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PREFACE

Rational functions are a classical tool for approximation. They turn out to
be a more convenient tool for approximation in many cases than polynomials
which explains the constant increase of interest in them. On the other hand
rational functions are a nonlinear approximation tool and they possess some
intrinsic peculiarities creating a lot of difficulties in their investigation. After
the classcial results of Zolotarjov from the end of the last century substantial
progress was achieved in 1964 when D. Newman showed that | x| is uniformly
approximated by rational functions much better than by algebraic poly-
nomials. Newman’s result stimulated the appearance of many substantial
results in the field of rational real approximations.

Our aim in this book is to present the basic achievements in rational real
approximations. Nevertheless, for the sake of completeness we have included
some results referring to the field of complex rational approximations in
Chapters 6 and 12. Also, in order to stress some peculiaritics of rational
approximations we have included for comparison some classical and more
recent results from the linear theory of approximation. On the other hand,
since rational approximations are closely connected with spline approxi-
mations, we have included as well some results concerning spline
approximations.

As usual the specific topics selected reflect the authors’ interests and
preferences.

We now sketch briefly the contents of the book. Chapters 1 and 3 contain
some basic facts concerning linear approximation theory. A basic problem
in approximation theory is to find complete direct and converse theorems.
In our opinion the most natural way to obtain such theorems in linear and
nonlinear approximations is to prove pairs of adjusted inequalities of Jackson
and Bernstein type and then to characterize the corresponding approxima-
tions by the K-functional of Peetre. This main viewpoint is given and

Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:21, subject to the Cambridge Core terms of use,
available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781107340756.001


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.001
https://www.cambridge.org/core

X Preface

illustrated at the end of Chapter 3 and next applied to the spline approxima-
tion in Chapter 7.

Chapter 2 is devoted to the study of the qualitative theory of rational
approximation such as the existence, the uniqueness and the characterization
problems, the problem of continuity of metric projection and numerical
methods.

The heart of the book is contained in Chapters 4 to 11. Chapter 4 presents
the uniform rational approximation of some important functions such as | x|,
J/x, ¢* In Chapter 5 the uniform rational approximation of a number of
classes is considered. The exact orders of approximation are established.
The basic methods for rational approximation are given. In Chapter 6
some converse theorems for rational uniform approximation are proved. In
Chapter 7 complete direct and converse theorems for the spline approxima-
tion in L,, C, BMO are proved using Besov spaces. Chapter 8 investigates
the relations between the rational and spline approximations. Chapter 9 deals
with rational approximation in Hausdorff metric. A characteristic particulari-
ty of rational approximation is the appearance of the so-called ‘o small’ effect
in the order of rational approximation of each individual function of some
function classes. This phenomenon is investigated and characterized for some
function classes in Chapter 10. The exactness of the proved estimates is
established and discussed in Chapter 11.

Chapter 12 considers some special problems, connected with Padé approxi-
mants — some of the so-called direct and converse problems for convergence
of the rows and diagonal of the Padé-table. Finally some numerical results
and graphs are presented in the Appendix.
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1

Qualitative theory of linear
approximation

We shall begin with a short survey of the basic results related to linear
approximations (i.e. approximation by means of linear subspaces) so that
one can feel better the peculiarities, the advantages as well as some
shortcomings of the rational approximation. In this chapter we shall consider
the problems of existence, uniqueness and characterization of the best
approximation (best polynomial approximation). At the end of the chapter
we shall consider also numerical algorithms for finding the best uniform
polynomial approximation.

1.1 Approximation in normed linear spaces

Let X be a normed linear space. Recall that X is said to be a normed linear
space if:

() X isalinear space, i.e. for its elements sum, and product with real numbers,
are defined so that the standard axioms of commutativity and associativity
are satisfied,

(i) X is anormed space, i.e. to each xe X there corresponds a nonnegative real
number || x| satisfying the axioms
(@) lIx[ =0, |x|=0iff x=0,
(b) |Ax | =14l xl, A a real number,
(© Ix+yl<lx{+ Iyl (the triangle inequality).

Let {@;}i-; be a system of n linearly independent elements of X. Let us
consider the linear subspace of X:G = {¢: ¢ =>7_, a;¢;, a; real numbers},
generated by the system {¢;}7- ;. For each element feX we denote by Eg(f)
the best approximation to f by means of elements of G:

Eg(f)=1nf{| f— ¢ll:0eG}. (1)
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2 Linear approximation

The following basic problems (basic not only for linear approximation
theory, but for the theory of approximation in general) arise.

() Existence problem: does an element @G of best approximation for fe X
exist, i.e. is there ¢ = ¢(f)eG such that

If= o) = Ee(f)?

(i) Uniqueness problem: if there exists an element of best approximation for
feX, is it unique?

(ili) Characterization problem: in the case where the element of best approxim-
ation for fe X exists and is unique, can we characterize it in some way?

(iv) Can we estimate how big Eg(f) is?

(v) Numerical methods: assuming that we know that the answer to the first two
(or three) problems is positive, how can we find ¢(f) in practice?

The whole theory of approximation represents full or partial (for the
present, unfortunately) answers to the above problems when we approximate
different classes of functions in different normed linear spaces (or, more
generally, in metric spaces) with respect to different approximation tools (e.g.
algebraic polynomials, trigonometric polynomials, rational functions, spline
functions, linear combinations of exponential functions).

In the case of approximation in a normed linear space by a finite
dimensional subspace we can give a positive answer to the first question.
More precisely the following theorem holds.

Theorem 1.1 ( Existence theorem). Let G be a finite dimensional subspace of the
normed linear space X. For every fe X there is an element of best approximation
in G.

Proof. The proof of this theorem is based on the following weli-known
fundamental property of finite dimensional normed spaces: every bounded
closed subset in a finite dimensional normed linear space is compact. The
idea of the proof is to show that the inf in (1) may be taken over a compact
subset of G.

Let ¢,eG be arbitrary. Then the set A = G:

A= (@:0eG, | f~ ol <] [ ol}

is nonempty (¢, € A), closed and bounded (since if pe A then || @ || < |l —f || +
I F1<loo—fIl+1 /1) Therefore A is compact and obviously

Eg(f)=inf{]| f=¢l:0eG} =inf{| f— ¢ [:peA}.

The norm || f— ¢| is a continuous function of ¢ (by the triangle inequality
Nf=el—=1f=yvlI<lie—yl) therefore || f— ¢l attains its inf on the
compact set A at some point ¢(f)ed < G. O
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1.1 Approximation in normed linear spaces 3

If the set G = X has the property that every fe X has an element of best
approximation in G, we shall call G an existence set. Obviously every existence
set must be closed (every boundary point of G must belong to G). Theorem
1.1 gives us that every finite dimensional subspace of a linear normed space
is an existence set.

Unfortunately the element of best approximation in an existence set G is
not always unique. Let us denote by Pgs(f) the set

Po(f)={0:0€G, || f— ol =Eg(f)}
of all elements of best approximation of f.

Theorem 1.2. Let X be a normed linear space and G a subspace of X, G an
existence set. Then for every fe X the set Py(f) is convex and closed.

Proof. Indeed, if pePgy(f) and Y ePg(f) then for every ae[0, 1] we have

EdN)<f—@p+(0 -}l <al f—ol+A -0 f—¥| =Egf)
From this it follows that

Ee(f)=1f— (o + (1 =),

ie. a@ + (1 —aWePgy(f), therefore Py(f) is convex.
Ifjo.— @l — 0,0,G, then g also eG, since G is closed. If ¢,,e Pg(f) then

m-+ oo

EsN) <l f—ol<lf=onl +lon—0l = Egf)

m— w0

EgN=11=eol,

therefore pePs(f). O

We shall see now that, when the normed linear space is strictly normed,
there exists a unique element of best approximation in every subspace of X,
which is an existence set (in particular in every finite dimensional subspace).
Let us recall that a normed linear space X is said to be strictly normed if
the equality |x + yi{ = || x|| + ||y || implies that x =ay, o« a real number.

Theorem 1.3 (Uniqueness theorem). Let X be a strictly normed linear space
and G a subspace of X, G an existence set. Then for every fe X there exists a
unique element of best approximation in G, i.e. Pg(f) consists of exactly one
element.

Proof. Let pePg(f) and Yy ePy(f). In virtue of theorem 1.2 (¢ + )2 P4(f)
and therefore

Edf)=lf—(o+W20<3|f—ol +3I /=¥l =EsS)
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4 Linear approximation
From this it follows that

If—(e+y)2] =

f=e
2

f—v
1%

Since X is strictly normed, the last equality implies f— @ =af— ). If
o # 1 it follows that feG and in this case Pg(f)={f},ic. o =y. Ifa=1 we
obtain ¢ = . O

Corollary 1.1. Let G be afinite dimensional subspace of a linear strictly normed
space X. Then for every fe X there exists a unique element of best approximation
in G.

In this book we shall use mostly the following function spaces.

(i) The space C[a,b] of all functions which are continuous in the closed
finite interval [ a, b]. This space becomes a normed one (even a Banach space,
i.e. a complete one) if we introduce the so-called uniform or Chebyshev norm,

“.f”C[a,b]: I fllc =max {| f(x)|:x€[a, b]}

The approximations in C[a, b] are usually called uniform or Chebyshev
approximations.

(ii) The space L,(a,b), 1<p<oo, (a,b) a finite or infinite interval,’
consisting of all functions f such that | f|? is Lebesgue-integrable in the
interval (a, b). If we consider all equivalent (in the sense of Lebesgue) functions
as one, L ,(a, b) becomes a normed (even Banach) space with respect to the so-
called L,-norm

b

1/p
I/ 1 Lpaey =1l =1 f I, = {J If(X)I"dX} - )

a

The approximations in L,(a, b) will be called L -approximations.
(iii) We shall use the notation (2) also in the case 0 < p <1 when || f ], is
not a norm (since the triangle inequality does not hold), but only a quasinorm

If+gll,<c@)US1,+ 191,

(iv) The space L. [a,b] consisting of all essentially bounded functions in
the interval [a, b] supplied with the norm

1Sl ren =11, =1 [l =esssup.| f(x)|=inf {A:mes {x:| f(x)| >4} =0}

where mes {4} denotes the Lebesgue measure of the set {A}.

If feL, then || f|i,— |l fll, when p— co. Furthermore it is clear that if
feCla,b] then | fl¢c=1 /.- Sometimes we shall use the notation || f ||
also for bounded functions and we shall interpret it as sup {{ f(x)|: xe[a, b]}.

" We shall use also the notation L,[a,b].
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1.1 Approximation in normed linear spaces 5

Beside these spaces we shall use in some paragraphs Orlich spaces, Besov
spaces, Hardy spaces and BMO spaces.

The spaces C[a,b], L(a,b), 1 <p <o, L [a,b] are normed linear ones.
Therefore, in virtue of theorem 1.1 for each of their elements there exists an
element of best approximation with respect to an arbitrary finite dimensional
subspace of theirs. The main subspace used is that of algebraic polynomials
of nth degree, denoted by P,. It is the (n + 1)-dimensional subspace generated
by the functions 1, x,...,x". Applying theorem 1.1 in this case we obtain the
following.

Theorem 1.4 (E. Borel). Let feCla,b](or L,[a,b], 1 < p < ). Then for every
natural number n there exists an algebraic polynomial peP,, of best uniform
(or L,) approximation in P,,.

It is often necessary to approximate 2z-periodic functions. Without
pointing it out explicitly every time, we shall use the notations we introduced
in the case of an interval also for linear spaces of 2z-periodic functions,
namely C[0,2x], L,[0,2n], 1 < p < oo. The tools used most often in this case
are the trigonometric polynomials. We shall denote by T, the set of all
trigonometric polynomials of nth order, ie. T, is the (2n+ 1)-dimensional
subspace generated by the functions 1, cosx, sinx,...,cosnx, sinnx. In the
periodic case theorem 1.1 implies the following.

Theorem 1.4. Let f be a 2m-periodic function and feC[0,2n] (feL,[0,2n]).
For every natural number n there exists a trigonometric polynomial qeT, of
best uniform (L,) approximation in T,.

Let us consider now the question of uniqueness. One can show that the
spaces L,, 1 < p < oo, are strictly normed (see for example S.M. Nikol'skij
(1969)). Then theorem 1.3 implies the following,

Theorem 1.5. Let feL (a,b) (let f be 2n-periodic and feL,[0,2r]), 1 <p < .
Then for every natural number n there exists a unique algebraic (trigonometric)
polynomial of nth degree of best L -approximation in P, (in T,).

However, the spaces C, L., L= L, are not strictly normed. Let us show
this for instance for C[0, 1]. If we consider the functions 1 and x, we have

1+ xlicro,17= I .17 + 1 X Hlpo,17 = 2

but the functions 1 and x are not linearly dependent.
It is easy to see by examples that in the general case in L, we do not have
uniqueness. Let us consider the function

(x) = -1, —1<x<0,
TIEY L 0<x<l

In L,(—1,1) every constant ¢, —1 < ¢ < 1, is a polynomial of degree zero
of best approximation to o.
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6 Linear approximation

Fortunately enough it turns out that the algebraic polynomial of nth degree
of best uniform approximation is unique. This follows from the Chebyshev
theorem, which gives a characterization of the algebraic polynomial of best
uniform approximation by alternation. This theorem as well as its proof can
be modified for the best rational uniform approximation. That is why it will
be of special interest of us.

1.2 Characterization of the algebraic polynomial of best
uniform approximation

Now we are going to solve the third basic problem of the theory of
approximation in the case of uniform approximation by means of algebraic
polynomials — characterization of the algebraic polynomial of best uniform
approximation. This problem was solved by P.L. Chebyshev in the last
century with his famous alternation theorem.

Let feC[a,b]. We shall denote by E,(f)c the best uniform approximation
of the function f by means of algebraic polynomials of nth degree:

ENctan= E(f)c= inf{ I f—p HC[a,b]:pePn}’

In what follows in this section we shall write E,(f) instead of E (f). and
£ Il f—pl instead of || flic, | f—Pllc-

Definition 1.1. Let feC[a,b]. The polynomial pe P, is said to realize Chebyshev
alternation (or simply alternation) for f in [a,b] if there exist n + 2 points x;,
i=1,...,n+2,a<x; < <X,.,<b, such that

fe)—px)=e(=1[ f=pl, i=1...n+2,

where the number ¢ is +1 or — 1.

The Chebyshev alternation has the following geometric interpretation: let
peP, realize Chebyshev alternation for feC[a,b]} in [a,b]. Let us consider
the functions ¢(x) =f(x) + || f— p|l and Y(x) =f(x) — || f— p||. Then the graph
of the polynomial lies in the strip between ¢ and ¥, touching alternately the
upper function ¢ and the lower function ¥ at least n + 2 times.

Theorem 1.6 (Chebyshev alternation theorem). Let feC[a,b]. The necessary
and sufficient condition for the algebraic polynomial peP, to be a polynomial
of best uniform approximation for f in P, is that p realizes Chebyshev alternation

for fin [a,b].

Proof. Let peP, realize Chebyshev alternation for f in [a,b]. Assume that
p is not a polynomial of best uniform approximation, but geP, is. Then

Ef)=1f—=al <l f-pl.
The above inequality implies that the polynomial s=p— geP, has the
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1.2 Best uniform algebraic polynomial approximation 7

sign of p —f in the points x;, i=1,...,n + 2, since |p(x;) —f(x)| = f—p] >
I f=qll, plx;)—q(x)) = p(x;) — f(x) — (g(x;) —f(x;)). Therefore seP, will
change its sign at least n+ 1 times, i.c. s must have at least n+ 1 zeros in
[a,b]. Since seP,, it follows that s =0, i.e. p=g¢, which is a contradiction
with the assumption.

Let now peP, be an algebraic polynomial of best uniform approximation
for f in P,. We shall show that p realizes Chebyshev alternation for f. Let
us assume, contrary to this, that m+ 2 is the highest number of points
Xy <Xy < - <Xy, in [a,b] such that

fe)—px)=e(—= V' f=pll=e(—DELf), i=1...m+2, (1)

where ¢ =1 or — 1 and m < n. Then there exist m + 3 points &y, &1,...,&ntn
which satisfy the inequalities

a=Co<x; <& <X, << <yt <Xpi2 Sy =b
and are such that for every xe[ & _,, ;] we have

o= D(f(x)~p(x)) > —Eff), i=1..m+2 2)

From (1) it follows that the continuous function f — p changes its sign in

the interval [x;, x;. ;], therefore the points &, &,,...,&,,,; can be chosen so
that

fE)=p&), i=1...m+1 3)

Since [&;,_,,¢], i=1,...,m+ 2, are a finite number of closed intervals
and f— p is a continuous function in each of them, from (2) it follows that
there exists ¢ > 0 such that for every xe[&;_,,¢], i=1,...,m+ 2, we have
the inequality

e — 1) (f(x) — p(x)) > 6 — E,(f). 4

Let us set

() = (="M — &p) o (x — &)y

where
)

A= .
2{(x =&} (x = e 1) lleany

Since m < n, we have QeP,.
From this definition of @ it follows also that

|Q(x)| <9/2 forxela,b], )
(—1Q(x)>0 for xe(&, &4y, i=0,...,m+1, (6)
Qo) >0, (=1)""1Q(n+2) >0, 7
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8 Linear approximation

Q¢&)=0, i=1,....m+1. (8)
Since pis an algebraic polynomial of best approximation to f'in P,, we have
—E(f)<f(x)—p(x)<E(f) for xe[a,b]. ©)

Let us consider the difference
J(x) = p(x) — £Q(x).
In view of (4), (5) and (6), for every xe[ ¢, &, (], we have, fori=0,....m+ 1,
& — DI () — plx) — £Q(x)) = e( — D(f(x) — p(x}) = (= 1)'Q(x)
>0—E(f)—0/2=02—E/)). (10)

From (5)-(9) we also obtain that, for every xe(¢;, &, 1) and x =&, &, 42,

we have
o(— (S (x) = p(x) —eQ(x)) = (= 1Ye(f (x) — p(x)) — (= V'Q(X) S E,(f)
—(=1yQ(x) <E(f). (11)
For x=¢,i=1,...,m+ 1, we have, from (8),
J(&)—p(&) —eQ(E) =0. (12)
Consequently the inequalities (10)—(12) give us that, for every xe[a, b], we
have
| f(x) = p(x) — eQ(x}| < E,(f). (13)

Since f— p —¢Q is a continuous function in [a, b], from (13) it follows that

If—p—eQl <E\(f)

i.e. a contradiction, since p + eQ€eP,. O
From theorem 1.6 there follows easily the uniqueness of the algebraical
polynomial of best uniform approximation as follows.

Theorem 1.7. Let feCla,b]. For every natural number n there exists a unique
algebraic polynomial pe P, of best uniform approximation to fin P,,.

Proof. Let peP, and geP, be two algebraic polynomials of best uniform
approximation to f-

If=pli=1f=ql=Eff) (14)

From theorem 1.2 the polynomial g = (p + ¢)/2€P, is also a polynomial
of best uniform approximation to f. By theorem 1.6 g realizes Chebyshev
alternation for f, i.e. there exist n+2 points x,, i=1,...,n+2, a<x;, <
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1.3 Numerical methods 9

Xy < oo < X,y < b, such that

f(xi)—p(—x")—;i@:g(—l)%n(f), i=1,...n42 (15)
where e=1 or — 1.

From (14) it follows that

Lf(x) = plx;) < En(f),}
| f(x) — qlx)| < E(f).

Therefore the equality (15) can be fulfilled only if we have

S (x) = plx) = f(x;) — qlx,),
re. il p(x;)=gq(x) fori=1,...,n+ 2.
We thus have that the algebraical polynomials peP, and geP, coincide
in n + 2 different points. Consequently p=gq. dJ
The following theorem of de ia Vallée-Poussin is very useful in the numerical
methods for obtaining the polynomial of best uniform approximation.

Theorem 1.8. Let feCla,b], peP,and x;,i=1,....n+2, a<x; <X, < <
Xp42 < b, be n+ 2 different points in [a, b]. If the difference f— p has alternate
signs at the points x;, i=1,...,n+ 2, then

E(f)zp=min{|f(x)—px)l:i=1,...,n+2}.

Proof. Let us assume that E,(f) < u. Let ge P, be the algebraic polynomial
of best uniform approximation to f, ie. | f—qll = E(f) < p.

From this it follows that the difference p —g must have the sign of
p(x;) —f(x;) at the points x;, i = 1,...,n + 2. By the conditions of the theorem
therefore p — g must have alternate signs at n + 2 points x;,, i=1,2,...,n+ 2,
i.e. the algebraic polynomial p — ge P, must have at least n + 1 different zeros
in [a, b]; consequently p — g =0 which contradicts

If=all=EL)<u<]f=pl O

1.3 Numerical methods

We shall describe in this section the so-called Remez algorithms for numerical
solution of basic problem (v) from section 1.1 —finding the polynomial of
best uniform approximation. The algorithms are more general and can be
used for best uniform approximation by means of arbitrary Haar subspaces
of C[a,b].

Definition 1.2. The system {@;}I- | of functions ¢;eCla,b], i=1,....n, is said
to be a Chebyshev system on the interval [a,b] if every generalized polynomial
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10 Linear approximation

@ =%, a;¢; can have at most n — 1 zeros in [a, b] (every zero calculated with
its multiplicity).
Let C%[a, b] denote the space of all functions in the interval [a, b] which
have kth derivative f*® in [a, b], which belongs to C[a,b].
We shall say that x,e[a, b] is a zero of feC®[qa, b] of order k (or multiplicity
k) if
flo)=f"xg) = =f*"D(xo) =0, f®(xo)#0.

Definition 1.3. A subspace G < Cla,b], G ={¢:@ =211 a;¢;}, generated by
the Chebyshev system {@;}!_ ., is said to be a Haar subspace.

Let {¢;}?- | be a Chebyshev system. In this section we shall use the following
notations. Let feC[a,b]. Then

EAf)= inf{ I7-olio=3 aapi},

n

Z a;0;—f

i=1

Aa) =

5

Cla,b]

n

a=(a,...,a,)eR", r(a,x)= .Zl a;@;(x) — f(x),
R" the n-dimensional Euclidean space.
Our aim is to find real numbers {c¥}?., such that

= E(/).

Cla.b]

“f“ ';1 cfo;

First Remez algorithm

The algorithm consists of the following recursive procedure.

(i) Select n+ 1 points X© = {x;}5, where a < xq <x; <+ <x,<b;
(i) Set k=0;
(iii) Given the set X™® find a vector ¢¥eR" such that if we denote A®(c)=
max {|r(c, x)[: xe X®} then

AW(e®) = inf {A®(c): ceR"};

(iv) Find a point x,,,.,€[a,b] such that Ae®) = |r(c®, x, v+ );

(v) Form the set X**V = X®0U{x, 111}

(vi) Set k=k+1;
(vii) Go to (iii).

The choice of the initial set X° can be done in different ways (equidistant
point in the trigonometrical case, the roots of the (n + 1)-th polynomial of
Chebyshev in the algebraic case and so on) and there exist no strong rules
for this.
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1.3 Numerical methods 11

At step (iii) we have to find in fact the polynomial of the best uniform
approximation on a set which consists of a finite number of points.

Step (iv) is usually the most laborious point in the algorithm.

The execution of the algorithm stops when the polynomial obtained at the
kth iteration satisfies some demands.

The method (i)—(vii) generates a sequence of vectors {¢® }2, for which we
have the following,

Theorem 1.9. Let ¢* be a cluster point of the sequence {¢®™};_,. Then
E(f) = Alc*).
Proof. Let us set |e|=>7_,]|¢;| and

z Ci@{x)].

i=1

6 = min max
fej=1 xex®

Since X contains n + 1 different points and {¢;}"- , is a Chebyshev system
on the interval [a,b] we have 0> 0. From X% < X%**1 < [q,b] we get for
every ceR" that

A®() A% D(e) < Ac)
and consequently (€: A(€) = E,(f))
A(k)(c(k)) < A(k)(c(k+ 1)) < A(k+ 1)(c(k+ 1)) < A(k+ lj(é) < A(é) — En(f)

The last inequalities show that the sequence {A®(c™)}g is monotone
nondecreasing and bounded from above. This means that there exists ¢ >0
such that lim, , A®(cW) = E (f) — &. We shall show that ¢ =0.

First we prove that the sequence {¢®}°, is bounded. Indeed,

> max Z O{x)
xex@ |i=1
and if || > 2|| £ 1|/0 then A®(c) = A%c) > | f || = A®(0), i.e. ¢ can not minimize
any of the functions A®. So the sequence {¢®}_, generated by the algorithm
is bounded.
Further let us set M =max, _,.,ll @;ll¢.;- Then for an arbitrary vector b

A°c) = max
xeX0

ch() —f(x) = fle=0el=IfI

i=

jr(b, x) — r(e,x}{ = <M|b—c|

2 c)pdx)

and therefore |r(b, x)| <|r(c,x)| + M|b—¢|, ie.

A(b) = |1 r(b,") [l cay = [H(b, ) < [Hle, X) [ + M [b—¢| < Ale) + M[b—c|.
(1)

Let us suppose now that ¢ > 0 and ¢*eR" is a cluster point of the sequence
{e®=_ . For every > 0 there exists an index k such that [¢* —¢®| < é and
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12 Linear approximation

an index i > k such that |e* —¢?| < §. Then |e® —¢®| < 26 and, using (1).
setting ¢* in place of b, we obtain

ELf) < Ale®) < Ae®) + M§ = |r(c®, x** 1) + M§
< Jr(e®, x** )| 4 3M < A+ D(e®) + 3M§
SAYED)+3MS<E,(f)— e+ 3MS.

The number 6 > 0 was arbitrary, so for ¢ > 3MJ this leads to a contradic-
tion. Therefore e =0 and A(c*) = E(f). Ul

Corollary 1.2. Let {p{x)}} = {x'}§~!. Then there exists lim,_, , ¢® = c*.
This follows from the uniqueness of the best uniform algebraic approxima-
tion (theorem 1.7).
Corollary 1.2 gives that the first Remez algorithm is convergent for the
case of approximation by means of algebraic polynomials.

Remark. The uniqueness theorem is also valid for approximation in the
uniform metric by means of a Chebyshev system. So we have convergence
of the first Remez algorithm also in the general case of a Chebyshev system.

Second Remez algorithm

We shall describe the second Remez algorithm again for an arbitrary
Chebyshev system and we shall prove the order of convergence for the case
of uniform approximation by means of algebraic polynomials.

