, setting x = 0,

1 2n 1
n = 4n12nfc?lSin

2(rV2)

Taking Lp norms, 1 ^ />< oo, in (10), we obtain, using (11),

Corollary3.2. IftneTnthen

l lt < n || t ||
l n lip 5= " II l n lip

t ||l n l ip-

The Bernstein inequality is exact in the following sense.
For the trigonometric polynomial gn(x) = A sin (nx + a), where A and a are

constants, we have

Now we are ready to prove theorem 3.7. The method of the proof is typical
for obtaining estimations using Bernstein type inequalities (compare with
sections 3.4 and 3.5).

Let us estimate || Akhf\\p. Let QneTn be such that

| | / - Q X = En(f)p, n = 0 , l , . . . . (12)

For every natural number s, s ^ 1, we have

consequently (we set Ql/2 = Q0)

t
m = 0

Since Q2
- — Q2m-ieT2m it ensues from the property (vi) of mk and corollary

3.2 that (E m ( f ) p = E0(f)p):

cok(Qr - Qr-,) ^ hk || Qf2 - 6'!!-, lip ^ hk2mk || Qr - Q2~-t \\p

< hk2"*{ || Q2™ -/ ||p + II / - Q2.-. ||„} ^ 2hk2mkEr-,(f\.
04)

From (13) and (14) it follows that

t
m=0

2mk£2m-,(/)p. (15)
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3.4 Polynomial approximation in finite interval 57

Now let us set | / t | < l/n, n = 2s. Then (15) gives us

2
lip ^ Z fi2sUjp+ k

2
*/Ml <0kF ( f\ -| V ?mkF m-i( f)

/ li ^ Z fiUj+ L L -D2"' HJ Jp
m = O

n r =
since

The inequality (16) gives us theorem 3.7 for n = 2s:

r'(k) "

o > ( / ; « - 1 ) < E ( ' - + i r W
The transition to arbitrary n is standard. Let n be given. Choose s so that

2 s <ns=2 s + 1 . Then

c'(k) 2S

cok(f; n~%^ wk(f;2~\ ^ - ^ ^ (r + 11~'Er(f\
^ r = 0

7kr'(k~\ i r(k) "

3.4 Direct and converse theorems for algebraic polynomial
approximation in a finite interval

Let us consider now the problem of best approximation of functions defined
on a finite interval, say [—1,1], by means of algebraic polynomials. Here
the characterization of the best uniform or Lp-approximation by means of
the moduli of smoothness is not so fine as in the trigonometric case (see
theorem 3.8) because of the so-called 'end-effect' or 'Nikol'skij effect'.

S.M. Nikol'skij (1946) was the first to note that the algebraic approximation
at the ends of the interval is better than the approximation in the middle of
the interval. In other words it is possible to obtain good algebraic approxi-
mations, for functions which are 'not good', at the ends of the interval. Many
authors after Nikol'skij have worked on this effect, see the books of Dzjadik
(1977), Timan (1960).

It is easy to obtain an analog of theorem 3.2 for algebraic uniform
approximation En(f) on [— 1,1]:

En(f) = inf {||/ - p | | C [ - i , i
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58 Some classical results in the linear theory

The following theorem holds.

Theorem 3.10. Let f e C \ _ - 1 , 1]. Then

where c is an absolute constant.

Proof. For the function g(t) =/(cos t) we have geC[0, 2 N \ g even. From the
remark after theorem 3.2 it follows that there exists an even trigonometric
polynomial tneTn such that

\\g-tn\\C[o,2n] < cco{g\n~l)cl0,2nv (1)

c an absolute constant. Then qn(x) = tn{arccosx)ePn and

II / - In II C[- 1,1] = II 9 ~ h llC[0,2*] < «<%; « " l)c[0,2«] < C(O(f\n~%_ M ]

since

= sup {| flf(0 - 0(0 1: 11 - f | < 5}

= sup{|#(arccosx) — #(arccos x')|:|arccosx — arccosx'| ^ 8 }

(| x — x' | = | cos (arccos x) — cos (arccos x') | < | arccos x — arccos x' | < <5). •

But unfortunately it is not possible to obtain a direct analog of the
Bernstein theorem 3.7. The reasons for this are that the analogs of the
Bernstein inequality (theorem 3.9) are the following.

Theorem 3.11 (Bernstein). Let pePn. Then for xe[— 1,1] we have

Theorem 3.12 (Markov). Let pePn. Then

These theorems are exact. Theorem 3.12 shows that we have an estimation
with n2 instead of n. So we cannot have an analog of the same type as theorem
3.7. Theorem 3.11 shows that we may have success if we work 'pointwise'.
In fact this is the way to obtain a characterization of Lipschitz classes with
the weighted uniform algebraic approximation on [—1,1] (see the book by
Dzjadik (1977)).

Here we shall present another characterization of En(f) given by K. Ivanov
(1983a), which seems to be better than the others. We shall consider the case
fc = 1. For k > 1 and En(f)p, 1 < p < oo, see the notes to this chapter.
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3.4 Polynomial approximation in finite interval 59

First let us give our notations. We set

Am(x) = - V ( l - x 2 ) + -*T,
m m

?i(/;AJC[-i,i] = Ti(/;Aj

= sup{\f(x)-f(y)\:x,ye[-l,ll\x-y\^Am(x)}.

Theorem 3.13. Let feC[-1,1]. Then

£J/)c[-i.i] = 0(T1(/;AJC[_lil]).

In the proof we shall use lemmas 3.1, 3.2 and the following.

Lemma 3.4. Let \ h \ < n/4m. Then

] cos y - cos (y + h) | ̂  Am(cos y).

Proof. We have

| cos y — cos (y + /z) | = 2 sin
. I'll . , h

sin y + -

Proof of theorem 3.13. We shall use the Jackson operator from section 3.2.
Let us set

y) = g (y + t)Kn(t)dt = P f(cos(y + t))Kn(t)dt,

Since 3nG^2n-2 a n d Jn
 *s even (# >s an even function, see lemma 3.2),

n (arccos x) = Q„(x) will be an algebraical polynomial of degree 2n — 2 =
([m/2] + l ) - 2 < m , i.e. S„eF„.
Let us now estimate \f(x) — Q„(x) \ .We have, setting y = arccos x, xe[— 1,1],

(2)
J — 71

Let us set

h(t) =-sign ?,r(t)f s i g n , ̂  = [ 1 .4m L n J
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60 Some classical results in the linear theory

Then we have from (2), using lemma 3.4 and lemma 3.1,

\ f (cos (y + r(t)h(t))-f (cos (y + 0)1

X \f(cos(y + (i - l)h)) -f(cos(y + ih))\ \Kn{t)dt

= O(T1(/;AJ),
J-n\ t /

since, by lemma 3.4,

c o s (.y + ih) - c o s ( y + (i - l)ft)l<Am(cos(y + (i- l)/z))

and therefore

| cos (y + r(r)/i(0) - cos (y + t)\ ^ &Jcos

|/(cos(y + KOM*)))-/(cos(y + t))|<T

On the other hand lemma 3.1 gives us

Consequently

EJLf)< sup \ F ( X ) - Q N ( X ) \ = 0 ( 1 , ( 7 ; A J ) . D
XG[-1,1]

Corollary 3.3. We have

In fact one can easily see that for/(x) = >
/(l — x2) we have T1(/;AOT) =

Otm"1).
This corollary shows that while the function / may be bad at the ends of

[— 1,1] (the derivative of y/(l — x2) goes to ± oo as x-> + 1), nevertheless
the best uniform algebraic approximation may be good. The same effect exists
also for rational approximation (see section 5.5).

In order to prove the converse theorem we shall need some lemmas. Let
us first prove the Bernstein inequality for algebraic polynomials (theorem
3.11) and Markov inequality (theorem 3.12).

Proof of theorem 3.11. Let pePn. Then for q(t) = p(cost) we have qeTn.
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3.4 Polynomial approximation in finite interval 61

Therefore the Bernstein inequality for trigonometrical polynomials (theorem
3.9) gives us

But q'(i) = p'(cost)sint. Setting t = arccos x, we obtain from (3), since

lltfllc[o,2ic]= IIPllc[-i,i]> sin arccos x = 7 0 - cos2 arccos x) = j ( \ - x2),

Proof of theorem 3.12. Let xk = cos((2k— \ )N/2N\ k = 1,...,n, be the zeros of
the Chebyshev polynomial T„(x) = cos (n arccos x). For every algebraic poly-
nomial peP n - 1 we have this Lagrange interpolation formula

i = 1 n x — Xj

since we have

j 1, i = j .

The first case (i #j) is evident since Tn(Xj) = 0. In order to prove the second
case, first we remark that

Ux)
X X;

= (cos (n arccos x)Yx=x. = —r- n =- sin (n arccos x,)

V'' X>
n . 2i — l ._! n

sinra——7r = (—1)- xf) In 7(1 - x?)

therefore

(-i)'-y(i-xf)/rn(x)

Now let pePn-i and xe[—1,1]. There are two cases: (a)
cos(7i/2n), (b) x1 < \x\ < 1. In the first case we have

therefore

|p(x)| < nV(l - x2)|p(x)| ̂  n \\ V(l - x2)p(x) ||C[_ l f l ] . (5)

In the second case, since — 1 ^ x < xn or x1 < x < 1, all members x — x£,
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62 Some classical results in the linear theory

i = 1,..., ft, have the same sign, therefore from (4) we obtain

Lx)
\pixt) X-X:

Ux)

^ Ux)

since all Tn(x)/(x — xt) have the same sign.
Let us now estimate | £ ? = i Tn(x)/(x - xt)\. We have

n()i
j = 1 X X;

therefore we must estimate || T"J,

n x =

|| J, | | C [ _ l t l ] . We have

n sin (n arccos x) n sin «0

~ x )
= arccos x.

Since |sinn(?/sin0| ^ n for | 0 |< 7t, we obtain that

and from (6) we obtain that

Now the inequalities (5) and (8) give us

Lemma 3.5. Let pePn_1. Then

We return to the proof of Markov's inequality.

The Bernstein inequality (theorem 3.11) gives us, for every pePn,

|| ̂ ( l - X2)P'{X) Hd- i .u ^ U || P(X) | |C[- ! , ! ] .

Lemma 3.5, applied to p\ and (9) give us

Lemma 3.6. Let pePn. Then

(6)

(7)

(8)

(9)

D

Proof. This inequality follows immediately from the Bernstein inequality
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3.4 Polynomial approximation in finite interval

and the Markov inequality

Lemma 3 J. We have

xx{f + Q\AJ < T I ( / ; A J + x,(g; AJ.

The lemma follows directly from the definition of x^f; Am).

Lemma 3.8. Let x, x + fe[ - 1,l ] , 1| \ ^ Am(x). T/zen

63

•

Proo/. We set

Then HOc[-i,i] < i a nd

Am(x),
3m"2,

for every ye[— 1,1]. We have

- i A J x ) ^ il/m(x + r).

Hence from (10) we obtain

Lemma3.9. Letf'eLJ_- 1,1]. T/zen

D

Proo/. Let x, x + /ie[— 1,1] and |ft|< Am(x). Using lemma 3.8 we obtain

fc)-/(x) =

since, by lemma 3.8,

ft)
Kit)

| Am/' |
dt

Am(t) x m
Am(x) Am(x) n

Now we are ready to prove the converse theorem for the best uniform
algebraic approximations.
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64 Some classical results in the linear theory

Theorem 3.14. Let / eC[— 1,1]. Then for every natural number m we have

100 m

Proof. Let gvePv be such that

Let m be given. We set n = [In m/ln 2], then 2" ̂  m ^ 2"+x. Using lemma 3.7
we have

From lemma 3.7 we also obtain

Ti ( / -«2»;AJ<2 | | / -9 2 „ | | C I _ l i l ] = 2£2w(/)<- I £s(/). (12)

From now on to the end of the section we shall write || • || instead of

' l i c [ - i , i ] -

From lemma 3.9 we obtain

q\ || J.xte2n, AJ < 61| Amq'2n || < 6J E II AJ^v - ^2 ,- ,) || + || Amq\ || J. (13)

Since qx — q^eP^, lemma 3.6 give us

I! Kq'i II = II AJ^'i ~ <?'o) K ^ II A,(«', - q'o) ||

^ ^ l k i - « o K 2 m - 1 ( l k 1 - / l l + ll/-<?oll) = 4m-1£o( / ) . (14)

Since for v ^ n we have

m ( ) ( v ( ) )
m\ mj m

and q2v — q2v- i eP2v, lemma 3.6 gives us

II Am(42v - q'2*-i) || ^ Tm ~ l \\ A2iq'r - 9 2 - i ) ||

^ 2 ^ 1 m - 1 | | g 2 v - g 2 v - 1 | | ^ 2 ^ 2 m - 1 £ 2 v - 1 ( / ) . (15)

From (13)—(15) it follows that

6 / \ 96
- 12£0(/)+16£ X £S(/)U-Z£S(/). (16)
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3.5 K-functional of J. Peetre 65

From (11), (12) and (16) we obtain the statement of the theorem. •

Corollary 3.4. We have xx(f\ A J = 0(m~a), 0 < a < 1, if and only if Em(f) =
0(m~a).

This corollary follows immediately from theorems 3.13 and 3.14 for, if
Em(f) = 0(m"a), 0 < a < 1, it follows from theorem 3.14 that

Corollary 3.4 gives us a characterization of the best uniform algebraic
approximation Em(f) by means of the modulus X x (f\ A J for all orders O(m ~"a),
0 < a < l .

It is possible to characterize all orders 0(m~a), a > 0, using moduli rk(f; A J
(see K. Ivanov (1983a)) and also the best algebraic approximation in Lp (see
K. Ivanov (1983b)). We shall not present here the corresponding results, since
our intention is only to show the 'Nikol'skij effect', which is evident from
theorems 3.13 and 3.14.

3.5 Direct and converse theorems and the
jfif-functional of J. Peetre

A basic problem in the theory of approximation is to find direct and
converse theorems for approximation by polynomials, rational functions,
splines, etc. In our opinion the most natural way to obtain such theorems is
to prove pairs of adjusted inequalities of Jackson and Bernstein type and
then to characterize the approximation considered by the K-functional of
J. Peetre generated by the appropriate spaces.

Let X0,X1 be two normed (or quasinormed) linear spaces and Xx cX0.
We shall denote by || • \\X i, i = 0,1, the quasinorms in Xh i = 0,l (we say that
||•||x isaquasinormin X if ||/\\ x ^ 0 - we suppose that it is possible | | / \ \ x = 0
for / # 0 - a n d \\f+g\\x^c(\\f\\x+\\g\\x) for feX, geX, c a constant,

For each fsX0 we set

= K ( f t ; X 0 , X 1 ) = i n f { \ \ f 0 \ \ X o + t\\f, | | X l } .

This functional was introduced by J. Peetre (1963) and is called the
X-functional. The K-functional plays an essential role in many domains of
the analysis, for example in the theory of interpolation spaces. This functional
is also very useful in the theory of approximation. The X-functional provides
an alternative way to characterize the 'smoothness' of the functions in place
of the moduli of continuity and smoothness considered in the previous
sections.
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66 Some classical results in the linear theory

First we shall show that, if X0 = LP[09 2TZ], X1 = Wk
p = {/:||/(k)||P< oo},

the X-functional is equivalent to the /cth Lp-modulus of smoothness,
U p < o o . W e s e t | | / | | X o = | | / | | p , | | / | | X l = 11/11^=11/^llp.ll/ l l^isaquasi-
norm in Wk

p.

Theorem 3.15. Let /eLp(0,27t), 1 </?< oo. Then there exist constants c{(k)
and c2(/c), depending only on k, such that

ctfyoAf; t)p s= K(f, tk- L „ W
k
p) ^ c2(k)ojk(f; t)p.

Proof. We shall use the generalized Steklov function fkh from section 3.1.
Using theorem 3.5 we obtain

Setting h = t we obtain the right hand side of the inequality

K(f, tk;Lp, Wk
p) < (l + c(k))wk(f; t)p.

In order to prove the left hand side of the inequality, let fl e Wk
p be chosen

arbitrarily. Using properties (ii) and (vi) of o)k, we have

o>k(f; Op ^ (ok(f - / i , t)p + a,k(fl; t)p

Since fx e Wk
p is arbitrary, we get from here

(ok(f;t)p^2kK(fjk;Lp,W
k
p). Q

Let {G„}f be a family of subsets of X0 and let each Gn be an existence set in
X0 (see section 1.1). We shall call {G„};° a normal approximating family if
G„c=Gn+1 and Gn ± G„_t c G2„, i.e. for each gYeGn, g1eGn_l we have
0i±02eG2n. Note that the most important approximating families, as
algebraic and trigonometric polynomials, rational functions, spline functions,
are normal approximating families.

The best approximation to feX0 by means of elements of Gn we shall
denote by En(f)Xo:

En(f)Xo = mf{\\f-g\\Xo:geGn}.

We shall say that the quasinorm ||•\\x satisfies the a-condition, 0 < a ̂  1,
if for each /,geX we have

\\f + g\\x<\\f\\x + \\g\\x- (i)

The following theorem gives direct and converse theorems in terms of the
iC-functional.
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3.5 X-functional of J. Peetre 67

Theorem 3.16. Let X0,XX, Xx czX 0 , be two quasinormed linear spaces with
quasinorms \\m\\Xi, / = 0,1. Let the quasinorm \\m\\Xl satisfy the o-condition,
0 < a =$ 1. Let {Gn}f, Gncz X l9n= 1,2,...,bea normal approximation family.
Suppose that one of the following inequalities holds.

(i) Jackson type inequality: iffeX1, then

Wk^c^i, (2)

where c is constant independent of n and f, a > 0 is a fixed number.
(ii) Bernstein type inequality: if (peGn then

^cn*\\<p\\Xo, (3)

where c is a constant independent of n andf.

Then, for every feX0 and n = 1,2,..., we have, in case (i),

£.(/)*„ <<*(/,«-«;*,,,*!), (4)

and, in case (ii),

K(f,n-';X0,X1)<cn-'hf\\'Xo+ £ -^EJif)xfY, (5)
(. v = l V J

where c is a constant independent of n andf.

Proof We shall prove first that (2) implies (4). Le t / =f0 + f t , f0EX0J1 eX1.
Then by (2) we getf

Hence

i.e. the estimate (4) holds.
Now we shall prove that (3) implies (5). Choose (p2>eG2» such that

(let us remember that Gn is an existence set in X0).
Hencef

II <Pr ~ <P2--A\x0 < co( II / - 4VI Ixo + 11/ - <Pr-l \\x0) < 2c0E2,-if)Xo. (6)

Similarly as in the proof of theorem 3.7 using (1), and (3) and (6) we get
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68 Some classical results in the linear theory

for every m > 0

l/of

E24f)Xo + c

m 2v 1x z
2m | ) 1/ff

This estimate implies (5) because of monotony of the X-functional. •

Corollary 3.5. Let the conditions of theorem 3.16 be fulfilled and letfeX0.
Then En(f)Xo = 0(n'y), 0 < y < a, if and only if

Corollary 3.5 is a special case of

Corollary 3.6. Let the conditions of theorem 3.16 be fulfilled. Let co(S) be a
nonnegative and nondecreasing function on [0, oo), such that OJ(23) < 2^w(S)for
5^0, j8 > 0. Then we have

if and only if

Proof of corollary 3.6. If

then by (4) we obtain

EH(f)x

Now let En(f)Xo = O(n~yco(ft_1)). First we shall prove that

c4mS)^(2mf<45), <5StO, m ^ l . (7)

Indeed, since co(2S) < 2POJ(3\ then w(T8) sc 2v/*a)(<5) for 5 ^ 0, v =s 0. Suppose

f S i n c e (p2v— i ? 2 v " ' G ^ ' 2 v " 1 -
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3.5 K-functionalofJ. Peetre 69

that 2 V * ^ m < 2V. Then from the last inequality we get

co(mS) ^ (D{2VS) < 2v"co(<5) ^ (2mfco{5)

as required.
The inequality (7) implies immediately that

w(XS) ^ (2(1 + l)Yco(3l< 3,1^0. (8)

Now we estimate K(f,n'";X0, XJ using (5), (8) and the fact that /? + y < a.
We get

v = l V

a
Let us mention finally that theorem 3.16 can be considered as an abstract

generalization of theorems 3.3 and 3.7 because of theorem 3.15 and the fact
that we have Jackson type and Bernstein type inequalities for the trigono-
metrical polynomials.

Theorem 3.16 can be used successfully in more general situations than that
considered, but for orders of approximation not better than 0(n~a).

Consider the following approximation spaces:

when 0 < q< oo, and

Al(X0)={feX0:\\f\\AUXo)=Il/ll*„ + supn*EJLf)Xo<oo}.
n

As usually we shall denote by (X0, Xx )0 q the real interpolation space between
X0 and Xx:
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70 Some classical results in the linear theory

when 0 < q < oo, and

(see J. Peetre (1963), J. Bergh, J. Lofstrom (1976)).

Corollary 3.7. Under the assumptions (i) and (ii) of theorem 3.16 we have

Ay
q(X0) = (X 0, X1)y/aq

with equivalent quasi-norms provided 0 < y < a and 0 < q =g oo.

Proof. It is readily seen that the inequality (4) from Theorem 3.16 implies
the estimate

In order to prove an estimate in the opposite direction we shall use the
inverse estimate (5) and the following discrete variant of Hardy's inequality
(4) in section 7.1.

Lemma 3.10. If0 < p < cc, j? > 0 and ak ^ 0, k = 1,2,..., then

v = 0 \ fc=0

Proof Let 1 ^ p < oo and set a = j8/2. Then applying Holder's inequality we
get

v=0\ fc=O / v=0 \

2"*"'

Now consider the case 0 < p < 1. Then using inequality (3) in section 7.1
and changing the order of summation we get

00 00

k=0 v=f
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3.6 Notes 71

Now we continue the proof of corollary 3.7. Inequality (5) in theorem 3.16
as we know from the proof of the same theorem is equivalent to the inequality

(9)

On the other hand, it is easily seen that

^(/'^^o^^YY'j- (io)
Combining (9) and (10) and using lemma 3.9 we obtain

r / oo y / q

\\f\\{XX) SC\\\f\\Xo+\\f\\Xo\ X 2~mi<t-y)q)

9 - m(ct - y)<j I V^

- \ L
m=0 \v=0

1/9

Remark. We observe that if \\g\\Xl = 0 for each geGl then the term | | / | |X o

can be omitted in estimate (5) in theorem 3.16 and as consequence corollary
3.7 holds without ||/||Xo in the definitions of spaces Ay

q(X0) and (X0 ,X1)d q .

3.6 Notes
The classical works on direct and converse theorems in the theory of
approximation are the works of D. Jackson (1911), Ch.de la Vallee-Poussin
(1910), S.N. Bernstein (1912). The second modulus of continuity or modulus
of smoothness co2(f'9S) was introduced by A. Zygmund (1945). Zygmund
obtained by means of co2 characterization of the class

As we have mentioned, the converse theorem 3.7 of Bernstein type was
given in this form by Salem (1940) and Stechkin (1951).

For the generalizations to cok(f; S), k>2, and Lp, p < oo, see Quade (1937),
A.F. Timan and M.F. Timan (1950), S.B. Stechkin (1951), M.F. Timan (1958).

For Jackson and Bernstein type theorems for best approximations in the
spaces Lp, 0<p<1, see E.A. Storozenko, V.G. Krotov, P. Osvald (1975),
V.A. Ivanov (1975), E.A. Storozenko (1975, 1977, 1980), V.G. Krotov (1982).

The problem of characterization of the functions on the finite interval by
means of their best polynomial approximations has a long history. We cannot
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72 Some classical results in the linear theory

give here this history and all authors who have been working in this domain.
We want only to mention the works of A.F. Timan (1951), V.K. Dzjadik
(1956,1958), Yu.A. Brudnyi (1963,1970), V.P. Motornii (1971), A.L. Fuksman
(1965), M.K. Potapov (1975, 1977, 1981, 1983), A.S. Dgafarov (1977),
R.L. Stens (1977), R.L. Stens, M. Wehrens (1979), P.L. Butzer, R.L. Stens, M.
Wehrens (1980). Between the different characterizations we prefer the
characterizations given by K. Ivanov (1983a, b) and Z. Ditzian, V. Totik (1987).

For direct and converse theorems for best trigonometric approximation
using fractional derivatives and fractional moduli see P.L. Butzer, R.L. Stens
(1976), P.L. Butzer, H. Dyckhoff, E. Gorlich, R.L. Stens (1977).

For more details concerning the classical direct and converse theorems for
trigonometric polynomial approximation see the books of LP. Natanson
(1949), G.G. Lorentz (1966), V.K. Dzjadik (1977), A.F. Timan (1960), V.M.
Tihomirov (1976).

The X-functional was introduced by J. Peetre (1963, 1968). The X-func-
tional has many applications in the theory of interpolation spaces, in
approximation theory and in other domains; see the books of J. Bergh,
J. Lofstrom (1976), H. Triebel (1978), P.L. Butzer, H. Berens (1967), J. Peetre
(1976).

The role of Jackson and Bernstein type inequalities in linear approximation
is well known, see P. Butzer, K. Scherer (1968). For the case of nonlinear
approximation compare with J. Peetre, G. Sparr (1972) and J. Bergh, J.
Peetre (1974).
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Approximation of some important
functions

The development of the theory of rational approximation has a point of
discontinuity, a jump in 1964, when D.J. Newman proved that the best
uniform approximation of the function |x| in the interval [—1,1] by means
of rational function of nth order has order 0(e~Cv/"). Let us remember that the
order of the best uniform polynomial approximation En(\x\)C[-ltl] is o n l

0(n_1) (S.N. Bernstein (1952); see also G.G. Lorentz (1966)).
In this chapter we shall consider the best uniform rational approximation

of some special, but very important, functions. We begin in section 4.1 with
Newman's result. After this in section 4.2 we give the exact asymptotics of
the best uniform rational approximation of |x| in [—1,1] (Vjacheslavov,
1975). In section 4.3 we give some of the few examples where it is possible
to write exactly the rational function of best uniform approximation. It is
interesting that this was done more than 100 years ago (E.I. Zolotarjov, 1877).
In section 4.4 we give the solution of the Meinardus conjecture for best
uniform rational approximation to e* in the interval [—1,1], obtained by
D. Braess (1984). We end the chapter with some remarks connected with
rational approximation of e_x on [0, oo) (section 4.5) and notes (section 4.6).

In this chapter we shall use the notations

RJif) = Uf)c{aM = inf {II / - r ||C[fl>fc];reRn = Rm}.

4.1 Newman's theorem

Theorem 4.1. The following estimate holds:

e-">+ 1></? ) 1( |x |)C [_ l i l ]<3e->, n>5. (1)

Remark. The rational approximation of |x| on [—1,1] is equivalent to the
rational approximation of ^jx on [0,1]. More precisely if the rational function
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74 Approximation of some important functions

sneRn is the best uniform approximation to yjx in [0,1] of order n and
r2neR2n the best uniform approximation to |x| in [—1,1] of order In, then
sn(x

2) = r2n(x). Consequently Rn(jx)C[0A] = R2n(\x\)C[_ u l ] .
In the proof of theorem 4.1 we shall use the following lemma.

Lemma 4.1. Let

k=l

Then for xe[e, 1] we have

p(-x)

p(x)
<exp

2(el/n _ •s)n
(2)

Proof. Let xe[£i + \
£ f ] , 0 < i < n - 1. Since the function {a - x)/(a + x\ a > 0,

is monotone decreasing, then

p{-x) _ Y n - 1 Y _= n
Thus for XE[S, 1] we have

i Ek Ei + 1 n - 1 t ^ k n - 1 | ^ kn ^ ^ n 1 —£ k " i_
p k , p i + 1 1 1 1 , s k = , 1 1

k = 1 C + 1 k = > + 1 1 1 , fc = 1 1 + ?"

p(x)
(3)

For r ^O we have (1 — 1)/(\ + t )<e 2t. Using this inequality and (3), we
get for xe[e, 1]

p(x)

^ exp < -
2(e1/n-e)n

where we have used the inequality

•
Proof of the upper bound in theorem 4.1. Let us consider the rational function

P(x) -P(~x)

where

p(x) =

r(x) = x

<f), £ = e1/n, e = e-v'», n ^ 5.

Clearly reK„. Since 2(e
1/" - e) = 2(e"W n - e"-") > 1 for n > 5, then by (2)
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4.1 Newman's theorem 75

we get
p(-x)

p(x)
> forxe[e > l], n^5. (4)

Since | x | and r(x) are even functions in the interval [ — 1,1], we can consider
only the case xe[0,l]. If xe[0,e">/n] = [0,£n], then p ( -x )>0 and
x ^ r(x) > 0. Consequently for xe[0,e ^"] we have

||x| - r(x)| = x - r(x) s$ x sj e~A

If xe[e"Vn, 1], then by (4) we get for n ̂  5

p(-x)

p(x) + p( -x

2e-V«

2x\p(-x)/p(x)\ ^ 2\p(-x)/p(x)\

<3e -Jn

which gives us the upper bound in theorem 4.1.
To prove the lower bound we shall need some lemmas.

Lemma 4.2. If pePn, n ̂  0, then there exists a polynomial qePn such that

1 for x ^ 0.

Proof. Let £ = u + if be any complex number and t > 0. Then
/(t-|u|)2 + v

p(-x)

p(x) q(x)
q(-x)

q(x)

(f - u)2 + v2

t —

t +

u

u
(5)

If p(x) = A YIU i (* - £,), then we set q(x) = A n?= i (* + I Re £, I). By (5) we
get for x > 0

p(-x)

p(x)

n (x+zd
> u{x~

i=i(x +

Re£,.|)

Re£-|)

g(-x)

<?(x)

On the other hand obviously

\q(-x)/q(x)\^l forx^O. D

Lemma 4.3. Let reRn and let r be an even function. Then there exists qePn + 1

such that
\l(-x)

q(x)
for x > 0.
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76 Approximation of some important functions

Proof. Since reRn is an even rational function, there exist two algebraic
polynomials Pi<EP[n/2] and p2eP[n/2] such that r(x) = p1(x2)/p2(x

2). Denote

F = {x: x 3s 0, r(x) > 0}, E = [0, oo)\F.

If xeF then

XP2(x
2)-Pl(*2)

x — r(x) \ = x (xxp2(x
2)

We set p(x) = xp2(x
2) + px(x

2). Then pePn + 1. By (6) we have for xeF

|x-r(x)|>x|p(-x)/p(x)|.

Now by lemma 4.2 there exists qePn + l such that for x ^ 0 we have

(6)

p(-x)

p{x) >
<?(-x)

q(x)
and

<?(-x)

4(x)

Then we have for xeF

x — r(x) | > x
q{-x)

q(x)

and clearly for XEE

x-r(x)\>x^x\q(-x)/q(x)\.

Lemma 4.4. Let qePn,n^ 1 and q ̂  O. Then there exists a point xe[e ">/", 1]
vv/iere

Proo/ Let £ = u + if be any complex number and 0 < a < b. Then

"b

In

Indeed we have by (5) for t ^ 0

dt %2

7>-y

t-\u\

(7)

t+ M

We may assume that u # 0. Then

In
t

1 t
In

t \n\
I \U\

t+\u\

-\u\ dt b/\

In
a/\u\

t - \

t + 1
d t > | In

t-l

t + 1

dr

= 2 ln^ = - — .
Jo 1+tt 2

The last integral can be calculated by using the Taylor series for the

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781107340756.005
Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.005
https://www.cambridge.org/core


4.1 Newman's theorem

logarithmic function and the fact that

£ 1 n2

77

Next put d = exp { — n^Jn] and assume that

k(-*)|
q(x)

Then

In
Qi-t)

q(t)

dt l d i
i t

= — n2n.

On the other hand one has

In
q(t)

= \n t + £ ln
t-Z

where £ runs through the zeros of q. Noting that

'Mnt

t
dt = - n2n2

and applying (7) to each term in the sum we get

In
q(t)

dt int
In t + Z

t-Z

(8)

— > - n2n/2 - 7t2n/2 •n2n.

The comparison of this inequality with (8) proves lemma 4.4. •
Proof of the lower bound in theorem 4.1. Let reRn be the rational function
of order n of best uniform approximation to |x| in [— 1,1], i.e.

Since | x | is an even function, r(x) and r( — x) are rational functions of order
n of best uniform approximation to |x| in [— 1,1] and by the uniqueness of
the best rational uniform approximation (theorem 2.2) it follows that r(x) =
r( — x), i.e. r is also an even function.

By lemma 4.3 there exists qePn+1, g#0, such that

|x-r(x)|
q(-x)

q(x)
for x ^ 0.

Now by lemma 4.4 it follows that there exists x0e[exp( — n^J{n + 1)), 1]
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78

such that

Consequently

Approximation of some important functions

k(-*o)

q(x0)

> e D

4.2 The exact order of the best uniform approximation to \ x \
In this paragraph we shall give the following results of N.S. Vjacheslavov
(1975).

Theorem 4.2. The following estimates hold:

where cx and c2 are absolute constants.
Instead of the inequalities of the type (1) we shall write also

Using the remark after theorem 4.1 we obtain from (1) the following.

Corollary 4.1. We have

The lower bound in (1) we have by theorem 4.1.
To obtain the upper bound in (1) we shall use some lemmas.

Lemma 4.5. Let £ = e_a, 0 < a < 1/2, and \i ^ (1/a)In(1//?), 0 < ) s= 1/2, n an
integer. Then

Proof. For | x \ < 1 we have

1 - x
In

1 T" A
x)= -2

- i 2s — 1

and therefore

<expj-2 - l )
= exp{A1+A2}2},
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4.2 Best uniform approximation to | x| 79

where

(2 s -l)a
( 2 s - 1 )

a M f(2s-l)a] f (2s-l)a]
exp| 2

2 ^ (2s - I)2

f(2s-l)a] f (2s - l )a
> e x p ^2 J r [ 2

We shall estimate Ax and X2 using the following inequalities:

- Y ^—=-<0.43, 0 < a < l / 2 , (2)

l — 0.06x2 < (p(x) < \, 0 < x < 4, (3)

where

Indeed

y 1

On the

where we

we have for

1

+ 1 (2 s - l ) 2 "

other hand

<p(x

set

0 < a

-\"

2

m(x\ —
(P\X)

^ 1 / 2

dt

] ( 2 t -

y ]

= o (2k -

X

e*/2_e-*/2-

1
l)2 a(4[l/a] —1

X

/xVk+1 j

) 4 [ l / a ] - l

1

+ y'

oo Y2k_2
2 V̂

Then for 0 < x < 4 we have

Since (1 + y)~1 > (1 - y) for y > 0,

(x) > 1 - y > 1 - 0.06x2.

Thus (2) and (3) are proved.
Now we shall estimate A1 using (3) with x = (2s—l)a, the
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80 Approximation of some important functions

equality Z ^ j (2s - l)"2 = TT2/8 and (2). We get

-r-0.06-2[l/a]a2

a s ^ ( 2 s - l ) 2

^ y

< _ + - + 0.43 + 0.24 = - — - + 0.67.
4 a 4 a

It remains to estimate A2. Since n^(\/a.

£" = exp { - //a} < exp { - In (1/J8)} = 0 ̂  1/2.

Moreover q>((2s — l)a) < 1. Then we obtain

9 2[l/

a M (2s - l)2

2

' oc

2

' a M (25 - I)2

,e/i(2s-l)

Using the estimates given above for /4t and X2 we get

ri i /2

f 7 T 2 1 /

exp j - T - +2.1^+? 0.67

4 a-+ a

Next we shall assume that n > 2n0 where n0 is a sufficiently large number.
Let us denote

m = | —
71

, rar < v < n — 1,
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4.2 Best uniform approximation to |x 81

l l n - L
4V A,

Note that ^ 4 O ^ ^ 4 1 < ^ 4 2 ^ ' " -
We shall denote by c absolute positive constants.

Lemma 4.6. The following inequalities hold true:

y/n-c, (4)

(5)

where

where

where

ProofE

mr

I s

Osa*

<n-V

u
: m — 2;

S /(v), mr «

Evidently

2.1 \
ei+1j

: v < n

! 1

H 1-A

-n0.

n2

2Av+l

n2

4A2mr

cAv), (6)

7(l-x)^l-|x-|x2 for|xKl. (7)

We have for 1 < k < s

V V V l ) . (8)

Indeed

1 1 1
+ ) + V(s - l/2) + V(•+ - s-V2) + V(5 - 3/2)

- 1/2)-V(s-3/2))+ ... +2(V(/c + 1/2)-J(k- 1/2))

The lower bound in (8) can be proved similarly.
By (8) we get

l(J-+ ' +...+-J-

where 0 < v < n — 1.

2V(n-v-l) )>7rVn-c, (9)
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82 Approximation of some important functions

Now we prove (4). We have

m — 2—l-
2 y

nlJn
> —y— (m — c) > nm — c.

2 V"
On the other hand by (7) and (8) we get

< -—7- + c < nm + c.

Consequently

(10)

Then using (9) and (10) we obtain for mr ^ v < n — 1

n( 1 1 1
• + -

— C> 7r^« — C.

The inequality (4) is proved.
We shall prove (5) using (7). We have for 1 ^ i=% m — 2

7i2 2.1 \ 1 7i2 (n2 2.1

ei + 1
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4.2 Best uniform approximation to | x \

Jn K^nfA mr

83

— c>njn + lnn,

where n > 2n0, n0 sufficiently large. Thus (5) is proved.
It remains to prove (6). Using (7), (8) we obtain for 0 < k sg /(v),

n-n0,

v + k

1 1
y/{n-v-k)

n( 7(n - v + k +1/2)- V(n - v - k - 1/2))

n(2k+1)

(2k + l)Av

1 +
fc + 1/2

n —v
{J_±V2\ t_L,

2 (n-v)2

(2k + l)Av

1 - - 1
2 ( n - v ) 2 2 («-v)2

(2k + \)AV

" 1-AJ2
(2k Av),

where n — v > n0. The inequality (6) is proved.
Next we put

_1 > 0-Note that 1 = £2r-l > £ir> ~'>€n

Lemma 4.7. We have

\p{-x)

p(x)

p(-x)
p(x)

(2k

1 -

•

(12)

(13)
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84 Approximation of some important functions

Proof. Obviously if x = £_,• then the inequalities (12) and (13) are true. In what
follows we shall use the fact that (a — x)/(a + x),a> 0, is a decreasing function
and for 0 < a < x < b we have

{b-x){x-a){\~j(a/b))2

If xe{£v+ l, £v), 0 < v ̂  n — 2, then (14) gives us

>(-*)
p{x)

The inequality (13) is proved.
Now we prove (12). If xe(<i;v + ]

P i - x )

then

p(x) n

(14)

(15)

Let us consider the case when (i + l)r < v < (f + 2)r, 1 ̂  i < m — 2. By (15)
it follows that

<nl L r r ± i . n

Since A0 < ̂  t < 2 < • • •, for l < j < v we have

exp {- (f= e x p ( -

where k — v+1 —7, 1 < k < v.
Similarly if v + 1 < 7 < 2mr then

^ v = exp {- (v4v +1 + • • • + Aj)} ^ exp {- (7 - vMJ.}

> exp {-kA2mr} > exp {-(fc + l/2)A2mr},

where k =j — v, 1 < v < 2mr — v
Consequently

p(-x)
p(x)

<cn
k00r

7fy 1 - e xp 1 lK

]^}t=Uil+exp{-(fc
(16)
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4.2 Best uniform approximation to |x|

where we have used the fact that

1 + exp {- i4g-+2)r/2} 1 + exp {- A2J2] < ( \ + exp {-

85

l-exp{-i40.+2)r/2} l - exp{-4 2 m r /2} \l-exp{-

c

In our case

v ^ (; + l)r > 2

and „
2 2 2 1* 1

2mr - v ^ mr > - J n ln Jn 2 - J(n - 2mr) \n - J(n - 2mr) = - — I n — 1
7 C ^ V 7 C V 7 C V ^ 2 m r ^ 2 m r

Then using lemma 4.5 on the product in (15) we obtain

p(x)

and by (5) we get

|p(-x

J %2 1
<4cnexp< —— 2.1-T

1
{ A (j+2)r ' QJA(j-+2)r 4A2+2.

+ 2.1

enexp{ — n^jn — Inrc} =cexp{ — nyjn}.

Thus (12) is proved in the considered case.
Now let mr ^ v < n — n0.Ifweputa = £ v + x + k andb = £v_fc,0 < k < /, in (14)

we get by (15)

p(-x)
p(x) <x n

n (
k = 0

By (6) we have

and

Then by (17) we get

p(-x

p(x)
Av)}

- (/c + l/2Mv+ 1(l + cylv+1)}'
(18)
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86 Approximation of some important functions

We have

Z(v)+1> —In
1 m-i->- 1

A A A A A 11 _l_ p A I

Then by (18), (4), using lemma 4.5 we get

ln-
1

p(-x)
p(x)

2jt

cexp(— Tiyjn).

cAx+1)

+ 2-2.1

Now let 0 < x ^ £n-no. Then by (4) we obtain

p(-x)

p(x)
: x ^ i n - n o = exp { - (A0 + ••• + An_J - 2rA0

< CQxp(— n^Jri).

We can now complete the proof of the upper bound in theorem 4.2.
Let us consider Newman's rational function

D

r(x) = x
p(x)-p(-x)

+ p(-xY

where p is the polynomial from (11). Obviously r is an even function and
- D

Since p( — x )>0 for xe[0, £n-i], for xe[0, < n̂_j] we have

| x — r(x) | = x — r(x) < x < ^n _ x < c exp (— n y/ri).

If X G C ^ - ! , ! ] then by (12) and (13) we get

Consequently

which implies the upper bound in theorem 4.2. n
4.3 Zolotarjov's results

There are few examples where we can solve the problem of finding exactly
the best uniform rational approximation. Some, but very important, examples
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4.3 Zolotarjov's results 87

were given by E.I. Zolotarjov more than a hundred years ago (see Zolotarjov
(1877)).

Following N.I. Ahiezer (1965,1970), we shall consider here four of the
problems which can be solved by the technique developed by Zolotarjov.
This technique involves elliptic functions.

Problem 1. Let 0 < k < 1. Find rneRn such that

|| sign x - rn(x) ||C(G(k)) = inf {|| sign x - r(x) ||C(G(fc)): reRn] = Rn(k), (1)

where G(k) = [ - 1, - fe] u [fc, 1].
This problem leads to the rational approximation of the step function and

rational uniform approximation of | x |, problems which are basic in the theory
of rational approximation of functions.

Problem 1 can be formulated by linear transformation in the following
equivalent way.

Problem l . Let 0 < k < 1. Find rneRn such that

|| sign x - r„(x) ||C(A(k)) = inf {|| sign x - r(x) ||C(A(fc)): reRn} = Rn(k)9

where A(ifc) = [ - l//c, - l ] u [ l , l//c].

Problem 2. Let 0 < K < 1. Let us set

Rn={r.reRnMx)\>\ for

Find qneRn such that

Problem 3. Let 0 < 6 < 1. FW sne#„ such that

( U ] = inf {|| 1 - y

Problem 4. Let 0<k<l. Find fneRn such that

||1 - V(l - k2x)rn(x) ||C[0tt] = inf {|| 1 - 7(1 - k2x)r(x) ||C[(U]: reK„}.

Obviously problems 3 and 4 are equivalent - setting u = 1 — /c2x, 0 = \ —k2

we obtain from problem 4 problem 3 and setting 1 — k2u = x, k2 = 1 — 6, we
obtain from problem 3 problem 4.

We shall prove now that problems 1 and 2 are also equivalent.

Theorem 4.3. Problems 1 and 2 are equivalent.

Proof. It will be sufficient to prove that problems Y and 2 are equivalent.
Let us show that problem Y is equivalent to problem 2. Let qn = p/q be a
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Approximation of some important functions

solution of problem 2.f Then p has degree exactly n. If not, then for the
rational function g*(x) = Kxp(x)/q(x) we have

(a) q*eRn9 since \q*(x)\ > K\x\\qn(x)\ > \qn(x)\ > 1 for |x| > 1/K,
(b) max \q*(x)\ = K max \qn(x)\<\\qn\\C[.ltl]9

xe[-l,l] xe[-l,l]

which contradicts the definition of qn.
It is also evident that we must have

Now let m = maxJCG[_lA]\qn(x)\. Obviously 0 < m < 1.
Let us consider the rational function rneRn given parametrically by

(2)

and let us set k = (1 - S]K)2I(\ + ^JK)2.

We have, when — 1 ̂  t ̂  1, then — 1/fe < x < — 1, and when |t| ̂  1/K,
then 1 < x ̂  1/k. On the other hand

l(n tt\ -i- tvt lw\\
r„(x) + 1 =

(l + m)(qn(t) +

a n d , s i n c e \\qn\\C[-i,i] = ™,

max | r„(x) + 11 = max
xe[-l/fc,-l] (1 + +

m

Since | <j«(t) I = 1, we have by simple calculations

max | r„(x) — 11 = max
- 2(mqn(t)

(l + m)(qH(t) +

1 +m

m
1 +m

From (3) and (4) it follows that

max|s ignx-r n(x) | =
xeA(k) 1 +

= in(m).

(3)

(4)

(5)

Let us remark now that fi(m) is a monotone increasing function for me[0,1].
From here and (5) it follows that rn is a solution of problem V. Indeed, if we
assume that there exists another fneRn such that

max | sign x — rn(x) \ = /i(m x) < /i(m), m1<m.
xeA(fc)

(6)

* Problems 1-4 have solutions - the proof is the same as in theorem 2.1.
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4.3 Zolotarjov's results 89

Then, determinating qn by means of rn and m1 instead of rn and m by the
converse formulas of (2), we obtain qneRn with | |qn | |C [_M ] = m1<m, which
contradicts the definition of qn (this can be seen using the first equality in (4)
for r„, qn, m j . So rn is a solution of problem V.

We have shown that if qn is a solution of problem 2 then r„ given by (2)
is a solution of problem V. In the same way it is evident that if rn is a solution
of problem V then qn given by (2) is a solution of problem 2. The theorem
is proved. •

We shall give also a connection between problems 1 and 3, i.e. between
all four problems. But before doing this let us consider some of the properties
of the solutions of these problems.

Theorem 4.4. IfrneRn is a solution of problem 1 then rn realizes an alternation
in [ — 1, — /c]u[/c, 1], more exactly there exist In + 2 points x1<x2< ••• <
x2n + 2, Xi£[— 1> — fc]u[fe, 1], i = l,...,2n + 2, such that

signxt - rn(Xi) = e(-1)' || signx - rn{x) ||C(G(fc)) = e ( - 1 )'/*„, (7)

where e = ± 1, G(k) = [ - 1, - fe] u[fe, 1], | | s ignx-r „ ||C(G(k)) = \in.
The proof of this lemma is exactly the same as the proof of the second

part of the characterization theorem for rational uniform approximation
(theorem 2.2).

From this characterization theorem we derive the following.

Corollary 4.1. If rn = (p/i//eRn is a solution of problem 1, then the rational
function (1 — nn)\l//(peRn is also a solution of problem 1.

Corollary 4.2. Let us consider the equation

2 = tf. (8)

The points — 1, — k,k, 1 are simple zeros o/(8). In (— 1, — /c)u(/c, 1) (8) has
2n —2 double zeros.

Corollary 4.3. Let rn = (p/\j/eRn be a solution of problem 1. Then in the interval
( — k,k) only one of the polynomials cp and xjj can have zeros.

In fact, if it is not so, the function \fn\ must take the values 1 — //„, 1 + \xn

in the interval (—/c,k) so the number of zeros of (8) in G(k) can not be 2n + 2.

Corollary 4.4. There exists one unique solution of problem 1 which is bounded
in [-k,k~\.

Indeed, from corollaries 4.1 and 4.3 it follows that there exists a solution
bounded in [— k, k]. The uniqueness follows from the alternation theorem
4.4 similarly to the uniqueness in theorem 2.2.

Corollary 4.5. The bounded solution in [ — k, /c] of problem 1 is odd.
In fact, if fn = (p/ij/ is a bounded solution of problem 1, then — rn( — x) =
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90 Approximation of some important functions

— cp(— x)/ij/( — x) is also a bounded solution of problem 1, and by corollary 4.4
we must have rn(x) = — rn( — x), i.e. rn is odd.

For characterization of the solutions of problems 3 and 4 we shall use the
following modification of theorem 2.2 (see Ahiezer (1965)).

Theorem 4.5. Let [a, b~\ be afinite closed interval, feC[a, b], seC[a, fr], s(x) > 0
for xe[a,b]. Let us consider

Rn(f; s) = inf {|| / - sr \\ C[a,b]: r e Rn}.

There exists a unique r*eRn such that

\\f-sr*\\cla.t] = RJifls).

Moreover r* realizes an alternation for f i.e. there exist N = In + 2 — d(r*)
points xh i= 1,...,N, a^:x1 < ••• < xN ^ b, d(r*) the defect of r* (see chapter
2), such that

f(xd - s(xi)r*(xi) = e ( - l) i\\f- sr* \\C[atbl, i=l,...,N,

where s = ± 1.
The proof of theorem 4.5 is similar to the proof of theorem 2.2.
Now let us see the connection between problems 1 and 3. Let n be odd,

n = 2m + 1, and let rneRn be the bounded solution in [— k, k] of problem 1.
Since rn is odd, rn must have the representation rn(x) = x(p(x2)/ijj(x2), where
(peRm and il/GRm. By theorem 4.4 the difference signx — rn(x) must alternate
4m + 2 + 2 times at least in [—1,— fc]u[fc, 1], and since fn is odd this
difference alternates 2m + 2 times in [k, 1]. Setting x = ^Ju we see that the
difference 1 — yju (p(u)/\l/(u) alternates 2m + 2 times at least in [k2,1] and
therefore by theorem 4.5 the rational function (p(u)/i//(u)eRm is the solution
of problem 3. We have obtained the following.

Theorem 4.6. Problems 1 and 2 for rational functions of degree 2m + 1 are
equivalent to problems 3 and 4 for rational functions of degree m.

Now we shall give the solution of problems 1 and 4. This solution uses
elliptic functions, so we shall give some facts from the theory of elliptic
functions.

The Jacobian elliptic function £, = sn (u; k) is defined by the elliptic integral

where k is called a modulus of the elliptic function.
The Jacobian elliptic function dn(w;k) is given by

) = 7(1-k 2 sn 2 (u ;k)) ; d(0;k)=1.
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4.3 Zolotarjov's results 91

As usual we set

K =
df

0V((l-;2)(l-/c2t2))'
K is called the complete elliptic integral of the first kind (for the modulus k).
Let us set x = sn2 (w; k). When u changes from 0 to K, x changes from 0 to 1.
The function x = sn2(u;k) is now defined for we[0,fc]. If we set sn(w;/c) =

— sn(— u;k) for WE[— X,0], we can consider x = sn2(w;k) as a 2X-periodic
function if we set sn2 (u + 2K; k) = sn2 (U; k).

In order to give the solution of problem 4, we need some notation.
Let us set

2 ( u \
y = < , ,,t—T^dnhr,;H (9)

where

A=fc2"+iricL-1,
r = l

m
M = Y\ C2r - l / c 2 r ,

. = sn"

(10)

From the theory of elliptic functions it follows that the complete elliptic
integral of the first kind for the modulus X is

L = -
K

(2m+l)M

Using one more fact from the theory of elliptic functions - the equality

-k2c2r-isn2(u;k)

(11)

—;A =dn(u;/c)f7
M / r=\ \-kzc2rsn2{u;k)

where X, M, cr are given by (10) (see Ahiezer (1970)) - we can write (9) as

(12)

If W changes from 0 to K = (2m + 1)ML, x will change from 0 to 1, and
dn(u/M;X) will be between dn(0;A)= 1 and dn((2m+ l)L;A), which equals
y/(l — X2) since dn(L; X) = yJ(l — X2) (see the definition of dn(w; k)) and dn(w; A)
has period 2L. From here and (9) it follows that when xe[0,1] for y(x) we have

(13)
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92 Approximation of some important functions

On the other hand in the points u = 0,2ML, 4ML,... ,2mML, y(x) = y(x(u))
has the value 1 + p, since

y(x(2sML)) = (1 + n)dn(^^;x\ = (1 + /i)dn(2sL; A) = 1 + p,

and at the points u = ML, 3ML,... ,(2m + 1)ML, y(x) = )>(x(w)) has the value
1—p, since y in these points is equal to (1 + p)dn((2s+ l)L; X) =

We have from (10) and (11)

c, + rK\ 1 ; k = sn2(rML;/c).

This shows that at the points xr = cr, r = 0 , . . . ,2m + 1, 0^xo<x1< ••• <
x2m + 1 < 1» t h e function y(x) alternately has values 1 + p and 1 — p. Togethe

with (13) and (12) this gives

) ( l ) r + JII1 V ( ! " ^ . W Hc[o.i],

r = 0 , . . . , 2 m + l , (14)

l 1-2

From (15) we obtain the result that fmeRm. Therefore (14) and theorem
4.5 give us that fm is the solution of problem 4 for n = m.

Theorem 4.7. The solution rm of problem 4 (n = m) is given by (15), where k,
cr are given by (10).

Now we shall give the solution of problem 1.

Theorem 4.8 (Zolotarjov, 1877). The solution of problem 1 is given by

(16)x = k sn (U; k),

/' nM' M '

where K, L are the complete elliptic integrals of the first kind for the modulus
k and X respectively, and K', L are the complete elliptic integrals for the
complementary moduli k', X', and I = Rn(k) (see (1)).

Remark. Let us remember that the complementary moduli for k, X are given by
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4.3 Zolotarjov's results 93

Proof of theorem 4.8. We shall show that rneRn and the difference
sign x — rn(x) alternates In + 2 times on G(k) = [ — 1, — /c] u [/c, 1 ].

We shall use the following formula from the theory of elliptic functions
(see Ahiezer (1970)):

sn2 (n;/c)
( / ) [ / 2 i +

C ? . r -1

where
sn2(rK'/w;/c')

C'~ I -sn2'/,.,,»2 (rK'ln;k')'

Since 1 - / = 2A/(1 + >l), we obtain from (16) and (17)

p(x)_ 2A x W|i l+x2//c2c2rr{X) M

(18)

r"W" g(x) " 1 + X k M } = [ 1 + x 2 / k

From the properties of sn(w; /c') (see below) we have sn(K'; k!)=1, therefore
l/c„ = 0. From here and (17), (18) we obtain that, if n is odd, then pePn,
qePn-l9 and, if n is even, then pePn_u qePn. Therefore for all n we have
rneRn.

Now we shall prove that the difference sign x — fn(x) alternates at least
In + 2 times in G(k) (it alternates exactly In + 2 times). To show this we need
some more properties of sn(w; k). From the theory of Jacobian elliptic functions
(see Ahiezer (1970)) we have that sn(w;fc) has two periods: AK and 2iX'. We
shall need the following values of sn(u; k):

sn(0;k) = sn(2K;k) = 0, sn(K;k) = 1,

sn(K + iK';k)=l/k, sn(K';k')=1.

And evidently, since L is the complete elliptic integral of the first kind for
modulus A, 4L and 2iL' are the periods of sn(w; X) and sn(0; X) = sn(2L; X) = 0;

sn(L; X) = 1, sn(L + \L\ X) = 1 / 1

Since x = ksn(u;k) we obtain from here that when v changes in [0,K'],
u = K + it;, x changes in [fe, 1]. We have, if we set w = v/M,

Since A is the modulus for L, rn changes in the interval [1 — /, 1 + /] and
takes alternately the values 1 — / and 1 + / at n + 1 points w = 0, L',
2L',... ,nL, or, what is the same, in the points

K' 2K! nK'
v = 0, —, , . . . , .

n n n
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94 Approximation of some important functions

The analogous situation is in the interval [— 1, — fe], so fn alternates In + 2
times in G(k). So rn given by (16) is the solution of problem 1. •

Let us mention that from (16), using the asymptotics developments of the
elliptic functions, it is possible by means of long calculations to obtain the
Newman result for |x|, or the Gonchar result for signx:

which gives #„ (M) C [ - i , i ]

But nobody before 1964, when Newman's result appeared, had made these
calculations. So in our opinion the exact solution of problem 1 has not the
same value for the development of the quantitative theory of rational
approximations as Newman's result.

4.4 Uniform approximation of ex on [— 1,1]:
Meinardus conjecture

In this section we shall consider the problem of uniform rational approxima-
tion of the function e* on the interval [— 1,1]. We shall consider best rational
approximation of order (n, m) (see chapter 2). The Meinardus conjecture for
this approximation (see Meinardus (1967)) was proved by D. Braess (1984).
We shall give here his elegant proof.

We shall use the notation

Theorem 4.9. We have

2~m~Vm'

(n + m)\ (n + m + 1)!

as n + m -> oo.

Proof. The crucial point in the proof is Newman's trick (see D. Newman
(1979b)). It gives a connection between the rational approximations on the
interval and on the circle. Let the rational function p/qeRnm. Given
x e [ - 1,1], put z = (x + iy)/29 where x2 + y2 = 1. Then

q(z)q(z)

is again a rational function and reRnm, i.e. the degree is not doubled when
products of this special form are taken. In order to understand this let us
consider the product of two linear expressions. We have

(az + b){az + b) = ab(z + z) + a2zz + b2 = abx + a2 /4 + b2
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4.4 e" on [ — 1,l]: Meinardus conjecture 95

if |z| = l/2.
If a and p are complex numbers, then

cede - pp = 2 Re {a(a — P)} — |a — j?|2.

By applying these equalities to the product e* = e V we obtain

e z - (3)

Let us assume that qtz — p has m + n+ \ zeros in the disk|z| <j, counted
with their multiplicities, but q has none. Then

2

2 min
1*1=1/2

• m a x
|z|=l/2 q

2 max
|z| = l/2

e z - - + max
W=l/2 q

(4)

Indeed, the upper estimate is obvious from (3). The lower bound will be
derived by using de la Vallee-Poussin's theorem 2.3. As usual we denote by
arg w the argument of the complex number w. Note that

, a r g < e ' e - ^ ) } = 0(mod 27r),

, arg < jez( e - - 1 7 r (mod 27i).

(5)

Let us denote

By assumption h has n + m+ 1 zeros in \z\ < 1/2 (every zero counted with
its multiplicity) and h has no poles. Consequently h has winding number
n + m+ 1 for the circle \z\ = 1/2. Hence, when an entire circuit has been
completed,

is increased by (n + m + l)-27r. The argument is increased by (n + m + l)n as
z traverses the upper half of the circle, since h(x) is real for x on the real line.

Thus h has real values onn + m + 2 points zfc = (xk + ij>k)/2 with 1 = x0 >
Xj > ••• > x „ + m + 1 = — 1, yk^0, k = 0,...,rc + m+ 1, and the sign changes
between each pair of consecutive points. The same is true for ez(ez — p/q).
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96 Approximation of some important functions

Then by (3) and (5) it follows that

A _[

From de la Vallee-Poussin's theorem 2.3 we get

mm
|z| = l/2

The lower bound in (4) is proved.
In order to apply the estimates (4) we need a rational approximation to

ez on the circle | z | = 1/2. We shall use the (n, m)-Pade-approximation (compare
with chapter 12). We shall use the polynomials (see O. Perron (1957))

P(Z) =

q(z)=

(6)

We shall show that the polynomials from (6) give the corresponding
Pade-approximation. We have p/qeRnm, q(0) = (m + n)\ # 0. Let us consider
the remainder term:

czq(z)-p(z) = tn(t 7^mpz-tJ. I tmit -i- •j\nf*~tAt
i yi z,j c UL — i i yi ~r z) c ut

o Jo

( t - z ) Y e z - ( d r {t-zffe-'dt

= (r-z)mt"ez-rdt

= z" + m + 1 (M-l)mMne(1"u>zdu

(-l)mz,m_n + m + 1 I,,m,um(l-u)neuzdu,
Jo

i.e.

•i + m+l ,,m,um{\ -u)neuzdu.

Since the integral in (7) is bounded for | z | < 1, we have

(V)
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4.4 e*on[ — 1, 1]:Meinardusconjecture 97

and (6) provides the (n, m)-Pade-approximation for ez (compare with the
definition in chapter 12).

In order to estimate the integral in (7) we note that

|e»*-»<* - 1 - Z(u - uo)\ ^ i(u - M0)
2|z|2e|z| (8)

whenever \u — H O | < 1. This estimate follows by the Taylor's series for the
function ez. By choosing u0=(m+ \)/(n + m + 2) we get

1 mini
um(\ - uf du = ,

0
 V ; (n + m+1)! '

I

Mm(l-M)n(M-Mo)dM = 0,
o

and

um{\ - u)"{u - u0)
2 du = — ^- .

Then by (8) we get

(n + m + 1)!

as n + m->oo, |z| < 1.
Now we shall estimate q(z). By (6) we have

f m r<*>
q(-z)= (t + z)mtnQ-tdt= £

Jo * =
m

m

where the Pochhammer symbol

appears.
Evidently for k = 2, 3 , . . . , m we have

mh (m — k+l)k (

(n + ra-fc+ l)fc (w + m — fc+!)•••(«

(n + m)\ m m \ m

\ ih m)(n + mf \ 2m

We have used the inequality n*= I (1 ~ O > 1 — Tft= i ei> 0 < et < 1.
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98 Approximation of some important functions

Therefore for each k = 2,...,m there is a 6k, 0 ^ 6k ^ 1, such that

(m-k+l)k mk / nk(k-\y

(n + m-fe+l)k (w + mf\ 2m

Using these equalities we have

k\2m \n +
k-2

where the second sum disappears when m=1.
By (10) we get

Y~2 * 1 / m z

Obviously for k^m+ 1 we have

' 2(n + m)2 k{k - 1) (fe - 2)! \ n + m

mz2 0k

2(n + m)2(fe-2)!\n+

Hence

q(-z)-(n + m)!em2/(n + m> = - ( n +
2(n + m)

and therefore

| q{ - z) - (n + M)! ewz/(n+ m) | ̂  (n + m)! e .
2(rc + m)

This estimate implies

q(z) = {n + m)\e-"*/(» + »)(l +o(l)) (11)

as n + m-> oo,|z| < 1.
From (9) and (11) it follows that

^ ( - ; r n ! m ! (12)H+1)!

as n + m->oo; \z\ < 1, where a = 2m/(n + m).
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4.4 QX on [ — 1,1 ]: Meinardus conjecture

From (12) we obtain

( - l fwlm! n + m + 1 ,

q(z)J (n + m)\(n + m

99

(13)

with 0=1+ 2m/(w + m), 1 < j ^ 3.
The modulus of this expression is not constant on the circle \z\ = 1/2 mainly

because e/*V + m + 1 is not constant. We shall see that by choosing z0

appropriately one can make \QPZ(Z-z0)
w + m + 1 | deviate very little from a

constant on this circle.
From the Taylor series for the logarithmic function we get

- 3 / 2 J V <

N > 6. Indeed, if | w |< 3/2 and JV^6we have

Bz\N

r 3/2JV (14)

V

where Inz = — \ \ (du/u) and the path of integration does not pass through the
origin and does not cross the negative real axis.

Then the inequalities in (14) follow by

and

w" 2w

2JV N+ N2

(3/2)2

From (14) it follows for \z\2 = zz - 1/4 that

PY .

3/2 \ 2<N

3,

Therefore

e - l z - /
AN)

3/2J = l/2, |/?|<3,

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781107340756.005
Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.005
https://www.cambridge.org/core


100 Approximation of some important functions

Consequently if we put N = n + m + 1 and z0 = fi/4(n + m + 1) we get:

>z(2_Zor
+m+i| = _ _ L _ ( l + o ( l ) ) , |z| = l/2. (15)

Let z0 be as above. Then

(z - z0)

is Pade-approximant to ez at the point z0.
From (13), replacing z by z — z0 we get

z0)" +w + V*(l + o(l)). (16)<z z o
1)!