(1)) Take n+ 1 different points x;, i=0,...,n, a <Xy <X; <--- <X, < b;
(1) Solve the linear system

f(xj) - Z Ci(Pi(xj) =(- 1y, J=0,1,....n,
i=1
with respect to the unknowns cq,...,c, and 4;
(i) Find the points {z;}i%3 such that zo=a, z,,,=b and rz) =0 for
i=1,....n'
(iv) Select the points y,elz;,z;, 11, i=0, 1,...,n, such that

(sign r(x))r(y;) = max {r(x) signr(x,): xe[z;,2;41] }>

(V) If |1r(e; ) oy > max {|He; y):0 < i< n} then there exists a point
vela,b] such that |r(e; y)| = | 7(¢;*) || cra.py — We put the point y in place of
some point among yq, Vi, ---,V, S0 that the function r(c; x) would preserve
the alternating signs on the newly obtained points which we denote again
by Yo Vise sV

(vi) Go to (ii) and instead of the points {x;}{_, consider the points {y;}I- .

For(x)=r(e; x)
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1.3 Numerical methods 13

This procedure can be easily carried out using computers and numerical
experiments show that it is not very sensitive to the choice of the initial points.

Usually we go out of the iterative process and stop the calculation when
on the kth step | r(c; )| differs negligibly from | 4|. This stop-condition comes
from the Chebyshev theorem of alternation.

The second Remez algorithm has quadratic convergence under some
restrictions on the smoothness of the function f (see L. Veidinger (1960)). We
shall prove here the linear convergence of the algorithm for every feCla, b]
in the case of polynomial approximations.

Theorem 1.10. Let {@;}!- = {x"}*~} and let feC[a,b]. The polynomial p* =

"_8 cx' generated on the kth step by the second Remez algorithm satisfies
the condition | p — p | cras < 0¥, where p is the algebraic polynomial of best
uniform approximation for f of (n — 1)-th degree, 0 < 6 < 1 and ¢ is u constant,
independent of k.

Proof. We again use the abbreviation r(x) = r(c; x). Since we described a single

cycle of the second Remez algorithm let us denote o = |r(x,)| = -+ =|r(x,)|=
|4, p=max {{r(y)l:i=0,....nf =[lr(e;)llc. y=min{[ry)]:i=0,....n},
B=Ilf—plec-

From de la Vallée-Poussin’s theorem (theorem 1.8) we get a <y < f < f.
Let us agree that on the next cycle of the algorithm the constants correspond-
ing to a, 5, 7, 4 and the coefficient vector ¢ will be denoted by o', §, ', A’
and ¢'. According to this convention it is clear that the vector ¢’ is selected
by the system

n—1
(—D)X+ Y cyi=f), i=0,....n,
=0
and

fo) 1 oyt

078 B AR A B O(_l)i.f(yi)Mi
//: == n T
Lol yoryo ! > M,
a1 i=0

—1 1 ViV

(=" 1yt
where M, are the minors corresponding to the first column of the matrix in
the denominator.

If f has the form f=3"2}a;x’ then the approximation has to be exact
and A’=0, ie.

n—1

(=1 a;yIM;=0.

0 j=0

s

Il

i
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14 Lincar approximation

Thus we may replace f(y;) by

n—1
) =f(y)— Z ij{

j=0
in the expression for 4. Taking into account that signr(y;)= — signr(y;, )
we obtain

o = =< Y M,-lr(y,-)|>/z M
i=0 i=0

Since M; >0,

M, =[]—y) )

where the product is taken over all k,j such that k>, k,j=0,1,...,i—1,
i+1,...,nand y, >y, for k>j.
Now let 0,=M,/>/_oM;. Then

n n

o= Z )=y Y b=y >0 3)

i=0 l=0

We shall show that there exists 8, 0 < 6 < 1, such that for all numbers 6,
generated at the kth iteration of the algorithm we have

1-0<0,<1, i=0,1,...,n (4)

From (2) it follows that this will be true if there exists d > 0 independent
of k such that

Yy -y =6>0, i=0,....n—1, k=1,2,.... (3)

Let us assume that this inequality is not true. Then the sequence
9, yP e will have a cluster point (3o, J,,...,7,), where at least two
points y; coincide. Consequently there exists an algebraic polynomial
q(x) = X243 a;x* which interpolates f at the points y,, ¥,,...,7, (the number
of the different points is at most n). By definition «**V is the best
approximation of f at the points y&, y¥, .. ¥ at the kth iteration and

a®* D <max {| f(P) — qy®):i=0,...,n}

=max {| f({) — q0{?) — f(7) + a(F):i=0,....n}, (6)
since f(y,) = q(y,), i =0,...,n. This inequality contradicts the fact that o/ >«
(see (3)), ie. al< oc‘z) <o <a®*t Vg ... Really, if k is such that
max {|y¥ — 7;:i=0,...,n} is small enough, then (2!’ > 0)

max {| f(y*) —f(7) — (@) —q@P:i=0,...,n} <oV (N

since ¢ and f are continuous functions. From (6) and (7) we get the
contradiction a®**D < g®),
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1.4 Notes 15
Therefore (5), and consequently (4), hold true. Using (4) we obtain

Y —yzd—y= Z O{Irp) = =1 =B =1 =1 —0)(B—y)

i=0

and
B—y=B-9-G-n<B-9)—0—-0)(B—7=0B-7),
ie. p—y® <0 —y?) and

(0))T

(k+1) (k) (k) k(g
y <ﬂ LA

® _ B B0 _ k) < < < Y
A 1—0 1—0 1-9

)

Finally we shall apply the strong uniqueness theorem 2.5 from Chapter 2
(obviously the theorem remains true for P,_,, i.e. when m=0). By this
theorem if p is the polynomial of best uniform approximation for f of (n — 1)-th
degree, then there exists a constant ¢(f) > 0, depending only on f, such that
for every polynomial ge P, , we have:

If=ql =l f=pl+cNHlg—pl. ©)

Denoting by p' the algebraic polynomial generated at the kth step of the
algorithm (at the kth iteration), we obtain, from (8) and (9),

1
Ip™ —pl <—(Ilf PPN =11 f=pl)=——~(BY = E.(f))

(f ) of)
_ g BT o
7P <o
which completes the proof. O

Remark. Theorem 1.10 remains valid also for an arbitrary Chebyshev system.

1.4 Notes

The classical theorems for characterization and uniqueness of the best
polynomial uniform approximation are given by P.L. Chebyshev (see P.L.
Tchebycheff (1899), see also Ch.de la Vallée-Poussin (1910)).

The abstract theory of linear approximations is a very developed domain.
We recommend the following books, which contain some more details than
given here: L. Singer (1970), E:W. Cheney (1966), J. Rice (1964), (1969), Collatz,
Krabs (1973).

Usually uniform approximation by means of a Chebyshev system is
considered. We shall give only the formulations of some theorems.

Let K be compact and let C(K) be the set of all continuous functions on

ty® B® are y, B at the kth iteration.

Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:21, subject to the Cambridge Core terms of use,
available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781107340756.002


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.002
https://www.cambridge.org/core

16 Linear approximation

K (real- or complex-valued). The following characterization theorem is known
as the Kolmogorov criterion (A.N. Kolmogorov, 1943).

Let feC(K) and let G be a linear subspace of C(K). A function ¢yeG is a
best approximation of f with respect to G if and only if the inequality

min Re (f(x) — ¢o(x)) @(x) < 0

xeA

holds for every @eG, where A is the set of the extremal points of f— ¢, i.e.

A= {X:XEKy|f(x) — o) = || f— 0 HC(K)}s

and 4 is the conjugate of o.

The uniqueness theorem 1.7 has the following form.

Let G be a Haar subspace of C(K) (see section 1.3). Then for every fe C(K)
there is exactly one best uniform approximation of f with respect to G
(A. Haar, 1918, A.N. Kolmogorov, 1948).

The theorem (1.6) of Chebyshev also is true for Chebyshev systems (Haar
subspaces), as follows.

Let G be a Haar subspace of C[a,b] with dimension n. Let oG be the best
uniform approximation to feC[a,b] with respect to G. Then there exist n + 1
points x;, i=1,....n+ 1, a<x; < <x,,; <b, such that

)=o) == D1 f=@leams i=1..ontLe=x1.

For the first and second Remez algorithms see Remez (1969). There are
many modifications of these algorithms, see the books of Cheney (1966), Rice
(1964, 1969), Meinardus (1967). We have used in section 1.3 the book of
Cheney (1966).

Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:21, subject to the Cambridge Core terms of use,
available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781107340756.002


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.002
https://www.cambridge.org/core

2

Qualitative theory of the
best rational approximation

The most essential problems in the qualitative theory of the best approxi-
mation are the problems of existence, uniqueness and characterization of the
best approximation. Finally the problems connected with the continuity of
the operator of the best approximation, or, as is mainly used, the continuity
of the metric projection, are considered. In this chapter we shall consider
these questions for the best rational approximation. The difficulties arise from
the fact that the set R,,, of all rational functions of order (n, m) (see the exact
definition in section 2.1) is not a finite dimensional linear space and the
bounded sets in R,,, are not compact in C[a,b] or in L{a,b). Nevertheless
we shall see that there exists an element of best approximation in C[a, b}
and L,(a,b) (section 2.1). Moreover in C[a,b] we have uniqueness and
characterization of the best approximation by means of an alternation, as in
the linear case (see section 2.2). Unfortunately in L,(a,b), 1 <p < oo, we do
not have uniqueness (section 2.3). In section 2.4 we consider the problem of
continuity of the metric projection in C[a,b] —the metric projection is
continuous only in the so-called ‘normal points’ (see section 2.4). In section
2.5 we consider numerical methods for obtaining the rational function of
best uniform approximation. We should like to remark that we examine only
the usual rational approximation. Some references for the qualitative theory
of generalized rational approximations are given in the notes at the end of
the chapter.

2.1 Existence

We shall denote by R, the set of all real-valued rational functions with
numerator an algebraic polynomial of degree at most n and denominator an
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18 Best rational approximation

algebraic polynomial of degree at most m, 1.e. reR,,, if r has the form

ax"+a, X" '+ +a
r(x)_ n—1 0

= 0 1
buX™ 4 by X"+ o+ by @

where a;,i=0,...,n, b;, i=0,...,m, are real numbers.

If reR,, has the form (1) with a,#0, or b, #0, we say that r is
nondegenerate.

If ¥ =p/q, p and q algebraic polynomials without common zeros, we say
that r is a reduced rational function, or r has a reduced form, or r is irreducible.

Since the set R,,, is nonlinear when m > 1, we cannot apply the general
theory of linear approximation to obtain the existence of the best rational
approximation in the spaces C[a, b] and L (a,b), 1 < p < c0. So we shall prove
its existence directly.

We define the best rational approximation in C[a,b] and L,(a,b), | <p< o,
of order (n, m) as usual:

an(f)C[a,h] = inf{ I f—rl Cla,b]* reR,,,,,},

an(f)Lp(a,b) =inf{|f—r Il pab: reR ).

When it is clear we shall write briefly R,,(/)c or R,.(f) and R,,(f),, or
R,.(f),- When m =n we shall use the notations R,(f)cras1- Ri(f)e or R,(f)

and Rn(f)Lp(a,b)a Rn(f)[,p or Rn(f)p

Theorem 2.1 (Existence theorem), Let feCla,b] (or feL (a,b), | <p< ).
Then there exists a rational function reR,,, (respectively r,eR,,) such that

I f—r an, b] = an(f)C[a,b]

(respectively

H f — HLp[a.b] = an(.f)Lp[a,b])'

Remark. The rational function r, respectively r,, is called a rational function
of best approximation to f in C[a,b], or of best uniform approximation to
f, respectively a rational function of the best L -approximation to f, of order
(n, m).

Proof of theorem 2.1. Let X denote the space Cla,b] or L(a,b), | <p < 0.
Let feX and ryeR,,, be such that

If=rvllx <Ru(/x+1/N, N=12. ... )
Then it follows that
Iy lx < RunlNx+ 1 fIx+1=4, N=12,... 3)

Let ry = pnx/qy, Where pyeP,, gyeP,,. We can assume that ry is normalized
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2.1 Existence 19

so that
lanlcas =1, N=12,.... (4)

Now (3) and (4) give us

[ Pyl = lanrallx < llrnlixllay HC(a,b] <A (5)

From (4) and (5) it follows that the sets {py:N=1,2,...} =P, and
{qy:N=1,2,...} = P,, are sequences in compact sets (P,,P, arc finite
dimensional spaces), so there exists a subsequence N;, i=1,2,..., 0, and
peP,,qeP,, such that

||P_PN,- lx — 0 lp - P, HC[a,b] — 0;
Ni—= o0 Ni—» (6)

lg— qn; H(‘[n.b] -— 0.
Ni— oo

(all norms in a finite dimensional linear normed space are equivalent).
From (4) and (6) we obtain

g llcpan =1 (7
If x is not a zero of g, in view of (6) gy,(x)—q(x) and therefore gy (x) # 0

for sufficiently large N;. Using (6) we obtain (r = p/q).

|r(x) — ry(¥)] < 1 {Ipllcla—awlc+liglclp—pwlct — 0. (8)

|(1(X)fIN,-(x Ni»ow
Therefore, for every xe[a,b], x not a zero of g, we get from (2) and (8)
r(x) = f () < [r(x) = ry ()] + [y (x) — (X)IN_—> Rl e )
or
[r(x) — f(x)] < an(f)C[a,h]' (10)
On the other hand we have from (3) for every xe[a, b]
(x
P 4 or Iyl < Algu 0.
QN,-(X)

The last inequality together with (6) gives us
Ip(x)| < Alq(x)], xela,b]. (11)

The inequality (11) shows that every zero of ¢ in [a,b] is also a zero of p
with at least the same multiplicity. Therefore r = p/q is a continuous function
in [a,b]. Then, since (10) is valid for xe[a, b] which are not zeros of ¢, (10)
is valid for all xe[a, b], so (10) gives us

IS =rlle=Runl e
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20 Best rational approximation

Now let X =L [a,b]. Let K be some collection of intervals A; = [, f;] =
[a, b] such that A, does not contain a zero of g. Then, by (10), (6), (2), we have

lip
{J f(x)— V(X)i”dx}
K

1/p
SIS =rylip+ {J Ir(X)~rNi(X)i"dX}

< f = ryll, + (mes(K)"{iplcllg —qy,
- an(f)pa

Ny

i

lc + HCI“CHP“pNi Hc}

lip
U |f(x)— r(X)I”dX} <R,y
K

for every such compact K. Since the number of the zeros of ¢ is finite, it
follows from the definition of the Lebesgue integral that || f —r i, < R,,.(f)
and since reR,,, we must have

Lf =7l = Rl f),- O

The proof of this existence theorem shows the difficulties which arise
when we work with rational functions. Roughly speaking, we must think in
terms of the poles of the rational function — the proof of theorem 2.1 is so
long because we have to consider the poles of r. Indeed it follows from the
proof that in the uniform case it is not possible that r has poles on [a, b],
because, if g has a zero, on [a,b], p should have the same zero at least with
the same multiplicity. But from here follows the possibility for the best rational
approximation r to be degenerate: this means that peP,_,, qeP,_, if
r=p/qeR,,,.

We shall see that in questions connected with the continuity of the metric
projection in C[a,b] on R, this possibility of degeneracy will be the main
problem.

P

2.2 Uniqueness and characterization of the best
uniform approximation

We have seen that if feC[a, b] then there exists a rational function reR,,
of best uniform approximation. The set of rational functions R,,, is a nonlinear
one; nevertheless it still has uniqueness of the rational function of best uniform
approximation and also characterization of this best approximation by means
of alternation. In order to formulate this theorem we shall need the notion
of the defect of a rational function.
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2.2 Best uniform approximation 21

Let reR,, and the reduced form of r be r=p/q, 1c. p and ¢ have no
common zeros. The defect d(r) of r is given by

i —d ,m—d R 0
dr) = {mln {n—degp,m—degq} r%
m, r:O,

where deg p denotes the exact degree of the algebraic polynomial p (degp =k
if peP, and p¢P,_,).
It follows directly from the definition that:

(a) r is degenerate if and only if d(r) > 0O,
(b) d(r) is the greatest number s for which reR

(n—s)(m~—s)-

Theorem 2.2 Let feCla,b]. For all natural numbers n and m the rational
function reR,,, is a rational function of best uniform approximation to f of
order (n,m) if and only if there exist N =n+m + 2 — d(r) points x;,i=1,..., N,
a<x, <Xy < <Xxy<b, such that

f(xi)“r(xi)z8(_1)i,|f‘r[|qa,b], i=1,...,N,e= £ 1.

Moreover the rational function of order (n, m) of best uniform approximation
to f is unique.

In other words r is the rational function of order (n,m) of best uniform
approximation to f if and only if f—r alternates at least n+m + 2 — d(r)
times in the interval [a, b].

Before proving theorem 2.2 we shall give some lemmas.

Lemma 2.1. Let peC'{a,b] and let x;, i=1,... k+1, a<x; <x, <<
Xpt+1 < b, be k+ 1 different points in the interval [a,b] such that

Ox) #0,0(x,) = =0(x) =0, ox,;)#0,
sign (x,) = (—1)*sign @(x; 4 ;). (1

Then ¢ has at least k zeros on (x,,x,, ), if we compute every zero with its
multiplicity.

Proof. The function ¢ has k — 1 zeros on (x;,X; 41} X3,X3,...,X;. We must
show that there exists in (x,, X, ;) a zero z of ¢, different from x,, x3,...,%;,
or that one of the zeros x,,..., x, has multiplicity at least 2.

If there does not exist a zero of ¢ in (x, x, ;) different from x,,...,x,,
then in each interval (x;, x;, ), i = 1,..., k, the function ¢ has constant sign.
If the sign of ¢ is the same in two adjacent intervals (x;, x;; 1), (X;+1>X;42)
then x;, ; must be at least a double zero of @, since e C![a, b]. If we assume
that in all adjacent intervals (x,x; ), (X;y 1, X42h i=1...,k—1, ¢ has a
different sign, we obtain that sign ¢(x,) = (—1)** ! sign ¢(x,, ;) and we come
to contradiction with the condition (1) of the lemma. O

Lemma 2.2. Let {@;}}., be a Chebyshev system on the interval [a,b],
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22 Best rational approximation

0;eCa,b], i=1,....n, and G={p: @Y}, ap;} be the Haar subspace,
generated by @,..., 0, Let x;,i=0,....,n,a<Xg<x; <--- <X, <hben+1
different points on [a,b]. If for p€G we have

(—Dip(x)=>0, i=0,...,n,
or

(—Dip(x)<0, i=0,...,n,
then ¢ =0.
Proof. Let us assume that ¢ #£ 0. Let us have for example
(—eo(x) =0, i=0,...,n 2)

We shall prove that ¢ has at least n zeros in the interval [a, b], every zero
counted with its multiplicity, which contradicts the assumption of the lemma,
that {@;}?., is a Chebyshev system on [a, b].

If o(x)#0,i=0,...,n from (2) and the continuity of the function ¢ it
follows at once that ¢ has at least n zeros in [a,b]. Let now ¢(x;) =0 for some
i. If ¢(x;)#0 for only one value of i, then the same result follows. There
remains the case when ¢(x;) # 0 for at least two values of i. Let the first two
be jand j+k, ie.

P(xg) =+ =(P(xjA1)=07 @(xj)7é0, 3)
Pxj )= =0x;4-1)=0, @(x;4,)#0.
From the hypothesis (2) it follows that
sign @(x;) = (—1)* sign @(x; ). (4)

Since peC*[a, b], from (3), (4) and lemma 2.1 it follows that ¢ has at least
k zeros in the interval (x;,x;,,) and therefore ¢ has at least j + k zeros in
the interval [a, x;,,]. Going on in this way, we obtain that there exist n zeros
of ¢ in [a, x,], every zero counted with its multiplicity. O

In the proof of theorem 2.2 we shall use also the following modification
of the well-known Vallée-Poussin theorem for polynomials.

Theorem 2.3. Let feCla,b]. Let peP,, qeP,, and let q have no zeros on [ a, b].
Let there exist N =n + m + 2 — d(p/q) points {x;}}_,a<x, <x; < <xy <
b, in [a,b] such that

. plx;)
q(x;)

f(x) =g —14, e=+1,4>0i=1,...,N. (5)
Then

Rl fctapy = min {4;:i=1,...,N}.
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2.2 Best uniform approximation 23

Proof. Let us assume that there exists a rational function r, =p,/q,€R,,,,
(p./q,)-irreducible, such that

I f=rillcas <min{iz:i=1,... N} 6)

Let us consider the values of the difference s = p/qg — r, at the points x;,
i=1,...,N. We obtain from (5) and (6) that

sign s(x,) = sign {(” () _ f(x») - f(x,-))}
: q(x;)

_ sign<”(x") ~ f(xi)> —g(—1)*1, i=1,...,N.
q(x;)

Hence s has at least N — 1 different zeros y,,i=1,..., N — 1, in the interval
[a,b], ie.

sy)=0, i=1,...,N—1

Let us note now that r, = p,/q, has a reduced form and |/ r, [, < o0, and
consequently ¢, has no zeros on [a, b]. So from

() = PG i) _ 0 imlL..N_1

av) @)

it follows that
pya.(v) —piya(y) =0, i=1,...,N-1,

i.e. the algebraic polynomial pq, — p,qe Py, M <n+m—d(p/g)= N — 2, has
at least N — 1 > M different zeros in the interval [a, b]. This contradiction
proves the theorem. O

Let us mention that later on we shall use theorem 2.3 in the numerical
method of Remez for finding the rational function of best approximation
(see section 2.5).

Proof of theorem 2.2. First we shall prove that if reR,,, realizes an alternation,
then r is a rational function of best uniform approximation to f of order
(n,m). If we apply theorem 2.3 to f and r with

L=Ai=|f— "l crap1s

we obtain that A< R,,(f)cup, and since reR,, we must really have
A= £ =rl¢ta.e) = Rum(f) i.€. 7 is a rational function of best uniform approxi-
mation to f of order (n, m).

Now let r be a rational function of best uniform approximation to f of
order (n,m). We shall prove that f —r must alternate at least N=n+m+
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24 Best rational approximation

2 —d(r) times in [a,b]. Let us assume the opposite, that M <N — 1 is the
highest number of points x; < x, < -+ < xy 10 [a, b] such that

f(xi)_r(xi):8(_1)i“f_rHC[a.b] =&(— l)ian(f)C[a.b]a i=1L....Me==+1
(7

Then there exist M + 1 points &,,i=0,....M, a=¢{,< & < - <éy=b
such that for every xe[¢&;_,,¢;] we have

8( - l)l(f(x) - V(X)) > = an(f)C[a,h]a = 1’ L] M. (8)

In view of (7) the continuous function f—r changes its sign in (X, %511
therefore we can assume, as in section 1.2, that the points &,,i=1,...,M — 1,
are such that

flE)—r€)=0, i=1,....M—1. )
Let us consider the algebraic polynomial
sx)=(=DMx — &) (x — Ey- )Py -y (10)

Let r = p/q.and p and ¢q have no common zeros. Since se Py_,, peP,_ 4,
geP,, _ 4, there exist two algebraic polynomials p,eP,,, q,€P,, such that

S=pp1—49y-

Let us consider the rational function

p— &dq,

eR
q—&opy

F= nmo (1)
where ¢ (e =1 or — 1) is the same as in (7), and J, é > 0, will be chosen later.
Since || f — 7 llcas) < 9, p and g have no common zeros, and g has no zeros
in [a, b], we can find §, so that for 0 < <, the polynomial g — ¢dp, has
the same sign as ¢ in [a, b].
Let us consider the difference f — 7. We have
P_p—edq . - edppy—qqy) _ €03

= V———.
q q—eop, qlg —eopy) qlq — €op,)
Let 8, < 6, be such that for 6, 0 <d < J,, we have for xe[¢&;,,&;]
o — DS (x) — #(x)) = e = D(f (x) = r(x))

os(x)

DT o em)

> = an(f)(‘[a,b]~
(12)

This is possible in view of (8), since f — r is a continuous function in [a, b].
On the other hand for xe(é;_,,&), i=1,....M, x=¢§,, x=_¢&,,, we have
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2.2 Best uniform approximation 25

for 0<d <9,

) . . )
o= D) = 0) =~ D0 = 1) = o 1) S_"i_’ép 5
5(— 1)s(x)
~= Rmn . a -
S Rl et = 05 (0 = 6092 (0)
< an(f)('[a.h]ﬂ (1 3)

since by (10) we have (— 1)s(x) > Oforxe(é,_ |, &) i=1,...,. M, x =&y, x =&y,

In view of (9) we have also (13) for x=¢;, i=1,...,M —1, ie. for all
xe[a,b]. Since f — 7 is a continuous function on [a, b], the inequalities (12)
and (13) give us

I f = Fllctas) < Rumd Nerany- (14)

By (11) 7eR,,,, and therefore (14) is a contradiction. Consequently f —r
must alternate at least N times.

Now let us prove the uniqueness of the best rational approximation of
order (n, m).

Let us assume that there exist two different rational functions r, =
P./9.:€R,, and r, = p,/q,€R,,, such that

If—r HC[a,b] =|f—r; “C[a,b] = an(f)C[a,b]'

We can assume that », = p,/q, and r, = p,/q, have a reduced form and
d:,4, have no zeros in [a,b].

Let Ny=n+m+2—d(r,), Ny=n+m+2—d(r,) and let us assume for
definiteness that N, > N,, or, which is the same, d(r;)<d(r,). Let x,
i=1,...,Ny, a<x;<--<xy, <b, be the points of alternation for r, i.e.

Sx) —ri(x) =e(— l)ian(.f)C[a,b]’ i=1,...,N,e= % 1. (15)

Let us consider the difference s=r —r, at the points x;, i=1,...,N;.
There are two possibilities:

(@ s(x)=0,i=1,...,Ny,
(b) s(x;) # 0 for some i.

In case (b), since | f(x;) - r{(x;)| = R,,.{f), we must have
&ry(x) — f(x)) <&ry(x) — fx)), &= sign(r(x)—f(x)),
and therefore
sign s(x;) = sign (r, (x;) - f(x;)). (16)
From (15) and (16) it follows that
g—1D*s(x) =0, i=12,...,N . (17)
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26 Best rational approximation

On the other hand s can change its sign on [a, b] at most N, — 1 times, since

&_Q=P1Q2_P241
q, 42 919>

S=r —r,=

and p,g,—p,q,€Py, where M=n—dr)+m—dr,)<n+m—dr,) =
N, —2 and therefore s belongs to the Haar subspace

From here, (17) and lemma 2.2 it follows that s=0, i.e. r, =r,. O

2.3 Nonuniqueness in L (a,b),1 <p < o0

One of the unpleasant facts in the theory of the rational approximation is
the nonuniqueness of rational functions of best approximation in L,,
1 < p < . More precisely there exist functions feL (a,b),1 < p < oo, which
have more than one best approximating rational function of order (n,m)in L,.
Next, we get a function which has at least two best approximating rational
functions of order (0,2) in L(—1,1), I <p < .
Fix A > 1. Choose & such that 0 <z < ¢ and when p> 1

1
(1 + (6)V2~ D)1 > 1 —Z<arctanA —%). (1)

Obviously such a choice of ¢ is possible.
Consider the function

f(x)__ 05 XE[-—I,——%—SJU[—%‘FS,%—SJUE%‘FS,]]
1, xe(—3—¢ —3+6)u—ez+e).

Clearly f is an even function. We shall show that there is no even best
approximating rational function of order (0, 2) to f in L,. This fact, obviously,
implies the required nonuniqueness.

Consider the rational function r*(x) = B*/((x — 3)* + B?), B=¢/A,r*eR, ,
Clearly 0 < r*(x) < 1, xe(— o0, o0), and hence '

1 1/p
||f—"*|!LP(1,1)<<J |f(x)—r*(x)|dx>
-1
¢ B%dx © Bidx \!r
<| 46—
(8 _[Asx2+Bz+2J; x2+BZ>
1 T\
=(4s)”"<1—z<arctanA—Z>> ~ V)
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2.4 Rational metric projectionin C[a, b] 27

Now, let reR, , and r be an even function. It is readily seen that r is
monotone on [0, 1]. Suppose that r is nondecreasing on [0, 1] (the case when
r is decreasing is considered similarly). Consider the case when 0 < H(x) < 1,
xe(} — ¢, 1) (the other possible cases are trivial). Let p > 1. Then we get

1

1/2+e
f f"'||L,,(—1,1)><2JY (1—r(%+8))”dx+2J
1

/2—¢ 1/2+¢

1/2+¢ 1 1/p
> inf <2j (1 ~c)"dx+2j c"dx>
0<exgl 1/2—¢ 1/2+¢

1\t
> (4e)YP inf ((1 —c)”+—c">
6e

O<exld

1/p
G +e)P dx>

> (4)V'P/(1 + (6¢)" /7~ Dy~ 1ip,

When p = | we have immediately || f — 7| -1,1, > 4e. The last estimates, (1)
and (2) imply that any even rational function re R, , is not best approximating
to f in L,(—1,1). Consequently, there exist at least two best approximating
functions.

2.4 Properties of the rational metric projection in C[a, b]

Let X be a metric space with a distance d. The set G < X is called a Chebyshev
set if for every feX there exists a unique geG such that

d(f,g) = inf{d(f, o). 9€G}.

This unique element is usually denoted by P for P fand is called a metric
projection of f on G.

Here we shall discuss the problem of continuity of the metric projection
from C[a,b] on the set R,,,,. We define the operator P of the metric projection
in C[a,b] on R,, in the following way:

If f¢R,,, then Pf =r where r is the rational function of best uniform
approximation of order (n, m).

If feR,, weset Pf =f.

The metric projection is said to be continuous at the point f if from f, — f
(in the corresponding metric) it follows that Pf, — Pf (in the same metric).

The interesting fact about the problem of continuity of the metric projection
in C{a,b] on R,,, is that the continuity is connected with the degeneracy of
the rational function of best approximation to f, i.e. with the degeneracy of
Pf. We repeat that the rational function reR,,, is degenerate if its defect
is >0, i.e. d(r) > 0 (see section 2.2).

In this section we shall write || /|| instead of || f [l ¢ja.5-

The following theorem holds.
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28 Best rational approximation

Theorem 2.4. The metric projection in Cla,b] on R,, is continuous at
feCla,b] if and only if d(Pf)=0.

The points feC[a, b] for which d(Pf)= 0 are often called ‘normal points’.

Theorem 2.4 is connected with the names of Machly and Witzgall (1960),
Cheney and Loeb (1964), Werner (1964) (see the notes at the end of this
chapter).

We shall obtain the part ‘if” in theorem 2.4 as a consequence of another
property of Pf at points where d(Pf) =0 - the strong uniqueness of the best
approximation.

Let X be a metric space with a distance d and let Pf be the metric
projection of feX on the Chebyshev set G < X.

The metric projection is called strongly unique at the point feX if for
every peG we have

d(f, @)z d(f,Pf)+d(p,Pf)

where y > 0 is a constant, possibly depending on f.

Let us remark that the last statement of theorem 2.2 can be reformulated,
using the notion of Chebyshev sets, as follows: the set R,,, is a Chebyshev
set in C[a,b].

The following theorem holds.

Theorem 2.5. The metric projection Pf in Cla,b] on R,,, is strongly unique if
d(Pf)=0.
In the proof of theorem 2.5 we shall use the following lemma.

Lemma 2.3. Let R=5/Q€eR,,, Q(x)>0 for xe[a,b]. The set A={p+ Rq:
peP,,qeP,,} in Cla,b] has dimension k=n+m+ 1 — d(R). Moreover A is a
Haar subspace on the interval [a,b].

Proof. Let dim D denote the dimension of the set D < C[a, b]. Evidently we
have

dim 4 =dim P, + dim RP,, — dim(P,~RP,,)
=n+1t+m+1—dim(P,~nRP,), (1)

where RP,, denotes the set RP,, = {¢:¢ = Rq:qeP,}. If S=0 then d(R)=m
and dimA=n+ 1. Let S #£0. An element peRP,, belongs to P, if and only
if ¢ = Ry where ¥ = Qq,. Let us estimate the degree of q,. Since YeP,,
QeP, _4esg, 9 must belong to Pysp, Where defQ is the defect of the
algebraical polynomial Q in P, i.e. defQ =m —degQ.

On the other hand, ¢ = Ry = Sq; must belong to P,, therefore g, must
belong to Pgys. Consequently gq;€Pyg,, d(R)=min(defS,defQ), and the
dimension of P, RP,, is exactly d(R) + 1. From (1) we obtain that dim 4 = k.

Now let us prove that 4 is a Haar subspace. Suppose that ¢ =p + Rgq,
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2.4 Rational metric projectionin C[a, b] 29

peP,, qeP,, has at least k zeros in [a,b]. Then the algebraic polynomial
pQ +Sq€P, p_gyr has k=n+m+1~d(R) zeros in [a,b], which is
impossible. |

Proof of theorem 2.5 (Cheney, 1966). Let us set for r # Pf

CUf =Pl =0 = PL 1 =7 = R
M= T hy Pl

We must prove that
inf{y(r):reR,,.r #Pf}=7>0.

Let us suppose the contrary: y =0. Then there exists a sequence {r,}%,
such that r, = p,/qi, 1 # Pf, peP,,qeP,, and y(r,) — 0. We may assume

k— oo
that
[Pl + gl =1 A3)

(if we multiply p, and g, by a constant r, does not change).
Let Pf=p/q,peP,,qeP,. From condition (3) it follows (passing to
sub-sequences if necessary) that there exist p*eP,, g*eP,, such that

IIPk—p*Hk—>0, qu—q*llk——>0.

Let us first remark that || p*/q*||¢(..5 < o©. Indeed, in the opposite case
from (2) it follows that y = 1.
We shall show that

p*/q* =1*=p/q=PF. (4)
In fact if r* # p/q = P f then from (2) the contradiction follows:
. e e
0=y = lim y(r,) = lim
PSS P P 1
If=r*I=IS—PSfIl _
= >0,
[ r*—Pf]

since | f —r*| > || f — Pf| if r* # Pf by the uniqueness of the best uniform
approximation (theorem 2.2).

Since d(Pf)=0, Pf = p/q is irreducible and p has degree exactly n or ¢
has degree exactly m. So from (4) it follows that p* = ¢p, g* = ¢q, ¢ a constant.
Since we can set || p|| + gl =1 by (3), it follows that we can set c=1.

Let

Y={x:[/x)=PNHXI=1f=PfI}
a(x) = sign (f(x) — (P f)(x)).
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30 Best rational approximation

For every yeY we have
Yedlre—=PfIl=1f~nl—1f—Pf]
Z o) —rdy) — o) — (PSHY)

s @GP ) — py)
q(y)

= oL =)= ()

Now since ||g, —gq|l — 0 and |¢g(x)| > 0 for xe[q, b] it follows that there
k- o

exist ¢ >0 and N > 0 such that for k > N we have |q,(x)| = ¢ > 0 for xe[a, b].
We have

inf {max o(y)(@P f — p)(v): §eP,, peP,, |gPf — pll =1} =c>0.  (6)

yeY

Let us assume the contrary, that ¢ = 0. Since the set |gPf — pl| =1,4€P,,,
peP, is compact, there exist geP,,, peP,, |gPf — p|l =1, such that

max a(»)@GPf —p)y)=0. ™
By theorem 2.2 the set Y contains N=n+m+ 2 points x;, i=1,...,N,
a<x; <Xx,<--<xy<b (remember that d(Pf)=0), such that
o(x) =sign(f(x)—PHHxN=8&-1), i=1,...,N, &=+ 1. (8)
From (7) and (8) we obtain
e(— DG )P f)(x (x)<0, i=1,....N. )

But gPf —ped={p:p=p+ qu,peP,,,qu,,,}. By lemma 2.3 the set 4 is
a Haar subspace with dimension k=n+m+1—-d(Pf)=n+m+1. So (9)
and lemma 2.2 give us gPf —p=0, which contradicts |[gPf—p| =1.
Therefore ¢ > 0.

From (5)-(7), using that | g, || <1 (see (3)), |qi(x)| > ¢ for k> N, xe[a, b],

we have
) lre—Pf > max a(y)(qk;/(‘y)— pI()
> max oW @l [ —p)y)
zclqlPf—pll ZcellPf—rd,
i.e. y(r,) = ce which contradicts y(r,) — 0. O

k=

Theorem 2.6. Let feCla,b] and d(Pf)=0, where P is the operator of the
metric projection in C[a,b] on R,,,. Then there exists a constant c(f) such that
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2.4 Rational metric projectionin C[a, b] 31

for every geCla,b] we have

IPf—Pgl<c(Ng—/S1.

Proof. Using the strong uniqueness of the metric projection in C[a,b] on
R, (theorem 2.5) at the normal point f (d(P f) = 0) we obtain that there exists
a constant y(f) > 0 depending possibly on f such that for every reR,,,, we have

If=rizIf =PfI+9NIPSf —rl.

Setting r = Pg we obtain

YWMPSf—Pgl<|f—Pgll=IIf—Pfl
<if—gl+lg—Pgll—1if=Pfl
<l f=gll+lg=Pfli—=1If-PfI
Shif=glh+lg=SI+1/=PflI—=lf—-Pf]

=2|f—gl,
ie.
P Pyl < 2
IPf— glf\mllf—gl!- O

The part ‘if” of theorem 2.4 immediately follows from theorem 2.6. Now
we shall prove the part ‘only if’. This part follows immediately from the
following theorem.

Theorem 2.7. Let feC[0,1] and let
an(f)C = H f -r H C[0,13)» rEan$

realize an alternation of n + m+ 2 —d points, d(r)=d > 0.
There exists 0>0 such that for every ¢ 0<e< 9, there is a function
f.€CI[0, 1] such that
I f —fellcro.1y < 26,
an(fs) = ” fe - “C[O,l]’ rSEan’ d(rs) =d—1
and
Ir—r.l =0.

In the proof of theorem 2.7 we shall use the following lemma.

Lemma 2.4. Let X >0 be given. There exist a,f,y such that the function
@(x) = y(x — a)/(x — B) has the following properties:

e0)=a, @X)=b O<b<a ¢(x)<0, xe€[0,0)
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32 Best rational approximation

Proof. From the conditions on ¢ we obtain

o X—a
V=4,

— =b.
B [y

We get
o= fa,
X —ya = Xb — b,
yX — Ba = Xb — b,
Blb—a)=X(b—7),

X(b—y) azai(b—y)
b—a’ yb—a)’

Since a > b, for 0 <y < b we have a < f <0 and

B=

ey 2B
(p(x)—y(x_ﬂ)2<0 for xe[0,00). O

Proof of theorem 2.7. Let the points of alternation of f —r be x;, i=1,...,k,
O0<sx;<x,<--<x <1, k=n+m+2—d Without loss of generality we
can assume that the first extremum of f — r is positive, that x, is the first point
in [0, 1] for which f(x,) —r(x,)= —R,,(f) and that

JOe) = r(x1) = Ron(f), %1 = max {x: f(x) = r(x) = R,p(f), X < x,}.
Let z=min { x: f(x) —r(x) =0,x; < x <x,}. Let us denote
I ={x0<x<z}, L={xz<x<1}.
From the assumption given above it follows that
Sx)—r(x)> — R, (f) for xel,
and therefore there exists 6 > 0 such that
f(x)—(r(x) + 8) > — R,,(f) for xel,.
We can assume also that 6 < R,,,,(f). Let 0 <& <. Let X, be such that
%, =max {x:xe[xy,z], f(x) ~ r(x) = R, (f) — &}.

Let r =p/q, q(x) = 1 >0 for xe{0,1].
From lemma 2.4 it follows that there exists a function @,(x)=y(x — a)/
(x — f) such that

00) = @, p(F,) = min<au,;>
and
PAx)<0 for xe[0,1].
Set ¥, = @./q.
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2.5 Numerical methods for best uniform approximation 33

From these properties of ¢, it follows that

JX) = (r(x) +¥ux) = — Ryl f)  for xel,, O<a<op

Since ¢, is a continuous function of a, when a increases we shall have an
a for which there is a point x,€[0, £,) such that

S (xo) = (r(x0) + ¥4(x0)) = — Ryn(f)

and for every xel, we have

| /() = (r(x) + Y ()] < Ry ).
Obviously we must have d = 9.
In the interval [X,, z) there is a point X, for which

J(x) = (%) + ¥olx1)) = max { (x) — (r(x) + Y (x)): x€[%y, 2) } = R,,( /) — &,
and, since @J(x) <0, ¢ (X,) = min(ey, a/2), it follows that 0 < & < 2.
Let us define

rox) = r(x) + ¥ (x)

Then r,€R, - 441 m-a+1 S Ry

In the interval I, we define f,(x) = f(x) + ¥ (x). In the interval I, we define
Sdx)=f(x) for xe[0,x,], in [xy,z] we define f, so that f(x,)=f(x,)+¢,
1 e < 26 £,eC10.13, 11 £, rilegs, i < Ruml ety

From the construction given above it follows that the points x4, X,, x,,...,
x, are points of alternation for f, —r,, and, since r,eR, 4. pm-g+1, from
theorem 2.2 it follows that

an(fs)Cz Hfs_rEHC: “f_rHCanm(f)C
Since ||r —r,llc =@l = and || f —f, || < 2¢, the theorem is proved. []

2.5 Numerical methods for best uniform approximation

Best rational approximations with respect to uniform distance are often used
for representation of functions because of their perfect approximation
properties and the possibilities which we have with the advent of high-speed
digital computers. Two algorithms have turned out to be suitable - the
differential correction algorithm and the second Remez algorithm.

Differential correction algorithm
This algorithm for finding the rational function of order (n, m) of best uniform
approximation to feC[a, b] is due to Cheney and Loeb (1961).

In this paragraph we set

R,,={r:ir=p/q.peP,,qeP,.q(x) > 0,xe[a,b]},
ARy=|f—r HC[a‘b]'

Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:21, subject to the Cambridge Core terms of use,
available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781107340756.003


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.003
https://www.cambridge.org/core

34 Best rational approximation

The algorithm can be described by the following iterative process:

(i) Choose an initial approximation ry, = py/q, such that roeR,,,;
(il) Set k=0;
(iii) Compute the number Ay = Ar) = || f — rillcrass
(iv) Form the following function of r = p/q, reR,,, —
0,(r)= max {| f(x)g(x) — p(x)| — Ayq(x) };

xela,b]

(v) Select 1y 1 =DPu+1/Qu+1>Te+1ERum» SO as to minimize the function ,(r)
subject to the constraint || @41 | cran=1-

Ox(r + 1) = min {5k(r)3 reR, ., lqllc= 1}‘;

(vi) If 0ulric+ 1) 2 0 go to (viil), if G4(ri1 1) <O go to (vii);
(vil) Set k=k+ 1; go to (iii);
(viii) Stop; r, is the rational function of order (n,m) of best uniform approxi-
mation to f.

Remarks (1) roeR,,, may be arbitrary (for example r, = 0/1).

(2) The minimization of J,(r) is a problem of convex programming and
there exist effective methods for its solution. Evidently this step of the
algorithm is the most difficult to carry out.

(3) In the differential correction algorithm originally given by Cheney and
Loeb (1961), in step (iv) the function J,(r) is defined as

{If (x)g(x) — p(x)| — AkCI(X)}
qx) .

0,(r) = max
xela,b}

In Barrodale, Powell and Roberts (1972) it is shown that this algorithm is
quadratically convergent if f is (r, m) normal (see section 2.4) in contrast to
the algorithm described which exhibits a linear convergence rate — theorem
2.8 below.

(4y In practical applications the constraint | g ||y, = 1 is less convenient
than|b;| <1, i=0,...,m, where g(x)=by + b;x+ --- + b,,x™, and this condi-
tion does not change the proof of convergence.

(5) In practical calculations step (vi) is changed to

(Vi) If 0,{r,.+ 1) = — & go to (viii), where ¢ is a sufficiently small positive number.
The following theorem shows the effectiveness of the suggested method.

Theorem 2.8. Let feCla,b]. Then the sequence {A}-, generated by the
differential correction algorithm satisfies

0 < AkJrl - an(.f)C[a,b] < 9k+ 1(AO - an(f)C[a,b] )’

where 0 < 0 < 1.
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2.5 Numerical methods for best uniform approximation 35

Proof. First we shall prove that if qy(x)> 0 for xe[a,b] then ¢, (x)> 0 for
xe[a,b] if r,_; is not the rational function of order (n,m) of best uniform
approximation to f. Let us assume that k, is the smallest index for which
there exists a point xq€[a,b] such that g, . (x0) <0. If r, eR,, is not the
rational function of best uniform approximation to fin R,,,, then there exists
r=p/q,reR,,,llqlc= 1, such that A(r) <A(r,,) and

OuoFio+1) S Oy (r) = max {(| f(x) — r(x)| — A, )g(x) } <O.

xela,b]
But from g, +(x0) <0 we get
Oro(Tho+ 1) 2 1 (X0) o + 1(X0) = Pro+ 1(X0) — Apoio + 1{X0) = 0,

which contradicts the previous inequality. Thus we have proved that g,(x) > 0
for xe[a,b] if r,_, is not the best rational approximation to f.

Now we shall prove that d,(r, ) <0, and J,(ry,,)=0 if r, is the best
approximation to f. In fact

O+ 1) S Or) =0

and if r is not the best approximation to f then as above there exists reR,,,,
r=p/q, | qlc=1, such that A(r) < A(r,) and consequently d,(r, , ;) < d(r) <O.
From

0> 5,y + 1) = max {(| f(x) = res 1(¥)| — Agi 4 1(x): xe[a, b] |
> max {| f(x) = 1y ()] — A xela,b]} = Ay — Ay

we find that the sequence Ay, A, A,,... converges downward to a limit L. If
we suppose that L > R,,(f)c then there exists reR,,,, r =p/q, |4 ]lc = 1, such
that A(r) < L and

[f(x) = rx)| <A(r)<L<A,, xela,b].
On the other hand
O(ric+ 1) < 0y(r) = max {(| f(x) — r(x)| — Ay)q(x): xe[a, b}
< min {q(x): xe[a, b]} max {| f(x) — r(x)| — Ay:xe[a, b1}
= o(A(r) — Ay),
where « = min {g(x): xe[a, b]}. Therefore
Apv1 SOUres )+ A SaA) — A) + Ay

and setting k— o0 we get L < ofA(r) — L) + L, i.e. the contradiction A(r) = L.
Thus we obtain that

lim A, = R,(f)ean -

k— o
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36 Best rational approximation

Let reR,,., r =p/q, I|qllc = 1, be the best approximation to f. From above
we have Ay, | — A < 6i(rr 1) and 6, (ry 4 1) < Rl epa,n) — Ai), hence

Ak+ 1 an(f)c = (Ak - an(f)c) + Ak+1 - Ak
<A = Ryl f)e + Ry — Ay = (1 — 0)(Ar — Ryl f)o)
= G(Ak - an(.f)C)

and recursively

A1 = Rl f)e SO (Ag — Ryl f)o)-

Since 0 < g(x) < 1, it follows that 0 <« < 1 and 0 < 8 < 1. Thus the theorem
is proved. O

Theorem 2.9. Let feCla,b] and 7 be the rational function of order (n,m) of
best uniform approximation to f. Suppose we have d(F)=0 (i.e., f i1s a normal
point with respect to R,,,). Then for the sequence {r,} - of rational functions
r.€ R, generated by means of the differential correction algorithm we have:

17— Fllcran < 0 (1A — Ry Netan s
where 0 < 0 < 1 and the constant y~ (f) depends only on f.

Proof. Since d(7) = 0, using theorem 2.5 we obtain from the strong uniqueness
of 7

YN re=Flle IS =rllc+ 11 —=Fllc = Ay — Rum(f)c
<64Aq — Rl f)0),
Ny —Fllc < Gk}’_ 1(f)(Ao —R,.(/)) O

Remez algorithm
The idea of the Remez algorithm is the determination of the alternation
according to the Chebyshev theorem (E. Remez, 1934a,b).

We shall describe the Remez algorithm in the case when feC[qa,b] 1s a
normal point with respect to R, (see section 2.4).

() Set k=0and N=m+n+2;
(ii) Choose a point set a < xP <x¥... <x® < b,
(iii) Solve the nonlinear system of equations

plx) i
x®) -2 S = (—1Y4,, i=1,....N,
f( i ) qk(xgk)) ( ) k
for the unknowns af,..., a5, bk, ... bk, A, where

m

Z l, qk(x z bk l

i
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2.6 Notes 37

(V) If | f = ilicram = 4| go to (vii), else go to (v);’
(v) Select the points a <x{*P < --- < x%*Y < b such that

sign (f(x{ 1)) — rx¥F D)) = —sign (F(xEHD) — r(xE)i= 1, N — 1,
| D) = r(xE D) 2= 14, i=1,....,N,
and for some s, 1 <s< N, we have
|f(x§k+l)) - "k(x(sk+ 1’)! = f—r HC[a,b];

(vi) Set k=k+ 1; go to (iii);
(vii) Stop; the function v, is the rational function of best uniform approximation
in R, to f.

Remarks. (1) The initial points {x{®}_, can be chosen to be the extremal
points of the Nth Chebyshev polynomials translated to [a, b].
(2) at step (iii) for solving the system one may write the system in the form

Pl — (f () — (= 1) (qu(x{¥) — 1)
= f(x®) — (—1yB*Y, i=1,...,N,s=0,1,...,

and, setting A{ =0, we solve the linear system for a¥,...,at, bt,... b5, AL.
Then substituting the A} obtained in place of 4§ we find A7 and so on. Usually
the sequence {4}}2, converges. The other approach is to use Newton’s
method to solve the nonlinear system at step (iii).

(3) The convergence theorems for the Remez algorithm are given by H.
Werner (1962) and A. Ralston (1965).

(4) In the practical applications step (iv) is usually changed to

(i) I [l f = rellcpap — 1Al <& go to (vii), else go to (v), where ¢ is a
sufficiently small positive number.

(5) The numerical experiments show that if the Remez algorithm works
without failure it converges faster than the differential correction algorithm.

2.6 Notes

Usually the qualitative theory of rational approximation considers the
so-called generalized rational approximation, ie. approximation by means
of expressions of the type

a,p, + Ao Po
bml//m + o +b0l//0’

where {@;}7= ¢, {¥;}7=, are Chebyshev systems. Almost all results of Chapter 2

' T =P/
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38 Best rational approximation

can be generalized for approximations of this type, see the books of Cheney
(1966), Rice (1969), Collatz and Krabs (1973), Meinardus (1967), Braess (1986).
The existence theorem 2.1 and the characterization and uniqueness theorem
2.2 go back to Ch.de ia Vallée-Poussin (1910).
The generalizations of theorems 2.2 and 2.3 for approximations of the type

inf { | f — 7 llcia.py: 7€ Rpym» 5(x) > 0,x€[a, b1}

are given by Ahiezer (1930); see also Ahiezer (1970) and section 4.3.

For approximations by means of generalized rational functions, concerning
existence, characterization and uniqueness, besides the books given above we
want to mention the papers of B. Boehm (1965), Cheney and Loeb (1961),
Newman and Shapiro (1964), L. Collatz (1960). There exist also generaliza-
tions of the Kolmogorov criteria, see for example Meinardus and Schwedt
(1964), B. Brosovski (1965a, b, 1969), Brosovski and Guerreiro (1984).

There are many investigations concerning the properties of uniform metric
projection with respect to a given generalized rational system of functions.
Besides the books given above and the works of Cheney and Loeb (1964)
and H. Werner (1964) we want to mention the work of Goldstein (1963); sce
also Chalmers and Taylor (1983).

For other details on numerical methods for obtaining the best uniform
rational approximation see the books given above and Veidinger (1960),
J. Maehly (1963), L. Collatz (1960), Cheney and Loeb (1962), Wetterling
(1963), Werner (1963), Ralston (1965), Barrodale, Powell, Roberts (1972),
Kaufman, Leeming, Taylor (1978), Dunham (1967a, b).

Let us mention finally some interesting results regarding real and complex
uniform approximation by rational functions on an interval and on the disk.

We have considered till now real uniform rational approximation on the
interval [q, b]:

an(f)C[a,b] = inf{ N f—r “C[a.b]:rean}’

where f is a real-valued function on [ga,b], and reR,,, has real coefficients.
We can consider also complex uniform rational approximation:

REm(f)C[a,b] = { I f—r HC[a,b]WERSm}

where f'is also a real-valued function, but RS, is the set of rational functions of
the type

anx" + N + ao

Bux™ 4+ 4 Bo’

where o, i=0,...,n,08;, i=0,...,m, are complex numbers.
Lungu (1971} and Saff and Varga (1977, 1978) found that for all n and m
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2.6 Notes 39

there is a function f with

RL(Sf Yetasy < Ruml f)cta,n- (1)

From here, using symmetry arguments, it is easy to see that the best uniform
complex rational approximation of a real valued function is not always
unique; see also Ruttan (1977).