Now using (4), (12), (15) and (16) we conclude that the estimate (1) is
true. •

4.5 Uniform approximation of e " on [0, OO)
The problem of rational approximation of e~* on [0, oo) is one of the most
interesting problems in the theory of rational approximations. The problem
has many applications, for example in numerical analysis (see Cody,
Meinardus and Varga (1969)), but it is also interesting as a mathematical
problem itself.

Let us first adopt our notations. We set

Km — Rnm(Q*)c[0,oo) ~ inf {II e * - r(X) llc[0,oo): reRm}.

There are two cases of special interest: when n — 0 and when n = m. It is
possible to show that there exist constants qh i = l , . . . ,4,0 < qi < l, such that

(a) <R < /Om ^ «7,
(b) ql<Kn^q"3-

The most essential problem here is what we can say about the constants

qhi=1,...,4
The situation is quite different in these two cases. In the first case there

exists a solution of the problem - the nice theorem of Schonhage (1973), see
theorem 4.10 below. The exact solution of the second case has been obtained
analytically only in 1986 (see the end of the chapter).

Let us consider estimates of the type (a). The case n = 0 is really
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4.5 Uniform approximation of e x on [0, oo) 101

approximation of e x by inverse polynomials of degree m:

1
hnm = inf e - -p(x)

:peP„
C[0,oo)

Using pm(x) = Y!k=o(xk/kl) (tne mtn partial Taylor sum for e*) it is easy to
see that l imsup(/lo j1 / m< 1/2 (Cody, Meinardus, Varga (1969)).

We shall prove the following exact estimation.

Theorem 4.10 (Schonhage, 1973). We have

lim (A0J1'" = l/3.
m—> OO

We shall obtain theorem 4.10 from the following more exact result of
Schonhage.

Theorem 4.11. We have

1
1/2 '6((4m + 4)ln3 + ln4)

To prove theorem 4.11 let us first remark that we can consider the best
uniform approximation to the function e~x/4 instead of e~*; evidently

, = inf
1

g •*/•*
C[0,oo)

Before proving theorem 4.11 we shall prove one lemma concerning the
best uniform approximation to e*/4 on the interval [0, a \ a > 0, with a weight
Q-X/2 by means 0f algebraic polynomials of mth degree. Let qma^Pm be the
polynomial of such best uniform approximation:

max e"x/2 |ex/4 - qm,a{x)\ = inf \ max e~x / 2 |ex / 4-p(x)|:pePm i = X(m;a).
xe[0,a] ' [ •

(1)

Lemma 4.8. We have

(a) ex/*>qm,a(x), x^a,
(b) q'm,a(x) > 0 9 x > a.

Proof. It is easy to see, as in theorem 1.6, that the difference e(x) = ex/4 — qm,a{x)
must alternate at least m + 2 times in the interval [0, a], i.e. S(X) must have
at least m + 1 zeros in the interval [0, a]. Since 1, x,... ,xm, e*/4 is a Chebyshev
system a(x) must have exactly m + 1 zeros in [0,a]. Let these zeros be
0<Xi <x2< -" <xm+l <a.

Let us prove (a). Evidently e*/4 — qmya{x) > 0 for sufficiently large x, and if
we assume that there is x > a such that e*/4 — gm,„(x) = s(x) < 0, then there
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102 Approximation of some important functions

must exist x> a such that s(x) = 0, but this is impossible since all zeros of
s(x) are in the interval [0, a].

To prove (b), let us assume the converse, that there exists oc1> a such that
4m,a(ai) < 0- Since s(Xj) = 0J= 1,... ,m + 1, we must have m zeros of e' in the
interval [0, a]; let them be xV\j = 1,...,m. We have 8'(-4!}) = 0, i.e. q'^Jtx™) -
iex™ /4 = 0, or q'ma{x{n))>0. This, together with q'ma(a^<0, gives us that
there exists a2>x^1 ) such that <5Ca(a2)<0, since ^ ( a j - q'^Jx^) =
?m,a(

a2)(ai — xm') < 0> a2€(xm\ at)- Continuing thus we obtain that there exist
x*™' and am such that e{m){x{^) = 0 and ^ ( a m ) < 0 , am>x(

1
m). But this is a

contradiction, since qj '̂o is always a positive constant. •

Proof of theorem 4.11. We shall use the Laguerre polynomials

n = 0,1,2,... . (2)

It is well-known (it is easy to verify by means of integration by parts) that
the Laguerre polynomials are orthogonal on [0, oo) with a weight e~ x :

n # m.

Let us consider the expansion of the function ex/4 with respect to the
orthogonal system {Ln}*

=0 . We have

where the coefficients cn are given by

f CO 1 fco 4/ |«

c. = e - xe^/4Ln(x)dx = - (e ' 'xf^'^x = - ^ + r -
Jo " ! Jo J

(again using n integrations by parts).
From the theory of orthogonal polynomials it is well-known that then

is the algebraic polynomial of mth degree of best approximation to e*/4 in
L2[0, oo) with weight e~x and

O

We have

V r =
^ Cn — -2

n=m+1 J

(5)
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4.5 Uniform approximation of e * on [0, oo)

Using (2) and (3) it is not difficult to see that

gjt)e-'dt

is an algebraic polynomial of mth degree.
We have from (5) and (6)

x / 4 'c\t

Using the Cauchy-Schwarz inequality we get from here and (4)

1/2 \ l / 2

M

x/2l x - x / 2 V2 _ V2

From here we obtain that X(m;a) < ^2/(4-3m) for every a > 0.
On the other hand (1), (7) give us that for every xe[0, a] we have

< 4 - 3 "

and for x e [0, a] we have

/4

103

(6)

(7)

4-3m ) \ 4-3m

If we set a = 4m In 3 + In 4 we get that for this a and x e [0, a] we have

?»,«(*) e*'*. (8)

Now we can obtain an upper bound for X0m. Let a = Am In 3 + In 4. Then
for xe[0,a] we have

1 * <7m,a(x)l x/4 / 2 .

By lemma 4.8 q'm,a(x) ^ 0 for x ^ a; this, together with (8) and part (a) of
lemma 4.8 gives us

2 e ~*/4

for x ^ a. Therefore
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104 Approximation of some important functions

and

Os
a (x)

We have obtained that /l0m s£
To obtain a lower bound estimate we write

e-*/4 _ 1

where pmePm and l//?m is the rational function of order (0, m) of best uniform
approximation to e_x/4. We have from (9)

Let us assume that

1

(10)

(11)Om 2((4m + 4)ln3 + ln4)1 / 23m + 1 '

Then for xe[0,a], a = (4m + 4) In 3 + In 4 we obtain from (10)

and therefore

|Pm(x) — e*'4! ^ 2A0mex/2, xe[0,a]. (13)

Evidently the same inequality holds for the polynomial qma (see (1)):

\qm,a(x) — ex/4| < 2A0meJt'2, xe[0,a]. (14)

Exactly in the same way as in part (b) of lemma 4.8 it is possible to show
that gm,fl(x) > 0 for x ^ a and this together with (a) of lemma 4.8 gives us

0 < n (x\ < e*̂ 4 x > o (\ Ŝ

From (14), (15) and (4) we get (a = (4m + 4) In 3 + In 4)

3 2 n H

This inequality gives us

1
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4.6 Notes 105

which contradicts (11). Therefore

M l •>

We shall consider briefly also the results connected with Xnn. The result of
Schonhage (theorem 4.10) gives some reasons for the so-called ^ conjecture,

l M A J 1 ' " ^ . (16)

But this conjecture is not true: first Schonhage (1982) and Trefethen and
Gutknecht (1983b) observed that the conjecture (16) is numerically false; after
this Opitz and Scherer (1984b) rigorously proved that

lim sup ( A J 1 ' " ^

The best estimate for liminf is given by Schonhage (1982):

Very strong calculations, made by Carpenter, Rutan and Varga (1984) give

1
lim

9.280 025 49192081

4.6 Notes
The basic result of this chapter - the famous Newman theorem 4.1
(D. Newman, 1964a) - is the starting point of the modern theory of rational
approximation.

Before the final result of Vjacheslavov (1975) - theorem 4.2 - we want to
mention the results of Gonchar (1967b),

exp {- ^ J

for every e > 0 and n > n(e), and the result of A.P. Bulanov (1975a),

exp{-nj(n + l)} *i Rn(\x\)C[.ul]<Qxp {-njn(l ~ O(n-114))}.

The problem of best uniform rational approximation to the function xa

on the interval [0,1] was posed by D. Newman (1964b). Gonchar (1974)
proved the following estimate:

nja < lim inf n~1/2 In R~ '(Ocio.i] < nm SUP n~ 1 / 2 ln R~ V ^ o . i ] < 47r>/a

for any positive non-integer a.
Gonchar conjectured that the limit exists and is
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106 Approximation of some important functions

Gonchar's conjecture was proved by T. Ganelius (1979) (see also
T. Ganelius (1982)):

T. Ganelius (1979) also proved the following result
Let a = p/q be a positive rational number. We have

exp ( - 2n(cc + 2))| sin 7ia | ̂  exp (27iyJ(ocn))Rn(x
2)C[O A] ^ B(p, q)

where the constant B(p, q) depends on p and q.
Theorem 4.2 is in our opinion a very interesting fact - it connects two basic

constants in mathematics - e and n

lim(Rn(|x|)C[_1>1])
w" = e-'1.

n-+ oo

This connection is very important, we believe, but it is not very clear at
present.

There exist many unsolved problems connected with the Zolotarjov's
problems - for example how to obtain easily the Newman result from the
exact solution, given by means of elliptic functions.

Meinardus' conjecture,

„ , „ n\m\
KJ^d-uu r+m{n + m)!(n + m + 1}! 0 + o(i)X

is given in his book (Meinardus, 1967).
The exact value of lim,,^!,^" is exp(— nK'/K), where X, K' are the

complete elliptic integrals of the first kind for the moduli k, k =y/(l — k2) (see
section 4.3), where k is the solution of the equation K(k) = 2E(k), E the
complete elliptic integral of the second kind. This is proved by A.A. Gonchar
and E.A. Rahmanov; the number exp(— nK'/K) is given by A. Mangnus,
who proposed a method for the proof.
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Uniform approximation of some
function classes

There exist function classes which can be approximated by rational functions
in uniform or Lp-metric better than by algebraic polynomials. In this chapter
we shall investigate the uniform rational approximation of some classes of
this kind. We apply certain methods of approximation which allow us to
obtain exact estimates (with respect to the order).

We begin in section 5.1 with some preliminaries. In section 5.2 rational
uniform approximation is considered of the basic class Vr of all functions
with rth derivative of bounded variation. In section 5.3 we deal with certain
classes whose order of approximation is not better than 0(n-1), such as
Sobolev classes W\, p > 1, the class of absolutely continuous functions with
derivative in L log L, the class of all functions of bounded variation with a
prescribed modulus of continuity. Section 5.4 is devoted to the study of the
method of R. DeVore which is illustrated on the classes W\, p > 1, and V2.
Section 5.5 investigates the uniform rational approximation of convex
functions and convex Lip a functions. Finally, in section 5.6 we give two
theorems for approximation of functions with singularities.

5.1 Preliminaries
As we noted, in this chapter we shall consider the uniform rational
approximation of certain function classes. We shall be interested in obtaining
exact estimates with respect to the order of approximation. A characteristic
particularity of the rational approximation is the appearance of the so-called
o-effect on the order of approximation of individual functions of a given
class. So, for instance, for the class Lip 1 on [a, b~\ from the Jackson theorem
(see theorem 3.10) we have

sup Rn(f)c = 0(n~1)
fehip 1
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108 Uniform approximation for some function classes

but, as we shall see in corollary 10.2, for every individual function feLip 1,

Rn(f)c = o{n~x) (a conjecture of D. Newman).

Both estimates are of exact order.
The presence of the o-effect for some function classes will be established

and investigated in chapter 10. In chapter 11 the exactness of these estimates
will be shown and commented on.

To avoid some possible terminological ambiguities we shall give precise
definitions for exactness of a given estimate. Let X be a given function class
and Rn(f) the best approximation to feX by means of rational functions of
order n in a certain metric.

Definition 5.1. The estimate

sup Rn(f) = 0(<p(n))9 cp(n) > 0, n > 1

will be called exact with respect to the order, or shortly exact for the class X if

lim supi sup Rn(f)/(p(n)} > 0.

Sometimes we shall simply say that the estimate Rn{f) = O((p(n)) is exact for
a given class X.

Definition 5.2. The estimate

Rn(f) = 0(cp(n))

will be called exact with respect to the order in the class or shortly exact in the
class X, if there exists a function f eX such that.

limsup{Rn(/)Mn)}>0.

Definition 5.3. We shall say that the estimate

Rn(f) = o(cp(n))

is exact (with respect to the order) in the class X if for each sequence
{^J^n^n ^ 0, nn > 0, there exists a function f eX such that

It is worthwhile to observe that the set of all rational functions of degree
n is not linear. This fact and some other particularities of this class as a tool
for approximation require special and sometimes difficult methods of
approximation.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781107340756.006
Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.006
https://www.cambridge.org/core


5.1 Preliminaries 109

The fundamental statement in most of the real methods for rational
approximation which we shall use is the following lemma.

Lemma 5.1. Let a,/?,y> 0 and a ̂  ft. Then there exists a rational function a
such that

P, - a ] ,

xe[a,ft|,

)^l, xe(-oo,oo)

and

deg o < B In f e + - ) In ( e + - ),
V « / V yj

where B > 1 is an absolute constant, deg a denotes the degree of a.
This lemma provides a good rational approximation of the jump-function.

In fact, it is equivalent to the upper estimate in theorem 4.1 (D. Newman's
theorem) for rational approximation of |x|.

To prove lemma 5.1 we need the following lemma.

Lemma 5.2. Let 0 < s < \ and n > 1. Then for the rational function

S(x) = P ( ~ X ) (X) = FT (X + £'>)

we have

c2n\s(x)\^ — exp

where c1 = e1/e, c2 = e _ 1 . In (1), (2) we can put cx — 1 when n ^ In(1/e).

Proof. Exactly as in the proof of lemma 4.1 we obtain for x£[e1/n, 1]

(1)

(2)

p(-x)

p(x)

" 1 _ pi/n

'' M 1 + £;/"

2e1/n(l - e
= exp

2£
1/n(l - e)n

(3)

Let n ̂  ln(l/fi). Since 0 < £ ̂  1/2, 2s1/n(l - e) ^e~1=c2 and by (3) we get

(4)
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110 Uniform approximation for some function classes

If 1 < n < In(1/e), then clearly we have for xe[e1/n, 1]

The estimates (4) and (5) imply (1). Since s( - x) = l/s(x), (2) follows by (1). •

Proof of lemma 5.1. Let s be the rational function of lemma 5.2 with

' I l l / . 1 i 1 I t£\

e = 1 n = -— ln - ln e + - )+l , (6)
e + P/a |_ 2c2 e \ y) J

where c : = e1/e, c2 = 1/e are the constants in lemma 5.2. Consider the rational
function

Clearly, by (6) we have

dega j = 2 n < B l n ( e + - j ln l e + - ),

V a / V y)
( 7 )

where B = constant > 1. In view of (2) and (6) it can be verified that

(8)

for x e [ - 1, - e ] => [ - 1 , -{oc/P)l Similarly, by (1) and (6)

(9)

Obviously

( K ^ M s S l , xe(-oo,oo) (10)

Finally, set A(X) = (Jxifix). The assertion of lemma 5.1 follows by (7)-(10).

•
The basic idea in most real methods for rational approximation is the

following. First a good approximation by piece-wise rational functions is
constructed. Then, 'joining' the pieces by a good rational approximation of
the jump-function a single rational function is obtained. This function realizes
the required rational approximation of the given function. The difficulty
consists in the optimization of the process of 'joining' pieces. To overcome
this difficulty we shall often use the following lemma.

Lemma 5.3. Let feCA, A = [a, b]. Let there exist compact subintervals Al and
A2 such that A = At u A2, \AX n A2| > 0, and rational functions rx and r2 such
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5.1 Preliminaries i l l

that

IIZ-rJciA,.)^!. (11)

lkillc(-oo,oo)<'4 (12)

and
degr.-^kj, i = l , 2 , (13)

where e1 > 09 A > 0, kt ^ 0, i=1 ,2 , are gwerc numbers. Then for each e2 > 0
£/zere is a rational function r such that

ll/-»1 | |c(A)<e1+E2 , (14)

l|r|lc<-».»)<>* (15)

' ) l n ( e + — ) , (16)

and

where Bx > 1 is an absolute constant, |A| is the length of A.

Proof. Let A1 n A2 = [u, u] and Ax = [a, i;], A2 = [w, b]. Consider the rational
function

r(x) = M - a ( x - j J V ( x ) + a( x - ^ V2(x),

where a is the rational function of lemma 5.1 with

cc = | A 1 n A 2 | / 2 , p=\A\, y = 82/2,4.

We shall prove that the rational function r satisfies (14) (16). At first we
estimate degr. By lemma 5.1 we have

) (

C 2

where B1 = 4B = constant. Hence

deg r < deg r1 + deg r2 + deg a

t + k2 + B1 In (e ln(e + —
V £ 2 /

i.e. r satisfies (16).
Now we estimate || ?"||c<-oo.oo)- Since 0 ^ < T ( X ) < 1, xe(—00,00), by (12) we
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112 Uniform approximation for some function classes

get for xe( — 00, 00),

(
| | C ( - 00 ,00

and therefore (15) holds.
It remains to estimate ||/ — r ||C(A). T° this end we shall use (11), (12) and

the properties of a from lemma 5.1. There are the following cases.
(i) If xeA1 \A2 then

| / ( x ) - r(x)\ < \f(x) - r t (x ) | + a(x - ^ y ^ j f II rx | | C ( -« , , „ , + II ^2 lice— ».

£2

£ ! + — ' 2 A = £1 +S 2 .

(ii) If xeA1nA2 then

(iii) If xeA2\A! then
/ u + v

+ lk2 ll c ( - 00,00)) ^ £ i + e2-

Consequently

II /" ». II / p I o
II 7 ' IIC(A) ** fcl T e 2 ,

i.e. estimate (14) holds. •
Lemma 5.3 implies the following more specific lemma for 'joining' of

rational functions.

Lemma 5.4. Let feC[a,b] and let there exist intervals A1 = [a,c] and
A2 = [c, fo], a < c < b, and rational functions rx and r2 such that

II f — r II < p ;' — 1 ? l\l\
1 1 / r ; l l c ( A j ) *= fci> » — 1 > A t , 1 ' ;

where e1 > 0 is a given number.
Then for each e2 > 0 and S > 0 there exists a rational function r such that

(18)

, (19)
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5.1 Preliminaries 113

where co(f; d)c is the modulus of continuity off B2 > 1 is an absolute constant.

Proof Let s2 > 0 and d > 0 be arbitrary numbers. Denote d = [a,b~], d1 =
[a, c + (5] and d2 = [c — 3, b]. Let Ai5 i = 1,2, be the increasing linear function
which maps dt onto At. Clearly

\\x-Ux)\\C i d i ) = ^ i = l,2. (20)

Set rt = r;(A;), i = 1,2. By (17) and (18) it follows that

II / " ft llc[*nfl < II / - / W llc[*nfl + II / " r t\\cm < s± + co(/; <5)c. (21)

If d c dx o r d a d2, then lemma 5.4 follows from (21) immediately.

Consider the opposite case. Then d = d1vd2 and \dx nd2\ = 28, where |A|

is the length of the interval A. If || rt \\C(di) < 21| / ||C(di), then we set

when || / ||C(d) > 0 (the case || / ||c = 0 is trivial).

By (21) we get

II / - 1i llc(d0 ^ II / - ^ IIC(d<) + m II / He II fi Hctf,.)

< e , + co(f;S)c + An{\\f\\l < s, + e2/2 + ©(/;<5)c,

i.e.

)c, i = l,2. (22)

Obviously we have
l

3/2 - 1/2 / /T3\
C(d)E2 \Z3)

and
degg,< 2degrl-. (24)

In the case when || rt \\C(di) > 21| / ||C(di) we have in view of (21)

II / Hew,) < II ft Hew,) " II / Hew,) < II / " ft llcw.) < £ i + « ( / ; *)c

and therefore the rational function qi = 0 satisfies (22)-(24). Thus for i = 1,2
there exists a rational function qt which satisfies (22)-(24).

Now we apply lemma 5.3 with e2 replaced by g2/2. In view of (22)-(24) we
conclude that there exists a rational function r such that

and

deg r ^ 2 deg rx+2 deg r2
+ i/2
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114 Uniform approximation for some function classes

fl j l n ( e+ 1 ( + ^ ) (

2degr1 + 2degr2 + 3B,ln( e

\J lie

which imply (18) and (19). •

5.2 Functions with rth derivative of bounded variation
We shall investigate the rational uniform approximation of the class
Vr = Vr(M, [a, b ] \ r ^ 1, of all functions defined on [a, b] for which f(r~ l ) is
absolutely continuous and is an integral of a function f(r) with variation
bounded by M(Vb

af
{r) < M). The class Vr is basic for the rational and

spline approximations of functions. Historically Vr was one of the first function
classes which was approximated by rational functions better than by
polynomials. It was the first class for which the exact order of rational uniform
approximation was found.

The foundations were laid by P. Sziisz and P. Turan (1966) who showed
that the convex Lip 1 functions can be approximated uniformly by rational
functions better than algebraic polynomials. Later on G. Freud (1966)
improved and generalized their result for Fr, r ^ 1. The final estimate was
obtained by V. Popov (1976a, 1977).

Theorem 5.1. Let r > 1, M ^ 0 and \_a, b] be an arbitrary compact interval.
Then for n^r

sup J U / - ) c <C(r) M ( f c f ~ a ) r , (1)
feVr(M,[a,b]) n

where C(r) = Dr, D> 1 is an absolute constant.

Remarks. The estimate (1) is equivalent to the following.
If f ( r

\ r > \, is absolutely c o n t i n u o u s , then for n ^ r

Indeed, the set of all functions / with absolutely continuous rth derivative
fir) on [a,b] such that || f{r+1) \\Ll[a,b] ^ M is dense in Fr(M, [a,b]). From this
follows the equivalence of estimates (1) and (2).

The estimate (1) is exact (see definition 5.1). This fact will be established
in 11.1.3, theorem 11.4. The existence of o-effect for the class Vr will be shown
in 10.1. Also this effect will be characterized there.

Note that the exact estimate for uniform polynomial approximation of/
in Vr is the following: En(f)c = 0(n~r).
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5.2 rth derivative of bounded variation 115

The fact that the constant C(r) in the estimate (1) is of the form C(r) = Dr

will allow us to prove in 9.3 a fundamental theorem in the theory of rational
approximation in Hausdorff metric.

The proof of theorem 5.1 is based on the following theorem for 'joining'
of rational functions.

Theorem 5.2. Let fsVr{M, [a, /?]), r ̂  1, M ^ 0. Let there exist a subdivision
Q of [_a, b~] into m (m ̂  1) compact subintervals with disjoint interiors and
rational functions rA,AeQ, such that for each AeQ

Wf-rJcM^e (3)

and

deg rA «c A, (4)

where e > 0, kA ^ 0 are given numbers.
Then there is a rational function R such that

Il/--R|lc[..»]<3e (5)

and

2 (+ M(b - a2£kA + Dm ln2 (e + M(b f \ (6)
Aeti \ em /

where D = D(r) = D1r
2,D1> 1 is an absolute constant.

Proof. Without loss of generality we shall assume that f(r) is continuous.
Clearly, if theorem 5.2 is true in the special case when m = 2s, s an integer,
then it is true in the general case also with another absolute constant Dx.
Thus we shall suppose that m = 2s, s an integer.

Next we shall use the following notations:

= f(x) - i f(v)(u)(x - uy/v \, (7)
v = 0

where A = [w, v\ a [a, /?],

N(n, M, A)

/ ( r"f l )e"1/(r+1)) + 4r}, (8)
v = 0

where Bx > 1 is the constant from lemma 5.3, r ̂  1 and s > 0 are from the
assumptions of theorem 5.2, //, M and the interval A are parameters.

For brevity we shall write || • ||A = || • ||C(A).
We need the following two lemmas where we shall use the assumptions

and notations introduced above.
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116 Uniform approximation for some function classes

Lemma 5.5. If the conditions of theorem 5.2 are satisfied then for each interval
AGQ there is a rational function qA such that

and

Proof Let AGQ and A = [u,t;]. If FA / ( r ) = 0, then by (7) it follows that
/A(x) = 0 for XGA. Hence, the rational function qA = 0 satisfies the assertion
of lemma 5.5.

Denote

rA(x) = rA(x)- t f i v ) ( u ) ( x - u y / v l .
v = 0

By (4) we have deg rA ^ kA + r. By (3) we have

LL/A-FA||A<FI. (9)

If II rA | |A> 2|| /A || A, then by (9) we get

II /AIIA < IIhIIA - II /AIIA < II /A - FA IIA < e

and therefore the rational function qA = 0 satisfies the conditions of lemma 5.5.
Let VAfr) > 0 and || rA \\ A ̂  2\\ fA \\ A. Then we set qA = rj(\ + rjAr2

A) where
RJA = i(VAf(r)\A\'Y3e. Obviously degqA ^ 2degrA < 2/cA + 2r. One easily veri-
fies that

k ii < — IV f ( r ' lA IM 3 / 2 ?" 1 ' 2

All(-oo,oo) ^ T ^ ~ ^ A ^ ' ' '

It remains to estimate ||/A — qA||A. To this end we shall use (9), our

assumptions and the fact that || fA ||A ̂  VAf(r)| A|r, since/A
v)(w) = 0, v = 0 , 1 , . . . ,

r, and VJ$ = VAf r \ We get

II / A - <?A IIA < II / A - '"A IIA + flA II / A IIA II '"A 111

< e + 4f7A II / A 111 ^ e + 4f/A(^A/wl A | ' )3 = 2e. D

By the assumption of theorem 5.2 there exist points xi9i = 09l,...,m,

a = x0 <xx < ••• <xm = b, such that Q = {\_xt,xi + l ] : i = 0, l , . . . ,m— 1}. De-

note for 0 < \i < s

a^ = {[xi,xi + 2J:i = 0,l,...,nf-2'1} (10)

and for A c [a, 6]

QA = {A*:A*GQ,A*CZA}. (11)
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5.2 rth derivative of bounded variation 117

Lemma 5.6. Let 0 ^ fi ^ s — 1 and for each AeQM (see (10)) suppose there is a
rational function qA such that

(12)

where (p(fi) ^ 1 depends only on \i,

and
A/<'>,A), (14)

w/iere iV(/x, M, A) is given by (8).
Then for every AeQy+j fftere is a rational function rA such that

(15)

e-1 / 2 (16)
and

degrA < 2 X *A. + WO* + 1, ^ / < r U ) , (17)

where the last sum is taken over all intervals A* which belong to the set QA

defined in (11).

Proof Let AeQM+1 and A = [ z 1 ?z3] . If VAfr)\A\r^e, then | | /A | |A<
VJ(r)\ A r < e, since /A

v)(Zi) = 0, v = 0,1,...,r, and VAf£ = VAfr
\ Then the

rational function rA = 0 satisfies (15) (17).
Now let VAf(r

)\A\r>e. Obviously, there is Z 2 EA such that the intervals
A1 = [z1 ,z2] and A2 = [z2 ,z3] are in QM. Next we shall denote for short
M, = VAlf

r\ M2 = VA2f
r\ M=VAfr\ n = 2-»-3(M\Ar1yh, d, =

[zx, z2 + ff], d2 = [z2 - rj, z3]. Clearly Mx + M2 = M.
By (12)—(14) there are rational functions qAi and qAl such that

(18)

,.,A;), i = l ,2 - (20)
A«eS24j

We need an approximation to fA=fAl on the interval A2. Denote pAi(x) =
>3 = o/(v)(*i)(*-*i)7v!, i = l , 2 . Since pAlGPr, then pAl(x) = Zrv = oPkv

f
e) x

(x-z2)v/v\. We have

/ A 2 W = / M - PA 2W = / A W + PAL(X) - P A 2 (

/
v = 0
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118 Uniform approximation for some function classes

Then putting

we have by (18) with i = 2

Consider the rational function

Since f* \
Z l ) = 0, v = 0,1,...,r, and

M1|A1 |r-v, v = 0,l , . . . , r . Hence

(21)

then lAv)(z2)K

r
v=0\V

From this it follows that

and
deg q = 2r.

Set ^2 = 1\2 + ^- Combining (21) and (22) we obtain

By (19) and (23) we get

l l-00,°0) < IIQ\2ll(-oo.oo) +

By (20) and (24) we get

i 2
We d an estimate of the modulus of continuity offA on A:

,A;(5) = sup{|/A(x')-/A(X")|:X',X"EA, | X ' - x " | < 5

(22)

(23)

(24)

(25)

(26)

(27)
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5.2 rth derivative of bounded variation 119

Since Av>(z1) = 0, v = 0 , l , . . . , r , and VAf£ = VAf" = M9 | | A | | A < MIAI '" 1

and therefore

o H A . A ^ K M I A r ^ , ^ 0 . (28)

Let Xi (i= 1,2) be the linear increasing function mapping the interval dt

onto At. It is easy to see that

Ui(x)-x\\di = ri9 i = l , 2 . (29)

Set

4 i M = <?A,(^IW) and q2(x) = q2(X2(x)).

Using (18) with qAl, (28) and (29) we obtain

II / A - <7l L,nA < II / A - / A O * I ) IL.ni + II / A ( ^ I ) ~ «A,(^l) L.nA

^ co(/A, A; ^) + || /A l - qAl || )+

Similarly, by (25), (28) and (29) we get

Consequently, we have

ll/A-g ;IUnA<(<PM + 3.2-"-3)fi, i = l , 2 . (30)

It follows by (19) and (26) that

k ill(-oo,oo)^2" + 1(M|Ar) 3 / 2£- 1 / 2 , 1=1,2 , (31)

and by (20) and (27) that

deg4 i Sc2 X kA. + N(frMi9Ad + 2r9 i = 1 , 2 . (32)

If A cz di or Acd2, then it follows by (30)-(32) that the rational function
rA = q1 or rA = q2 satisfies (15)—(17).

In the opposite case we have \d1nd2nA\>rj. Now, in view of (30)-(32),
we are ready to apply lemma 5.3 with parameters from (30)-(32). Setting
s2 = 2~fi~3s we conclude that there exists a rational function rA such that

lkA ll(- oo,oo) <2" + 1 (M|A|0 3 / 2 £~ 1 / 2

and

^ +deg<72

f ) ( ( | r ) ) (33)
V n J
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120 Uniform approximation for some function classes

The rational function rA satisfies (15) and (16). It remains to prove that r4

satisfies (17). First we note that

= B, ln(e + 2"+ 3M| A|re-1)ln(e + 22"+4(M| A I ' E - 1)

From this, (32) and (33) we get

+ 1 )e_ 1 / ( r + 1 )) + 4r. (34)

Next, we shall estimate JV(/i, M1,A1) + N(/x,M2,A2). To this end, we shall
use the following inequality

In2 (e + (x1/1)1/(,+ 1}) + In 2(e + (x2 /2)1 / ( r + u)

/< r+1>\ xux2,yi,y2>0. (35)

This inequality is equivalent to the fact that the function F(x, y) =
- I n 2 (e + (xyr)l/(r+1]) is convex on the set D = {{x,y):x,y^0}. The function
F is convex on D since d2F/dx2, d2F/dy2 and d2F/dx2-d2F/dy2 - (d2F/dxdy)2

are nonnegative in D. The same fact follows also from the convexity of
the function Fx(x) = — ln2 (e + x) on [0, oo) and convexity of the function
F2(x,y)= - ( x / ) 1 / ( r + 1 ) on D. Thus by the definition of N(/z,M,A) in (8) and
the inequality (35) we get

r + ^

Combining this with (34) we see that rA satisfies (17), which completes the
proof of lemma 5.6. •

Completion of the proof of theorem 5.2. Starting from lemma 5.5 and applying
lemma 5.6 s times, we obtain that there is a rational function rA , A = [a, b],
such that

£
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5.2 Kh derivative of bounded variation 121

and

Putting R(x) = rA(x) - £ f{v\a)(x - a)v/v\ we have
v = 0

and

where M = Vbaf(r). It remains to prove that

^ ^ ) (36)
\ em

where Dx = constant. By (8) we have

iV(s,M,A)= £ 2v{3651
v = 0

2vln2(e + 2 - s ( r

v = 0

2- s ( r + 1 )M|A| r8-1)(ln4)(s-v)

Since the function 2x(s + 1 + 2/ln2 — x)2 is increasing on [0, 5 + 1],

t 2v(s-v)< £T(S-V)2< £
v=o v=o v=o

f
o

Therefore

< f 2 ( s + l + x Y d x < ^ 3J V l 2 ( ln2)

em
i.e. estimate (36) holds. •
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122 Uniform approximation for some function classes

Proof of theorem 5.1. If we are not interested in the form of the constant C(r)
in the estimate (1), then (1) follows as in theorem 5.2. But we need to prove
the estimate (1) with C(r) of the kind C(r) = Dr, D = constant. To this end,
we shall use the following lemma.

Lemma 5,7, If the function f is defined on A = [a, U] and / ( r ) eC A , r ^ 1, then
for n^r

(37)

where C > 0 is an absolute constant, En(f)c is the best uniform approximation
to f by means of all algebraic polynomials of degree n.

Proof. It follows by theorem 3.10 that for n ^ 1

I A I II i II
n(/)c ^ C ——• (38)

Choose p e P n - 1 such that \ \ f — p \\C(A) = £«-i(/')c and qePn such that q' = p.
Applying (38) we get

K\J )c nU qk

F r o m this and (38) it follows for n ^ r tha t

^ • • • ^ C r
M n _ l n _ r i • ( 3 9 )

On the other hand from Stirling's formula

k\ = j2nh( - Y e"k/12, 0 < 9k < A

it follows that for n^r^\

nr _ n\n - r)\ 2r

— —— — <̂  6 .

This inequality together with (39) implies (37). •
N o w we are able to prove theorem 5.1. Let feVr(M, [a,/?]), r ^ 1, M ^ 0.

Wi thout loss of generality we shall assume t h a t / ( r ) e C [ a b] and M > 0.
Let r < n ^ Ar8, where A = Dje10, Di > 1, is the absolute constant from

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781107340756.006
Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.006
https://www.cambridge.org/core


5.2 rth derivative of bounded variation 123

theorem 5.2. Putting p(x) = f{r\a)xr/r\ we get by lemma 5.7

Rn(f)c < £ . ( / ) c = En(f-P)c < C'{b~a) " ^ ~P llc

(b —aY\\fir)—f{r\a)\\c 8M(b — aY

Hence

r , r^n^/lr8, (40)

where Cx = constant.
Let n > Ar8. Choose m integer so that

In

Clearly, there is a division Q of [a, b] into 2m compact subintervals A, disjoint
except for the end points, such that

| A | < — and KA/<"<-. (42)

We put for A E Q , A = [U,T>], pA(x) =f(r)(u)xr/rl It follows by (37), (41) and
(42) that for AEQ

= EAf~ A)

Consequently, for each AEQ there is a polynomial qA such that \\ f — qA ||C(A) <
C2(M(b - a)r/nr+1l C2 > 1 and degqA ^ r8.

Now we are able to apply theorem 5.2 with e = Cr2(M(b — a)r/nr+1) and
kA = r8, AEQ. We obtain that there is a rational function R such that

and

M(b - a)r

r8+D1r2-2mln2

" r"1(2w) r + 1'Atfa l V C 2 M ( & - « ) " « - ' - ' ( 2 ^

2m
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124 Uniform approximation for some function classes

Using (41), the fact that n > Ar8 = D\el0r8 and the inequality
for x > e10 we obtain

In2 (e + —) U In2 (e
2m) ^ \ ' 2

and therefore

n Wxn
'2

Consequently

This estimate together with (40) implies estimate (1). •

5.3 Some classes of absolutely continuous functions
and functions of bounded variation

It is not difficult to show that (see 11.1.2, theorem 11.3) the estimate
Rn(f)c = 0(1) is exact in the class of all functions absolutely continuous on
[a, /?]. It turns out that if we consider classes of absolutely continuous
functions and functions of bounded variation which satisfy additional
conditions, then it is possible to obtain a uniform rate of approximation
which is better than the approximation by polynomials. In this section we
shall investigate some classes of this kind.

5.3.1 One technical result
The following technical theorem is basic for the uniform rational approxi-
mation of functions with order of approximation not greater than 0(rc_1).

Theorem 5.3. Let the function f be bounded on [a, fc] and let there exist m + 1
points xi9 i = 0,1,...,m, a = x0<xl < ••• <xm = b (m^l) such that

I I / - / ( * , ) llc(A,)^e> f = 0 , l , . . . , m - l , (1)

where A£ = [x f , x i + l ] , e > 0 is a given number. Then there exists a rational
function r such that

\\f-r\\c{a,b]^DB (2)
and

m-i ( b — a\
( , (3)

where \At\ = x i + l — xh D > l is an absolute constant.
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5.3 Absolutely continuous, and bounded variation 125

Proof. There is no loss of generality in assuming that m = 2s with 5 a positive
integer and

Indeed, suppose that theorem 5.3 holds true in this situation. Consider the
general case. Set f(x)=f(b) for x>b. Add at most m new points ute(a, b)
with the property that each interval Ah \ At\ > (b — a)/m, is divided by means
of UH i = l , 2 , . . . , into subintervals with length contained in [(b — a)/2m,
(b — a)/rri]. Also, take if necessary, some points vt = b + i(b — a)/m, i= 1,2,...,
so that the set N ={xju{wju{t;j contains exactly 2s + 1 points, where
2m ^ 2s < 4m. Finally, we renumerate the points of the set N in increasing
order and denote them again by xh i = 0 ,1 , . . . , 2s. Clearly,

Then by our assumption it follows that theorem 5.3 holds true in the general
case, eventually with another absolute constant D.

Thus we shall suppose that m = 2s, s integer and | Amax | ^ 2(b — a)/m. Set

(f{a), x<a,
HX> \f(b), x>b,

and
(b-al i = 0, l , . . . ,m,

i = m + l,m + 2, ...,2m,
Xi-2m + (b — a), i = 2m+ 1,2m + 2, ...,3m.

Denote dt = [ut, ui+ 1 \ i = 0 ,1 , . . . , 3m — 1, dmax an interval d{ with maximum
length,

k2 "1 f ^ ^ Y (4)
where Bl > 1 is the absolute constant from lemma 5.3, k and i are parameters.
Also, denote

fi(x) =f(x) - f (x i \ * i = 0 , l , . . . , 3 m - l .

Next, we shall denote for short || • ||A = || • ||C(A).
Theorem 5.3 we shall prove applying s times the following lemma, where we

use the assumptions and notations introduced above.

Lemma 5.8. Let 0^k^s,k integer. Let there be,for each i, 0^i^3m — 2k— 1,
a rational function qt such that
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126 Uniform approximation for some function classes

where cp(k) ̂  1, cp(k) depends only on /c,

k l | | ( - x , a , ,^(2*+l)e (6)

and

deg fc<JV(M), (?)

where N(k, i) is defined in (4).
Then for each i, 0 < i ̂  3m — 2 k + 1 — 1, there exists a rational function rt

such that

||r|.||(_QO,ao)<(2k + 1 + l)e (9)

and

degrfsSiV(/c+U). (10)

Proof Let 0 «c i ̂  3m - 2k+1 - 1. Denote for short

z 1 = u h z 2 = ( u i + 2 k + u i + 2 k + 1 ) / 2 , z 3 = u i + 2k + i + l ,

j/ = \di + 2k\/2, A x = [ z u z 2 + >/], A2 = [z2-?/,z3],

By (1) and (5)-(7) we get

and

Now we are in a position to apply lemma 5.3 to the function ft with the
intervals A l9A2, rational functions q1,q2 and s1 = (p(k)e, A = (2k+1 + l)c,
feAi = jV(fc,i), kAl = N(/c, * + 2k)- Set £2 = e/2k+x. It follows that there exists a
rational function rt such that
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5.3 Absolutely continuous, and bounded variation 127

and

+ Bx \n( e + — ln(e + 2*(2fc+* + 1)). (11)

Consequently, the rational function rt satisfies (8) and (9). It remains to prove
that deg rt ^ N(k + 1, i). Clearly, we have

From this, (11) and the definition of N(k9 i) in (4) it follows that

degr,.< X ' Z ' l 2 5 1 ( v + l ) l n ( e + 2
7

1 ^

Thus rt satisfies (10). •
Now we continue the proof of theorem 5.3. By (1) it follows that

II / - f (xi) ll[x,.,x,.+2] ̂  2e for f = 0,1,...,m - 2 and therefore

ll/ .-0| | [ u , . ,U i + 2 ]^2e , « = 0 ,1 , . . . , 3 m - 2 .

Consequently, the assumptions of lemma 5.8 hold with k = 0, g, = 0 and

Starting from there and applying lemma 5.8 s + 1 times we obtain that for
every i, 0 < i ̂  m — 1, there exists a rational function rt such that

and
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128 Uniform approximation for some function classes

Choose i0 such that deg rio = min, degrt and set r = rio. Since [a, b] cz
|>i,wI.+2m+1] for every i' = 0,l,...,m-1, ||/-r||[flfft] < 3e, i.e. r satisfies (2)
with D = 3. From the choice of r it follows that

Using the definition of N(k9 i) in (4) and the fact \ dmax \ = | Amax | < 2{b — a)/m
we get

1 2 - - 1 s 2 S + 1 ~ V -

2 4 5 1 ( v + l ) ' " z l n ( e +
j = 0 \

2 V | AI " m

2 - 1

v=o

j = 0

=0

v = 0

Since the function F(x) = 2x(s + 2 + 2/ln 2 — x)2 is increasing in [1, s + 3],

Z v=0

«

where C is an absolute constant. (This is the most essential point in the proof!)
Consequently, there exists an absolute constant D such that

( b-a\
In e + - — ,

i.e. estimate (3) holds. •
5.3.2 Sobolev classes W
Consider the Sobolev class W\

\a,b\ p> 1, of all functions / absolutely
continuous on [a, b] such that f'eLp[a, b~\. First Yu.A. Brudnyi (1979)
announced that for the functions feW\,p> 1, the estimate Rn(f)c = 0(n~ x)
holds. The first proof of this result was given by V.A. Popov (1980). Note
that for feWj,, 1 < p < oo, we have only En(f)c = o(l). We shall next prove
this result as a consequence of theorem 5.3.
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5.3 Absolutely continuous, and bounded variation 129

Theorem 5.4. IffeWp[a, b], p>1, then the following estimate holds for n ̂  l:

Rn(f)c<C^^, (12)

where C = Cxp{p- l ) " 1 ^ -a)1'1'", Cx = constant.

Remark. The estimate (12) is exact for the class W\, p > 1. For every individual
function feW\, p>1, the o-effect appears (see 10.2).

Proof. To prove theorem 5.4 it is enough to consider the case [a, b~] = [0,1]
and | | / ' | |p=»l. Indeed, let theorem 5.4 be true in that case. Suppose
/'eLp[a, b]. The case when | | / ' | | p = 0 is trivial. Let | | f ' \ \ p>0. Consider the
function g{x)=f(a + (b — a)x)/\\f'\\p(b — a)l~llP. Obviously, we have
\\d/

 |ILP[O,I]
 = 1- Hence by our assumptions Rn(g)c^ C(p)/n, n ^ l . Then we

get

RJLflc = II / ' Ub - a)1 - V'RMc < C(p)(b - a)1 ~ I/*LO*, n>\.

Thus we shall suppose that [a,fo] = [0,1] and | | / ' | | p = 1 . Pu t f (x )= f ( \ )
for x> 1. Clearly, there are points xh i=1,2,...,m, where n^m^2n, such
that

0 = x0 < x t < • • • < xw_1 < l sc xm < l + -

and for each i,0 < i < m — 1, one of the following two conditions is fulfilled:

(i) J A | | / ' ( x ) | dx= l /nand |A i | < l /n ,
(ii) | A i | / ' ( x ) | d x ^ l /

where At = [xf,x / + 1] .
Indeed, set x0 = 0 and define by induction xi + 1= max {x: xt < x ^ xt + 1/n

and J*J/'(t) |dr< 1/n}, £ ^ 1 . Finally, denote by xm the first point x ; ^ l .
Because | | / ' | |L l ^ | | / / | I L P = 1 these points xt satisfy the required conditions.

Obviously, we have

II / - / (*<)IICA,)^ [ | / ' ( x ) | dx<- , i = 0 , l , . . . , m - l . (13)
JA,

 n

Denote by N1 and N2 the sets of all indices i, 0 ̂  i < m — 1, which satisfy
(i) and (ii) respectively.

If ieNl9 then by Holder's inequality we get
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130 Uniform approximation for some function classes

Hence for ieNx

and since \\f'\\p= l,

^ 1
n. (14)

One easily verifies the following inequality:

By (14) and (15) we get

m - l / 7 \ m~1 ( 2 \ ( 2

t h \ m\A\J fa V " 1 4 1 / teJ? Vm^J fro V n\Ai\J iiH, \ n|Aj|

2P r l
 ! o / 2P , A\ ^ 6P

From this and (13), applying theorem 5.3 we conclude that there is a rational
function r such that

ll/- r llcrci] ^ ^ ~

and

ln(e + ——-WV ~n,

V \A\J \m\Av\J p - \

These estimates imply (12). •
As a consequence of theorem 5.1 and theorem 5.4, we shall obtain relations

between rational uniform approximation of functions and polynomial
Lp-approximation of their derivatives. First P. Turan noted that there should
exist relations of this kind. Here we shall present the results of V.A. Popov
(1980).

Theorem 5.5. Letfe Wrp[0,1], r ^ 1,p ^ 1, i.e./ ( r )eLp[0,l]. Then the estimate

holds true in the following situations:

(i) r=l,p>l,
(ii) r > 2 , p = \ ,
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5.3 Absolutely continuous, and bounded variation 131

where En(f
{r))p denotes the best Lp-approximation to f(r) by means of algebraic

polynomials of degree n.

Proof. Consider the case when r = \ and p> 1. Choose PiePn such that
II / ' _ Pi \\LP = En(f')P

 a n d qsPn+1 s u c h that q' = px. In view of theorem 5.4
we get

R 2 n + 1(f)c < RJLf - q)c u q h E ^p)
n n

In the other case we proceed similarly, applying theorem 5.1. •

5.3.3 Absolutely continuous functions with derivative in Oriicz space L log L
The function </> is called an Oriicz function if it is continuous, strictly
increasing and convex in [0, oo), </>(0) = 0 and limJC_>oc(0(x)/x) = OO.

The function

\jj(y) = max {xy — </>(x)}, y^O,

is called the complementary function to <j>.
The Oriicz space L^_a, fc], generated by the Oriicz function (/>, is defined as

the set of all functions / measurable in [a, b~] such that there exists a constant
K > 0 with the property

The Oriicz space L0[a, b] is a Banach space under the norm

\\f\\L = 'mi \ K + K ["<M\f(x)\/K)dx\.
I J J

We need some simple facts concerning Oriicz spaces which will be given
without proofs (for a detailed study of the theory of Oriicz spaces see
Krasnoselskii, Rutitskii (1958)).

If XE is t n e characteristic function of a measurable set E a la, b], i.e.

fl, xeE,
UX)-\0, xe[_a,b-]\E,

then

l(1\ (16)
\ m e s E /

where ij/ ' 1 is the inverse function to i//.
Holder's inequality is valid: \ffeL(l)[_a,b~\ and geL^,[a,b~\, then fgeLx[a,b~\
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132 Uniform approximation for some function classes

and

\"\f(x)g(x)\dx^\\f\\LJg\\Ly (17)
Ja

If/eL. [o, b], then

Next, we shall consider the Orlicz space L^ JO,1], where

4>0(x) = xln+ x, ln+x =

This space is denoted usually by L log L. A light computation establishes that
the function

y, 0 < j ^ l ,
&y~\ y>\,

is complementary to </>0.
Next we shall prove the following result of A.A Pekarskii (1982).

Theorem 5,6, If the function f is absolutely continuous on [0,1] andf'eL log L,
then for n > l

(19)

where c is an absolute constant.

Remark. This theorem is an improvement of theorem 5.4.
Note that LlogL consists exactly of those functions / in Lx for which

IIM/IILI < °o, where Mf is the Hardy-Littlewood maximal function for/
(see section 5.4). Moreover, the Orlicz norm || • ||LlogL is equivalent to the norm
|| / 1 | defined with || / 1 | = || Mf ||Ll. Now the estimate (19) is equivalent to the
following: iffis absolutely continuous on [0,1] and M/'eL^O, 1], then for

„ , , . ^JAf/'llz.,
n

Proof of theorem 5.6. Without loss of generality we shall suppose that

Then by (16) and (17) it follows that
•i

o
(20)
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5.3 Absolutely continuous, and bounded variation 133

Let n ^ 1. Set f(x) =f(l) for x > 1. Exactly as in the proof of theorem 5.4,
in view of (20) there exist points xh i = 0,1,...,m, where n^m^2n, such
that

0 = x o < x 1 < • • • < x m _ ! < 1 s = x m < l + -

and for each i9 0 < i < m — 1, one of the following two conditions is fulfilled:

(i) fA j | / ' (x) |dx=^and|A, |<l /n

(ii) fA ) | / ' (x) |dx<l/nand|A, | = l/n9

where AI. = [xf,xI.+1].

Denote by N1 and N2 the sets of indices i, 0 < i < m — 1, which satisfy (i)
and (ii) respectively. We need the following inequality:

\f\x)\AxU [ U\f'(x)\)dx, (21)
,- / Jo

where A( = [x ; ,x j + 1] .
Since <j)0 is convex, then by Jensen's inequality we have for ieAf

Multiplying by |At| and summing over ieN1 we obtain (21).
By (18) we have

fi0o(l / 'WI)dx= < /
Jo Jo

From this, (21) and the fact that condition (i) holds for ieN1 it follows that

Consequently, we have

i / 2 \ m~1 ( 2

I n e + ^ W y. l n e + 4

_ + 2] lM e + 2Kc W. (22)

On the other hand

1
• _ v _ n i m — \ cyw:n' ! - U ' 1 ' - - - ' m K W
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134 Uniform approximation for some function classes

Now we are ready to apply theorem 5.3 for the function / on [0, xm],
1 < xm < 2. In view of (22) and (23) we conclude that there exists a rational
function r such that

D
l l Z - r l l c i o , ! ] ^ -

and
m_1 / 2 \

deg r < D Ym_1/ In e 2 + , « = Den,
i = o V m \ A i \ J

D = constant.
Theorem 5.6 follows from this immediately. •

5.3.4 Functions with bounded variation and given modulus of continuity
Denote by V(co)= V(M,[a9b],a>) the set of all functions / continuous on
[a,ft] for which VhJ < M and co{f;S)^co(d), 5^0, where co{f;5) is the
modulus of continuity offand co is a given modulus of continuity. A function
co is called a modulus of continuity if co is a nondecreasing function on [0, oo),
lim,5^0 (o{S) = co(0) = 0 and co(31 + d2) ^ co(di) + <*>(<52) f° r ^1 = ^2 ^ 0-

First G. Freud (1966) and E. P. Dolzenko and A.A. Abdulgaparov have
shown that the class V(cd% 0 < a < 1, can be approximated uniformly by
rational functions better than by polynomials. Later on A.P. Bulanov (1975b)
considered the rational approximation of the class K(co) for arbitrary co. The
final estimate was obtained by A.A. Pekarskii (1978b) and P.P. Petrushev
(1977).

Theorem 5.7. Let f eV(M9[a9b~]9oS)9 where M ^ O , co is an arbitrary modulus
of continuity. Then we have for n > 1

f? fe)i (24)
where c is an absolute constant.

Corollary 5.1. (i) IffeV{c5x), c>0, 0 < a < 1, then Rn(f)c = O(lnn/n).

(ii) IffeV{c(\n(l/d))-y), c,y>0, then Rn(f)c = O(n"yl(1 + y)).

(iii) / / /eK(c(lnln---ln(l/(5))-1'), c,y>0, k^2, then Rn(f)c =
k

0 ( ( l n l n - - l n n ) - y ) .
k - l

Remark. The estimate (24) is exact with respect to the order (see definition
5.2 in section 5.1) in the class F(co), where the modulus of continuity co satisfies
\imd^0(a>(d)/d) = oo. This nontrivial fact, to be established in section 11.2,
shows that there is no o-effect in this case. However, we shall prove in section
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5.3 Absolutely continuous, and bounded variation 135

10.2 that the o-effect appears for the uniform rational approximation of all
absolutely continuous functions / in V(co) for some co. Note that for
polynomial approximation of such functions we have only En(f)c = O(co(n~ 1)).

Proof of theorem 5.7. We shall use theorem 5.3. First, consider the trivial
case 1 ^ n =% 2D, where D > 1 is the constant from theorem 5.3. Obviously,
we have

This estimate implies (24) in the case 1 < n < 2D.
Now, let n > 2D. We shall denote for short co(S) = co(f; S\( 8^ 0.We shall

consider three situations.
(i) If M < co((b - a)/en/2D), then

which implies (24).
(ii) Let 2DM/n > co(2D(b — a)/ne). Then by Jackson's theorem (see theorem

3.10)

which implies (24).
(iii) Let M ^ co((b - a)/en/2D) and 2DM/n ^ co(2D(b - a) / ne). The function

Fi(t) = M/t is strictly decreasing and the function F2(t) = co((b — a)/tQn/2Dt) is
nondecreasing on [l,n/2D]. Consequently, there exists exactly one point
t0e[l,n/2D~] such that

M ( b-a ,

Now we define a partition of [a, b] in the following way. Pick x0 = a
and suppose that x0,x1,...,xk are defined. To define xk + 1 we consider the
set

Ak+1 = <xe[a,by.x>fMxk,\f(x)-f{xk)\= — -
{. lo J

If Ak + i # 0 we put xk + 1 = M{x:xeAk + 1}.
Clearly, after a finite number m + 1 of steps we get Am+1= 0. Set xm = b.

So we have a division of [a, 6],

a = x 0 < xx < • • • < xm = b,
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136 Uniform approximation for some function classes

with the properties

^ <! / (*«)- / (* , + i ) l ^ , (26)

2M
\\f(x)-f(Xi)\\C[x.x. + l ] < — , i = 0 , l , . . . , m - l . (27)

Now we are able to apply theorem 5.3. Using (27) we conclude that there
exists a rational function r such that

(28)
l l

and

(29)

where Af = [xf, x i+ J , D > 1.
It follows from (25) and our assumptions that

M / 6 - a \ . r (M

From this and (28) it follows that

\\f-r\\daM<c inf ^ — + 0, - _ ? r

It remains to estimate deg r. Since Vb
af < M, then by (26)

I
to i = 0

and therefore m < t0. Also, by (25) and (26) we have for i = 0 ,1 , . . . , m — 1

oe

and consequently ,
c0e

Then by (29) we get
/ t

deg r ^ Dm In ( e H—e" /2Dr°V m
^Dt0 \n (Q + Qn/2Dt°) ̂  n,

where we have used the fact that the function F(x) = x In (e + 1/x) is increasing
on (0, oo). This implies (24). •
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5.4 DeVore's method 137

Proof of corollary 5.1. The assertions (i), (ii) and (iii) in corollary 5.1 follow
immediately setting consecutively t = n/(ccInn\ t = ny,il+y) and t =
( l£]n-lnn)y in(24).

v v '
k - 1

5.4 DeVore's method

5.4.1 Hardy-Littlewood maximal function
It is well-known that the Hardy-Littlewood maximal function and its
modifications have many important applications in analysis - for example in
the differentiation theory of multivariate functions (see E. Stein (1970),
E. Stein and G. Weiss (1971)). Ronald DeVore (1983) was the first who showed
that the maximal functions may be very useful in the theory of rational
approximations. Before describing his method, we shall give the properties
of the Hardy-Littlewood maximal function we need.

Let / be an integrable function on the interval [a, b~] or (— oo, oo). For every
xe[a,b] (or (— oo, oo)) we define the function

where the sup is taken over all subintervals A = [c, d~] a [a, b] (( — oo, oo)),
which contain the point x, and | A | = d — c is the length of the interval A.

The most essential property of the Hardy-Littlewood maximal function
is perhaps the following one.

Theorem 5.8. Let f be an integrable function on (— oo, oo) (i.e.
Then for every a > 0 we have

^— oo, oo)).

2
^ a • L,(-tx>,<x>)>

where mesA = \A\ denotes the Lebesgue measure of the set A.

Remark. Usually this property of the maximal function Mf is expressed as
follows. The operator Mf is of the weak type (1,1).

To prove theorem 5.8 we shall need a covering lemma of Vitali type.

Lemma 5.9. Let A l 5 . . . , A n be a finite family of open intervals in (—00,00).

Then there exists a subfamily of intervals Si,d2,...,Sm such that St are pairwise

disjoint and

Proof Obviously we can consider only the case when the intervals A,-,
i = 1,..., n, are such that no interval At is contained in the union of the others.
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138 Uniform approximation for some function classes

Let At = \av bJ and let us assume that we have ordered the intervals in such a
way that

a1<a2< •••<an.

Then bi+l>bt holds since otherwise A£+1c=Af. Also ai+l>bi-1 since
otherwise Ai c A i _ 1 uA i + 1 . Therefore the even-numbered intervals and
odd-numbered intervals are disjoint. Obviously

I |A,|+ (1)

For {8J we take {A,:* even} or {AT:I odd} in dependence on which one
of the sums Zieven o r Siodd *s bigger. Then from (1) it follows that

D

Proof of theorem 5.8. Let /eL(— 00, 00) and a > 0 be given. Using the
definition of M/ it is not difficult to see that the set Ga = {x: (Mf)(x) > a} is
open and therefore measurable. Again using the definition of M / w e get that
for every xeG, we have an open interval Ax containing x such that

1
(2)

For every compact subset K of Ga we can choose a finite subset of intervals
AXi, i=l,...,n, x,eK, such that K a (J"=1Ax.. Applying lemma 5.8 to the
intervals Ax.5i=1,...,n, we obtain a subset of pairwise disjoint intervals Ay.,
i = l,.. . ,m, such that

1
> -

2
Since the intervals Ay. are pairwise disjoint, from (2) it follows that

1 1

(3)

A,, \f{t)\dt

(4)

The inequalities (3) and (4) give us

2
"~~ a L( GO,co)

Since the compact subset K <= Ga was an arbitrary one, we have

J = mes{x:(M/)(x)>a}<-||/||L(_00>00). D
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5.4 DeVore's method 139

Remark. If/eLx[a, fr], then setting/(x) = 0 if x<£[a, b] we obtain the estimate

2

The function

ra(#;a) = mes{x:\g(x)|>a}

is called a distribution function of g. Obviously if g is an integrable function
then m(g; a) is defined for a > 0 and is a decreasing function of a.

Lemma 5.10. Let feLp(- oo, oo), 0 < p < oo. TTiew

pa'">»!(/;«)da. (5)
0

Proof. Let

G={(x,a):xe(-oo, oo), 0

Using Fubini's theorem we obtain

d x =
= | J -o|o Jpa0

)da. D

Now we shall prove the results for the Hardy-Littlewood maximal function
we need. The first one is the following

Theorem 5.9. Let feL1[a, b~\. For 0 < p < 1 we have

"b \l/p

<c(p,b-a)\\f||Ll[fltfc],

w/zere £/ze constant c(p, b — a) depends only on p and the length b — a of the
interval [a, b].

Remark. The constant c(p, b — a) tends to oo as p tends to 1—0.
Assume that || / ||Ll[fl>b] = 1. We have

\(Mf)(x)Ydx =

For the first integral Ix we have from lemma 5.10 and theorem 5.8 (see the
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140 Uniform approximation for some function classes

remark after the theorem)

((M/)(x))'dx = p ap_1m(M/; a)da

J
J l

2 f6 2D

- I |/(t)|dtda<2p

s ince ||/||Ll[fl,fr] = 1.

For /2 we have trivially I2^b — a, therefore

((Mf)(x)Ydx < - ^ - + b-a = dip,b-a).
1-P

If II / WLMM * !. w e s e t 9 = f/\\ f haa.by T h e n ||9 Laa.b] = 1 and using the
fact that M{kg) = \k\Mg we obtain

((Mg)(x)Ydx = I"((M—f (x) dx ^ c'(p, b - a\
J \ \ \\J llLila.b]/ J

i.e.

\\(Mf)(x))»dx^c'(p,b-a)\\f\\il[aM,

therefore
b \ 1/p

((M/)(x))"dx ^(c'(p,b-a))ilp\\f\\L.abv D

The second result that we need is the famous M. Rieze theorem.

Theorem 5.10. Let feLp(— oo, oo), 1 < p ̂  oo. Then

where the constant c(p) depends only on p.

Proof. If p = oo, then obviously || Mf || « < || /1|«,• Now let 1 < p < oo. For
every fixed a ̂  0 let us set

0, |/(x)|<a/2.

Then |/(x)| < l/^x)! + a/2 for every x and therefore (Mf)(x) < (Af/,)(x) +
a/2. We obtain from this inequality

Aa = {x: (M/)(x) > a} c {x: (M/J(x) > a/2} = Bx

and therefore \AA ̂  IBJ.
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5.4 DeVore's method 141

Using theorem 5.8 we obtain:

K | = m(M/;aK|fl,| = m(M/,;a/2K-||/J|1. (6)
a

But from the definition of fa we get

ll / . ll i= I l/W|dx. (7)
|/(x)|>a/2

The inequalities (6) and (7) give us

m(M/;oK4 J |/(x)|dx. (8)
a|/(x)|Sa/2

Now we shall use lemma 5.10. We have

|(M/)(x)|pdx = f pa'-^Mfiaida^l pap-l4-\f{x)\dxdot
J o J o 0 J\f[x)\>a/2p a

fee 2\f(X)\

= 4pI |/(x)|ocp~ 2

J -oo J o
V"1 2 n f

^ |/(x)|*dx.

Hence the theorem follows with a constant c{p) = (2p+ 1p/(p — l))1/p. D

Remark 1. We see that c(p) -• oo when p -> 1, more exactly c(p) = 0(l/(p — 1)),

Remark 2. We give theorem 5.10 for the interval (—00,00). If feLp[a, b\
1 < p < 00, we also have

l|Af/||Lp[flf6]<c(p)||/||Lp[fli6]. (9)

This follows immediately, since we can set /(x) = 0 for x<£[a, b], then

II /HLP(- oo.oo) = II/LLLP[A,B]> IIMfIILp[a,b] ̂  I IM/JL P ( - 00,00)•
We shall use M. Rieze's theorem in the form (9).

Lemma 5.11. Let feL(— oo, oo) and [a,fr] be a given finite interval. Then Mf
attains its inf in [a, b].

Proof. Indeed, using the definition of Mf it is not difficult to see that the set

is closed. •

5.4.2 More on the class W\,p > \
First we shall demonstrate the method of R. DeVore on the functions
belonging to the class Wi, p>1. We proved the following theorem in 5.3.2:
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142 Uniform approximation for some function classes

Theorem 5.4. Let /e W*[0,1], p > 1. Then

where the constant c(p) depends only on p.
Here we present another proof of this theorem.