Trefethen and Gutknecht (1983a, b) have many results in this topic. For
example let us set

Vam = I0f { RS(/)/Run(f): f €CLa, b], f real-valued}.
Then
Ym=0 fornz0, m=n+3.

Trefethen and Gutknecht have shown also that for the complex rational
uniform approximation on the disk there are analogs of (1) and of non-
uniqueness.
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3

Some classical results in the
linear theory

The most essential question in the quantitative theory of approximation is
the connection between the degree of the best approximation to a given
function f by means of some tool for approximation (algebraic polynomials,
trigonometric polynomials, rational functions, spline functions and others)
with respect to a given metric (uniform, L, and others) and the smoothness
properties of f (differentiability, Lipschitz conditions etc.).

The solutions of these questions in linear approximations usually use the
moduli of continuity and smoothness. So we shall begin in section 3.1 with
some definitions and properties of the moduli of smoothness in C[a,b] and
in L,[a,b]. In section 3.2 and 3.3 we give the classical theorems of Jackson
and Bernstein for best trigonometrical L, approximation. In section 3.4 we
consider briefly the best approximation by means of algebraical polynomials
in [ —1,1] and the singularities connected with them. Finally in section 3.5
we consider the K-functional of J. Peetre, which is the abstract version of
the moduli of smoothness, and its application for the characterization of the
degree of the best approximation in the abstract case, using abstract Jackson
type and Bernstein type theorems.

3.1 Moduli of continuity and smoothness in C and L,
Let the function f be bounded on the interval [qa,b].

Definition 3.1. The modulus of continuity (in Cl[a,b]) of the function f is the
Jfollowing function of 6€[0, co):

(f; 8y = sup { | f(x) — f(x"):|x — x"| < 6,x', x"e[a, b] }. (1)
We shall write, when it is clear, o(f;4) or w(f;9) instead of w(f;d)cia.y-
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3.1 Moduli of continuity and smoothnessin Cand L, 41

Obviously the necessary and sufficient condition for the function f to be

continuous in the finite closed interval [a,b] is w(f;0)— 0.
5=0
A natural generalization of the modulus of continuity is the moduli of
smoothness.
For every bounded function and every natural number k we define the kth

difference with step h in the point x by

k k
Ahf(x)= Zo(—l)’"+"<m>f(x+mh), Ay f(x)= D, f(x) 2

k
where ( >= k!'/(m!(k — m)!) are the Newton binomial coefficients.
m

Let f be defined and bounded in the interval [a,b] and k be a natural
number.

Definition 3.2. The modulus of smoothness in C[a, b] of kth order of the function
[ is the following function of 4€[0, c0):

Ol f50)cqapy = sup {1 A4 f()]: [h] < 6, x,x + khe[a,b]}. 3)

We shall write, when it is clear, w,( f;0) or w,(f; 6)c instead of wy(f; 0)cra.p)-
In some cases we shall also use the notations:

ol f; ) = off;la,bl)=sup{| Aif(X)]:x,x + khe[a,b] = A} (4)

From definition 3.2 it follows immediately that the modulus of smoothness
of first order is exactly the modulus of continuity: @,(f;0)crp = ©O(f; Oasy-

The second modulus of smoothness w,(f;d)c is often called the modulus
of smoothness or Zygmund’s modulus.

The moduli of smoothness have the following basic properties

(1) o (f;0) S o (f310) if &' <"
(i) @ (f +9;0) < wilf;0) + wi(g; 0).
(itl) wlf30) <2w,—,(f;0), k=2
(iv) If f' exists and is bounded in [a,b], then

o
N |

(f10) <o ((f79), k=2

(iv) o (f;0) <SS llcany
(v) If n is a natural number, then

al find) < nwy(f;9).
(V) 0l f320) S([A] + Do f30) < (4 + D0yl f30), 4> 0.
The proofs of properties (i) and (ii) follow directly from definition 3.2. The

" [4] denotes the integer part of A.
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42 Some classical results in the linear theory

proof of property (iii) follows from the equality
ARf(X)= D57 Hf(x+ h)— A7 ().

Properties (iv), (iv') make sense for functions with bounded first derivative.
For every h,|h| < 6, we have

| ARfCI =1 AT+ B) = f(x)]

=‘A’,§‘1rf’(x+t)dz =

0

JhAﬁ_lf'(x+t)dt

0

max(0,h) max(0,h)
<J IA’;‘.’lf'(xH)ldtSJ w, - (f51h1)dt

min(0,k) min(0,h)
= |hlw,—1(f" h) < 0wy — 1 (f7;9).
Consequently
sup {| ARf(X)|:[h < 8, x,x + kde[a,b]} = o f;6) < dwy—1(f;9).
For k=1 we obtain, for |h| <9,

h
A f ()] = J‘ [+ 0def <A e <O S Il cta.by-
0
In the proof of property (v} we shall use the equality
n—-1n—-1 n—
=y ¥ - Z ASf(x+ih+ih+ - +ih). (5)

i1=0i2=0 =0

It is easy to prove this equality by induction with respect to k. For k=1 we
have

n—-1

A f ()= f(x + nh) —f(x) = Z(f(X+lh+h) —f(x+ih))

N
<o

Let us assume that (5) is true for a given natural number k. Then

L f(x) = Au(f (x + nh) — f(x))

—Akh(Anhf )= Z: Z A Appf(x+ith+ - +ih)

ir=0
n—1 -
— Z Z ’;( Z Ahf(x+11h+ +lkh+lk+1h)>
i1=0 k=0 ipy1=0
n—1 n—1
=Y o Y AKTUf(x+ith+ iy h).
i1=0

i+1=0
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3.1 Moduliof continuity and smoothnessin Cand L, 43
From (5) for |h]| < ¢ it follows that

A5 SIS =Y S 1A +igh + - + i) < o (f:0)

=0 k=0

hence property (v).
Property (v') follows immediately from properties (i) and (v):

il f320) < w( f3([A] + 1DO) < ([A] + Dfwy(f36) < (A + D5 9).
From properties (iv) and (iv') it follows that
(vi) If f®eC[a,b] (or f* exists and is bounded on [a,b]), then
O 1:8) <1 oy

Later on (in section 7.1) we shall prove the following more complicated
property of w,.

(vii) Theorem of Marchaud. For every m < k we have

(b=a)/k
0 f30) < C(’M'"{L e lay(f;0dt+(b—-a) 7" f ||C[a,b]}’

where the constant c(k) depends only on k.

Using the integral norms L,, 1 <p < oo, instead of the uniform norm, it
is possible to obtain analogues of the moduli of smoothness, which are usually
called integral moduli of continuity or smoothness, L,-moduli or p-moduli.

Let the function f belong to L {a, b).

Definition 3.3. The integral modulus (L ,-modulus, p-modulus) of order k of the
Sunction f is the following function of 6€[0, co):

b—kh i/p
o (f; 5)Lp(a,bJ = wy(f; 5)L,, = wy(f;9),= sup {j | Al}ﬁf(x”pdx} . (6)

O<h<é a

It is easy to see that w,(f;d), has the following properties.

(0) ol 507, S ol f50"),, 6'< "

(i) wlf +g;0), S 0(f30), + (g 9),,-
(i) ol f:0), < 25— 1(f30),.
(iv) If f’eL(a,b) then

ol f30), <oy 1(f0),, k=2
(iv') If f'eL,(a,b) then
01(f50), <O S L piay-
(V) @l f3nd), < n*wy(f;9),.
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44 Some classical results in the linear theory

(V) ol f520), (LA + Do f30), < (4 + Dray(f39),.
(vi) If f® exists and f®eL(a,b) then

o(f;0), < o f® HL,,(a,b)-
Property (vii) has the form
(vii) If feL,(a,b), then for every m <k we have

(b—a)/k

Wp(f39), < C(k)ém{j " o f0,dt + (b —a) "] f HL,,}-

4
The proofs of properties (i)—(vi) are similar to the uniform case.
We shall give one specific property of w,(f;9); = w(f;d),.
(viii} Let the function f have bounded variation on the interval [a, b]. Then
o(f30); <Vaf, (7)

where V® f denotes the variation of the function f in the interval [a,b].

Proof. In fact, we have

b—h

Vi“’de=J (Vithf = Vifydx

a

b—h

b—h
J If(x+h)—f(X)|dX<f

a a

b b—h b
=j Vj,‘dx—j V;‘dxéj VEfdx <hVEf. O

a+h a b—h
It is very essential that it is possible to have a converse of the inequality
(7) in the following sense.

Theorem 3.1 (Hardy, Littlewood, 1928). If w(f; 0}, = O(9) then the function
[ is equivalent to a function of bounded variation.

Proof. Let fel(a,b) and w(f;d), < MJ. Let us set ¢ =(a + b)/2 and

1J‘hf(x +1)dt, xela,cl,
hJo

fil =4 1%
Ef f(x+0de, xelc,b]
—h

where he(0,(b — a)/2). Since fel(a,b) then for every xe[a,b]\Q, where
Q c[a,b] is a set with Lebesgue measure zero, we have

lim f,(x) = f(x). it

h—0

For the variation of f, we have

[ 1 <
Valn <J IfL(X)IdX=Ej |f(e+h) —f(0)ldx <h™ ol f;h) <M.
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3.1 Moduli of continuity and smoothnessin Cand L, 45

Analogously

Veiiofu <M

On the other hand
I.fL(C)—f}’(CJrO)I:‘h"j fle+ndt— lim h~ ‘f f(x +t)de

0 x—>c+0

h
<;J | flc+0)— f((+z—h)|dr<--w(f h), <
0

Since
Valw=Valu+ Vifi+ /i) =file +0)},
we obtain from the above estimation
VEf<3M. )

On the set [a,b]\Q the function f has bounded variation. In fact, if
X, < Xy < - <Xy are points from [a, b]\Q it follows from (8) and (9) that

Zlf Xi+1) —f(xy)| = lim Z"h Xiv1) — fh(’c)|<11mefh<3M (10)

h—0 i=1

Let us set

F0. xe{[ab]\Q}\ (b} =
Feoo | Lm0 xeQ\ib),

y—2x+0,yed

lim  f(y), x=b
y=b—0,yeA4
We note, that from the fact that Q has measure zero and f has bounded
variation on A4 it follows that lim,_,, o { f(): yeA} exists. It follows from (10)
that

VET<3M.

Since fis equivalent to f, the theorem is proved. O

Finally we shall consider the 2zn-periodic case. For 2n-periodic functions
the modifications of the definitions of the moduli of continuity, moduli of
smoothness and L ,-moduli are evident.

The definition of the kth modulus of smoothness is

w(f30) = ol f; O)cro,2m = sup{|A fx): |h|<5,xe[0,2n]}.

For the L -moduli we have

2n 1/p
O(f30)p = Ol f3 )1 0,20 = SUP{ J | A’;ﬁf(X)I"dX} :

|h <8 0
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46 Some classical results in the linear theory

The properties of these moduli are the same as in the nonperiodic case, i.e.
properties (i)—(viii) remain valid.

Finally we give without proof the following property of w,(f;d), (see
Zygmund (1959) or Timan (1960)).

(ix) We have w,(f;6), — 0 if and only if feL (a,b).
50+
3.2 Direct theorems: Jackson’s theorem

Let f be a function belonging to some metric space X with a distance d. Let
the family {G,} 7, be given, where every G, is an existence set in X and an
n-parameter set, n=1,...,00. The best approximation to f by means of
elements of G, is given by

Eg (Nx= inf{d(f,g):9eG,}.

As a direct theorem in approximation theory we understand an equality
of the type

Eg(f)x=0(o(fin), n-cxc, (1)

where ¢(f;n) is a functional of f, depending only on the number n of
parameters of G,.

A classical example of such a direct theorem is the famous Jackson theorem
for the best uniform approximation E,(f) to a function feC[0,2n] by means
of trigonometric polynomials of nth order with respect to the uniform distance:

E(N=E(f)cro2m=10f{| f —tlicro.2m: t€ T,y

Theorem 3.2 (Jackson, 1911). Let [€C[0,2n]. For every natural number
n =1 we have

E(f)<co(f;n™1), 2
where ¢ is an absolute constant.

Remark. If f is an even function then there exists an even teT, such that

1f = tlcro,2m < co(f;nh).

If we compare (2) with (1), we see that here the functional ¢ is the value of
the modulus of continuity of f at the point § = n~! (multiplied by a constant).

The Jackson theorem has many generalizations. One of them is the
following,

Let E,(f), be the best L -trigonometrical approximation to f:

En(f)p = En(f)L,,(o,zn) = inf{ Il f—t “LP(O,Zn): tET,,}.

Theorem 3.3. Let feL,(0,2n). Let k=1 be a natural number. There exists a
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3.2 Direct theorems: Jackson’s theorem 47

constant c(k) depending only on k such that for every natural number n > 1 and
every number p, 1 < p < oo, we have

E(f), < ck)o(fin™h),. )

Let us mention that there exists an analog of (3) for 0 < p < 1 (see the notes
to Chapter 3).

We shall show somewhat later on that (2) as well as (3) result from the
following version of Jackson’s theorem, which we shall call the natural
direct theorem of Jackson type.

Theorem 3.4. Let f be a 2m-periodic function with a derivative f’eL (0, 2n).
Then

11,
n bl

E(f)p<c I<p<oo, )

where ¢ is an absolute constant.

Remark. 1f fis even, then there exists an even te T, such that

I f—t ||p<c”f lp
n

The proofs of (2) and (4) are very similar, but we prefer to derive (2) and
(3) from (4) by means of the classical method, using intermediate functions
which we shall also use later on.

Now there are many different proofs of (4), but we shall give here the
original proof of Jackson (1911).

Proof of theorem 3.4. Let us consider the following operator on the function
fel(0,2n)

3(fix) = f " S+ 0K (0dt (5)

where

[ sin(nt/2)\*
k=i (i)

is the so-called Jackson kernel.
The constant A, ! is chosen in such a way that

J K (t)dt=1.

From this equality it is possible to obtain the exact value of 4,, which is
A, 1=3/(2nn(2n? + 1)), see for example Natanson (1949), but this involves
some calculations. It will be sufficient for us to have an estimate for 4,. In
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48 Some classical results in the linear theory

order to obtain this estimate let us remark that

t/m<sin(t/2)<t/2 forO0<t<n 6)

Since the kernel K, is even, we have
n 1 4 n/n : 4
G | (SRR g o [ TSR0
o \ sin(t/2) o \ sin{(z/2)
M Cptin\* 25
=2 —— 1 dt==n’ 7
on ( t/2 > " 7
We shall need two lemmas.

Lemma 3.1. We have

J"tKn(t)d[ <cn?, 8)

0

where ¢ is an absolute constant.

Proof. Using the inequalities (6) and (7) we have

n n—1 (tk+)n/n
J tK()dt= Y J tK () dt

0 k=0 Jkn/n

<

n/n nt/z >4 n—1 J'(k+ 1)n/n (k + 1)717 < 1 >4 }
t dr + de
vn{J‘o < t/m k; knin n k/n

n?/n® = _k+1
S|+ Y iP—)=en!
L £t
where ¢ is an absolute constant. 0
Lemma 3.2. For every function fel(0,2n), J,(f;x) is a trigonometrical
polynomial of order 2n— 2. If f is even, then 3,(f;x) is also even.

Proof. We have K,eT,,_,,. Indeed, from the equalities

sin{(2m + 1)x/2)
2sin(x/2)

1/24cosx + --- 4+ cosmx =

sin(nx/2)
sin(x/2) ’

sin (nx/2) \? sin (nx/2) \*
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3.2 Direct theorems: Jackson’s theorecm 49

(since the square of a trigonometrical polynomial of order m is a trigono-
metrical polynomial of order 2m).
Since K,€T,,- ), 3. also belongs to T, 4, since

$fix) = j " fx+ DK (0di = j " POK(x - 0di

and K, (x —t) is a trigonometric polynomial of order 2(n — 1) with respect to
x with coefficients functions (also trigonometric polynomials) of .
The second part of the lemma is evident, since K, is even. O
Now we continue the proof of theorem 3.4. Let us estimate || f — 3,/ |l -
Using |*, K, (1)dt =1 we obtain

ke

3ulfs X)—f(X)=f (f(x+ 1) =fO)K () dt

-

Hence, using the generalized Minkovski inequality

” Jg(x, t)dt

(see for example Nikol'skij (1969)) and the fact that K,(t) > 0, we obtain

<J[Ig(wt)l1pdt

3.1 |10 - i o)

If f’e L (0, 27), we have, again using the generalized Minkovski inequality,

Jf (-+wd

Using (8) (lemma 3.1), (9) and (10) and the fact that K, is even, we obtain

Ifc+o—rl,= <|tHIf Ilp- (10)

b4

I3,/ ~f|p<J [/ 1K (0 de

Hf Ir

=2|f'u,,f (K (1)t < 2¢ (11)
Since J,f €T y,-1, (lemma 3.2), (11) gives us
Eaaf)y<2e 1 0

The remark after theorem 3.4 follows from (11) and the second part of
lemma 3.2.

In order to obtain the classical Jackson theorem (2) from (4) we shall use
intermediate approximation by means of the Steklov function.
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50 Some classical results in the linear theory

The Steklov function f), for feL(0,2xr) is given by

h
Jx) = %f flx+0dt, h>0.

0

Using the generalized Minkovski inequality we have

1 h
1 =1l = HhJ (f() = fx + 0)de
0

P

1 h
Shj I f=FC+0ldt<alfh), (12)

0

since || f —f(+ 0, <o(f;h), 0t <h
On the other hand f, exists almost everywhere and

1fll, = ”%(f(x +h)—f(x)

1
psﬁw(f; h)p- (13)

From (4), (12) and (13) it follows that

h™a(f1h)
En(f)p < Hf _fh Hp + En(fh)p < (U(f, h)p + CT'I"

Setting h =n~! we obtain theorem 3.2. |

We shall also use the generalized Steklov function for feL(0,2n) (sce

G. Freud, V.A. Popov (1970)),

fk,h(X)I(_h:)th...J'h{_.f(x+tl + 4t
0

4]
k k—1 k
+<1)f<x+T(t1 T, +tk)>+ +(—1)"<k_1>
x f<x+i4%+tk>}dtl---dtk. (14)

Theorem 3.5. Let feL,(0,2n). Then

O | fin—f 1, < lf3h),,
@) L/, <ch ol fsh),, s=12,...k

where the constant c(k) depends only on k.

Proof. From the dcfinition (14) using the generalized Minkovski inequality
we obtain

I fen— Sl <

h h
h—kf J |A:(t1+.,-+zk)/kf(x)|d[1...dtk
0 0

r
<w(fih), since|(t; +---+t)kl<h f0<;<h i=1,.. k.

Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,
available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781107340756.004


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.004
https://www.cambridge.org/core

3.2 Direct theorems: Jackson’s theorem 51

For almost all xe[0,2n] we have for the sth derivative /¥, of f, ,

h h
fLs,’h(x)=(—h)”‘f f {— BfGHt 4 )

0 0

k k \° k—1
+<1><m> Afk—l)h/kf<x+‘k ey + - +tkAs)>+

kN, P
+(_1)k<k—l)k h/kf(»’C‘FlTk)}dﬁ'“dtksa
hence

h h
Ll < AkJ J {|Ai}f( SR ST T o PN | 8
0

k k—1
+ Ao | -+ ——t + -+ 49 )| +-
1 k )
k P R L T
+ <k >ks AW( %) p}dtl ety
k k\ k—1
< —-S . . I e
i (Y ol 5)
k h
s D . < k} —-$ ",
+ (k B 1>k U)s<f,k>p} K)h*w(f;h),
(if geL,(0,2n) then
TG+, =1gll,)
i.e. property (ii) with a constant c(k) = (2k). O
Theorem 3.6. Let f € C[0,2n] have a derivative f'eL (0, 2n). Then
E !
Ef, <
n
where c is an absolute constant.
Proof. Let qeT, be such that | f'—q|,= E,(f"),. Let
= Z (a, cos kx + b, sinkx) = ay + r(x)
and let se T, be such that 5" =r. Then we have, using theorem 3.4,
B = Ef s, <l =5 1L =1y
n n
’r_ 1 1/
<C(Ilf qll, + 1 aoll,,> _ C<En(f )p + (2m) ”Iao|>. (15)
n n
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52 Some classical results in the linear theory

Let us now estimate | a,|. Since /e L (0, 2n) is a derivative of the 2z-periodic
function f, we have

27
J fi(x)dx =0

0

and also obviously [§"r(x)dx = 0. Therefore

f () — rx)dx = 0,

0

Le. [37(f'(x) — q(x) + ag)dx =0, or 2may = — [3*(f"(x) — q(x))dx.
Hence

2nfaol <Cm) PN fT = qll, = 2n)' T VPE(f), (16)
Theorem 3.6 follows from (15) and (16). O

Corollary 3.1. If f®eL,0,2n), k > 1, then

(k)
BN, <eti !

where the constant c(k) depends only on k.

(17)

Proof. Using theorems 3.4 and 3.6 we obtain
1 (k—1) (k)
cEn(f )p < <Ck—l En(fk71 Egck-lcrufk “’
n

E(f),<
n n

i.e. (17) with a constant c(k) = c*.

Finally we shall prove theorem 3.3 —the general case of the Jackson type
theorem.

Let felL,(0,2n) and f,, be the function from theorem 3.5 for f. Using
theorem 3.5 and (17) we have

_ L,
ENp< IS =finllp + Edfin)y S ol f5h), + C(k)Tw
—k .
<ofih), + c(k)c'(k)if’zﬁf 2y (18)
Setting h=n"" in (18) we obtain theorem 3.3. 1

Remark. Let us note that this method, using intermediate functions like £},
cannot give a good constant ¢ or ¢(k). Since in the book we shall be interested
mainly in the order of approximation, we shall not give here good estimates
of the constants or their exact values (which are known only in a few cases).

Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,
available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781107340756.004


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.004
https://www.cambridge.org/core

3.3 Converse theorems S3

3.3 Converse theorems

We have seen that estimation of the type

Eg ()< ¢(fin), (1)

where n is the number of the parameters of the elements of the approximating
family G,, and ¢ is a functional depending only on f and n, is the so-called
direct theorem in the theory of approximation. For example in the estimation
(2) in section 3.2 we have ¢(f;n) =co(f;n"1).

The so-called converse theorems are not of so simple a type as (1). Usually
it is not possible to estimate some functionals of f (of course important
functionals) only by E¢ (). The typical converse estimations are of the type

) < F(Eg,(Nh.. Egy, (/)

where F is a function of E; (f),. ..,EGNW(f).
In order to be explicit we shall present at once the classical converse
theorem of Bernstein in the form given by Salem (1940) and Stechkin (1951).

Theorem 3.7. Let f € L,(0,2n). Then for every natural number n, n > 1, we have
k ‘ k—1
QS s pem, @

s=0

wlfin™ 1), <

where the constant (k) depends only on k, k > 1.

Usually we have good direct and converse theorems that give characteriza-
tion of the order of the best approximation by means of some properties of
the function f. In this sense theorems 3.3 and 3.7 are some of the best: it is
easy to see that there results from them the following characterization of the
best trigonometric approximation of the function f in L, by means of
L,-moduli of smoothness of f.

Theorem 3.8. Let f €L (0,2n). We have E,(f), = O(n™ %) ifand only if o, (f;9), =

O(6%), k > o
Proof. Setting E(f),=0O(s"*) in (2) for k>« we obtain
ck) & k
wlf;inH< n_ Z s+ 11079 = Crfk)n"_"‘:O(n_“)
s=0

which gives w,(f;4), = O(5%).
The converse follows directly from theorem 3.3. O
All converse theorems are connected with the differential properties of the
elements of the approximating family G,. Usually the basic property is an
inequality of Bernstein type. We shall obtain here the classical Bernstein
inequality for trigonometrical polynomials.
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54 Some classical results in the linear theory

Let
1,(x) = ‘;ﬁ + Y (a,coskx + b, sinkx) 3)

k=1

be a trigonometric polynomial of nth order. If we substitute

eikx+e—ikx ) eikx_e*ikx
cos kx = , Sinkx=—————
2i
we obtain
n . a, +ib a, —ib
k k k k k
= Y ¢e, Q=" = k=1,...,n,¢co=ay/2.
k=-n

4)
From the representation (4) it is evident that we can have at most 2n zeros
in [0, 27) (or in (0,2x]) since (4) can be written as

2n
t,,(x) — g inx z ck—nelkx
k=0
or
2n

[n(x):gn(z)zz_" z Ck—nzk’zzeix
k=0

If z,, k=1,...,2n, are the zeros of t,(z), we see that

Loan . yy2n 20 .
t (Z) = in (elz _ ele) = eilzk:1—k (en(z*zk)/l _ el(zk~z)/2)
A=ae |l <l

2n —
= AT sin" 22, 5)
i=1 2

where A is a constant.

Now we shall obtain the interpolation formula of M. Riess, following
S.M. Nikol’skij (1969).

Let us set 6, =(2k — 1)n/2n, k=1,...,2n. The points 6,, k=1,...,2n, are
the zeros of the polynomial cos nf, so using (5) we have

2 g,
cosnf = A kl:[l sin——. (6)
Hence
cos nf 6-0 cosnf sin3(6 — (n + 6,,))
= — 1y m__(_ 1 m+1 m 7
0n(®) n (— )" cot (=1 o sini(0—0,) ()

is a trigonometrical polynomial of a degree n, since we have

0,.(x) = const. ( ]_[ sin _0" )(smg_(7Z + On) >

2
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3.3 Converse theorems 55

We have, for the trigonometrical polynomial Q,(0),

0, k#m,

Qmwk):{l o

(that Q,,(6,) =1 it is possible to obtain directly letting 6 - 0,, in (7)).
Consequently, for every trigonometric polynomial t,eT, we have, for the

trigonometric polynomial t¥eT,,

_cosnfl 2 -6,

*(0) = Y (—1¥cot

2n k=1

tn(gk)’

the interpolation conditions
l,,(ok)z t;r(gk), k - 1,...,2”.