Proof. We can assume that | | / ' | | p = 1. Let us divide the interval [0,1] into

In subintervals Aj= [x7-_x,xj], j = 1,...,2n, 0 = x0<xl< ••• <x2n= 1, such

that

(i) l A ^ " " 1 , \^j\=xj-xj.l, 7=1,...,2w,
(ii) S \

Since || f' \\p = 1, such intervals can be got by first finding n intervals which
satisfy (i) and then subdividing them so as to guarantee (ii).

Now let us choose ZJEAJ SO that

where Mf is the Hardy-Littlewood maximal function for / ' . The inf is
attained by lemma 5.10.

We set

R(x)= X

We have the following properties of the functions $,-, 0 and #:

4>}{x)^2~2, for xeA7-,7= 1,...,2w, therefore

0(x)= £ <j)j(x)^2-2, X E [ 0 , L ] ; (2)
7=1

<j)j is a rational function of degree 4, therefore

(peR8n, ReR16n.

Let us mention also that

E«/x)=l, R/x)^0, xe[0,l], 1
I=I > (3)
K / x X 4 ( l + \AJ\-2(X-$J)2)-2, xe[0,1]. J

Let us estimate now \f(x) — R(x)\, xe[0,1]. First we have, using the choice
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5.4 DeVore's method 143

of £j, theorem 5.10 (more exactly remark 2 after the theorem), and (1) (ii),

1
f'(t)dt

/p

i / p

^c(p)\x-^j\(n\Aj\r
1"', (4)

where c(p) is a constant depending only on p (c(p) is the constant from theorem

Since £ 2" x Rjix) = 1 for XE[0, 1], we have, using (3) and (4),

2n

<4c(p) \ " 2

sv(x), (5)

where sv(x) is the sum of those terms for intervals Aj which satisfy
2- v w- 1 < |A J | <2~ v + 1 n" 1 (recall that lA^Kn"1 , because of (1) (i)).

It is easy to see that

(6)

Indeed, | A,.| (1 + |Aj|-2(x - Q2)1'2 = (| A / + (x - ^-
Using (6) and the definition of sv we obtain

\x -

(7)

where Av is the set of those A7- which appear in sv. Each Aj6^v has a length
^ 2~vn~x and the intervals are disjoint. Therefore for any integer k ^ 0 there
are four £7 at most which satisfy

Using this in (7) we obtain

(l+(/c/2)2r3/2sSc-16n-12-v<1-1/ ' ' ), (8)

where c is an absolute constant.
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144 Uniform approximation for some function classes

From (5) and (8) we obtain, using that p > 1,

\f(x)-R(x)\^4c(P)c-l6n'1 £ 2-«1-1"> = c'{p)n-\

v = l

where the constant c\p) depends only on p. Since ReR16n (see (2)), the theorem
follows. •

5.4.3 Functions with derivative of bounded variation

Here we shall apply the method of R. DeVore for rational uniform
approximation of functions with derivative with bounded variation. In section
5.2 was considered the general case of rational uniform approximation of
the class Vr (theorem 5.1). For r = 1 we have the following.

Theorem 5.1. LetfeVl[a,b~}. Then

&n(f)qa,b] < C ~2 ,

where c is an absolute constant.

Proof. (DeVore, 1983). If we consider the function g(x) =f(a + (b — a)x) we
see that it is sufficient to take only the case when [a, b] = [0,1]. We see also
that we can consider only the case when V\f = 1. Since any function / with
VQ/' < °° can be approximated uniformly by functions g with \\g" ||L(0,D =
IId"Hi ^ V\f, it wiU be sufficient to prove the following estimate only.

Iff"eL(0,l)and ||/'/|li = l then

RJLfho,ii<cn-2
9 (1)

where c is an absolute constant.
Let / be such that || / " || x = 1. Using theorem 5.9 and putting p = f (every

P> j < p < l, will work infact), we have the estimate

\4/3

((Mr)M)3/4dxJ < c | | / " | l i = c , (2)
o /

where c is an absolute constant and Mf" is the Hardy-Littlewood maximal
function for /" .

Now let us choose the intervals A j= [xj-.1,xj], j= l,...,2n, 0 = x0<
xx < • • • < x2n = 1, such that

(i) l A ^ n - 1 , \AJ\=XJ-XJ-L9 ;=l,...,2n,

(ii) JA,((M/")(x))3/4dx<c3/4n-1,

where c is the constant from (2).
Since by (2) j"J((M/")(x))3/4 dx ^ c3/4, such intervals can be obtained by

first finding n intervals which satisfy (i) and further subdividing them so as
to guarantee (ii).
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5.4 DeVore's method 145

Later on we shall work as in subsection 5.4.2. Choose ^eAj so that

The inf is attained by lemma 5.11. Now let us set

j\-2(x-Q2r2, 7=1,...,2n

As in subsection 5.4.2 we have the following properties:

(j)j{x) ^ 2~2 for xeAj, j=1,...,2n, therefore

4>{x)=

(since Pi} are linear).
Let us remark also that

2, xe[0,l];

0, xe[0,l],

4(1 + |Aj\~
2{x - {j)2)-2, xe[0,1].

(4)

(5)

Let us estimate now \f(x) — R(x)\. Using the Taylor formula with integral
remainder, the choice of ^ and (3), (ii) we get

\f(x)-Pij(x)\ = f(x)-f{Q x — <

^\X~£:

(x-t)f"(t)dt

\f"(t)\dt

1 f V ' 3

((M/")(f))3/4dt4

Using this together with (5), we get

| f(x) - R(x)

(6)
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146 Uniform approximation for some function classes

where sv(x) is the sum of those terms for intervals Aj which satisfy

We have

( x - S / < | A / ( l +|A j r
2(;c-£,)2). (7)

Using (7) and the definition of sv we get

sv(xK4(2Y / 32 - 2 vn-2 X ( l + I A ^ f r - ^ ) 2 ) - 1 , (8)

where Av is the set of those Aj which appear in sv. Each AJEAV has a length
^ 2"vn_1 and the Aj are disjoint. Therefore for any integer k ̂  O there are
four £ j at most such that

Using this in (8) we obtain

sv(x)< 16n -22~2v /3 £ (1 +(fc/2)2)-1 <c , n" 2 -2- 2 v / 3 , (9)
k = 0

where d is an absolute constant.
From (6) and (9) we obtain

|/(x)-K(x)|<4cc'n-2 £ 2"2v/3 = c"n~2. •
v = 0

5.5 Convex functions
One of the interesting classes of functions for rational approximations is the
class ConvM [a, ft] of all convex and continuous functions / on the interval
[a, ft] such that ||/||C[fl>fc] <M. A.P. Bulanov (1969) showed that there exists
a universal order 0(ln2 n/n) for the uniform rational approximation of the
class ConvM[a,b], while we have only En(f)C[ab] = o(l) for /eConvM[a,ft].
We shall prove first the exact order 0(n _1) obtained by V.A. Popov and
P.P. Petrushev (1977). There are many results concerning the uniform rational
approximation of convex functions with a given modulus of continuity (see
the notes at the end of the chapter). We shall consider here only the class of
convex functions with modulus of continuity of the type co(f; S)c = 0(<5a). The
rational approximation in uniform and Lp-metric of some classes of piecewise
convex functions and functions with piecewise convex derivatives will be
investigated in chapter 7.

Theorem 5.11. Let M > 0 and let [a, ft] be an arbitrary compact interval. Then

sup Rn(f)c[aM^cMn~l,
/eConvAf[a,6]

where c is an absolute constant.
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5.5 Convex functions 147

Proof. Theorem 5.11 we shall prove applying another method for rational
approximation. Note that this method was used for obtaining the final results
for uniform rational approximation of the class Vr (see also the notes at the
end of the chapter).

Let us denote by K\_a, b~\ the set of all convex nondecreasing functions on
the interval [a, ft], continuous at the point ft, and by KM[a, b~\ the subset of
K[a, ft] consisting of those functions /eK[a, ft] for which \\ f \\C[aM ^ M,
/(x)>Oforxe[a,ft].

Let us set

(j)ntA= sup inf {|| f-r\\C[O1]:reRn,0^r(x)^A for every x}.
feKi[0,l]

Lemma 5.12. We have the equality

sup {Rn(f)C[a,h]:feKM[a,bl} = M(/>„.

Proof. Let /eXM[a, ft]. Then g(x) = M~lf(a + (ft- a)x) belongs to Kx[a,ft]

a n d c o n s e q u e n t l y t he re exists reRn such t h a t \\g — r \\C[0tl] ^ </>n, i.e.

max \M~ lf(a + (ft — a)x) — r(x)\ = M1 max
xe[0,l]

\f(x)-Mr
\b-a

This shows that

sup {Rn(f)cla,b]:feKMla,ft]} < Mtf>n. •

The converse is established similarly. •

Lemma 5.13. We have the inequality

sup inf \\f-r\\C[atb]^M<pn,A.
feKi[a,b] reRn

VbJS,M O^

Proof Let feK^b] and VbJ^M, M>0. Then the function g(x) =
M~\f(a + (b-a)x)-f(a)) belongs to K{[0,1]. Let reRn be such that
0^r(x)^A for every x and \\g-r||C[0,i]<(t>n,A> i-e-

m a x \g(x) — r(x)\ = M
 1 m a x

xe[a,b]
f(x)-[f(a)

x — a

b-a

Since O^f(a) + Mrf(x-a)/{b-a))^l+MA and f(a) + r((x -a)/(b-a))e
Rn, the lemma follows. •

Lemma 5.14. Let xoe(0,1). Then for arbitrary <5,0 ^d^ 1/3, the fractional-

linear function a(x0;x) = (x — x0)/(l — xx0) satisfies

a ( x 0 ; - 1 ) = - 1 , a(x0;l)=1, a(x0;x0 -8) sS - 3,

a(x0;x0 + e)^3, e = 33(1— x0).
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148 Uniform approximation for some function classes

Proof. In fact

a(x0; x0 -s)=- 3(5/(1 + x0 + 3x03) < - 3,

a(x0; x0 + e) = 33 /(1 + x0 - 3x03) ^d. •

Lemma5.15. There exists an absolute constant d>0 such that for every
XOG(0,1) and every positive integer n>1 there is a rational function an(x0;x)e
RN, N ^ dln2n, such that

\°n(xo'>x)\ < n~2, - 1 < x s$ x0 - n~\\ - x0),

|1 - <7„(x0;x)| < n~2, x0 + tt~2(l - x0) < x ^ 1,

0 s* (Tn(x0; x) ^ 1 for every x.

Proof In view of lemma 5.1 (setting a = n~2/3, /? = 1, y = n~2/2) there exists
a constant d > 0 such that for every integer n > 1 there is a rational function
(T„GRN9 N < din2n, such that

0 < c„(x) ^ 1 for every x.
Then the rational function an(x0; x) = crn(ai(x0; x))9 a(x0; x), the function from

lemma 5.14, satisfies the requirements of lemma 5.15. •

Lemma 5.16. Let feK1[0, l '] . Then

aj(f x; 3) = m a x {\f(x) -f(y)\:\x- y\^d}^ 3(l - x)- K

Proof The lemma follows from the convexity and monotony of / and the
inequalities 0 </(x) </(l) < 1.

Lemma 5.17 (Fundamental lemma). There is an integer n0 such that ifn>n0

and if for k = [j(n — dln2 n)] (d the constant from lemma 5.15) we have
k, <P(k) ^ 1> then

4dln2n\q>(k)
n J n

Proof Let feK^O, l]. Take a point xoe(0,l) such that V%°f=VlxJ=
i ^ o / ^ i - The function / is convex and nondecreasing, so xo^j. Put
e = n"2(l — x0), Aj = [0,x0 + s] and A2 = [x0 — s, 1]. By lemma 5.16 and the
assumption feKx[0, 1] we have

— x 0

vxo-j=
(1)
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5.5 Convex functions 149

By (1) and lemma 5.13 there are rational functions r{eRk, i = 1,2, such that

ll/-'" illc [A i]<(l+2n-2)^,3/2,

( K r . - t o O l ^ + ^2 1 + 1 for every x , i = 1,2. ' ( 2 )

Let 0-„(xo;x) be the rational function of degree ^ din2 n from lemma 5.15,
corresponding to the point x0.

Consider the rational function

Q(x) = rx(x) + an(x0;x)(r2(x) - rx(x)).

We have QeRN, N < 2k + dln2n.
Let xe[0,1]. Using lemma 5.15 and (2) we obtain the following,
(a) If 0 < x < x0 - e, then

I/to - 6WI < I/to " »-ito| + kn(x0;x)| |r2M - ri(x)\

+ l V l Y (3)

(b) If x0 — e < x < x0 + g, then

l /to - Q(x)\ < (1 - an(x0; x))\f(x) - r t t o | + (T„(x0; x)|/(x) - r2(x)\

<(l+2n- 2)&, 3 /2 . (4)

(c) If x0 + e < x < 1, then

|/(x) - Q(x)| < |/(x) - r2(x)| + 11 - ff^xJUMx) - r2(x)|

(5)

In addition from lemma 5.15 and (2) it follows that for every x, — oo < x < oo,
we have

|Q(x)|<(l-<Tn(x0;x))|r1(x)|+(7n(x0;x)|r2(x)K3(- + 2+11n-

i.e.

lieWllc(-=o.»)<3l-+1

Now let n0 be so large that for n > n0 we have

( i )n>2 ,
(ii) l(n — d ln2 n) > l, d ln2 n > 4,

2 \ 1 6

Then if n > n0 , k = [^(n — d in2 n)] and 0t3 ^ (p(k)/k, q>(k) ^ 1, we find from
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150 Uniform approximation for some function classes

(3)-(6) that

This establishes the lemma. •

Lemma 5.18. We have the equality

SUP Rn(f)C[a,b] = M SUP K»(/)c[0.1]-
feConvM[a,b] /eConvi[0,l]

The proof is like the proof of lemma 5.12.
Now we shall prove a result a little bit stronger than theorem

5.11.

Theorem 5.12. There exists an absolute constant c1>0 such that

Proof. Let N0 be such that

(a) N0 > n0, where n0 is the constant from lemma 5.17,
(b) the function din2 x/x decreases in (N0, oo)

(here d is the constant from lemma 5.15).
Then there is obviously a constant c2 ̂  1 such that for n ̂  N0 we have

4>n,3^c2n-\ Put

y(x) = ti(x-dln2x)l f(x) = y ( f - \ x ) l y°(x) = x.
Clearly y(x) < x/2 for x ̂  N0. Then for each n> N0 there exists an s0 such

that ySo(n) < N0 and / ° ~1(n) > N0. Using lemma 5.17 we obtain successively

1 + . ~ - " v-// w , , 4dln 2 ( /° - 2 («)) \ c2

Using the inequality y50-1>JV0, the choice of N0 and the inequalities
yk(n) < / ~ \ n ) l l, ̂  s0 - 1, we obtain

, , 4dln(y(n))\ Yi ,
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5.5 Convex functions 151

where c3 is a constant, depending on d and N0, but not on n. Consequently
1- •

Proof of theorem 5.11. By lemma 5.18 it is enough to establish the existence
of an absolute constant c such that

sup K„(/)C[o,i]<;
/eConvi[0,l] s

If we take into account that / can be represented in the form f(x) =
d + / i M +f i ( l ~ x)> where /1GK2[0,1], i = 1, 2, then by lemma 5.12 theorem
5.11 will be established if we show that there is an absolute constant cx such
that

But 4>n <</>„, 3, so theorem 5.12 gives us the needed inequality. •
Now we shall consider rational uniform approximation of convex functions

with modulus of continuity co(f; 5)c = 0((5a), 0 < a < 1.
We shall denote by ConvM(a, [a, b~]) the set of all convex functions on the

interval [a, b~\ for which

Theorem 5.13. Let 0 < < x ^ l , M > 0 and let \_a, b~\ be an arbitrary compact
interval. Then for n ̂  1 we have

sup Rn(f)c[a,b]<C(0C)j> ,
/eConvM(a,[a,fc]) W

where c(a) depends only on a.

Proof. It is easy to see (compare with lemma 5.12) that for M > 0 we have

sup Rn(f)c[a,b] = M{b - af sup Rn(f)c[o,i]•
/eConvM(a,[a,b]) /eConvi(a,[0,l])

Moreover every function feConv1(a, [0,1]) can be represented in the form
f(x) = d —fi(x) — /2(1 — x), where fh i = l, 2, is a nondecreasing and concave
function on [0,1], ft{0) = 0 and wife, S)c < 5\

5 d ̂  0, i = 1, 2. Thus we shall
suppose that / is nondecreasing and concave on [0,1], /(0) = 0 and
(o(f',S)c^d", (5>0, 0 < a ^ 1. Without loss of generality we shall suppose
also that / ' e C [ 0 , l ] .

To prove theorem 5.13 it is sufficient to prove that

Next we shall prove by induction the following lemma, where / is the
function introduced above.
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152 Uniform approximation for some function classes

Lemma 5.19. Let s ^ 1. For each v, 0 < v ^ s, there is a rational function rv

such that

l l / l l ^ S ~ V + (8)

IIrv | |C(_«, ,« , ,<2", (9)

degrv < 4 J 2 ( s~°a /2 + 8Bt(s - v)s, (10)
i = v

where c = c(l) is £/ze constant from theorem 5.1 and Dx is the constant from
lemma 5.3.

Proof. Putting rs = 0 we have

and therefore rs satisfies (8) (10) for v = s.
Suppose that 1 ̂  v ̂  s and there is a rational function rv which satisfies

(8)—(10). Now we shall find a rational function rv_x which satisfies (8)—(10)
with v replaced by v — 1.

Denote A = [0 ,2" v + 1 ] , A ^ r j U ^ ] , A2 = [ 2 _ v - 1 , 2 - v + 1 ] . We need to
approximate / on A2. Since / is nondecreasing and concave on [0,1], /(0) = 0
and co(f;5)c^d*, 6^0, then

- v - 1 ) < 2 ( v + 1)(1-a). (11)

Choose the integer m so that

It follows by theorem 5.1, (11) and (12) that there exists a rational function
qeRm such that

, , , .„ K A J ' |A 2 | 2<»-">a-«>.2-»+1 4c

Without loss of generality we shall suppose that

Set q2 = q/(l + nq2), n = 2~2s~2. Clearly, we have

Ac 4 4 c 1

II / - I1l llc<AI«2) < II / - % llc(A2) + » /I / llc(AI2) II 4 llc(AI242) < ^ + 22s+_4 2 ^ + c

(14)

k 2 llc(- 00,00) < 2 - V = 2s, (15)

s2m«:4-2 ( s - v - 1 ) a / 2 . (16)
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5.6 Functions with singularities 153

the rational functions rv and q2, s1 = 4c2~sa + (s - v + l ) -2- 2 s and A = 2s.
Note that by our assumption rv satisfies (8)—(10), q2 satisfies (14)—(16). Putting
s2 = 2~2s we conclude that there is a rational function rv_x such that

Ac
2SX

4c

s
i

s
1

- v +
22s

- ( v -

1

• 1 ) +

1
22s

+1

and

i = v \ I

<4 J 2(s-l')a/2 + 8B1(5-v+l)s.
i = v - l

Consequently the rational function rv_x satisfies (8)—(10) with v replaced
b y v - 1 . •

Now we are in position to complete the proof of theorem 5.13. It follows
by lemma 5.19 with v = 0 that for each s > 1 there exists a rational function
r0 such that

4c s + 1 Ac + 1
2sa 2 s 2sa

and

deg r0 < 4 J 2 ( s - ° a / 2 + 8£xs2 < B1(a)2s a / 2

i = 0

Clearly from these estimates (7) follows. •

5.6 Functions with singularities

In this section we shall prove a theorem for rational approximation of
functions continuous in the interval [0,1] with bounded analytic continuation
in the disk {z:\z-11< 1}. This result was obtained by A.A. Gonchar (1967a).

Theorem 5.14. Let f be a continuous real function on the interval [0,1] and
let there exist a bounded analytic function in the disk D = {z:\z — 11 < 1} which
coincides with f on [0,1]. Denote this function also byf Then for n ̂  1 we have

K.(/)c[oi]<ci i n f {Mte-""" + <*>(/;e-%},
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154 Uniform approximation for some function classes

where M = supzeZ) | /(z)|, and a)(f; 3)c is the modulus of continuity off on [0,1],
cl9 c2 are absolute constants.

As a consequence of this theorem we shall prove the following theorem
for rational approximation of functions with singularities in the middle point
of [ -1 ,1] .

If we consider continuous functions of the type

(1)

then we have the following.

Theorem 5.15. Let f^ be a continuous function of type (1) and let us assume
that there exists a bounded analytic function in the disk D = {z: \z — 1| < 1},
which coincides with cp on (0,1]. Denote this function also by cp. Then for n ̂  1
we have

JWct-i,u^ci i n f {Mte^2""+ co(/„; e-')c}, (2)
1 ^ f< o

where M = supzeD|(p(z)|, coif^d^ is the modulus of continuity of f^ on the
interval [ — 1,1] and cl5 c2 are absolute constants.

Corollary 5.2. (i) //q>(x) = X\ a > 0, then Rn(fv)cl- u l] < e"c(aK".
(ii) / / <p(x) = exp{ —ln'(l/x)}, 0<j8<l, ' then Rn(f<p)c{-I.H ^

(iii) //cp(x) = (In(l/x))"T, y > 0, then #„(/«,)<:[- i,i] ^ c("/)(ln nln)'-

Remark. Theorem 5.14 and theorem 5.15, as corollary 5.2 shows, allow us to
obtain order of approximation of the form exp{ — cnx). However, they do
not give always the exact order of approximation.

Proof of theorem 5.14. Let 0 < h< e~1. Define the functional-linear function
w(z) = (az + b)/(z + d) by the conditions

w{h/2) = 0, w( l) = 1, w(3/2) = oo.

We get w(z) = (z- h/2){z - 3/2)' \h-2yl. Set

h
s(w(h)) =

(2-h)(3-2h)'

Obviously h/6<s<h<e x.
Denote by r the preimage of the imaginary axis Re w = 0 under the mapping
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5.6 Functions with singularities 155

w = w(z). It is readily seen that T is a circle symmetric with respect to the
real axis which intersects the real axis at the points h/2 and §. Consequently
TczD and / is holomorphic on the closed disk determined by T and

Let S be the rational function from lemma 5.2 in section 5.1 with a given
n ^ 1 and e = w(h). We have

and

|S(w)| = l, Rew = 0.

Set Q(z) = S(w(z)). From the above and the choice of w(z) and e we obtain
that deg Q = n,

and

\Q(z)\ = h zeT. (4)

It follows by the definition of S in lemma 5.2 in section 5.1 that Q has only
single zeros in the interval [h, 1]. Denote them by a l9 a2 , . . . ,a„ . The poles
of Q are at the points jS1; p2,...,Pn, which are symmetrical to the zeros a1?

a2,...,a„ with respect to T.
Let r be the rational function of degree n which interpolates / at the points

0Lu...9<xn9 an+1 = 1 and has single poles at pi9...,pn. This means that

and

r(a£)=/(a£), i = 1 , 2 , . . . , n + 1 . (6)

It is readily seen that there exists exactly one rational function r of kind
(5) which satisfies (6). Indeed, consider the conditions (6) as a system for
obtaining a0, al9...,an. This system has exactly one solution since each
rational function of the type (5) cannot vanish at n + 1 different points a l9

< * 2 > - - - > a n + l -

One easily verifies that for z in the disk determined by T we
have

n = — f d
m 2ni}{
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156 Uniform approximation for some function classes

and

1 f Q{z)(z-l)f{S)dZ

(for details see J.L. Walsh (I960)).
From the last identity, (3) and (4) we get for z = [h, 1]

where J = J r | £ — h\~1 1d£|. Quick computation shows that /<cln(l / / j ) , c a
constant. Consequently

| ^ ^ j (7)

forze[h,1].
Let z(x) = (1 — /z)x + h. Clearly, z(x) linearly maps [0,1] onto the interval

[ft, 1] and \z(x) - x\ < h for xe[0,1]. Then by (7) it follows that for xe[0,1]
we have

\f(x) - r(z(x))\ ^ \f(x) -f(z(x))\ + \f(z(x)) - r(z(x))\ ^ D(f;h)c

Set t = t(h) = \n (l/h). Obviously t(h) is a one-to-one mapping of (0, e x )
onto (1, oo) and therefore for n ̂  1 we have

l<r<oo I I

which establishes theorem 5.14. •

Remark. The proof of theorem 5.14 shows that if / is a real valued function
then the approximating rational function r has real coefficients.

Proof of theorem 5.15. Let n^ l and e - " - 1 < / z < e _ 1 . From the proof of
theorem 5.14 it follows (see the estimate (7)) that there exists a rational
function reRn such that

| ^ | (8)

where M = supzeD|(p(z)|, cl5 c3 are absolute constants.
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5.6 Functions with singularities 157

Without loss of generality we shall suppose that 0 < c3 < 1, M > 0 and

IMIC[*,i]<2M. (9)

Let us set

Then by (8) and (9) we get

II / „ - 1 WCIKI] ^ \ \ f v - r HQ/,,1] + I2 II f<p llc[*,i] Itr llc[*,i]

<(c1+4)Mln(l/fe)-exp^ - -

Thus we have

It is easy to see that

and

degg<2«. (12)

Set A(x) = (1 - h)(x + /z)/(l +h) + /i. Obviously the function A(x) linearly
maps [ - h, 1] onto [/z, 1] and |A(x) - x| ^ 2/z.

Consider the rational functions ^ s O and g 2 M = <?W*))- By (10) a n d the
last arguments we get

and therefore

ll/<,-«2llc[-/1,1]<2«(/^^)c + c M l n ( l / / i ) e x p | - l n ^ j . (13)

Clearly, by (11) and (12) we obtain

j^}, (14)
;2n. (15)

Now we are in a position to apply lemma 5.3 from section 5.1 for the
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158 Uniform approximation for some function classes

function fv using the rational functions ql9 q2 and the parameters el9 A, fc

i = 1, 2, determined by (13)—(15). Setting e2 = Mexp{ — n/ln(l/h)} we con-
clude that there exists a rational function r such that

and

: CU.

Since h is an arbitrary number in the interval (0, e _1), from here follows
the assertion of theorem 5.15. •

Proof of corollary 5.2. The assertions (i), (ii) and (hi) of corollary 5.2 follow
immediately setting successively: (p(x) = xa, t = y/n; cp(x) = exp{ — lnp(1/x)},
t = n i /a + P); a n c j (p(x) = (ln(l/x)y\ t = c2n/((y + l)lnn) in the estimate (2).

•

5.7 Notes
The idea of the basic lemma 5.1 is due to D. Newman (1964a). In a form
similar to that given here lemma 5.1 was obtained by A.A. Gonchar
(1967a, 1967b).

The result of P. Sziisz and P. Turan (1966) for best uniform approximation
of the functions of the class Vx (more exactly the convex functions of the
class Lipl) was the following:

(1 4 N

V
G. Freud (1966) obtained that

sup Kn(/)c[o

Before the final result - theorem 5.1 (Popov, 1976a), Popov (1974a)
obtained that k

The result of G. Freud (1966) and E.P. Dolzenko, A.A. Abdulgaparov (the
lecture of Dolzenko at IMC, Moscow, 1966) for rational uniform approxima-
tion of the functions of the class V{cdx), 0 < a < 1, is the following.
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5.7 Notes 159

If feV(cd") then

and also if feV((]n(1/5))'x) then

The result of Bulanov (1975b) is the following.
IffeV(M9[a,fc],co) and oo(d) is strictly increasing in [0,b — a], then

K(f)C[a,b] c(M, b-a, a>)

vv/iere t/ie constant c(M,b — a,co) depends only on M, b — a and co.
For application of the Hardy-Littlewood maximal function to multivariate

rational uniform approximation see the work of R. DeVore and Xiang-ming
Yu (1986).

For the best uniform rational approximation of convex functions we want
to add also the following historical remarks.

For the class ConvM (a,\_a, b~]\ 0 < a < 1, A.P. Bulanov (1969) obtained
the following estimate

sup RJLf)cia,b] =
/eConvM(a,[a,*>])

After this A.A. Hatamov (1975a) obtained that

sup RJJ)aa.v\ =
/eConvM(a,[a,fc])

k

l n l n - l n u

The final estimate (theorem 5.13) belongs to P. Petrushev (1976b).
For rational uniform approximation of a convex function with a given

modulus of continuity co (CO(F; d) < co(5\ 3^0) there are the following results.
A.P. Bulanov and A.A. Hatamov (1978):

n 0e[e-n, 1]

A.A. Pekarskii (1977):

f«(<5) X

ls$A<n/lnzn I n y

0<<S:Si

A.A. Pekarskii (1980a):
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160 Uniform approximation for some function classes

Some other works which have contributed to rational approximation on
the interval and on the whole real axis are G. Freud (1967,1968,1970),
G. Freud, J. Szabados (1967a,b, 1978), J. Szabados (1967a, b).

V.N. Russak (1974, 1977, 1979, 1984) introduced rational operators which
are analogs of the operators of Fejer and Jackson. He obtained the exact
order of rational approximation of classes of functions similar to Vr by means
of such Jackson-Russak operators.

There are many works on the approximation of analytic functions by
means of rational functions, but we shall not consider such problems in this
book. We only want to mention some papers which are near to the questions
considered in this chapter: A. A. Gonchar (1972,1974), G. Fichera (1970,1974),
J. Karlsson (1982), V.K. Dzjadik (1966), G. Somorjai (1976), J.E. Anderson
(1980), T. Ganelius (1982).
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Converse theorems for rational
approximation

In this chapter we shall consider some converse theorems for rational
approximation. In Chapter 3 in the polynomial case we have shown how the
converse theorems are connected with the direct theorems - they give full
characterization of the best polynomial approximation in uniform or Lp-norm
by means of the smoothness properties of the function, more precisely by
means of the moduli of smoothness in C or in Lp. Unfortunately till now we
have not such a nice characterization of the best rational uniform approxi-
mation. Characterization of the best rational approximation in Lp will be
given on the basis of the connection between best rational and best spline
approximation in Lp, 1 < p < oo, in Chapter 8. This characterization use the
converse results given in section 6.3.

First we consider some classical converse results. In section 6.1 we give
the classical results of Gonchar and Dolzenko. The Bernstein type inequality
of Dolzenko (theorem 6.1) gives an estimate of a>(f; S)L by means of the best
uniform rational approximations. In section 6.2 we give Russak's inequality,
which is a Bernstein type inequality for the function / and the conjugate
function/of/ In section 6.3 we give Pekarskii's inequality for the norm of
r(s) in La(— 1,1), by means of the norm of r in Lp(—1,1), l < p ^ o o ,
L/O- = s + l/p. On the basis of this inequality an estimate for the modulus of
variation in Lp of the function / by means of the best approximation to / in
Lp by rational functions is given. Using this estimate the connection between
best spline approximation with free knots and best rational approximations
in Lp, 1 < p ^ oo, will be given in section 8.2. The chapter ends with notes.

6.1 Gonchar's and Dolzenko's results
It is well known that it is impossible to estimate the value of the derivative
of the rational function reRn in the interval [a, b~] by means of the Chebyshev
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162 Converse theorems for uniform approximation

norm of r in [a, b]. This is the great difference from the polynomial case,
where we have the inequalities of Markov and Bernstein (see theorems 3.12
and 3.9).

But, as A.A. Gonchar was the first to note, if we omit a suitable subset
with a small measure, this type of estimates becomes possible. The first results
of Gonchar (1955, 1959) were of the following type.

V ^n(/)c[o,6] ^ cn~1 ~d,d > 0, then the function f is differentiable almost
everywhere on the interval [a, b~\.

Let reRn. For every 3>0 there exists a set E a [a, b], mes E=\E\<8, such
that for every xe[a,b~]\E we have

nlnn
\ { ) \ ^ 2 \ \ \ \

(see also the notes at the end of the chapter).
We shall prove here some later results of Dolzenko (1962, 1963), which

improve this theorem.
Theorem 6.1. Let reRn. Then

(a) \\r'\\LUa,b)^2n\\r\ \cia,b]>

(b) for every interval [a,b~\ and every 6 > 0 there exists a subset E = E(S,r)
such that \E\ < S and for every xe[a, b]\£ we have

Proof. Since the function r — a has at most n zeros for every ae [ — || r ||c, || r || c ]
and has no zeros for a^[— ||r||c, | | r | | c ] , we have

V"ar^2n\\r\\C{aM.

But we have

Vb
jr =

which proves (a).
Let E be the set of the points in the interval [a, /?] such that \r'(x)\ >

2nd'1 \\r\\c for xeE. Since

we have

•
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6.1 Gonchar's and Dolzenko's results 163

It is evident from the proof that in this theorem only the property of
piecewise monotony of the rational function is used. Nevertheless it is
impossible to improve this theorem: there exist rational functions reRn such
that || r' ||Ll ̂  c'n || r ||c, c' an absolute constant.

Theorem 6.2 (Dolzenko (1962,1966a)).
(a) Let us have for the function f

00

E Rn(f)C[a,b]<CO-
n = 0

Then f is absolutely continuous on [a, b~\ and almost everywhere on [a, b]
we have f'(x) = limt_ x r2h{x\

II / ~~ r 2 k II C[a,b] = ^

(b) We have

c n

where c is an absolute constant.

Proof We have
00

/(*) = Y, 0 > M ~ r2*-i(x)), r_1/2 = 0,
fc = 0

where the series converges uniformly in C[a, b], since

Since r2k — r2k-ieR2
k+i, using theorem 6.1 (a) we obtain

1 I I ^ - ^ - I I L , , ^ , ^ I 2-2* + 1 | | r 2 k - r 2 ^ i | c S S 3 2 g Rn(f)C[a.b]< ^,
fe=0 fc=0 «=0

i.e. Y,^o(r'2k — r2fc_1) *s convergent in L^b), therefore almost everywhere

and / is absolutely continuous, which proves (a).
To prove (b) we consider the X-functionals between Lx(a9 b) and W\(a, b)

and between C(a,b) and W{(a,bf (see Chapter 3). By theorem 3.15 we have:

(f;-) ^cKif^-^L^WD^c'Kif^-^CWl), (1)
\ n/L(a,b)

f In the space W\ we use the same quasi-norm as in section 3.5: ||/"'|lLl.
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164 Converse theorems for uniform approximation

where c is an absolute constant; evidently K(f, t; Lu W\)^
max {l9(b - a)}K(f9 t;C9 W{).

By theorem 3.16 and the Bernstein type inequality from theorem 6.1(a) we
have

K(f,n-l;C,W\)^- £ RJif)clatby. (2)

n m = 0

Then (b) follows from (1) and (2).

Remark. The inequality (2) is stronger than statement (b) of the theorem.

6.2 Estimates for Lrnorms for the derivatives of rational
functions and their Hilbert transforms

Here we shall give the method and results of V.N. Russak (1979) for obtaining
estimates for Lx(— oo, oo) norm of the derivative of a rational function and
the derivative of its Hilbert transform.

Definition 6.1. We define the Hilbert transform Hf of the function
f EL1(— C», OO) as follows:

if the limit exists.
Very often Hf is denoted f and is called the conjugate function to f.
The following facts are well known (see for example Zygmund (1959)).
If feLii— oo, oo), then (Hf)(x) exists almost everywhere.
If feLp(—co, oo), p > 1, then

f(x) = -
jo c

i.e. H1 = -H.

We give these results without proofs because we shall not use them in this
book.

The most essential corollary of Russak's result is the following theorem.

Theorem 6.3 (Russak (1973) ) . Let r2neR2n and all poles ofr2n be a complex
and conjugated Then

II A n I I L I ( - oo.oo) < 27W II r2n Hc( - oo.oo), (2)

f In this section the rational functions can have complex coefficients.
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6.2 Russak's theorem 165

Remark. The inequality (2) follows from theorem 6.1 (a) of Dolzenko, but with
another constant on the right-hand side. We give it here for completeness.

We want also to formulate this theorem in another equivalent way.

Definition 6,2. We shall say that the function f belongs to the Hardy space
H 1(— oo,oo) i f / eL^— oo, oo) and feL^—co, oo) (HfeLx(—co, oo)).

One of the facts of analysis is that the Hardy space Hx( — oo, oo) is a Banach
space with a norm

(-oo,oo) + II J H L I ( - oo,oo)-

Now we can reformulate theorem 6.3 as follows.

Theorem 6,3', Let r2nGR2n and all poles ofr2n be complex and conjugate. Then

r2n | | c ( - oo,oo)-

We shall need some notations and lemmas for the proof of theorem 6.3.
Let us denote J f = { l m z > 0 } and let zk, fc=l,...,w, zk = otk + ipkeJf,

k=1,...,n, i.e. pk >0 for k = 1,... ,n.

Let us consider the Blaschke product

Obviously \B(x)\=l for xeU = (—oo,oo), B(z) is analytic in Jf7 and
continuous in $ — Jf7 u U.

On the other hand we have for the logarithmic derivative of B (multiplied
by 1/i):

iB(x) ik=i\x-zk

-zk
_ 2

" zk

Let us define

n

<j){x) = £ (arg(zfc - x) - arg(zk - x)).
k= l

It is evident that for xe(— oo, oo)

0, c/>(x) —• 2nn.
(4)
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166 Converse theorems for uniform approximation

Let us define also

The following properties of F\ follow immediately from the definition and
(4):

(i) I ^ W I ^ l , (5)
(ii) F(p + n / 2 ( x ) = - l

(iii) F<p(x)-iFtp + n/2(x) = & B ( x ) .

For every a we have

(iv) Fv(x)cosa + F „ + n/2(x)sinot = Fv + a(x), (7)

(v) F'(p(x) = F , + n/2(x)\B'(x)\. (8)

(vi) The function

FJix) = Re(ei(pB(x)) = Re(e1(</,+0(x))). (9)

for cp # n/2 + k n h a s e x a c t l y I n r e a l z e r o s x x < x 2 < ••• < x 2 n .

The last fact follows from F^(x) = cos (<p + <t>(x)) and (4)

(j)(x) —> 0, (j)(x) —• 2nn.
X-* ~ CO X-* + GO

From property (vi) we obtain that for q> # N/2 + kn we have

Let now r be an arbitrary (complex-valued) rational function without poles
on U. Let there exist zk, k = 1,..., n, zke^f, k= 1,..., w, such that

where the algebraic polynomial p2n has degree 2n at most.

Lemma 6.1. Let xk9k=1,...,2n,x1<x2••• <x2n9 be the zeros of FJ^x). The
following equality holds.

r(x) = FJLx)\ I r(xk) \ +A (11)

lk=i (x — xk)r qXxrf J

/iere cx is a constant.

Proof Let us set
r*(x) = F^x) £ r f t \

(x - k )F; (
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6.2 Russak's theorem 167

It follows from (10) that r*(xk) = r(xk\fc = 1,...,2w. Hence r(x) — r*(x) =

ciF(p(x\ smce the denominators are the same and the numerators are algebraic
polynomials of degree < In. •

Lemma 6.2. Let r be a rational function with poles only in C\Jt = {Im z < 0}.
Then for the Hilbert transform Hr we have

(i/(Rer))(x) = Imr(x) + c2, 1
r))(x)=- Rer(x) + c)

where c2 and c3 are constants.

Proof. The direct calculation gives us

HC = 0,H( - L \ = H(-1-Z )=!_ P > 0 . (13)

\x-{ct-iP)J \x-zj x~z

From (13), since H is a linear operator, the lemma follows in view of

1 x-a 1 -p
x — (a — i/0 |x — z|2 ' x — z |x —- 2 '

x-zj \x-z\2 \ x-

Lemma 6.3. With the same notation as in lemma 6.2 we have

= a-ij8. D

(Hr)(x) ̂  f{x) = -ClF9 + Kl2{x) - t r(x/« + fX)F«;«l2(Xk) + c4, (14)
k=l \ x ~ xk)r <p\xk)

c4 is a constant.

Proof. If we apply lemma 6.2 to QlvB{x) we obtain, using (6),

(HF<p)(x) = lm(ei«B(x)) + c5= - Fip + nl2{x) +c5, (15)

c5 a constant.
Again from lemma 6.2, applied to ei<p(B(x) - B(xk))/(x - xk), it follows that

\ X~Xk

r <f> + nj2\X) ~ F<
6

x — xk

since Re(ei<pB(xk)) = 0 in view of (10) and Im(ei<p5(x)) = - F(? + 7r/2(x) in view
of (6).

Now (14) follows from lemma 6.1, (11), if we apply the Hilbert transform
and use the linearity of H, (15) and (16). •

Let cp / 7i/2 + kn be given and let us choose a, a # n/2 + kn,

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781107340756.007
Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.007
https://www.cambridge.org/core


168 Converse theorems for uniform approximation

a # n/2 + kn — q>. Let us se

r*(x) = r(x) cos a — r(x) sin a.

From (7), lemma 6.1 and lemma 6.2 we obtain

r(xJ F + (x)-F + i2(X
2,

ft = 1 i* q\Xk)
 X ~ Xk

c4sina. (17)

Let yh i=1,...,2n, be the zeros of Fv + a + n/2, i.e. F'a + (p{y/) = 0 (see (8), (9)).
We have from (17) and (8),

If we choose the function ^ + nj2 f° r r (we can do this in view of (10)), we
obtain from (18), (8) and the definition of r*

r*(x) = Fv + n/2 (x) cos a - F v + n/2 (x) sin a,

r*(x) = F^+a + K/2 (x) - c4 sin a,

kk B'(xk
¥ ^ (19)

since F j
+ a f o ) = 1 (from (6) it follows that \Fv + a(y,-)| = \B(yd\ = 1).

From (19) we obtain that

(y;)l = X ^ 7 ^ v ?:—rb • (20)

Since \F(p + n/2(xk)\ ^ 1, |F „ + a()>f)l < 1 (see (5)), we have

1 - ^ + n/2(xk)F(p + a(yi)sina>0;

therefore (20) and (18) give us

\B'(yd\= E \yki\,

r*'(yi) | = | r \y/) cos a - r{y t) sin a |

< J |yw | max |r(xfc)| ^ |B'(y;)l Iklla-oo.oo,- (21)
f c = l i = l , . . . , 2 n

The inequality (21) is proved for (p^n/2 + kn, a^n/2 + kn, a /7 i /2 +
kn — cp, but since the two sides of (21) are continuous functions of a (obviously
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6.3 Pekarskii's theorem 169

yt depends continuously on a), (21) remains valid for all a. Let x be such that
(j)(x) # — oi. If we choose cp = — a — 4>(x) — n/2 then x = y( for some i
I ^ i < In. From (21) we now obtain the following.

Theorem 6.4. Let

r{x) = p{x) f\\x-zk\
\ peP2n, zke3>?.

Then for every x and a we have

|rXx)cosa-r'(x)sina|<|B'(x)IIMIc<-=0.=0)> i22)

where B is the Blaschke product

B(z)=f\Z^. (23)
zz

Proof. For 0(x) # a this was proved. Since (22) is continuous with respect
to a, (22) follows for all a. •

From theorem 6.4 follows immediately, since a is arbitrary, corollary 6.1.

Corollary 6.1. Let reR2n be such that all poles ofr are complex and conjugate.
Then

{(r'(x))2 + (r'(x))2},/2 < \B\x)\ \\r\\c^^w),

where B is the Blaschke product (23) corresponding to the poles ofr.
From (4) it follows that

|F(x)|dx = 27rn. (24)

Therefore from corollary 6.1 and (24) follows theorem 6.3. •
Let us remark, that if rGRn and has real coefficients, then the condition

IIr\\c(-oo,oo) < °° gives us that r has only complex and conjugate poles.
Theorefore we obtain from theorem 6.4 and (24) the following.

Corollary 6.2. Let reRn have real coefficients. Then

I IC ( - 00,00),

6.3 Estimation for higher derivatives of rational functions
and its applications

In this section we shall obtain an estimate for r(s), s ^ l , s a natural number,

reRn,in the metric L a { - 1,1), a = (s + \ / p ) ~ \ by means of || r || = ||r||L (_ 1>1
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170 Converse theorems for uniform approximation

1 < p ^ oo. From this estimation will follow a connection between the best
spline approximations with free knots and the best rational approximations.
This connection for 5 = 1, p = 00, was given by Popov (1974b), for s> 1,
p = 00, by Pekarskii (1980b), and for s ^ 1, p > 1, by Pekarskii (1986).

Theorem 6.5 (A.A. Pekarskii, 1986). Let reRn, n ^ l, and r have no poles on
the interval [—1,1]. For 1 < p ^ 00, \jo = s + 1//?, we have

| | r ( 5 ) | | f f<c(s,p)n s | | r | |p ,

where the constant c(s, p) depends only on s and p.
Following Pekarskii (1984,1986) for the proof of theorem 6.5 we shall need

some lemmas. We shall use the following notations: D+ = {z:zeC, \z\ < 1},
D_ = {z :zeC, |z |> l} , T = {z:zeC,|z| = 1}, T± = {z:zeT, ± Imz >0} , where
C is the complex plane; if ax,..., an belong to D +, we set

a IV 1"t \ i
- , j!>0.

z-ak\

If S is a rectifiable curve in the complex plane we set

l/(z)Hdz|

Lemma 6.4. Let zeT and let I be a natural number > 0. Then

Proof. If zeT and £eT, we have |d£| = d£/il; and

since for a, beT we have (a — b)(a — b) = — (a — b)2/ab. Consequentl

where

Since 7j(z) is continuous in D + u T, it is sufficient to calculate 7j(z) only for
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6.3 Pekarskii's theorem 171

zeD + . We obtain for zeD ,

hi?) = .t (ill_ \-B{z))l-nUj{z), (2)

where

Using the Cauchy formula we obtain

IJz) = (^^(B\z)z'-^'-^ (3)

for j = 1,...,/. For —/<)<0 the point £ = oo is a zero of order at least 2
for the function B\£)?~ \Z - z)~2l; therefore we have Iltj = 0 for ; = - / , . . . , 0.
From equalities (l)-(3) we obtain the statement of the lemma. •

Lemma 6.5. Let zeT and s be a natural number > 0. Then

\B(s\z)\^2s-s\ls(z, l/s).

Proof. Setting bk{z) = (z — ak)(l — akz)~ l we obtain

( ) z , . f . , ^ w y ^ ) e ( 4 ()
^O-Jl • '"in-

where the summation is over all collections JoJi,---J„ of nonnegative
numbers satisfying j0 +ji + • • • +j„ = s. For ze T, 0 ̂  k < n, we have

F o r akeD + ,zeT, we have |1 — | a k | | ^ \z — ak\,\ l — akz\ = \z — ak\. Therefore
for 1 < 7 ^ s we obtain that

l/S J

(5)
Jk z —

The lemma follows from (4) and (5). •

Lemma 6.6. If zeT and a > 0 then

Proof. Since Xs'(z, 1/sJ < kS2{z, l/s2) for s2 > s l5 from lemmas 6.4 and 6.5 it
follows that for zeT, I> 0, / a natural number, we have

I2' \zM { 2 l - \ ) ) . (6)
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172 Converse theorems for uniform approximation

Let m be the smallest odd number such that m > a. Let us set

Using Holder's inequality we obtain from (6), since l/p + 1/q = 1,

S(z)

^ ). (7)

On the other hand we have, using the choice of S(z),

T\S(z) T\S(z)

(8)

a + 2

Since >l(z,/?) does not increase in /? for fixed zeT, we have 2(z, l/m)<
2(z, l/(a + 2)) and the lemma follows from (7) and (8). D

Lemma 6.7. For zeT\{ + 1} and a > 0 we have

-z2\-*

Proo/. We shall show first that for every z, £eT + we have

11 -?21
l - z 2 (9)

In fact, if we consider the quadrilateral with vertices at the points z, z, £
and £, we obtain that 11 — z21 = | z — z |, 11 — £2 \ = \ £ — <f| are its bases, an
|£ — z\ is its diagonal, therefore

from which (9) follows.
We can suppose that zeT+. Using lemma 6.6 and (9) we obtain

- z | - a A a z,
'a + 2

(10)
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6.3 Pekarskii's theorem 173

since Q a + t f , z ) < 2 " + 1 K - z | - - - 1 for z,
Analogously

(11)

From (10) and (11) the lemma follows. •
Let G be the exterior of the interval [ - 1 , 1 ] (G = C \ [ - 1 , 1 ] ) and let T

be the boundary of G. T consists of two intervals [ —1,1], one upper, the
other lower. Let

be the function which maps G into D_ conformally. If reRn is a rational
func t ion wi th po les rjk,k=1,...,n, rjkeG, k = 1 , . . . ,n , we set ak = l/(p(rjk). W e

shall consider again the Blaschke product

Let us set

Lemma 6.8. We have

r / r v / a

KJiri,x)\dri\\ |dx|<c(<x)n. (12)
JrVJr /

Proof. If we make in the integral in (12) the transform
1/ 1

where z, £eT, we obtain that we must estimate the integral

Using lemma 6.7 we obtain that

But it is easy to see that

' i - k l Y idz

z-a,\ z-
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174 Converse theorems for uniform approximation

where the constant c(/?) depends only on /?. Therefore

IT

and we obtain the statement of the lemma. •

Lemma 6.9. Let a > 0, 1 < p ̂  oo, G = (OL + l/p)~ \ / eL p . / /

ff(x) = |/(»/)X,(^x)|d^|

then

np>r.

Proof. If p = oo, using lemma 6.8 we obtain

[ , (13)

Let pe( l ,oo) and (x= l — p*. Then a = 1 and using again lemma 6.8,

Holder's inequality and (13) we obtain

i / p

since 1/p + a = 1, l/a > 1.

Now let a be arbitrary. Choose positive numbers y,T,/,s satisfying the

conditions /e(l,p), /" * + s~* = 1, y + T = a, /T = 1 — //p. Then, using Holder's

inequality we obtain for every xeT

y (14)

From lemma 6.8 and (13) we obtain

ll«p|li/».r<c(s,y)n". (15)

Using the fact that the lemma has already been proved for a = 1 — p _ 1

(ZT=1-(p/l)~*), we obtain

Therefore we obtain the statement of the lemma in the case pe ( l , oo), a > 0,

from the inequalities (14)—(16) and Holder's inequality. •

Proof of theorem 6.5. We shall use the notations of the previous lemmas.

Let reRn have no poles in the interval [—1,1]. Let p > 0 be such that all

poles of r are in the exterior of the ellipse Tp = {rj:\(p{rj)\ = p}, where
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6.3 Pekarskii's theorem 175

cp(rj) = n + J(t]2 — 1). From Cauchy's formula we obtain

Let ri1,...9rjn be the poles of r (every pole written so many times as its
multiplicity). Then the function g(n) = r(r])/B((p(r])) is analytic in G and oo is
a zero for g at least of order 2 (a0 = 0). Therefore

= 0. (18)

Letting p tend to + 0, from (17) and (18) we obtain

\r{n)\Ks(n,x)\&n\, xeY.

From here and lemma 6.9 the theorem follows. •
Now we shall use the Bernstein type inequality from theorem 6.5 to obtain

some inverse results for rational approximation and to obtain a connection
between best rational approximation and best spline approximation with
free knots in Lp.

Let / be a finite interval and feLp(I). Let £ s - i ( . / \ j be the best
approximation in Lp(I) of/by means of algebraic polynomials of degree s — 1.

Definition 6.3. Let f e L p ( ~ \ , \ ) and let s > 0 be a natural number and

l/o" = s+ \jp. Modulus of variation off of order s in Lp is the following function

ofn:

'-, } 1/<T

where the s u p is taken over all subdivisions of the interval [ — 1 , 1 ] into n

intervals Ik = [xk_l5xk], k=l,...,n, —1=x0<x1<•••<xn—1.

Lemma 6.10. We have

Proof. Since Es_ !(/)p<7 ^ || / | |pJ, the lemma follows from Holder's inequality:

k=l J {k-1
\l-a/p/ n \ < T / P " ) 1 / I T

/

The following lemma connects KS P(F\ n) with the rational functions.

Lemma 6.11. Let reRm be such that all poles of r are outside of the interval
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176 Converse theorems for uniform approximation

[—1,1]. Then for 1 <p ^ oo, 1/a = s + 1/p, we have

Ks,p(r,n)^c{s,p)ms\\r\\p,

where the constant c(s, p) depends only on s and p.

Proof Let {Ik}\, h = [xk-.uxk~], — 1 = x 0 < ••• < x n = 1, be an arbitrary
partition of the interval [— 1,1] into n subintervals. We shall separate the
intervals JTk,fc=1,...,n, into two classes: Mx and M2. If r{s)(x) is a monotone
function in the interval Ik, we set IkeMu otherwise we set IkeM2. Obviously
M2 contains no more than m(s + 1) intervals. Therefore, using Holder's
inequality for p' = p/a, q' = (1 — l /p') ~S, we obtain

l/,7

\r\
/fcsM2

P

(19)

If IkeMl, then in view of the fact that r(s) is monotone in 7k, we can apply
theorem 6.7 from the end of this chapter and we obtain that there exists
algebraic polynomials qk of degree ^ s — 1 such that

or

From (20), applying theorem 6.5, we obtain

| | r ( s»L^c'(s ,pK| | r | |p . (21)

The lemma follows from (19) and (21). •
In what follows in this section we shall denote the best rational approxima-

tion i U / \ p [ - i , i ] by Rn(f)P.

Theorem 6.6. LetfeL^— l , 1 ] , p > 1. For all natural numbers n > 0 ands>0

we have

KsJf; m) ^ c(s, p)l £ (2 t s .R2 , ( /)prl l a , (22)

where 2n ̂  m < 2"+ \ c(s, p) depends only on s and p and l/a = s+ 1/p.

Proof We shall apply Bernstein's method from Chapter 3. Let rk be the
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6.3 Pekarskii's theorem 177

rational function of order k of best Lp[—1,1] approximation to / , i.e.
\\f -rk\\p = Rk(f)p,k = 0,1,.... If we set qk = r2k — r2k-i9 r2-i =r0, we have

n

f'-r0=f-r2n+ X Qu-
11 = 0

Since s ̂  1, we have o < 1 and therefore

n

i(5Lakf ̂ Y)ak\a fortr^l). (23)

From lemma 6.10 we obtain

<M - r2n; m) ^ (ms \\ f - r2„ \\p)* = ms°R°2n(f)P- (24)

Since qkeR2k+i and \\qk | | p ^ 2\\f — r2k-i\\p = 2R2k-i(f)p, using lemma 6.11
we obtain

K.piQk'i™) ̂  (C(S>P)~ 2<il+1)Si2K2k-i(/)p)'
7. (25)

The inequalities (23)—(25) give us (22). •
Using the standard technique (see Chapter 3), we obtain from theorem 6.6

the following.

Corollary 6.3. Let feLp[— 1,1], 1 < p < oo, 5 > 0 and n > 0 be natural num-
bers and 1/G — s + 1/p. Then

K,lP{f; n) ̂  c(s,p)\ | o ] ~ j ( ( k + lYRk(f)pT

Theorem 6.7. Let feLp(a,b) and letf(k) be a monotone function in the interval
(a,b) and let f{k)eLa{a,b) for a = (k+ 1/p)-1. Then there exists an algebraic
polynomial qk-1 of degree k—1 such that

II /* II II /* II •*-"' II -fiK) II (^£*\
\\J — Qk-l lip-— Hi — ft-l \\Lp(a,b) ^ H i \\L,(a,b)- \Z0)

Proof Obviously we can suppose that f(k) is a monotone increasing function
in (a, b). Let ce(a, b) be such that /(k)(x) < 0 for x < c, /(/c)(*) Ss 0 for x ̂  c (if
such a c does not exist, we set c = a). By Taylor's formula there exists an
algebraic polynomial qk^1 of degree k — 1 such that

/(x) = fc_ !(x) + ̂ ^ f7( t )W(t" c)*-1 dt, xe(a, c),
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178 Converse theorems for uniform approximation

and therefore

\f-dk-iVP = 7((/c-l)!)"
fk\t)(t-cf~ldt Ax

fk)(t){t-c)k~ldt

We shall prove that

(27)

(28)

Obviously from (27) and (28) the theorem follows.1"
It is sufficient to estimate I l 9 since I2 can be estimated in a similar way.
We shall prove the inequality (28) for lx by induction with respect to k.

Let first k=1. Then we have ai =(1 + 1/p)-1. For 0<p< oo, since / ' is
monotone nondecreasing and nonnegative in (c, b), we get:

f'(t)dt dX : {fit)) dx

The case p = oo is trivial. Thus we have

f'(t)dt) ll/'lkl(c.*), 0<p
/ Lp(c,b)

Let us set

(29)

( p M ( x ) = \ <p(v+1)(t)dt, v = 0 , l , . . . , f c - l ,
Jc

xe(c,fe).

We have cp(k)(.x) = (fc — l)!/(fc)(x) a.e. on (c, b). Since evidently (p(v) is
nonnegative and nondecreasing in (c, b \ we can apply (29) for each derivative
cp(x\ v = 0,... , k — 1. We obtain consequently, using (29),

_ II , n ( O ) I
— II <P I l / - n ( 1 ' l l < II m<2> II

I V IIL,,(c,*) ^ II 9 \\Lal(c.h)

^i- 111 II f W II
,i>) - ( K — I J! 117 llLm(c,6)'

p/a>\.
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6.4 Notes 179

where

Thus the estimate (28) is proved and the theorem follows. •

6.4 Notes
We shall give first some interesting results of Dolzenko and Sevastijanov
concerning the connection between rational approximations and the con-
vergence of Fourier series.

L e t / be an integrable 27c-periodic function and let us consider the Fourier
series for / ,

S(f; x) ~ -^ + V (a°k cos kx + bk sin kx),
2 k = i

where the Fourier coefficients are given by

1 f2* 1 fin
ak 1 — f(t) cos kt dt, bk =— f(t) sin kt dt. (1)

In Jo 2TT J o

Let Sn(f; x) be the nth partial sum of the Fourier series for / :

We shall need also two more definitions.
Let (/> be an increasing function, continuous and concave on [0, oo), 0(0) = 0.

We said that the function / has a bounded (^-variation if

V+(f) = sup t 0(l/(x*)-/(xt_ 1)|)<oo,
fc=l

where the sup is taken over all partitions 0 = x0 < • • • < xn = In of the interval
[0,In] into n parts.

Let / be a bounded function on [0,2n\. Let Mn be the set of all bounded
functions on [0,2n~] which are n times piecewise monotone on [0, 27I], i.e.
(peMn if t h e r e e x i s t n + 1 p o i n t s y i 9 i = 0,...,n, 0 = y 0 < ••• <yn = 2n s u c h

that in every interval [yt_x,y[\, i= 1,...,n, q> is a monotone function.
Following Dolzenko and Sevastijanov (1976a), we consider the best

uniform approximation to / by means of elements of Mn:

Mn{f)C[0,2n] = i n f { \\f-q> \\C[o,2n

The following theorem was proved by E.A. Sevastijanov (1974a):
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180 Converse theorems for uniform approximation

E.P. Dolzenko (1966b) gives the following result: if

n = 0

then the function f has a bounded ^-variation, i.e. V^f) < oo.
This result was improved by Sevastijanov (1974a, 1975) in the following way.
Let V ̂  denote the class of all functions for which VJ^f) < oo. The necessary

and sufficient condition for every function ffor which Rn(f)c[o,2n] ^ an t0 belong
to V0 is

The first result for connection between rational uniform approximation of
a function and the convergence for its Fourier series is due to Dolzenko
(1966b).

If
00 I
Z -*»(/)c[0,2«]<°0

B = 1 «

then Sn(f) converges to f almost everywhere on [0,2ft].

If
00 I
Z -jK(f)c[0,2n]<CO

B = I n

then Sn(f) converges to f uniformly on [0, 2N\.
E.A. Sevastijanov (1974a, 1975) improved the last result in the following way.

/ /
00 1
Z-Mn(/)CIo,2*]<«> (2CO1)

then Sn(f) converges uniformly to f on [0,27i].
Consequently if

(3)

then Sn(f) converges uniformly to f on [0,27i].
It is not possible to improve this result in the following sense.
Let {an}f be a nonincreasing sequence of positive numbers such that

Then there exists a continuous 2n-periodic function ffor which Rn(f)C[o,2n] ^ an
for all n^ l and the Fourier series for f diverges at x = 0.

A very interesting result concerning absolute convergence of Fourier series
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6.4 Notes 181

was obtained by Sevastijanov (1978). Let Rl denote the set of all rational
trigonometrical functions of order n, i.e. teRl if

t = tjt29 tteTn, i = l,2.

Let i?J(/)C[o,2n] be the best uniform approximation of the 27r-periodic
function / by means of trigonometric rational functions of order n:

ow = inf{II / " * HC[0.2

Sevastijanov obtained the following estimate:

where an, bn are the Fourier coefficients of the function / , given by (1).
This fact that the condition 2^°=o R-l(f)c < oo is a sufficient condition for

absolute convergence of the Fourier series for / seems to be really connected
with the rational approximation, as opposed to condition (3) for uniform
convergence of the Fourier series, which is connected with piecewise
monotone approximation (see (2)). The proof uses Russak's results from
section 6.3.

Sevastijanov also gives the following inequalities for Fourier coefficients
of rational trigonometric functions.

Let us set

1 f2*
\ t(u)Q~inudu, n = 0, ± 1 , . . . .

If teRj, then

Tin

—imi C [ 0 , 2 n ] .

If r is a rational complex function of nth degree without poles on T
{z:\z\ = l}9 then

where ck(r) = i(k), t(u) = r(eiu).
The following results are given by Sevastijanov (1973).
(a) Let 0<p^ao,aa positive integer, 0 < q < l/(a + i/p). Then there exists

a constant c(p,q,(x) such that ifreRn then

\\r(x)\\q^c{p,q,<x)nx\\r\\p. (4)

(b) Let reRn. For every S>0 there exists a set E(S), mesE(S)< S, such that
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182 Converse theorems for uniform approximation

for every xe[0, 1]\£((5), x + /ze[0,1], we have

"x + h r/i it v\'

(c) Let Rn(f)Lp[o,i] = 0(nA E ) - Then there exists a set G such that

mes G = 0 and for every xe[0,l]\G the function f has a local p-differential of

order A. (We say that the function / has at the point x0 a local p-differential
of order X if there exists a polynomial peP[k] such that

II / - P \\Lp(xo-h.x0 + h) = °(hk), h>0.

See also Sevastijanov (1974a, 1980), Dolzenko (1978)).
These results are generalized for the many-dimensional case by E.P.

Dolzenko and V.I. Danchenko (1977).
The situation is better if we consider complex rational approximation on

the unit disk. A. A. Pekarskii (1984) obtained Bernstein type inequalities for the
derivatives of rational functions on the unit disk, by means of which it is
possible to get an exact converse theorem for rational approximation on the
unit disk. We shall give here some of the results of Pekarskii (compare with
section 6.3).

Let C be the complex plane, D+ = {z: \z\ < 1}, D_ = {z: \z\ > 1}, r =

We shall use the notation | | / | | p for

/ P \1/p

I / I |/(z)Hdz|Y/P , 0 < p < o o , | | / | | x =ess sup | / ( z ) | , p = o o .
VJr / -er

The Hardy space Hp, 0 < p < oo, is the set of all functions/, analytic in
D+ for which

I / I I H = lim ll/(-p)llp= lim I f \f(p^)\"d(pVIP<a.
p - > i - o p->i - o I J r J

We shall consider fractional derivatives of/. The a-derivative in the sense
of Weil for the function /analytic in D+ is given by

3"/(z)= I (fc+l)"/(*)z\

where f(z) = YIJ=of{k)zk for |z| < l.
By Hap we shall denote the Hardy-Sobolev space of all functions / for

which ^xfeHp. We set the seminorm in H%,

The Besov space Bpq, ae(— oo, oo), 0 < p ^ oo, 0 < q ^ oo, is the set of all
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6.4 Notes 183

functions / analytic in D + for which the quasinorm

= sup
0<p< 1

is finite.
We shall consider also the space BMOA (analytic functions with bounded

mean oscillation): / E B M O A if there exists gsLJT) such that

^ , + . (5)
r t-z

The norm in BMOA is given by

H/LLBMOA = inf ||gf||00,

where the inf is taken over all geLJX) for which we have the representation
(5).

Now we can formulate the Bernstein type inequalities of A.A. Pekarskii
(1984).

Let r be a (complex) rational function of nth degree with poles only in D_ .
Let a > 0, /?e[l, oo], G = (OL + P~ 1)~ 1. Then the following inequalities hold:

II r ||H« sSc^a, pK11| r ||p,

The history of inequalities of this type is connected with the names of
Gonchar (1966), Russak (1973), Sevastijanov (1973), Danchenko (1977), Peller
(1980), Pekarskii (1980b) (see the paper of Pekarskii (1984)).

Using these inequalities it is possible to obtain converse theorems for the
best rational approximation in Hardy spaces Hp and in BMOA.

We shall denote by Rn(f)H the best rational approximation in Hp of the
function feHp by means of (complex) rational functions of nth degree, and
by #„C0BMOA tne best approximation in BMOA offeBMOA by means of
rational functions of nth degree. Let us set

sup 2
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184 Converse theorems for uniform approximation

I / ll«j. = II / HBMOA + \ E

II / II«• = II / IIBMOA + sup 2*«/? 2 * ( / )BMOA-

* = 0, l ,2 , . . .

Let a > 0 , l < p ^ o o , a = (a +p"1)-1. The following inequalities hold
(Pekarskii, 1984):

T/zese inequalities are exact.
For the history of inequalities of this type see the paper of Pekarskii.
Let (ok(f\ 8)p be the /cth modulus of smoothness of the function feLp(T):

k /p

v ,
(ok{f; S)p = sup

\h\*i5

Pekarskii (1984) obtained the following results.
Let a > 0, pe(l, oo], a = (a + p~ *)1 and let k be the smallest natural number

such that k > a. Then

(a) ///eiJp tfien

(b) ///eBMOA t/ien

£ (2™wk{f;2~m)llayi«^c{a) £ (2m^24
m=0 m=0

(compare with theorem 6.2 and (4)).
See also Y.A. Brudnyi (1979).
The first characterization of #XOBMOA w a s given by Peller (1980):

I W/)BMOA)P < » if and only iffeBp'pp
PP

(see also Peller (1983), Semmes (1982), J. Peetre (1983)).
The modulus of variation Ksoo(f;n) for s=\ was considered by Rene

Lagrange (1965), Z.A. Chanturia (1974), V.A. Popov (1974b).
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Spline approximation and
Besov spaces

Besov spaces appear in a natural way in rational and spline approximations.
In this chapter we shall use Besov spaces to obtain complete direct and
converse theorems for spline approximation in the spaces Lp, C and BMO.
In this direction we shall follow the plan from section 3.5 to find pairs of
adjusted inequalities of Jackson and Bernstein type and then to characterize
the spline approximation by the Peetre K-functional generated by the
corresponding spaces. An essential fact here is the appearance of Besov spaces
B*

aa with index o < 1. This is the reason to begin in section 7.1 with some
facts concerning the spaces Lp (0<p< 1). In section 7.2 we define Besov
spaces and give some necessary equivalent quasi-norms. In section 7.3 are
established direct and converse theorems for spline approximation in Lp, C
and BMO.

The results proved in this chapter will be applied in Chapter 8 for the
rational approximation.

7.1 Lp(0<p< 1) spaces
The spaces Lp (0 < p < 1) appear in a natural way in the theory of rational
and spline approximations in Lp (1 < p < oo) metric.

By definition Lp[a, /?], 0 < p < l consists of all measurable functions /
defined on [a, b~] such that JJ | f(x)\pdx < oo. The space Lp (0 < p < 1) equipped
with the distance

d(f,g)= \f(x)-g(x)\"dx
Ja

is a complete metric space. The completeness of Lp[a, b] when 0 < p < 1 can
be proved exactly as in the case p > 1.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781107340756.008
Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:21, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.008
https://www.cambridge.org/core


186 Spline approximation and Besov spaces

We shall denote

II / I — 1 / 1Lp[a,b] •

b \l/p

\f(x)\pdx

which is a quasi-norm in Lp (0 < p < 1):

II/+< /UP < £(/>)( 11 /UP + II3 lUC(P
We shall frequently make use of the inequality

(i)

which replaces the Minkovski inequality. The inequality (1) follows immedia-
tely from the semiadditivity of the function xp (0 < p < 1):

(2)

The spaces Lp (0 < p < 1) have some exotic properties which make them
unpleasant as function spaces. For instance, there is no nontrivial convex
open set in Lp. Consequently, there is no linear continuous functional in Lp

except the zero functional. However, for the purposes of approximation theory
there is no substantial difference between the spaces Lp (0<p< 1) and Lp

(l<ps=oo).
Next we give some well-known inequalities that will be useful later and

will be used frequently even without any indication. Of course we shall use
the Minkovski inequality in Lp and lp (1 ^p=% GO), the inequalities (1) and
(2), and Holder's inequality for functions and sequences. Also, we shall use
the following well-known inequality:

z X;

i / p

0 < q ^ p < oo. (3)

The well-known inequalities of Hardy will be of great importance for us: if
/ is measurable and f(x) ^ 0 for xe(0, oo), a > 0 and p ^ 1, then

t (t-'mr—) ,
a\.o f /

(4)

u J t J

In order to prove the inequality (4) we first substitute u — tx in the
left-hand-side integral, then apply the Minkovski inequality and finally
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7.1 L p ( 0 < p < 1)spaces 187

substitute t = v/x. We get

x J t J

which implies (4). The inequality (5) can be proved in the same manner.
The modulus of smoothness cok(f;S)p in Lp[a,b'] (0<p< l) is defined

exactly as in the case 1 < p < oo:

°>ikf\$)p= SUP |A£/(x)|'dx

Now, we get some properties of moduli of smoothness cok(f;S)p for
feLp[a,b~], 0 < p < 1, k > 1 (compare with section 3.1):

(i) lim cok(f; d)p = 0,

(ii) cok(f;5)p is a nondecreasing function on [0, oo),
(iii) <Bt(a/+ fe; <5)^ | a ! " « , ( / ; 5)J + |/?Ccu^; <5)̂ ,

(iv) (ok(f;nS)p^C(k,p)nk-1 + 1/pCDk(f;d)p and therefore ojk(f;Xd)p^

(v) IffeLp[a,b~\ and a)k(f;d)p = o(dk~1 + 1/p \then f is a polynomial oj
degree k — 1 for almost all xe(a,b).

Property (i) can be proved just as the same property is proved in the case
p > 1; see A. Zygmund (1959) or A. Timan (1960). Properties (ii) and (iii) are
trivial. In order to prove property (iv) we shall use the following equality (see
(5) in section 3.1):

A£fc/(x) = " l " l • • • " l A*/(x + v,h + v2h + • • • + vkh).
vi=0v2 = 0 vk = 0

Hence

(n-l)lt

Khf(x)= I Aik)AkJ(x + vhl (6)
v = 0

where A ( k \ v = 0, l , . . . , ( n — \ ) k a re given by the iden t i ty

(n - l )k

Obviously / I * > 0. Now, we shall prove by induction that

A[k)^nk~\ v = 0,l, . . . ,(w-l)fc. (7)
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188 Spline approximation and Besov spaces

Clearly 4 1 ) = l , v = 0, l , . . . , n - l . Suppose that 4fc)<nk"1, v = 0 , l , . . . , (n- l)fc .

Then by the equalities

we conclude that

Aik + 1} ^ w m a x i f 1 < nk, v = 0, 1,...,(n— l)(/c + 1).
V

Estimates (7) are proved.
Now by (6) and (7) in view of inequality (2) we get

( n - l ) k [b-kh

\Atf(x)\>dx

Dk(f,dyp, o^h^3,

which implies property (iv).
From property (iv) there follows immediately the following estimate:

cok(f;32)p/3
k
2~

1 + ilp^ C(k,p)(ok(f;3l)pl3\~1 + llp, 0 <31<52-

Then, if cok(f; S)p = o(3k~x + l t P
\ then cok(f;S)p = 0, 5 > 0, and according to

lemma 7.8, which will be proved later on, we conclude that / coincides with
a polynomial of degree k — 1 a.e. in (a, b).

Note that we have for

0, xe ( - l , 0 ) ,

Xk~\ X£(0,l),

the estimate cok{f;5)p = 0(dk~x + 1/p).
We remark that there is no upper estimate of cok(f;5)p by cok-1(f

,;8)p or
|| /(k)||p when f'eLp or f(k)eLp, respectively, in the case 0 < p < \. Indeed,
consider the function

0 xe[-l,0],
1x, xe(0,e],

},
where e > 0 is sufficiently small. It is readily seen that cok(<pe;3)p> C(<5)>0
and ||<j9el|p = e1 / p - 1 -»0 as e->0. This fact is of central importance and will
influence fundamentally our further discussion.

Next, we prove some more complicated properties of moduli of smoothness.

Lemma 7.1. LetfeLJO, 1], 0 < p «S oo, k ^ 1 and 0 < 3 ^ l/(fc + 1). Then we
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7.1 L p ( 0 < p < l ) spaces 189

have:

(i) IfO<p< 1, then

cok(f;5yp^C5k»l\ t-k»ah + 1{f;typ—+\\f\\op\. (8)

(ii) If 1 ^p^ co, then

a,k(f;5)p^Cd"l\ t-koh + 1(f;t)pj+\\f\\p\. (9)

/n f 8 ; and f9; C = C(ifc,p).

Proo/! We shall prove only the estimate (8). The estimate (9) can be proved
similarly.

We shall use the following identity:

Akf(x) = 2"*(A2hf(x)-*£ t (k)Ak + 1/(X + ife)). (10)

Indeed, by induction it is readily seen that (see (5) in section 3.1)

Hence

A*/(x + kh). (11)

ALT.

Obviously

Then by (11)

i

v i = 0 v

= A*/(x)+

Aj/(x +

we get

i

f (

+ (

/!
)

1

=:A

v1h+

+ f

+ '

+ • • • + vkh)

•+G

t (
which implies (10).
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190 Spline approximation and Besov spaces

Suppose 0 < p < 1 and denote briefly

f 1/2 \1/P
Qk(3)= sup

Q<hsid

Let 0 < h < 1/4/c. By (10) and semiadditivity of xp (0 < p < 1) (see inequality
(2)), we get

kY t (
i = 0 j = i+l \J

Now we integrate over [0, | ] and take supremum. We obtain for 0 < 3 ^ 1/4/c

Qk(SYp<2"fc"nk(25) + Ccok+l(f;6%, C = C(p9k), (12)

Let r ^ l and O < <5 < l/2r+1fc. Then by (12) we have for i = 0, 1 r - 1

2"kpiQ.k(2
i5yp < 2" k p ( i + '>Q t(2 ; +'<5)^ + C 2 " ' " " ' ^ + j(/;2"'<5)P.

Summing these inequalities over i = 0, 1, ...,/•— 1 we get

Consequently, for 0 < S < l / 2 r + xfc,

Clearly, from this estimate it follows that for 0 < 8 < l/2r+1k

"d
 t df

d <•

Let 0 < 8 < l/4fc. Choose rSs1 such that l/2r + 2/c < <5 ^ l/2r+1/c. Then by
(13) we obtain

o)k(f;drp^C8k»\ r4krkpa}k+1(f-trp
d^+ ||/||{

which implies (8). •

Corollary 7.1. Let feLp [0,1], 0 < p ^ o o , w > f c ^ l and 0 < 5 < 1. Then we

(i) If0<p< 1, t/?en

I f - ^ ( / ) p
(14)
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7.1 Lp(0<p<1) spaces 191

(ii) I f 1 ^ p < co, then

a>MlS)p^C8kl\ t-k<ok + 1(f;t)Y+\\f\\p\. (15)

In (4) and (5) C = C(k,p,m).

Proof. We shall only prove the inequality (14) by induction with respect to
m. The inequality (14) holds with m = k+ 1 by lemma 7.1.

Suppose that (14) holds for some m ̂  k + 1. Then by lemma 7.1 with k = m
and the Hardy inequality (5) we get

wk(f;SYp^C5k4 I

•
Lemma 7.2. LetfeLp\a, b], 0 < / «c oo, /c ̂  l and 0 < d < (b - a)/k. Then we
have:

(i) If0<p<1,fftew

(ii) If \ ^ p < cc, then

\ l / p
|A*/(x)|'dxdf

0 Ja /

\ l / p

\Alf(x)\"dx) dt. (16)

c I " / I " "' \1/p

0 \Jo

6 fb-kt \ l / p

I /|Af/(x)|"dxdtJ . (17)
10 Jo /

(iii) If p= co, then

^ ( / ^ L ^ T T sup |A*/(jc)|dt. (18)
O 0 xe[a,b-kt]

In the estimates (16) (18) c is a constant depending only on p and
k: c = c(p, k).

Proof. We shall prove only the estimate (16). Estimates (17) and (18)
can be established similarly. The estimate (16) follows immediately from
the following estimate:
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192 Spline approximation and Besov spaces

If s Ss 0 and a + s + 2kS < b, then

- Fd f'a+s

sup | A j / ( x ) | ' d x < |AJS/(x)|"dxdA, 0 < p < l , (19)
Osihiija " Jo Ja

where c = c(p, k).
In order to prove the estimate (19) we shall use the following identity:

f * ( ,_w / t /(x + ih ) - Akh + Hl_h)lkf(x)}. (20)

We have:

= ( Z (-!)*" ' (*)A? ( t_w / k / (x +ill)

which implies (20).
By (20) it follows that

|Aj/(x)|" < c(p,k) t (\Kt-mf(* + ih)\P + IAL«,-«/*/M
i = i

Integrating with respect to te[0, ^] and dividing by S we get

>, X6[a,fl + s], feePU ] .

Now we integrate with respect to xe[a,a + s] and we obtain for /te[0,(5]

(21)

Next we shall estimate each term in the sum on the right side of (21).
Substituting x + ih = u and i(t — h)/k = v we obtain

i Pa + s f*i(d-h)/k fa+s + ih

|A5/(i<)|'d«di>.
-ih/k Ja + ih
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7.1 L p ( 0 < p < 1 ) spaces 193

Using the fact that

Akvf(u) = (-l)kAk_v(u + kv)

and the substitution u — kv = x we get

fih/k (*a + s + ih

\Akvf(u)\"dudv= \Akvf(u~kv)\pdudv
- ih/k ,a + ih Jo J O ih

ih/k Fa + s + ih-kv

\Akf{x)\"dxdv
0 a + ih-kv

\&tf(x)\pdxdt.
Jo Ja

Consequently

Pd a+s + ki

|Af/(x)|pdxdt.

The other integrals in (21) are estimated similarly. Thus the estimate (19)
is proved.

If 0 < 3 < (b - a)I'4k, then by (19) we obtain

(a+b)l2f
sup \Kf(x)\r |Af7(x)|"dxdf

"JO Ja

^j\ |Af/(x)|pdxdt.
"JO Ja

By symmetry we have

*b-kh rb

sup |Aj/(x)|'dx= sup f|Ak_,/(x)|pdx
%(a + b)/2-kh OsS)t>S<5 J (a + b)/2

"b b-kt

\Akf(x)\pdxdt.
10 Ja

Consequently estimate (16) holds true when 0 < 5 ̂  (b — a)/4k.
In the case (b — a)/4k < 3 < (b — a)/k estimate (16) follows from the case

d = (b- a)/4k. •
Now we shall prove some technical inequalities for the polynomials.

Lemma 7.3. Let k^O, 0<q^p^cc. Then for every polynomial QePk and
every finite interval A we have

.1/4 / i f \ I / P / i r \ i / 4

where c = c(q, k) and when q = oo or p = co the corresponding expression is

replaced by \\Q\\L (A), |A| the length of A.
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194 Spline approximation and Besov spaces

Proof. The left hand inequality is an immediate consequence of Holder's
inequality. It is enough to prove the right hand inequality for p = oo. To this
end choose a point x0eA such that |Q(x0)| = ||Q||L (A). Using Markov's
inequality

(see theorem 3.12), we obtain that there exists a constant c0 = c0(k) > 0 such
that for xeA we have

x- xfI Q(x) - Q{x0) | < | x - x011| Q' || A) sc c01| Q || l

Thus if we set Ax = {x:xeA, \x —x0\ ̂  |A| /2c0}, then |Ax ^ |A|/2c0 and

for xeAx we have

IQWI>IQ(x0)|-|Q(x)-Q(x0)IHII2IILoo(A)•

Integrating we find

1/p

The next lemma estimates the coefficients of a polynomial.

Lemma 7.4. Let k ̂  0, p > 0, and let A be an arbitrary finite interval. Then
for every polynomial

= £ av{x-x0)\ x0eA,
v = 0

we have

where c = c(p, k).

k / I

X |a v | |A |"<c
1/p

(22)

Proof. By translating the interval we can assume that x0 = 0 and A = [0, &].
In view of lemma 7.3 we need to prove (22) for p — oo. The case A = [0,5]
and p = oo follows from the case A = [0,1], p = oo, by a simple change of
variables. Finally, the case A = [0,1], p=oo, follows from the fact that
any two norms in (k + l)th dimensional space Pk are equivalent. •

Lemma 7.5. Let k ̂  0 and 0 < p, q ̂  oo. Then for every polynomial QePk and
for every finite interval A the following inequality holds true:

II

where c = c(k, p).
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7.1 L p ( 0 < p < 1)spaces 195

Proof By lemma 7.3 and Markov's inequality

we get

Theorem 7.1 (Whitney, 1957, p = oo). Let 0 < p «S oo, feLp\_a, b~\andk^\.
Then there exists a polynomial QePk-1 such that

where c = c(k, p).

Proof of theorem 7.1 in the case p = oo. Clearly it is enough to prove the
theorem in the case [a, fo] = [0,1] since the general case follows from this
case by a simple change of variables. Thus we shall assume that / eL^O, 1).
Next we shall use the following modified Steklov function as an intermediate
approximation (compare with theorem 3.5):

1dt2-dtk, (24)

where

Clearly if 0 < x < l and 0s$f,«S/i, i=\, 2,...,k, then O^x + W^l,
i = l, 2,...,k, and thereforefkyh(x) is defined correctly for each xe[0,1]. For
every xe[0,1] we have

\
o Jo

and for almost all XE[0, 1] we have

(-1) * _ 1 , ( 1 - kh)kAkf(x - khx)

- h)kAk
hlkf(x - hx)
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196 Spline approximation and Besov spaces

Consequently

II / - / u J ^ c o , . ] <«*( / ; *)„> (25)

I I / S I ! L » [ O , 1 ] ^ ^ ) ^ V ( / ; / J ) O C - (26)

Let xoe[0,1] and let us set

Obviously QePk-x and

II f — D II < II f <fc) II
II J t , / i W? IIL^CO.I] ** II J k,h I I L X [ 0 , 1 ] -

From this estimate, (25) and (26), setting h = \/k we get

Thus theorem 7.1 is proved in the case p = oo.

Next, we shall prove theorem 7.1 in the case 0 < p < 1. The case 1 ^ p < oo

is well known and can be proved similarly.

The following lemma proves theorem 7.1 in the case fc=l,

0<p < oo.

Lemma 7.6. LetfeLp[a, b], 0 < p < oo. Then there exists a constant c such that

a J a

b-a lb-t

2CM/;b-dfp9 (27)

where the constant c can he taken as c = (h — a)~l faf{t)dt when p = l.

Proof. Consider the function

PW ) = \f{x)—f(y)\pdx, ye[_a,b~].
Ja

Clearly, there exists yoe[a,b~\ such that

1

and therefore setting c =f(y0) we obtain

| f(x) - c \" dx < --*— \ r | f(x) -f(y)\" dx dy. (28)
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7.1 L p ( 0 < p < 1)spaces 197

Also, we have

1= \ [\f{x)-f{y)\!'dxdy = I"* \\f(x)-f(y)\"dydx
a J a J a J x

Substituting y = x + t and y — x — t respectively in the last two integrals
and changing the order of integration we get

/= I \f(x)-f(x + t)\>dtdx+ I | /(x)-/(x-0lpdtdx
Ja Jo Ja Jo

' \f(x)-f(x + t)\»dxdt+\ I |/(x)-/(x-J)|pdtdx
0 Ja JO Ja+t
'b-a >b-t

= 2 \f(x + t)-f(x)\pdxdt.
Jo Ja

This equality together with (28) implies (27). •

Lemma 7.7. Let feLp[0,1], 0 < p ^ 1. Then for every natural number n^\

there exists a step-function cpn with jumps at the points i/n — xh i = 1, . . . ,n — 1,

such that

Jo Jo

Proof By lemma 7.6 there exist constants ch i— 1,...,n, such that

xi /n fxi-t

|/(x)-c|pdxs=2n \f{x + t)-f(x)\pdxdt, i=l , . . . ,n .
<i-i J ° J*.--i

Then the step function (pn(x) = ct for X6(xf_l9xf), i=l,...,n, satisfies the

assertions of lemma 7.7. D

Proof of theorem 7.1 in the case 0 < p ̂  1. A simple change of variables shows
that we can consider only the case [a, b~] = [0,1].

Suppose that theorem 7.1 does not hold true. Then there exists a sequence
of functions {/w}£=i,/weLp(0,1), such that

/ I V
mf \\fm-Q\\PLp(o,i)>m(°k[fmlv ' m=l,2,....

QsPk-i \ K/p

Since the set of all polynomials QePk-l such that | I6IILP(O,I)^ 1 *s a

compact set in Lp(0,1), then for each m there exists a polynomial QmePk_1

such that

ll/m-Gm 11^(0.1)= M l l / m -CII M 0.1 , -
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198 Spline approximation and Besov spaces

Consequently

\\fm-Qm\\p
P>mwk(fm;

l
-J, m = l , 2 , . . . . (29)

Let us set

~ QmX K = II fm ~Qm\\p \\\p

By (29) it follows that

Il0j|,= inf llflfm-eilP=l (30)

and
c»k(flfm;fc-1)5<l/m, m = l , 2 , . . . . (31)

We shall prove that {gm}f is a precompact set in Lp(0,1), i.e. there exist a
function geLp and a subsequence {gmi}? s u c h that ||# — gm.||p->0 as i->oo.
To this end it is sufficient to prove that for each a > 0 there exists a finite
e-net for {gm}m°=i in Lp(0,1) (Lp(0,1), 0 < p < 1, is a complete metric space).

It follows by corollary 7.1 with k=1,m = k and (30), (31) that

1 1 dtrp-—
m t

for 0 ̂  3 ̂  1 and m = 1,2,..., and therefore for each e > 0 there exist m0 > 0
and (50 > 0 such that

mi{gm'^)Pp <£ for O < ^ < (50 and m>m0. (32)

Fix n > l/(50. It follows by lemma 7.7 and (32) that for each m> m0 there
exists a step function cpmn with points of discontinuity i/n, i = l , . . . , n — 1 ,
such that

l; n
- 1)5 < 28. (33)

On the other hand by (30) and (33) we get

Since cpm,n{x) is a c o n s t a n t for xe((i — l)/n,i/ri), i=1,...,n, for m>m0 w e

have

IS Vmn II L [0 1 ] ^ \ n \ \(Pmn(X)\P<^X I < ( ( 1 + 2s)n) 'P = M.
00 ' V Jo ' /

Consider the set *F of all step functions cp of the type

m(y-\ — j -ei /p x(=( I 7 — 1 n r — 0 -4- 1 II i n II
tp(A) — Ib , A t , I , 1 — 1, . . . ,11, I — \J, ± 1, . . . , |t (ft || , m .
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7.1 L p ( 0 < p < 1 ) spaces 199

Clearly

inf ||<?„,,„-HI£< (£1 /Tdx = £
O

and therefore ¥ is a finite e-net for the set {(pm,n}m = m0 + i ' From this and (33)
it follows that *F is a finite 3e-net for the set {gm}m=m0 + i-

Consequently the set {gm}%= i is precompact in Lp(0,1) and for an
appropriate subsequence {gmi}r=i we nave WGrm~ ~ G 11 p —>• 0 as i-> oo for som
geLp(0,1). Hence, in view of (30), we have

-Q\\p
P> inf \\gmi-QVP-\\g~gmi\

QP

p

and therefore

inf ||0-eilp=l. (34)

On the other hand by (31) we get

I V / l \ p

T) coJgmi;-J +2kp\\g-gm.\\p
p^0 as i-+co.

K / P V K/P

Thus cot(g; l/k)p = 0. As we shall show below this equality implies that
g = Q a.e. for some QePk-l9 and so we have a contradiction with (34). •

It remains to prove the following.

Lemma 7.8. Let fsLp(a, b\ 0 < p ^ 1, and cok(f; {b - a)/k)p = 0. Then there
exists a polynomial QePk 1 such that f= Q almost everywhere in [#,&].

Proof. We shall prove the lemma by induction with respect to k. In the case
k = 1 the lemma follows by lemma 7.6. Suppose that the lemma holds true
for some k > 1. Without loss of generality we can assume that [a, b] = [0,1].
Suppose that

7TT = sup |A$+7(*)r<bc = 0. (35)
K + l Jp J

First we shall prove that

' 1 -khi -h

\Ak
hiA

lf(x)\pdx = 0, huh^O, khi+h^l. (36)
o

Indeed, if hi — ah and a = m/n with some integers m and n, then by the
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200 Spline approximation and Besov spaces

identity (5) from section 3.1 we get

m— l m — 1 m — 1

A7Wlp< Z Z - Z
Vl = 0 V2 = 0 VJt = 0

m — l m — l m — l n — 1

n n n

Integrating with respect to xe[0,1—(km/n+\)K] and using (35) we
conclude that (36) holds true in the case considered.

Suppose that hl=och, a > 0 an irrational number. Choose a sequence
{oLi}i°= i of rational numbers such that a { -> a as i -• oo and 0 < at < a. We have

,1 f{x) |

and therefore

i(1
v = 0 V V

-/(x h) \

l-kxh-h l-kmh-h

\Ak
XihAlf(x)\>dx

+ c(k,p)co1(f;k(x-ai)h}

c(k,p)a)1(f;k{a-ai)h)pp, (37)

where we have used that (36) holds true for a,- a rational number. Since
wi(/;<5)p->0 as <5->0, (37) implies (36).

We note, without proof, that AkhlAlf(x) can be represented as a finite linear
combination of differences of the type Aj2

+ 1/(x + /?); see P. Binev, K. Ivanov
(1985). This fact together with (35) implies (36) immediately.

In view of (36) our induction hypothesis gives that for each h, 0 ̂  h < 1,
there exists a polynomial QhePk^l such that Alf(x) = Qh(x) for almost all
xe[0, 1-h], i.e.

f(x + h)-f(x)= (38)

almost everywhere in [0,1 — K].
We shall prove that each coefficient ax(h) is a continuous function of /ie[0,1).
Let 0^h1,h2< 1. We apply lemma 7.4 to the polynomial

k-l

=f(x + M - / (x
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7.2 Besov spaces 201

for the interval A = [0,1 — h], h = max {hx, h2}. We obtain

k - i / j ri-h \ i / P

£ I f l ^ - a ^ J U l -h\v^c(k,p)( — \j\ hf{ h)\p&
v = 0 V 1 "

Since col(f;S)p-*0 as <5— »0, it follows that av(h) is continuous function of

Applying now an arbitrary (fe + l)th difference Af+1 to (38) as a function
of h we obtain

v = 0

for almost all xe(0, 1-h-(/c+ 1)0 and t, h ̂ 0 , h + (fe + \)t < 1. By (34) it
follows that for almost all XE[0 , 1 -(fe+ l)ft], 0 < / i < l/(fe+1), we have
A£+ 1/M = 0? and therefore since av(h) is a continuous function of h we have

Then by the case p = oo of theorem 7.1, which has already been proved,
we conclude that for each interval [0, 2], 0 < k < 1, av(/z) coincides with some
polynomial QxePk. Consequently there exists exactly one polynomial QvePk

such that av(h) = Qv(h) for /ie[0,1), v = 0 ,1 , . . . ,fe - 1. In view of (38) this fact
implies the lemma. •

7.2 Besov spaces
Besov spaces occur in spline and rational approximations. Here we give only
some needed notations and facts concerning Besov spaces. For more details
one can see S.M. Nikol'skij (1969), J. Bergh, J. Lofstrom (1976), J. Peetre
(1976), H. Triebel (1978).

Suppose feLp(0,1), 0 < p, q < oo and a > 0. Taking k = [a] + 1 we define

(t-«cok(f;t)pr-) , q<oo, (1)
o ' /

and

r > 0

where cok(f; t)p is the usual modulus of smoothness o f / in Lp(0,1) (see section
7.1). The Besov space Bx

pq is defined as the set of those functions feLp(0,1)
such that the quasi-norm || / 1 | fl* is finite. This is the homogeneous Besov space.
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202 Spline approximation and Besov spaces

Let us indicate the properties of quasi-norm || • || = || • ||B« : (i) || / 1 | ^ 0 for
/eBJ,„ but it is possible || / 1 | = 0 and JV 0, (ii) || If || = |AM|/ 1| for /eflj, , , X
a real number, (iii) | | / + gK C(|| / | | + \\g\\) for / , geB°M, where C > 1.

More frequently Besov spaces Bpq are considered with the quasi-norm
II / II = II / IIP + II /II Ba • It is w e ' l known that the Besov space Bpq is a complete
quasi-normed space (Banach space when 1 ^ p, q ^ OO).

Note that, since cok(f;t)p = cok(f; l/k)p for t > 1/fc, then the quasi-norm (1)
is equivalent to the corresponding quasi-norm, if the integral in (1) is replaced
by integral over (0,l//c) or (0, oo).

The choice k = [a] + 1 in the definition of Besov space Bpq is not essential.
According to the properties of cok(f\t)p (see section 7.1), it suffices to take
k> a (more precisely k> a when p ^ 1 and k > a + 1 — \/p when 0 < p < 1).

In order to prove direct and converse theorems for spline approximation
we shall make use of the following variant of Besov spaces Ba

pq. Denote by
B*

q.k the set of all functions /eLp(0,1) such that the following quasi-norm is
finite.

dA1 ' "

w h e r e 0</?, q<oo,oc>0, k^l.

Obviously BaM.k coincides with Bpq when k = [a] + 1, but k in the definition
of Bak is not directly connected with a.

In our considerations we shall mostly make use of spaces Baaa.k with
a < 1 and we shall denote briefly B".k = Ba

a(J.k and \\'\\Bl.k - | | HBJ -̂
fWe remark that the space Baa.k with 0 < a < 1 is nontrivial when 0 < a <
k — 1 + 1/c, while, with o > 1, it is nontrivial when 0 < a ^ k.

Next we give some other equivalent quasi-norms in B*
k. Denote

/ C1/k dt\1/q
t| f | | ( 2 ) _ | (t - a II \k f(.\\\ \q I

Lemma 7.9. Let 0 < /?, g< oo, A>0 and k ^ 1. Then we have

(i) || • || a and \\ • ||(y are equivalent and
Dp,q;k Dp.q\k *

(ii) II" IIB* i and II' IIB2"'.4 are equivalent in the case p^q.

Proof. The quasi-norm IHl'J.' is the discrete variant of quasi-norm

|| • || 8> ,t. Clearly botequasi-norh quasi-norms ar)ie equivalentsthediscret, since a)k (f; t)to is afquasi-nor monotone

function.

f We set also Baa = B* .
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7.3 Spline approximation 203

Obviously || / ll'i' < || / |L« , for feB*
 pq.k. In order to prove an estimate in

the opposite direction we first observe that for feB"pq.k

m

since cok(f; t)p = cok(f; \/k)pfor t ^ \/k. Now, in view of lemma 7.2 in section 7.1
and Hardy's inequality (see (4) in section 7.1), we get for p < q

II/II, ^cjrft-"-1 r«iiAj/(-)ii£(oi-ta,-Y
/p-Y/f

M'k VJo \ Jo "' " u ) f /
1/* At\U<l

7.3 Spline approximation
The aim of this section is to prove direct and converse theorems for the spline
approximation in the spaces Lp, C and BMO. Our point of view is that the
natural way to obtain such theorems is to prove pairs of adjusted inequalities
of Jackson and Bernstein type and then to characterize the spline approxima-
tion by the X-functional of Peetre between the corresponding spaces (see
section 3.5). The spline approximation is a good illustration of this idea.
Besov spaces appear in a natural way in this case.

7.3.1 Introduction
Spline functions were first introduced in approximation theory by I. Schoenberg
(1946). They have a great number of applications for the following reasons:

(i) Splines are solutions of series of natural extremal problems;
(ii) Splines are convenient as a tool for interpolation and approximation;

(iii) Splines are useful in analysis, numerical methods, etc.

Denote by S(k, n) the set of all spline functions of degree k — 1 with n — \ free
knots, i.e. seS(k,n) if seCk~2{— oo, oo) and there exist points (knots)
— oo = x0 <x1 ^ x2 < ••• < xn-i < xn = °° sucn tnat s is some algebraic
polynomial of degree k — 1 in each interval (xt _ x, xt).

It is readily seen that each spline seS(k,n) can be represented in the form

where QePk„

*-l_J°.
X+ - ^ - * - i , x > 0 .
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204 Spline approximation and Besov spaces

This and other basic facts related to splines one can find in C.de Boor (1978)
and L. Schumaker (1981).

The splines, similarly to the rational functions of fixed degree, are a
non-linear approximation tool. Moreover, as we shall see in Chapter 8, the
rational approximation is closely connected to the spline approximation.
This fact motivates the consideration of spline approximation in this book.

In this section we shall be concerned only with the order of the spline
approximation of functions so that, as we shall see, the smoothness of splines
will be not necessary.

Denote by S(k, n) the set of all piecewise polynomial functions of degree
k— l with n—l free knots, i.e. seS(k,n) if there exist points (knots)
— oo=x0<xx<••• <xn = oo and polynomials QiePk-1 such that s(x) = <2,(x)
for xe(xi-1,xi\ f = l,2,...,n. We shall suppose that s(xt) = s(xt — 0) or
s(Xi) = s(xt + 0) at each knot x(. We shall call piecewise polynomials briefly
also splines (they are splines with defect).

Also, we shall denote by S(fc, n, [a, fc])the set of all splines seS(k, n) restricted
to [a, b]. In this case the end-points a and b of the interval will be also called
knots of s.

Denote by S)
j,f)p = Sk

n(f9[_a,b])pi s;(/)c = s;(/,[a,&])c, §*(/), and 3*(/)c

the best approximations of / in Lp and uniform metrics by means of the
elements of S(k, n) and S(k, n) respectively. For instance

Sk
n(f)p = inf \\f-s\\p.

seS{k,n)

We shall investigate the behavior of {S*
{f)p} instead of {Sj(/)p}. The

following lemma shows that there is no substantial difference between
piecewise polynomials and splines with respect to the order of approximation
in Lp and uniform metric that both classes produce.

Lemma 7.10. Let feLp[a, b], 0 < p < oo and feC[aMfor p = oo. Then we have
for k ^ 2 and n ̂  l

where m = (n— l)/c + 1.
In order to prove lemma 7.10 we need so-called B-splines. We shall use

without proof the following lemma.

Lemma 7.11. Let — oo < x 0 < x l < ••• < x k < co, k ^ 1 and

k L(x _ v \k- 1 k

i ^ *v f , o,w = n (* - *«)•
cu(x)

Then BeS(k,k + 2), B(x) = 0 for xe(- oo,x0]u[xfc, oo), B(x)^0 for
xe(— oo, oo) and |"a0B(x)dx = 1. The spline B has knots x0, x l 9 . . . ,x k . See
C. de Boor (1978, p. 108), L. Schumaker (1981, p. 118).
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7.3 Spline approximation 205

Lemma 7.10 is an immediate consequence of the following.

Lemma 7.12. Let Qu Q2ePk^l, k^2. Then for each e > 0 there exists 30 > 0
such that for each 3, 0 < 3 ^ S0, there exists a spline skeS(k,k + 1) with knots
0 = x1 < x2 < ••• < xk = 3 such that

xe(0,8), Q^O)
xe(0,<5), 6 I ( 0 ) > 6 2

 W

Proo/i We shall prove the lemma by induction with respect to k. The lemma
is obvious for k = 2.

Suppose that it holds for some k ^ 2. Let 61 > Q2ePk and £ > 0.
Choose ($!, 0 < 5X < <50, such that for 0 < 3 ^ <5X.

3{\Qf1(0)\ + \Q'2(3)\+2s}<e. (3)

Such a choice of <5X is possible since 61 and 62 are polynomials of fixed degree.
Let 0<3^81 ^<50. Because of Q\, Q2ePk-i and our assumption there

exists a spline function skeS(k,fc+ 1) with knots 0 = M1 < tt2 < ,,, < uk = (
such that s satisfies (1), (2) with Qu Q2 replaced by Q\, Q'2.

Choose an arbitrary UOE(0, 3) such that u0 ^uh i= 1, 2,...,fc. Let {Ui}ki=0 =
{xj*= 0 and 0 = x0 < x1 < ••• < xk = 3. Let BeS(k, k + 2) be the B-spline from
lemma 7.12 with knots x0, xl9...,xk. Set cp(x) = $:

LaoB(t)dt. It follows from
lemma7.12that q>(x) = 0forx < 0,cp(x) = 1 forx ^ (5,0 ^ cp(x) ̂  1 forxe[0,5],
<p is increasing and cpeS(k + 1, k + 2).

Now consider the spline

sk+i(x) = 6i(0) + Psk(r)dt + <p(x) \Q2(5) - 6i(0) - Jsk(f)dt .
Jo V J s J

Clea r ly sk + 1eS(fc+ \,k + 2) a n d s h a s k n o t s {xo,x1,...,xk} c[0,(5]. A l so

Finally, we have for xe(0,3)

sh+i(x) = (l- (p(x))Q1(0) + <P(x)Q2{8) +\ sk(t)dt-(p(x)\ sk(t)dt.

Jo Jo
Hence, in view of (2) and (3) with Qu Q2 replaced by Q\, Q'2,

d

\sk(t)\dt
Jo

<S{\Q\(0)\+\Q2(S)\ + 2s}<e.

Consequently, sk+1 satisfies (2). •
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206 Spline approximation and Besov spaces

Proof of lemma 7.10. Let seS(k,n) and 0 < p < oo. Using lemma 7.12 on each
knot of 5 in place of the origin we conclude that, for each s > 0, Skn(s)p <
S„{f)p + s for m = (n — \)k + 1, which implies the assertion of lemma 7.10 in
the case 0 < p < oo. The case when feC[aM, p = oo is also clear in view of
lemma 7.12. •

As already mentioned we are interested only in the order of spline
approximation. Other questions connected with spline approximation will
not be considered. The only fact we use is the existence of best approximating
element in S(k,n) in Lp and uniform metrics (compare J. Rice (1969, vol. 2,
section 10-3)). Of course the existence is not necessary for our evaluations.
We use this fact only to reduce some proofs.

Next we shall be concerned in some simple estimates for spline approxima-
tion that will be useful later.

Lemma 7.13. Let f be defined on \_a, b~], f{r~ l ) (r ^ 1) be absolutely continuous
andfir)eLq[a, b~](1 ^q^ oo). Let 1 ^ p ^ oo and k^-X. Then we have for n = 1,
2,.. .

<«+„„ Ab-arl»-llW%

Proof. Suppose seS(k,n,[a,£>]) and

I! / ' ~ S IIL,[a,b] = Sn(f ' )q-

Then there exist points a = x0 < x 1 < -•• < xn = b such that 5 is an algebraic

polynomial of degree k — 1 in each interval (xf_l5xf).

Clearly, there exist points a = u0<ul < ••• < u3n = b such that {XJ}"=0 c

K}?=o> "i - ".--1 ^ ( b - a)/n and

| f(r\x) - s{x) |« dx ^ - Sk
n( f'% i = 1,2,..., 3n.

Set

for xe[wf_x,WJ), f= 1, 2,.. . , 3n, and (/>(b) = cp(b — 0). Clearly, cpeS(k + r, 3n, [a, /?] )
Denote A, = [i/j_1?wt). By Taylor's formula we get

1

l{r-\)\
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7.3 Spline approximation 207

and therefore

J )

Hence

n

Thus (4) is proved. The estimate (5) can be proved similarly. •

Theorem 7.2. (i) If Vbaf< oo and 1 ^ p ^ oo t/zen

\ ( / ) p < , — r c = l , 2 , . . . . (6)

(ii) IfVbJ(r)<ao,r^l, then

(7)

Proo/ Clearly, there exists a partition of [a, fr] into n subintervals a =

x0 <x1 < ••• <xn = b such that the variation o f / in each open interval

(x t_1?xf) does not exceed Vb
af/n. Set s(x) =f(xi_1 + 0) for

( = l ,2 , . . . , n , and s(fo) = s(b —0). Then se<S(l,n,[a,5]) and

— a)l/p

which implies (6).!

The estimate (7) follows from lemma 7.13 and the estimate (6) applied to
f r ) w i t h p = l . D

7.3.2 Direct and converse theorems in Lp (0 <p < oo)
As already mentioned in section 3.5, in order to obtain complete direct and
converse theorems in approximation theory it is enough to prove pairs of
adjusted inequalities of Jackson and Bernstein type. Now we follow this plan
approximating by splines in Lp (0 < p < oo) metric.

We begin with formulation of the main statements.

Theorem 7.3 (Jackson type inequality). Let feB*.k, where a > 0, a =

f We suppose f(a) =f(a + 0), f(b) =f(b - 0).
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208 Spline approximation and Besov spaces

(a + 1/p)\ 0 < p < oo and k ^ l . Then feLp(0,1) and

Sk
n(f)P^C^^, „=I,2,..., (8)

where C = C(a, p, k).

Theorem 7.4 (Bernstein type inequality). Let

seS(k,n,[0,1]), k,n^\, 0<p<oo, a > 0

and G = (a + l/p)~*. T/zen

| |s | |B^^Cn«| |s | |p , (9)

w/zere C = C(a, /?, /c). However, the estimate (9) does not hold in the case p — oo.
According to theorem 3.16 in section 3.5 theorems 7.3 and 7.4 imply the

following direct and converse theorems:

Theorem 7.5 (direct theorem). Let feLp(0,l), 0 < p < oo, a > 0 , a =
1 and fe>l. Then

p f,n-«;Lp,B%), n = l ,2 , . . . ,

where C = C(a, p, k).

Theorem 7.6 (converse theorem). Let /eLp(0,1), 0 < p < c o , a > 0 , o =
(o t+ l / p ) ' 1 a n d k > l . T h e n

X V s * ( / ) P ) A Y " , n = 1 , 2 , . . . ,
=lV /

where X — min {cr, 1}, C = C(a, p, /c).
As a consequence of theorems 7.5 and 7.6 we obtain similarly as in section

3.5 the following.

Corollary 7.2. Let feLp(0,1), 0<p< co, k^ l and /e£ co be nonnegative and
nondecreasing function on [0, oo) such that co(2t) < 2^co(t)for £ ^ 0 (/? ̂  0). Then
we have

1)l 0<£ + y<a iff

In particular

Sj(/)p = 0(ir?), 0<y<a, ijX

Denote

SJ;t(Lp) = j / € L p [ 0 , 1 ] :
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7.3 Spline approximation 209

and
SULP) = {/eLp[0,1]: || / \ \ s l (Lp) = supw'Sft/), < oo},

n

where Lp[0,1] = C[0j l ] when p = co.
As usually, we shall denote by {XQ,X^)6A the real interpolation space

between quasi-normed spaces X0 and Xx with quasi-norm

and

Corollary 7.3. Let 0</?< co,y>0,0<q^ oo, k^ 1, a>y and <j = (a + l/p)_
Tnen we have

with equivalent quasi-norms.
In order to prove theorem 7.3 we shall prove the following embedding

result:

Theorem 7.7. Let feB*p.k, a > 0 , a = (oc + l / p ) ~ \ 0 < / ? < o o , fcSsl. 77ien
/eLp(0,1) and

, (10)

where Ek_1(f)p denotes the best approximation to fin Lp(0,1) by means of all
polynomials of degree at most k—1,C = C(a, p, /c).

According to inequality (3) in section 7.1, if feB*
0.k then feBlp.k and

\\f\\Birk^ II/HBS,.*'
 s m c e °"<P- T h e n by (10) it follows that, if feB^, then

/eLp and

£*-i(A,<CU/llB j ; k , C = C(*,p,k). (11)

In order to prove theorem 7.7 we need some auxiliary statements.
Denote by E(k, n) the set of all piecewise polynomial functions of degree

k — 1 with fixed knots at the points i/n, i = 0, 1,... ,n, i.e. cpeE(k, n) if cp is a
polynomial of degree k — 1 in each interval ((/ — \ )/n, i/n), i = 1,2,..., n. Denote

7.7- / . IffeLJO, \ ) , 0 < p < ao and k^l, then

where C = C(/7, /c).
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210 Spline approximation and Besov spaces

Proof. Denote Af = ((f— \)/nJ/n). By theorem 7.1 in section 7.1 there exists
a polynomial Qt of degree k — 1 such that

C = C(/c,p).

Hence, in view of lemma 7.2 in section 7.1 we have

lAj/MI'dxdn. (12)
O (i-D/n

Put (/>(x) = Qt-(x) for xeAh i = l,2,...,n. Then by (12) we get

n f(iln)-ku \ i/P

y A*/(x)|*dx)d"
0 V^jVl)/,, / /
1/kn pi -ku \ 1/p / i

\AkJ(x)\»dxdu^ " " ' -
p0 JO / V K«/»

Lemma 7.14 shows that in order to prove theorem 7.7 it suffices to prove
that /GLP(0,1) and

1/P

, C = C(a,p,fc) (13)

The estimate (13) will be proved by using the following.

Lemma 7.15. Let 0 < o < p < oo and let there exist a sequence {un}™= 1 of
nonnegative functions i^sL^O, 1) such that

| |w n L^ i n , A„ + 1^PAn, n = l , 2 , . . . , where 0<£<1, (14)

and for some dn>0 anJ any r (a < r ̂  oo) we have

KL^Cfor)^ 1 / " - 1 " ; . , , , I = 1 , 2 , . . . . (15)

T/)en we have for the function f'=£*= \un feLp(0,1) and

ll/II^Cfop.flf f <5^-1;^Y/P (16)

This lemma we shall prove applying several times Holder's inequality
for sums and integrals, the inequality (3) from section 7.1 and Abel's
transformation:

iv i v - 1

E " A = I U„(v„-vn+l)+UNvN, (17)
n=1 n = l
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7.3 Spline approximation 211

w h e r e Un = Yl=i uk for n = \ , 2 , . . . , N a n d a l s o

n= \ n = 2

where (7* = TS!=nuk f°r w = 1,2,...,AT.
We shall use also the following.

Lemma 7.16. Let ccl, a2, . . ., aw be nonnegative numbers and 1 ̂  p < oo. T/zen

we have

JV / N \ P N / n \P

«= 1 \v = n / n= l \v= 1 /

Proo/ Obviously bp — ap^pbp~l{b —a) when 0 < a < f r , p^\. Using this

inequality and Abel's transformation (17) with uv = OLV and vY = Q]JLv
as)p we

get

JV \ P JV— 1

0 (
n=l \v = n / w=l \v=l

N— l / n \ / J

«=1 \v=l

JV / JV \P~ 1 / «

Z a» Z «v )
l « / \n=1 \v =

Hence, if p = l , then (19) is proved. Let p > l . Then applying Holder's

inequality to the last sum we obtain

(N / N V)l-1/Pf N

E d Z«v Z
n=l \v = n / J (.»=!

which implies (19). •

Proof of lemma 7.15. Consider the case p^2, a^\. Put SN = 2J L iM„. By

lemma 7.17 and the inequality (a + b)r sg 2 r" \ar + br), where a, b > 0, r ̂  1,

we get

iV / N \ P - 1 f N / N \ P ~ 1 N / n \p_1l

s£=X«„ £ « „ <2"-2 n>„ Z"v + 2 > . Z
n = l \ n = l / ( n = l \ v = n / n = l \ v = l

JV / n \p-l

Z"n Z
n = 1 \ v = l
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212 Spline approximation and Besov spaces

Now, by Holder's and Minkovski's inequalities we obtain

1 SpN(x)dx ^ C(p) t P uJLx)( £ uJLx))' dx

JV

n = l

N

\v= 1

n \P ~ 1

v=l

n=l \v=l

JV / n

p - 1

n=l \ v= l
(20)

where 1/tr-h \/o' = 1.
We continue applying Abel's transformation (18) and obtain

JV / JV

11=2
l)KL<p-l) " I Z l l"vL(j , - l

\ l

P - 1

N / N

n = 1 \ v = n

p - 2

By (14) it follows that

I

v=n v=0 1 P

Using the above inequalities and again Holder's inequality we get

JV

n = 1

JV

7 \\u II '/ _ ,|
\P~2

2V

ZZ AJuJIS^1-,

Hence

iV

n = l

We have a'(p - 1) = a{p - l)/(<x - 1) ><x and by (15)

(21)

(22)
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7.3 Spline approximation 213

The estimates (20), (21) and (22) entail

which implies (16).
Now let 1 ^ o < p < 2. Put vn = (un)

pl2. Then

IV \P (/ N \P/2")2

(23)

Write q = 2a/p (q > 1). We have

P/2<T

— I I I J

— HMn
I I P / 2

Thus {i?„}*
=! satisfies (14). On the other hand, if q < r < oo, then s = \pr > a

and by (15) we have

lkll,= Hull,"2 < c8«1"'-ll»i2i>12 = csy-we,.

Consequently, {vn}™=l satisfies the assumptions of lemma 7.15 in the case
already considered (1 < q < 2) and we obtain using (23)

C(ff,P,P) ^2 = C(ff,P,/J)

The case 0<cr< l , a < p < o o i s considered similarly. Put vn = ua
n, then

oo \p/a

and

We have for 1 < r < oo || vn \\r < C^^ 1/r>?n- Put 5 = p/<7 (s > 1). Then we obtain

as above

C(a,p, P) « - VB = C(<x, p, D

Proof of theorem 7.7. As already mentioned, in order to prove theorem 7.7
it is sufficient to prove thatfeLp(0,1) and the estimate (13).

Choose (p2nEE(k,2n) such that

(24)
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214 Spline approximation and Besov spaces

N o w , we define by i n d u c t i o n in t ege r s n0 = 0 < n1 < n2 < ••• s u c h t h a t

(25)

for i = 0, 1,...,where y = min{l,<j}.
Put ut = \cp2

ni — <P2
ni-i\- Then by Minkovski's inequality when 1 < a < o

and inequality (1) in section 7.1 when 0 < p < 1, using (24) and (25), we get

and

Hence

The following inequality holds:

where o < r ^ oo, C = C(fc, p, r).
Indeed, by lemma 7.3 in section 7.1 we have

(26)

(27)

'-""Wuih.^, C=C(k,r),

where Av = ((v - 1 )/2"1, v/2"1), v = 1, 2, . . . , 2"'. Then in view of inequality (3) in
section 7.1 we get

«.-ll,= I I I *
1/r

« , - ( 1 / f f - l / r )

/-Oni(l/ff-l/r) I , . II
l i l t (A ) — r - 2 " i < 1 / i r ~ 1 / r ) l t/ II" i l i a -

Inequality (27) is proved.
Put Xi = || ut ||ff, 5f = 2%/ = 1 , 2 , Inequalities (26) and (27) indicate that

the requirements of lemma 7.15 are fulfilled. Therefore we have

i / p

(28)

By (24) and (25) we get as above
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7.3 Spline approximation

Combining these estimates together with (28) we get

215

i = 0

(29)

Since feLJO,1) and by the definition of cp2n it follows that the series

i= l

represents the function /— q>1 in LCT(0,1). The inequality (29) shows that the
same series converges in Lp(0,1). Therefore feLp(091) and by (29)

Theorem 7.7 is proved. n
Proof of theorem 73. In order to prove theorem 7.3 we shall use theorem
7.7, more precisely the estimate (11). Of course estimate (11) holds also with
the following quasi-norm in the right-hand side (see section 7.2):

(2) _
c\t

aj| \kf(.\\\ y _
c\t\11"

(30)

Now we transform the estimate (11) with quasi-norm (30) to an arbitrary
interval A = (u, v) c (0,1). Consider the function g(x) =f(u + (v — u)x\ xe(0,1).
By (11) we have

(31)

Clearly

inf
i/p

Thus we have

(32)

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781107340756.008
Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:21, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.008
https://www.cambridge.org/core


216 Spline approximation and Besov spaces

On the other hand we have

r i - k t \ I/<T

|A*4|t/(u + (i7-M)x)|1Tdx
0

i>-fc|A|<

Kltf(y)\"dy

— *\tfA\,f(-)\\nu,v-kWt),

where we have substituted y = u + (v — u)x. Now substituting |A|f = h we get

\\ \"dt\ll"
\\LJu,i-k\A}t) \ W \

o V W'f
lA|//c \aAh\il{J

Denote

The previous equalities together with (31) and (32) imply that for each interval

^ , , , , , , . (33)

Let n ^ 1. We define by induction points x 0 , x 1 ? Set x 0 = 0. Let x 0 ,

x1,...,xi.l be already defined such that 0 = x0 <x: < ••• < xl_1 < 1. Now

we define x t as follows:

Suppose xm ^ 1 for some m ̂  1. Denote At = (xf_ l 5 xf). Then we have

m m f|A,.|A Jf

E || f ||" _ V f-«T||Alt/Y.\| |<T

11/ lls(Aj) — 2-i l l l ^ l i l ^IlL^Xj.^Xj-to)

1/t

0

l'k -aa k a d t

0 " ' t
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7.3 Spline approximation 217

Thus we have

m

V II / ' I I ( T < II f \\a (~\A\

On the other hand the function F(v)= \\f\\B(u,v)> (M, u)<=(0,1), is obviously
continuous and nondecreasing for ve(u, 1]. Hence

II J lifl(Ai) — II _/ l lB(O. l ) ' l — i,z.,. . . ,in i .

n

These equalities and (34) imply that there exists m^n such that xm = 1. Also,
by the definition of x0, xx,... ,xm it follows that

,, f=i ,2 , . . . ,m. (35)

Now we apply the estimate (33) to the function / in each interval Af. In
view of (35) we get

C ,,.
Ek- I(/)LP(AJ) ^ n > II / Us;!' i = 1,2,... ,m,m < n.

Hence

1/p I f ll*2)

Proof of theorem 7.4. Here we shall use the following Besov quasi-norm (see
section 7.2):

t

Let seS(k, n, [0,1]). Then there exists a partition of [0,1], 0 = x 0 <
x t < • • • < x n = l and polynomials QtePk^x, i=l, 2,...,n, such that s(x) =

We need to estimate a>k(s, t)a for fixed fe(0,1). Observe that, since
s(x) = Qi(x), xeA; and QiePk-1, A£s(x) = 0 for x, x + kheAt. Hence

i-kh

cok(s;t)l= sup |Ajs(x)rdx
0

[ ) } (36)
|A,| > fa V J A) JA" J

where AJ = (xf _ x, x,- _ x + At), A" = (xf — fct, xt), the first sum is t aken over all i
such tha t I A,- 1 ^ kt and the second sum over all i such t ha t IA.-1 > kt.
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218 Spline approximation and Besov spaces

Next, we shall make use of the following inequalities:

|s(x)|"dx J = II s 11^,4.,^ | A; |a||:

s(x)\°dx ) =

s(x)\adx

(37)

(38)

(39)

where C = C(p, a, /c).
The inequality (37) follows from Holder's inequality. In order to prove

estimates (38) and (39) we shall apply again Holder's inequality and the
right-hand-side inequality from lemma 7.3 in section 7.1. We get

• C f l / a | A ; | - l / p | | s

The estimate (39) can be proved similarly.
Combining (36) with (37) (39) we obtain

Now we are ready to estimate ||s||Bar Applying the above estimate for

*(/; 0(7 we get

|A,-|>fc

a<T II e I I " ldt

where we have applied the discrete variant of Holder's inequality. These last
estimates imply (9).

It remains to prove that the inequality (9) does not hold in the case p = oo.
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7.3 Spline approximation 219

Consider the spline

xe [0,1/2],
XE(1/2,1/2 + e),
xe(l/2 + £,1],

where £ > 0 is a sufficiently small number. It is easily seen that ||s||B?od,>
C ln (l /£), C = C(a, k) > 0 and ||s||L = 1. Consequently, the estimate (9) does
not hold when p = OO . D

According to the arguments of section 3.5, theorems 7.5 and 7.6 and
corollaries 7.2 and 7.3 are immediate consequences of theorems 7.3 and 7.4.

Finally, we give one simple inequality of Bernstein type which is weaker
than inequality (9) in theorem 7.4. Unfortunately the corresponding Jackson
type inequality does not hold.

Lemma 7.17. Let seS(k,n,{a,b~\\ k,n^\, 0 < p < o o , m ^ l and a =
(m + \ /p)~ l . Then we have

\\s(m)\\LJa,h}^C(p,k,m)nm\\s\\Lpia.h). (40)

Proof. First we prove estimate (40) in the case m=1. Since seS(k,n,[a,b~\\
then there exist points a = x0<xi<--<xn = b such that 5 is a polynomial
of degree k — 1 in each interval Ai = (xi _ 1, xi). By lemma 7.5 in section 7.1
we have

Hence, using the discrete variant of Holder's inequality we get

1 / < T

"Jl/o -
t i 1 ~ I T ' p l —
n 1

where we have supposed that p < oo. The case p = oo is similar.
Let m> 1. Write <r0 = p, ox = 1/(1 + 1/p), a2 = 1/(2+ 1/p),... ,am=l/(m+1/p).

By the inequality (40) when m = 1 it follows that

Multiplying the above inequalities we establish (40). •

7.3.3 Direct and converse theorems in uniform metric and in BMO
We have already explained in section 3.5 our point of view concerning direct
and converse theorems in approximation theory. We need pairs of adjusted
estimates of Jackson and Bernstein type.
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220 Spline approximation and Besov spaces

In this section we prove estimates for uniform approximation by smooth
splines instead of piecewise polynomials. In view of lemma 7.11 this is not
essential for our discussion. The only formal reason for it is that the
approximating splines are in the class of absolutely continuous functions.

We begin with the following trivial estimates.

Theorem 7.8. (i) IffeLJO, 1) and V$f< oo, then

S ; ! ( / ) » < - , n = l , 2 , . . . . (41)

(ii) For each seS(k, n, [0,1]), n ̂  1, k ^ 1, we have

Fjs < C(fc)n ||s ||«. (42)

Proof. The inequality (41) is established in theorem 7.2 in section 7.3.1. The
estimate (42) is obvious since s is piecewise monotone with at most kn pieces.

•
The estimates (41) and (42) form a pair of adjusted inequalities of Jackson

and Bernstein type. Consequently, they imply just as in the method of section
3.5 complete direct and converse theorems. Those are theorems which
characterize Lffi spline approximation by the K-functional between spaces
Lm and V. However, they can be used successfully for orders of approximation
not better than O(n 1). In order to characterize classes of functions with
order of uniform spline approximation better than O(n~l) we shall make use
of the following inequalities of Jackson and Bernstein type.

Theorem 7.9 (Jackson type inequality). Iff is absolutely continuous on [0,1],
/'eBf;/.,, a > 1 and k ̂  2 then

(43)

Proof. By lemma 7.10 and lemma 7.13 in subsection 7.3.1 we have for

and (44)

On the other hand by theorem 7.3 in subsection 7.3.2 we have

S r m ^ C M - ^ f ^ , "=1,2,.... (45)

The estimates (44) and (45) imply (43). •
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7.3 Spline approximation 221

Theorem 7.10 (Bernstein type inequality). If s e S ( k , n , [ 0 , 1 ] ) , fc^2, w ^ l
and a > 1, then

| |s ' | tB5- ;L l^C(a,/cK||5| |c. (46)

Proof. By theorem 7.4 in subsection 7.3.2 we have

||s' | | f lT/a_ l<C(a,k)n«-1 | |s' | | t l (47)

and by estimate (42)

\ s \ \ c . (48)

The estimate (46) follows from (47) and (48). •
Denote by B"k the set of all functions / absolutely continuous on [0,1]

such that f'eBZ.k with quasi-norm || / | | ^ = \\ f ||B«.
According to theorem 3.16 in section 3.5 theorems 7.9 and 7.10 imply the

following direct and converse theorems.

Theorem 7.11 (direct theorem). IffeC[01], A > 1 and k^2, then we have for

where C = C(a, k).

Theorem 7.12 (converse theorem). IffeC[01], a > 1 and k > 2, then we have
/or H = 1, 2,. . .

K(f,n-';C,B'lpJ_l) ^ Cn-'

The following corollary follows from theorems 7.11 and 7.12 in view of
corollary 3.6 in section 3.5.

Corollary 7.4. // a > 1, 0 < y < a, 0 < g ^ oo and k > 2, t/ien

with equivalent quasi-norms, where C = C [ 0 1 ] andSJ k ( C ) is defined in sub-
section 7.3.2.

The BMO space appears in a natural way in many problems of analysis,
see details in P. Koosis (1980), J. Garnett (1981). Next, we shall briefly establish
direct and converse theorems for spline approximation in BMO which are
similar to those in the uniform case.

The space BMO is defined as the set of all functions feLfab) such that

BMO = ll / ll BMO(a.ft) = S U P TXT l / W - A | d x < 00,
Ac(fl,/))I A I JA
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222 Spline approximation and Besov spaces

where fA = |A | " l §Af{t)dt and supremum is taken over all intervals A cz (a, b).
Thus we have a semi-norm || • ||BMO in BMO. Clearly || / ||BMO < 21| / ||L .

The following lemma is basic in our discussion (compare with lemma 7.18
in subsection 7.3.2).

Lemma 7.19. If seS(k, n, [0,1]), k ̂  2, n =s 1, then

(49)

Proof First we shall prove that for each polynomial QePk_1 and for each
interval A

lie'lkl(A)<C(fc)||Q||BMo(A). (50)

Indeed, the factor-space Pk_l/P0 is finite dimensional and then ||<2'|l<1) =

It Q IILI(O,D a n d IIQ ll(2) = IIQ IIBMO(O.I) a r e equivalent norms there. Consequent-

ly, for each polynomial QePk_1 the following inequality holds:

The inequality (50) follows from (51) by simple change of variables.
If ssS(k, n, [0,1]), then there exists a partition of [0,1] into n subintervals

0 = x 0 < x 1 < - - - < x n = l and polynomials {Qi}1=i.,Qi^Pk-i such that s(x) =
Qi{x) for xeA ; = (x j_1,x i). Now applying (50) to s in each interval A; we get

II s' ||Ll(0,i) = t II Q't ULUAO < C(k) X II Qt \\BMOiAi) ^ C(k)n || s ||BMO(0>1). D
i = 1 i = 1

By theorem 7.4 in subsection 7.3.2 we have: if seS(k,n, [0,1]), k ̂  2, n ^ 1
and a > 1, then

This inequality together with (49) gives

On the other hand by theorem 7.8 we have: if/ is absolutely continuous

' l / a ; * - - I 'on [0,1] and f'eB"^.k\_t, a > 1, k ̂  2, then we have for n= 1, 2, . . .