Since t,(8) — t;¥(0) has zeros in the points 0,, k = 1,...,2n, by (5), (6) we have
t,(0) — t¥(0) = Acosnb, or

t,(0) = Acosnl + t¥0).
So we obtain
Lemma 3.3. For every t,eT, we have

cosnf 24 6—6,

Y (—1kcot

n k=1 2

t(0)= Acosnf + t,(68,). (8)
It is possible to show that the constant A4 is equal to a, in the representation
(3) (see Nikol’skij (1969)). We shall not make use of this fact.
From (8) by differentiation and setting § =0 we obtain

2n 1

’ _ 1) +1
! K

1
A0) =

4nk=1

(0. ©)

Since t,e T, is an arbitrary trigonometric polynomial of order , (9) applied
to t,(0 + x) gives us the M. Riess interpolation formula

fa o C2%k—1
—1) th(x"i'gk)’ = n

f(x)=—
0=z 3

Using this formula, it is easy to prove
Theorem 3.9 (Bernstein inequality). If t,eT, then'

It llp0.2m S BNt 0,20 1 <P < 0.

t Again we set L_(0,2r) = C[0, 2x].
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56 Some classical results in the linear theory

Proof. If we set t,(x) = sin nx, from (10) we obtain, setting x =0,

1 2 1

-y 1
L W 0./2) (1
Taking L, norms, 1 < p < oo, in (10), we obtain, using (11),
Il <p 3yl =nlt] 0
<—Y ———|tl,=nltl,.
" T A= sin? (0,2 T d

Corollary 3.2. If t,eT, then
e, < nll 2 -

The Bernstein inequality is exact in the following sense.
For the trigonometric polynomial g,(x) = A sin (nx + &), where A and « are
constants, we have

lg'll,=nlgl, 1<p<oco.

Now we are ready to prove theorem 3.7. The method of the proof is typical
for obtaining estimations using Bernstein type inequalities (compare with
sections 3.4 and 3.5).

Let us estimate || Ajf | ,. Let Q,eT, be such that

I f=Cull,=Eff)p n=0,1,.... (12)
For every natural number s, s > 1, we have

=00+ (Q2—0p1)+ - +(Q; — Qo) + Qo;

consequently (we set Q,,, = Q)
I ARfI, < T A= Q) + 20 I A5Qy— Q-1

<2 f = Qs+ Zowk(sz—sz*l;h)p- (13)
Since Qm — Q,m-1€ Tym it ensues from the property (vi) of w, and corollary
3.2 that (E, 5 (f), = Eo(f),):
Q@ — Q) SHUQR — QL) 1, SH2™( Qm = Qe ],

SR Qun—f 1, + 11 f = Q1 1, < 2H2™E (),
(14)

From (13) and (14) it follows that

| 5871, < PEalf)y+ 2 Y 2B (), (15)
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3.4 Polynomial approximation in finite interval 57
Now let us set |h| < 1/n, n=2% Then (15) gives us

L2
|04 Iy < PEn(Ny+ e 32 2™ En(f),

2k 2s

S-ﬁf ZO (r+ l)kilEr(f)p’ (16)
since
2sk
sz(f)p = WEZS(f)In
2""‘E2r,141(f),,<2:""‘1 2'"231 I+ l)k‘lE,(f)p.
[=7m-2

The inequality (16) gives us theorem 3.7 for n = 2%
k) & 1t
wk(f;n < nk Z Er(f)p
The transition to arbitrary n is standard. Let n be given. Choose s so that
2°<n< 2" Then

! k 25
olfin <o fi27, <50 3 0+ 0 ELD),

<0 e B, <

M=

r+ 1D E(S), O

r=0

3.4 Direct and converse theorems for algebraic polynomial
approximation in a finite interval

Let us consider now the problem of best approximation of functions defined
on a finite interval, say [ -1, 1], by means of algebraic polynomials. Here
the characterization of the best uniform or L,-approximation by means of
the moduli of smoothness is not so fine as in the trigonometric case (see
theorem 3.8) because of the so-called ‘end-effect’” or “Nikol’skij effect’.

S.M. Nikol’skij (1946) was the first to note that the algebraic approximation
at the ends of the interval is better than the approximation in the middle of
the interval. In other words it is possible to obtain good algebraic approxi-
mations, for functions which are ‘not good’, at the ends of the interval. Many
authors after Nikol’skij have worked on this effect, see the books of Dzjadik
(1977), Timan (1960).

It is easy to obtain an analog of theorem 3.2 for algebraic uniform
approximation E,(f) on [—1,17]:

E(f)= inf{ If —P”C[—1,1]3P€Pn}~
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58 Some classical results in the linear theory

The following theorem holds.
Theorem 3.10. Let feC[—1,1]. Then

Eff)<co(f;n” 1)C[— 1.1]>
where ¢ is an absolute constant.

Proof. For the function g(t) = f(cos t) we have geC[0,2n], g even. From the
remark after theorem 3.2 it follows that there exists an even trigonometric
polynomial t,e T, such that

g — tullcro,2m < caxlg;n™ )C[o,u]’ (1)

¢ an absolute constant. Then ¢,(x) = t,(arccos x)e P, and
I f—q, ”C[— 1,117 lg—t, ||C[0 2m S caxg;n” )C[0,21r] <co(fin” 1)C[— 1,1}

since

(g3 O)cro,2. = SUP {1g(t) — g(t")|: [t — t'| < &}

= sup {|g(arccos x) — g(arccos x')|: |arccos x — arccos x'| < 4}

<sup {1/ (%) = f(X)]: |x = x'| < 6}
(}x — x'| = |cos(arccos x) — cos (arccos x')} < |arccos x — arccos x| < ). O

But unfortunately it is not possible to obtain a direct analog of the
Bernstein theorem 3.7. The reasons for this are that the analogs of the
Bernstein inequality (theorem 3.9) are the following.

Theorem 3.11 ( Bernstein). Let peP,. Then for xe[ — 1, 1] we have

, n
[P’ ()] SW”PHC[—LU'
Theorem 3.12 (Markov). Let peP,. Then

I p' ”C[ L Sh ||P||C[—1 1]

These theorems are exact. Theorem 3.12 shows that we have an estimation
with n? instead of n. So we cannot have an analog of the same type as theorem
3.7. Theorem 3.11 shows that we may have success if we work ‘pointwise’.
In fact this is the way to obtain a characterization of Lipschitz classes with
the weighted uniform algebraic approximation on [ —1, 1] (see the book by
Dzjadik (1977)).

Here we shall present another characterization of E,{ f) given by K. Ivanov
(1983a), which seems to be better than the others. We shall consider the case
k=1 For k>1and E,f),, 1 <p < o, see the notes to this chapter.
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3.4 Polynomial approximation in finite interval 59

First let us give our notations. We set
Apl¥) == (1 = x4
X)=—J(1— —5,
m m X m2

(5 A~ 1,1 = T3 A0)
=sup {|f(x) =[x, ye[ -1, 1] [x — y| S A,(x)}.
Theorem 3.13. Let feC[—1,1]. Then
En(fei-1,1= 0@ (f; Ader-1,1)-
In the proof we shall use lemmas 3.1, 3.2 and the following.
Lemma 3.4. Let |h| < n/4m. Then
fcosy —cos(y + h)| < A, (cos y).
Proof. We have
I

sin +ﬁ
2 YTy

|cosy —cos(y + h)| =2sin—
isin ]+ 20} < T 1 = cos? )+ - ) < Anfcos ) 0
2 )Sam VT g ) S OmCOSY)

21|h|
<=—
2
Proof of theorem 3.13. We shall use the Jackson operator from section 3.2.
Let us set

n=[m/2]+ 1, g(t) = f(cos 1),
Jnlg; y) = J 9y + K, (dt = ﬁ flcos(y+ 1)K, (1)dt,

-n 3

oy fsin(t/2)\* (7 B
K,(t)=24, (M) ,j_nK,,(t)dt— 1.

Since J,eT,,_, and J, is even (g is an even function, see lemma 3.2),
T, (arccos x) = Q,(x) will be an algebraical polynomial of degree 2n—2 =
2A[m2]1+ 1)—2< m,ie. Q,€P,.

Let us now estimate | f(x) — Q,(x)|. We have, setting y = arccos x, xe[ —1, 1],
yel0, 7],

() — 09 = 190 — g )]
<J"Ukmw—ﬂwﬂmeKﬁML @

-

Let us set

T

h(t) =4—nn;sign t, )= |:4mlt|].
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60 Some classical results in the linear theory

Then we have from (2), using lemma 3.4 and lemma 3.1,

k4

|f(x) = @,(x)| < J {If(cos (¥ + r(®h(t)) — f(cos (y + 1))

-n

r(t)

+ A;|f(cos(y + (i — Dh)) — f(cos (y + ih))| }K,,(t)dt

< j " (1 +4—'—"7;|ﬂ>r1(f; ADK,(0)dt = O(z,(f:A,),

since, by lemma 3.4,
|cos (v + ih) — cos(y + (i — Dh)| < Ay(cos(y + (i — D)h)),
and therefore
| flcos (y + ih)) — flcos (y + (i = D) < 1,(f5 A,
|cos (y + r(0)h(t)) — cos (y + 1)| < An(cos (y + 1)),
| fcos (y + r(Oh(x))) — f(cos (y + DI < 1,(f3 A,

On the other hand lemma 3.1 gives us

m 4 8 b4
J <1 +m|t|>K,,(t)dt= 1 +i"j tK (1)dt
Cr n T Jo

=1+ O(mn~1) = O(1).

Consequently

E(f)< sup |f(x)=Qux)|=O(t,(f;A,)). O

xe[—1,1]

Corollary 3.3. We have
En(\/(l - xz))C[' 1,11 = O(n~ 1)-

In fact one can easily see that for f(x)=./(1 —x?) we have 7,(f;A,) =
Om™Y).

This corollary shows that while the function f may be bad at the ends of
[—1,1] (the derivative of \/(1 —x2) goes to + o as x-» F 1), nevertheless
the best uniform algebraic approximation may be good. The same effect exists
also for rational approximation (see section 5.5).

In order to prove the converse theorem we shall need some lemmas. Let
us first prove the Bernstein inequality for algebraic polynomials (theorem
3.11) and Markov inequality (theorem 3.12).

Proof of theorem 3.11. Let peP,. Then for g(t)=p(cost) we have geT,.
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3.4 Polynomial approximation in finite interval 61

Therefore the Bernstein inequality for trigonometrical polynomials (theorem
3.9) gives us
lg@1<nlqlco.2x A3)
But ¢'(r)=p'(cost)sint. Setting t=arccosx, we obtain from (3), since
119l cro.20) = 1Pl (= 1.17> Sinarccos x = /(1 — cos* arccos x) = /(1 — x?),
{p’(x)\/(l—x2)|<n\|p|\q,1,1]. O

Proof of theorem 3.12. Let x, = cos((2k — 1)n/2n), k =1,...,n, be the zeros of
the Chebyshev polynomial T,(x) = cos (narccos x). For every algebraic poly-
nomial peP,_; we have this Lagrange interpolation formula

T.(x)

b
X = X;

Pg= 3, oy @

since we have

1 1\/1—)6 ,,Xj) {O, Jj#i

X;— X; 1, i=j.

The first case (i # j) is evident since T,(x;) = 0. In order to prove the second
case, first we remark that

( Tx) ) = lim M =T.(x;)

X —X; xox; X —X;

=(cos(narccos x)) .=, sm (narccos x;)

\/(1
n n

smnzi_ 1n.—-(—l)“l*z;
\/(1— 2) 2n (1 —=x3)

1 1\/(1 X) 4
X —X;/x= x._ '

Now let peP,_, and xe[—1,1]. There are two cases: (a) |x|<x, =
cos (n/2n), (b) x; <|x| < 1. In the first case we have

JA=x)= /1 -x})= \/<l—coszznn)=sin21n>:l;

therefore

therefore
|p(x)| < ny/(1 — x2)| p(x)| < nll /(1 = x*)p(X) lic=1.1)- (5)

In the second case, since —1 < x < x, or x; <x < 1, all members x — x;,

Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,
available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781107340756.004


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.004
https://www.cambridge.org/core

62 Some classical results in the linear theory

i=1,...,n, have the same sign, therefore from (4) we obtain

no S =xD) | T
< AT AN NN
P9I 3 1)
" | Ty(x)
;”\/ (1 —x? X)HC[ 1. 1]IZ1 —x
1 " Tx)
—i”\/(l“‘x “C[ 1.1] Zx xl (6)
since all T,(x)/(x — x;) have the same sign.
Let us now estimate |> 7., T,(x)/(x — x;)]. We have
, n T n
Ty = 3, 1 (Tn(x>=2"‘1 I (x—xi)),
i=1 X —X; i=1
therefore we must estimate || T [l¢;~,,;. We have
') = nsin(narccos x) _nsinnf 0 — arccos
= , = X.
J(t—=x?) sin @
Since |sin nf/sin 0| < n for |0] < &, we obtain that
T, ||C[*1,11<”2a 0]

and from (6) we obtain that
P! < nll (1 = x®)pl)lleg-1,17- t)
Now the inequalities (5) and (8) give us
Lemma 3.5. Let peP,_,. Then
IPller- 1< nly/(=x)pX¥) | cr- 1,11

We return to the proof of Markov’s inequality.
The Bernstein inequality (theorem 3.11) gives us, for every peP,,

I \/(1 - XZ)P,(X) Hck L Sh I p(x) HC[~ 1,17 9)
Lemma 3.5, applied to p’, and (9) give us

P =1,y 1 [ \/(1 —x%)p'(x) ler-1.01 S n? HPHC[— 1,1]° O
Lemma 3.6. Let peP,. Then

1 oo 1Y
(Ml —x >+nz>p(x)

Proof. This inequality follows immediately from the Bernstein inequality

<2”PNC[—1,1]~
cl—1,1]

|I\/1—x C[ 11]\”” ”C[ 1,1]
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3.4 Polynomial approximation in finite interval 63

and the Markov inequality

|!P,“C[—1,1]<n2 HP“C[—1,1]~ |

Lemma 3.7. We have
T(fiA) <2 f “C[— 1,1]

The lemma follows directly from the definition of 7,(f; A,).

Lemma 3.8. Let x,x +te[—1,1],]t| <A, (x). Then
LA KA (x+ 1)
Proof. We set

A, X< —=4mT?),
‘/""(x)"{m—z, x| > /(1 — 4m™?)

Then |[¢,llcr-1,1 <7 and
An(¥) S ¥n(y) < 3A,() (10)
for every ye[ —1,1]. We have
[Ym(X + 1) — Yrn(X)] <3 A(x),
FANX) S Ylx) = TAL(X) S Pp(x + 1).
Hence from (10) we obtain
Afx+ 1) = EA(x). O
Lemma 3.9. Let f'el [ —1,1]. Then
(5 A) <61 A Nlcr-1.11-
Proof. Let x, x + he[—1,1] and |h| < A,{x). Using lemma 3.8 we obtain

x+h A (t
s n sl =| | o
x+[h d
I8 e |y <618 et

since, by lemma 3.8,

x+h o dp X+l g [
— K <6 < 6.
L A0 6L Ao S AL S° 0

Now we are ready to prove the converse theorem for the best uniform
algebraic approximations.
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64 Some classical results in the linear theory

Theorem 3.14. Let fcC[—1,1]. Then for every natural number m we have

100
T( WZES

s=0
Proof. Let g,€P, be such that
lq, “f”C[— 1,11 = E,(f)

Let m be given. We set n = [Inm/In 2], then 2" < m < 2" . Using lemma 3.7
we have

T (38 ST (f — gons Ay) + T1(g2ns A)- (1
From lemma 3.7 we also obtain
4 m
T(f ~ g2 AR < 2|1 f —gan HC[— L1~ 2E,(f) < ; Z‘o E(f). (12)
From now on to the end of the section we shall write ||-|| instead of

“ ’ HC[—l,l]'
From lemma 3.9 we obtain

T1(@2n; ) <611 Angn | <6{ Zl [ An(q2y — @ov- D)1 + | Andy H}- (13)

Since g, — go€P,, lemma 3.6 give us

1Amds | = | Algt — qo) || < I1A (q7 — g0}

2
S ldi— 4ol <2 Yllgu~fI+ 11 f —qol)=4m 'Eo(f). (14)

Since for v < n we have

1 1 1
= m(\/(l —x3)+ E) < —r;l—(\/(l — x4+ 27 =2"m" 1 A,(x)
and g,» —q,-1€Py, lemma 3.6 gives us
1Ay — gD I S2°m™ 1 | Ap{gy — g5 1) |
<2 ImT Y| gy — gp1 | <20 2m T E - (f). (15)
From (13)-(15) it follows that

6 n
T1(q2n A) < _<4E0(f) + Z 2V”Ezv-l(f)>

(12Eo(f>+ 163 3 B )s% SEg. s

v=2¢=7"
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3.5 K-functional of J. Peetre 65

From (11), (12) and (16) we obtain the statement of the theorem. O

Corollary 3.4. We have 1,(f;A,)=0(m™ %), 0<a <1, if and only if E,(f)=
O(m ™).

This corollary follows immediately from theorems 3.13 and 3.14 for, if
E(f)=0(m™ %, 0<a<1, it follows from theorem 3.14 that

m 1-a
rl(f;Am)=o<l 3 s*“>=o<m >=O(m_“). O
mg¢=1 m

Corollary 3.4 gives us a characterization of the best uniform algebraic
approximation E,( f) by means of the modulus 7,(f; A,,) for all orders O(m™*),
O<a<1.

It is possible to characterize all orders O(m ™ %), « > 0, using moduli 7,(f; A,,)
(see K. Ivanov (1983a)} and also the best algebraic approximation in L, (see
K. Ivanov (1983b)). We shall not present here the corresponding results, since
our intention is only to show the ‘Nikol’skij effect’, which is evident from
theorems 3.13 and 3.14.

3.5 Direct and converse theorems and the
K-functional of J. Peetre

A basic problem in the theory of approximation is to find direct and
converse theorems for approximation by polynomials, rational functions,
splines, etc. In our opinion the most natural way to obtain such theorems is
to prove pairs of adjusted inequalities of Jackson and Bernstein type and
then to characterize the approximation considered by the K-functional of
J. Peetre generated by the appropriate spaces.

Let X,, X, be two normed (or quasinormed) linear spaces and X, < X,.
We shall denote by [ x,, i=0, 1, the quasinorms in X, i =0, 1 (we say that
I-llxis a quasinorm in X if || f'||x = O — we suppose that it is possible || f |y =0
for f#0-and || f+gllx<c(ll fllx+ gl for feX, geX, ¢ a constant,
=S lx=111x)-

For each feX, we set

K(f,y)=K(f.t; X4, Xy) =f=ifn£f {I follxe + 21 f1llx,}-

This functional was introduced by J. Peetre (1963) and is called the
K-functional. The K-functional plays an essential role in many domains of
the analysis, for example in the theory of interpolation spaces. This functional
is also very useful in the theory of approximation. The K-functional provides
an alternative way to characterize the ‘smoothness’ of the functions in place
of the moduli of continuity and smoothness considered in the previous
sections.
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66 Some classical results in the linear theory

First we shall show that, if X,=L,[0,2n], X, =Wt ={f:|l /P, < e},
the K-functional is equivalent to the kth L,- modulus of smoothness,

I<p<oo. Weset | fllx, =l /1, 1 fllx, = Hf“W’;:Hf(k)”p' \|f\|W;isaquasi-
norm in W%,

Theorem 3.15. Let fel(0,2n), 1 <p<co. Then there exist constants c¢(k)
and c,(k), depending only on k, such that

e1(kjoy(f5 0, < K(f, 15 Ly, W) < oK)y f5 1),

Proof. We shall use the generalized Steklov function f, , from section 3.1.
Using theorem 3.5 we obtain

K(fit5 L, W) <L f = feallp + 1S,
S olf;h), + ck)ith ™ w, ([ h),
Setting h =t we obtain the right hand side of the inequality
K{f,t5 L, W < (1 + c(k) w{(f3 1),

In order to prove the left hand side of the inequality, let f, e W¥ be chosen
arbitrarily. Using properties (ii) and (vi) of w,, we have

ol 50, <ol —f1.0, + ol f1:0),
2N =Sl +ELFE
Since f,eW¥ is arbitrary, we get from here
ol f31), 2K (f,t5 L, W), O

Let {G,}? be a family of subsets of X, and let each G, be an existence set in
X, (see section 1.1). We shall call {G,}{ a normal approximating family if
G,G,,, and G, +G,_, < G,,, ie. for each ¢,€G,, g,€G,_, we have
g; +¢,€G,,. Note that the most important approximating families, as
algebraic and trigonometric polynomials, rational functions, spline functions,
are normal approximating families.

The best approximation to feX, by means of elements of G, we shall
denote by E,(f)x,:

E(f)xo=1nf{|| f —gllx,:9€G,}-

We shall say that the quasinorm |- ||y satisfies the o-condition, 0 <o < 1,
if for each f,ge X we have

If +alx<Ifl%+lgl%. (1)

The following theorem gives direct and converse theorems in terms of the
K-functional.
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3.5 K-functional of J. Peetre 67

Theorem 3.16. Let X,, X, X, = Xy, be two quasinormed linear spaces with
quasinorms |-y, i=0,1. Let the quasinorm ||, satisfy the o-condition,
0<o<1. Let {G,}7,G,c X,,n=1,2,..., be a normal approximation family.
Suppose that one of the following inequalities holds.

(i) Jackson type inequality: if feX,, then

Effya< e/ In @)

nll
where c is constant independent of n and f, « > 0 is a fixed number.
(i1} Bernstein type inequality: if G, then

lollx, <cn*{l@lix, (3)
where ¢ is a constant independent of n and f.
Then, for every feX, and n=1,2,...,we have, in case (i).

E(f)xo < cK(fin"% X o, Xy), (4)

and, in case (ii),
n 1 l/a
K(f,n*“;Xo,Xl)scn*“{nfusa,+ ) ;(v“Exf)xu)"} SENCY

where c is a constant independent of n and f.

Proof. We shall prove first that (2) implies (4). Let f =f, +f1, fo€Xo,[1€X,.
Then by (2) we get

E(f)x, <€ Co( [follx, + inf [ f1 — ¢ on>

@eGn
=co(Ifollxe + Eslf Dxo) S cilll follxe + 7l f1llx,)
Hence
En(f)Xo < CK(f: nva;XO’ Xl),

i.e. the estimate (4) holds.
Now we shall prove that (3) implies (5). Choose ¢,-€G,s such that

[ f = @pllx,= Ex(f)x,

(let us remember that G, is an existence set in X ).
Hence'

0y — @p—1llx, S coll f — @y llx, + f ~ @y on) < 2C0Ez"”(f)xo- (6)
Similarly as in the proof of theorem 3.7 using (1), and (3) and (6) we get

P+ gl <colll Sl + g llxo)
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68 Some classical results in the linear theory

for every m =0

K (.fﬁz_m; Xo, X< f — @Pym on + 27 (Pzrr-”xl

1l/o
<Ezm(f)xo+2_'"“{ Z oy —@y-1il%, + @y ||S'(1}

v=1

< Epol N, +c-2""“{ Y @V g = ot + 0, n;o}
m 1/a
{Ezm(f %ot 27 "‘{ Z QU Ep- Ny + L — 0y 1%+ |lfll§0}

m 2v 1 1/o
< cﬂ"’"‘{ X2, ;(#“E,L(f)xo)" T (E1(f)xo)” + ||f|l§0}

=1p=2

1/a

2m |
<Ca'2_"'“{|f|§0+ > w(u"’Eu(f)xo)"}
p=1 M
This estimate implies (5) because of monotony of the K-functional. [

Corollary 3.5. Let the conditions of theorem 3.16 be fulfilled and let feX,.
Then E(f)x,=O0n "), 0<y <ua, if and only if

K(f,t; X4, X 1) =O@").
Corollary 3.5 is a special case of

Corollary 3.6. Let the conditions of theorem 3.16 be fulfilled. Let w(d) be a
nonnegative and nondecreasing function on [0, 00), such that w(268) < 2°w(9) for
020, f>0. Then we have

E(f)x,=0m""0(n" 1), 0<p+y<a, y=0,

if and only if
K(f,t; X0, X,) = Ot w(t)).

Proof of corollary 3.6. If
K(f,t; X, X ) = Ot 0(t'%),
then by (4) we obtain
E(f)x, ScK(fin™% X0, X 1) = O(n w(n™1)).
Now let E,(f)y, = O(n "o(n™1). First we shall prove that
w(md) < CmPw(d), 8=0, m>1. %)

Indeed, since w(28) < 28w(d), then w(2'3) < 2"%w(5) for 6 = 0, v = 0. Suppose

t Since @yv— Pyp-16G 1.
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3.5 K-functional of J. Peetre 69

that 2°"! <m < 2". Then from the last inequality we get
w(md) < w(2'6) < 2" w(8) < 2m)Pw(d)

as required.
The inequality (7) implies immediately that

W(A8) < (A + DYw(d), 8,1>0. )

Now we estimate K(f,n™% X, X ) using (5), (8) and the fact that f + y <.
We get

n 1 o\ 1l/o
K(fin™% X0, X)) < ‘“<||f|\§0+ ;;(V“*”w(V”)) )

n 1 n B g Y1/o
Scln‘“{l|f|l;o+ Zlv<va—v<v+ ]> w(n'1)> }

n 1/
<Czn'a{llf||}0+n””(w(n—l))a y vw—y—ma—l}
1

/o
<Csn_“{||f|!}0+n‘“”"(w(n'l))"} — O Twin 1),

O

Let us mention finally that theorem 3.16 can be considered as an abstract
generalization of theorems 3.3 and 3.7 because of theorem 3.15 and the fact
that we have Jackson type and Bernstein type inequalities for the trigono-
metrical polynomials.

Theorem 3.16 can be used successfully in more general situations than that
considered, but for orders of approximation not better than O(n ™%,

Consider the following approximation spaces:

© i/q
AfXo) = {feXoi 1S gy = 1S Mlxo +< Z:O(szzv(f)xo)q> < OO},

when 0 < g < o0, and

: Xo) = {fEXO: Hf“A{n(XO) = anxo + SUP”yEn(.f)xo < OO}

As usually we shall denote by (X, X, ), , the real interpolation space between
X, and X,:

(XOa Xl)e,q

q\ l/q
{fexo 1 f gy, =1 f l1xo + (Z()(Z””K(fzv,xo,x >>> <oo},
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70 Some classical results in the linear theory

when 0 < g < o0, and

(X0, X 1)p,00 = {fEXo: I ko g = IS xo +5ug[_0K(f, X0, X) < OO}
t>

(see J. Peetre (1963), J. Bergh, J. Lofstrom (1976)).
Corollary 3.7. Under the assumptions (i) and (ii) of theorem 3.16 we have
AfXo)=(Xo, X

l)y/a,q
with equivalent quasi-norms provided 0 <y <a and 0 <g < ©

Proof. Tt is readily seen that the inequality (4) from Theorem 3.16 implies
the estimate

HfHA;(x C”f” (Xo.X

In order to prove an estimate in the opposite direction we shall use the
inverse estimate (5) and the following discrete variant of Hardy’s inequality
(4) in section 7.1.