^ ( / ) B M o ^ 2 ^ ( / ) c ^ C ( « , f c ) l l / ^ - 1 , (53)

where

The inequalities (52) and (53) form a pair of inequalities of Jackson and
Bernstein type. They imply direct and converse theorems for spline approxi-
mation in BMO which are similar to theorems 7.10 and 7.11. The only
difference is that uniform metric is replaced by BMO.
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7.4 Notes 223

7.4 Notes
For the inequalities of Hardy ((4), (5) in section 7.1) see Hardy, Littlewood,
Polya(1934).

Theorem 7.1 was proved by H. Whitney (1957,1959) for the case p = oo.
For 1 ^p < oo see Yu.A. Brudnyi (1971), for 0 <p < 1 see E.A. Storozenko
(1977). Bl. Sendov (1985, 1987) proved that in the case p = oo the constant
c(k, oo) is bounded, i.e. c does not depends on k. Bl. Sendov has the estimate
c < 6 .

The function fkh in (24) of section 7.1 was introduced by Bl. Sendov.
Almost all of the lemmas in section 7.1 are well known, but we give their

proofs for completeness.
The basic results of subsections 7.3.2 and 7.3.3 are due to P. Petrushev

(1985). Let us mention that another connection between best spline
approximations and Besov spaces was formulated without proofs by Yu.A.
Brudnyi at the conference on approximation theory, Kiev, 1983.

The critical index a = (oc+ 1/p)"1 appears, as far we know, for the first
time in de Boor (1972). Lemma 7.10 is due to Brudnyi (1971). Theorem 7.2
appears in G. Freud, V.A. Popov (1969, 1970) and Yu.N. Subbotin,
N.I. Chernyh (1970).

The problem of characterization of the best spline approximations (with
free knots) was considered by many authors. We do not want to go here into
details, but we want to mention the following works: D. Gaier (1970),
Yu.A. Brudnyi (1971, 1974), J. Nitsche (1969a, b), J. Bergh, J. Peetre (1974),
V.A. Popov (1973, 1976b), H.G. Burchard (1974, 1977), H.G. Burchard,
D.F. Hall (1975), J. Peetre (1976), L. Schumaker (1981).

The embedding result - theorem 7.7 - was obtained by P. Oswald (1980).
We would like to remark that J. Peetre (1976) was the first who understood

that Besov spaces B^ with a < 1 are very essential for spline approximation.
DeVore, Popov (1986) have obtained that

therefore corollary 7.3 becomes

1 1
- = y+-.q p
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8

Relations between rational
and spline approximations

It is well known that the rational and spline approximations are closely
connected. Our point of view is that the splines are the most simple and
well-known nonlinear tool for approximation and therefore it is very useful
to investigate the connections between rational and spline approximations
of functions.

In section 8.1 we prove that the rational functions are not worse than
splines as a tool for approximation in Lp (1 < p < oo) metric. In section 8.2
we prove an estimate of spline approximation in Lp (1 < p ̂  oo) by means
of the rational approximation in Lp. In section 8.3 we establish some relations
between the rational and spline approximations of functions and their
derivatives in different Lp metrics.

8.1 The rational functions are not worse than spline functions
as a tool for approximation in Lp (1 ^p < oo) metric

The basic result in this chapter is the following.

Theorem 8.1. If feLp\_a,b\ 1<p<oo, k ^ 1 and a > 0 , then for rc^max
{U-l}

^(/^Cn-X/-1^. (i)
v = l

Moreover, if we put f(x) = 0 for xe( — oo, oo)\[a, b], then for n > k — 1

Rn(f(- o o , o o ) ) p < C n - « j I! f \ \ p + | ; i V « - 1 S t
v ( / , [ a , f e ] ) p | . (2)

Also, if f<=Lp(— oo, oo), then

RJJ,{-co,co))p^Cn-' t v"-1Sk
v(f,(-co,co))p. (3)

v = l

In the estimates (1 )-(3) C = C(p,k,a) depends only on p,k and a.
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8.1 Estimate of rational by spline 225

Remark. Clearly, the estimates (l)-(3) do not hold true for p=oo. The
presence of spline approximations in the right-hand side of estimates (l)-(3)
is essential. Spline approximations in these theorems cannot be replaced, for
example, by piecewise monotone approximation.

Theorem 8.1 is full of corollaries which will be given after the proof. The
proof is based on the following statement.

Theorem 8.2. Let cp e S(k, m, [a, fe]), where k ^ 1, m ^ 1 and [a, b~\ is an arbitrary
compact interval, and let 1 ^ p < OO. Put cp(x) = Ofor xe( — oo, oo)\[a, b~\. Then
for each X > 0 there exists a rational function R such that

e + -

and

where D = D(p,k)>1.
The same statement in another form: Under the hypotheses above the

following estimate holds true for n~^\:

Rn(<p,(- oo, oo))p < 2expI - C / £ I || cp||Lp[flffc],

where C = C(p, k) > 0.
In order to prove theorem 8.2 we need the following lemma.

Lemma8.1. Let QePk, k^O, l^p<ao and let A = [a,b] be an arbitrary
compact interval Then for each A > 0 there is a rational function R such that

and

\R(x)\^D\ I ,L,p(A), x e ( - co, oo)\A,
\ |A | + p(x,A)J |A| /p

where D = D(p, k\

is the distance from the point x to the interval A and | A | = b — a.
The proof of lemma 8.1 is based on the following two lemmas.

Lemma 8.2. If QePk, k^O, l sCp<oo and A = [-b,b], b>0, then for
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226 Relations between rational and spline approximations

x e ( — OO, oo)\A

where C = C(/c).

Proof. The lemma follows immediately from the following well-known
inequalities:

(i) If QePk, then for |x|2*l

where Tk(x) = cos (k arccos x), | x | < 1, is the Chebyshev polynomial (see

N a t a n s o n (1949)). Consequent ly, if QePk, then for \x\^b

|A|*

(ii) If QePk, then

(see lemma 7.3 in 7.1).

e + - J In f e + -
-J I n

4r,

2d

and

/zere 5 > 1 is an absolute constant.

y,

XG(-oo,oo),

•
Lemma 8.3 ( The fundamental lemma). Ifd > 0,0 < d ̂  1,0 < / < 1 andr^O,
r integer, then there exists a rational function o such that

(4)

(5)

(6)

(7)

Proof. According to lemma 5.2 in section 5.1, if 0 < e ̂  1/2 and n > 1 then the
rational function S(x) - P(x)/P( - x), P(x) = n?= i (* - £i/n% S e Rn, satisfies the
following inequalities

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781107340756.009
Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.009
https://www.cambridge.org/core


8.1 Estimate of rational by spline 227

and

p C 2 n xe[ e ,1] , (9)

where Cl5 C2 > 0 are absolute constants.
Put, using the notations above,

1
£ =

2/<T

f~ •
- ln-lnl e + -

e

where [x] denotes the integer part of x.
It is readily seen that

deg a1 = In + 2r < J5X In ( e + - j In ( e + - ) + 2r, (10)
V °J \ yJ

where 5X > 0 is an absolute constant. By (8) and the choice of e and n we
get for X E [ - 1, -a] => [ - 1, - 5 / 2 ]

and by (9) we get for xe[e, 1] =3 [5/2,1]

(12)

Clearly
O ^ c r ^ x ) ^ ! for XE(— oo, oo). (13)

Consider the rational function

d2 — x2

o-(x) = ax((p(x)\ cp(x) = -nr-t—2.

We shall show that o satisfies (4)-(7). Indeed, by (10) we obtain

deg o = 2 deg a1 < 2£x In f e + - j In f e + - j + Ar

\ 3J \ yJ
e + - ) + 4r,

/
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228 Relations between rational and spline approximations

i.e. a satisfies (4). Obviously, (13) implies (7). It remains to show that a satisfies
(5) and (6). Clearly, the function cp is even, strictly decreasing on [0, oo),
cp(0) = 1, cp(d) = 0, limx^ + „ cp(x) = - 1 . Since cp(d - 3d) ̂  3/2 and cp(d + 3d) <
S/2,

S/2^<p(x)^\, \x\^d-dd, (14)

-l^q>(x)^-8/2, \x\^d + 3d. (15)

By (12) and (14) we get 0 < 1 - a(x) < y for |x| ^ d - 3d, i.e. o satisfies (5). By
(11) and (15) we obtain

for |x| ^ d + 3d, i.e. a satisfies (6). •

Proof of lemma 8.1. Without loss of generality we shall assume that A =
[ — b9b]. If 1 ̂  1 then the rational function R = 0 satisfies the requirments of
lemma 8.1.

Let 0 < X < 1. Consider the rational function

where a is the rational function from lemma 8.3 applied with

By (4) we get

deg R sj deg a + deg g < B ln f e + - ) ln ( e + - ) + 4r + /
\ ?>) \ yJ

= B l n U + —

and hence

tegR<tB1\n2[ e + \ ) , B1=B1(p,/c). (16)
V AJ

N o w w e e s t i m a t e \\f — R ||L(A). B y (5) w e o b t a i n

\Q(x)-R(x)\ = (\-<j(x))\Q(x)\^A\Q(x)\, \x\^d-5d=X-^b. (17)
1 + o

d + Sd, i.e.
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8.1 Estimate of rational by spline 229

then by (7) and lemma 8.2. we get

\Q(x) - R(x)\ ^ \Q(x)\ < C(k) ll^f^i\ ^ ^

1+5

Using (17) and (18) we obtain

b \ Up

+d))b

I

I/P

<c2AiieiiLP(A).

Hence

IIQ~RIIMA)<C2X||Q||Lp(A), C2 = C2(p,fc). (19)

If |x| > b9 then by (6), lemma 8.2 and the fact that 4r ^ /c + 4 we obtain

+4

Hence

"~~ |A| + p(x, A)7 |A|1/''

The estimates (16), (19) and (20) prove lemma 8.1. •

Proof of theorem 8.2. Suppose cpeS(k,ra, [a,fr]), / ^ 1, m ̂  1. Then there exist
a division a = x0 <xx < ••• < xm = b of [a, 5] and polynomials Q^Pk-i,

i=l,2,...,ra, such that (/>(x) = <2f(x) for xE(xf_l5 xf). Put (/>(x) = 0 for
xe(—oo, oo)\[a,b]. Let 2 > 0 and 1 =%p < oo.

In what follows we shall use the following notations:

A=[a , fc], A0 = (—oo,x0], A£ = [Xi_l5xJ, *= l,2,...,ra,

Without loss of generality we shall assume that ||cp| /. (Ai) # 0 for i = 1,2,...,m.
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230 Relations between rational and spline approximations

Now we apply lemma 8.1 for the function cp in each interval Af (1 ^i^m)
with A; X A/Wcp || L (Ai). For each i (l < ii ^ m) there exists a rational function Rt

such that

(21)

II <P - Ri I I M A O < M, II <P IIMA,, = DXA (22)

and

- 4 T ^ , x e ( - oo,oo)\A ;, (23)

where D = D{p, k) > 0.
We shall show that the rational function

satisfies the requirements of theorem 8.2. First we estimate deg R. To this
end we use (21) and the facts that the function F(x) = —In2(e + x) is convex
on [0, oo) and In2 (e + x) < 4 In2 (e + xp) for x > 0. We get

= 4Dmln2L + M ^ ) = 4Dmln2 (e + ^)< 4Dp2mln2

Thus we have

deg < JD1mln2(e + - ) , Dl=D1(p,k). (24)

It remains to estimate ||<p — JR||L(— oo, oo). Note that if p = 1 then the
required estimate follows from (22) and (23) immediately. But the case p > \
is nontrivial. First we introduce some auxiliary notions.

Let {Af: f = 0, l,...,m-h 1} be the division of (—oo, oo) considered above.

Definition 8.1. We shall call the set of intervals {Av: i0 < v < il}, 1 ^ i0 ^ ix ^
m+1, a left class of intervals or briefly a left class, if |AV| < |A£l |for

We shall suppose that |A0| = |Am + 1 | > |AV|, v = 1,2,...,m.
By Q we shall denote the set of all left classes of intervals.
Some properties of the left classes of intervals:
(a) If K,KeQ, then KnK = 0 or K c K or K a K. Therefore X c K is
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8.1 Estimate of rational by spline 231

an order-like relation in the set Q with maximal element the left class
{Av:l < v < m + 1 } .

(b) For each i (1 < i ^ m + 1) there is exactly one left class KLGQ such that
the interval At is the last interval in Ki9 i.e. Kt = {Av: i0 =% v ^ i} for some i0.
In the sequel Kt is always the left class corresponding to the interval A,. Thus
there is defined a one-to-one mapping of the set {Av: l < v ^ m + l} onto the
set Q. Consequently, the number of the elements of Q is m + 1.

(c) If KeQ and AteK (1 < i ^ m + 1), then Kt a K.

Definition 8.2. We shall call the left class K a left subclass of first order of the
left class K, if K cz K, K #= K and there is no class K*eQ, X* # K such that
K a X* a K, i.e. K follows K immediately.

By Qt (1 ^ i ̂  m + 1) we shall denote the set of all subclasses of first order
of the left class Kt and by fit the number of the elements of Qf.

(d) We have for i = 1,2,...,m + 1

More exactly, for each / (1 < i < m + 1)

K; = {Av:jo + l ^ v ^ } = 0 KJ^{A}
v = 1

for appropriate indices 0 ^j0 <jl < ••• <7M. = i — 1,

Q, - {K,.v: 1 < v < f t}, Ku = {A,yv_, + 1^5

Hence

and

(e) Each class KEQ, K ^ Km+1 = {Av: 1 ^ v < m + 1}, is a left subclass of
first order of some left class and therefore

On the other hand Q (nQj= 0 for i / ) . Consequently
m+ 1

(25)

The properties (a)-(e) of the left classes follow immediately from the
definitions.
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232 Relations between rational and spline approximations

Analogously (more exactly by symmetry) we introduce the notion right
class of intervals and right subclass of first order of some right class. We shall
denote by Q* the set of all right classes, by Kf the right class in which At- is
the first interval, by Qf the set of all right subclasses of first order of Kf and
by fif the number of elements in Qf. The right classes have properties
symmetrical to the properties (a)-(e). We formulate only the following
property:

(26)

The following lemma uses the notations introduced above.

Lemma 8.4. The following estimate holds true for 1 ^ i ^ m:

I A,-1
-xJ lA,

*>*.-> (27)

where C = C(p9 k).

Proof Let Kt = {Av: i0 < v ^ i). If i0 = i, then the estimate (27) follows by
(23) immediately.

Let i0 < i and x ^ xt. By (23) we obtain

vlAs| + x - V IAJ1i/p'
By the definition of left class it follows that |Av| < |A t | , v = i0, i0 + 1,...,i — 1.

Denote for r = 1,2,...

Clearly, for r

1
(2 - r |A i | )

1 ' p

Since the function under the last Y,™=o is decreasing on S E [ 0 , OO), the last
series can be estimated by an appropriate integral. Thus we get

1
(2-IAil)

1"'

2-r+l I A,-1 dt

<
|A,|
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8.1 Estimate of rational by spline 233

Consequently

E RJL>
|AV

- x J |AV
l / p

I A,• i l \ _ J _ V T-(3-l/p)r

I A ,
= C(p,k). D

The importance of the notations introduced above becomes clear by the
following lemma.

Lemma 8.5. The following estimate holds true for i = 2,3,...,m+ 1

where C = C(p, k).

> " - 1

'i;1RAX)

Proof. L e t 2 < i; ̂  m + 1. B y p r o p e r t y (d) of t h e left c l a s se s of i n t e r v a l s it
fo l lows t h a t t h e r e a r e i n d i c e s 0 ^ j 0 <jx < ••• <<//i. = f—1 s u c h t h a t

s ^ »1 = U K J V
v = l

Hence

and

| A S | < | A J , s=jv_1
We have

E RvW

(28)

dx

i - 1

v= jo+1

First we estimate Ix using (23) and the fact that \Ajo\ > |A t | (see (28)). We

obtain for xeAf

\ 4 ] AJo

V n (
v = 1

IAJV

AJ 1/p

Denote for r = 0, ± 1, ±2,. . .

G,={v:2'|AJ<|A J <2'+1|AJ,1<
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234 Relations between rational and spline approximations

Now, using arguments similar to the arguments of the proof of lemma 8.4
we get for r ̂  0, xeA,

Al^vlAJ+x-Xi-J |AV

2 r+1lA jo

&T
1

" I A WlP
iAjj + X-Xt.J (r\Aj0

T-+MA I \ 4 ]

2'\AJo\+x-Xi-J (T\Ajo

2 r + 1 |A,. 1 C

x.-.J (2'IAJ)
r\AJ\y»

Also, if r ^ — 1, then

|AV

MY*- - x , . , ; iA 1/p

2r|A,0

2 r + 1 |A ; „

1
'IAJ)

1"•X-Xi-J (2'IAJ)

4 1

r - x , . , ; (yiA.-j)1'"

2 r + 1 | A , dt

|A,0

Consequently

JO

X J
v = 1

I A ,
| A V |

Integrating we obtain

v = l
(29)

where Cx = C1(p,fc).
Now we estimate 72- In yiew °f lemma 8.4 we have

i - 1 A.A
„• (30)

Denote >;/ = xi_1 +E{J=JIA/VI for / = 1,2,...,/i; and yM.+ 1 = xf_ 1. Obviously
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8.1 Estimate of rationa by spline 235

If x G[y1? oo), then by (28) and (30 we get

i - 1

y R
v = jo + 1

XA
i i / p

\Ajs
1/p"

Hence

i - 1

Z n tv dx
1/P

CIA
s=l LJy.

1

J \p "j 1/p
d - V

|Aj,
dx

i / p

Consequently

s=1 S J

3>i v = j o + l

Let xe[y, +1,y{], 1 </</v By (30) w obtain

'

+

First we estimate a1. Denote fo r = 0 , 1 , r

Using (28) w obtain

1

2 r + 1 I A •

-yi+J IAJ1 / P

3
 I

(31)

{(Tj + <T2}.

C C
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236 Relations between rational and spline approximations

Using (28) again we get

-QIAil + x - t t + J |AJ

1
1/p'

Consequently

'Z Ux)
v ~ jo + 1

; < ^ TA-T7F+ Z
A;.

where C = C(p,k).
Now we take the Lp norm and obtain

dx
dx

+ z - y l + i ; 1

Hence, for / = 1,2,..., //£

i - l

L Kv(

Combining this estimate with (31) we get

V=j()+ 1

= C(p,it).

Z
where C = C(p, k). From this and (29) follows the lemma.

The following lemma can be proved in a similar (symmetrical) way.

Lemma 8.6. The following estimate holds true for i = 0 ,1 , . . . , m — 1:

•

Ai
Z *v

where C = C(p, k).

Completion of the proof of theorem 8.2. It follows by (22), (25), (26), lemma
8.5 and lemma 8.6 that

= z
; = o

Lp( - oo,oo)

p \ 1/P
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8.1 Estimate of rational by spline 237

(m+ l

\ '-(I
I RJLx)
v > i

Z«v
v<i

"dx)
/

(x)
p

dx

•) i / p

J

+ |«p(x)
A,-

-R ;(x)lpdx

1= 1

,U; + 1)/I MP + Z)"AMP

m + l m \ l / p

X ft + ro+I
i = l i = 0

Consequently

\\(p-R\\Lpi-^)^ck\\<p\\LplaM, c = C(P,k).

This estimate together with (24) establishes theorem 8.2. •
Proof of theorem 8.1. For each m = 1,2,... choose (pmeS(k,m, [a, fr])such that
I/-<PmIILP(A) = Sm(/)p, A = [a,b~\. Clearly, for i>1 we have q>2i-q>2t-ie
5(fc,2/+1,A)and

Let s ^ 0 be an integer. Applying theorem 8.2 for the function cp2i — (p2i_1
(i ^ 1) with l{ = 2(I-S)a we find that there exists a rational function Rt such that

deg K, < D - 2/ +1 ln2 (e + 2(-"*), D = Dfofc)>1, (32)
and

\\<p2i - <p2i-i - Rt\\LpW < 2il-'*\\<p2i - <p2i-x ||Lp(A) < 2"-'>"+1S*2 .-.(/) J I . (33)

Consider the rational function R = TD = O^-I where K0 = </>1ePk_1. First we
estimate deg P. By (32) we obtain

S / c - l + £ Z)-2I+1ln2(e + 2(s~l)a)

Consequently

= deg R < D(oc + l )22s, D = D(p, k). (34)
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238 Relations between rational and spline approximations

Now we estimate \\f — R ||Lp (A)- By (33) we get

i = 0 v = l

From this and (34) it follows that for each s > 0

2'

v = 1

where N < D ( a + 1)2 -2S, D = D(/?,/c)>1.
Now, let n ^ m a x { l , f c - 1}. If n</I =D(a+ l)2 then

n

v = l

Consequently

Rn(f)P^Cn Y, v* ~~iSv(f)P> max{l,/c — 1} ̂  n ^ /I, (36)
v = l

where C = C(p, fe, a).
L e t n > A . C h o o s e s ^ O s u c h t h a t >4-2s < n ^ A - 2 s + l . T h e n b y ( 3 5 )

This estimate together with (36) implies (1). The estimate (2) can be proved
in a similar manner. It is readily seen that (2) implies (3). •

Next, we shall give some corollaries of theorem 8.1.

Corollary 8.1. Let feLp(A\ 1 ^ p < oo and A = [a, fe] or A = (— oo, oo). Let
S*(f, A)p = 0(n~yco(n~l)\ where k^ 1, y > 0 and co is any increasing function
on [0, oo) such that lim^Q a)(S) = 0 and OJ(23) ^ 2A)(S) for 6^0. Tfeen

Of course theorem 8.1 can be used successfully in more general situations
than in that of corollary 8.1.

Corollary 8.2. Let feLp(A), where 1 </?< oo, A is some interval (finite or
infinite). Let co be a non-decreasing and nonnegative function on [0, oo) such
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8.1 Estimate of rational by spline 239

that co(2d) ^2pco{8)for 3^0{p^0). Then, if Sk
n(f)Lp{A) = O(n-yco(n- l ) \ y > 0,

k>1, then Rn(f)Lp(A) = Oin - M n - 1))-

Proof of corollary 8.1 and corollary 8.2. Clearly corollary 8.1 is special case
of corollary 8.2.

In order to prove corollary 8.2 we observe that, since co(25) < 2pco(d) for
3 ^0,co(2vS)< 2xpco(3)for8 ^0, v ^ 0 . Henceco(nd) < (2rifaj(8) foi3^0,n^l
and therefore

5K(2(A + l)fo>(<5), <5,/>0. (37)

The assertion of corollary 8.2 follows immediately from estimate (1) or
estimate (2) in theorem 8.1 with some a > y + /?. Indeed, since Sk

n(f)p =
O(n~7co(tt-1)), in view of (37), we get

—+ l ) ) coin-1)

Theorem 8.1 and theorem 7.3 in subsection 7.3.2 imply the following
Jackson type estimate.

Theorem 8.3. Let feBaa, a > 0, o = (a + l/p)~x and 1 ^ p < oo; f/zen
feLp\Q9 Y] and

w/zere C = C(a, p).
Proo/. By theorem 7.3 in subsection 7.3.2 we havefeLp[0,1] and

where fe=[a] + 1, Cx = C!(a,p).
Combining this estimate with estimate (1) in theorem 8.1 with a replaced

by a + 1 we get

*„(/)„ < C 2 « - * - ' X v«S*v(/)p
1

t IIB; 2 I / B n
For other applications of theorem 8.1 see section 8.3 and Chapter 10.
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240 Relations between rational and spline approximations

8.2 Estimate of spline approximation by means
of rational in Lp, 1 < p < oo

Here we shall obtain an estimation for the best spline approximation of
functions by means of best rational approximation in Lp, 1 <p ^ oo. This
estimation, together with the results in section 8.1, gives a characterization
of the best rational approximation by means of the best spline approximation
in Lp, 1 < p < oo.

Theorem 8.4. Let feLp\_— 1,1], 0 < p < o o . Then for every natural number
k > 0 we have

where Kkp(f\n) is the modulus of variation off of order k in Lp, defined in
section 6.3.

Proof. Let us consider the so called 'balanced' partition in Lp of the interval

[ - 1 , 1 ] : [ - l , l ] = U"=i Ii Ji=Lxi_uxil - l =x0<x1 <~><xH = l and*

(Ek-i(/W)* = (Ek- ! ( / ) , . , / = a..,, i = 2,...,n.

(it is easy to see that such partition exists).
By the definition of the best spline approximation we have

n \1/P

( I ( E K - I ( F V , ) P ) 1 ' P =(nocn,P) l l p . (1)

On the other hand

= 1 V tx"lp =nVa!xllp (2)
\i=l J

From (1) and (2) the theorem follows:

Sk
n(f)p < n1**"' < n W - V ' K i J f ; n)

= n~kKk,P(f; n), l/a = k+ l/p. D

Theorem 8.5. Let feLp(-l, 1), 1 < p < oo. Then:

(a) for 2"<m<2n + \1/<T = H l/p, we

\c{k,p)m~k\ Y,WkR*<f)pY\ > 0)
v = 0

we use the notations from section 6.3.
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8.2 Estimate of spline by rational 241

(b) for every a, 0 < a < /c, we have

Sk
m(f)p^c(k,p,x)m~° £ (v+ I f " % ( / ) „ ; (4)

v = 0

(c) for every q>0 and 0 < a < k we have

t (2™S0002if)P)q < c(a, k, p, q) £ (T*R2,(f)p)«. (5)
v = 0 v = 0

Proof The inequality (3) follows direct from theorems 6.6 and 8.4. To prove
(4), we obtain from (3), using Holder's inequality forp' = 1/a > 1, q' = (1 — a)~1

\

Sk
m(f)p^c(k,p)m( £

\v=0

<c(a,fc,p)m - '
v = 0

The inequality (5) follows now from (4), if we change the order of summation;
see lemma 3.10. •

Corollary 8.3. If we have Rn(f)p = 0(n"a), l<p^co, 0<a</c, then

The corollary follows from the inequality (3).
The following result can be considered as an inverse to theorem 6.6 and

corollary 6.3.

Lemma 8.7. We have for 1 ^ p < oo

Rn(f)p^c(p,k)n~kKkJf;n),

where the constant c(p, k) depends only on p and k.

Proof. The lemma follows from theorem 8.1 and theorem 8.4. Indeed, let us
set in theorem 8.1 a = k + 2. Since the modulus of variation Kkp(f\ v) of/ of
order k in Lp is a monotone increasing function, we obtain from theorems
8.1 and 8.4

V = 1

X VKtiJ,(/;v)
V = 1

•
The inequality (5) together with (1) from theorem 8.1 gives us the following
impressive theorem.
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242 Relations between rational and spline approximations

Theorem 8.6. Let 1 < p < o o , </c,g>0. There exist constants c^a, k, p, q)
and c2(oc, /c, p, q) depending only on a, fe, p and q such that

) Hi f GO ~) 1 / 9

C l ( a , f c , p , < j X * | I j

The set of all functions, for which we have

0 0) 1/4

(2V*£2>.(/)X)« i < oo
Jv = 0

for some best approximation £2v in some space X, is called the approximation
space for the corresponding best approximation in X. Following DeVore
and Popov (1986) we shall denote these spaces by A*(EV,X):

A«q(E;, X) = if: j J ^ E ^ / W V " < oo

So theorem 8.6 gives us the remarkable fact that the approximation spaces
for the best free-knots spline approximation in Lp and for the best rational
approximation in Lp, 1 < p < oo, coincide.

A special case of theorem 8.6 is the case q = oo, which follows from
corollaries 8.1 and 8.3. We shall formulate this case separately because of its
importance.

Theorem 8.7. For 1 < p < oo, 0 < a < /c, we have

*„(/) , = 0(w--)
if and only if

Sk
n(f)p = 0(n-«).

The connection between approximation spaces and interpolation spaces is
studied in detail in DeVore and Popov (1986), where historical remarks are
given also (compare with Chapter 3, 3.5, and Chapter 7). In particular, on
the basis of interpolation of Besov spaces the following theorem is proved
in DeVore, Popov (1986):

Al(Skv;Lp) = B*
aa, a = (a+\/Py\ p < oo, k> a, (6)

The equality (6) together with theorem 8.6 gives us the following basic
characterization of the best rational and best free-knots spline approximation
in Lp by means of Besov spaces.

Theorem 8.8. For 1 < p < oo, a = (a + l/p)~ \ k> a, we have
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8.3 Functions and their derivatives 243

Remark. The equality (6) was formulated without any indication of proof by
Yu.A. Brudnyi in 1983 at the conference on approximation theory in Kiev.

We shall end this section with one useful counter-example.

Lemma 8.8. Let fp(x) = x~1/p, 0 < p < oo and k ̂  1. There exists a constant
c = c(p, k) > 0 such that

S n U p / L p [ l / 2 2 M ] > C II Jp I I L P [ 1 / 2 2 M ] > W — 1 , 2 , . . . .

Proof. We have

(7)

inf x= inf
Se/V, J 1/2

•1

2i/p

= inf
1/2

p-Q(t)\pdt = c1(k,p)>0.

(8)

Let seS(k,n, [2"2 n , 1]). It is readily seen that there exist intervals (l/2Wv + 1,
l/2mv), 0 =% m1 < m2 < •••mn ^ In — 1, such that each of them does not contain
a knot of the spline 5. Therefore using (8) we get

-llp- s(x)|pdx
I/P

inf v-i/p _ Q(x)\pdx
i / p

Hence

On the other hand

- 2 n X

V
) =(21n2)1 / pn1 / p .
)

(9)

(10)

The estimates (9) and (10) imply (7). •

Lemma 8.8 shows that theorem 8.5 does not hold in the case p=l, since

f1(x)=l/xeR1.

8.3 Relations between rational and spline approximations
of functions and rational and spline approximations

of their derivatives
We begin with the basic results. As usually we denote by Wp[a, b~] the Sobolev
class of all functions / such tha t / ( r _ 1 ) is absolutely continuous on [a, /?] and
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244 Relations between rational and spline approximations

Theorem 8.9. IffeWrp\_a9b\ a > 0 and m ̂  1, then the estimates

ifi< Ctn-'-' t (v + 1)*~'RJifl%, n>r9 (1)
v = 0

and

Rnin^Cin-'-'tv'-'S^fX, n^r + m-l (2)
v = l

hold in the following situations:

(i) r = 1, 1 ^ q < oo, p = 1,
(ii) r = 1, g = oo, 1 < p < oo,

(iii) r ̂  29 q = co9 p = l,

where cx = c(p9q9r9a)(b - a)r + {llq)-{llP\ c2 = c(p9q9r9oc9m)(b - a)r+il/q)-il/p\

Remark. The estimates (1) and (2) do not hold in the case r = l, q = oo, p = l,
since {Rn(f)c}?=i may tend to zero as slowly as we want in the class of all
absolutely continuous functions/ (see theorem 11.3 in subsection 11.1.2).

Theorem 8.10. IffeWp[a9 b]9 a > 0, k > r + a, then the estimate

Sk
n(f)q^cn-r-^(v+ir-lRv(f%, n>\9 (3)

v = 0

holds in the following situations'.

(i) r = 1 , 1 ^ < J < G O , p= 1,

(ii) r = 1, q= oo, 1 < p < oo,
(iii) r ^ 2 , q = oo, p = 1,

where c = c^p, 4, r, oc)(b - a)r + (1/q)-il/p).

Remark. The right-hand-sides of estimates (l)-(3) involve rational or spline
functions as tools for approximation. From our proofs it will become clear
that these tools can be replaced by more general ones. Namely, it is sufficient
that the approximating functions and their derivatives up to a certain order
are monotone in 0(n) subintervals. However, such a general formulation is
not used here, since other approximating tools that produce a better order
of approximation are not known to us.

Next, we shall prove theorem 8.9. We need some auxiliary results.

Theorem 8.11. Let feWl[a,b~\, \ < p ^ c o , and assume that there exist a
partition of [a, b~] into m (m > 1) subintervals a = x0<x1<-'<xm = b and
rational functions {rJ-Vo1 such that for i = 0 ,1 , . . . , m — 1

l l / - ' ' , l l c [* j , * j + 1 ]< £ i (4)
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8.3 Functions and their derivatives 245

and

/c,, (5)

where s1 > 0 and k{ ̂  0 are given numbers.
Then for each e2 > 0 there exists a rational function r such that

\\f-r\\c[atb]<£i+£2 (6)
and

d e g r < 2 V kt + Dp'mIn2U + ^ L?( ~"' Y (7)

where D > 1 is an absolute constant, p' = (1 — l/p)~*.

Proo/ We shall proceed similarly as in the proof of theorem 5.2 in section 5.2.
Since the function F(x) = x ln2 (e + l/x) is increasing in (0, OO), it is readily

seen that, if the theorem holds for m = 2s, s = 0 ,1 , . . . , then it holds with some
other constant D for all m = 1,2,.... Thus we shall suppose that m = 2s, s
integer, and also without loss of generality 1 < p < OO.

Next, we shall make use of the following notations: fA(x) =f(x) — f(u) for
each interval A = [w, v] a [a, ft];

N(/i,A) = 6BlP' t 2nn2(e + 2 " 4 - l / ' |LP,A>|A|1/p'£2--
1), (8)

v = 0

where Bl > 1 is the constant from lemma 5.3 in section 5.1, fp and E2 are
from the assumptions of theorem 8.11, /i and the interval A are parameters.

To avoid more complicated indexation we shall denote

and
QA = {A*:A*eQ0,A*czA}. (10)

Note that Q0 = {[xi9x i+ ly. i = 0, l,...,m— 1}. Also, we set rA = rt and kA = kt

for each interval A = [x£ ,x i + 1] , AeQ0.
Briefly we shall denote || • ||A = || • ||C(A).
We need some lemmas, where we shall use the assumptions and notations

introduced above.

Lemma 8,9. For each interval AeQ0 there exists a rational function QA such
that

II A- 6 A H A < 81 + 82/2, (11)

)3/2
e2-1/2 (12)

and
(13)

Proof. Let AEQ0 and A = [M,D]. If KA/=0, then, obviously, the rational
function QA = 0 satisfies (11)—(13).
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246 Relations between rational and spline approximations

If || rA - / ( t t ) ||A > 2|| / ||A, then by (4) we get | | / J | A < || rA-/(ii) | | A - | | / J | A <
I /— RA II A ^ £i a n d therefore the rational function QA = 0 satisfies (11)—(13).

Let VAf> 0 and || rA —f(u) || A ̂  21| fA ||A. Consider the rational function

1 + nA(rA(x) —/(«))

It is readily seen, in view of (5), that

and

i.e. QA satisfies (12) and (13). It remains to estimate | |/A — QAIIA- By our
assumptions and (4) we get || fA - QA \\ A ̂  || / - rA \\ A + nA \\ rA -f(u) \\2A \\ fA \\ A ^
«i + 4 > / A | | / A H I < £ ! + H V A f ) 3 = e1 +e2/2. Hence gA satisfies (11). Q

We shall prove theorem 8.11 starting from lemma 8.9 and applying several
times the following lemma.

Lemma 8.10. Let O^ /x^s—1 . Assume that for each AeQM there exists a
rational function QA such that

(14)

where cp(fj) ^ \ depends only on fi,

\\QJ(-x,x)<2(VAf)3lh2
li2 (15)

and

X ). (16)
A*eQA

Then for each AeQM+1 there exists a rational function QA such that

I ! , - oc.o , ^2(VAff'2e^'2 (18)

< 2 X fcA* + N(|i+l,A), (19)
A*sn4

where the last sum is taken over all intervals A*eQA, N(fi,A), QM and QA are
defined in (8), (9) and (10) respectively.

Proof. Let AeQ 1 and A = \zx,z{\. If KA /^£2 /2, then, since | | /A | |A< KA/,
the rational function QA = 0 satisfies (17) (19).

Let KA/ > e2/2. Clearly, there exists a point Z2EA such that the intervals
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8.3 Functions and their derivatives 247

and A2 = |>2 ,z3] belong toQ.ir Next, we shall denote for brevity

VAJ9 M2 = VA2f, M=VAf=M1+M2,

I)
\\LP(A)

Note that || / ' ||Lp(A) > 0, since VAf= \\ f ||Ll(A) > 0.
By (14)—(16) there exist rational functions QAl, QA2 such that for i = 1, 2

(2°)

(21)

j , .). (22)
A*eQAi

We need an estimate of the modulus of continuity of the function / on A:

«( / , A;3)c = sup {| /(x') -/(x")|: x',x"eA, |x' - x"| ^ 3}.

By Holder's inequality we get, for x', x"eA, x' ^ x",

Consequently

aX/,A;<5)c^||/'||MA)<51 '"', d>0. (23)

Let af (f= 1,2) be the linear increasing function which maps dt onto At.
Clearly

|| a,<x) - x \\di = ri, i=1 ,2 . (24)

Put rx(x) = eAl(ax(x)) and r2(x) = 2A>2W) - / ( * i ) +/(z2). By (20), (23) and
(24) we get

IIA - r ||iinA < II /A ! - / A I ( « I ) L , n A + II /A I(« I) ~ 6A,(«I) L, < » ( /A > A;>

+ II /A, - GAL I K < fii + f v M + ^

Thus we have

II /A - 7-1 L,nA ^ £l + ( (P(M) + ^IT2 ]£2 • (25)

By (21), (22) we obtain

|| r, ||(_ „,„, ^ 2 M f h
2 ^2 ^ 2M3'2fi2- "

2 (26)

AJ. (27)
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248 Relations between rational and spline approximations

Similarly, by (20), (23) and (24) we get

M + ̂ W (28)

By (21) and the fact that M > e2/2 we get

s= 2M1M1 / 2e2-1 / 2 + 2M2M1/2£2T1/2 = 2M3/2£2"1/2. (29)

By (22) we have

degr2^2 X fc* + N([i,A2). (30)
A*GfiA

If A cz dx or A cz d2, then it follows by (25)-(30) that the rational function
rx or r2, respectively, satisfies (17)—(19).

In the opposite case we have \dlnd2nA\>t]. Now we are able to apply
lemma 5.3 in section 5.1 to the functionfA with the corresponding values of
parameters A1? A2, e l5 A and kt from (25)-(30). Setting s2/2

M + 2 in place of
e2 we conclude that there exists a rational function QA such that

2M3/2e2"1/2

Consequently QA satisfies (17) and (18).

It remains to prove that QA satisfies (19). Since

\d1nd2nA\>ri, M = VJ= | | / ' | |L l ( A )< \\f'\\LpW\A\llP' and M>£ 2 / 2

we have

Hence, it suffices to prove that

t) + N(n,A2) + 6BlP'ln2(e + 2"+i Wf'L^We;1) ^ N(A,fi + I).

1)
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8.3 Functions and their derivatives 249

To this end we shall make use of the following inequalities:

In2 (e + Xj) + In2 (e + x2) < 2 In2 ( e + X l + *2 \ x 1 , x 2 > 0 , (32)

I! / ' II^AOI A I I1/P' + II / ' HMA2)IA2 | I /P ' < || / ' | | M A ) | Al1"'. (33)

The inequality (32) follows from the fact that the function F1(x)= — In2 (e + x)
is convex on [0, oo) and (3 3) from the fact that the function F 2(x, y) = — x 1 /py1 /p'
is convex on the set {(x,y): x,y^0} (1/p + \jp' = 1) and also from the discrete
Holder inequality.

Using the definition of N(fi, A) in (8) we get

A2) + 6B lP ' ln2(e + 2"+ 1 | | / ' I I M A , | A | W 6 2 1 )

v = 0

Thus the inequality (31) is established. •

Completion of the proof of theorem 8.11. Starting from lemma 8.9 and applying
lemma 8.10 5 times we obtain that there exists a rational function QA,
A = [a, b~] such that

and

<2 X kA + N(s,la,b]).

Putting r=QA +/(fl) we nave

\\f-r\\la,b^£i+£2

and

2 X kA + N(s,[£i,fc]).
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250 Relations between rational and spline approximations

It remains to prove that

N(s,A)^Dp'mln2(e + - " — ) . (34)

By (8) it follows that

MS ,AX6B1P ' f 2Mn2( (e + ^ II^A>1"1 U—

Arguments similar to that of the proof of theorem 5.2 (see p. 121) show that
the last estimate implies (34). •

Theorem 8.11 provides a new proof of the well-known theorem 5.4 in
sections 5.3.2 and 5.4.2:

Theorem 5.4. If fe W\{_a, b \ p>1, then

n

where C = CtfXb — a ) 1 / p
\ C1 = constant.

Proof Clearly (see theorem 7.2 in section 7.3), for each m ^ 1 there exist

points a = x0 < xl < ••• < xm = b such that for i = 0, 1,.. .,m — 1

^yaf ii/'iii, j i / i ub -a ) 1 " ' '
L" '^ I J m m m

Then applying theorem 8.11 for the function/with E1 = e2 = || / ' ||t (fe — a)l/p'/m
when || / ' ||L > 0 (the case || / ' ||L = 0 is trivial) we conclude that there exists
a rational function r such that

11/-'
m

and

deg r < Dpm l i r e H £ ] ̂  Cpm.
V we, /

These estimates imply (35) immediately. •

Theorem 8.12. Let f be defined on [a, b], f'eLp[_a, b~], 1 <p^ao, and f,
f",..., f(k\k^ 1) be monotone but possible unbounded on (a,b). Then

II -f' II tV\ n \ l I p '
i i y*-' — ^ /

c -^ nk+i

w/zere C = C
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8.3 Functions and their derivatives 251

Proof. Suppose [a,ft] = [0,1], || / ' \\Lp = 1, 1 <p< oo, and/weC(0,1) . Clearly,
if theorem 8.12 holds in this case then it holds also in the general case.

Denote xt = 1/21 and y \ = 1 - 1/21, /= 1 , 2 , First we estimate |/(/c)(xf)|
and [/w(y£)| f or i= l , 2 , . . . .

Since / ' is monotone in (0,1) and 0 < xf < i, 1 = j i | / ' (x) | pdx > |/'(*;)l
p*;

and therefore |/'(*») I < 2f/'. Similarly |/'0>i) l < 2'7*, / = 1 , 2 , . . . . Since / " is
monotone, / ' is either convex or concave and therefore, for / = 2 ,3 , . . . ,

"(x/) | < max
X: — X ; _ ,

and

Hence

Xi-X2

23-2 ( 1 3 -2 ( 1 + 1/p)i, i = l , 2 , . . . .

Just in the same manner we estimate | / ( v ,(x f) | and |/<v)0>;)|, i= 1 , 2 ,

Finally we get

I f{k)(x )\ < 2(k + 1 ) 2 2 i ( k ~ 1 + 1/p) = 2(k + 1)22i{k

l / ^ ' ^ ^ l ^ 2<fc+1)22'<*-1/p'), i = 1,2,
(37)

Denote A =e18D2(/c+ 1)6(//)4, where D > 1 is the constant from
theorem 8.11.

Clearly

(38)

Let n> A. Choose s to be an integer and s ^ 2 such that

nln2
(39)

Denote A( = [xj + 1 , x J and A* = [yi,y i+ l '] for i = 1,2,...,s, As+1 = [0,x s + 1]
and A*+1 = [ys+ 1 , l ] . Put

nln2
16(fc+l)p'-2 '7 < t + 1 | p ' '

/ = 1,2,...,s,

where [x] denotes the integer part of x.
From the choice of n and s it follows that n; = rif~^k,i=\,2,...,s. Then
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252 Relations between rational and spline approximations

by theorem 5.1 in section 5.2 and (37) we get for i = 1,2,... ,s

Hence, for each i = 1,2,... ,s there exists a rational function r;eR„. such that

t f , t c m

Put r J + 1 =/(x s + 1) . Clearly, by (39) we get

v l / P '

Hence

llZ-r.+ illc^n-i)^ 2 ^ f i , rs+1eR0. (41)

Similarly, for each i = 1,2,... ,s there exists a rational function rfeRn* such
that

11/riHc(A

Put r*+1 =f(ys+1). As above we have

C
(43)

In addition by the choice of nt and nf

V n l n 2 < " l n 2+V »

Thus we have

)p' "4(Jfe + \)p'

nln 2 n

t « « + t « f<
7- (44)

i = i ; = i 4

Now, in view of (40)-(43) we are able to apply theorem 8.11. Setting
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8.3 Functions and their derivatives 253

s2 = l/nk+1 we conclude that there exists a rational function r such that

11./ Hlc[o,i]

and
/

degr<2 ± ni + 2 £ nf + £>p'-2(5 + l)ln2 e + "
i = 1 i = 1 \ •2(s+\)n'k~\

By (39), (44) and because of ||/'||Lp=l, n> A=e18D2(/c+ 1)V)4 and
In3 x < yjx for x > e18 we get

n , . . . « 4D(/c+l)V)2ln3n
: - + 4Dpsin (n )<-H —
2 2 In 2

Consequently

«.(/)C^g^, n>A. (45)

The estimates (38) and (45) prove theorem 8.12. •

Theorem 8.13. Let f tW\\a, b \ 1 < p ^ o o , and assume that there exists a
partition of [a, /?] mto m (r ^ 1) subintervals a — x0 < xx < • • • < xm = b such
thatf\f",... ,f{k) (/ ^ 1) are monotone but possibly unbounded in each interval
(xi-l9xi). Then

where C = C

Proof. Denote A =e10D2(k+l)4(//)2ra, where D > 1 is the constant from
theorem 8.11. If 1 < n ̂  A, then by theorem 5.4 in subsection 5.3.2 we have

Rn(f)C < C ^ - < C/l" ^ .

Hence

Now consider the case n > A. Suppose || / ' ||L > 0 (the case || / ' ||L = 0 is
trivial) and put

n, = -
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254 Relations between rational and spline approximations

Then by theorem 8.12 for / in the interval Af we obtain

II -f' II I A 1 1 / p ' II f II (l\ si\lIP'wik
|| J || L ( A ) I i I II J l i L fa b l \ — ^ /

n\J> i/C ^ ^ — ~ ~ • i ~;—~~~"— ^ C-1 t^Tl ' C-1 = = (

n- n

Hence, for each i = 1,2,... ,n there exists a rational function /•,•€/?„, such that

From this estimate using theorem 8.11 with

£ = c \\TJiJb-a)^n^ _ \\f\\Lv(b-a)llPmk

and kt = nt we conclude that there exists a rational function r such that

II/-r\\C{aM <(C, + l)U I I L ' ( ^ ~ a ) ' m - (48)

and

deg r < 2 £ nt + D//m ln2( e + —
i=i \ \mj J

It remains to estimate degr. Using twice discrete variants of Holder's
inequality (see (33)) we get

nf II f' II IA \
( U " M A i ) l ;l

llp' \ l / ( f ' + 1 )

v V (II f IX 2_, \\\J \
i= 1

sc2m +

k + l )

IJI/'IIMAOIA. II/P'

4 ^ 2

On the other hand, since In2 x ^ Jx for x > e10 and n > i we have

2( (Dp'm l n 2 ( e + ( - 4D(fc + Xfp'm ln2 ( - j ^ 4D(f + l)2p'J(mn) < ".
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8.3 Functions and their derivatives 255

Thus reRn and by (48) we obtain

This estimate and (47) imply (46). •

P r o o f of t h e o r e m 8 . 9 . F i r s t w e c o n s i d e r t h e c a s e r = \ , p > l , q = o o . W e s h a l l

prove only the estimate (2). The estimate (1) can be proved similarly. We
shall proceed similarly as in the proof of theorem 8.1.

Choose (p2veS(m,2V,[a,6]) such that

II/'-</¥ II LP = W V (49)
Clearly

I I - < P 2 > - > IILP<2S2"1 - I ( / % . (50)

Set </>2v(x) = j cp2v(x)dx and k = [a] + 2.
Let s be an arbitrary non-negative integer. For each v (1 ^ v ^ s) choose

Nv to be a positive integer and

-N < 2 ( s ( a + 1 ) + v(fe_<x))/(k+1) ^ Nv. (51)

Put N0 = m+l, Ns+i=2s, N = EvtoWv. Clearly, we have

+ ... + KNl(02i - 02o)c + KNo(02o)c. (52)

Consider the function i/>2. = 02v — </>2v-1. Obviously i//2v = cp2v — (pr- \ e
S(m, 3-2v_1 ,[a, fc]) and therefore there exist at most m v + l ^
3-2v"1(l + l + 2 + . . - + m ) + l < 3 - 2 v - 1 ( ™ + i ) 2 + 1 points a = x(0v)<
x'/' < • . • < x^v) = b such that the functions i//?, I^ 2 », . . . , I^ 2 V are monotone
in each interval (x\vll9x\v)). Then by theorem 8.13

where C = C1(fc)(p/)4(k + 1)
- From this estimate and (50) we obtain

2(v - l)oem_1 ( f'\

R_p, (02V — 4*2V~ Oc ^ ^2$ — ̂ f) • — .

Also, by theorem 5.4 in subsection 5.3.2 and (49) we get

(53)

Obviously

«iyo(^o)c = 0- (55)
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256 Relations between rational and spline approximations

Combining (52) with (53)-(55) and (51) we get

<C3(b-a)1/'>'2-'('+1» t 2"SW)p 9
0

where

• I :
v = 1

K — A

Consequently, for each s ^ 0

< C(* - a ) " ' - ! - * ' * " t 2 V * W ) P (56)
0

for some N < 9(a + 3)(m + 1)2S.

If m « n < X = 9(a + 3)(m + 1), then

Rn(f)c < K o ( / - 02o)c

= II / ' - 0i KMB- ~ a)1"'II/' -

Thus we have

RJLfic< C(b-a)1"'w-<«+ " £ V-'SRfX, m^n^A. (57)
v = l

Let n> A. Choose s to be integer and A-2S ^ n < A-2S+1. By (56) we obtain

Rn(f)c^ RN(/)C^ C^b — a)llp -2 s ( a +

Hence

i / ffj 55 o t t / — (*) n y v 0 v \j lD, ft -> / i .

v=l

This estimate and (57) imply (2) in the case r = 1, p > 1, q = 00.

Now we prove theorem 8.9 in the case r = 1, 1 ^ q < 00, p = 1. We shall

prove only the estimate (1). The proof of estimate (2) is similar.

If 1 < n «S [a] + l, then

Rn{f\ ^{b-aY^R^c^(b-a)1/9R0(/')i

n

v = 0
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8.3 Functions and their derivatives 257

Thus we have

Uf\<C(«)(fe-afl'n-'-Jt(v+ir1Rv(f')1, 1 <»<[«] +1. (58)
v = 0

Let n > [a] + 1. By theorem 8.1 with a replaced by a + 2 and k = [a] + 2
we have for n^k—\ = [a] + 1

R n (A<Cn-*- 2 £v* + 1 St( / ) ? , C = C(«,a). (59)
V=l

On the other hand by theorem 8.10 with k = [a] + 2 > a + 1 we have for

(60)

where C = C1te,a)(fe-fl)1/

Combining (59) and (60) we obtain

Hence

RJ^^Cn-''1 t ( v + i r ' W i , «>[a] + l, C = C3(9,a)(&-a)1'«.
v = 0

(61)

The estimates (58) and (61) imply estimate (1) in the case r = 1, 1 < g < oo,

P = l .

Theorem 8.9 in the case r ^ 2 , q= oo, p = 1 can be proved in the same

manner as above using inequality (2) in the case r=l,g = oo,p>l and the

estimate (3) in theorem 8.10 in an appropriate situation. The details are

omitted. •

In order to prove theorem 8.10 we need the following.

Theorem 8.14. Let f be absolutely continuous on [a, b~\ and assume that there

exists a partition of [a, b~] into m(m^ l) subintervals a = x0< x1 < --- <xm = b

such that/,/',.••,/(tl) (k^\) are monotone but possibly unbounded in each

interval (xf_ x, xt). Let 1 ̂  q < oo. Then for n — 1,2,...

SIXA^C- !y lLlt"-'", (62)

w/iere C = C(q,k)(b - a)1/«.
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258 Relations between rational and spline approximations

Proof of theorem 8.14 in the case m= 1. Without loss of generality we shall
suppose that [a,b] = [0,1], ||/'||Ll = l andfk~l)eC(0A), k >2.

Denote A = \62k2q/{\n2)2.
If 1 ^ n ^ A, then obviously

ak( ft
i/i f II f> II

Thus we have

(63)

Letn > A. Denote xt = 1/2', yi = 1 — 1/2', i = 1,2, Exactly as in the proof
of theorem 8.12 we get

", i = i , 2 , . . . .

Choose s > 0 to be an integer such that

( 6 4 )

(65,

Denote A, = [x i + 1 ,x,] , Af = \y i ,y i + 1 ] , i = l , 2 , . . . , s , As+1 = [0,1/2S+1],
A * + 1 = [ l - l / 2 , + 1 , l ] . Put n, = [«ln2/(16/cq-2i/2'")] and nf = ni for i =
1,2,...,s. From the condition n > A and (65) it follows that nt = n f ^ l ,
i = l,2, ...,s.

Using theorem 7.2 in subsection 7.3.1, (64) and the choice of n, we obtain

-1 + 1/4

r v , A (
C(/c)

2«(* - I >2 - '(* - 1 +1 /«)
)

Hence

Similarly

Obviously in view of (65)

/ 2 , =1,2, . . . , s .

(66)

(67)

• ^ (68)
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8.3 Functions and their derivatives 259

Similarly

S f t / . A f f i ) , ^ - (69)

In addition, by the choice of nt and nf we have

Hence

f n, + t "f + 2 <« . (70)
i = 1 i = l

Finally, using (66)-(70) we obtain

| 1/4SS,.(/,Aj)«+

Thus we have

i = 1

«") i / «

The estimates (63) and (71) imply (62) in the case m = 1.

Proof of theorem 8.14 in the general case. If 1 < n ^ 2m, then

(h _ /71
1/« || f 'll m*-1 I

as required.
Let n > 2m. Set

when | | / ' | |L l > 0 (the case | | / ' | |L l = 0 is trivial). Then by theorem 8.14 with
m = 1 we have

| A | 1 / ' l l { ' l l l l / " l l t l A ' | 1 / ' W > t " 1 . (72)

Using a discrete variant of the Holder's inequality we obtain
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260 Relations between rational and spline approximations

Finally, by (72) and (73) we get

Theorem 8.14 is proved. •

Proo/ o/ theorem 8.10. One can prove theorem 8.10 in the case r = l ,
l < g < o o , p = l a s a consequence of theorem 8.14 just as theorem 8.1 was
proved in section 8.1 using theorem 8.2 and also as theorem 8.9 was proved
by means of theorem 8.13. The details are omitted.

Theorem 8.10 in the case r= 1,q= oo,p> 1 can be proved using theorem
8.5 in section 8.2 and lemma 7.13 in subsection 7.3.1 just as theorem 8.9 was
proved in the case r = 1, 1 ̂  g < oo, p = 1. In the same manner theorem 8.10
in the case r ^ 2, q = cc, p = l can be proved using theorem 8.10, r = 1,q < oo,
p = 1, and lemma 7.13 in subsection 7.3.1. The details are omitted. •

Remark. Corollaries similar to corollaries 8.1-8.3 follow from theorems 8.9
and 8.10. For some other consequences of theorem 8.9 see Chapter 10.

8.4 Notes
Theorem 8.2, and as a consequence theorem 8.1, is based on lemma 8.3, which
gives a 'good' rational approximation of the function

, , fO, \x\>d,
(p(x) = <

In our opinion this lemma is the Lp analog of Newman's theorem 4.1 for
uniform rational approximation of |x|:

Rn(\x\)C[_ul] = O(e~cV")- (1)

Lemma 8.3 can be used successfully also for rational uniform approxima-
tion on the whole real line of functions with finite support. It is easy to see
that lemma 8.3 implies for example the following estimate:

c>), c > 0, (2)

where

|>a .

The estimate (2) is a generalization of Newman's estimate (1).
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8.4 Notes 261

The functions \jja, given by (3), are a typical example of integrals of'atoms'.
Let us remember that a function cp, defined on (— oo, oo), is called an 'atom'
if its support is a finite interval A and

q)(x)dx = 0, \(P(X)\ < l/|A| for every xe(— oo, oo).
A

The most essential fact connected with the 'atoms' is the following
description of the Hardy space Hl (— oo, oo):

/eff^—oo, oo) if and only if f=Y.?=\h<Pn where YT= i IhI < °° an^ </>;,
i = 1,2,..., are 'atoms' (see Coifman (1974), Latter (1978), Kashin and Saakjan
(1984)).

Let us note that from here follows the famous Fefferman theorem
(Fefferman, 1971) that Hl and BMO are dual spaces.

E. Moskona proved that if f(x) = {_„ (p{t)dt, where cp is an 'atom', then

Our conjecture, which in our opinion is very important for rational
approximations, is that if f'eH1, then

K X O c ( - o c o o ) < C ^ K Cn = constant.

If this conjecture is true, then together with the Bernstein type inequality
of Russak from section 6.2, theorem 6.3, we can obtain a complete character-
ization of the best uniform rational approximations of order 0(n_a),
0 < a < l.

The theorems 8.1, 8.2, 8.3, 8.9 and 8.10 are due to P. Petrushev (1984a, b,
1987), see also P. Petrushev (1981, 1983a). Theorem 8.5 is proved by
A. Pekarskii (1986).

The first who remarked that the spaces Lp, 0 < p < 1, are important for
rational approximation, was Yu.A. Brudnyi (1979); see also Brudnyi (1980).
Let us mention that at the conference on approximation theory, Kiev, 1983,
Brudnyi announced without proofs some connections between best rational
approximations and Besov spaces.

In Brudnyi (1979,1980) the following estimates are given without proof:
For every n> X we have

s if., / M W V "

where q > q(k,p) = (X + \/p)~1.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781107340756.009
Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.009
https://www.cambridge.org/core


262 Relations between rational and spline approximations

For every t > 0 we have

1 1 llq*

X UXRWF\

where q*
The Jackson type theorem for best rational approximations to analytic

functions on the unit disk as well as a characterization of the corresponding
approximation spaces as Besov spaces are proved by Pekarskii (1985).
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Approximation with respect to
Hausdorff distance

In this chapter we shall consider rational approximation of functions with
respect to the Hausdorff distance. The Hausdorff distance in the space C[a, fo]
of the continuous functions in the interval [a, b] was introduced by Bl. Sendov
and B. Penkov (1962). After this Bl. Sendov developed the theory of
approximation of bounded functions by means of algebraic polynomials with
respect to the Hausdorff distance. Many mathematicians have obtained
results in the theory of approximation of functions with respect to the
Hausdorff distance - the results are collected in the book of Bl. Sendov (1979).

In section 9.1 we give the definition of Hausdorff distance in the set of all
bounded functions in a given interval and we consider some of its properties.

In section 9.2 we consider the most interesting examples of rational
approximation in Hausdorff distance - rational approximation of sign x. In
our opinion this result is basic in the theory of rational approximation - from
here follows the most essential results for uniform and Lp rational approxi-
mation - for example Newman's result for |x|. The Hausdorff distance is the
natural distance by means of which we can explain the fact that sign x can
be approximated to order 0(e~cVn) by means of rational functions.

In section 9.3 we consider the general case of rational approximation of
bounded functions with respect to the Hausdorff distance. From the estimate
obtained it follows for example that functions with bounded variation can
be approximated by rational functions in order 0(n~ *) in Hausdorff distance,
while the order of the best polynomial Hausdorff approximation of this class
of functions is 0(ln n/n).

In the notes at the end of the chapter we give some other results connected
with rational Hausdorff approximation.
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264 Approximation with respect to Hausdorff distance

9.1 Hausdorff distance and its properties
Let FA be the set of all closed and bounded sets in the plane which are convex
with respect to the y-axis and the projection of which on the x-axis coincides
with the interval A = [a, b].

The Hausdorff distance with a parameter a, a > 0, between two sets F and
G, FeFA, GeFA, is defined as follows:

r(F, G; a) = max < max minda(A,B\ max mm dx(A,B) >, (1)

[ AEF BeG AEG BEF J

where

dx(A,B) = dx(A(a1,a2),B(b1,b2)) = mnx{a-1\a1 -b,\\a2-b2\}. (2)

Here A(a1,a2), B(b1,b2) denote the point A, respectively B, in the plane
with coordinates (a1,a2), respectively (b1,b2).

It is easily seen that r(F, G; a) is a real distance in FA, i.e. r satisfies the
three axioms for distance.

The distance dx(A, B) between the points A and B in the plane may be
defined in another way as well, not only by (2), for example in the case a = 1
we can use the usual Euclidean distance e(A9B) = yj((ax — bx)

2 + (a2 — b2)
2).

The choice of the distance <ia is convenient for some calculations which
appear in the theory of Hausdorff approximation.

Now we shall define the notion of the complemented graph/of the function
/ which is bounded on the interval A = [a, b]. The complemented graph/of
the function / is the following set of points in the plane:

where / denotes the usual graph of the function / i.e. the set of points
f={(x9y):xeA,y=f(x)}.

Obviously /GFA.
We define the Hausdorff distance with a parameter a in the set of all

functions bounded in the interval \_a, b~\ as the Hausdorff distance with
parameter a between the complemented graphs of the functions:

The so defined distance r(/, g; a) is not a real distance in the set of all
bounded functions in the interval [a, b], since evidently there exist different
functions / a n d g for which / = g and consequently r(/, g; a) = 0, for example
for the functions / and g, given in [ — 1,1] by

' 1 ] H xe(0,l],
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9.1 Hausdorff distance and its properties 265

This fact will not be essential for us.
The Hausdorff distance with a parameter a may be considered as a

generalization of the uniform distance in the space C[a,/?]. For /eC[a,fr]
we have obvious ly /=/ i.e. the complemented graph of/coincides with the
graph of/. It is easily seen that in this case the Hausdorff distance between
/eC[a, fc] and #eC[a,b] can be defined as follows:

r(f9g;a) = max< max min max{a _ 1 |*-y\ , \ f (x) — g(y)\},
(_ xe[a,b] ye[a,b]

max min max {a " l \x - y |, \f{y) - g(x) |} >. (3)
xe[a,f

From (3) it follows immediately that

r(f,g;a)^\\f-g\\C[aM (4)

(take in (3) y = x instead of min,,e[a>b]).
It is not difficult also to obtain an estimate for \\f — g \\C[a,b] by means of

r(f g\ a) and the modulus of continuity of one of the functions / or g. The
following lemma holds.

Lemma 9.1. Let /eC[a,b], geC[_a9b]. Then

II/-9 \\cia,b] < K/> 91 a) + (4g; a K / ,& a))- (5)

Proof. From the continuity of / and # and the definition (3) it follows that
for every xe[a,fr] there exists a point yxe[a9b] such that

r(f,g;tx)^max {x~*\x -yx\, \f(x)-g{yx)\},

i.e.
o.'l\x-yx\^r{f,g;a),

\f(x)-g(yx)\^r(f,g;u).

On the other hand for every xe[a, 5] we have

| f(x) - g(x)\ < |/(x) - 0(>g | + \g(yx) - g(x)\

^ r(/ #; a) + a>(g; \x-yx\)^r(f, g; a) + co(g; ar(f g; a)). D

From lemma 9.1 we immediately obtain the following.

Corollary 9.1. Let feC[a9b] and {/„}*=1, | „ e C [ a , 5 ] , be such that

K/> /B ;a)— >0. T/zen l l / - / n | | C [ a , 6 ] —»0.
n—» GO n~* QO

In other words, the topologies in the space C[a9b~\ generated by the
Hausdorff distance and the uniform distance coincide.
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266 Approximation with respect to Hausdorff distance

Corollary 9.2. IffeC[a,b'], geC[a,fr], then

l imr(fg;a)= || / -g \\C{a,by

Corollary 9.2 follows directly from (4) and (5), setting in (5) a —• 0.
This corollary shows that the Hausdorff distance with a parameter a can

be considered as a generalization of the uniform distance - if we have some
result for the Hausdorff distance with a parameter a we can obtain the
corresponding result for the uniform distance setting a —* 0.

To conclude this section we shall give one working lemma, as follows.

Lemma 9.2. Let f and g be bounded functions in the interval A = [a, b] and
3>0. Iffor every xe A there are intervals Ax, A'x, xeAx, xeAx, \Ax\ ^3,\A'X
such that

M{g(t): teAx} ^ y < sup {g(t): teAx}, V(x, j/)e/,

inf{/(f): teA'x} < y ^ sup {f(t): teA'x}, V(x,y)eg9

then

Proof Since / and g are connected, from the conditions of the lemma it
follows that for every £ > 0 and every (x,y)ef there is (x\z)eg such that

(6)

and for every (x,y')eg there is (x",z')e/such that

Ix" — x ^\A'X\^3,

\y'-z' <e. (7)

From (6), (7) and the definition (1), (2) it follows that

r(f g; a) = r(fg; a) < max {a- M, g}.

Since £ > 0 is arbitrary, the lemma follows. •

9.2 Hausdorff approximation of the jump
We shall consider best rational and polynomial approximation of bounded
functions on the interval [a, b~\ in respect to the Hausdorff distance with a
parameter a, a > 0.

The best Hausdorff approximation with a parameter a to the function /
bounded on the interval [a, b~\ by means of algebraic polynomials of nth
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9.2 Hausdorff approximation of the jump 267

degree is given by

£„(/; a) = £„(/; a; [a, &]) = inf {r(/,p\ a): /?eP„},

and the best Hausdorff approximation to / with a parameter a by means of
rational functions of nth degree is given by

/?„(/; a) = RH(f; a; [a, ft]) = inf {r(/, « a): <jeK„}.

The basic result in the theory of approximation of function with respect
to the Hausdorff distance is the following result of Bl. Sendov (1962), see also
Bl. Sendov (1979).

Let f be a bounded function in the interval [a,fr]. Then

(1)
n

where the constant c(a, b — a) depends only on a and the length b — a of the
interval [a, b].

We shall not give here the proof of this result.
Typical functions for which the order In n/n is obtained are

• 1 , xe[- l ,0) , To, xe[- l ,0) ,
G(X) = sign x = <{ 0, x = 0, 8(x) = < 1, x = 0,

[ 1, xe(0,l], [o, xe(0,l].

In Bl. Sendov, V.A. Popov (1972) (see also Bl. Sendov (1979, pp. 127,135)), it
is proved that

l i m ~ £ n ( < S ; l ; [ - l , l ] ) = l .
n- OO l n n

These exact asymptotics can be obtained also for the whole class of
uniformly bounded functions, see Bl. Sendov, V.A. Popov (1972), Bl. Sendov
(1979), p. 135.

In this section we shall consider the best Hausdorff rational approximation
to the functions a and 3.

Theorem 9.1. We have for n~^2

Kn(S;a;[-l,l]) = 0.

Proof Obviously for every a > 0 we have

1 + AX2
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268 Approximation with respect to Hausdorff distance

To obtain an estimate for Rn(signx; 1; [— 1,1]) we shall need two lemmas.
The first lemma is a very useful one in obtaining lower bounds in rational
approximation (not only for the Hausdorff rational approximation - see
Chapter 11).

Lemma 9.3. Let 0 < £ < 1 and n > \. Then the rational function rsRn,

rtx\ _ P(x)-p(-x)-,p (x)= Y\(
p(x) + p(-x-,p(x)= Y

satisfies the conditions

v _ 1 ) / 2

sign x — r(x) \ > exp
n2n 1

for

(3)

and s ign x — r(x) has alternate signs at the points — 1, — £ x / " , . . . , — e, e, . . . , s 1 / n , 1

Proof Let x = sl/n, O sj i s= n. Obviously \p(-x)\/\p(x)\ ^ 1. Then we have

2|p(-x)| ^ 2\p(-x)\/\p(x)\
|signx-r(x)|=-

.p{-x)\^\+\p(-x)\l\p{x)\

p(-x)
p(x)

i /n _ g(2v-l)/2ii|b e

For IxI < 1 we have

" 1

0 1

Therefore

n oo fgj/2n\2k-1

- 4
.^ , ,L-, Jh — 1

CO 1 «

Z ^ _ * ^ _ y / (2k-l)j2n\j
1 / 1 '

oo J e(2fc-l)/2n/| _ g(2t-l)/2j

> exp | - 4
1

i _ e(2»-i)/2»

£(2t-l)/2n

- l 1 _ e
£<2fc-l)/27 .
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9.2 Hausdorff approximation of the jump 269

We have In (1/x) =% (1 — x)/x for 0 < x ^ 1. Using this inequality we obtain

8n

Therefore the estimate (3) is proved for x = si/n, i = 0,.. . , n. The case
x = — el/", i = 0,. . . , n, is similar.

Since

r^ = (x\+ t-xy
 p^ = 0 (x + £<2v~1)/2n)

i t is e v i d e n t t h a t r ( - e ( 2 v " 1 ) / 2 " ) - - 1 , v = l , . . . , n , a n d r ( e ( 2 v _ 1 ) / 2 M ) = 1, v =
l , . . . , w . S i n c e t h e p o i n t s _ e ( 2 v ~ 1 ) / 2 n

) v = l,...,n, g * 2 " - 1 ) / 2 ^ y = l , . . . , n , s e p a -
r a t e t h e p o i n t s — ev/", v = 0 , . . . , n , ev /n , v = 0 , . . . , n , c o n d i t i o n (3) g ives u s t h a t
s ign x — r(x) h a s a l t e r n a t e s i g n s a t t h e p o i n t s — 1, — e 1 / n , . . . , — 6, e , . . . , g1 / n , 1.

n
We shall need also one particular application of a theorem of the type 2.3

(de la Vallee-Poussin theorem) to the function sign x. By the same method
as in theorem 2.3 it is possible to obtain the following result.

Lemma 9.4. Let A(e) = [— 1, —s] u[e, 1]. Let there exist 2n + 2 points x1 <
x2 < ••• <x2n + 2, XI-GA(8), i= l,...,2n + 2, and a rational function reRn such
that

Then

#„(sign x)C[A(£)] 5= min {Xt\ i = 1,..., 2n + 2}.

Lemmas 9.3 and 9.4 give us

Corollary 9.3. For every E, 0 < s < 1, we have

n
Resign x)clMe)]^exp< -7

Theorem 9.2. There exist absolute constants cl and c2 such that

e ^ " < .Resign x ; l ; [ - l , l ] K C l e - ^ " .

Proof The upper bound for Resign x; 1; [ — 1,1]) we shall obtain using lemma
5.1. Let us set in lemma 5.1 /? = 1, a = e~v", y = e"v". We obtain that there
exists a rational function reRN, N < Eln(e + ev")ln(e + ev'")<B1H, Bx an
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270 Approximation with respect to Hausdorff distance

absolute constant, such that

|r(x)|s£e^'", X E [ - L , - e ^ " ] ,

l - r (x)Ke~ v " , xe[e~-'", l],

0<r(x)<l , Vx.

Therefore the rational function q = 2r — \ ERN, N < B1 n, satisfies

0^r(x)<l , Vx.

Therefore the graph of q belongs to the domain

Using the definition of the Hausdorff distance with a parameter 1 we obtain
that

r(sign x, g; l; [ - l , l]) sc 2e~v".

Since qeRN, N ^ B1n,Bl an absolute constant, we obtain the upper bound

K„(sign x ; l ; [ - l , l ] ) ^ C l e - ^ " .

To prove the lower bound let us assume the converse, that

Using the definition of the Hausdorff distance we obtain that there exists a
rational function reRn such that

|signx-r(x)|<e_7rVn, e < | x | < l , (4)

where e = e_7rv",

But (4) gives us that

/ U s i g n x)C(A(£)) ^ exp J - n2 j - 1 = e ^ " , (5)

since s = e~n^'n.

The inequality (5) contradicts corollary 9.3. •

Remark. Using the same method it is possible to prove that

c3(a)e_C4(a)v" < R„(signx;a; [ - 1,1]K c^a)^'2^-"

where the constants ct(a), i = 1,..., 4, depend only on a.
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9.3 Bounded functions 271

9.3 Bounded functions
In this section we shall consider the general case of rational Hausdorff
approximation of bounded functions. We shall obtain an analog of Sendov's
theorem (1) in section 9.2, but in the logarithm will appear the so-called
averaged modulus T ( / ; 5 ) . Therefore we shall give first the definition and
some properties of the averaged modulus.

We define the local modulus of continuity of the bounded on [0,1] function
/ at the point xe[0,1] by

co(f9 x; d) = sup {| /(x') - /(x") |: x', x" e [x - 8/2, x + <5/2] n [0,1 ]} .

Then the averaged modulus of/ is the following function of 8, 8 > 0:

T ( / ; 5 ) = | | ( U ( / , - ; 5 ) | | L I ( O , 1 ) = I a>(f,x;S)dx.
Jo

For the history of the averaged modulus see Bl. Sendov (1979).

The following properties of T(/; 8) are evident.

(i) T(/ ;«5KT(/;<5') , 8^8'.

(ii) T(f + g;8)^Tif;8) + T{g;5).

We shall need also the following two properties.

(hi) T( / ; nS) < m(f\ 8\ n > 0, n integer.

Proof. We have

"^ sup||/(*')-/(<>I:*',*"

, n - 1 - 2/_ 8 n-1-2i. 8
e o n- 1 2/_--,8x o n 1 — + -

where we set /(x) =/(0) for x < 0, f(x) = / ( l ) for x > 1.
From here we get

xif;n8)=\ a)if,x;8)dx^ £ w / ' x ^ ^ ^ (

Jo i = ojo V l )
(iv) / / / is a function with bounded variation in [0,1] then
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272 Approximation with respect to Hausdorff distance

Proof Let us set again f(x) =f(0) for x < 0, f(x) = f ( l ) for x > 1. Then

therefore

o JO
l+<5/2 f l -5/2

d/2 J-S/2 J 1-5/2

•
We shall need also the following lemma.

Lemma 9.5. Let f be a bounded function in the interval [0,1]. For every natural
number m > 0 there exists a step function cpm with jumps at the points xt = i/2m,
i= 1,..., 2m — 1, such that

(a) r ( / , < p j < l / m ;

(b) ll/-

(c) F o ^

Proof. Let us denote xf = //2m, z = 0,...,2m, x_x = x0 = 0, x 2 m + 1 = x 2 m = 1,

mi = mf{f(x):xe[x i_ux i + 1 ] } ,

We set

™2i-l> xe[x 2 l_2 ,x 2 l_ 1 ) , i=l,...,m,
l>2l_l9 XG[X2I_1,X2I), i = l , . . . , m ,

m(^2m-i)» * = ! •

From the construction of <pm and lemma 9.2 it follows that r(f cpm) ^
m"1, i.e. we have (a).

For the difference f(x) — (pm(x) we have, using again the definition of <pm,

If(x)-q>m(x)|<co(f,x;2m"x);

therefore, using property (iii) of X(F\ S) we obtain (b):

l/-<P*lli= \f{x)-(pm(x)\dx^\ co(/,x;2m-1)dx
Jo Jo

t In this section we set r(f,g; 1) = r(f,g).
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9.3 Bounded functions 273

Finally let us estimate the variation of q>m. We have

2 m - 1 2m-1

Vh(Pm= Z l<Pm(*f)-<Pm(Xf-l)l< Z

; = i

2 m - 1 T*i 2 m - 1
~ 1= 2m YJ oj(/,xi;2m~1)dx^2m Z co(f x;3mx)dx

I JJ*i-i

2m co(/, x; 3m *)dx = 2mi(/; 3m *) «c 6mr(/; (3),
J o

since evidently for xer^x.-^X;] we have

<o(/,xi;2m-1H<o(/,x;3m-1). D

Theorem 9.3. For every function f bounded in the interval [0,1] we have

where c is an absolute constant.

Proof. Let / be a bounded function in the interval [0,1]. Let us consider
first the case when

<xB s

where D is the constant from theorem 5.1.
Since obviously Rn(f, 1; [0,1]) ^ 1, we have

with a constant cx = 8eD.
Now let a„ ̂  1. We set

(1)

+ m(f;n~1))], h = 2eD/n, m = [ ^ 1 - (2)

Since r/z < | , m ^ 1, D > 1, we have

^-<r / i<-^- , (3)
8m 4m

m<(4rfe)_1<n/8. (4)

For m so defined let us consider the step function cpm from lemma 9.5. We
set cpm(x) = <p(0) for x < 0 and (pm(x) = (pm(l) for x > 1. Let us consider the
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274 Approximation with respect to Hausdorffdistance

function
1 CH

2 H J _ H

For the function \jj we have q>m{x) = \jt(x) if

xe[x,._, +H, x , . - J / ] = *;-i + T T - . ^ - T T - > / = l,...,2m.
|_ 16m '*16m,

Moreover i/r is continuous and linear in the intervals [x, — H, x t +H~\,
i = 0,.. . , 2m.

From the properties of tp and lemma 9.5 we obtain

-1). (5)

Let us consider the function \j/rth given by

h/2 'h/2

-h/2 -h/2

Since rh/2 ^ l/8m, we obtain, using the properties of the function \jj given
above, that

^ ( x , + 1 /4m) = Mxi + V4m) = cpm(x; + l/4m), i = 0,. . . , 2m - 1,

,h(x)^imiix{(pm(xi-.1),(pm(xi)} for X E [ X F - 1/4m,

xf+ l/4m], i= l , . . . , 2 m - l .
Therefore lemma 9.2 gives us

From here and lemma 9.5 we get

r(f, </',,„) < r(f, «O + rto,,, ^ ) < 2m
On the other hand we have

X ()( ) > ( vh - r/z/2).

v=0\V/

From here and (5) we obtain

VWA^l'h-'-etmifim-1). (8)

Using theorem 5.1, (8), (2)-(4) and property (hi) of T ( F ; 3 ) we get.

/ 2 \ r6mT(/;m x) 6mr(/;m "1)

ern
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9.4 Notes 275

6mei(/;8r/z) 6erc([2eDln(e + nT(/;n - 1))] + \)x(f\n'1)

(e + m{f\n~ l))n (e + nr(/;w ^))n

^ l S e 2 ^ ^ " - 6 - - m U ' n -21. (9)
n

From (7), (2)-(4) and (9) we obtain

««(/»i;CO,i])<K/ ,<M + RMr.h, l;[0, l])

n T ( / ; n " 1 ) ) , (10)
n n

i.e. we have the statement of the theorem with c = 50e2D.
From (1) and (10) the theorem follows with c = 50e2D. •

Corollary 9.4. Let f be a function of bounded variation on the interval [0,1].
Then

The corollary follows directly from theorem 9.3 and property (iv) of T(/;<5).

9.4 Notes
As we mentioned in the introduction to this chapter, the Hausdorff distance
between bounded functions was introduced by Bl. Sendov and B. Penkov
(1962). The results for approximation of functions with respect to the
Hausdorff distance by means of polynomials, splines, rational functions, linear
operators, are collected in the book of Bl. Sendov (1979). We shall restrict
ourselves to rational Hausdorff approximations.

In connection with theorem 9.2 we want to mention the following upper
bound given by S.A. Agahanov and N.Sh. Zagirov (1978) (compare with A.P.
Bulanov (1975a)):

Kn(signx)C(A(e))<cexpI - y l n ^ £ ) > W

where A(e) = [—1, —e]u[a, 1], se(0, Q~y/n), c a constant.
The exact lower bound is given by A.A. Gonchar (1967b), (see also A.P.

Bulanov (1975a)):

It is not very difficult to obtain from the estimates (1) and (2) the following
asymptotics for the best Hausdorff rational approximation to sign x, which
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276 Approximation with respect to Hausdorff distance

improves theorem 9.2:

Kn(signx;l;[-l,l])xexp( _ *

(compare with theorem 4.2).
Theorem 9.3 is proved by P. Petrushev (1980b). This theorem is exact in

the following sense (P. Petrushev, 1980c):
For every function T(5\< 8^0, such that T(S) = x(g; S) for 5 ̂  0, where g

is a bounded function on the interval [0,1] with unbounded variation (i.e.
T(<5)/(5—xx)), there exists a bounded function on the interval [0,1] such that

Hm sup(Rn(f; 1; [0, l])n/ln(e + FIT(1/FI))) > 0.

Corollary 9.4 also can be improved (P. Petrushev, 1980d): for every function
/ with bounded variation on [0,1] we have Rn(f; 1; [0,1]) = o(l/n).

Let us remark that there exists an absolutely continuous function / on
[0,1] for which the order of the best polynomial Hausdorff approximation
is exactly Inn/n (see Bl. Sendov (1979)).

Many interesting results concerning rational Hausdorff approximation are
given by E.P. Dolzenko and E.A. Sevastijanov (1976a, b) and E.P. Dolzenko
(1976). These results are connected with the so-called piecewise monotone
approximation.

For example if ]CT=o(-Rn(/; U A))1/s converges for s ̂  1 then the function /
has almost everywhere on the interval A a differential of order s, and this
result is exact

If Rn(f; 1; A) =o(l/n), then/is univalent and continuous almost everywhere
on A.

Finally, we want to give the generalizations of Gonchar's results from
section 5.6 given by Bl. Sendov (see Bl. Sendov (1979)).

Let the function / be analytic in the unit disk D = {z: \ z \ < 1}. We say that
/ belongs to the class A if

lim ~
o

where ln + a = max {0, In a}, and that/belongs to the class Hp (Hardy spaces) if

The result of Bl. Sendov is the following.
Let f be a continuous real valued function on the interval (0,1], which is
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9.4 Notes 277

bounded from above or from below in (0,1]. Let there exist an analytic function
F(z) in {z: \z — 11 < 1} which coincides with f on (0,1]. Then ifF(z — l)eA, then

RJif; l; (0,l2) = o

n

IfF(z-l)eHp, then

where c is a positive constant.
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10

The o-effect

As we have noted in section 5.1 a characteristic property of the rational
approximation is the appearance of the o-effect in the order of approximation
of individual functions of some functional classes. The chapter is devoted to
the study of this phenomenon.

In section 10.1 is established and characterized the o-effect for uniform
rational approximation of the functions from the class Vr and for the rational
L1 approximation of functions of bounded variation. Section 10.2 investigates
the o-effect for the rational uniform approximation of functions in some
classes of absolutely continuous functions. The same effect for the rational
uniform approximation of convex functions is considered in section 10.3.
The o-effect for the rational Lp approximation of functions of bounded
variation is investigated in section 10.4.

10.1 Existence and characterization for uniform
approximation of individual functions of the class Vr and
for Lx approximation of functions of bounded variation

The class Vr = Vr(M, \_a, b~\) of all functions / for which Vbaf{r) ^ M < oo i
basic for rational approximation. In theorem 5.1 in section 5.2 we established
the exact order for the rational uniform approximation of the class Vr(r ^ 1):

sup Rn(f)c =

In this section we prove that for each function fe Vr there exists a sequence
» ( / ) } £ =i > £ „ ( / ) - 0 asn->oo, such that
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10.1 Vr and bounded variation 279

i.e. the o-effect appears. In addition, we characterize this effect. More precisely
we replace £„(/) in the last estimate by one new functional characteristic.
Also, we consider the same problem for the spline approximation. We
investigate the o-effect for the rational Lx approximation of functions of
bounded variation. Finally we present some generalizations.

10.1.1 One new functional characteristic
Definition of the function 6(f). Suppose that / is a function of bounded
variation on [a, b~\. The general notion of complemented graph / f o r a given
function / was defined in section 9.1. In our case (Vb

af < oo) / consists of
the graph / of the function / and all closed line-segments in the plane that
joint the points (x, f(x — 0)), (x, f(x)) and (x, f(x + 0)) for each point xe[a, b~]
of discontinuity for / . Note that the complemented graph / coincides with
the graph / when the function / is continuous.

We consider the complemented graph / of / as a curve in the plane. Since
Vb

af < oo, the curve / is rectifiable, i.e. / is of finite length. Further we shall
denote always the length of / by / = /(/).

Let s be the natural parameter (the arc length) of / so that

f :x = x(s)9 y = M se[0,Z], x(0) = o9 x(l) = b. (1)

Naturally, the points (x, y)effor which y is not between f(x — 0) and f(x + 0)
are obtained from (1) for two different values of s. For example, the
complemented graph / of the function

fO, 0 < | x | < l ,

istheset/={(x,0): - 1 ^ x s= 1}u{(0,y):0<y ^ 1} and / has the following
parametric equations:

i 5 - 1 ,

5 6 ( 3 , 4 ] ,0, 5G(3,4]3—5,

Lemma 10.1. For the parametric equations (1) of f (Vb
af < oo) we have x(s),

y(s)eLip1 V and

(x'(5))2 + (y'(s))2 = 1 for almost all se[0, / ] . (2)

1 1 means that \x(s') —x(s")\ ^ \s' — s"\, for S',S"E[0, / ] .
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280 Theo-effect

Proof. From the definition of length of arc it follows that

{(x(s') - X(S"))2 + MS') - }>(5"))2}1/2 < |S' - S"|, s',S"G[0, / ] ,

and therefore x(s),y(s)eLip11.
Now we prove (2). First we observe that

(x'(s))2 + (y'(s))2 s£ 1 almost everywhere (a.e.) in [0, / ] . (3)

Indeed, by the definition of length of arc we have

((x(s + h)- x(s))2 + (y(s + h)- y(s))2)112 < \h\, s,s + feE[0, / ]

and hence

x(s + fc) _ x(s)
h ) \ h

Taking the limit in this inequality with /i->0we obtain (3) a.e. in [0, / ] .
Also, we shall prove that

r
W ) ) 2 + (/(s))2)1/2dS>/. (4)

Jo
To this end it suffices to prove that

((x(s') - x(s"))2 + Ms') - y(s"))2)112 < P ((x'(s))2 + (/(s))2)1/2 ds (5)

for 0 < s' < s" < /.
Set j"s, x'(s) ds = p cos a and J"*, y'(s) ds = p sin a, p ^ 0. Then we have

T/(s)ds

= p = p cos2 a + p sin2 a = (x'(s) cos a + y'(s) sin a) ds.
Js'

This and the obvious inequality

\x'(s)cosa + /(s)sina| ^((x'(s))2 + (/(s))2)1/2

give (5) and (5) implies (4). The equality (2) follows from (3) and (4) immediately.

•
Denote

E = E(f) = {se[0, /]:(x'(s))2 + (y'(s))2 = 1}.

By lemma 10.1 we have mes£ = /.
Now we are able to define the function 0 = 0(f). For each seE we define

Q(s) — 6(f s) as the oriented angle between the real axes and the tangent
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10.1 Vr and bounded variation 281

vector (x'(s), y'(s)) to / at the point (x(s), y(s)), i.e. we define

0(s) = a r c t a n ~ , s e E, x'(s) # 0,
x'(s)

and

0(s) = | sign /(s), scE, x'(s) = 0.

Some properties of the function 9 = 6(f). By the definition of 9 it follows that
9 is defined a.e. in [0, / ] , 9 is measurable and \9(s)\ < n/2 a.e. in [0,/].

The essential difference between the functions 9 and / ' is that (a, f(a)) and
9 a.e. in [0, /] determine uniquely the complemented graph / of / , while
f(a) and / ' a.e. in fa, ft] determine completely / and hence / only when /
is absolutely continuous.

The complemented graph f of f has the following representation which
uses 9:

f-
= x(s) = a

Jo

> = y(s) =/(<*) +
o

(6)

Indeed, by the definition of 9 it follows that x'(s) = cos 9(s) and y'(s) = sin 9(s)
a.e. in [0, /] which implies (6).

Let the function / be absolutely continuous on fa, &]. Then the function
x(s) is strictly increasing on [0,/] . Denote by s(x\ xefa, b~] the converse
function to x(s). It is well known that s(x) = j ^ ^ 1 + (f'(t))2)dt for xe[a,b~].
Clearly 9(s) = arctan /'(x(s)) a-e- m [0,/] • It is readily seen that, if feC{aM,
then 9(s) = arctan /'(x(s)) for each se[0, / ] .

Further we shall apply the following functional characteristic

G)(0,5)L= sup \0(s + h) - 0(s)\ds,

to describe the o-effect in some situations.
Since 9(f) is measurable and bounded a.e. in [0,/] , then co(9;3)L->0 as

<5 -•0. If / is convex and bounded on fa, b]9 then 9 is monotone and bounded.
Hence co(9; S)L = O(<5). Also, a>(9; S)L satisfies the usual properties of the
integral moduli of continuity; see section 3.1. A very essential property of
CD(9; S)L is provided by the following lemma.

Lemma 10.2. If f is absolutely continuous on fa, b~\ and 9 = 9(f), then

w{9;d)L^Cc0(f';S)L, 3^0, (7)

where C > 0 is an absolute constant.
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282 Theo-effect

Proof. Our arguments are based on the following well-known inequality (see
lemma 7.6 in section 7.1): if geL[u v], then

> if" 2 C"~u fv-t
\g{x) g(t)dt}dx^ \g{x + t) -g{x)\dxdt. (8)

f - " J « v~u]0 Ju

Consider the case 0<h^d^{b — a)/4< 1/3, where / = /(/) is the length
of the graph / of the function /. Note that / = / , since / is continuous. Set
n = [1/2K]. Then we have

l-h

\0{s + h) - 0(s)\ds

(2v+l)/i

\0{s + h) - 0{s)\ds

n-2

v = 0 ( 2 v + l ) /

G2 + (j3 + <x4.

Now we estimate each integral in the sum ov Let f:x = x(s), y = y(s),
se[0, /] , x(0) = a be the parametric equations of the graph / of the function
/ with respect to its natural parameter s. By s(x), xe[a,b~\ we denote the
converse function to x(s), se[0, /] .

Denote xx = x(vh), Av = [xv,xv + 2 ] , Kv = \Av\'^AJ'(u)du.
Clearly, we have

H2v+l)/l m v + 2)h

L= \9(s + /i)-0(s)|ds<2 \6(s)-arctanK2v|ds.
J2vh J2vh

Since / is absolutely continuous, s'(x) = j ( \ 4-(f'(x))2) a.e. in [a, b~] and
H2v+2)f

|arctan/'(*(s))-arctanK2v|ds
2vh

X2v

= 2 | arctan f\t) - arctan K2v | J{\+{f\i))2) dt,

where we have made the substitution t = x(s).
Because of

„ x arctan x

and
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10.1 Vr and bounded variation 283

we have for x1?x2e(— oo, oo)

sup

x-7(1+x2)arctanx21

x arctan x x

and

n X
s u p

^ xe(-oo,oo)

The last inequalities imply that

I7(! + ( fW 2 ) arctanf '(t)-J(l +Xi)arctanK2v |df

+ 2 f |(7(1 +K|V)-VO +(/'(0)2))arctanX2v|dt
J A 2 V

|/'(f)-K2v|dt.

Thus we have for v = 0 ,1 , . . . , n — 1

"(2v+l)h

2vh

(9)

Choose t] such that 2( ^r\ < 4(5 (0 < 5 ^(fe -a)/A) and rj = (b -a)/2m for
some positive integer m.

Denote dt = [a + w/, a + (/ + 2)f/]. Also, denote by Qx the set of all intervals
Av = [xv, xv + 2] such that Av c d2. for some i (0 ^ i ^ m — 1) and by Q2 the
set of all intervals Av such that Av c d2l+j for some i (O < i < m — 1). Clearly

2. Set

If Av c rf., then

A,

l/'W-c,|dt

c,-' |AV
f\u)du dt
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284 The o-effect

Consequently, we obtain for fixed i (0 < i < 2m — 2)

\ f ' (x)-C t \dx

Jdi

Hence, in view of the inequality (8) we obtain

m-l

\f'(x)-C2i\dx
di,

o Ja + 2ir

2 f2"
„ . . \f'(x + t)-f'(x)\dxdt^4oj(f',2r,)L.
f J o Ja

Thus we have

X f \f'(x)-Ky\dx^32xo{f';S)L. (10)

Similarly we find

A^aJAJf'(x)-Kv\dx^32oj(f';d)L. (11)

The estimates (9)—(11) imply that for 0 < 5 < (b - a)/4

cr1 < Cco(f; d)L, C = constant. (12)

Similarly we obtain for i = 2,3,4

Consequently, we have in the case 0 ^ d < (b — a)/4

Jo
Hence

0; <5)L < 4C(D(f'; d)L, 0 ^ ^ < ( b - a ) / 4 . (14)

Since a>(#; <5)L = CO(0; l)L for d^l{l^b — a), the case 5 = / for the inequality
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10.1 Vr and bounded variation 285

(14) contains the case 3 > I On the other hand &>(/'; b — a)L^ 4a>(/'; 3)L for
(b — a)/4 <S^b — a and therefore the case (b — a)/4 <3 ^b — a for (14) is
contained in the case 3 = b — a. Consequently, to prove the inequality (14)
when 3>(b — a)/4 it suffices to establish the inequality (13) with 0 < h < l
and 3 = b — a.

Now, suppose 0 < h ̂  l. Then we obtain similarly as in the proof of estimate
(12)

l-h

s+h)-9(s)\ds

8(s) — arctan

/ ' (*)-

b-a

b—a

1

b-a

b-a fb-t

0

f'(u)du

f'(u)du

ds

dx

f'(x + t)-f'(x)\dxdt

as required. Thus lemma 10.2 is proved. •
Remark. A lower estimate of co(6(f)\ 3)L by co(/'; 3) is not true in general.
Indeed, for instance, if / is convex and bounded on [0,1], then 6 = 6(f) is
monotone and bounded on [0, / ( / ) ] and therefore (o(6; 3)L = 0{3). On the
other hand, it is readily seen that oj(f; 3)L ̂  co(f; 3)c for 0 < 3 < \ where
co(f; 3)c is the modulus of continuity of / , which may tend to zero as slow
as we want with (5->0. However, if fe Lip 1, then one can easily prove that

& ( / ' ; 8)L = O(oj(6; 3)L\ i.e. in this case GJ(6; 8)LX O(co(f; 3)L).

10.1.2 The o-effect in some spline approximations
We start with two lemmas concerning the intermediate approximation by
means of polygons (broken lines). The first lemma is trivial, but the second
one not and plays the main role in this chapter.

Lemma 10.3. Let f be absolutely continuous on [a, b~\ and cp be the polygon
with knots xi = a + i(b — a)/n, i = 0 , l , . . . , n, (n ̂  1) which interpolates f at these
knots, i.e. q>(x^)=f{xi) and cp is a linear function on each interval \_xi_uxi~].

Then we have for i— 1,2,..., n

b-a)/n

t)-f'(x)\dxdt
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286 The o-effect

and therefore

Moreover

and

b-a

b-a
n //.

b-a

where we take (p'(xi) = i(<p'(x»-0) + <P'(xi + 0))> i = l,2,..., w- 1, wfcen we

calculate Vb
acpr.

Proof By our assumptions we have for X E I X - ! , x,]

; X;_ j

Using the estimate (8) in subsection 10.1.1, see also lemma 7.6 in section (7.1),
we get for xelxi-1,xi']

\f(x)-cp(x)\ =

In

XiXi-

1

H i Xi - 1
f\u)du dt

1

t)-/'(x)|dxdt.

In the same manner we obtain

xi-\

dx

b-a
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10.1 Vr and bounded variation 287

and also

n-i
K < P ' = I

hl n
f\u)du b-a

f'(u)du

b-a ,-tl

f '
b-a

b-a

b-a

Lemma 10.4. Let f be a function of bounded variation on [a, ft] and the
complemented graph of f have the parametric equations

f:x = x(s), y = y(s), se[0,/] , l = 1(f), x(0) = a, (15)

with respect to the natural parameter s. Denote 6 = 6(f). Let n^\ and cp be

the polygon that interpolates J at the points (x(st-), y(st)), st = il/n, i = 0 , 1 , . . . , n,

i.e. cp is the polygon which connects consecutively with line-segments the points

(x(Si), y(Si)).

Then we have

V
nJL

and

(16)

(17)

where we have taken 0(cp, st) = \{6(cp, st — 0) + 6(cp, st + 0)) at the knots st when
V'^Oiq)) is calculated, C > 0 is an absolute constant.

To prove lemma 10.4 we need some auxiliary statements.
The Hausdorff distance between the functions will play an essential role

in our evaluations. The Hausdorff distance with a parameter a was defined
and applied in Chapter 9. Here we shall consider only the Hausdorff distance
r(f, g) = r(f, g\ 1) with parameter a = 1, i.e. the Hausdorff distance generated
by the following distance in the plane:

d(A, B) = d(A(au a2\ B(bu b2)) = m a x {|a, -b1\,\a2-b2 (18)

We shall need the Hausdorff distance r(fl9 f2) between functions fl and f2

that may be defined on different intervals Ax and A2 respectively. By definition

r(fu h) = r(fu Ai;/2,A2) = r(71,72X

where ft (i = 1,2) is the complemented graph of the function ft defined on Af.
Also, the Hausdorff distance can be defined as follows. For fixed E > 0

denote by DE = {(x,y):d({x,y),{0,Q))^s} the e-neighborhood of the origin
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288 The o-effect

with respect to the distance (18). Define for each two sets F and G in the plane

F + G = {(x,y):x = xx+x2,y = y±+y2,(xl9yJeF,(x2,y2)eG}. (19)

Then the e-neighborhood fe of / is defined by fe =/+ DE. Clearly, we have

r( / i , / 2 ) = inf{a:fx c=/2,f2 a f \ } . (20)

We shall denote by p(A9 B) the Euclidean distance between the points A
and B in the plane, i.e.

p(A9 B) = p(A(al9 a2\ B(bu b2)) = ((a, - b,)2 + (a2 - fo2)
2)1/2

-

Note that d{A, B) < p(A, B).

Lemma 10.5. Let f be a function of bounded variation on [a, b~] and the
complemented graph of f have the following parametric equations'.

f:x = x(s)9 y = y(s)9 S E [ 0 , / ] , / = /(/), x(0) = a, (21)

where s is the natural parameter of f Suppose 0 < sx < s2 < / and f is the arc
of f which is obtained from (21) for se\_sl9s2]. Denote xi = x(si)9 yi = y(Si)9

i= 1,2. Let q> be the closed line-segment with endpoints (x^yj) and (x2,y2).
Then we have

r(f, <p) < ^ — f" " [2 \0(s + t ) - d(s) \ ds dt (22)
S S J~ S l JO

and

|0(s + f)-0(s)|dsdf,9(cp) — I 9(s)ds
(«2-Si)

(23)

where

6(cp) =

arctanI — 1 , x1 < x29x2 x1

~ sign (y2 - yi)9 x, =x296 = 9(f).

Proof The case x1 = x2 is trivial.
Let xx < x2. Consider the linear function

*MX) = yi + tan #0/0*(x - x i \ XE[XL9 X 3 ] ,
where

1 fS 2

S2s)ds, X 3 = X 1 - \ - ( S 2 - S X ) C O S

Clearly, /(i/̂ ) = /(/) = s2 — s v Denote y3 = i/r(x3).
The arcs / and \j/ (the graph of the function \jj) have the following parametric
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10.1 Vr and bounded variation 289

equations (see (6) in subsection 10.1.1):

s

cos 8(s1 + t) At,
i

sin0(s!+f)dt,
Jo

and

I-

x = x^s) = xx + \ cos 8(\l/) dt,
o

, se[0,s2-sj.

From the above representations of / and \\i we get

= ((xf(s) - x,(s))2 + (yf(s) - y,(s))2)V2

(cos ̂ Sj + t ) - cos 9{\j/))ds

Set

S2 ~ Sl J

Then by the last estimates and the estimate (8) in subsection 10.1.1 (see also
lemma 7.6 in section 7.1), it follows that

T, se[0,s2 - s j .

Hence

(24)

(25)

Since cp and \\t are line-segments with common endpoint (xl,y1) and the
other endpoint of cp is on / , we have from (24) with s = s2 — sx

r(q>, (A) < p((x2, y2\ (x3, y3)) ^ 7.

From this and (25) we get

i.e. the estimate (22) holds.
It remains to estimate \9(<p) — 6(\j/)\. Consider the case \6((p) — 0(\ff)\ < n/2.

Let (x4, y4) be the orthogonal projection of the point (x3, y3) on the line
continuation of cp. By (24) with s = s2 — sl we have p((x2, y2\ (x3, y3)) < T
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290 The o-effect

and hence p((x4, y4), (x3, y3)) ^ T. Then we have

which implies (23).
Now, let \6((p) - 0(\jj)\ ^ n/2. Because of p((x2, y2\ (*3> y3)) ^ T we have

s2 ~ Si < p((x2 , y2), (x3, y3)) «S T.

Hence \9(cp) - % ) | < T «S TCT/(S2 - st) which implies (23). D
The next lemma gives a relation between Lt-distance and the Hausdorff

distance between functions of bounded variation.

Lemma 10.6. If Vb
af < 00 and Vb

ag < 00, then

ll/-sllL,[«..»]<9min {/(/), l(g)}r(fg), (26)

where 1(f) and 1(g) are the lengths of f and g respectively.

Proof. Suppose / ( / ) < 1(g). Set E = r(f g). Obviously s^b — a. Denote by fE

the a-neighborhood of / with respect to the distance d(A, B) from (18), i.e.

p=f+DE, where DE= {(x,y):d((x,y),(Q,0))^e}. Then in view of (20) we
have g czf8 and therefore

/ £ , (27)

where mes2 f
E is the two-dimensional Lebesgue measure of the set f8.

Denote

K = {(x,y):ye{0,e, - e } ,

and EE = E'EuEE.
Clearly, since £ ^ b — a, it follows that (see (19))

/«=/+DE =J+ E£ =

and therefore by (27)

1 1 / - 0llL[a,*] < mes2(7+ £i) + mes2(7+ El).

It is readily seen that all the sets in consideration are measurable and

mes2(7+ £;) = 6e(b - a), mes2( /+ £t") ^ 6t: F j / .

Hence

II / - 9 HL[..« < 6£(fe - a + FID < 9l(f)r(f g). Q

Proof of lemma 10.4. Denote by f the arc of the curve / which is obtained
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10.1 Vr and bounded variatio 291

from (15 for
connects the point

], s^ — il/n, and by cpt the line-segment of q> which
^J, sf_1)) and (x(st), y{si)). Also denot

* - > < * *

- sig71n (y(sf) - y(st - J ) , xf e _ 1) = x(s,),

0(s)ds

and

By lemma 10.5 we have for i= 1,2,...

r)-0(s)|dsd
0 Jsi-

and

t)-6(s)\dsdt.

The estimate (28) and lemma 10.6 imply that for i= 1,2,...

11 Jo

Summing these inequalities w get

\\f-<P\\ua.n=i Wf-<P\\uA
1 = 1

i=lj0

run

o Jo

r)-0(5)|dsdf

+O-0(s)|dsd

i.e. the estimate (16 holds.
Now we estimate V1^ 0{<p). By (29) we obtai

(28)

(29)
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292 The o-effect

Y |'\9(s + t)-9(s)\ds \dt
jo v = i L , /

Thus the estimate (17) is established. •
Now we shall apply the functional characteristic co(9, 3)L for describing

the o-effect in some spline approximations. As in the previous chapters (see
section 7.3), we shall denote by Sk

n(f)p and naturally by S*
(f)r the best

approximations of the function / by means of all piecewise polynomial
functions of degree k — 1 with n + 1 (free) knots on [a, b~\ with respect to Lp

and Hausdorff metric respectively.
Lemma 10.4 directly implies the following theorem.

Theorem 10.1. Let Vbaf< oo. Then we have

) . (30)

Moreover

) ; - } , n = l , 2 , . . . , (31)
n \ " nJL

where I = /(/), C = constant.

Theorem 10.2. Let feVr,r^l. Then we have

X (32)
•- •- \n J

Moreover
V\f)^Cai9{^ll/n\ n=l,2,..., (33)

where I = /(/<r)), C = C^lib -of''.

Proof. By lemma 7.13 in section 7.3 we have

r+2 {b-a)r~l
 2 (p)

C ^ - nr n 1'

This estimate and (31) imply (33). •

Theorem 10.3. Let Vb
af < oo. Then we have

/ 1 \

(34)

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781107340756.011
Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:21, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.011
https://www.cambridge.org/core


10.1 Vr and bounded variation 293

Moreover

L , n = l , 2 , (35)

where I = 1(f), C = constant.

Proof. Let

f:x = x(s), y = y(s\ se[0,/], x(0) = a, (36)

be the parametric representation of the complemented graph / of the function
/ with respect to the natural parameter s. Suppose n > 1. Set

i = 1,2,..., n, where 9 = 9(f). By lemma 7.6 in section 7.1 it follows that

L|0-0LLLL[O./,= E H 0 - 0 l l
i= 1

» 2n [*"" r i ( / "- ' / I
"""' = 1 ' J o J( i - l ) I /» "~ V 'H/L

Hence, there exist points 0 = to < tl < ••• < tn = l such that

< 2 / / \

L e t {si}fl0 = { i l / n } " = o u { t i } " = o a n d 0 = s o ^ s 1 ^ ••• ^ s 2 n = I. T h e n ( 3 7 )
implies that

2 ' " ' ' (38)

and 0X equals some constant in each interval (sf_l5sf).
Denote by /,- the arc of /which is obtained from (36) for se[s f_l5s j . Let

q> be the polygon that is defined connecting the consecutive points (x(st), y(st))9

i = 0, l,...,2n, with line-segments. By cpt we denote the line-segment of cp
which connects the points (x(s/_1), };(sf_1)) and (x(st\ y(st)).

By lemma 10.5 and (38) we get

r(ft,<pd< 8 f" ' ' f' \0{s + t)-0(s)\dsdt
I ^ i — 1 / 0 I v
' I 1 JV '"•i-l

\9(s + t)-9,(s + t ) -
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294 The o-effect

Consequently
32
n

and
(peS(2,2n,[a,fe]).

Hence

This estimate implies (35) for n 5= 2. The estimate (35) for n = 1 follows from
lemma 10.5. •

Remark. The estimates (30), (32) and (34) are exact in the corresponding
function classes. The exactness of these estimates can be established similarly
as for the rational approximation; see section 11.1.

10.1.3 Uniform approximation of individual functions of the class
Vr and Lx approximation of functions of bounded variation
In theorem 5.1 in section 5.2 we proved that

/ ) c = o ( - i A r ^ l .

The following theorem establishes the existence and character of the
o-effect for the rational uniform approximation of every individual function

Theorem 10.4. Let je Vr (r ̂  1). Then we have

(39)

Moreover

K(f)c^C^yn\ or+l, (40,

where I = l ( f r ) ) and C = Cx{r)l(b - o f ' 1 .

Remark. In theorem 11.4 in subsection 11.1.3 we prove that the estimate (39)
is exact with respect to the order in the class.

Corollary 10.1. (i) / / / is defined on [a, ft] and f{r) ( r ^ l ) is absolutely

continuous, then

n

(compare with theorem 10.6 in section 10.2).
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10.1 Vr and bounded variation 295

(ii) / / / is defined on \_a, b~\ and f(r) ( r ^ 1) is convex and bounded, then

(42)

Proof of theorem 10.4. We shall prove the estimate (40) only in the case r ̂  2.
The proof of (40) in the most essential case r = 1 is complicated and needs
more precise techniques which are unfortunately too long to be included in
this book.

By theorem 8.9 in section 8.3 we have for n > r + 1 and r ̂  2

Rn(f)c<C^=iV
nr+:AJ \ (43)

where C = C^r, oc)(b — a)r~* and a > 0. On the other hand, by theorem 10.1
in subsection 10.1.2 we have for n = 1,2,...

) (44)

where / = l(f(r)) and C = constant.
Combining (43) with a = 3 and (44) we get

Thus the estimate (40) is proved when r ̂  2 and (40) implies (39) in this case.
Now we prove (39) in the case r = 1. By theorem 8.9 in section 8.3 we have

for n = 1,2,...

where C = Ci(p, a)(fc-a)1_1/p, a >0,p> 1. Theorem 10.11 in section 10.4
implies that

*„ ( /% = o ( ± ) . (46)

The estimates (45) and (46) imply (39) in the case r = 1. •

Proof of corollary 10.1. If f{r) (r ̂  1) is absolutely continuous on [a,b], then
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296 The o-effect

by lemma 10.2 in subsection 10.1.1 we have a>(6(f{r)); 8)L s$ Ca)(f i r + 1 \3)L for
(5^0. Then (41) follows from (40) immediately.

Suppose f{r) (r^Y) is convex and bounded on [a,b~\. Then 6(f{r)) is
monotone and bounded on [0,/(/ ( r ))] and hence co(9(f(r)); S)L = 0(d). Thus
(40) implies (42) directly.

Theorem 10.1 in subsection 10.1.2 establishes the o-effect for the Lx spline
approximation of functions of bounded variations: if Vb

af < oo, then

);- ) , n = l , 2 , . . . , (47)
n \ nJL

where / = /(/), C = constant.
A similar estimate holds also for the rational approximation.

Theorem 10.5. Let Vbaf< oo. Then we have

(48)

Moreover

Rn(f)i < C - c o ( 0 ( / ) ; - V n=l,2,..., (49)
n \ nJL

where I = 1(f), C = constant.

Remark. The exactness of the estimate (48) is proved in theorem 11.6 in
subsection 11.1.5.

Proof of theorem 10.5. By theorem 8.1 in section 8.1 we have for each a > 0

Rn{f)l 5% C(a)—v-— — -, n = l , 2 , . . . . (50)

Then by (47) and (50) with a = 3 we get

Thus the estimate (49) is proved and obviously (49) implies (48). •

10.2 Uniform approximation of absolutely continuous functions
In section 5.3 we considered the rational uniform approximation of some
classes of absolutely continuous functions. Here we investigate the o-effect
for these approximations.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781107340756.011
Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:21, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.011
https://www.cambridge.org/core


10.2 Absolutely continuous functions 297

Theorem 10.6. If feWr
p[0, 1], then the estimate

holds in the following situations:

(i) r=l,p= l,l ^q< co,
(ii) r= \9p> \9q= oo,

(iii) r^2,p= \9q= oo.

Moreover for an arbitrary positive integer k the estimate

K(f)q^C— 'r ~, n^r + k-\, C = C(p,q,r,k), (2)

holds in the above situations (i)-(iii).

Proof. If feWp[0,1], then by theorem 8.9 in section 8.3 the estimate

Rn(f)q^C m > n^r + k—\, C = C(p,q,r,k,a.), (3)

holds in the situations (i)-(iii) from the suppositions of the theorem.
On the other hand by lemma 7.14 it follows that for each feLp[091],

1 < p ̂  oo, and k ^ 1

S5(/)p<C(p,fc)fl)//;iV n=l,2,.... (4)
\ n )p

The estimates (3) with a = k + 1 and (4) imply that

^ l «r + " + 1 ^ nr

The estimate (2) implies (1). •

Theorem 10.7. Iff is absolutely continuous on [0,1] and /'eLlogL, then

(5)

Proof. By theorem 5.6 (see also theorem 5.5) we obtain

R2n^(f)c<CEnU')LlosL, n=l,2,..., (6)

n
where En(f')LlL is the best approximation to / ' in the Orlicz space LlogL
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298 Theo-effect

by means of algebraic polynomials of degree no greater than n. It is well
known that for geLlogL En(g)LlogL-+0 as rc-> 00 and (6) implies (5). •

Now we establish the exact order of the rational uniform approximation
of individual absolutely continuous function with a given modulus of
continuity. Consider the class V(co) = V(M, [a, b\c o) of all functions /
continuous on [a,b] such that Vb

af^ M and co(f;3)c ^ co(3\ S^O where w
is a given modulus of continuity. In theorem 5.7 in subsection 5.3.4 we proved
that for each

{ ^ ~ \ \ , 1 1=1,2,.... (7)

In theorem 11.7 in section 11.2 we establish the exactness of this estimate in
the class V(co) when co(3)/3 -> oo as 3 -• 0. Of course the estimate (7) holds
also for all absolutely continuous functions in V(co) and it is exact for this
class. However, the o-effect appears for 'good' moduli of continuity co.

Theorem 10.8. Let f be absolutely continuous on [a, b~\ and co(f; 3)c ^ co(3)
for ( ^ 0, where co is a given modulus of continuity. Then there exists a sequence
{enC0}*=i> 8n(f)~~*Q as rc-*°o> such that

Rn(f)c^ C mm \ E ^ + 0,(^)1, n = l , 2 , . . . , (8)

where C>0 is an absolute constant. Moreover

(^)}, ,,= ,,2,....
The estimates (8) and (9) imply the following estimates.

Corollary 10.2 (Newman's conjecture). IffeLip 1, then

(10)

Corollary 10.3. (i) / / / is absolutely continuous on [a, 6] and co(f; 3)c = 0(3y),
0<y < 1, then

Rn(f)c = o(lnn/n).

(ii) / / / is absolutely continuous on \_a, b~] and co(f;3)c = 0((ln(l/(5))~y),
y > 0, then

(iii) // / is absolutely continuous on [a,b~] and co(f;3)c = 0((ln-••ln(l/<5))~y),
>0,k^2, then k
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10.2 Absolutely continuous functions 299

Remark. The estimates (8), (10) and those of corollary 10.3 are exact with
respect to the order in the corresponding classes. This fact can be proved in
a similar way to the exactness of estimate (7) in V(co) (see theorem 11.7 in
section 11.2). The precise proof of the exactness of the above estimates is
omitted.

Proof of theorem 10.8. We shall prove the estimate (9) which implies (8) with
sn(f) = a>(f';(b-a)/n)L.

Let n > 1 and 1 < £ < n. Set m = [n2/t]. Let cp be the polygon with knots
Xi = a + i(b — a)/m, i = 0,l,...,m, which interpolate / at these knots. Set
(p'{Xi) = iW&i - 0) + (p'(Xi + 0)) for i = 1,2,..., m - 1. Then by lemma 10.
in subsection 10.1.2 we have

Vb
a(f - <P) = II / ' - <P' hla,b] < 2 f t / / ' ,

and

b-a \ m

It is not difficult to see that

co(f - q>; S)c < 2co(f; S)c ̂  2co(<5), S ̂  0. (13)

By (7), (11) and (13) we get

( b~a

On the other hand by theorem 5.1 in section 5.2 and (12) we obtain

~A^r ma){f';{b-a)lm)L( \
nW)C

co(/';(fr-a)fAi2)L

^ C l t

Consequently, for each te[l,n]

te."it

which implies the estimate (9). •
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300 Theo-effect

Proof of corollary 10.2. The estimate (10) follows immediately from (9) setting
t = max {l,n/ln(e + 1 / W , l/n)L)}. •

Proof of corollary 10.3. The assertions (i)-(iii) in corollary 10.3 follow
immediately setting for sufficiently large n consecutively t = ocn/(2 In ri),
t = j£n(f)-n

yia+n + 2 and f = (In• • • Innf in the estimate (8). •

10.3 Uniform approximation of convex functions
In section 5.5 we found the exact order of the rational uniform approximation
of the class ConvM[a, b~] of all functions / convex and continuous on [a, b~\
such that \\f\\cia,b]^M. The same problem was solved also for the class
ConvM(a, [a, £>]) of all functions / convex on [a, b~\ such that co(f, d)c ^ M5a

for S ^ 0. Here we shall prove the existence of the o-effect for the rational
uniform approximation of each individual function of these classes.

Theorem 10.9. Let the function f be convex and continuous on [a,b~\. Then

Rn(f)c = o(-\ (1)

Moreover

R (f) < C
W ^ ; ( b ~ a ^ c

 n = 1 2 (2)

where C = constant.

Remark. The estimate (1) is exact in the class ConvM[a, fr] (see theorem 11.5
in subsection 11.1.4). However, the estimate (2) is not exact with respect to
the order of co(f; S)c. In this book we do not consider the rational
approximation of the class of all convex functions with a given modulus of
continuity except the class of all convex and Lip a functions.

Proof of theorem 10.9. Set

/'(*) = i(/ '(* ~ 0) +/'(x + 0)), xe(a, b\
f{a + 8) +f'(a + d)(x -a-S\ xe[a, a + <5],

f(b-8) +f'(b -5){x -b + 5), xe[b- 5,b],

where S = (b — a)/2n and f2 =f—J\-
Clearly, j \ is a primitive of the function f\{x) = j(f\(x — 0) +f'1(x + 0)),

xe(a, b), and since / is convex

- S) sconve-f\a + x5) * V V
o b — a
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10.3 Convex functions 301

Then by theorem 5.1 in section 5.2 we obtain

™ ^ * (31

On the other hand, obviously f2 is convex and continuous on [a, fo] and

2n Jc

Hence, by theorem 5.11 in section 5.5

v i f \ ^ r II/2 llc[flffc] , r ™(fi (b ~ a)/2n)c
KUik i

n
This estimate together with (3) gives

< (AC + Clf
{f>{b

which implies (2). D

Theorem 10.10. If f is convex on [a, b~] and co(f; S)c < MS" for 5^0, where
M > 0, 0 < a < 1, then

Proof It is readily seen that it suffices to prove the theorem only in the case
[a? b~\ = [0,1], M = 1 and / nonincreasing on [0,1].

Let £ > 0. Choose de(0,1) such that 122C(a)rfa s£ e/2, where C(a) > 0 is the
constant from theorem 5.13 in section 5.5. Denote Ax = [0,d~] and A2 = [d, 1].
By theorem 5.13 it follows that for each n ^ 6 there exists a rational function
r1eR[n/6] such that

l Ax T l22C(a)dx e
1 [ft/6]2 n2 2n2

Since / is convex and nonincreasing on [0,1] and co(f; S)c < <3a, S ^ 0, /
is a primitive of the function f'(x) = i(/'(x - 0) +/'(* + 0)), xe(0,1) and
FA2/

r ^f'{d) < 00. Then by theorem 10.4 in subsection 10.1.3 it follows that
there exists a sequence {en}*=1, £n -» 0 as n -> 00 such that

i U / , A 2 ) c S = J , w = l , 2 , . . . . (5)

Choose n0 such that for n ^ n 0 we have £[„/6]/[ft/6]2 < s/2n2, 2/n < e/2 and
B2 In (e + n3/a) In (e + n3) ^ w/3, where B2 > 1 is the constant from lemma 5.4
in section 5.1.
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302 Theo-effect

By (5) it follows that for each n^n0 there exists a rational function r2eR[n/6]

such that

Now we apply lemma 5.4 in section 5.1 for 'joining' of rational functions

with s2 = \/n3 and d = (l/n3)1/oc. We conclude that for each n ^ n0 there exists

a rational function r such that

2n n3< n

and

deg r ^ 2 deg r1 + 2 deg r2 + £ 2 In f e + - J In ( e + —
\ <V V £2

«S — + B2 ln (e + n3/a) ln (e + n3) < n.

Hence for n ^ n0 we have Rn(f)c < &ln2 and therefore n2Rn(f)c -> 0 as n - • oo.

a
10.4 Lp approximation of functions of bounded variation

In theorem 10.5 in subsection 10.1.3 we have proved that, if Vb
af < oo, then

Rn(f)i = o(l/n). Here we extend this result for Lp rational approximation.

Theorem 10.11. If Vbaf < oo and 1 ̂  p < oo, then

Remark. In theorem 11.6 in subsection 11.1.5 we prove that the estimate (1)

is exact with respect to the order in the class under consideration.

To prove theorem 10.11 we shall make use of the relation between rational

and spline approximations in Lp metric from theorem 8.1 in section 8.1.

It is well known that each function / of bounded variation on [a, b~\ can

be represented in the f o r m / =fx + /2, where fx is absolutely continuous and

f2 is a singular function. We have established in theorem 10.6 in section 10.2

that the estimate (1) holds for absolutely continuous functions / . It remains

to prove it for singular functions.

We shall make use of the following functional characteristic for singular

functions/. Let Q„ = {Af}"= x be a partition of [a,b~] into n compact intervals

Af = [Xj_ 1;xJ such that a = x0 < xx < ••• < xn = b. Denote
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10.4 Functions of bounded variation 303

We define

pp(f,n) = in(Pp(f,Qn) (2)

where inf is taken over all partitions of [a, fc] into n compact subintervals
disjoint except for the endpoints.

Lemma 10.7. Iff is a singular function on [a,/?] and p>0, then pp(fn «)->0
as n-> oo.

Proof Since / is singular, then for each e > 0 there exists a partition
n 2 n = { * i } i

= i of [fl, fc] such that EZ = 1 |A 2 t | <c and £ U ^ , / ^ e (see
S. Saks (1937)). Hence, using Holder's inequality we get

l / ( p + l ) / n \ P / ( P -

1/(P+D/ n \P/(P+1)1(P+1)/\P+U |A»-) UU
f £\l(p+l)tyb f\pf

The lemma is proved. D

Lemma 10.8. Let f be a singular function on [a, 5] and 1 ^ p < oo. T/zen we have

Moreover

S2*(f)P**Pp^'n\ =l,2,....PP(/,W), (4)
n

w/zere pp(/, n) is defined in (2).

Proof We shall apply the following trivial estimate: if VAf< oo, A an interval,
then

|A|1/PKA/'
Sl{f,A)p^\A\llpSl(f,A)Xl^— —, „=1,2,.... (5)

Indeed, it is sufficient to divide A = [w, v] into n subintervals u = x0 < x1 <
• • • < xn — v such that the variation of / in each open interval (Xj _ !, xf) does
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304 The o-effect

not exceed VAf/n and to approximate / by means of the step-function
<P(x)=f(xi-i + 0 ) for xG(Xi-l9Xi)9 i= l,2,...,n.

Let Q„ = {AJ?= x be an arbitrary partition of [a, b~\ into n subintervals
disjoint except for the endpoints. Choose

_ n | A , | ( F A i / r
t I V'n I - 1 l/nilWrr s-\ — II — _L 1 1 • " ^ I *

Clearly, we have X?= i n; ̂  2n and by (5)

Hence

S_-(/,[fl,b])p<( __S i ( / ,A#

which implies (4). In view of lemma 10.7 (4) implies (3). •

Proof of theorem 10.11. If Vb
af < oo, then / can be represented in the form

/ —fx +f2, where /x is absolutely continuous and / 2 is singular. By theorem
10.6 in section 10.2 we have

By theorem 8.1 in section 8.1. we have for each n ̂  1

On the other hand, by lemma 10.8 we have

! ; ) • ( 8 )

It follows from (7) with a = 2 and (8) that

nU2)P ynj.
This estimate and (6) imply (1). •

10.5 Notes

D. Newman (1964b) asked whether the estimate

RJLf)c = o(-) for each / e L i p 1 (1)
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10.5 Notes 305

holds. G. Freud remarked that, if

for each feVr ( r > l ) (2)

(see section 5.2), then the estimate (1) holds. V.A. Popov (1977) proved the
estimate (2) and as a consequence proved Newman's conjecture (the estimate
(1)); see corollary 10.2.

The o-effect for the rational uniform approximation of each individual
function in the class Vr (r ̂  1) is proved by P. Petrushev (1979); see the estimate
(39) in theorem 10.4. The results in section 10.1 are due to P. Petrushev
(1980a, 1983b) except the estimate (41) in corollary 10.1 which is due to
Yu.A. Brudnyi (1979). Note that A. Abdulgaparov (1974), A. Hatamov (1975b)
and P. Petrushev (1976a) have estimated the rational uniform approximation
of functions with convex rth derivative. The final estimate is found by
P. Petrushev (1976b, c); see the estimate (42) in corollary 10.1.

Theorem 10.5 is proved in P. Petrushev (1980d).
A natural generalization of the function 6(f) is the following function 0y(/).

Suppose Vbaf < oo and / : x = x(s), y = y(s\ se[0, / ] , / = /(/), x(0) = a, are the
parametric equations of the complemented graph f of f with respect to its
natural parameter s. Set

dt ,

Denote as in subsection 10.1.1

E = {s: se[0, /] , (xf(s))2 + (yf(s))2 = 1}, mes E - /.

We define

seE, x'(s)#0,

Mm Fy{t) signy'(s) seE, x'(s) = 0.
t~* CO

Clearly 0 2 ( / ) = 0(/). Note that 0y(/,s) = Fy(tan0(/,s)) for se£, where we
take tan( ± 7i/2) = ± oo and Fy(± oo) = lim(_±C!0 Fy(t).

If necessary we define in a suitable way ©y(/,s) also for SG[0,/]\£. Thus
when we calculate the variation Vl0&y(f) we always take (if possible)

®y(f, S) = %ey(f, S - 0) + ©y(/, 5 + 0)), 5G(0, /),

and

0y(/)=0y(/-O).
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306 The o-effect

Note that, if Vo& (/) < oo and 0 ̂  y1 ^ y2 then

(3)

Indeed, we have for S U S 2 G E

\®y2(f,S1)-®M,S2)\ =
%tand(f,s1)

tan0(/,s2) l

tan0(/,si)

tan 6(f,s2) l+l
= 2 |0 y i ( / ,S l ) -0 y i ( / , s 2 ) |

which implies (3).
On the other hand it is not difficult to see that, if 1 ^ yx < y2, then there

exists a function / or bounded variation such that

vl
0ey2(f)<co

but
n ® y i ( / ) = o o .

The following theorems involve 0 y in the rational approximation.

Theorem 10.12. Let fe Vr (r ̂  l) and Vl
0@y{fir)) <oo, 0<y<r+l, / = /(/).

Then we have

(4)

where C = C1{r)(b- a)r+1-yl\

Moreover we have

« - ( / ) c = o l / j r + 2 (5)

In particular, iff(r) (r>1) is convex and bounded, then the estimate (5)
holds, compare with estimate (42) in corollary 10.1.

Theorem 10.13. If VbJ < oo and V06(f) < oo, / = /(/) , then

(6)

In particular, if/ is convex and continuous, then the estimate (6) holds.
Note that estimates similar to estimates (4)-(6) hold also for the correspond-

ing spline approximations.
The proofs of theorem 10.12 and theorem 10.13 are much more difficult

and long. Therefore we omit them.
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10.5 Notes 307

Theorem 10.6 was announced by Yu.A. Brudnyi (1979). Theorem 10.7 was
obtained by A. Pekarskii (1982). Theorem 10.8 and corollary 10.2 are proved
independently by P. Petrushev (1976c, 1977) and A. Pekarskii (1977, 1978a).
The estimate (9) in theorem 10.8 is due to A. Pekarskii (1978a). Theorem 10.9
was obtained by V. Popov, P. Petrushev (1977). Theorem 10.10 was
announced by P. Petrushev (1980a). Theorem 10.11 in the case 1 < p < oo is
proved by A. Pekarskii (1980a).
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11

Lower bounds

In the previous chapters a number of estimates for rational approximation
were established. Here we shall be concerned with the exactness of these
estimates in the sense of definitions 5.1-5.3 from section 5.1. We use alternance
techniques based on some variants of the well-known Chebyshev theorem
and Vallee-Poussin theorem for rational approximation.

In section 11.1 there will be given some relatively simple lower bounds,
almost all of which are not purely rational in scope. That is, almost all of
them are valid for approximation by piecewise monotone functions or
piecewise convex functions, particularly for spline approximation. In section
11.2a non-trivial lower bound is obtained for the rational uniform approxima-
tion of functions of bounded variation and given modulus of continuity. Other
lower bounds which can be analogously obtained will be omitted.

11.1 Some simple lower bounds
In this section we give some relatively elementary lower bounds for rational
approximations which are not intrinsically dependent on the nature of the
rational functions as an approximating tool. These bounds are based on
some more general properties of the rational functions such as piecewise
monotony and piecewise convexity.

11.1.1 Negative results for uniform approximation of continuous
functions with given modulus of smoothness
In the preceding chapters classes of functions have been found which can be
approximated by rational functions better than by polynomials. In this section
we show that in the class of all continuous functions with a given modulus
of smoothness the rational functions are in general not better than the
polynomials as an approximation tool in the uniform metric. However, the
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11.1 Some simple lower bounds 309

o-effect appears when Lipschitz functions are approximated by rational
functions.