//a g’

Lemma 3.10. If0<p<oo,>0and a, =20, k=1,2,..., then

z< —vp Z ak) Z kﬂa

v=0

Proof. Let 1 <p < oo and set o = /2. Then applying Holder’s inequality we
get
20 v r o0
z <2vﬂ Z ak> — Z 2~vﬂp< 2ak2 ak )
v=0 k=0 v=0

< < 2—vﬂp : akp - 2 akp .p
S S ()
C(,B,p) i 2—v[1p+vap i zfakpal;:
v=0 k=0
ﬂ p) z 2 akpa i ~vap

=C,(B,p) 3, 27"af.
k=0

Now consider the case 0 < p < 1. Then using inequality (3) in section 7.1
and changing the order of summation we get

v p a0 v
(2Saf<gzSa
k=0 v=0 k=0

M8

It

v=0

i i B _Cpp) S 27a. O
= =k k=0
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3.6 Notes 71

Now we continue the proof of corollary 3.7. Inequality (5) in theorem 3.16
as we know from the proof of the same theorem is equivalent to the inequality

1 n 1/o
K<f,2m;Xo,X > 2ma{“f“x(, <ZO(2 *E (f)x(,)> } )

v=

On the other hand, it is easily seen that

o 1 q\1/q
1/ ko s C{nfuxo (g()(zw(f,zm;xo,xl))) } (10)

Combining (9) and (10) and using lemma 3.9 we obtain

* 1/q
1f Mexg x /zqéC{anm ||fnx0( gozm(qu)

o0 m q/a\ 1/q

+< Z 2—m(u—?)q< Z 2vaE f)X())d> > }
0 l/q

e fistas (32w mnar,) )

:Cl ”‘f”AZ(XO)' D

Remark. We observe that if || g |y, =0 for each geG, then the term || f'{|y,
can be omitted in estimate (5) in theorem 3.16 and as consequence corollary
3.7 holds without [| f || x, in the definitions of spaces A)(X,) and (X, X )y,

3.6 Notes

The classical works on direct and converse theorems in the theory of
approximation are the works of D. Jackson (1911), Ch.de la Vallée-Poussin
(1910), S.N. Bernstein (1912). The second modulus of continuity or modulus
of smoothness w,(f;0) was introduced by A. Zygmund (1945). Zygmund
obtained by means of w, characterization of the class

{f: En(f)C[*n,ﬂ:] = O(n_ 1)}

As we have mentioned, the converse theorem 3.7 of Bernstein type was
given in this form by Salem (1940) and Stechkin (1951).

For the generalizations to w,(f;0), k> 2,and L,, p < oo, see Quade (1937),
A.F. Timan and M.F. Timan (1950}, S.B. Stechkin (1951), M.F. Timan (1958).

For Jackson and Bernstein type theorems for best approximations in the
spaces L,, 0 <p <1, see E.A. Storozenko, V.G. Krotov, P. Osvald (1975),
V.A. Ivanov (1975), E.A. Storozenko (1975, 1977, 1980), V.G. Krotov (1982).

The problem of characterization of the functions on the finite interval by
means of their best polynomial approximations has a long history. We cannot
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72 Some classical results in the linear theory

give here this history and all authors who have been working in this domain.
We want only to mention the works of A.F. Timan (1951), V.K. Dzjadik
(1956, 1958), Yu.A. Brudnyi (1963, 1970), V.P. Motornii (1971), A.L. Fuksman
(1965), M.K. Potapov (1975, 1977, 1981, 1983), A.S. Dgafarov (1977),
R.L. Stens (1977), R.L. Stens, M. Wehrens (1979), P.L. Butzer, R.L. Stens, M.
Wehrens (1980). Between the different characterizations we prefer the
characterizations given by K. Ivanov (1983a, byand Z. Ditzian, V. Totik (1987).

For direct and converse theorems for best trigonometric approximation
using fractional derivatives and fractional moduli see P.L. Butzer, R.L. Stens
(1976), P.L. Butzer, H. Dyckhoff, E. Gorlich, R.L. Stens (1977).

For more details concerning the classical direct and converse theorems for
trigonometric polynomial approximation see the books of I.LP. Natanson
(1949), G.G. Lorentz (1966), V.K. Dzjadik (1977), A.F. Timan (1960), V.M.
Tihomirov (1976).

The K-functional was introduced by J. Peetre (1963, 1968). The K-func-
tional has many applications in the theory of interpolation spaces, in
approximation theory and in other domains; see the books of J. Bergh,
J. Lofstrom (1976), H. Triebel (1978), P.L. Butzer, H. Berens (1967), J. Peetre
(1976).

The role of Jackson and Bernstein type inequalities in linear approximation
is well known, see P. Butzer, K. Scherer (1968). For the case of nonlinear
approximation compare with J. Peetre, G. Sparr (1972) and J. Bergh, J.
Peetre (1974).
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4

Approximation of some important
functions

The development of the theory of rational approximation has a point of
discontinuity, a jump in 1964, when D.J. Newman proved that the best
uniform approximation of the function |x| in the interval [ —1,1] by means
of rational function of nth order has order O(e ™ “Y"). Let us remember that the
order of the best uniform polynomial approximation E,(]x|)¢—;.q; s only
O(n™ 1) (S.N. Bernstein (1952); see also G.G. Lorentz (1966)).

In this chapter we shall consider the best uniform rational approximation
of some special, but very important, functions. We begin in section 4.1 with
Newman’s result. After this in section 4.2 we give the exact asymptotics of
the best uniform rational approximation of |x| in [—1,1] (Vjacheslavov,
1975). In section 4.3 we give some of the few examples where it is possible
to write exactly the rational function of best uniform approximation. It is
interesting that this was done more than 100 years ago (E.I. Zolotarjov, 1877).
In section 4.4 we give the solution of the Meinardus conjecture for best
uniform rational approximation to e* in the interval [—1, 1], obtained by
D. Braess (1984). We end the chapter with some remarks connected with
rational approximation of e ™~ on [0, c0) (section 4.5) and notes (section 4.6).

In this chapter we shall use the notations

Rn(f) = Rn(f)C[a,b] = ll'lf{ ” f— r ”C[a,b]; rERn = Rnn}'

4.1 Newman’s theorem
Theorem 4.1. The following estimate holds:
e VKR (Ixep- 1,y <367V, n2S. (1)

Remark. The rational approximation of |x| on [ —1, 1] is equivalent to the
rational approximation of \/ x on [0, 1]. More precisely if the rational function

Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,
available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781107340756.005


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.005
https://www.cambridge.org/core

74 Approximation of some important functions

s,ER, is the best uniform approximation to \/x in [0,1] of order n and
r,.€R,, the best uniform approximation to |x| in [ —1,1] of order 2n, then
$u(x?) = r,,(x). Consequently Rn(\/x)C[O,l] = RouIxDer- 1,17

In the proof of theorem 4.1 we shall use the following lemma.

Lemma 4.1. Let

n—1
po) =] (x+&9, &= O<e<l, n>2
k=1

Then for xe[e, 1] we have
— 2elm —
Ip( ) gexp{_ G s)n}. 2
plx) In(1/¢)
Proof. Let xe[&'*1,&],0 <i<n— 1. Since the function (a — x)/(a + x), a > 0,
is monotone decreasing, then
‘p( —x)
p(x)

i é"—x n—1 x—ék i gk__gi-#l n—1 1~§k n711_ék
=H K l_[ k<H K i+ 1 H kT %
=1 & X=X+ 8 =1 AT s 1+ g1+ L

Thus for xe[g, 1] we have

p(—x)| _n=t1—¢
oo | Sl Te ®

For 1 >0 we have (1 —)/(1 + 1) <e *. Using this inequality and (3), we

get for xefe, 1]
<exp{—2nzl ék}zexp{_zf(‘l—f"l)}
k=1 —

‘p(—X)
¢
2t —e)n}

p(x)
ge"p{_ In(1/e)

where we have used the inequality

1
l—ésln(1/§)=;1n(1/8)~ O

Proof of the upper bound in theorem 4.1. Let us consider the rational function

o) = P = (=)
plx) + p(—x)’
where
n—1
p)=[] (x+&9, &=el e=e ", nxSs.
k=1

Clearly reR,. Since 2(e!/" — &) =2(e " v"—e™¥" > 1 for n = 5, then by (2)
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4.1 Newman’s theorem 75

we get

lp( -X)
p(x)
Since | x| and r(x) are even functions in the interval [ — 1, 1], we can consider

only the case xe[0,1]. If xe[0,e v*]=[0,¢"], then p(—x)>0 and

x > r(x) > 0. Consequently for xe[0,ev"] we have

<e V" forxele v, 1], n>5. 4)

x| =)l =x—r(x) < x <e

If xe[e~v", 1], then by (4) we get for n>5

el = 2el PR | 261 21p(= o)
px)+p(—x)| [T+ p(—x)/p(x)| ~ 1 —|p(— x)/p(x)]
= 12_e;"/ <3en,

which gives us the upper bound in theorem 4.1.
To prove the lower bound we shall need some lemmas.

Lemma 4.2. If peP,, n 20, then there exists a polynomial ge P, such that
‘p(—x) 2{q(—X)
p(x) q(x)

Proof. Let & =u+iv be any complex number and ¢t > Q. Then

<1 forxz=0.

{q( —Xx)
"] g(x)

t+¢ _((t+u)2+u2>1/2><(t—fu|)2+1;2 1z
=& \t—uw?+02) T \@+]u))?+0?
(t—1ul)>\"* |t —]u]
>((t+|u|)2> el ©)

If p(x) = ATTr-{ (x — &), then we set g(x) = AT/, (x + [Re &]). By (5) we

getfor x>0

p—n|_|LOTD] (x—IReé,-l)’: a(—>)
PO || o el I G FIReED] [ at) |
il=—[1(x &)
On the other hand obviously
lq(—x)/q(x)| <1 for x =0. O

Lemma 4.3. Let reR, and let r be an even function. Then there exists geP, , ,

such that

q(—x)‘ forx =0.

q(x)

lx —r(x)] = x
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76 Approximation of some important functions
Proof. Since reR, is an even rational function, there exist two algebraic
polynomials p, € Py, and p,€P},,; such that r(x) = p,(x?)/p,(x?). Denote

F={xx=0,r(x)>0}, E=[0,c0)\F.

If xeF then
(6)

xp(x*) — py(x?)
xpa(x?) + py(x?)

X ()] = x‘xpz(xz) —pi(x?)
xpa(x?)

We set p(x) = xp,(x?) + p,(x?). Then peP, . ,. By (6) we have for xeF
[x — r(x)| > x| p(— x)/p(x)|.

Now by lemma 4.2 there exists ge P, , such that for x =0 we have

’p(—X) >}q(—>€) 99| _,
p(x) q(x) gx) |
Then we have for SceF
[x —r(x)] > x q(—x)’
q(x)
and clearly for xeE
U

|x — ()] = x = x|g(— x)/g(x)\.
Lemma 4.4. Let qeP,,n =1 and g% 0. Then there exists a point xe[e ™", 1]

where
x(q(—x)/g(x)) > e~ ™"

Proof. Let £ =u+ iv be any complex number and 0 <a < b. Then

b+ Elde n?
JalntiET>—7. (7)

Indeed we have by (5) for t =0

2

1 _—
=2J lnL—tg= .
o 141t 2

The last integral can be calculated by using the Taylor series for the

t+€>t—|u|'
t—& 7 [t +|ul
We may assume that u £ 0. Then
bt de _ [ |e—luflde  [P™ |e—1]dr © |e—1|dt
ln£—> In lu’4= In|—H|—>| In|—--1{—
. t—=E&|t o |t+|ul|t o |TH1] 2 o t+1)¢
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4.1 Newman’s theorem 77

logarithmic function and the fact that

7'(2

& 1
k; Qk—12 8
Next put 6 =exp { —n,/n} and assume that

‘q( x)
q(x)

<exp{—mn/n} foro<x<1

Then

toLal=1)
Jln}t 0

On the other hand one has

1
de —n\/nJ %—t:—nzn. (8)
5

t+é
¢

In

q(—1)
=In In
t 0 ‘ t+Z

where ¢ runs through the zeros of g. Noting that
In¢
J n—dt = —7’n/2

and applying (7) to each term in the sum we get

1 1 1
q(—n|dt J Int J‘ t+¢&ld , 5 5
In|t—— —dt + In|——|—> —7n*n/2 —n°n/2 = —n*n.
j . q(1) % s |t—¢lt / /
The comparison of this inequality with (8) proves lemma 4.4. O

Proof of the lower bound in theorem 4.1. Let reR, be the rational function
of order n of best uniform approximation to |x|in [—1,1], i.e.

x| =X er-1.1= Rl XDeg - 1,11
Since | x| is an even function, r(x) and r — x) are rational functions of order
n of best uniform approximation to | x| in [ —1, 1] and by the uniqueness of
the best rational uniform approximation (theorem 2.2) it follows that r(x) =
r(—x), i.e. r is also an even function.
By lemma 4.3 there exists geP, ., g # 0, such that

q(—x)
q(x)

Now by lemma 4.4 it follows that there exists xoe[exp(—n\/(n + 1)),1]

[x —r(x)| = x

‘ for x= 0.
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78 Approximation of some important functions

such that
q(— xo) N
q(xo)
Consequently
q(_x ) - n
R(IxDep-1.17 2 [x0 — r(x0}| 2 X 0| 5 g nt 1) .
q(xo)

4.2 The exact order of the best uniform approximation to | x|

In this paragraph we shall give the following results of N.S. Vjacheslavov
(1975).

Theorem 4.2. The following estimates hold:
167'"\/’n<Rn(|x|)C[—1,1]<Cze wEonzl, (1)

where ¢, and c, are absolute constants.
Instead of the inequalities of the type (1) we shall write also

R(1xDecro,1; =< Ofe ™ ™").
Using the remark after theorem 4.1 we obtain from (1) the following.
Corollary 4.1. We have
Ry(/X)cio0.1) = Oe ™™ "),

The lower bound in (1) we have by theorem 4.1.
To obtain the upper bound in (1) we shall use some lemmas.

Lemma 4.5. Let E=e" % 0<a<1/2, and u=(1/a)In(1/8), 0< B <1/2, p an
integer. Then
”711_5k+1/2 7.[21 ﬁ
kﬂomdexp{—zam;}

Proof. For |x| <1 we have

1—x -1
| =In(l — _
Ny n(l—x)—In(1 +x)= 222s—1
and therefore
u—11_5k+1/2 u—1 1_§k+1/2 0 1 -t
S In—=> \_ _ -
kI;[01+ék+1/2 exp{kgo n1+ék+1/2 exp S=125_1k=0 }

2[1/a] ] — gu2s=1)
<exp{—2 321 (s— 1)(é~(2s~1)/2_€(2s—1)/2)}=CXP{A1 +A4,},
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4.2 Best uniform approximation to|x} 79

where

1
(25— 1)
2 201 25— 1)?
A )

o s; exp{(zs— l)a} Vexp{_as— 1&}’
2 2

(2s — Dgrt>s—1

(2s—1)?

1/a]
Z (25— Da (2s—Da)’
KRy (TR T T

We shall estimate A, and A4, using the following inequalities:

2 0
z — <043, 0<a<1/2, 2
o s= 2[;a]+1(23—1)2 / ( )

_ 2%
o

1-006x2<p(x)<1, 0<x<4, (3)
where

X

o(x) = o2 o X2

Indeed we have for 0 <a < 1/2

= o2 A1 [l/al+1 _3
lzlﬂ(zs—n aLm(zt—l)Z”a(4[1/a]—1)<4[1/a]—1<7<0'43‘

QIN

On the other hand

X 1

o 1 2k+1=1+ s
L y
ok + 1)\ 2

2k—-2

o(x) =

where we set

o0

X

w2
V=X L Rk 2
Then for 0 < x <4 we have
422 2/ m D1 2
ey Y Xy 25} =% (sinh2—2)<0.06x%.
y<x Z 2k + D122 32(,(Z 2k + 1)! > 310 ) <0.06x

=0

Since (1 + )" !> (1 —y) for y >0,

p(x)>1—y>1-0.06x>

Thus (2) and (3) are proved.

Now we shall estimate A, using (3) with x=Q2s—1)x, the
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80 Approximation of some important functions

equality 3% (2s — 1)7? = z%/8 and (2). We get
22[1/«] 1 2201/ 1

Ay=—— % ———5 (25— Do) <—— %,

2 2 3TT) - 1)2(1 0.06(2s — 1)2x2)

2 n? © 1 )

o4 s=2[1/a]+1

2 2

1 1
<—El4043+024=-""1067.
4 o 4 q
It remains to estimate A,. Since u = (1/a)In(1/5),
Er=exp{—ua}<exp{—In(1/f)} =p<1/2
Moreover ¢((2s — 1)a) < 1. Then we obtain

2201 | B 2201/a
PRI

. 3u éu(Zs 1)
é +— 5 + Z 1y

2 1 ® 1
<3 (”552 L (2_—i)_>

s=3

ﬂ 21, 2 (x

Using the estimates given above for 4, and A, we get

A, =

3 éu(ZS‘ 1)

o SZI 2s—1)

u—1 1 —ék+l/2

21 p
T . ck+1/2 A A —_—— . .
k=01+ék+1/2<exp{ L+ 2}<exp{ 4a+21a+067}

2
<26xp{—%§+2.1£}. 0

Next we shall assume that n > 2n, where ng, is a sufficiently large number.
Let us denote

m= %ln\/n—k 1], r=[2yn+11,

1 i
l— )J—F <v<2r—1,
( e>2\/n’ o<v r

1
A, = <1_g>2—f/ri’ (+r<v<(i+2)r, 1<ism—2,

n

2J(n—vy

mr<v<n—1,
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4.2 Best uniform approximation to | x| 81

1 1
I=1v)= [Z—lnA—:', mr<v<n—n,.

Note that 4, < 4, < A4, <

We shall denote by ¢ absolute positive constants.

Lemma 4.6. The following inequalities hold true:

2

A2,+A2,+1+---+Av+§:vi>n\/n——c, )
where mr<v<n-—1;
2 2
where 1 <i<m—2;
A, o+ A, i+ + A, <Ck+ DAL+ cA), (6)
where 0 <k <I(v), mr <v<n—n,.
Proof. Evidently
J—x)=1—-3x—4x* for|x|<L Y

We have for 1 €k<s

2 /s+1)— 2‘/k<J \/ + +\} <2/(s+1/2)
*2\/(k—1/2 ) <25 —2/(k—1). )
Indeed

o 2 2
NN +ﬁ<¢(s 1D+ 1) T Je— 12+ J6 = 3)

2
JEF12)+ Jk—1/2) A+ 1/2) = (s = 1/2))

F 25— 1/2) = (s = 3/2)) + - + 2k + 1/2) — Jtk — 1/2))
=2 /(s +1/2) = 2 /(k— 1/2) < 2. /s — 2 /(k— 1).

The lower bound in (8) can be proved similarly.
By (8) we get

nf 1 1 1
5<%+\/(n_1)+--~+\/(n_v)+2\/(n—v—1)>>ﬂ\/"—c, )

where 0<v<n—1.
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82 Approximation of some important functions

Now we prove (4). We have

T MIlr
A2r+A2r+1 + - +Amr 1_(m 2

ENIENTE

nr 5 | —e m™*2
= M — _——
2n e—1
n2\/ —¢)>am—c.
2\/n
On the other hand by (7) and (8) we get

nf 1 1 1
§<\_/z+\/(n_ 1) + .. +\/(n—mr— 1)><n(\/n—\/(n—mr))

o1 (1Y) <m0

2\/ +c<mm+ec.

Consequently
Ap+Agpyr++ A4 > L !
- PN _— —c
2r 2r+1 mr—1 \/n \/(n . 1) \/(n —mr— 1)
(10)
Then using (9) and (10) we obtain for mr <v<n—1
7[2 2
A A o4+ A =4 A A A,
2r+ 2r+1+ + v+2Av+1 2r+ -+ mr— 1+ mr+ c+ +2Av+1

nf 1 1 1
>5<:/_n+ +\/(n—mr—1) +\/(n—mr)
1
+...+»\_/m+2\/(n—v—l)>

—c>mn—c.
The inequality (4) is proved.
We shall prove (5) using (7). We have for 1 <i<m—2

_ei+1
n n? 2n T 2mr
= LN T B A YA A o
2¢"+<4 )n(e'“—l)*ﬂ"/(l n)
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4.2 Best uniform approximation to | x| 83

> \/n+c\/v ”J"(l———z(mr))

n n

>nyn+cen'? V2 —clnn—c>n/n+Inn,

where n > 2ng, n, sufficiently large. Thus (5) is proved.
It remains to prove (6). Using (7), (8) we obtain for 0 <k <l(v), mr <v <
n—ng,

Av—k+ Av‘k+1 + -+ Av+k

7 1 ! 1
<5<\/(n—v+k)+\/(n—v+k— 1)+m+\/(n—v—k)>
<a(J(n—v+k+1/2)— J(n—v—k—1/2))

B 2k + 1)
=y +k+1/2)+ J(n—v—k—1/2)

_ 22k + 1)A, _ k4,
/<1+k+1/2)+/<1—k+1/2> - 1(k +1/2)?
n—v n—v 2 (n—v)?
Qk+1)4, 2k + 1)4, __@k+14,
L0+ 1727 = L= )in Jin—) + 127 n

2 (n—v)? 2 (n—v)2 1_4\/(n—v)

~

(2k+ 1A,
= Y < 2k + DAL + A4),
oA <OkEDAEA)
where n — v > n,. The inequality (6) is proved. U
Next we put
n—1

px)=[] x+¢&), &=exp{—(Aog+A;+ - +A)+ 2rdy,y. (11)

j=0

Note that 1 =&,, ;> &,,> - >¢&, 1 >0.

Lemma 4.7. We have

<ce ™n 0<x<]1, 12)

. ’p( —x)
p(x)

’p( —x)
p(x)

<n/d,  &_,<x<l 13)
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84 Approximation of some important functions

Proof. Obviously if x = £; then the inequalities (12) and (13) are true. In what
follows we shall use the fact that (a — x)/(a + x), a > 0, is a decreasing function
and for 0 <a < x < b we have

b—x(x—a) _(1—/(a/b)’

(b+x)(x+a)  (1+./(a/b)* (14)
If xe(é, 1, &), 0<v<n—2, then (14) gives us
\p(_ x) < (& —x)x—¢&041) < <1 - \/(6v/év+ 1))2
pO) | TG A0 +Er) T +E/E )
1—exp(—34,.,)
s 1+exp(—34,11) < A2/
The inequality (13) is proved.
Now we prove (12). If xe(¢, ., ¢&,) then
p(—x) T ¢—x "ot x—¢;
x‘ p(x) _le:l(Jéj-l'x j=lv_l+1x+5j' (1)

Let us consider the case when (i+ ) <v<(i+2), 1 <i<m—2. By (15)
it follows that

&8 L
=08+t &y sl + ¢

:ﬁl—fwl/é,‘ mr 1 - EJE,
j=01+év+1/€jj=v+11+éj/év.

Since 4, <A, €4, <+, for 1 <j<v we have

p(—x)
x’ p(x) =

év+1/6j:eXp{‘(Aj+1 + o+ Av+1)} >exp{_("+ 1 _j)Av+1}
=exp(— kA, )>exp{—(k+ 1/2)A(j+2)r}:

where k=v+1—j 1 <k<v.
Similarly if v + 1 <j < 2mr then

éj/év:exp{—(Av+1 + o +Aj)} >CXP{_(J"“ V)Aj}
>exp{—kAy,,} >exp{—(k+1/2)4,,.},

where k=j—v, 1 <v<2mr—v.

Consequently
X}P(—X) Q17 Lo (k+ 1/2) A 00} 2 1 —exp {— (K + Do)
p(x) k=0l +exp{—(k+1/DA;s 2} k=vr11+exp{—(k+DAs}

(16)
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4.2 Best uniform approximation to | x| 85

where we have used the fact that

L+exp{—Ay2/2) 14exp{— A43,/2} <1 +exp {—3A;+ 20} >2
1 —exp{— A(j+2)r/2} 1 —exp{—4,,./2} I —exp{— %A(j+2)r}

B 1 ) 1\ = { 2=
pdl1—=}—_t_
xp 2 C 2\/n
In our case
, 2/n . lne/*!?
ve(j+r>2/nlned* ' > —N  ___Ine/tt=""T—
U ) \/ m(l—e™’ 1) A(j+2)r
and
2 2 2 1
2mr —vzmr>—/ninn>=/(n—2mr)In=/(n — 2mr) = In
n n T 2mr A2mr
Then using lemma 4.5 on the product in (15) we obtain
p(—x) { n? 1 1 n? }
x <dcnexpl ——————+ 2.1 — +2.1
p(x) P 4 A+ 2y e]+1A(j+2)r 44,,,

and by (5) we get

x\p(— X)
p(x)
Thus (12) is proved in the considered case.
Nowletmr <v<n-—ny. lffweputa=¢,,,,andb=£¢, ,,0<k<,in(14)
we get by (15)

<cenexp{—mn /n—Inn}=cexp{—n/n}.

v éj_x v+i+1 x_éj

j=v*léj+x j=v+1 x"‘éj

<x =0(1 —VCr /&P s i/)) 2 (17)

k

By (6) we have

<X

x~p(— x)
p(x)

el =exp{—(Ayper + -+ Ayiirr)}

>exp{—(2k+ DA, (1 +cA, )}
and
x<& <cexp{—(Ay+ Ayt +4)}

Then by (17) we get

X

p;zx-;c)l <ceXp{-(A2,+A2r+1 + .. +Av)}

. li[ I—exp{—(k+1/24,.,(1 +c4,.,)}

k:01+exp{_(k+]/2)Av+1(l +CAv+1)}. %)
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86 Approximation of some important functions

We have

v+ 1> ! In ! > ! 1 ! > ! 1 !
v —In—3> n n .
Ay Ay Aver Ay Ayl +cdpy) AT+ cdyy)

Then by (18), {(4), using lemma 4.5 we get

4m—w
p(x)

2n? 1

TAv+ (1 +cA,.)