Theorem ILL Let cok be a given modulus of smoothness of order k ^ 1, i.e.
cok(3) = cok(g\3)c, 8^0, for some j j eQ- i U] and let

lim^=oo. (1)
<5 — 0 O

Then there exists a function f continuous on [— 1,1] such that

ojk(f;8)c^cok(8\ 8^0 (2)
and

R f f r ~ ' n - > 0 . (3)

Proof. Select indices {nv}*
=1 such that

nv = 9m\ mv integer, 1 ̂  mx < m2 < • • •, (4)

(5)
\nr

and

(6)

Condition (5) is possible because lima^0 cok(3) = 0 and (6) because of (1).
Consider the function

/(*)= Z gM,oo xe[-l,l],
v = 1

where

gv(x) = 40~kcok l — JT9n ( - J, Tn(x) = cos (n arc cos x)
• \ " v / " \ l J

is the Chebyshev polynomial. Here the right-hand series converges uniformly
in [— 1,1] because of (5).

First we shall prove that cok(f; 3)c < cok(3) for 3 ^ 0. To this end we shall
make use of the following inequalities.

(i) c o k ( g ; 8 ) c ^ 2 k \ \ g \ \ c , o j k ( g ; 8 ) c ^ 8 k \ \ g ^ \ \ c , w h e n # e C * [ - l , l

0<81^82 which follows directly from the inequality ojk(g; 13)c ^
(k + l)kojk(g;3)c; see the properties of moduli of smoothness in section 3.1.

(ii) Bernstein's inequality (see theorem 3.11 in section 3.4) provides for PePn
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310 Lower bounds

Now let l/nj+ X 3 «£ 1/n,, ; > 1. Then by (5), (6), (i) and (ii) we get

00 j CC-

E #v <5t X ll0<v*)llc + 2* X llf
V = 1 C V = j + 1

2-9kSk +2*+1

2k+

coL

1

n/V+l

}^cok(5).

Similarly it can be proved that cok(f; S)c ^ a>k(<5) for S ^ l/w. Consequently
/ satisfies (2).

Consider the polynomial Pi = Ylx~=\9v of degree 9« i_1<w i . Let Xj =
2cos(jn/9ni\ 3nt <y < 6nt. Clearly Xj£[— 1,1] and in view of (4)

6nt.

Hence

f{Xj)- P,(Xj) = (7)

i.e. /— Pt attains the maximum of its absolute value in [— 1,1] with alternate
signs at the points xy The number of these points is 3nt + 1 ^ 2nt + 2. Then
by Chebyshev's theorem (see theorem 2.2 in section 2.2) it follows that P{ is
the best approximating function to / in Rn. and by (7)

*nX/)c = 40= 40-*
,«».

which implies (3). n
Theorem 11.2. Let k ^ 1, C > 0, s ^ e2 ^ - - • > 0 and £„ -»0 with n -> oo
arbitrarily slowly. Then there exists a function/continuous on [ — 1,1] such that

and

l i m s u p « n ( / ) c M

(8)

(9)
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11.1 Some simple lower bounds 311

Proof. Choose indices {nv}*=1 such that nx = 9m% l <m1 <m2< ---, and
9k Xr= i £nv ̂  C, where C > 0 is from the hypothesis of the theorem.

Consider the function

v = i K

Obviously the right-hand series converges uniformly in [— 1,1]. It is readily
seen that for S > 0

tokU;d)c^d«9" 2, i
v = l

i.e. / satisfies (8).
Consider the polynomial

of degree 9rcI_1 < nt. As above in the proof of theorem 11.1 Pt is the best
approximating function to / in Rn. and

which implies (9). •

11.1.2 One negative result for uniform approximation of absolutely
continuous functions
It was mentioned in section 5.3 that for absolutely continuous functions
/ Rn(f)c

 m aY tend to zero with n -> oo as slow as we want. More precisely the
following statement holds.

Theorem 11.3. For each sequence {£„}*
=!, e 1 ^ e 2 ^ - > 0 , limn^ODen — 0>

there exist an index n0 and a function f which is absolutely continuous in [0 ,1]

(also f is non-decreasing in [0 ,1] , f(0) = 0 and f ( \ ) = 1) such that

Proo/ Consider the function

where 0 < £ < 1.
Corollary 9.3 in section 9.2 implies that for each n > 1 there exists a
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312 Lower bounds

number dn, 0 < Sn < 1, such that

F o r e a c h n ^ l we d e n o t e gdn briefly gn.
C h o o s e a s e q u e n c e of indexes 1 < n0 < nx < ••• s uch t h a t

(10)

Denote x v = l —1/2V and Av = [xv,xv+1). Let Xx be the linear increasing
function which maps Av onto [— 1,1). Set

1 1

[l, x = l .
It is readily seen that / i s absolutely continuous and non-decreasing in [0,1],
/(0) = 0and / ( l )=1 . By (10) and (11) it follows that, if nv_, < n < nv (v ^ 1)
then

«-(/,[0,l])c^ «.,(/, Av)c =

and therefore

^«(/>[0. l])c>£«> n^n0. •

11.1.3 Lower bound for uniform approximation of the functions of the class Vr

Theorem 5.1 in section 5.2 established an upper bound for the rational uniform
approximation of the basic class Vr. Existence of the o-effect for the rational
uniform approximation for each individual function feVr was proved in
theorem 10.4 in subsection 10.1.3. The following theorem proves the
exactness of these estimates.

Theorem 11.4. (i) For each r ^ 1 there exists a positive constant C(r) such
that for each M > 0 and compact interval [a, b~\

sup Rn(f)c>C(r)M(b~iaY, 11=1,2,.... (12)
feVr(M,[a,b]) W

(ii) For each r^l, M > 0, compact interval [a, fc] and sequence {e„}*=1,
e1 ^ e2 > ... > 0, limnJ0O en = 0, there exists a function feVr(M, [a,b~\) such that

\ \ . (13)

Proa/ Suitable change of variables shows that it is sufficient to prove the
theorem only in the case M = 1 and [a,b] = [— 1,1].
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11.1 Some simple lower bounds 313

For each O 1 set/„(x) = sin(27mx)/8(27i)V+1 forxe[-1,1]. It is readily
seen that /eK r(l ,[-1,1]) and fn((2k- \)/4n) = ( - l)k+1 U/Jci-i.n f o r

k = — In + 1, — In + 2,..., — 1,0,1,..., 2n. Then by the Chebyshev theorem
(see theorem 2.2 in section 2.2) it follows that the rational function r = 0 is
the best uniformly approximating function to /„ in Rn and

1
. l c[ -i.i] =8(2TT)Vr»r+1

which implies (12).
Now we shall prove the second part of the theorem. Suppose that

s^ ^ s2 ^ ... > 0 and lim,,^^ 8n = 0. Choose indices {nv}J°=1 such that

NV = 9 M \ \^mi<m2<--- (14)

E 1 8 - 9 ' 0 0 £ „ v < l . (15)
v = 1

Consider the function f(x) = '£™=lgv(x) for x e [ — 1 , 1 ] , where gx(x) =

(EnJn
rx+1)T9nx(xl2\ Tn(x) = cos (n arc cos x). Since gveP9nv, from Bernstein's

inequality exactly as in the proof of theorem 11.1 it follows that for k = 1,2,...

e 9kp
l l / j ( * ) | | _ . . . < : n.l II T < _ f c ) II _. . . < - 5 l _

The estimates (15) and (16) imply that the series £*=x \\g[k)||C[_lfl] converges
when k = 0,1,...,r + 1 and therefore feC[t\A] and f{r)(x) = £«L X gxr\x) for
xe\_— 1,1]. Using (15) we get

Consequently fe Vr(1, [ - 1,1 ]).
Now consider the polynomial Pfc = Zt=i0v °f degree 9w)t_1^nt. Let

Xj = 2cos(jn/9nk\ 3nk ^j < 6nfc. Exactly as in the proof of theorem 11.1 we
obtain by using (14)

GO 00 o

f{Xj) - pk(Xj) = E aixj) = ( - Iy' £ ™ , (17)

i.e./— Pfc attains the maximum of its absolute value in [— 1,1] with alternate
signs at the points Xj. The number of these points is 3nk + 1 > 2nk + 2. Then
by Chebyshev's theorem it follows that Pk is the best approximating function
t o / i n l a n d by (17)

00 p p

RnkU )C= 2 ^TTT > r+1
k l l

which implies (13). D
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314 Lower bounds

11.1.4 Uniform approximation of convex functions
In theorem 5.11 in section 5.5 it was found an upper bound for the rational
uniform approximation of the class ConvM [a, b~] of all functions / which are
convex and continuous in [a, b~\ and || / \\C[aM ^ M. Existence of the o-effec
for the rational uniform approximation of each individual function
/eConvM [a, /?] was established in theorem 10.9 in section 10.3. The following
theorem shows that the estimates in theorem 5.11 and theorem 10.9 are exact
with respect to the order.

Theorem 11.5. (i) There exists a positive constant C such that for each M > 0
and compact interval \_a, f]

M
sup Rn(f)c>C-, n = l , 2 , . . . . (18)

/eConvM[a,b] W

(ii) For each M > 0, compact interval \_a, b~] and sequence {e„} *= i ,
fii ̂  82 ^ •••>0, l im, ,^ £n = 0, there exists a convex function feCon\ M[a,b~\
such that

lim sup/?„(/)<:(-w
The proof of theorem 11.5 is based on the fact that the derivative r' of

each rational function r is a piecewise convex function. We shall need some
auxiliary statements.

Lemma 11.1. Let g be defined on A = [a, b~\ and

2, xeA2,

where Ax = (a, c), A2 =(c,fr), a<c <b and h1 <h2. Then for each function cp
such that cp' is convex or concave in A the following inequality holds:

Proof Denote x0 = a, xl=(a + c)/29 x2 = c, x3 = (c + b)/2, x4 = b and
di = [xi_1,xi], i=1,2,3,4. Set A(x) = h1+(h2-h1)(x-x1)/(x3- x1). Note
that X(xx) = g'ixj and l(x3) = g'(x3).

Since cp' is convex or concave in A and 1 is linear, then at least one of the
following four inequalities holds: (i) cp'(x) ^ X(x) for xedl9 (ii) cp'(x) > k(x) for
xed2, (hi) cp'(x) ̂  /l(x) for xed3, (iv) cp'(x) > ^(x) f° r xed4. Consider the case
when the inequality (i) is valid. Then the function g — cp is monotone on ix
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11.1 Some simple lower bounds 315

and therefore

1 f
\\Q-<Pllado>?\g(xo)-<P(XO)-(g(Xi)-<p(Xi))\ = - (g (x) - (p' (x))dx

2- \A.

^ ' = - 8|A

which implies (19). The other situations are considered similarly. •

Lemma 11.2. For each n 5= 1 there exists a function gn such that gn is increasing,
convex and continuous in [0,1], gn(0) = 0, gn(l)=\, g'n is a step-function,
g'n(+0)>0,g'n(l-0)<co and

*»(»», [0,1] ) c ^ = ^ - . (20)
768n

Proof Let n Js 1 and denote N = 16w - 1, h = \/\6n and xv = 1 - 1/2V. Set
where

vA, xe(xv_1?xv), v=l ,2 , . . JV,
Nh, xe(xN,l).

It is readily seen that gn is increasing, convex and continuous on [0,1],
gn(0) = 0 and gn(l) = $10g'n(x)dx = \. Also, g'n is a step-function, g'n(+0) =
2h>0, g'n(\-0) = 2Nh<oD.

It remains to estimate Rn(gn)c. Suppose that reRn and \\gn — r||C[0fl] =
Rn{f)c- Clearly, there exists a division of [0,1] into at most 8n — 2 intervals
such that r' is convex or concave in each of them. From this and the fact
that N = 16n — 1 it follows that there exists v, 1 ^ v < N — 1, such that r' is
convex or concave in the interval [xv_1 ?xv + 1] . Then applying lemma 11.1
to the functions gn and r in [xv_ l 9xv +1] we conclude that

> ( 2 v + 1 / z - 2 v / z ) ( x v + 1 - x v ) 2

=

8(xv+1— xv_ !) 768rc'
which implies (20). D
Proof of theorem 11.5. Simple change of variables shows that it is sufficient
to prove the theorem only in the case M = 1 and [a, b] = [0, b~] for some
b > 0. Then (i) follows immediately from lemma 11.2.

Now we shall prove the second part. Suppose that SL ^e2 > ••• > 0 and

Choose indices nt < n2 < ••• such that

I e . , < l . (2100)
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316 Lower bounds

Now we construct the desired function / by induction using the functions gn

from lemma 11.2. Denote x0 = 0, xx = 1/2 and Ax = [x0>xi]- Let Ax be the
increasing linear function which maps Ax onto [0,1]. Set f(x) = enigni(A1(x))
for xeAx. Note that / is continuous, convex and increasing on A1 and
/ ' (x 1 -0 )<oo .

Let/be defined already on [x0,xv], v > 1, such that/is continuous, convex
and increasing on [x0,xv], f'(xv — 0) < oo and 0 < xv < 1. Choose xv +1 such
that xv<xv + 1 < 1 and

Such a choice of xv +1 is possible since g'nv+1 (+ 0) > 0 by lemma 11.2. Let Av +1

be the increasing linear function mapping Av+1 =(xv,xv+1] onto (0,1].
Set f(x)=f(xv) + snv+ignv + iHv+1(x)), xeAv+1. Clearly /'(xv + 0) = (fi|Iv+ i/
(xv+ x — xv)). g'n (+0) ^/'(xv — 0) and therefore / is continuous, increasing
and convex on [x0, xv+1]. Also f'(xv+1 — 0) < oo.

It is readily seen that b = limv_<oc xv exists and 0 < b < 1.
Thus the function / is defined on [0, fo). Set f(b) = limx^b f(x). By our

construction and (21) it follows that / is continuous, increasing and convex
on [0, b], /(0) = 0 and f(b) = £S°= I eWv < 1 - In v i e w °f lemma 11.2 we conclude
that for v = 1,2,...

RJf, [0,ft])C > RnXf, Av)C = fin,«»,(S»,, [0,1] ))C ^

which implies the theorem. •

11.1.5 Lp approximation of functions of bounded variation
In theorem 10.11 in section 10.4 it was proved that for each function / of
bounded variation on [0,1] the following estimate holds: Rn(f)p = o(l/n)
(1 ^ p < oo). The following theorem establishes the exactness of this estimate.

Theorem 11.6. For each sequence {£„}*=i, E 1 ^ £ 2 > - - - > 0 , limn^oofin = 0,
there exists a function f defined on [0,1] such that K j / ^ 1 and for p ̂  1

limsup«n(/)p(£") \ \ . (22)

Proof. Set gn(x) = InsinAnnx for xe[0,1]. The function gn vanishes at the
points xv = v/4n, v = 0, l,...,4n, and has alternate signs in the consecutive
intervals Av = (xv_1?xv). Then for each rational function reRn there exist at
least n intervals Av such that gn(x)r(x) ^ 0 for xeAv. This fact implies that for
each reRn and p ̂  1

i/4.

\sin47rnx |dx = 1.
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11.2 Bounded variation and given modulus of continuity 317

C o n s e q u e n t l y for p ^ 1

R«(9n)P>l n = 1 , 2 , . . . . (23)

Le t s 1 ^ e 2 > ••• > 0 a n d l im n _ , o o e n = 0. C h o o s e ind ices nl<n2< ••• s u c h
t h a t

£ 167r-2ve„v ^ l . (24)
v = l

Denote dv = (1/2v, 1/2V~*]. Let Av be the increasing linear mapping of dv onto
(0,1]. Set

(o, x - 0.

Using (24) we get

In view of (23) it follows that for v = 1,2,...

*„,( / , CO, 1])P > /?„,(/,dv)i = - « - , ( » » „ CO, l ] ) i ^ ^ ,

which implies (22). D

11.2 Uniform approximation of functions of bounded
variation and given modulus of continuity

Consider the class V(co) = V(M, [a, b\ co) of all functions/continuous in [a, b~]
such that Vb

af^ M and co(f; S)c < co(S) for 8 ^ 0, where a>(/;< 5)c is the modulus
of continuity of/ and co is a given modulus of continuity. In theorem 5.7 in
subsection 5.3.4 we proved an estimate for the rational uniform approxima-
tion of functions fe V(co). The aim of this section is to prove the exactness of
this estimate.

Theorem 11.7. Let co be a modulus of continuity such that

1mA oo. (1)

Then for each M > 0 and compact interval [a, b] there exists a function
fe V(M, [a, b]9 co) such that

lim sup R > 0.
n"°° inf {M/t + co((b-a)/ten/')}
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318 Lower bounds

Remark. Next we shall show that, if limd _o(co(<5)/<5) # oo, then a>(d) = 0(d)
and therefore V(a>) cz Lip 1. In this case by theorem 10.8 in section 10.2 for
each feV(co) we have Rn(f)c = o(n~1). Hence the restriction (1) in the
formulation of theorem 11.7 is essential.

To prove theorem 11.7 we need some auxiliary statements. The following
well-known lemma shows that for the proof of theorem 11.7 it is sufficient
to consider only the case when the modulus of continuity co is a concave
function.

Lemma 11.3. For each modulus of continuity cof there exists a concave modulus
of continuity & such that

a>{8) sc d>(<5) s= 2co{8), 8 e [0, oo). (2)

Proof Define cb as the minimal concave majorant of co, i.e. for 5 ^ 0

— sup

The left-hand side inequality in (2) is obvious. Let us prove the right-hand
side one. We get for 8 > 0

a>(5)= sup
0<ti<d<t2 *2 ~

< sup — i

t

= sup
0<ti<d<t2

where we have made use of the inequality

-+ 1 la)((5) (seeaction3.1). •

Remark. The restriction that the modulus of continuity co be concave implies
that the function co(d)/S is nonincreasing for (Se(0, oo). Indeed, if a; is concave
and 0 < 51 < <52, then

= ( ( l - | ) - 0 + ^

^ j / ^ =<o(52y52

* We remind the reader that co is called a modulus of continuity, if w is a continuous
nondecreasing function on [0, oo) and co(Sl + S2) =£ co(cSj) + co(<52) for <5t, S2 > 0, co(0) = 0.
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11.2 Bounded variation and given modulus of continuity 319

and therefore co(3)/d is nonincreasing. From this fact and lemma 11.3 it
follows that limd^o(co{3)/3) / oo implies co(S) = 0 (5 \ which was used in the
remark after theorem 11.7.

In the proof of theorem 11.7 the main role is played by the following
auxiliary theorem.

Theorem 11.8. Let f be a function defined on [a, b] and Vb
af^ M < oo and

suppose that Q is a set ofm disjoint compact subintervals Af = [ai9 b[\ of [a, b~]
with a^:a1<bl<a2<b2< ••• <am<bm^b and minlsSls.m_1 (ai + 1 — b ^ E1,
where m ^ 1 and ex > 0. Suppose also that for some £2 > 0 it is true that for
each interval AeQ, A = [w, v \ there exist a rational function rA, degrA = nA,
and a set AA ofkA-{- 1, kA^0, different points xt-eA, arranged in increasing
order, i.e. u ^ x0 < x l < - • - < xk < v, such that

\f(x)-rA(x)\>£2, xeAA,

f— rA has alternate signs at the points x 0 , xl9...,xk and

Then Rn(fi[a,b])c>%e2 for

^ , v. , / b-a\ ( M

where D > 1 is an absolute constant.

Proof. We shall make use of some techniques from the proofs of the theorems
for 'joining' of rational functions (see theorem 5.2 in section 5.2, theorem 5.3
in section 5.3). In particular, we shall apply lemma 5.1 in section 5.1 for
rational approximation of a jump-function.

It is not difficult to see that, if theorem 11.8 holds in the special case when
m = 2s, s integer, then it is valid in the general case with another absolute
constant D > 1. Thus we shall suppose that m = 2s, s integer.

To avoid some more complicated indexations we shall denote

and

QA = {A*: A*eQ and A* c A} for each interval A cz [a, /?].

Denote

..._.. 2"4"VM
N(fi,M,A)= J 6B-2Mn( e + -

v = o \ £i

where B> 1 is the absolute constant from lemma 5.1 in section 5.1, £t and
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320 Lower bounds

e2 are those from the hypotheses of the theorem, the numbers n and M and
the interval A are parameters.

We shall prove by induction with respect to ju the following lemma,
formulated using the assumptions and notations introduced above.

Lemma 11.4. Let — 1 < / ^ s. For each AeQ^, A = [w, v~], there exist a rational
function rA and a set AA oflA + 1 different points x,eA, u ̂  x0 < x: < • • • < xt O,
'A = SA*6!2A'CA-> sucn that

XEAA,

f— rA has alternate signs at the points x0, x1,...,xl ,

and

Proof The lemma holds for // = — 1 by the hypothesis of theorem 11.8.
Suppose that the lemma holds for some fi (— \ ^ n ^ s — 1). Now we shall

prove it with \i replaced by \i + 1.
Let AGQM+1. Obviously, there exist points u1,vl,u2,v2 such that

u1<v1<u2<v2, A = [u u v 2 ] , A1 = [w1,i;1]GQ/i, A2 = [w2,r2]eQ/i and
u2 — v1'^s1. Also, by our assumptions for £ = 1 , 2 there exist a rational
function rA. and a set AA. of ZA. + 1 = XA*GQ KA* + 1 different points in At such
that

and /— rA. has alternate signs at the consecutive points of AAi,

I k A . - Z W I I c f w i w ^ ^ / (4)

and

degrAi^ X nA* + N(/i,FAi./,AI.). (5)

Consider the rational function

rJix) = (1 - o-(x - z))rAl(x) + cr(x - z)rAl(x\

where z = (vl +u2)/2, d is the rational function from lemma 5.1 in section
5.1 with a = fi!/2, jff=|A|, y = min{l/2" + 4, e2/2" + 4KA/} when K A />0( the
case KA/= 0 is trivial).
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11.2 Bounded variation and given modulus of continuity 321

By lemma 5.1 it follows that

deg a ^ B In (e + ?-) In (e + ° U B In (e + ̂  )m (e + 2"+4 +

V £

Consequently

deg rA < deg rAl + deg rAl + deg a

V £1

i.e. rA has the desired order. The last inequality follows from (5) and the
following one:

ln e + ' Zl In

<2ln( e + -
V £i

where we have applied the fact that the function F(x, y) = — In (e + x) In (e + y)
is convex on the set D = {(x,y):x,y^O}. The function F is convex since
d2F/dx2, d2F/dy2 and d2F/dx2-d2F/dy2 - (d2F/(dxdy))2 are nonnegative in
D. Our arguments are similar to those from the proofs of theorem 5.2 in
section 5.2.

Now we estimate \\rA— f(ul) llc([ab]\A>- Since0^o-(x — z)<l forxe(— oo,oo)
(see lemma 5.1), we get from (4) for xe[a,b

\rA(x) - /(Ml) | < (1 - a(x - z))|rAl(x) - / ( M l ) |

+ (7(x - z)(\rAl{x)-f(u2)\ + |/(Ml) -f(u2)\)

< (1 - <x(x - z)) F A l / + <r(x - z)(FA2/+ FAl/) < KA/

and therefore lkA-/(«i)llq[a,ftT\A)^ v\f'<^ required.
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322 Lower bounds

It remains to estimate |/(x) — rA(x)\ at the points xeAAl u42. To this end
we shall make use of (3), (4), the fact that u2 — v1 5= el5 the choice of a, /?, y
and the properties of a by lemma 5.1. We get for xeAAl a Ax

|f(x) - rA(x)\ = |(1 - a(x - z))(/(x) - rAl(x)) + a(x - z)(f(x) - rAl(x))\

>{\-a(x-z))\f(x)-rAl(x)|-c(x-z)

•(\\rA2-f(u2)\\c([aMA2)+\f(u2)^f(x)\)

v = 0 •

Consequently for each xeAAi

and /— rA has alternate signs at the consecutive points of AAl since /— rAl

has alternate signs there.
Similarly, one proves that for each xe A A l (6) holds true and /— rA has

alternate signs at the consecutive points of AAr

From the above arguments it follows that there exists a set AA of
'AI + 'A2 + 1 = SA

*€Q kA* + 1 different points in A such that

xeAA,

and /— rA has alternate signs at the consecutive points of AA, as required.
Thus lemma 11.4 is established with \i replaced by \i + 1. •
Completion of the proof of theorem 11.8. By lemma 11.4 with /j = s there
exist a rational function r and a set 4 of Z + 1 = XASO^A + 1 different points
xfe[fl,b], a ̂  x0 < * i < ••• < x* < b, such that

2 '

and /— r has alternate signs at the points x0, xu...,x, and

deg r < XN A + JV(s, M, [a, &]). (8)
Aefi

From this it follows that
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11.2 Bounded variation and given modulus of continuity 323

for n^N = ZA6QkA — Z A E «
n \ ~ N(s,M, [a,fo])— 1 . Indeed, suppose to the

contrary that there exists a rational function q such that

[« (9)

and

deg^/V. (10)

Then by (7) and (9) it follows that for xeA

| r(x) - q(x) | ̂  | f(x) - r(x) \ - \ f(x) - q(x) \ > 0

and since /— r has alternate signs at x0, xl9...,xz, r — q has alternate signs
at x0, xl9...,x,. Consequently the rational function r —g^O has at least
/ = Y,Aen kA different zeros on [a, fo]. On the other hand by (8) and (10) we have

deg(r-«5f)sSdegr + degg< £ nA + N(s,M,[a,fo]) + N = £ k A - l = l - l .
Aefi Aeft

We have a contradiction. Hence

Similarly as in the proof of theorem 5.2 in section 5.2 one easily verifies that

N(s,M,[a,fo])+ 1 ==:Dmln( Q
m£2

and therefore

^ , v̂  , / b~a\, ( M
N> Y kA~ Y nA-Dm\n( e + In e M +

AEQ AeSl \ mE1 J \ m z 1

which establishes the theorem. •
Denote

f0, x ^ 0,
h, x > 0.

Lemma 11.5. There exist constants B0 > 1 and D o > 0 SUCH that for each a,

/?, h > 0 SUCH that ft/a > B 0 there exist a rational function r* of degree

n ^ D0In(P/oc) and n + 1 points wfe[a, /?], a < w0 < WX < • • • < u n ^ /?, 5I/C/I t/ia

| / l ( x ) - r * ( x ) | > - , X6{-M f}?=0u{«,-}?=0J

X — r* has alternate signs at the points —un, — un_ 1 , . . . , — u0,u0, u x , . . .,unand
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324 Lower bounds

Proof Put B0 = exp {2n2/ln 2} and D0 = In 2/2n2. Let a, p > 0 and j?/a ^ £0 -

Consider the rational function r from lemma 9.3 in section 9.2 with s = a/p
and n = 2[(ln2/27r2)ln(l/a)], where [x] denotes the integer part of x. Since
jS/a ^ £ 0 = exp {27r2/ln 2} and s = oc/P,

Put Xj = s(" 0/" for f = 0,l , . . . ,n. From the choice of e it follows that
oc/P = x0 < xx < ••• < x n = 1. By lemma 9.3 and the choice of e and n we obtain

Isignx ;-KxJ | > exp j -TT 2 I : ? - , i = 0,1,....,n,

and signx — r(x) has alternate signs at the points — x„, — xn_ x,..., — x0, x0,
xx,...,x„. Finally, since n is even, by the definition of r in lemma 9.3 it follows
that |r(x)| < l for x e ( - oo, o o ) \ [ - 1,1].

It is readily seen that the rational function r*(x) = jh(l +r(px)) satisfies
the requirements of lemma 11.5. •

A combination of theorem 11.8 and lemma 11.5 implies the following
lemma.

Lemma 11.6. Let f be a nondecreasing function defined on [a,b]. Suppose that
there exist intervals dt = [uh f j , i = 1,2,...,m, such that 0^ul<v1<u2<
v2<---<um<vm^\, m is of the type m = 4/, / positive integer, vt — u{ = rj,
U2Y ~ vix-\ = e(v = 1,2,...,21) and f(x) = (i— l)hforxedhi = l ,2, . . .,m, where
rj, s, h>0 are given numbers such that n/s ^ B0, B0 > 1 is the constant from
lemma 11.5.

Then Rn(f [0, l ] ) c > h/S for each

n < z£>om In - - 2Dm In [ e + — |,
e V mflJ

where D0 and D are the constants from lemma 11.5 and theorem 11.8 respectively.

Proof Put [flj,bj] = [w4i-3,^-2] f° r i = l,2,...,m/4. Obviously Q^ax<
b1<a2< b2 < •-. <am / 4 < bm/4 ^ 1 and minl!S^m/4 (ai+1 - bt) > n. Denote by
Q the set of the intervals [ a ^ b j .

Now we are in a position to apply lemma 11.5 with A = |E and P = n + \z
(PIa = (n + J£)/J£ > ty/e > B0 by our assumptions). We obtain that for each
interval AGQ, A = [U, V]9 there exist a rational function rA of order
nA ^ D0 In ((rj + %e)/%s) > D0 In (rj/s) and a set AA of kA = 2nA + 2 different
points XFEA, W < x 0 < xx < ••• < xk ^v, such that

| / ( x ) - r A ( x ) | > - , XEAhA,
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11.2 Bounded variation and given modulus of continuity 325

/— rA ha s a l t e r n a t e signs a t the p o i n t s x 0 , xl,...,xk a n d

\\rA-M\\c«c-«.*m^h=VJ-

Then by theorem 11.8 we conclude that

K»(/,[0,1])C>£ for n < J V = £ * A - 2 > A
0 Aeil AeCl

Clearly

/ 4 \
e + — )ln(e+16)

V mtlJ
( 1 \e + — . D

Proof of theorem 11.7. A simple change of variables shows that, if theorem
11.7 holds in the case \_a, U] = [0,1] and M = 1, then it holds in the general
case. Thus we shall suppose that [a, b~] = [0,1] and M = 1. Also, in view of
lemma 11.3, without loss of generality we shall suppose that the modulus of
continuity co is a concave function on [0, oo) and co ̂  0, since lim^^0 ((o(3)/S) =
oo from (1). Note that, because co is concave the function co(3)/3 is
nonincreasing on (0, oo).

It was proved in theorem 10.8 in section 10.2 that for the rational uniform
approximation of absolutely continuous functions feV(co) with 'good'
modulus co the o-effect appears. Thus to prove theorem 11.7 we shall construct
a singular function like Cantor's well-known singular function.

Choose e0 such that 0 < s0 ^ 1, co(s0) ^ 1 and co is strictly increasing on
[0, 80], which is possible since co is nondecreasing and concave on [0, oo),
co(0) = 0 and co ̂  0. By co~1 we shall denote the converse function of co. Then
co'1 is strictly increasing and convex on [0,ct>(£0)]- Of course CL>_1(0) = 0.
From the last facts and (1) it follows that the function co ~l (t)/t is nondecreasing
on (0,co(e0)] and lim,^0(co~1(t)/t) = 0.

Let {sv}*
=1 be an increasing unbounded sequence of integers such that sv

is in the form sv = 4/v, /v a positive integer. Define sequences {mv}
*=0, {/zv}

*=0,
{ev}?

=0 and { l v } ?
= i as follows: m0 = 1, mv = svmv_ 1 = O}= 1 sj; h0 = co(e0l

hv = h v - J s v = h0/mv, where e0 is from above; EV = co~1(hv); f]v = ev_ i/sv —ev-

We select the sequence {sv}™=x such that for v = 1, 2,. . .

(i) r,Je^B0,

n ( i
(ii) ±D0mvln-- — 2DmvIn( e H Sv£v
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326 Lower bounds

1
(iv) —^G>(S 0 ) and x2D0mvln

(v) jjDomv^ 1 and mxco~l( —

where 2?0, D0 and D are the positive constants from lemma 11.5 and theorem
11.8.

Such a choice of {sv};°=1 is possible because lim(^o(tu~1(f)/t) = 0.
Now we construct an auxiliary singular function g. Put A[V) = (0, £0). From

the choice of e0 we have A^' cz [0,1]. Divide A'/1 into s1 disjoint subintervals
of equal length E0/SX by means of the points u[\) = (j — 1)E0/S1,7= 1,2,..., s i .
Set ^ . H C H M J ] , «(^ = «(i1,i- + '?i for J = l , 2 , . . . , S l and E,=E^ =
{jSj=id(ij- Now w e define the function g on the set Ei by #(x) = 0'— \)h1

for xedxj.
The set A ^ E j consists of mx = sl open intervals each of them having

length s1. Number these intervals in an increasing order by A p \ i=1,2,...,ml,
and let Ap> = {U(2\ V\2)). We divide each interval Ap} into s2 disjoint
subintervals of equal length ejs2 by means of the points U\2] = U\2) + (J — 1)E1/S2,
j = 1,2,... ,s2. Set d% = [MJ5», « # ] , t#> = U Q + ^2 and £j2> = Uj i i d$, E2 =

Now we define the function g on the set E2 by #(x) = g(u\2)) + (j — \)h2 for

Similarly we do the third step. The set A(i)\(E1 vE 2 ) consists of m2 disjoint
open intervals with length e2. Number these intervals in an increasing order
by A\3\ i = 1,2,... ,m2, and let AP} = (u\3\ v\3)). Divide each interval AP} into
s3 disjoint intervals of equal length e2/s3 by means of the points u\3J = u\3) +

and £3 = ( J ^ i E\3\ Define the function g on £ 3 by g(x) = g(u\3)) + (j - l)h3

for XED\3J.

The sets £ 4 , £ 5 , . . . are constructed similarly and the function g is defined
on E4 , E 5 , . . . also in a similar way.

Let g be already defined on the set E = {J™=1 Ev which is dense in [0, e0].
Then we set

g(x) = sup {g(t)\ teE and t < x}, xe[0, 1]\£.

Clearly, the function g is nondecreasing, continuous and singular. Also

0(0) = 0 and 0 ( 1 X 1 .
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11.2 Bounded variation and given modulus of continuity 327

Now we estimate the modulus of continuity of g. It is sufficient to consider

the case 0 < 3 ̂  e0. Suppose ek^S < ek_ l , k' ̂  l. Then from the definition of

g it follows that

cofef,d)c < < 5 - ^ - + hk = (5 f t > ( £ t~ l ) + co(ek) s: co(S) + w(ek) < 2<u(<5),
£k - 1 ek - 1

where we have used that <o(<5)/<5 is nonincreasing on (0, co). Consequently

(5SsO. (11)

Finally, we shall apply lemma 11.6. Let v ̂  1 and consider # over the

intervals d({"J, j= 1,2,.. . ,sv , i = 1,2,...,mv_!• The function g satisfies the

assumptions of lemma 11.6 with m = mv, h = hy, £ = ev and ^ = f/v (>?v/£v ̂  B o

by (i)). Then we conclude that

for each

. ^v -ir>... l / j _

By the definitions of mv, ev, rjx and the properties (ii)-(iv) it follows that

-1 / K
mvco

1

mvco : I

Consequently for v = 1, 2,. . .

J i . 1

(12)

For each v = 1,2,... choose nx such that

«v ^T2^oW v In _ t ^ 2nv.
mvffl (l/njv)
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328 Lower bounds

Set tv=jiD0mv. From (v) it follows that 1 ^ tx ^ nv. Then we get

inf {-+ ' ' " - ' ' l

24

24 / 2 4 , / l \ \ 24 / 2 4 \ l / 4 8 \ l
«S + co — t o " 1 — U + — + 1 — = ^ + 1 —

Domv \D0 \mJJ Domv \D0 Jmv \D0 Jmv

From this and (12) it follows that

R„>)C>C inf { i + CO-'nt)\>- v = i , 2 , . . . , (13)

where C > 0 is a constant.
By (11) and (13) the function f=\g satisfies the requirements of theorem

11.7. •

11.3 Notes
Theorems 11.1 and 11.2 in the case k= 1 are proved by J. Szabados (1967b);
E.P. Dolzenko (1967) has found a comparison between uniform rational and
polynomial approximations which is closely connected to theorems 11.1 and
11.2. Theorem 11.3 is due to E.P. Dolzenko (1962). Theorem 11.4 is proved
by G. Freud (1970). The lower bounds in theorem 11.5 are due to
A.P. Bulanov (1969). Theorem 11.6 is trivial and well-known. Theorem 11.7
(with another proof) is due to A. Pekarski (1980a). The exact lower bound for
uniform rational approximation of absolutely continuous functions with
given modulus of continuity is proved by A.P. Bulanov (1975b).
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12

Pade approximations

One of the most popular domains in the theory of approximation of functions
by means of rational functions is the theory of the Pade approximations.
There exist many books and papers which consider this type of approxima-
tions. We want only to mention the excellent monograph in two volumes of
Baker and Graves-Morris (1981). Here we want to consider some problems
connected with the convergence of the Pade approximants, which are not
entirely included in that monograph. These results are due to A.A. Gonchar
and the group of mathematicians headed by him.

In section 12.1 we give the definition and some promerties of Pade
approximants. In section 12.2 we have direct results for the convergence of
Pade approximants - the classical theorem of Montessus de Ballore and one
of its generalizations, which is due to A.A. Gonchar (1975a). In section 12.3
we give one converse theorem for the convergence of Pade approximants
with fixed degree of denominator (the rows of the Pade-table) which is due
to Gonchar (unpublished). In section 12.4 we give one more converse theorem
of Gonchar connected with the diagonal of the Pade-table. In the notes to
the chapter we give some more information about these problems.

12.1 Definition and properties of the Pade approximants
Let

/ ( z )=L. /> v (1)
v = 0

be a formal power series. Let n and m be two nonnegative integers.
Usually the Pade approximant nnm = Pnm/Qnm,Pnm€pm QnmEPm, of order

(n, m) of (1) is given by the condition

Qnm{z)f{z) - Pnm{z) = 0(z" + ™+lV (2)
f (p(z) = 0{zn + m + 1)<=>limsup|(p(z)/z" + w + ] | < OO.
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330 Pade approximations

Let

(3)

(4)

Let us put (1), (3) and (4) in (2):

(bmzm b vzA - (anz" a0) =

If we write the conditions that the coefficients on the left side before zk,
k = 0,. . . , n + m, are zero, we obtain:

=fob2 +fibx +f2b0,

min(n,m)

Z fn-i
bi+fnb0>

i = 1

(5)

(6)

(we set here and in what follows ft = 0 for i < 0).
The system (6) is a system of m linear algebraic equations with m + 1

unknown coefficients b0,...,bm9 which has always a solution. If we know a
solution of the system (6), we can find the coefficients of the numerator a0,
a1,...,an from the equations (5).

One solution of the systems (5), (6) is given by

p (z\ =

(7)

/ .

J n — m+1Jn-m

+ 1

J>'

+ 1

Jn-m+2

/„
z

/ . -

/ , -

/ „ +

zm

Jn +

V"

m + 2

m + 3

1

1
- m + 1 f m + i—1
= 0 J iZ

- /„
- /»+!

""' Jn + m-1
• • • z

/„
/„

/„

1

' Jn+1

J n + m

+ 1

+ 2

+ m

D = O J V

It is not difficult to verify that Pnm and Qnm given by (7) satisfy (2).
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12.1 Definition and properties 331

From (7) we see that the condition Qnm(0) ^ 0 is equivalent to the condition

C(n, m) =

ion Qnm(

Jn+1 Jn

Jn+m—Y Jn+m-1

Jn-m+1

J n~ m

Jn

#0.

The modern definition by Baker (1973) of Pade approximant of order (n, m)
is the following.

We say that the Pade approximant of order (n, m) exists if there exist two
polynomials PnmePn and QnmePm such that

(i) /(z)-Pnm(z)/enm(z) = O(z" + m + 1 ) ,
(ii) QJ$))=l.

Then we set nnm = PnJQnm as (n,m)-th Pade approximant.
The conditions (i), (ii) are equivalent to the condition that the system (6)

has a solution with b0 = 1. The last condition is equivalent to the condition
C(n,m)#0.

Sometimes the problem of Pade approximation is given in the following
form: find PnmePn and QnmePm such that

/ ( * ) •

l\ (8)

The problems (2) and (8) are equivalent if C(n, m) / 0. But if C(n, m) = 0, in
the general case it is not so.

A solution of the problem (2) always exists (for example given by (7)), but
it is possible that there does not exist a solution of the problem (8). For
example it is easy to see that for f(z) = 1 + z2 there does not exist a solution
of (8) of order (1,1) (see Baker and Graves-Morris (1981)).

We shall not go into details when the solution of (8) exists.
In what follows Pade approximant we shall understand in the sense of

Baker (i), (ii).
Usually the Pade approximants of order (n, m) are displayed in a table,

called the Pade-tables, as follows:

m

0
1
2

n

0

(0,0)
(0,1)
(0,2)

1

(1,
(1,
(1,

0)
1
2)

2

(2,0)
(2,1)
(2,2)

3

(3,0)
(3,1)
(3,2)
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332 Pade approximations

The approximants with a given ra, (0, ra), (1, m), (2, m),..., are called a row
of the Pade-table. The approximants (0,0), (1,1), (2,2),... are called the
diagonal of the Pade-table.

As an example of a Pade approximant let us consider the (n, m)-th Pade
approximant nnm = Pnm/Qnm to e*. The following representation was given
by O. Perron:

m)\ Jo

m)\

(9)

Obviously we have PnmePn ,QnmePm . On the other hand <2„m(0) = 1. To
prove that (9) is the (n, ra)-th Pade approximant to e* let us calculate
en m(z)ez-P„ m(z). We have

7 ^ = 1 (t - z)m tnQ- t + zdt - | tm(t + z)nedt
(n + m)! [ J o

f"(f-z)me~fdf

n + m+ 1

= u n { \ M"(1 - u)meuzdu.
(n + m)!Ju

Since the integral is an analytic function in the neighborhood of z = 0, the
last equality shows that nnm = PnJQnm given by (9) is the (rc, m)-th Pade
approximant to e*.

We shall use in this chapter the following well-known lemma of Cauchy
and Hadamard.

Lemma 12.1. Suppose for the formal series

we have

Then f is a holomorphic function in the open disk \z\ < \/p.

12.2 Direct theorem for the rows of the Pade-table
In the theory of convergence of the Pade approximants two types of questions
arise: the direct type theorems and the converse type theorems. Under direct
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12.2 Direct theorem for rows 333

theorem in the theory of Pade approximation we understand the following
one: if we know something about the function / , for which we consider the
formal power series

(for example the number of the poles in some domain), what can we say
about the corresponding Pade approximants, for example for their poles?

Under converse theorem in the theory of Pade approximation we under-
stand the following one: if we know something about the Pade approximants
of/, for example the number and situations of their poles, what can we say
about the function f l

A typical direct theorem in Pade approximation is the classical theorem
of Montessus de Ballore.

Theorem 12.1. Let (1) represent the function f in a neighbourhood of z = 0 (i.e.

/ is holomorphic in z = 0). Let Dm = {z: \z\ < Rm} be the greatest disk centered

at the origin inside of which f has a meromorphic continuation with no more

than m poles (counting multiplicities). If Dm contains exactly k distinct poles

zl,...,zk_1,zk of f of multiplicities pl,...,pk respectively and

ZPik = m> (2)
i = 1

then the sequence of(n,m)-th Pade approximants, mfixed, converges uniformly

to f as n—> oo on each compact K, K a D'm = Dm\{z1,.. .,zk}.

The poles of denominators Qnm of the (n, m)-th Pade approximant nnm =
Pnm/Qnm tend to the poles of / i n Dm.

More exactly, there exists an algebraic polynomial QmePm,

such that

maxllz J :1
hmsup ||Qnm - Qm

t\m

where || • || is some norm in Pm (the space of all algebraic polynomials of mth
degree is a finite dimensional normed linear space and all norms in Pm are
equivalent).

A.A. Gonchar (1975a) proved that even in the case when px + ••• + pk<m
(see the conditions of theorem 12.1) each pole of/ in Dm attracts at least as
many poles of 7c„m, m fixed, as is its order of multiplicity.

We shall not prove here this direct theorem because for the converse
theorem 12.3 we shall need only a weaker result (theorem 12.2). For some
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334 Pade approximations

proofs of Montessus's theorem 12.1 see Baker and Graves-Morris (1981).
It is a well-known fact in the theory of Pade approximations that in general

when we consider (n, m)-th Pade approximants to functions / with numbers
of poles less than m (for example entire functions), the poles of the Pade
approximants nnm can form a dense set in the plane (see Perron (1957, Chapter
4), Baker and Graves-Morris (1981, Chapter 6)). We shall not consider here
questions of such type. Let us mention only that usually the direct theorems
for the convergence of Pade approximants are given in terms of measure or
capacity (see the notes at the end of the chapter).

In what follows G is an open domain in the complex plane C containing
the origin with boundary T. We set G = GuT.

The set of all holomorphic functions in the domain G (in the closed set G)
we shall denote by 3tf {G) {Jtf (G)).

We shall give first two lemmas, following Baker and Graves-Morris (1981).

Lemma 12.2. Let feJ4f(G) and let f be continuous in G. Then the Pade
approximant of order (n, 0) (the Maclaurin polynomial of order n) is given by

2711 J r t-Z t"

Proof. Since

t " + 1 - z " + 1 » ._, :

t - z j=I=0

we obtain that for nn0 given by (1) we have

A J f t"-{f{t) J

In what follows we shall assume that appropriate (n, m)-th Pade approxi-
mants exist.

Lemma 12.3. Let feJtf(G) and let f be continuous in G. For every algebraic
polynomial Rm of degree at most m, Rm(0) / 0, we have

where nnm = Pnm/Qnm is the (n, m)-th Pade approximant to f

Proof Let nnm = Pnm/Qnm be the (n, m)-th Pade approximant to / . Let us
consider the Maclaurin polynomials n{n + m)0 of order n + m for the function
f(z)Qnm(z)Rm(z). By lemma 12.2 we have

+ m+1f(t)Q(t)R(t)Af

dt. (4)
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12.2 Direct theorem for rows 335

Since fQnmRmGJf(G)9 by Cauchy's theorem we get

J r t - z

From (4) and (5) we obtain

n \n i Mi i\ i\ z" + m + 1 f f(t)QJit)*m(t) A,
fWQnJz)RJz) - *n + ».O(Z) = ~^T J r (t_z)fl + m+l dt- (6)

The Pade condition gives us:

f(z)QJLz)Rn(z) - Pnm(z)Rm(z) = 0(z" + w+ 1).

Together with Rm(0) = 0, we obtain from here

7Tn+m,0(z) = Pnm(z)Rn{z) + 0(z" + '»+J) - Pnm(z)Rm(z)

and (6) gives us the statement of the lemma. •

Remark. Using lemma 12.3 Saff (1972) gives a generalization of Montessus's
theorem for multipoint Pade approximation; see also Baker, Graves-Morris
(1981).

Theorem 12,2, Letf(z) be an analytic function atz = 0 and let f be meromorphic
in D = {z: \z\ < R} with exactly s poles, counting multiplicity, a , . . . , as, |af| < #,
i= 1,...,s. Let m^s and let nnm = Pnm/Qnm be the (n,m)~th Pade approximant
to f Let there exist an algebraic polynomial QmEPm such that

II6™ - QmI I—0, (7)
n-> oo

where ||•|| is some norm in Pm, and the zeros ofQm are the points zl,z2,...,zm.

Then all zeros off are in the set {zx,..., zm}.

On ererj; compact set K9

K^{z:\z\<R}\{Zl,z2,...,zm},

we have uniform convergence of nnm to f n—> oo.

Proof Let us consider first the case when all points a ;, i = 1,...,s9 are different.

Let us set

qs(z) = (z-ai)---(z-as).

Then fqsG2fC(D) and lemma 12.3 with Rm= l gives us

where 7r„m = P„JQnm is the («,m)-th Pade approximant t o / , and r{z: |z\ = R}.
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336 Pade approximations

Let us set

Let K be arbitrary compact, K c D\A. Then

f{\z-z\:zeK,zeA}=S>0

and therefore (7) gives us that for n > N1 we have

M{\Qnm(z)qJiz)\:zeK} = S1>0. (9)

Let us set p = sup {| z |: zeK}. Since K c D w e have O < p < R.
On the other hand the condition (5) gives us that | |6nm |lc(r)^2||Qm | |C(r)

for n> N2.
Consequently from (8), (9) we obtain (n > max {Nl9 N2})

m + 1 2 \ \ f q s \ \ c ( r ) \ \ Q m \ \ C { r )

Since 0 ̂  p < R9 we obtain geometric uniform convergence of nnm to / on
K. Using(10) we shall prove that every och i= 1,...,5, is in the set {z l 9 . . . ,zm}.
Let us assume the converse, that there exists a jo^{zj,...,zm}. Then there is
a disk G = {z: \z — al0| < 90} with the following properties:

(a) if n > iV3, 7inm is holomorphic in G (this follows from (7)),
(b) G contains no other zeros of/except aIO,
(c) GcD.
From (10) and (a)-(c) it follows that for every rc, 0 < 9 < 90, for the compact

K(9) = {z :#< | z - a i o | s c0 o } we have

ll/-*,Jlc,K,9,) = Ota(0)B), (ii)

where 0 < q(9) < 1, q(9) depends on 9.
Using the maximum principle for nnm with respect to G we obtain from

(11) that for n > N3 we have

!KJIC (G)^M, (12)

where 0 < M < oo ( / i s holomorphic in K(9\ nnm is holomorphic in G for
n > N3).

But (12) contradicts (11) for small 9, since |/(z)|->oo, z->afo.
Therefore afo is in the set {z1 , . . . ,zm}.
The case when ocio is a pole with multiplicity follows by continuity

arguments. •

12.3 Converse theorem for the rows of the Pade-table

In this section we shall prove one theorem of A.A. Gonchar for the
convergence of the rows of the Pade-table. Let us establish our notations.
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12.3 Converse theorem for rows 337

Let

v = 0
(1)

be a formal power series, and m ̂  0 be a fixed natural number.
We denote by nnm = nnm(f) the (n, ra)-th Pade-approximant for the formal

series (1), i.e. Qnm(0)=l,

nnm = PnJQnm, PnmeP„, QnmePm, QnM)f(z)-Pnm(z) = 0(zn + m + 1 ) .

We shall assume that such an approximant exists.
Let p > 0. We denote by Dp the disk Dp = {z: \z\ ^ p}. We set Tp = dDp =

{z: = p } .j
Let Mm(Dp), respectively Mm(Dp\ denote the classes of functions, analytic

at z = 0, which have meromorphic continuation in Dp with < m, respectively
= m, poles in Dp.

We denote by Dm(f) the maximal disk in which (1) has a meromorphic
continuation belonging to Mm(Dm(f)). We set Rm(f) = Rm the radius of Dm(f\
so R0(f) = R0 is the radius of convergence of the series (1). If (1) diverges
at z = 0, we set R0 = 0.

Theorem 12.3 (A.A. Gonchar, unpublished). Let (1) represent a formal power

series and let m ^ 0 be a fixed natural number. Suppose for every natural
number n ^ 0 we have deg Qnm = m. Let there exist an algebraic polynomial
QePm, 6(0)#0, such that

and

where ||-|| is some norm in Pm (see 12.2).
Then

(2)

(3)

(a) Ro > 0,
(b) feMm(DR\ where R ^ max { : 1 < k ^ m}/q,
(c) the poles of f in DR are the points z1

Remark. Some of the points can coincide.

Proof. Let us have

Since

we have

m

{-\T\\zn,k
k=l

6(0) # 0

0 < | z j , k=l,...,m.

(4)
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338 Pade approximations

Since all norms in Pm are equivalent, i.e. if ||•|| and |||-||| are two norms in
Pm, then there exist constants c^m) and c2(ra), depending only on the
dimension m + 1 of Pm, such that

II, pePm,

and max {|zk|: l ^ k <m} = \\\Q\\\ is an equivalent norm to ||Q||, from (2) it
follows that

l. (5)

To prove (a) let us consider the algebraic polynomial

Q n m ( z )=1+" n i t+ ' ' •+U n m ?™' (6)

From (3) and (5) it follows that the sequences {zMfc}*=1, k= l,...,m, are
convergent and therefore the sequences {ani}™=u /=l,...,ra, are also
convergent. Let us set ai = l im^^a, , , , i = 1, . . . , m. It follows from (2), (5), (6)
that

l + a 1 z + ' - + amzr. (7)

Let M = ma.x l., k< m \ ak \. Let 8 > 0 be an arbitrary positive number. Then for
every n sufficiently large, n > N0, we have

\ank\^M + S, k=\,...,m. (8)

Let us set

c = (M + <5)m,
(9)

J = max{ | / v | :v<W 0 } , , ' K>

where fv are given by (1).
From the definition of the {n — 1, m)-th Pade-approximant and (6) it follows

that

/n + 0n-l , l /n- l + - + 0«-l,m/n-m = O. (10)

Let n - 1 > N0. From (10), (8) and (9) we get

| / n K c max \L-kl (11)

If we set |/„_Jkl| = max 1 < t < m | / „ _ J , then (11) gives us

\ , (12)

where 1 ̂  kx < m.
If n — kl > N0, then applying to \f„-kl\ estimates of the types (10), (12)

we get

where |/„-kl_kJ =max{ | / B _ k l _ k | : l
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12.3 Converse theorem for rows 339

If n — k1 — k2 > N0, again using inequalities of the type (12) we obtain

l/J^3|/n_tl_t2_J, Kfc^m, /= 1,2,3.

Continuing in such a way we obtain that

l/J<c"">|/n_,,_. . ._ i l (J, (13)

where n~kx kl(n)^N0 <n — k1 — fei(M)-i, 1 ^ fe,-< m, i= l,...,/(n).
Using (19) we get

l / „ Kc""> | / , j .

From here we obtain

Since evidently l(n) ̂  n, from here we get

limsupl/J1 /" = A < oo.

From this inequality and lemma 12.1 it follows that R0 = \/A > 0, which
proves (a).

Let us prove now (b) and (c).
From R0 > 0 it follows that Rm > 0.
We shall prove the following statement: in the assumption of theorem 12.3

if feMs(Dp) and s <m, then Rm^ pq~l where q is given by (2) and (5).
It follows from the direct theorem 12.2 and the conditions of theorem 12.3

that if feMs(Dp\ s<m, then nnm converges, as n->oo, uniformly to the
function / in every compact K c zD*, D* = Dp\{z:z is a pole of / in Dp},
and the poles of / in Dp are in the set {z1,...,zm). Let the poles of / in Dp

be z\,...,z's and let us set qs{z) = Yll = i(z~z k \ F=fqs. Then F is a
holomorphic function in Dp. Since deg qs < m, the definition of the Pade-
approximants gives us

r z

w h e r e e > 0 is s u c h t h a t \zr
i\^p — e,i=l,...,s.

From (14) we obtain

2 J r iJr,- .
and using (2) we get

1 f F(z)Q(z)
(15)
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340 Pade approximations

where c1 depends on /, ra, g, but not on n. Since £ > 0 can be arbitrary small,
and

2ni -n + m+l

where Fn + m is the (n + m)-th Taylor coefficient of the function FQ, we obtain
from (15)

l imsuplFJ^sSq/p. (16)

Lemma 12.1 then gives us that FQ is a holomorphic function in Dp/q. Since
FQ =fqsQ and all zeros of qs are in the set {z1?...,zm} (the zeros of Q\ we
conclude that the function fQ is also holomorphic in Dp/q. Therefore / is a
meromorphic function in Dp/q and has in this disk ^ m poles, so Rm > p/q.

Let us consider now Rm = Rm(f). There exist two possibilities for Rm:

(1) Rm<co;
(2) R m =co.

In the first case the statement proved above gives us that in DRrn the
function / has exactly m poles. Indeed, if we assume that the number of the
poles of / in DRm is less than 5, then using this statement we obtain the
contradiction Rm ^ RJq, 0 ^ q < 1.

Therefore in the case (1), according to theorem 12.1, the poles of/ in DRrn
are the points z l 5 . . . ,zm , which proves (c) in this case. To obtain the estimate
(b) in case (1), we remark that in the disk Dp with p = (xm — s, e>0 ,
am = max {\zk\: 1 ^ k < m}, there are fewer than m poles of/. Therefore again
using the statement proved above we obtain that Rm ^ (am — s)/q. Since e > 0
can be arbitrary small, (b) is proved.

Let us consider now case (2): Rm = oo. If / has exactly m poles in C, then
theorem 12.1 gives us that they are z1?...,zm. We shall show that in case (2)
it is impossible for / to have fewer than m poles in C. Let us assume the
contrary: /EMS(C), S<m. Let z\,...,z's, s<m, be the poles o f / in C. Let
us set

q.(z)=f\(z-zd, F=fq,
i= 1

Let

F(z)= £ Fvz
v.

v = 0

Since F is an entire function, we have by lemma 12.1

lim|FJ1 / B = 0. (17)
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12.3 Converse theorem for rows 341

Let us consider the denominator Qnm of the (n, m)-th Pade-approximant (6):

Qnm(z)=l+anlZ+--+anmZm
-

Since \\Qnm-Q\\ —>0 with degQ = m, i.e. a # 0 , we have anm-*am

(see (7)), and therefore

\anm\>\am\/2>0, n>Nv (18)

We have also like (8)

\anm\ < M + 1, H > N2.

From the definition of Pade-approximant we get

/(z)gs(z)-%r"'"'"'

(19)

Since deggs<ra, equating the coefficient before zn + m on the left side, we
obtain

or
F.= -i

+anmFn =

anm_iFn+l)/anm.

Using (18) and (19) we obtain for n > max {Nl9 N2}

2m(M+l)
\a

max \Fn + m
mi 1 s{ k < n

If we denote c2 = 2m(M + l)/ |flj + 1, we obtain from (20)

(20)

+kll l^k^m. (21)

If we use Qn + kum we can obtain a similar estimate for \Fn + kl\, continuing
so we can obtain that for every nonnegative integer N we have for
n > max {Nu N2}

From (17) it follows that for n> N3 we have

(22)

(23)

The inequalities (22) and (23) give us for n > max {N1,N2, N3}

j \n + kl + -+kfl / j \n + N / ] \ N

Since N can be arbitrary large, it follows that Fn = 0 for all
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342 Pade approximations

n > ma.x {Nu N2, N3}, therefore F is a polynomial. But F=fqs, therefore /
is a rational function with denominator of degree s <m. This contradicts the
condition of the theorem that deg Qnm = m (since / is a rational function, we
have / = nnm for sufficiently large n). This contradiction shows that the case

CX s < m, is impossible. •

12.4 The diagonal of the Pade-table
One of the most interesting questions in the theory of Pade approximation
is the asymptotic behavior of Pade approximants of order (n, n), i.e. the
asymptotic behavior of the diagonal of the Pade-table of the many problems
connected with this we shall consider only one converse result of A.A. Gonchar
(not the stronger one; see the notes at the end of the chapter). For some
direct results see the monograph of Baker and Graves-Morris (1981).

Let again

/ ( * ) = £ /vz
v (1)

v = 0

be a formal power series and let us consider the (n, n)-th Pade approximant
of(l)

f(z)-nn(z) = 0(z2" + 'l (2)

7ln(z) = Pn(z)/QM PntPn, QnePn, Qn(0)= 1. (3)

We shall assume in this section that the Pade approximant for (1) exists
for every n.

Theorem 12.4 (Gonchar, 1983). Suppose f is represented by (1) and for the
Pade approximant (2), (3) we have for every n> N0 that deg Qn = n. Let nn

be holomorphic in D = {z:\z\ ^ 1} for n > N0. Then there exists p0, 0 < p0 < 1,
such that R0 = R0(f) S> p0 and nn converges uniformly to f in Dpo =
{z:\z\^p0}.

For the proof of this theorem we shall need two statements. The first is
the well-known Hermite formula (see Walsh (I960)).

Lemma 12.4. Let G be a domain in C and geJf(G). Let ocksG, k= l,...,n,

and let reRnm be a rational function with poles at the points j? l 5 / ? 2 , . . . , / J m , /?,-

different from ak, i= 1,...,m,k= 1 , . . . ,n , which interpolate g at the points afc,

k= 1,...,n, i.e. r((xk) = g(ock)for k= 1 , . . . , n. Then
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12.4 Diagonal 343

Lemma 12.5. Let pePn, Fp. = {z:\z\ = p j , i — 1,2, p l <p2. Then

where ||p||C(r) = max{|p(z)|:zer}.

Proof. Let us denote <p(p) = max{|znp(l/z)|:|z| = l/p}. Since z"p(l/z) is an
algebraic polynomial, by the maximum principle we get.

maxj— |p(w)|:w = p 2 i < m a x j — |p(w)|:\v =
LP2 J (.Pi

Proof of theorem 12.4. We have

since degQ n = n, nn + l ( z ) ~ nn(z) = nH+ 1(z) - f ( z ) + f ( z ) - nn(z) = 0 ( z 2 n +

Let us estimate An. Let ^n k, k=\,...,n, be the zeros of Qn. By the

assumptions of the theorem E,n k > 1 for n> N0, k = 1,...,n.

Let £nk be an arbitrary zero of Qn. If we multiply (4) by Qn and set after

this z = £nk we obtain

E2H+1

Since Qn + 1 (0) = 1, we have

(6)

Let us remark that Qn(€„tk) / 0 since in the opposite case An = 0 and this
contradicts degQn+1 = n + l.

From (5) and (6) we obtain

since
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344 Pade approximations

Let p be such that

If we apply lemma 12.5 to p„, Dp and p„ we obtain

(8)

(9)

Using that | l /6 , i k | < 1, | l /£ „ + 1,k| < 1, we get from (7) and (9)

in,k Cn+l,f

\\QtA + P (10)

since

it=i i t = i

•?n,k

Let us estimate now the difference nn + X — iinon the circle rp = {z: |z| = p}.
Using (4) and (10) we get

_,2n+ 1

p / minZGr\Qn(z)Qn+1(z)

Since ijm t > 1, m > AT0, we have

mm

From here we obtain

2p
l"+1"'l"IIC(r^T^Pl!;i"llr^7T^P) (11)

Let us set

( s e e ( 8 ) ) .

Then (11) gives us

and

Therefore
+
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12.4 Diagonal 345

Since q < l,rLT=;vo(l + #*) converges and therefore we have for every n

(12)

where M is a constant (depending on N0 and q, i.e. on p, but not on n).
Using lemma 12.4 for g — nn+1? r = nm we obtain

f — z

since 7r„ interpolates nn+12n+ 1 times at z = 0.
Now let p' < p be such that

We get from (12), (13)

/ p , \ 2 n + l / l + f ) \ n

M
P-P\P

or
lim sup |[ TT„ +1 - 7r„ || $ ,« c q' < 1.

From here it follows that the series

rc0(*)+ f (7Tn+1(z)-7Tn(z))
n = 0

is convergent in Dp>, i.e. {7in}
*

=0 converges to a function p

uniformly in the disk Dp., where p' is given by (14).
We shall show that {7in}™=0 converges in Dp. to / given by (1). Let

„-0llC(D_,)— >0- (15)

Let
00

**„(*) = E ^ , v z v , « = AT0, N o + 1 , . . . ,
v = 0

and

g(t)= fgvz\
v = 0

From (15) it follows that

But on the other hand from (l)-(3) it follows that nnk =fk, k = 0,1,...,In.

Therefore gv =fv for every v = 0 ,1 ,2 , . . . and feJf(£>p o)0p0 = p'• •

Remark. Using fine calculation it is possible to obtain for p0 = p' a better
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346 Pade approximations

estimation than obtained here. The best result is p0 = 1 (A.A. Gonchar, 1982),
which is obtained using another very complicated method.

12.5 Notes
One classical book for Pade approximation is the book of O. Perron (1957).
More modern explanation see in G.D. Baker (1975) and in the encyclopedic
monograph of Baker and Graves-Morris (1981).