<cexp{—(A2,+---+Av)}-2exp{— +2-2.1}

7'[2

<cexp{—<A2r+...+A\,+2A >}<cexp(—n\/n).
v+1

Then by (4) we obtain

Nowlet 0<x<¢

4m—m
p(x)

n—no*

SP AN én—no = CXp{—(AO + e+ An—no) - ZrAO}

7[2
sCexp{_<AZr‘+"’42r+1 + - +An—no+ﬂ_—
n—no+1

<cexp(—m/n). 0

We can now complete the proof of the upper bound in theorem 4.2.
Let us consider Newman’s rational function

__px)—p(—x)
r(x) - El
p(x) + p(— x)
where p is the polynomial from (11). Obviously r is an even function and

reR, ;.
Since p(— x) =2 0 for xe[0,&,_,], for xe[0,£,_,] we have

|x —r(x)| =x —r(x) Sx <&,y <cexp(—my/n).
If xe[&,_,1] then by (12) and (13) we get

o = 2P

1+ p(— x)/p(x)|
Consequently
Ry 1(1xDep-1.17 < ce "

which implies the upper bound in theorem 4.2. ]

4.3 Zolotarjov’s results

There are few examples where we can solve the problem of finding exactly
the best uniform rational approximation. Some, but very important, examples
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4.3 Zolotarjov’s results 87

were given by E.I. Zolotarjov more than a hundred years ago (see Zolotarjov
(1877)).

Following N.I. Ahiezer (1965,1970), we shall consider here four of the
problems which can be solved by the technique developed by Zolotarjov.
This technique involves elliptic functions.

Problem 1. Let 0 <k < 1. Find 7,eR, such that

[ sign x — 7,(x) | cory = inf{ [ sign x — r(x) e rERn} = R,(k), (1)

where G(k)=[—1, —k]U[k,1].

This problem leads to the rational approximation of the step function and
rational uniform approximation of | x|, problems which are basic in the theory
of rational approximation of functions.

Problem 1 can be formulated by linear transformation in the following
equivalent way.

Problem I'. Let 0 <k < 1. Find r,eR, such that
I signx — () eqag = inf{ |1 5ign x — 1) leoagos 7€ Ra} = Ry(K),

where A(k)=[—1/k, — 17U[1, 1/k].

Problem 2. Let 0 <k < 1. Let us set

R,={rireR,,|rx)| =1 for |x| = 1/x}.
Find q,eR,, such that
Iguller— vy =100 {lIrller— 11y reR,}.
Problem 3. Let 0 <0 < 1. Find s,eR,, such that
11— /%8500 I cgo.1; = Inf{ || 1 — \/xr(x} | cyo.1): TER,}-

Problem 4. Let 0 <k < 1. Find 7,eR,, such that

I1— \/(1 — k2 x)F,(x) o1 = inf{||1— \/(1 — k2x)r(x) lero.1y: reR,}.

Obviously problems 3 and 4 are equivalent — settingu = 1 — k?x,0 =1 — k?
we obtain from problem 4 problem 3 and setting 1 — k*u=x, k> =1—0, we
obtain from problem 3 problem 4.

We shall prove now that problems 1 and 2 are also equivalent.

Theorem 4.3. Problems | and 2 are equivalent.

Proof. 1t will be sufficient to prove that problems 1" and 2 are equivalent.
Let us show that problem 1’ is equivalent to problem 2. Let ¢, = p/q be a
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88 Approximation of some important functions

solution of problem 2.! Then p has degree exactly n. If not, then for the
rational function gJ(x) = xxp(x)/q(x) we have

(@) greR,, since |g¥(x)| = x|x||g,(x)| > q,(x)| > 1 for |x| > 1/x,

(b) I[néllxulq,’f(X)l—K max 1401 < I1Gn llcg- 1,15

which contradicts the definition of g,,.
It is also evident that we must have

min {|g(x)|:|x| > 1/} = 1.

Now let m =max,_ 1;/g,(x)|. Obviously 0 <m < 1.
Let us consider the rational function r,eR, given parametrically by

_(L=m)(g,(t) —/m)
) = e ) + ym)’
_(1+ Ve Jk—1)
(1= o)tk + 1)
and let us set k= (1 — \/i)*/(1 + /x)*.
We have, when —1<t<1, then — l/k<x< — 1, and when |t]| > 1/,
then 1 < x < 1/k. On the other hand

2

1)+ m\/m)
(1 + m)(g,(t) + \/m)

)+ 1 =
and, since [{ g, ll¢(- 1,1 =M,

2g () +mym) | 2 m

(1 +m)(q )+ m)| 14+m’ (3)

max |r,(x)+ 1| = max
xe[—1/k,— 1] te[ —1,1)

Since min, ,, |q,(t)| = 1, we have by simple calculations

— 2(mg,(t) + \/m) l 2 /m @)

max |r,(x)—1|=m

xe[1,1/k) |t|>1/l< (1 +m)g, )+ Jm)| 14+m
From (3) and (4) it follows that
max |sign x — r,(x)| = 2ym _ = p(m). )

xeA(k) 1+m

Let us remark now that u(m) is a monotone increasing function for me[0, 1].
From here and (5) it follows that r, is a solution of problem 1!’. Indeed, if we
assume that there exists another 7,eR, such that

max [sign x — 7,(x)| = p(m,) < p(m), m; <m. (6)
xeA(k)

' Problems 1-4 have solutions — the proof is the same as in theorem 2.1.

Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,
available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781107340756.005


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.005
https://www.cambridge.org/core

4.3 Zolotarjov’s results 89

Then, determinating g, by means of 7, and m, instead of r, and m by the
converse formulas of (2), we obtain §,eR, with | g, ler-1,17=my <m, which
contradicts the definition of g, (this can be seen using the first equality in (4)
for 7,, g,, m). So r, is a solution of problem V',

We have shown that if ¢, is a solution of problem 2 then r, given by (2)
is a solution of problem 1'. In the same way it is evident that if r, is a solution
of problem !’ then g, given by (2) is a solution of problem 2. The theorem
is proved. ]

We shall give also a connection between problems 1 and 3, i.e. between
all four problems. But before doing this let us consider some of the properties
of the solutions of these problems.

Theorem 4.4. If F,cR, is a solution of problem 1 then ¥, realizes an alternation
in [—1, —k]ulk, 1], more exactly there exist 2n+ 2 points x; < x, < -+ <
Xomsas ;€[ — 1, —k]JU[k, 1], i=1,...,2n+ 2, such that
sign x; — 7,(x;) = &( — 1)* [ sign x — 7,(} | oy = &(— 1'ttns (7)
where e= t+ 1, G(k)=[—1, —k]uU[k, 1], ||signx — 7, ”C(G(k)) = HUy-
The proof of this lemma is exactly the same as the proof of the second
part of the characterization theorem for rational uniform approximation

(theorem 2.2).
From this characterization theorem we derive the following.

Corollary 4.1. If 7, = @/WyeR, is a solution of problem 1, then the rational
Sfunction (1 — uW/@peR, is also a solution of problem 1.

Corollary 4.2. Let us consider the equation
(Fu(x) — sign x)* = p3. (8)

The points — 1, —k, k, 1 are simple zeros of (8). In (—1, — k)u(k, 1) (8) has
2n — 2 double zeros.

Corollary 4.3. Let ¥, = @/yeR, be a solution of problem 1. Then in the interval
(—k, k) only one of the polynomials ¢ and W can have zeros.

In fact, if it is not so, the function |7,| must take the values 1 — yu,, 1 + u,
in the interval (— k, k) so the number of zeros of (8) in G(k) can not be 2n + 2.

Corollary 4.4. There exists one unique solution of problem 1 which is bounded
in [—k,k].

Indeed, from corollaries 4.1 and 4.3 it follows that there exists a solution
bounded in [— &, k]. The uniqueness follows from the alternation theorem
4.4 similarly to the uniqueness in theorem 2.2.

Covollary 4.5. The bounded solution in [ — k, k] of problem 1 is odd.
In fact, if 7, = @/i is a bounded solution of problem 1, then —7,(— x) =
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90 Approximation of some important functions

— @(— x)/¥(— x)is also a bounded solution of problem 1, and by corollary 4.4
we must have 7,(x) = —F,(— x), 1.e. 7, is odd.

For characterization of the solutions of problems 3 and 4 we shall use the
following modification of theorem 2.2 (see Ahiezer (1965)).

Theorem 4.5. Let [a, b] be afinite closed interval, fe C[a, b], seC[a, b], s(x) >0
for xe[a,b]. Let us consider

R(fis)=1nf{|| f—srlcpap:TER,}-

There exists a unique r*eR,, such that

” f_ sr* HC[a,b] = Rn(f’ S)'

Moreover r* realizes an alternation for f, i.e. there exist N =2n + 2 — d(r*)
points x;, i=1,...,N,a<x, <--- <xy<b, d(r*) the defect of r* (see chapter
2), such that

S (x) — s(x)r*(x;) = e(— l)i”f_sr*”C[a,h]? i=1,...,N,

where e = + 1.

The proof of theorem 4.5 is similar to the proof of theorem 2.2.

Now let us see the connection between problems 1 and 3. Let n be odd,
n=2m+ 1, and let 7,eR,, be the bounded solution in [ — k, k] of problem 1.
Since 7, is odd, #, must have the representation 7,(x) = x¢(x?)/y(x?), where
¢@eR,, and yeR,,. By theorem 4.4 the difference sign x — 7,(x) must alternate
4m + 2+ 2 times at least in [— 1, —k]u[k, 1], and since 7, is odd this
difference alternates 2m + 2 times in [k, 1]. Setting x = ,/u we see that the
difference 1—\/u o(u)/Y(u) alternates 2m + 2 times at least in [k2,1] and
therefore by theorem 4.5 the rational function ¢(u)/Y(u)eR,, is the solution
of problem 3. We have obtained the following.

Theorem 4.6. Problems 1 and 2 for rational functions of degree 2m + 1 are
equivalent to problems 3 and 4 for rational functions of degree m.

Now we shall give the solution of problems 1 and 4. This solution uses
elliptic functions, so we shall give some facts from the theory of elliptic
functions.

The Jacobian elliptic function & = sn (u; k) is defined by the elliptic integral

_ [ d 0O<k<1
Sl =oa—kay s

where k is called a modulus of the elliptic function.
The Jacobian elliptic function dn(y; k) is given by

dn(u; k) = /(1 — k* sn* (u; k));  d(0;k) = 1.
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4.3 Zolotarjov's results 91

As usual we set

o V(L =e3)(1 —k*?))
K is called the complete elliptic integral of the first kind (for the modulus k).
Let us set x = sn? (u; k). When u changes from 0 to K, x changes from 0 to 1.
The function x = sn?(u; k) is now defined for ue(0,k]. If we set sn(u; k) =
—sn(—u; k) for ue[ — K,0], we can consider x = sn?(u; k) as a 2K-periodic
function if we set sn?(u + 2K; k) = sn? (u; k).
In order to give the solution of problem 4, we need some notation.

Let us set
2 u
- =  _dnl =
N TRV TRy n<M’l>’ ®
where
A=k ] 3y,
r=1
=11 car=1/Cars (10)
r=1
K
¢, = sn? r—;k , r=0,....2m+ 1.
2m+1

From the theory of elliptic functions it follows that the complete elliptic
integral of the first kind for the modulus 1 is

K
“@mt DM 4

Using one more fact from the theory of elliptic functions — the equality

m 200,
dn<% ) dn(u: k) U Car— 1 SN (15 k)

—k 5, SN2 (u; k)

where A, M, ¢, are given by (10) (see Ahiezer (1970)) — we can write (9) as

2 m k2,
09 = g~ [T (12

CopX

If u changes from 0 to K =(2m + 1)ML, x will change from 0 to 1, and
dn(u/M; A) will be between dn(0; 1) =1 and dn((2m + 1)L; ), which equals
J(1 =A%) since dn(L; 4) = /(1 — 4?) (see the definition of dn (y; k)) and dn (u; 1)
has period 2L. From here and (9) it follows that when xe[0, 1] for y(x) we have

_2Ja-2) R StV e O
B B (I I A /(I R BV (e Iy
(13)
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92 Approximation of some important functions

On the other hand in the points u =0, 2M L, 4ML,...,2mML, y(x) = y(x(u))
has the value 1 + p, since

2sM

Yx(2sML)) = (1 + w)dn <T z) (14 p)dn@sL; ) =1+ p,

i=0,...,m,

and at the points u = ML, 3ML,...,2m + )M L, y(x) = y(x(u)) has the value
1 —yu, since y in these points is equal to (14 wydn((2s+ 1)L; 1) =
l+mJ1-F=1—p

We have from (10) and (11)

K
¢, = sn? <2rr’z‘T’ k> =sn?(rML;k).

This shows that at the points x, =c,, r=0,....2m+ 1, 0< x, <x; < .- <
X2m+1 < 1, the function y(x) alternately has values 1 + x4 and 1 — u. Together
with (13) and (12) this gives

1— /(1 = k2x)P(x,) = (= 17 1T = J(1 = k2)F0(X) |l cgo,110
r=0,....2m+1, (14)
2 i ke, 1%
1+ J(1— 22, U “Kex (15)

From (15) we obtain the result that 7,€R,,. Therefore (14) and theorem
4.5 give us that 7, is the solution of problem 4 for n=m

FlX) =

Theorem 4.7. The solution ¥,, of problem 4 (n=m) is given by (15), where A,
¢, are given by (10).
Now we shall give the solution of problem 1.

Theorem 4.8 ( Zolotarjov, 1877). The solution of problem 1 is given by

Fix) = (1= sn (%Q

x = ksn (i k), (16)
1-1 K’ K

l:—i, L’:_"—5 =77
1+1 nM L M

where K, L are the complete elliptic integrals of the first kind for the modulus
k and 2 respectively, and K', L' are the complete elliptic integrals for the
complementary moduli k', ', and | = R (k) (see (1)).

Remark. Letus remember that the complementary moduli for k, 4 are given by

k2+k'2=1, Az+lr2:1
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4.3 Zolotarjov's results 93

Proof of theorem 4.8. We shall show that 7,eR, and the difference
sign x — 7,(x) alternates 2n + 2 times on G(k)=[—1, — k] u[k,1].
We shall use the following formula from the theory of elliptic functions
(see Ahiezer (1970)):
2 ;k
. (k) oy Lt sn c(u )
_;l — t] 2r
Sn(M ) w T wh 47

Cor—1

where
2 P IS
¢ = sn (ZK/n,k) . (18)
1 —sn*(rK'/n; k')
Since 1 —I=24/(1 + 1), we obtain from (16) and (17)

_plx)_ 24 x A 1+ x2/k%c,,
Tgx) 1+ AkM =01+ x¥ ke,

F(x)

From the properties of sn(u; k') (see below) we have sn(K’; k') = 1, therefore
1/c,=0. From here and (17), (18) we obtain that, if n is odd, then peP,,
qeP,_,, and, if n is even, then peP, |, geP,. Therefore for all n we have
F,eR,.

Now we shall prove that the difference sign x — 7,(x) alternates at least
2n + 2 times in G(k) (it alternates exactly 2n + 2 times). To show this we need
some more properties of sn(u; k). From the theory of Jacobian elliptic functions
(see Ahiezer (1970)) we have that sn(u; k) has two periods: 4K and 2iK'. We
shall need the following values of sn(u; k):

sn(0; k) =sn(2K;k) =0, sn(K;k)=1,
sn(K +iK" k)= 1/k, sn(K’;k)=1.

And evidently, since L is the complete elliptic integral of the first kind for
modulus 4, 4L and 2iL are the periods of sn(u; 1) and sn(0; 4) =sn(2L; 1) = 0;

sn(L;A)=1, sn(L+iL;A) =1/

Since x = ksn(u; k) we obtain from here that when v changes in [0, K],
u= K + iv, x changes in [k, 1]. We have, if we set w=v/M,

7.(x)=(1—l)sn (%;i) =(1— l)sn<11\</1+ i%;i) = (1 — s (L+iw; A).

Since A is the modulus for L, 7, changes in the interval [1 — 11+ [] and
takes alternately the values 1—1[ and 1+ at n+1 points w=0, L,
2L,...,nL, or, what is the same, in the points

K 2K nK’

v=0, —, yeees .
n n n
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94 Approximation of some important functions

The analogous situation is in the interval [ — 1, — k], so 7, alternates 2n + 2
times in G(k). So 7, given by (16) is the solution of problem 1. O

Let us mention that from (16), using the asymptotics developments of the
elliptic functions, it is possible by means of long calculations to obtain the
Newman result for |x|, or the Gonchar result for sign x:

R,(sign X)C(G(k)) =0 _Cn/ln(l/k))

which gives R(|x|)¢-1.1;= Ole™¥".

But nobody before 1964, when Newman’s result appeared, had made these
calculations. So in our opinion the exact solution of problem 1 has not the
same value for the development of the quantitative theory of rational
approximations as Newman’s result.

4.4 Uniform approximation of e* on [—1,1]:
Meinardus conjecture

In this section we shall consider the problem of uniform rational approxima-
tion of the function e* on the interval [ — 1, 1]. We shall consider best rational
approximation of order (n, m) (see chapter 2). The Meinardus conjecture for
this approximation (see Meinardus (1967)) was proved by D. Braess (1984).
We shall give here his elegant proof.

We shall use the notation

R,.(e%) = an(ex)C[— 1,11 = inf{ I f—r ”C[— 1,1 reR,,,,,}.
Theorem 4.9. We have

o 27" "nlm!
Runk®®) = o in o m 1y Lo ()

as n+m-— oo.

Proof. The crucial point in the proof is Newman’s trick (see D. Newman
(1979b)). It gives a connection between the rational approximations on the
interval and on the circle. Let the rational function p/qeR,,. Given
xe[—1,1], put z =(x +iy)/2, where x2 + y?> = 1. Then

_pe)p(d)
4(z)q(2)

r{x) (2

is again a rational function and reR,,, i.. the degree is not doubled when
products of this special form are taken. In order to understand this let us
consider the product of two linear expressions. We have

(az + b)(az + b) = ab(z + 2) + a®zz + b* = abx + a*/4 + b*

to(l) ———0.

n+m— o
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4.4 ¢*on[— 1,1]: Meinardus conjecture 95

if |z] = 1/2.
If @ and B are complex numbers, then
od — pf=2Re {aa— )} —la— I

By applying these equalities to the product e* = e’ we obtain

e* —r(x)=2Re {ez<ez ~B@>} —le
q(z)

Let us assume that ge* — p has m + n+ 1 zeros in the disk |z| < 1, counted
with their multiplicities, but ¢ has none. Then

2

._PE" 3)

4(2)

2
2 min ez<ez — E)} — max [e* — P < R,.(e9)
ld=1/2 q =172 q
2
< 2 max e"(ez—p) + max e 2. 4)
lzl=1/2 q =12 q

Indeed, the upper estimate is obvious from (3). The lower bound will be
derived by using de la Vallée-Poussin’s theorem 2.3. As usual we denote by
arg w the argument of the complex number w. Note that

ez<ez _£> ,arg{ez<ez _B)} = 0(mod 2n),
Re {ez<ez—e>}= 4 a
1 - ez<ez—e> ,arg{ez<ez—g>}zn(mod2n).
q q

(5)
Let us denote

e

(q(z)e* — p(2)).

hz) =
) q(2)

By assumption h has n +m + 1 zeros in |z| < 1/2 (every zero counted with
its multiplicity) and & has no poles. Consequently h has winding number
n+m+ 1 for the circle |z| = 1/2. Hence, when an entire circuit has been

completed,
arg {h(z)} = arg {ez<ez - Z{g)}

is increased by (n + m + 1)-2n. The argument is increased by (n +m + 1) as
z traverses the upper half of the circle, since h(x) is real for x on the real line.

Thus h has real values on n + m + 2 points z, = (x, + iy,)/2 with 1 = x, >
Xy> > Xyeme1=—L 320, k=0,...,n+m+ 1, and the sign changes
between each pair of consecutive points. The same is true for e*(e — p/q).
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96 Approximation of some important functions

2

Then by (3) and (5) it follows that
a p(zi)

ezk< (Zk)>‘ o
(z4) azd|’

k=0,....n+m+ 1.

e —rlx) = (— 12

From de la Vallée-Poussin’s theorem 2.3 we get

z( 2 P(Z)>l .
Cl € ——— ]| — min (¢
q(2) lz=172

The lower bound in (4) is proved.

In order to apply the estimates (4) we need a rational approximation to
¢ on the circle |z} = 1/2. We shall use the (n, m)-Padé-approximation (compare
with chapter 12). We shall use the polynomials (see O. Perron (1957))

piz) = r (e + 2y,

0

. paf

R,..(€*) = min 2 5
q(z)

lz}=1/2

w ©)
g(z) = J‘ "t — z)"e ' dt.
(4]
We shall show that the polynomials from (6) give the corresponding
Padé-approximation. We have p/geR,,,, q(0) = (m + n)! # 0. Let us consider
the remainder term:

f* o ©
e*q(z) — p(z) = t"(t — z)"e* T 'dt — J ™t + z)’e "' dt
v o [¢]
{* 0 @

=| (t—zy™"e "di— j (t —z)™t"e” ' dt
JO

fz

= ( —zy"t"et T de

z

n+m+1j (u ne(l—u)zdu

:( )mZn+m+1J um(lv_u)neuzdu’
¢

e’q(z) — p(z) = (— 1)rz"*m*1 fl um(1 — u)"e** du. (7

o]

Since the integral in (7) is bounded for |z} < 1, we have

¢*g(z) — p(z) = O" """ 1)
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4.4 e*on[— 1,1]: Meinardus conjecture 97

and (6) provides the (n, m)-Padé-approximation for e¢* (compare with the
definition in chapter 12).
In order to estimate the integral in (7) we note that

0700 — 1 — 2(u — p) | < bl — w)? 22" ®)

whenever |u —uy| < 1. This estimate follows by the Taylor’s series for the
function e°. By choosing u, =(m + 1)/(n + m + 2) we get

! min!
™ — uytd = "
L“( W= T )

1
J u™(1 —wf'(u —uy)du=0,

0
and
1
(n+ 1) (m+ 1)
me1 _ By 2 — .
L W1 = u)u = uo)du n+m+2(n+m+3)
Then by (8) we get
(= D"l st gom+ pzinem+ 2)
z o _ n+m m z/(n+m 1 1 9
e’q(z) — p(2) Tmi e (1 +0o(1) ©)

asn+m—coo,|zj< L.
Now we shall estimate g(z). By (6) we have

q(—z):j (t+2)""e 'dt = ZJ (;:l)z"t"*”“"e"dt

0 k=0Jo

n mo (k1) 2
= — Nz = ! S A S
k;,<k>("+m Wit =t m) v m— kT DA
where the Pochhammer symbol
(@p=al@a+1)-(a+k—1), (a)y=1,

appears.
Evidently for k=2, 3,...,m we have

m* g m—k+1), (m—k+1)m—k+2)-m
m+mt” (m+m—k+1), @m+m—k+1)--(n+m)

>L<1_l><1_3>...<1_"_i>
(n+m) m m m

m i\ m k(k — 1)
>(n+m)"<1‘,-Zlﬁ>_(n+m)"<1_ 2m >

We have used the inequality [, (1 —&)>1—->7_,¢,0<e<1.

Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,
available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781107340756.005


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.005
https://www.cambridge.org/core

98 Approximation of some important functions

Therefore for each k =2,...,m there is a 8,, 0 <6, < 1, such that

m—k+1),  m . 0( 1)
(n+m—k+1), (m+mf\ % 2m

Using these equalities we have

m | mokk—1)
q(_Z)Z(n+m)!{kZOk! <n+m> Zz , k'2m (n+m>}

m 1 mz\¥ mz2 m 0 mz ¢ 2
(n+m)'{ Z'ok' <n+m> _2(n+m)2k=z(k—2)!<n+m> }’ (10)

where the second sum disappears when m = 1.
By (10) we get

g(—z) — (n + m)le~m=/tntm

mz \F 72 < 1/ mz \
= ! ph— N .
("“Lm){ 2(n+mzz k— 2)‘<n+m> k=;+1k!<n+m>}
Obviously for k = m + 1 we have
1/ mz o omz? 2m 1 mz \F72
K\n+m) 2m+mPktk—1)(k—=2'\n+m

. omz? 0, mz
T 2n4+mP k=2 \n+m

k—2
) , 0<6,<1.

Hence

x 0, mz Y mz?
g(—2)—(n+m)le™ ™ = —(n 4 m)! Z‘ (k—2) <n+m) 2(n + m)?

and therefore

|z|?

lg(— z) — (n + m)le™= ™| < (n + m)! o+ m) et
This estimate implies
q(z) = (n + m) e~ ™ M(1 4 o(1)) (11)
asn+m—o0,|z|<1
From (9) and (11) it follows that
e PO DI ey 1 o)) (12)

q(z) (m+nlim+n+1)

as n+m— o0; |z| €1, where o = 2m/(n + m).
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4.4 e*on[— 1,1]: Meinardus conjecture 99

From (12) we obtain

p(z) (— )"nim! mt1p
lef—— = 2T LePEH(1 + o(1)), 13
© ( q(z)> (n+m)(n+m+ 1) T+olty. (13

with f= 1+ 2m/(n +m), 1 < f<3.
The modulus of this expression is not constant on the circle |z| = 1/2 mainly
because e’*z"*™* 1 is not constant. We shall see that by choosing z,
appropriately one can make |ef(z —z,)"*™"!| deviate very little from a

constant on this circle.
From the Taylor series for the logarithmic function we get

eﬂz<1 —&>N
N

N = 6. Indeed, if |[w| < 3/2 and N > 6 we have

w N © 1/ w k
ew 1__ zew+Nln(1—w/N)= __N I e
(+-7) o= L3}

ex w? 1+2w+2 w\2
Py TN U TN Tal ) T e

wherelnz = —jzl (du/u) and the path of integration does not pass through the
origin and does not cross the negative real axis.
Then the inequalities in (14) follow by

6_3/2N < < 63/2N, (ﬁz| < %’ (14)

e*m S |ez' < eJZ|

and

2 N TN
Iwl\\ !
-r(an(1-7))
(3/2)2 3
<2N 32\ TN
&

From (14) it follows for |z|?> = zz = 1/4 that

N
e 32N L ON| b= Z_—i Se‘””, z|=1/2, |p|<3, N=6.
4N
Therefore
ﬂ N
s eh(“m) <, [Z|=1/2, |fI<3, N>6.
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100 Approximation of some important functions
Consequently if we put N=n+m+1 and z, = f/4(n + m+ 1) we get:

|
|eﬁz(Z—ZO)n+m+1|=2n—+"‘l+—l(1 +0(1)), |Z|=1/2 (15)

Let z, be as above. Then

PE) _ 0Pz —20)

4(2) q(z — zo)

is Padé-approximant to e® at the point z,.
From (13), replacing z by z — z, we get

2 z ~(Z) _ (—l)mm'n' ___ n+m+ z+ 20— Bzo
e <e _%>~(n+m)!(n+m+ nt (z —2) tef (1 +0o(1))

— 1)™n!m!
(n+(m)!(zzf-:11+1)! (z—zo)" """ ef(1 4 0(1)). (16)

Now using (4), (12), (15) and (16) we conclude that the estimate (1) is
true. O

4.5 Uniform approximation of e * on [0, o0)

The problem of rational approximation of e ™* on [0, o) is one of the most
interesting problems in the theory of rational approximations. The problem
has many applications, for example in numerical analysis (see Cody,
Meinardus and Varga (1969)), but it is also interesting as a mathematical
problem itself.