The interest in the problem of convergence of Pade-approximants is
connected with some applications in theoretical physics (see Baker (1965,
1970)).

We mentioned in section 12.2 that usually the direct theorems for
convergence of Pade approximants are in terms of convergence in measure
or capacity. Nuttall (1970) proved that for every meromorphic function / ,
analytic in z = 0, the sequence of the diagonal Pade approximants nnn

converges in measure on compact subsets of C; see also Ch. Pommeranke
(1973).

H. Wallin (1974) has shown that for an entire function the Pade approxi-
mants nnn can diverge at each point zeC\0, i.e. the set of poles of the rational
functions nnn is everywhere dense in the complex plane C.

A.A. Gonchar (1973) has shown that if / is an analytic function in z = 0,
and a single-valued analytic function in its Weierstrass natural domain of
existence Wf, then \f— 7rJ1/n-»0 in capacity inside of Wf.

An extension of Montessus de Ballon's theorem for multipoint Pade
approximants is given by E.B. Saff (1972).

For direct theorems concerning Pade approximants of functions which
have representation by a Markov-Stieltjes integral see Gonchar (1975b),
G. Lopez (1980); for multipoint Pade approximants of such type of functions
see G. Lopez (1978a, b), A.A. Gonchar, G. Lopez (1978).

For inverse results for Pade approximants see the survey paper of G. Lopez,
V.V. Vavilov (1984). The proof of the unpublished theorems of Gonchar (12.3
and 12.4) was given to us by R. Kovacheva. For an analogous result for a
more general situation concerning generalized Pade approximants see
R. Kovacheva (1980). For converse problems for the rows of the Pade-table see
also A.A. Gonchar (1982), Buslaev, Gonchar, Suetin (1983), R. Kovacheva
(1981, 1982, 1984), E.A. Rahmanov (1980), J. Karlsson (1976), S.P. Suetin
(1984), V.N. Buslaev (1982).

More for the converse results for the diagonal of the Pade-table see in
J. Karlsson, Bjorn von Sydow (1976) (for functions with representation by
integrals of Markov-Stieltjes type), A.A. Gonchar, K.N. Lungu (1981),
Gonchar (1983), Gonchar and Rakhmanov (1983).

Very interesting problems exist connected with convergence of sub-
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12.5 Notes 347

sequences of Pade approximants, see Baker (1973), Baker, Graves-Morris
(1981, p. 284).

We want to mention also a very interesting work of M.H. Gutknecht
(1984), which is not directly connected with Pade approximants, but deals
with the so-called Caratheodory-Fejer approximations.
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APPENDIX

Some numerical results

Here we shall give some examples of numerical calculation of the best rational
approximation with respect to the uniform and Hausdorff metric.

1. Uniform rational approximation of the function |x| in the interval [— 1,1].
Let R„im(x) be the rational function of order (n, m) of best uniform

approximation to |x| in [ — 1,1] and let Rnm(\x\) be the corresponding best
uniform approximation. Let T„(x) = cos (n arccos x) be the nth Chebyshev
polynomial. Then we have

0.748 091 27 + 0.728 155 49 T2(x)
3,2W- 2,2W- 1+0.543 689 01 T2(x) '

0.827 254 25 + 0.963 525 49 T2(x) + 0.138 196 6 T4(x)

R5A(x) = RtA(x) =

1 +0.894 42719 T2(x

0.867 9344+1.1

1 + 1.119756T2(x) + 0.134 02283T4(x)

0.89

+ 0 376
K6,5(x) = K6i4(x) =

0.893 867 51 + 1.238 028 3 T2(x)
0.376 036 71 T4(x) + 0.031 870 565T6(x)

1 + 1.263 867 9T2(x) + 0.265 111 55T4(x)

R1.6{x) = R6.6(x)

0.910565 2 + 1.327 433 T2(x)
+ 0.485 3394T4(x) + 0.068 471 07T6(x)

= 1 + 1.369026 1T2(x) + 0.399 1344T4(x) + 0.0300343T6(x)'

The corresponding best uniform approximations are the following:
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Some numerical results 349

Table 1

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

X

- 1
-0.837 50
-0.51850
-0.26110
-0.11235
-0.04015
-0.01020

0
0.01020
0.040 15
0.112 35
0.261 10
0.518 50
0.837 50
1

\x -«,,6W

0.0022821
-0.0022821

0.0022821
-0.002 2821

0.0022821
-0.002 2821

0.002 282 0
-0.002 2821

0.0022821
-0.002 2821

0.002 282 1
-0.0022821

0.002 2821
-0.0022821

0.002 282 1

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
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350

Table 2

a

0.5

0.4

0.3

0.2

0.1

0.01

Appendix

-0.020942 283 - 0.130 199 79 T2(x)

1 + 0.893 557 74 72(x)

-0.048 181431 -0.116 572 35 T2(x)

1 +0.933 941 45 T2(x)

- 0.068 560 666 - 0.106 407 29 T2(x)

1 + 0.963 664 64 T2(x)

-0.082 725071 -0.099 358 270 T2(x)

1+0.98409541T2(x)

-0.091 071 953 - 0.095 202 807T2(x)

1 + 0.996 05 T2(x)

-0.093 808 774 - 0.093 849 997 T2(x)
1+ 0.999 960 70 T2(x)

1*3.2 7 a l l c[ — 1

0.079 8191

0.085 19

0.089 10

0.091 77

0.093 32

0.093 83

K 4 f 4 ( | x | ) = 0.008 5 0 1 . . . ,

R6>4(|X|) = 0.004279...,

K7,6(|x|) = tf6,6(|x|) = 0.002 282. . . .

It is interesting to compare the best uniform approximation to |x| with
the approximation given by Newman's rational function from section 4.1.
For this purpose we give a graph of the error. On Fig. 1 the graphs of
|x| — N6t6(x) and |x| — R6 6(x) are shown, where

( — x) k = 0

For the best approximation rational function R7 6(x) = R6 6(x) we give the

points of alternation and the deviation at these points (Table 1; see also Fig. 1).

Let us mention that | | |x | - AT6 ,6(x)| |C[_ i a ] = 0.012 8 . . . (see Fig. 1).

2. Let us now consider the best uniform rational approximation to the

function fa which is defined in the interval [—1,1] as follows:

x/a, 0 ^ x ^ a,

[fJL-x), -
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Some numerical results 351

Table 3

\R5.2-L-/JIC[- 1,1]

0.5

0.4

0.3

0.2

0.1

0.01

0.045 749 99 - 0.556 257 65 T2{x) + 0.092 685 102 T4(x)

1+0.795 691 62 T2(x)

0.027 380 810 - 0.0011561417 T2(x) + 0.079 750 009 T4(x)

1 +0.889 341 08 T2(x)

0.021 363 073 + 0.037 221 628 T2(x) + 0.069 125 404T4(x)

1+ 0.946 701 51 T2(x)

0.024 387 398 + 0.063 885 107 T2(x) + 0.060 346917 TA(x)

1 +0.979 512 27 T2(x)

0.033 574 507 + 0.081 995 429 T2(x) + 0.053 041 870 TAx)

1+0.995 531 10T2(x)

0.045 440449 + 0.092 883 026 T2(x) + 0.047 484 261 TA(x)
1 0.092883026 T2(x)

0.046 574 99

0.05609081

0.065 603 33

0.075078 80

0.084494 70

0.092905 7

This function is an integral of an 'atom' (see the notes to Chapter 8). The
Tables 2 and 3 show the best uniform approximation to the function fa by
different ae(0,1] using rational functions of order (3,2) and (5,2), the
corresponding rational functions of best uniform approximation are denoted
by K3>2(x) and RSt 2(x)

On Fig. 2 the graph of the functions K3j2M are given for a = 0.5, 0.4,
0.3, 0.2, 0.1 and 0.01.

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

-1.0 -0 .8 -0 .6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

Fig. 2
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352 Appendix

The best uniform rational approximation of order (5,6) of the function
/0,i is the following:

-0.000 647 465-0.000 864 587T2(x) - 0.000 216 969T4(x)
Rs-^x' ~ 1 +1.501 4793T2(x) + 0.60237742 T4(x) + 0.10089797 T6(x)

(see Fig. 3).
The error is ||R56 — f0A \\C[-i,i] = 0.0224....On Fig. 4 the graph of the error

is given.
Evidently R5,6(x) can be used also as a good approximation of the function

f lx\ — 1 < v < 1

W= | x | > l ,

= 0.0224... and that is because the

/o.iW =

on the real line, i.e. | | R 5 6 - f 0 A ||C(- oo.x)
degree of the denominator is bigger than the degree of the numerator.

We see that the degree of the best rational uniform approximation of such
'integrals of atoms' does not depend very much on a. Let us note that the

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
-1.2
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-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
i i

0.00 -

-0.01 -

-0.02 -

-0.03 -

- o.oo

- -0.01

- -0.02

- -0.03

-0.04
-1.0 -0 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 O.i

Fig. 4

corresponding polynomial approximation is bad. We have

II *i6,o -fo.s lie = 0.0359..., || R16t0 -f0A \\c = 0.0487

ll *i6.o -/o.3 He = 0.0558..., || K16.0 - / 0 . 2 lie = 0.0869...,

ll*i6,o-/o.i He = 0.2777..., Kx6.o - Z o . o i He = 0.4966...,

and of course

t0.04

3. Best Hausdorff approximation to the function sign x by rational functions
in the interval [— 1,1].

The rational functions are a very convenient instrument for approximation
of functions possessing discontinuities. We shall denote by Rr

n,m(x) the rational
function of order (n, m) of best Hausdorff approximation to sign x and by
r(Rr

nm, sign x) the Hausdorff distance with a parameter a = 1 between Rr
nm

and sign x. Table 4 shows the difference between the best polynomial and
best rational approximation:
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Table 4

Appendix

(n,m)

(2,2)
(3,3)
(4,4)
(5,5)
(6,6)
(7,7)

r(Rrnm, sign x)

0.171573...
0.08512...
0.047 0. . .
0.0278...
0.0173...
0.0112...

(n,m)

(4,0)
(6,0)
(8,0)
(10.0)
(12,0)
(14,0)

r{Rr
nm, sign x)

0.2708...
0.2079...
0.17101...
0.147 5. . .
0.13011...
0.11696...

The graphs of the rational functions Rr
5 5 and R

\0f0 of best Hausdorff
approximation to sign x are given in Fig. 5.

The graphs of the rational functions Rr
n n and R\A 0 of best Hausdorff

approximation to sign x are given in Fig. 6.

1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
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Let us give the rational functions Rr
5 5 and Rr

7 7:

1.818 654 T1(x) + 0.761 431 9T3(x) + 0.095 369 84 T5(x)
5 l 5 ( x ) ~ 1 + \30]^9Jf2{xY+030^59^6f4ix) '

-1 .2

_ 1.861 957\(x) + 1.004 310T3(x) + 0.261 745 9T5(x) + 0.022 530 5T7(x)

~ 1 + 1.473 508T2(x) + 0.557 810 6T4(x) + 0.084 302 46T6(x) '

4. Best Hausdorff approximation of the function

/*(*) =

1/2,

by polynomials and rational functions.
Let Rr

ntm{x) be the rational function of order (rc,m) of best Hausdorff
approximation to / * and let r(Rr

„ jm,f*) be the Hausdorff distance with a
parameter a = 1 between Rr

nm and / * (see Chapter 9).
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We have

K*
7,6,/*) = 0.0144... ;r(#'13,0,/*) = 0.0842...,

0.498 970 5 + 0.903 271 9T1(x) + 0.673 6009T2(x)
+ 0.414160 3T3(x) + 0.2107464T4(x
+ 0.025 629 47T6(x) + 0.004 219 460T7(x)
1 + 1.7564517\(x)+1.355470T2(x)
+ 0.786 168 3T3(x) + 0.404 859 9T4(x)
+ 0.132995 2T5(x) + 0.038 723 91T6(x),

R\3t0(x)= 0.458 887 5 + 0.240 521 4T1(x)- 0.348 999 3 T2(x)
+ 0.073 673 53 T3(x) +0.201 407 3T4(x)
-0.128 7269T5(x)-0.04102947T6(x)
+ 0.056801 36 T7(x)
-0.021 748 364T8(x) +0.006 473 36T9(x)
+ 0.048 284 21 T10(x) - 0.087 141 37T n(x)
+ 0.037407 69T12(x) +0.088 398 57T13(x).

In Fig. 7 the graphs of the functions /* , Rr
16 and R\3i0 are given.

1.0-0.8-0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0

-1.0-0.8-0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8 1.0

Fig. 7

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781107340756.014
Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:21, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.014
https://www.cambridge.org/core


REFERENCES

Abdulgaparov A.A. (1974) On the rational approximation of functions with derivative of
bounded variation (Russian), Mat. Shornik, 93, 611-20.

Agahanov S.A., N.Sh. Zagirov (1978) Approximation of the function sign x in uniform and
integral metric by means of rational functions (Russian), Mat. Zametki, 23, 825-38.

Ahiezer N.I. (1930) On extremal properties of certain rational functions (Russian), Dokl.
Akad. Nauk. SSSR, 495-9.

(1965) Lectures on approximation theory (Russian), Nauka, Moscow.
(1970) Elements of the theory of elliptic functions (Russian), Nauka, Moscow.
Anderson Jan E. (1980) Optimal quadrature of Hp functions, Math. Z., 172, 55-62.
Baker G.A., Jr (1965) The theory and application of the Pade approximant method, Advances

in Theoretical Physics, 1, Academic press, New York, 1-58.
(1970) The Pade approximant method and some related generalizations, The Pade

approximant in Theoretical Physics, Academic Press, New York, 1-39.
(1973) Existence and convergence of subsequences of Pade approximants, J. Math. Anal.

Appi, 43, 498-528.
(1975) The essentials of Pade approximants, Academic Press, New York.
Baker G.A., Jr, P. Graves-Morris (1981) Pade approximants, Encyclopedia of mathematics

and its applications, Part I, vol. 13, Part II, vol. 14, Cambridge Univ. P.
Barrodale I., M.J.D. Powell, F.D.K. Roberts (1972) The differential correction algorithm for

rational /„ approximation, SI AM J. Numer. Anal., 9, 493-504.
Bergh J., J. Lofstrom (1976) Interpolation spaces, Springer-Verlag, Berlin, Heidelberg, New

York.
Bergh J., J. Peetre (1974) On the spaces Vp (0 < P ^ oo), Bollettino della Unione Mathematica

Italiana, 4, 632-8.
Bernstein S.N. (1912) Sur l'ordre de la meilleure approximation des fonctions continues par

les polynomes de degre donne, Men. Acad, royale Belg., 4, 1-104.
(1952) Collected works, vol. I (Russian).
(1954) Collected works, vol. II (Russian).
Binev P., K.G. Ivanov (1985) On a representation of mixed finite differences, Serdica, 11.
Boehm B. (1965) Existence of best rational Tchebycheff approximations, Pacific J. Math., 15,

19-28.
de Boor C. (1972) Good approximation by splines with variable knots, Spline functions and

approximation theory (A. Meir and A. Sharma eds.), Birkhauser, Basle, 57-72.
(1978) A practical guide to splines, Springer-Verlag, Berlin, Heidelberg, New York.
Braess D. (1984) On the conjecture of Meinardus on rational approximation of ex, II, J.

Approx. Theory, 40, 375-9.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781107340756.015
Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.015
https://www.cambridge.org/core


358 References

(1986) Nonlinear approximation, Springer-Verlag.
Brosovski B. (1965a) t)ber die Eindeutigkeit der rationalen Tschebyscheff Approximationen,

Numer. Math., 7, 176-86.
(1965b) t)ber Tschebyscheffsche Approximationen mit verallgemeinerten rationalen

Functionen, Math. Zeit., 90, 140-51.
(1969) Fixpunktsatze in der Approximationstheorie, Mathematica, 11(54), 195-220.
Brosovski B., C. Guerreiro (1984) Conditions for the uniqueness of best generalized rational

Chebyshev approximation to differentiable and analytic functions, J. Approx. Theory, 42,
149-72.

Brudnyi Yu. A. (1963) A generalization of a theorem of A.F. Timan (Russian), Dokl. Akad.
Nauk SSSR, 148, 1237-40.

(1970) Approximation of functions of nth variables by quasipolynomials (Russian), Isv. Akad.
Nauk SSSR, seria mat. 34, 564-83.

(1971) Piecewise polynomial approximation and local approximations (Russian), Dokl. Akad.
Nauk SSSR, 201, 1-4.

(1974) Spline approximation and functions with bounded variation (Russian), Dokl. Akad.
Nauk SSSR, 215, 511-13.

(1979) Rational approximation and imbedding theorems (Russian), Dokl. Akad. Nauk SSSR,
247, 969-72.

(1980) Rational approximation and exotic Lipschitz spaces, Quantitative approximation,
Academic Press, New York 25-30.

Bulanov A.P. (1969)On the order of approximation of convex functions by rational functions
(Russian), Isv. Akad. Nauk SSSR, seria mat., 33, 1132-48.

(1975a) Asymptotics for the best rational approximation of the function sign x (Russian),
Mat. Sbornik, 96, 171-8.

(1975b) Rational approximation of continuous functions with bounded variation (Russian),
Isv. Akad. Nauk SSSR, seria mat., 39, 1142-81.

(1978) Approximation of convex functions with a given modulus of continuity by rational
functions (Russian), Mat. Sbornik, 105, 3-27.

Bulanov A.P., A. Hatamov (1978) On rational approximation of convex functions with a
given modulus of continuity, Analysis Mathematica, 4, 237-46.

Burchard H.G. (1974) Splines (with optimal knots) are better, J. Applicable Anal., 3, 309-19.
(1977) On the degree of convergence of piecewise polynomial approximation on optimal

meshes, Trans. A MS, 234, 531-59.
Burchard H.G., D.F. Hall (1975) Piecewise polynomial approximation on optimal meshes, J.

Approx. Theory, 14, 128-47.
Buslaev V.N. (1982) On the poles of m-th rows of the Pade-table (Russian), Mat. Sbornik,

117, 435-41.
Buslaev V.N., A.A. Gonchar, S.P. Suetin (1983) On the convergence of subsequences of m-th

rows of the Pade-table (Russian), Mat. Sbornik, 120, 540-5.
Butzer P., H. Berens (1967) Semi-groups of operators and approximation, Springer-Verlag,

Berlin.
Butzer P., H. Dyckhoff, E. Gorlich, R.L. Stens (1977) Best trigonometric approximation,

fractional order derivatives and Lipschitz classes, Canad. J. Math., 29, 781-93.
Butzer P., K. Scherer (1968) Approximationsprozesse und Interpolationsmethoden, B.F.

Hochschulskripten, Mannheim.
Butzer P., R.L. Stens (1976) Chebyshev transform methods in the solution of the fundamental

theorem of best algebraic approximation in the fractional case, Colloquia Math. Soc. Jdnos
Bolyai, 19, Fourier Analysis and Approximation Theory, Budapest, 191-212.

Butzer P., R.L. Stens, M. Wehrens (1980) Higher order moduli of continuity based on the
Jacobi transformation operator and best approximation, C. R. Math. Rep. Acad. Sci.
Canada, 2, 83-8.

Carpenter A.J., A. Ruttan, R.S. Varga (1984) Extended numerical computations on the "1/9"
conjecture in rational approximation theory (to appear).

Chalmers B.L., G.D. Taylor (1983) A unified theory of strong uniqueness in uniform

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781107340756.015
Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.015
https://www.cambridge.org/core


References 359

approximation with constraints, J. Approx. theory, 37, 29-43.
Chanturia Z.A. (1974) Modulus of variation of function and its application in the theory of

Fourier series (Russian), Dokl. Akad. Nauk SSSR, 214, 63-6.
Cheney E.W. (1966) Introduction to approximation theory, Intern. Series in Pure and Appl.

Math., McGraw-Hill, New York.
Cheney E.W., H.L. Loeb (1961) Two new algorithms for rational approximation, Numer.

Math., 3, 72-5.
(1962) On rational Chebyshev approximation, Numer. math., 4, 124-7.
(1964) Generalized rational approximation, Soc. Industr. Appl. Math. J. Numer. Anal, 1, 11-

25.
Cody N.J., G. Meinardus, R.S. Varga (1969) Chebyshev rational approximation to e~x in

[0, oo) and applications to heat conduction problems, J. Approx. Theory, 2, 50-65.
Coifman R.R. (1974) A real variable characterization ofHp, Studia Math., 51, 269-74.
Collatz L. (1960) Tschebyscheffsche Annaherung mit rationalen Functionen, Abh. Math. Sem.

Univ. Hamburg, 24, 70-8.
Collatz L., W. Krabs (1973) Approximationstheorie: Tschebyscheffsche Approximation mit

Anwendungen, Teubner, Stuttgart.
Danchenko V.I. (1977) On the dependence of boundary properties of analytic functions of

the degree of their rational approximations, Mat. Sbornik (Russian), 103, 131-42.
DeVore R.A. (1983) Maximal functions and their applications to rational approximation,

Second Edmonton Conference on Approximation Theory, CMS, Conference Proceedings, 3,
143-57.

(1985) On the rational approximation of functions of the class LlogL(to appear).
DeVore R., V.A. Popov (1986) Interpolation spaces and nonlinear approximations, Proc.

Inter. Conf. Lund 1986, Springer-Verlag (to appear).
DeVore R.A., Xiang-Ming Yu (1986) Multivariate rational approximation, Trans. AMS

(to appear).
Dgafarov A.S. (1977) Averaged moduli of continuity and some connections with best

approximations (Russian), Dokl. Akad. Nauk SSSR, 236, 288-94.
Ditzian Z., V. Totik (1987) Moduli of smoothness, Springer-Verlag (to appear).
Dolzenko E.P. (1962) The order of approximation of a function by rational functions and the

properties of the function (Russian), Mat. Sbornik, 56, 403-32.
(1963) Estimation for the derivatives of rational functions (Russian), Isv. Akad. Nauk SSSR,

seria mat., 27, 9-28.
(1966a) Uniform approximation by rational functions (algebraic and trigonometric) and the

global properties of the functions (Russian) Dokl. Akad. Nauk SSSR, 166, 526-9.
(1966b) Properties of the Fourier series of continuous function and the degree of rational

approximation (algebraic and trigonometric) (Russian), Mat. Sbornik, 71, 43-7.
(1967) Comparison of the rates of convergence of rational and spline approximation

(Russian), Mat. Zametki, 1, 313-20.
(1976) On the differentiability of functions with good approximation in Hausdorff and

uniform metric (Russian), Dokl. Akad. Nauk SSSR, 230, 765-8.
(1978) Some exact estimates for the derivatives of rational and algebraical functions

(Russian), Analysis Mathematica, 4, 247-68.
Dolzenko E.P., V.I. Danchenko (1977) Differentiability of functions of many variables in

connection with the rate of their rational approximations (Russian), Isv. Akad. Nauk SSSR,
seria mat., 41, 182-202.

Dolzenko E.P., E.A. Sevastijanov (1974) Approximation by rational functions in integral
metrics and differentiability in means (Russian), Mat. Zametki, 16, 801-11.

(1976a) On approximation of functions in the Hausdorff metric (Russian), Soviet Mat. Dokl.,
17, 188-91.

(1976b) On the approximation of functions in Hausdorff metric by means of piecewise
monotone (in particular, rational) functions (Russian), Mat. Sbornik, 101, 508-41.

Dunham G.B. (1967a) Transformed rational Chebyshev approximation, Numer. Math., 10,
147-52.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781107340756.015
Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.015
https://www.cambridge.org/core


360 References

(1967b) Transformed rational Chebyshev approximation II, Numer. Math., 12, 8-10.
Dzjadik V.K. (1956) On the constructive characteristic of functions satisfying the Lipschitz

condition on a finite interval of the real line (Russian), Isv. Akad. Nauk SSSR, seria mat.,
20, 623-42.

(1958) On the approximation of functions by polynomials on a finite interval of the real axis
(Russian), Isv. Akad. Nauk SSSR, seria mat., 22, 337-54.

(1966) On a new method of approximation of functions (Russian), Ukrainskii Mat. J., 18, 36-
47.

(1977) Introduction to the theory of uniform approximation of functions by polynomials
(Russian), Nauka, Moscow.

Fefferman C. (1971) Characterization of bounded mean oscillation, Bull. Amer. Math. Soc,
77, 587-8.

Fichera G. (1970) Uniform approximation of continuous functions by rational functions,
Annali di Matematica pure ed applicata, seri IV, 84, 375-86.

(1974) On the approximation of analytic functions by rational functions, J. Math. phys. Sci.,
8, 1, 7-19.

Freud G. (1966) Uber die Approximation reeler Functionen durch rationale gebrochene
Functionen, Acta Math. Acad. Sci. Hung., 17, 313-24.

(1967) A contribution to the problem of rational approximation of real functions, Studia Sci.
Math. Hung., 2, 419-23.

(1968) On rational approximation of absolutely continuous functions, Studia Sci. Math.
Hung., 3, 383-6.

(1970) On the rational approximation of differentiable functions, Studia Sci. Mat. Hung., 5,
437-9.

Freud G., V.A. Popov (1969) On approximation by spline functions, Proceedings of the
Conference on Constructive Theory of Functions, Budapest, 163-72.

(1970) Some questions connected with approximation by splines and polynomials (Russian),
Studia Sci. Math. Hung., 5, 161-71.

Freud G., J. Szabados (1967a) Rational approximation to xa, Acta Math. Acad. Sci. Hung.,
18, 393-9.

(1967b) On rational approximation, Studia Sci. Math. Hung., 2, 215-19.
(1978) Rational approximation on the whole real axis, Studia Sci. Math. Hung., 3, 201-9.
Fuksman A.L. (1965) Structure characteristic of functions for which e„{f; \_— 1,1])< Mn~{k + ">

(Russian), Uspehi Mat. Nauk, 20, 187-90.
Gaier D. (1970) Saturation bei Spline Approximation und Quadratur, Numer. Math., 16,

129-40.
Ganelius T. (1979) Rational approximation to x* on [0,1], Analysis Mathematica, 5, 19-33.
(1982) Degree of rational approximation, Lectures on approximation and value distribution,

SMS, Montreal Univ. P., 9-78.
Garnett J.B. (1981) Bounded analytic functions, Academic Press, New York.
Goldstein A.A. (1963) On the stability of rational approximation, Numer. Math., 5, 431-8.
Gonchar A.A. (1955) On the best approximations by rational functions (Russian), Dokl. Akad.

Nauk SSSR, 100, 205-8.
(1959) Converse theorems for the best approximation on closed sets (Russian), Dokl. Akad.

Nauk SSSR, 128, 25-8.
(1966) Properties of functions related to their rate of approximation by rational functions,

IMC Moscow, in Amer. Math. Soc. Transl. 4, 91, 1970, 99-128.
(1967a) On the rate of rational approximation of continuous functions with typical

singularities (Russian), Mat. Sbornik, 73, 630-8.
(1967b) Estimates for the growth of rational functions and their applications (Russian), Mat.

Sbornik, 72, 489-503.
(1972) A local condition of single-valuedness for analytic functions (Russian), Mat. Sbornik,

89, 148-64.
(1973) On the convergence of Pade approximants (Russian), Mat. SSSR Sbornik, 21, 155-66.
(1974) The rate of rational approximation and the property of single-valuedness of an

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781107340756.015
Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.015
https://www.cambridge.org/core


References 361

analytic function in the neighborhood of an isolate singular point (Russian), Math. SSSR
Sbornik, 23, 254-70.

(1975a) On convergence of Pade approximants for some classes of meromorphic functions
(Russian), Math. SSSR Sbornik, 26, 555-75.

(1975b) On the convergence of generalized Pade approximants of meromorphic functions
(Russian), Math. SSSR Sbornik, 27, 503-14.

(1982) Poles of rows of the Pade-table and meromorphic continuation of functions (Russian),
Math. SSSR Sbornik, 43, 527-46.

(1983) On uniform convergence of diagonal Pade approximants (Russian), Mat. SSSR
Sbornik, 46, 539-59.

Gonchar A.A., G. L. Lopez (1978) On Markov's theorem for multipoint Pade approximants,
Mat. SSSR Sbornik, 34, 449-59.

Gonchar A.A., K.N. Lungu (1981) Poles of diagonal Pade approximants and the analytic
continuation of functions, Math. SSSR Sbornik, 39, 255-66.

Gonchar A.A., E.A. Rahmanov (1983) On the convergence of simultaneous Pade
approximants for systems of functions of Markov type, Proceedings of the Steklov Inst, of
Math., Issue 3, 31-50.

Gutknecht M.H. (1984) Rational Caratheodory-Fejer approximation on a disk, a circle and
an interval, J. Approx. Theory, 41, 257-78.

Gutknecht M.H., Lloyd N. Trefethen (1983a) Real and complex Chebyshev approximation in
the unit disk and interval, Bulletin Amer. Math. Soc, new series 8, 455-8.

(1983b) Nonuniqueness of best rational Chebyshev approximation on the unit disk, J.
Approx. Theory, 39, 275-88.

Haar A. (1918) Die Minkowskische Geometrie und die Annaherung an stetige Funktionen,
Math. Ann., 78, 294-31.

Hardy G.H., J.E. Littlewood (1928) A convergence criterion for Fourier series, Math. Zeit,
B. 28, 4, 612-24.

Hardy G.H., J.E. Littlewood, G. Polya (1934) Inequalities, Cambridge Univ. P.
Hatamov A. (1975a) On the rational approximation of convex functions of the class Lip a

(Russian), Mat. Zametki, 18, 845-54.
(1975b) On the rational approximation of functions with convex derivative (Russian), Mat.

Sbornik, 98, 268-79.
(1977) On rational approximation of convex functions (Russian), Mat. Zametki, 21,

355-70.
Ivanov K.G. (1983a) On a new characteristic of functions. II Direct and converse theorems

for best algebraic approximation in C[ — 1,1] and Lp[— 1,1], Pliska, 5, 151-63.
(1983b) A constructive characteristic of the best algebraic approximation in Lp\_— 1,1],

(l sJpsS oo), Constructive Function Theory 81, Sofia, 1983, 357-67.
Ivanov V.A. (1975) Direct and converse theorems of the theory of approximation in spaces

Lp, 0 < p < 1 (Russian), Mat. Zametki, 18, 641-58.
Jackson D. (1911) Cber die Genauigkeit der Annaherung stetiger Functionen durch ganze

rationale Functionen gegebenen Grades und trigonometrische Summen gegebener
Ordnung, Dis. U. Preisschr., Gottingen.

Karlsson J. (1976) Rational interpolation and best rational approximation, J. Math. Anal.
Appi, 53, 38-51.

(1982) Rational approximation of analytic functions, Dept. of Math., Chalmers Univ. of Techn.
and the Univ. of Goteburg, No. 1982-19.

Karlsson J., Bjorn von Sydow (1976) The convergence of Pade approximants to series of
Stieltjes, Arkiv for Matematik, 14, 43-53.

Kashin B.S., A.A. Saakjan (1984) Orthogonal series (Russian), Nauka, Moscow.
Kaufman, Jr, D.J. Leeming, G.D. Taylor (1978) A combined Remez-differential correction

algorithm for rational approximation, Math, of Computation, 32, 233-42.
Kolmogorov A.N. (1948) A remark concerning the polynomials of P.L. Tchebysheff which

deviate the least from a given function, Uspehi Mat. Nauk, 3, 216-21.
Koosis P. (1980) Introduction to Hp spaces, Cambridge Univ. P.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781107340756.015
Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.015
https://www.cambridge.org/core


362 References

Kovacheva R.K. (1980) Generalized Pade approximants and meromorphic continuation of
functions, Mat. SSSR Sbomik, 37, 337-48.

(1981) Best rational approximation in the space L2 (Russian), Pliska, 4, 15-22.
(1982) Convergence of generalized Pade approximants for holomorphic functions (Russian),

Serdica, 8, 82-90.
(1984) Uniform convergence of Pade approximants. General case, Serdica, 10, 19-27.
Krasnoselskii M.A., Yu. B. Rutitskii (1958) Convex functions and Orlicz spaces (Russian),

GITTL, Moscow.
Krotov V.G. (1982) On differentiability of the functions in Lp, 0 < p < 1 (Russian), Mat.

Sbomik, 117, 85-113.
Lagrange R. (1965) Sur oscillations d'ordre superieur d'une fonction numerique. Ann. scient.

Ecole norm, super., 82, 101-30.
Latter R.H. (1978) A decomposition of Hp{Rn) in terms of atoms, Studia Math., 62, 92-101.
Loeb H.L. (1964) Rational Chebyshev approximation, Notices AMS, 11, 335.
Lopez G. (1978a) On the convergence of multi-point Pade approximation of Stieltjes type

functions (Russian), Dokl. Akad. Nauk SSSR, 239, 793-6.
(1978b) Conditions for the convergence of multi-point Pade approximation of Stieltjes type

functions (Russian), Mat. Sbomik, 107(149), 69-83.
(1980) On the convergence of Pade approximation of Stieltjes type meromorphic functions

(Russian), Mat. Sbomik, 111(153), 308-16.
Lopez G., V.V. Vavilov (1984) Survey on recent advances in inverse problems of Pade

approximation theory, Rational approximation and interpolation, Springer Lecture Notes
in Mathematics, vol. 1105, Berlin.

Lorentz G.G. (1966) Approximation of functions, Holt, Rinehart and Winston, New York.
Lungu K.N. (1971) Best approximation by rational functions (Russian), Mat. Sbornik, 10,

11-15.
Maehly J. (1963) Methods for fitting rational approximation; Part I, J. Assoc. Comput. Math.,

7(1960), 150-62; Parts II and III, J. Assoc. Comput. Math., 10, 257-77.
Maehly H., Ch. Witzgall (1960) Tschebyscheff-Approximationen in kleinen Intervallen, I,

Approximation durch Polynome, Numer. Math., 2, 142-50.
Meinardus G. (1967) Approximation of functions; theory and numerical methods, Springer

Tracts in Natural Philosophy vol. 13, Berlin.
Meinardus G., D. Schwedt (1964) Nicht-lineare Approximationen, Arch. Rational Mech. Anal.,

17, 297-326.
Motornii V.P. (1971) Approximation by algebraic polynomials in Lp metric (Russian), Izv.

Akad. Nauk SSSR, ser. mat., 35, 874-99.
Natanson LP. (1949) Constructive function theory (Russian), Gostehizdat (English translation:

Ungar, New York, 1964).
Newman D. (1964a) Rational approximation to |x|, Michigan Math. J., 11, 11-14.
(1964b) On approximation theory, Intern. Series of Numer. Math., vol. 5, Birkhauser, Basle.
(1979a) Approximation with rational functions, Amer. Math. Soc, N. 41.
(1979b) Rational approximation to ex, J. App. Theory, 27, 234-5.
Newman D., H. Shapiro (1964) Approximation by generalized rational functions, Intern.

Series of Numer. Math., vol. 5, Birkhauser, Basle, 245-51.
Nikol'skij S.M. (1946) On the best polynomial approximation of functions which satisfy the

Lipschitz condition, Izv. Akad. Nauk SSSR, seria mat., 10, 295-318.
(1969) Approximation of functions of several variables and imbedding theorems, (Russian),

Nauka, Moscow, 1st edn 1969; 2nd edn, 1977 (English translation of 1st edn, Springer-
Verlag, Berlin, Heidelberg, New York, 1975).

Nitsche J. (1969a) Satze von Jackson-Bernstein Typ fur die Approximation mit Spline-
Functionen, Math. Z., 109, 97-100.

(1969b) Umkehr satze fur Spline Approximation, Compositio Math., 21, 400-16.
Nuttall J. (1970) The convergence of Pade approximants of meromorphic functions, J. Math.

Anal. Appi, 31, 147-53.
Opitz H.U., K. Scherer (1984a) A generalization of the Pade approximation to e~* on [0,oo),

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781107340756.015
Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.015
https://www.cambridge.org/core


References 363

Constructive theory of functions '84, (Proceedings of the conference in Varna, 1984), Sofia,
1984, 649-57.

(1984b) On the rational approximation of e~* on [0,oc), Constructive approximation (to
appear).

Oswald P. (1980) Spline approximation in Lp (0 < p< 1) metric, Math. Nachr. Bd., 94, 69-96.
Peetre J. (1963) A theory of interpolation ofnormed spaces, Lecture notes, Brasilia.
(1968) A theory of interpolation ofnormed spaces, Notes de matematica, 39, 1-86.
(1976) New thoughts on Besov spaces, Duke University, Mathematics series I.
(1983) Hankel operators, rational approximation and applied questions of analysis, Second

Edmonton Conference on Approximation Theory, CMS Conference Proceedings, vol. 3, 287-
332.

Peetre J., G. Spann (1972) Interpolation ofnormed Abelian groups, Ann. Mat. Pura Appl., 92
217-62.

Pekarskii A.A. (1977) The successive averaging method in the theory of rational
approximation (Russian), Dokl. Akad. Nauk BSSR, 21, 876-8.

(1978a) Rational approximation of absolutely continuous functions (Russian), Izv. Akad.
Nauk BSSR, ser. math., 6, 22-6.

(1978b) Rational approximation of continuous functions with given moduli of continuity and
variation (Russian), Vesci Akad. Nauk BSSR, seria fiz.-mat. nauk, 5, 34-9.

(1980a) Rational approximation of singular functions (Russian), Izv. Akad. Nauk BSSR, seria
fiz.-mat. nauk, 3, 32-40.

(1980b) Estimates of higher derivatives of rational functions and their applications, Izv. Akad.
Nauk BSSR, seria fiz.-mat. nauk, 5, 21-8.

(1982) Rational approximation of absolutely continuous functions with derivatives in an
Orlicz space, (Russian), Mat. Sbornik, 117(159), 114-30.

(1984) Bernstein type inequalities for the derivatives of rational functions and converse
theorems for rational approximation (Russian), Mat. Sbornik, 124(166), 571-88.

(1985) Classes of analytic functions, determined by the best rational approximations in Hp

(Russian), Mat. Sbornik, 111, 1, 3-20.
(1986) Estimate for the derivatives of rational functions in Lp [ — 1,1] (Russian), Math. Notes,

39, 3, 388-94.
Peller V.V. (1980) Hankel operators of the class Gp and their applications (Rational

approximation, Gaussian processes, majorant problem for operators) (Russian), Mat.
Sbornik, 113(155), 538-81.

(1983) Description of Hankel operators of the class Gp with p > 0, investigation of the rate of
the rational approximation and other applications (Russian), Mat. Sbornik, 122(164),
481-510.

Perron O. (1957) Die Lehre von den Kettenbriichen, II, 3rd edn, Teubner, Stuttgart.
Petrushev P. (1976a) On the rational approximation of functions with convex r-th derivative,

Acta Math. Acad. Sci. Hung., 28, 315-20.
(1976b) On the rational approximation of functions with convex derivative (Russian), C.R.

Acad. bulg. Sci., 29, 1249-52.
(1976c) The exact order of the best uniform rational approximation of some function classes,

Colloquia Mathematica Societatis Jdnos Bolyai, 19. Fourier analysis and approximation
theory, Budapest.

(1977) Uniform rational approximation of functions of bounded variation (Russian), Pliska,
Studia Math. Bulgarica, 1, 145-55.

(1979) Uniform rational approximation of functions in the class Vr (Russian), Mat. Sbornik,
108(150), 418-32.

(1980a) Rational approximation of functions in the class Vr (Russian), C. R. Acad. bulg. Sci.,
33, 1607-10.

(1980b) Best rational approximation in Hausdorff metric (Russian), Serdica, 6, 29-41.
(1980c) Lower bound for the best rational approximation in Hausdorff metric (Russian),

Serdica, 6, 120-7.
(1980d) Rational approximation of functions of bounded variation in Hausdorff and integral

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781107340756.015
Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.015
https://www.cambridge.org/core


364 References

metric (Russian), Serdica, 6, 202-10.
(1981) Rational and piecewise polynomial approximations (Russian), C. R. Acad. bulg. Sci.,

34, 7-10.
(1983a) Connections between the best rational and spline approximations in Lp metric

(Russian), Pliska, 5, 68-83.
(1983b) Some new characteristics in the theory of rational approximation (Russian),

Constructive function theory '81 (Proceedings of the Conference in Varna, 1981), Sofia,
1983, 121-4.

(1984a) Relations between rational and spline approximations, Acta Math. Sci. Hung., 44, 61—
83.

(1984b) On the relations between rational and spline approximations, Constructive theory of
functions '84 (Proceedings of the Conference in Varna, 1984), Sofia, 1984, 672-4.

(1985) Direct and converse theorems for spline approximation and Besov spaces, C. R.
Acad. bulg. Sci., 39, 25-8.

(1987) Relations between rational and spline approximations in Lp metric, J. App. Theory,
50, 141-59.

Pommeranke C. (1983) Pade approximants and convergence in capacity, J. Math. Anal.
Appi, 41, 775-80.

Popov V.A. (1973) Direct and converse theorems for spline approximation with free knots, C.
R. Acad. bulg. Sci., 26, 1297-9.

(1974a) On the rational approximation of functions of the class Vr, Acta Math. Sci. Hung., 25,
61-5.

(1974b) On the connection between rational and spline approximation, C. R. Acad. bulg. Sci.,
27, 623-6.

(1975) Direct and converse theorems for spline approximation with free knots, Serdica, 1,
218-24.

(1976a) Uniform approximation of functions with derivatives of bounded variation and its
applications, Colloquia Mathematica Societatis Jdnos Bolyai, 19. Fourier analysis and
Approximation theory, Budapest, 639-47.

(1976b) Direct and converse theorems for spline approximation with free knots in Lp, Rev.
Anal. Numer. Theorie Approx., 5 (1976), 69-78.

(1977) Uniform rational approximation of the class Vr and its applications, Acta Math. Acad.
Sci. Hung., 29, 119-29.

(1980) On the connection between rational uniform approximation and polynomial Lp

approximation of functions, Quantitative approximation, Academic Press, New York, 267-
77.

Popov V.A., P. Petrushev (1977) The exact order of the best rational approximation of
convex functions by rational functions, Mat. Sbornik, 103(145), 285-92.

Popov V.A., J. Szabados (1974) On a general localization theorem and some applications in
the theory of rational approximation, Acta Math. Acad. Sci. Hung., 25, 165-70.

(1975) A remark on the rational approximation of functions, C. R. Acad. bulg. Sci., 28, 1-303—
6.

Potapov M.K. (1975) On the structure characteristics of classes of functions with given order
of best approximation (Russian), Trudy Mat. Inst. Akad. Nauk SSSR, 134, 260-77.

(1977) On the approximation by Jacobian polynomials (Russian), Vestnik Moskov. Univ.
Seria Mat. Meh., 5, 70-82.

(1981) On the conditions for coincidence of some function classes (Russian), Trudy Sem. I.G.
Petrovskij, 6, 223-38.

(1983) On the approximation by algebraic polynomials in integral metric with Jacobian
weight (Russian), Vestnik Moskov. Univ. Seria Mat. Meh., 4, 43-52.

Quade E.S. (1937) Trigonometrical approximation in mean, Duke J., 3, 529-43.
Rahmanov E.A. (1980) On the convergence of Pade approximation in classes of holomorphic

functions (Russian), Mat. Sbornik, 112, 162-9.
Ralston, A. (1965) Rational Chebyshev approximation by Remes algorithms, Numer. Math.,

7, 322-30.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781107340756.015
Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.015
https://www.cambridge.org/core


References 365

Remez E.Ya. (1934a) Sur un procede convergent d'approximation successives pour
determiner les polynomes d'approximation, C. R., 198, 2063-5.

(1934b) Sur le calcul effectif des polynomes d'approximation de Tschebyscheff, C. R., 199,
337-40.

(1969) Basis of numerical methods of Chebyshev approximation (Russian), Kiev.
Rice J.R. (1964) The approximation of functions, Vol. I, linear theory, Addison-Wesley,

Reading, Mass.
(1969) The approximation of functions, Vol. II, Nonlinear and multivariate theory, Addison-

Wesley, Reading, Mass.
Russak V.N. (1973) Estimates for derivative of the rational function (Russian), Mat. Zametki,

13, 493-8.
(1974) On the rational approximation on the real line (Russian), Izv. Akad. Nauk BSSR, seria

fiz.-mat. nauk, 1, 22-8.
(1977) A method for rational approximation on the real line (Russian), Mat. Zametki, 22,

375-80.
(1979) Rational functions as a tool for approximation (Russian), Izdatelstvo BGU "V.I. Lenin",

Minsk.
(1984) The exact orders of rational approximation of classes of functions represented as a

convolution (Russian), Dokl. Akad. Nauk SSSR, 279, 810-12.
Ruttan A. (1977) On the cardinality of a set of best complex rational approximation to real

functions, Fade and rational approximation (E.B. Saff and R.S. Varga eds.), Academic Press,
New York, 303-19.

Saff E.B. (1972) An extension of Montessus de Ballore's theorem on the convergence of
interpolating rational functions, J. App. Theory, 6, 63-7.

SafT E.B., R.S. Varga (1977) Nonuniqueness of best approximating complex rational
functions, Bull. Amer. Math. Soc, 83, 375-7.

(1978) Nonuniqueness of best complex rational approximation to real functions on real
intervals, J. App. Theory, 23, 78-85.

Saks S. (1937) Theory of the integral, Warsaw.
Salem R. (1940) Essais sur les series trigonometriques: Actualites scientifiques et industrielles,

N° 862, Herman, Paris.
Schoenberg I.J. (1946) Contributions to problem of approximation of equidistant data by

analytic functions, Quart. Appl. Math., 4, 45-99.
Schonhage A. (1973) Zur rationalen Approximerbarkeit von e"x iiber [0,oo), J. App. Theory,

1, 395-8.
(1982) Rational approximation to e~* and related L2-problems, SIAM J. Numer. Anal, 19,

1067-82.
Schumaker L. (1981) Spline functions: basic theory, Wiley, New York, Chichester, Brisbane,

Toronto.
Semmes, S. (1982) Trace ideal criteria for Hankel operators and commutators, preprint.
Sendov, Bl. (1962) Approximation of functions by algebraic polynomials with respect to a

Hausdorff type metric (Russian), God. Sofia Univ., Fiz. -Mat. Fak., 55, 1-39.
(1969) Some problems of theory of approximation of functions and sets in Hausdorff metric,

Uspehi Mat. Nauk, 27, 141-78.
(1979) Hausdorff approximations, Bulgarian Academy of Science.
(1985) The constants of H. Whitney are bounded, C. R. Acad. bulg. Sci., 8, 1299-1302.
(1987) On the theorem and constants of H. Whitney, Constructive approximation, 3, 1-11.
Sendov Bl., B. Penkov (1962) a-entropy and e-capacity of the set of all continuous functions

(Russian), Vestnik Moskov. Univ., Mat. Meh., 3, 15-19.
Sendov Bl., V. Popov (1972) The exact asymptotics of the best approximation by algebraic

and trigonometrical polynomials in Hausdorff metric (Russian), Mat. Sbornik, 82, 138-47.
Sevastijanov E.A. (1973) Some estimates for derivative of the rational functions in integral

metrics (Russian), Mat. Zametki, 13, 499-510.
(1974a) Uniform approximation by piecewise monotone functions and some applications to

(^-variations and Fourier series (Russian), Dokl. Akad. Nauk SSSR, 111, 27-30.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781107340756.015
Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.015
https://www.cambridge.org/core


366 References

(1974b) On the dependence of differential properties of functions on the rate of their rational
approximation in Lp metric (Russian), Mat. Zametki, 15, 79-90.

(1975) Piecewise monotone and rational approximation and uniform convergence of Fourier
series (Russian), Analysis Mathematica, 1, 183-295.

(1978) Rational approximation and absolute convergence of Fourier series (Russian), Mat.
Sbornik, 107(149), 227-44.

(1980) Rate of the rational approximation of functions and their differentiability (Russian),
Izv. Akad. Nauk SSSR, seria mat., 44, 1410-16.

(1985) An estimate of the size of the set of those points where a given function is not
differentiate by the rate of its rational approximation (Russian), Izv. Akad. Nauk SSSR,
seria mat. (to appear).

Singer I. (1970) Best approximation in normed linear spaces by elements of linear subspaces,
Springer-Verlag.

Somorjai G. (1976) A Miintz type problem for rational approximation, Acta Math. Acad. Sci.
Hug., 27, 197-9.

Stechkin S.B. (1951) On the order of the best approximations of continuous functions
(Russian), Izv. Akad. Nauk SSSR, seria mat, 15, 219-41.

Stein E.M. (1970) Singular integrals and differentiability properties of functions, Princeton
Univ.,N.J.

Stein E.M, G. Weiss (1971) Introduction to Fourier analysis on Euclidean spaces, Princeton
Univ. P , N.J.

Stens R.L. (1977) Gewichtete beste Approximation stetiger Functionen durch algebraische
Polynome, Linear spaces and approximation, Proceedings of the Conference, Oberwolfach,
1977, Intern. Series of Numer. math. vol. 40, Birkhauser, Basle, 107-421.

Stens R.L, M. Wehrens (1979) Legendre transform methods and best algebraic
approximation, Annales Societatis Mathematicae Poloniae Series I: Commentationes
Mathematicae, 21, 351-80.

Storozenko E.A. (1975) Imbedding theorems and best approximations (Russian), Mat.
Sbornik, 97, 230-41.

(1977) On the approximation by algebraic polynomials of functions in the class Lp, 0 < p < 1
(Russian), Izv. Akad. Nauk SSSR, seria mat, 41, 652-62.

(1980) On the Jackson type theorems in Hp, 0 < p < 1 (Russian), Izv. Akad. Nauk SSSR,
seria mat, 44, 946-62.

Storozenko E.A, V.G. Krotov, P. Osvald (1975) Jackson type direct and converse theorems
in Lp, 0 < p < 1, spaces (Russian), Mat. Sbornik, 98(140), 395-415.

Subbotin Yu. N , N.I. Chernyh (1970) The order of the best spline approximations to some
function classes (Russian), Mat. Zametki, 1, 31-42.

Suetin S.P. (1984) On a converse problem for m-tuples of the Pade-table (Russian), Mat.
Sbornik, 124(166), 234-50.

Szabados J. (1967a) Generalization of two theorems of G. Freud concerning rational
approximation, Studia Sci. Math. Hung., 2, 73-80.

(1967b) Negative results in the theory of rational approximation, Studia Sci. Math. Hung., 2,
385-90.

Sziisz P , P. Turan (1966) On the constructive theory of functions, MTA III, 16, 33-45; II
Studia Sci. Math. Hung., 1, 65-9; III Studia Sci. Math. Hung., 1, 315-22.

Tchebycheff P.L. (1899) Sur les questions de minima qui se rattachent a la representation
approximative des fonctions, Oeuvres, Vol. 1, St Petersburg, 1899, 273-378.

Tihomirov V.M. (1976) Some problems of approximation theory (Russian), Moskow Univ. P.
Timan A.F. (1951) An extension of the Jackson theorem on the best polynomial

approximation to continuous functions on finite interval on the real line (Russian), Dokl.
Akad. Nauk SSSR, 78, 17-20.

(1960) Theory of approximation of functions of a real variable (Russian), GIFML, Moscow
(English translation: Macmillan, New York, 1963).

Timan A.F, M.F. Timan (1950) Generalized moduli of continuity and the best
approximation in mean (Russian), Dokl. Akad. Nauk SSSR, 71, 17-20.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781107340756.015
Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.015
https://www.cambridge.org/core


References 367

Timan M.F. (1958) Converse theorems of constructive theory of functions in Lp spaces
(Russian), Mat. Sbornik, 46, 125-32.

Trefethen L.M., M.H. Gutknecht (1983a) Real vs. complex rational Chebyshev
approximation on an interval, Trans. Amer. Math. Soc, 280, 555-61.

(1983b) The Caratheodory-Fejer method for real rational approximation, SI AM J. Numer.
Anal, 20, 420-36.

Triebel H. (1978) Interpolation theory * Function spaces * Differential operators, VEB
Deutscher Verlag der Wissenschaften, Berlin.

Vallee-Poussin Ch. de la (1910) Sur les polynomes d'approximation et la representation
approchee d'un angle, Bull. acad. Belgique, 808-44.

Veidinger L. (1960) On the numerical determination of the best approximation in the
Chebyshev sense, Numer. Math., 2, 99-105.

Vjacheslavov N.S. (1975) On the uniform approximation of |x| by rational functions (Russian),
Dokl. Akad. Nauk SSSR, 220, 512-15.

Wallin H. (1974) The convergence of Pade approximants and the size of the power series
coefficients, Appl. Anal, 4, 235-51.

Walsh J.L. (1934) On approximation to an analytic function by rational functions of best
approximation, Math. Z., 38, 163-76.

(1949) Critical points of the polynomials and rational functions, Amer. Math. Soc. Colloq.
Bull, 34, 99.

(1960) Interpolation and approximation by rational functions in the complex domain, AMS,
Colloquium Publications, vol. XX.

Werner H. (1962) Ein Satz iiber diskrete Tschebyscheff-Approximation bei gebrochen
linearen Funktionen, Numer. Math., 4, 154-7.

(1963) Rationale Tschebyscheff Approximation, Eigenwertteil und Differenrechnung, Arch.
Rational Mech. Anal, 13, 330-47.

(1964) On the local behaviour of the rational Tchebysheff operator, Bull. Amer. Math. Soc,
70, 554-5.

Wetterling W. (1963) Ein Interpolationsverfaren zur Losung der linearer Gleichungssysteme,
die der rationalen Tschebyscheff-Approximation auftreten, Arch. Rational Mech. Anal, 12,
403-8.

Whitney H. (1957) On functions with bounded n-th differences, J. Math. Pures Appl, 36, 67-
95.

(1959) On bounded functions with bounded n-th differences, Proc. Amer. Math. Soc, 10, 480-
1.

Zolotarjov E.I. (1877) Application of the elliptic functions to the problems on the functions of
the least and most deviation from zero (Russian), Zapiskah Rossijskoi Akad. Nauk.

Zygmund A. (1945) Smooth functions, Duke Math. J., 12, 47-76.
(1959) Trigonometric series, Vol. I, II, Cambridge Univ. P.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781107340756.015
Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.015
https://www.cambridge.org/core


AUTHOR INDEX

Abdulgaparov, A.A., 134, 158, 305, 357
Agahanov, S.A., 275, 357
Ahiezer, N.I., 38, 87, 90, 357
Anderson, Jan E., 160, 357

Baker, G.A., Jr., 329, 331, 334, 335, 342, 346,
347, 357

Barrodale, L, 34, 38, 357
Bergh, J., 70, 72, 201, 223, 357
Berens, H., 72, 358
Bernstein, S.N., 40, 71, 73, 357
Binev, P., 200, 357
Boehm, B., 38, 357
de Boor, C, 204, 223,261, 357
Borel, E., 5
Braess, D., 38, 73, 94, 357
Brosovski, B., 38, 358
Brudnyi, Yu.A., 72, 128, 184, 223, 243, 261,

305, 307, 358
Bulanov, A.P., 134, 146, 159, 275, 328, 358
Burchard, H.G., 223, 358
Buslaev, V.N., 346, 358
Butzer, P., 72, 358

Carpenter, A.J., 105, 358
Chalmers, B.L., 38, 358
Chanturia, Z.A., 184, 359
Chebyshev, P.L., 6, 8, 9, 12, 13, 15 (see also

Tchebycheff, P.L.)
Cheney, E.W., 15, 16, 28, 29, 33, 34, 38, 359
Chernyh, N.I., 223, 366
Cody, N.J., 100, 101, 359
Coifman, R.R., 261, 359
Collatz, L., 15, 38, 359

Danchenko, V.I., 182, 183, 359
DeVore, R.A., 105, 137, 141, 144, 159, 242,

359
Dgafarov, A.S., 72, 359
Ditzian, Z., 72, 359

Dolzenko, E.P., 134, 158, 161, 162, 163, 179,
180, 182, 276, 328, 359

Dunham, G.B., 38, 359
Dyckhoff, H, 72, 358
Dzjadik, V.K., 57, 58, 72, 160, 360

Fefferman, C.H., 261, 360
Fichera, G., 160, 360
Freud, G., 50, 114, 134, 158, 160, 223, 305,

328, 360
Fuksman, A.L., 72, 360

Gaier, D., 223, 360
Ganelius, T., 105, 160, 360
Garnett, J.B., 221, 360
Goldstein, A.A., 38, 360
Gonchar, A.A., 105, 153, 158, 160, 161, 162,

183, 257, 329, 333, 337, 342, 346, 360
Gorlich, E., 72, 358
Graves-Morris, 329, 331, 334, 335, 342, 346,

347, 357
Guerreiro, C, 38, 358
Gutknecht, M.H., 39, 105, 347, 361

Haar, A., 9, 16, 361
Hall, D.F., 223, 358
Hardy, G.H., 44, 223, 361
Hatamov, A., 159, 305, 361

Ivanov, K.G., 58, 65, 72, 200, 358, 361
Ivanov, V.A., 71, 361
Jackson, D., 40, 46, 47, 71, 361

Karlsson, J., 160, 346, 361
Kashin, B.S., 261, 361
Kaufman, Jr., 38, 361
Kolmogorov, A.N., 16, 361
Koosis, P., 221, 361
Kovacheva, R.K., 346, 362

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781107340756
Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756
https://www.cambridge.org/core


Author index 369

Krabs, W., 15, 38, 359
Krasnoselskii, M.A., 131, 362
Krotov, V.G., 71, 362, 366

Lagrange, R., 184, 362
Latter, R.H., 261, 362
Leeming, D.J., 38, 361
Littlewood, J.E., 44, 223, 361
Loeb, H.L., 28, 33, 34, 38, 358, 362
Lopez, G., 346, 361, 362
Lorentz, G.G., 72, 73, 362
Lofstrom, J., 70, 72, 201, 357
Lungu, K.N., 38, 346, 361, 362

Maehly, J., 28, 38, 362
Markov, A.A., 58
Meinardus, G., 16, 38, 94, 100, 101, 105, 359,

362
Motornii, P., 72, 362

Natanson, E.P., 47, 72, 362
Newman, P., 38, 73, 94, 105, 158, 304, 362
Nikol'skij, S.M., 5, 49, 54, 55, 57, 201, 362
Nitsche, J., 223, 362
Nuttall, J., 346, 362

Opitz, H.U., 105, 362
Oswald, P., 71, 223, 363, 366

Peetre, J., 40, 65, 70, 72, 184, 201, 223, 359,
363

Pekarskii, A.A., 132, 134, 159, 170, 182, 183,
184,262, 307, 328, 363

Peller, V.V., 183, 184, 363
Penkov, P., 263, 275, 365
Perron, O., 96, 332, 334, 346, 363
Petrushev, P., 134, 146, 159, 223, 261, 276,

305, 307, 363
Polya, G., 222, 361
Pommeranke, C, 346, 363, 364
Popov, V.A., 50, 105, 114, 128, 130, 146, 158,

170, 184, 223, 242, 267, 305, 307, 364
Potapov, M.K., 72, 359, 306, 364, 365
Powell, M.J.D., 34, 38, 357

Quade, E.S., 71, 364

Rahmanov, E.A., 346, 364
Ralston, A., 37, 38, 361, 364
Remer, E.Ya., 9, 10, 12, 16, 23, 33, 36, 364
Rice, J.R., 15, 16, 38,206, 365
Roberts, F.D.K., 34, 38, 357
Russak, V.N., 160, 164, 183, 365
Rutitskii, Yo.B., 131, 362
Ruttan, A., 39, 105, 358, 365

Saakjan, A.A., 261, 361

Saff, E.B., 38, 335, 346, 365
Saks, S., 365
Salem, R., 53, 71, 365
Scherer, K„ 72, 105, 358, 362
Schoenberg, I.J., 365
Schonhage, A., 100, 101, 105, 365
Schumaker, L., 204, 223, 365
Schwedt, D., 38, 362
Semmes, S., 184, 365
Sendov, Bl., 223, 263, 267, 275, 276, 365
Sevastijanov, E.A., 179, 180, 181, 182, 183,261,

276, 359, 365
Shapiro, H., 38, 362
Singer, I., 15, 366
Somorjai, G., 160, 366
Sparr, G., 72, 363
Stechkin, S.B., 53, 71, 366
Stein, E.M., 137, 366
Stens, R.I., 72, 358, 366
Storozenko, E.A., 71, 223, 366
Subbotin, Yu.N., 223, 366
Suetin, S.P., 346, 358, 366
van Sydow, Bjorn, 346, 361
Szabados, J., 160, 328, 360, 364, 366
Sziisz, P., 114, 158, 366

Taylor, G.P., 38, 358, 361
Tchebycheff, P.L., 15, 366 (see also

Chebyshev, P.L.)
Tihomirov, V.M., 72, 366
Timan, A.F., 46, 57, 71, 72, 187, 366
Timan, M.F., 71, 366, 367
Totik, V., 72, 359
Trefethen, L.M., 39, 105, 361, 367
Triebel, H., 72, 201, 367
Turan, P., 114, 130, 158, 366

Vallee-Poussin, Ch. de la, 9, 13, 15, 22, 38,
71, 367

Varga, R.S., 38, 100, 101, 105, 358, 359, 365
Vavilov, V.V., 346, 362
Veidinger, L., 13, 38, 367
Vitzgall, Ch., 28, 362
Vjacheslavov, N.S., 73, 78, 105, 367

Wallin, H., 346, 367
Walsh, J.L., 342, 367
Wehrens, M., 72, 358, 366
Weiss, G., 137, 366
Werner, H., 28, 37, 38, 367
Wetterling, W., 38, 367
Whitney, H., 195, 223, 367

Xiang-ming Yu, 159, 359

Zolotarjov, E.I., 73, 87, 92, 367
Zygmund, A., 41, 46, 71, 164, 187, 367

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CBO9781107340756
Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756
https://www.cambridge.org/core


NOTATION AND SUBJECT INDEX

absolute convergence, 181
absolutely continuous function, 124, 131,

296, 311
Abel's transformation, 210
alternation, 6
analytic function, 153, 276, 332
approximation classes, 69
approximation space, 242
APV 242
atom, 261

Bernstein type inequality, 67, 208, 221
Bernstein's inequality, 55, 58
Besov space, 182, 203

BJ* 202
Blaschke product, 165
BMO, 221
BMOA, 183
bounded variation, 44, 114, 124, 134, 302,

316,317
B-spline, 204

C[a, b l 4
characterization, 2, 6, 20
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converse theorem, 53, 65, 208, 221
convex, function, 146, 300, 314
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differential correction algorithm, 33
direct theorem, 46, 65, 208, 221
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existence problem, 2
existence theorem, 2, 18
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Fourier coefficients, 181
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Hardy inequality, 186
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Hilbert transform, 164

interpolation formula of M. Riess, 54, 55
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LlogL, 137
L p ( 0 < p < l ) , 184

Markov's inequality, 58
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metric projection, 27
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of continuity, 40
of smoothness, 41
of variation, 175
of Zygmund, 41

Newman's conjecture, 108, 298, 305
Newman's theorem, 73
Newman's trick, 94
normal approximating family, 66
normal point, 28
normed linear space, 1
numerical methods, 9, 33, 348
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Orlicz space, 137
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singularities, 153
Sobolev classes, 128
spline function, 203
Steklov function, 50
strongly unique, 28
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S(k, »), 203
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SUIX- 204

Pade approximant, 329, 331
Pade approximation, 329
Pade table, 331
Pekarskii's inequality, 183
Pekarskii's theorem, 169, 170

quasi-norm, 65

rational function, 18
rational generalized approximation, 37
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Remez algorithm, 9, 10, 12, 36
Russak's theorem, 164
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uniform approximation, 4
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Vn 114, 312

weak type operator, 137
Whitney's theorem, 195
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