Let us first adopt our notations. We set

Ao = an(e-x)C[O,oo) = inf{ e ™ —r(x) ”C[O,oo): reR,,m}.

There are two cases of special interest: when =0 and when n=m. It is
possible to show that there exist constants ¢;,i=1,...,4,0 < g, < 1, such that

(@) 97 < dom < 47T,
(b) i< An<qs.

The most essential problem here is what we can say about the constants
q;,i=1,...,4

The situation is quite different in these two cases. In the first case there
exists a solution of the problem — the nice theorem of Schonhage (1973), see
theorem 4.10 below. The exact solution of the second case has been obtained
analytically only in 1986 (see the end of the chapter).

Let us consider estimates of the type (a). The case n=0 is really
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4.5 Uniform approximation ofe ™ *on [0, cc) 101

approximation of ¢™* by inverse polynomials of degree m:

:per}
C[0,)

Using p,(x) = 3", (x*/k!) (the mth partial Taylor sum for €%} it is easy to
see that tim sup (A,,)!™ < 1/2 (Cody, Meinardus, Varga (1969)).
We shall prove the following exact estimation.

Theorem 4.10 (Schénhage, 1973). We have

1

et ———

p(x)

Agm = Inf {

lim (Jgp)'™ = 1/3.

m— w

We shall obtain theorem 4.10 from the following more exact result of
Schonhage.

Theorem 4.11. We have

1
6((4m + 4)In 3 + [n4)'/?

<3 om < /2.

To prove theorem 4.11 let us first remark that we can consider the best
uniform approximation to the function e ~** instead of e ~* evidently

Jom = inf{

Before proving theorem 4.11 we shall prove one lemma concerning the
best uniform approximation to €’# on the interval [0, a], a > 0, with a weight
e~ *'? by means of algebraic polynomials of mth degree. Let g,, ,eP,, be the
polynomial of such best uniform approximation:

1

— :per}.
C[0,0)

e —x/4 _
p(x)

max e~ ¥?|e¥* — g, (x)] = inf{ max e~ *?|e¥* — p(x)|: per} = A(m; a).

xe[0,a] xel0,a)
(1
Lemma 4.8. We have
@) e 2 guax), x>a
(b) g (x)=0, x>a
Proof. Itis easy to see, as in theorem 1.6, that the difference &(x) = e** — g, ,(x)

must alternate at least m + 2 times in the interval [0, a], i.e. &(x) must have
at least m + 1 zeros in the interval [0, a]. Since 1, x,...,x™ e** is a Chebyshev
system ¢&(x) must have exactly m+ 1 zeros in [0,a]. Let these zeros be
0 <x, < <xp ;1 <a

Let us prove (a). Evidently ¢** — g, ,(x) > 0 for sufficiently large x, and if
we assume that there is X > a such that e** —gq,, (%) = &(X) <0, then there

x{4
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102 Approximation of some important functions

must exist X > a such that &X) =0, but this is impossible since all zeros of
g(x) are in the interval [0, a].

To prove (b), let us assume the converse, that there exists a; > a such that
Qm,ao®1) <0. Since g(x;) =0, j=1,...,m + 1, we must have m zeros of ¢’ in the
1nterval [0, a]; let them be x{V, j = 1 m. We have ¢'(x{})) = 0, 1.e. ¢, o(x$’) —
lem™ =0, or G, a(x‘“)>0 This, together with ¢, ,(2,) <0, gives us that
there exists o, > x4 such that g, .(2,) <0, since g, .(o)) = g o(x3) =
G o(22)(0; — X)) < 0, o, (x4}, ;). Continuing thus we obtain that there exist
x{™ and o, such that ¢™(x{™)=0 and ¢""(e,) <0, a,, > x{™. But this is a
contradiction, since ¢, is always a positive constant. O

Proof of theorem 4.11. We shall use the Laguerre polynomials

e* d"

Lix) = n! dx”

e *x"), n=0,1,2,.... @)

It is well-known (it is easy to verify by means of integration by parts) that
the Laguerre polynomials are orthogonal on [0, o0} with a weight e™*:
@ 1, n=m
L(x)L Trdx =< ’
L AILp(x)e " dx {0’ .
Let us consider the expansion of the function e**
orthogonal system {L,};>,. We have

with respect to the

oo
e~ Y ¢, L,(x),
n=0
where the coefficients ¢, are given by

@ 1 © 4(— 1)
c,=| e L (x)dx=—] (e *x"We¥*dx = “(%
0 nl )y 3"
(again using n integrations by parts).
From the theory of orthogonal polynomials it is well-known that then

o) =4 3 Sl L ®

is the algebraic polynomial of mth degree of best approximation to e* in

L,[0, o) with weight e™* and

0 B © 2
L e = guPeax= Y =gy @
We have
%e"j ete idr =" (5)
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4.5 Uniform approximation ofe™*on [0, co) 103

Using (2) and (3) it is not difficult to see that

X

pulx) = 3e* f " et ©)

is an algebraic polynomial of mth degree.
We have from (5) and (6)

20

|CX/4 - pm(x)| < iexJ‘ Iet/4 - gm(t)|e_tdt

x

Using the Cauchy—Schwarz inequality we get from here and (4)

© 1/2 0 1/2
€% — po)| < e° <J e"dr) (f Ie'/“—gm(t)lze_’dt)

2 2
<3ee_"/23}"/H 4\/3"' , x=0. (M

From here we obtain that A(m;a) < \/2/(4-3”‘) for every a > 0.
On the other hand (1), (7) give us that for every xe[0,a] we have

x4 |e X2 \/2

|qm,a(x) —¢ 4 3m

and for xe[0,a] we have
2 J2
> x/4 1 _ \/ X/4 > x/4 1 _ aj4 .
qm,a(x) € < 43me ) ¢ < 4 3"' ¢ )
If we set a=4mIn 3 + In4 we get that for this ¢ and x€[0, a] we have

G olX) = T (8)
Now we can obtain an upper bound for 4;,,. Let a=4min3 + In4. Then
for xe[0, a] we have

x/4

1
G, o(X)

— 2
[C Gm, a( )I \2 —x/zlex/4_qm‘a(x)| \/

< .
%] g, o(x)] 2-3"

By lemma 4.8 g, (x) > 0 for x > g; this, together with (8) and part (a) of
lemma 4.8 gives us

‘e-x/4__

Fe* < g, (x) <t

for x = a. Therefore

e—x/4< Sze—a/ll’ XZ(I,

Q.o X)
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104 Approximation of some important functions
and
1
0<
Grm,alX)

We have obtained that A, <./2/3™.
To obtain a lower bound estimate we write

1
PmlX)

e L Qe it =£.
3m

e—x/4 .

< iOm’ Xz O’ (9)

where p,,€P,, and 1/p,, is the rational function of order (0, m) of best uniform
approximation to e **. We have from (9)

[Pmlx) — €4 < Ao €™ (). (10)
Let us assume that
Jom < R (1)
2((4m+4)In3 +1n4)'/?3
Then for xe[0,a], a =(4m + 4)In 3 + In 4 we obtain from (10)
x/4
P < e < 267 (12)
and therefore
[pul(X) — €4 < 240, x€[0,a]. 13)
Evidently the same inequality holds for the polynomial g, , (see (1)):
| G.o(X) — €% < 2402, x€[0,qa). (14)

Exactly in the same way as in part (b) of lemma 4.8 it is possible to show
that g,, ,(x) = 0 for x = a and this together with (a) of lemma 4.8 gives us

0 < qm,a(x) < ex/4’ X =a. (15)

From (14), (15) and (4) we get (a=(4m+4)In3 +1n4)

2 o0 a v}
T < J € (Gmalt) — ") *dt < j e (242 dt + j e 2dt
0 0 a
=4aA3, +2e Y =4aA}, + FETTEE

This inequality gives us

1
< Aom
2(dm+4)In3 +In42zmtt =70
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4.6 Notes 105

which contradicts (11). Therefore

1

3 Aom = .
o= 6((4m + 4)In 3 + In 4)1/2

O

We shall consider briefly also the results connected with 4,,. The result of
Schonhage (theorem 4.10) gives some reasons for the so-called & conjecture,

lim (4,,)!" = §. (16)

But this conjecture is not true: first Schonhage (1982) and Trefethen and
Gutknecht (1983b) observed that the conjecture (16) is numerically false; after
this Opitz and Scherer (1984b) rigorously proved that

1' 1/n
im sup (4,,) <5037

The best estimate for liminf is given by Schonhage (1982):

1
13.928

lim inf (4,,)*"" >

Very strong calcuiations, made by Carpenter, Rutan and Varga (1984) give

1
l/n ~
Tim A’ > 5580025491 92081
4.6 Notes

The basic result of this chapter - the famous Newman theorem 4.1
(D. Newman, 1964a) — is the starting point of the modern theory of rational
approximation.

Before the final result of Vjacheslavov (1975) — theorem 4.2 — we want to
mention the results of Gonchar (1967b),

exp { —n(/2 + el/n} < R,[1x[er- 1.1y < exp {—3n(/2 — &) /n}
for every ¢ >0 and n > n(¢), and the result of A.P. Bulanov (1975a),
exp{—n/(n+ 1)} SR (Ix)q- 1.1y <exp {—m/n(l —O(n~'*)}.

The problem of best uniform rational approximation to the function x*
on the interval [0, 1] was posed by D. Newman (1964b). Gonchar (1974)
proved the following estimate:

nJo<liminfn™ 2 In R, ' (x¥)¢po, 1y <limsupn™ 2 In Ry (XM ¢o.1; < 474/t

for any positive non-integer «.
Gonchar conjectured that the limit exists and is 27 /.
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106 Approximation of some important functions

Gonchar’s conjecture was proved by T. Ganelius (1979) (see also
T. Ganelius (1982)):

lim (Rn(xa)C[o,l])]Nn =e 2w
T. Ganelius (1979) also proved the following result
Let o= p/q be a positive rational number. We have

exp(— 2n(a + 2))|sin ma| < exp (2”\/(°‘n))Rn(x2)C[o,1] < B(p,q)

where the constant B(p, q) depends on p and 4.
Theorem 4.2 is in our opinion a very interesting fact — it connects two basic
constants in mathematics — e and =

Hm (R(Ix)ep-1.0)'Y" =€
n-*oo

This connection is very important, we believe, but it is not very clear at
present.

There exist many unsolved problems connected with the Zolotarjov’s
problems — for example how to obtain easily the Newman result from the
exact solution, given by means of elliptic functions.

Meinardus’ conjecture,

nim!
2"+ mi(n+m+ 1)

Ron(€)er-1.11= T (1 +o(1)),
is given in his book (Meinardus, 1967).

The exact value of lim,. A" is exp(— nK'/K), where K,K' are the
complete elliptic integrals of the first kind for the moduli k, k" =./(1 — k?) (see
section 4.3), where k is the solution of the equation K(k)=2E(k), E the
complete elliptic integral of the second kind. This is proved by A.A. Gonchar
and E.A. Rahmanov; the number exp(— nK'/K) is given by A. Mangnus,
who proposed a method for the proof.
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S

Uniform approximation of some
function classes

There exist function classes which can be approximated by rational functions
in uniform or L,-metric better than by algebraic polynomials. In this chapter
we shall investigate the uniform rational approximation of some classes of
this kind. We apply certain methods of approximation which allow us to
obtain exact estimates (with respect to the order).

We begin in section 5.1 with some preliminaries. In section 5.2 rational
uniform approximation is considered of the basic class V, of all functions
with rth derivative of bounded variation. In section 5.3 we deal with certain
classes whose order of approximation is not better than O(n~!), such as
Sobolev classes W}, p > 1, the class of absolutely continuous functions with
derivative in Llog L, the class of all functions of bounded variation with a
prescribed modulus of continuity. Section 5.4 is devoted to the study of the
method of R. DeVore which is illustrated on the classes W), p>1, and V,.
Section 5.5 investigates the uniform rational approximation of convex
functions and convex Lip« functions. Finally, in section 5.6 we give two
theorems for approximation of functions with singularities.

5.1 Preliminaries

As we noted, in this chapter we shall consider the uniform rational
approximation of certain function classes. We shall be interested in obtaining
exact estimates with respect to the order of approximation. A characteristic
particularity of the rational approximation is the appearance of the so-called
o-effect on the order of approximation of individual functions of a given
class. So, for instance, for the class Lip 1 on [a, b] from the Jackson theorem
(see theorem 3.10) we have
sup R,(f)c=0(n"")

Selip1
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108 Uniform approximation for some function classes

but, as we shall see in corollary 10.2, for every individual function feLip 1,
RfNc=o0(n"") (a conjecture of D. Newman).

Both estimates are of exact order.

The presence of the o-effect for some function classes will be established
and investigated in chapter 10. In chapter 11 the exactness of these estimates
will be shown and commented on.

To avoid some possible terminological ambiguities we shall give precise
definitions for exactness of a given estimate. Let X be a given function class
and R,(f) the best approximation to f€X by means of rational functions of
order n in a certain metric.

Definition 5.1. The estimate
Sup R,(f)=O(om), p(n)>0, n=1,
will be called exact with respect to the order, or shortly exact for the class X if
lim sup{iu)p: R,,(f)/(p(n)} > Q.

Sometimes we shall simply say that the estimate R,(f) = O(p(n)) is exact for
a given class X.

Definition 5.2. The estimate

R.(f) = Olop(n))

will be called exact with respect to the order in the class or shortly exact in the
class X, if there exists a function fe X such that.

lim sup {R,(f)/(n)} > 0.

n—*w0

Definition 5.3. We shall say that the estimate

R,(f) = olp(n)

is exact (with respect to the order) in the class X if for each sequence
Mabee 1510 N 0, 1, > 0, there exists a function feX such that

limsup {R,(f)/n.0(n)} > 1.
n—ow
It is worthwhile to observe that the set of all rational functions of degree
n is not linear. This fact and some other particularities of this class as a tool
for approximation require special and sometimes difficult methods of
approximation.
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5.1 Preliminaries 109

The fundamental statement in most of the real methods for rational
approximation which we shall use is the following lemma.

Lemma 5.1. Let a8,y >0 and o < f. Then there exists a rational function ¢

such that
lox)| <y, xe[—p, —al,
1 —o(x)| <y, xelo,f],
0<o(x)<1, xe(—o0,0)
and

|
dega<B1n<e+£>ln<e+;>,
o

where B > 1 is an absolute constant, deg o denotes the degree of o.

This lemma provides a good rational approximation of the jump-function.
In fact, it is equivalent to the upper estimate in theorem 4.1 (D. Newman’s
theorem) for rational approximation of |x]|.

To prove lemma 5.1 we need the following lemma.

Lemma 5.2, Let 0 <e <% and n= 1. Then for the rational function

_p(—x) — - ifn
=" = ] e,
we have
Is(x)] < ¢, exp{— lnc(zlr;s)}’ xele, 1], (1)
1 cyh
|S(X)| Zaexp{ln(l/G)}’ XE[- 11 - 8]7 (2)

where ¢, =¢e¥¢, c,=¢" 1. In (1), (2) we can put ¢; =1 when n = In(1/g).

Proof. Exactly as in the proof of lemma 4.1 we obtain for xe['/", 1]

n 1__ ifn

<[l

_ < __2 < ifn
[ <25

t

2er(1 — 2e'"(1 —
=exp{—i_(i81/n£)}<exp{—W} 3)

Let n 2 1In(1/e). Since 0 <& < 1/2, 2e'"(1 —¢) 2 e~ ' =¢, and by (3) we get

’p( —x)
p(x)

|s(x)|<exp{—— }, xele 1] 4

c,n
In (1/¢)
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110 Uniform approximation for some function classes
If 1 <n<In(1/e), then clearly we have for xe[!", 1]

[s(x)| <1< exp{ — 1nc(217g) + cz} =c; exp { — 1nc(21r;g)}' (5
The estimates (4) and (5) imply (1). Since s(— x) = 1/s(x), (2} follows by (1). O

Proof of lemma 5.1. Let s be the rational function of lemma 5.2 with

1 { +c2 1
Tet i’ "2[ 2, " _1 < v>+l]’ ©

where ¢, = e!’¢, ¢, = 1/e are the constants in lemma 5.2. Consider the rational
function

Clearly, by (6) we have

1
dega, =2n<Bln(e+§>ln<e+y>, (7
where B = constant > 1. In view of (2) and (6) it can be verified that
2c,n }
o) <——<clexp{ — < 8
lo1(x)| () 1 p{ In(1/2) Y )
for xe[—1, —&] = [—1, —(o/p)]. Similarly, by (1) and (6)
11— 0,(x) <s2x) <7, xe[e 1] [; 1]. ©)
Obviously
0<o(x)<l, xe(— o0, ). (10)

Finally, set o(x) = ¢,(8x). The assertion of lemma 5.1 follows by (7)—(10).
O

The basic idea in most real methods for rational approximation is the
following. First a good approximation by piece-wise rational functions is
constructed. Then, joining’ the pieces by a good rational approximation of
the jump-function a single rational function is obtained. This function realizes
the required rational approximation of the given function. The difficulty
consists in the optimization of the process of ‘joining’ pieces. To overcome
this difficulty we shall often use the following lemma.

Lemma 5.3. Let feC,,A =[a,b]. Let there exist compact subintervals A, and
A, such that A=A, UA,, |A;nA,| >0, and rational functions r, and r, such
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5.1 Preliminaries 111

that
If —rilleay S érs (11)
[rille-c,m <A (12)

and
degr, <k;, i=12, (13)

where &, >0, A>0, k; =0, i=1,2, are given numbers. Then for each ¢, >0
there is a rational function r such that

”f_r“(:(A)<31+82, (14)
||r||C(—oo,oo)<A (15)
and
i)in(e+2)
degr<k,+k,+B;Infe+———]Iln{e+— |, 16
g 1 2 1 < 1A, A, & (16)

where B, > 1 is an absolute constant, |A| is the length of A.

Proof. Let A,nA, =[u,v]and A, =[a,v], A, =[u, b]. Consider the rational

function
) = <1 _ a<x _ 1‘¥>>rl(x) + a<x _ ”T“>r2(x),

where ¢ is the rational function of lemma 5.1 with
a=[A;nA,l2, B=IAl, y=¢,/24.

We shall prove that the rational function r satisfies (14)—(16). At first we
estimate degr. By lemma 5.1 we have

1
dega<Bln<e+g>ln(e+~>
o 7
<Blnfe+——+— |Jln{e+— |<B;Infe+———— JIn{e+— |,
( AN A, &2 ' A1 NA,| &2

where By = 4B = constant. Hence

degr<degr, +degr, +dego

aa)ele)
<k +k,+B/Inle+—F— |Infe+—},
! 2 ! < A nA, ] 3]

i.e. r satisfies (16).
Now we estimate || 7| ¢ - o) Since 0 < a(x) < 1, xe(— oo, o), by (12) we
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112 Uniform approximation for some function classes

get for xe(— o0, o),

u+v u+tv
Ir(x)] < (1 - U(x - 2 >> 7y “C(—oo,oo) + 0'<x _T>||r2 “C(—oo,oo) <4

and therefore (15) holds.

It remains to estimate || f — 7 ¢4, To this end we shall use (11), (12) and
the properties of ¢ from lemma 5.1. There are the following cases.

(i) If xeA\A, then

1169 = )1 <1 £ = i) +a<x—“§”><ur1 e+ ||r2||a_w,@,>

&
<e, +2—2/i'2A=31 +&,.
(i) If xeA, nA, then

|f(x>—r<x)|<<1 —a(x—”*”))u(x)—rl(xn

2

+a<x—“;">|f(x)—rz(x)|<el.
(iii) If xeA,\A, then |
u+v
If(x)"'r(x)|<|f(x)_rz(x)|+<1_0'<x_ 2 >>(|lr1“C(—ao,oo)

F 72l o, w) <& + 85
Consequently

”f_r”C(A) K&yt &y,

i.e. estimate (14) holds. ]
Lemma 5.3 implies the following more specific lemma for ‘joining’ of
rational functions.

Lemma 5.4. Let feCla,b] and let there exist intervals A, =[a,c] and
A, =[c,b], a <c < b, and rational functions r, and r, such that

||f—"i||C(A,-)<31a i=12, 17

where ¢, > 0 is a given number.
Then for each ¢, >0 and 6 > 0 there exists a rational function r such that

I f = rllcranm < &1+ &+ @(f;0)c (18)

>, (19)
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5.1 Preliminaries 113

where o(f; 0)c is the modulus of continuity of f, B, > 1 is an absolute constant.

Proof. Let ¢, >0 and § >0 be arbitrary numbers. Denote d =[a,b], d, =
[a,c+ 6] and d, =[c — 6, b]. Let A, i = 1,2, be the increasing linear function
which maps d; onto A,. Clearly

[ x — 4(x) ”C(d,-) =0, i=12 (20)
Set #; =r{4), i=1,2. By (17) and (18) it follows that
I f = Fillctaing < 1 f —f(A) lctaina + | f = Fillcay < &1 +@(f;0)c. (21)

If d=d, or d =d,, then lemma 5.4 follows from (21) immediately.
Consider the opposite case. Then d =d, ud, and |d, nd,| =29, where |A|
is the length of the interval A. If || 7 |l¢, < 21 f e, then we set

_ 7 "= &
L+’ 7 160 f 13w’
when || f ¢ > O (the case || f [ =0 is trivial).
By (21) we get

I f— qi”C(d.-) < f-F “C(di) + 1l f el P “é(d,»)
<8 +w(f§5)c+4’7i”f“g<81 +&,/2+ o(f;d)c,

q;

ie.
||f_Qi||C(di)<£1 +ey/2+w(f;0), i=1,2. (22)
Obviously we have
1 _
”qi”C(voo,oo)<m:2|1f||g{§)62 12 (23)
and
degg; <2degr,;. 24)

In the case when || ll¢qy > 21 f llcw,) We have in view of (21)

If ”C(d,-) <7 ||C(d,~) - ||f||cmi) <\ f—7 “cm.») <e +o(f;0)c

and therefore the rational function g; = 0 satisfies (22)—(24). Thus for i =1,2
there exists a rational function g; which satisfies (22)—(24).

Now we apply lemma 5.3 with ¢, replaced by &,/2. In view of (22)—(24) we
conclude that there exists a rational function r such that

If _r“C(d) <é+ &+ olf;d)

and

ld| 2| fl12%e; 12
degr<2degr, +2degr,+ B 1n<e+ In| e+ ———+———
1 2 1 ‘dlf\d2| 82/2
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114 Uniform approximation for some function classes

b_ 3/2
<2d6g71+2dcgr2+311n<e+25a>1n<e+4<L[~U9> )

&2

b —
SZdegr1+2degr2+3Blln<e+ 5a>ln<e+“£|\c>,
2

which imply (18) and (19). I

5.2 Functions with rth derivative of bounded variation

We shall investigate the rational uniform approximation of the class
V.=VJ(M,[a,b]), ¥ = 1, of all functions defined on [a,b] for which [~V is
absolutely continuous and is an integral of a function f® with variation
bounded by M(V?f® < M). The class V, is basic for the rational and
spline approximations of functions. Historically V, was one of the first function
classes which was approximated by rational functions better than by
polynomials. 1t was the first class for which the exact order of rational uniform
approximation was found.

The foundations were laid by P. Szisz and P. Turan (1966) who showed
that the convex Lip 1 functions can be approximated uniformly by rational
functions better than algebraic polynomials. Later on G. Freud (1966)
improved and generalized their result for V,, r > 1. The final estimate was
obtained by V. Popov (1976a, 1977).

Theorem 5.1. Let r 21, M =0 and [a,b] be an arbitrary compact interval.
Then for nz=r
' M(b —a)
sup  R(f)e < Clr)——57—, (1)

JeVr(M.[a.b]) n
where C(r)= D", D > 1 is an absolute constant.

Remarks. The estimate (1) is equivalent to the following.
If ¥ r = 1, is absolutely continuous, then for n 2 r
(b—aylf" ly,

R,(f)e < Cr) P @

Indeed, the set of all functions f* with absolutely continuous rth derivative
f® on [a,b] such that || f** V| ., <M is dense in V,(M, [a,b]). From this
follows the equivalence of estimates (1) and (2).

The estimate (1) is exact (see definition 5.1). This fact will be established
in 11.1.3, theorem 11.4. The existence of o-effect for the class V, will be shown
in 10.1. Also this effect will be characterized there.

Note that the exact estimate for uniform polynomial approximation of f
in V, is the following: E (f)c=0O(n™").
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5.2 rthderivative of bounded variation 115

The fact that the constant C(r) in the estimate (1) is of the form C(r)= D"
will allow us to prove in 9.3 a fundamental theorem in the theory of rational
approximation in Hausdorff metric.

The proof of theorem 5.1 is based on the following theorem for ‘joining’
of rational functions.

Theorem 5.2, Let feV.(M,[a,b]), r=1, M =0. Let there exist a subdivision
Q of [a,b] into m (m=1) compact subintervals with disjoint interiors and
rational functions r,, AeQ, such that for each AeQ

“f_rA”C(A)<8 (3)

and
degr, < k,, 4)

where £ >0, k, = 0 are given numbers.
Then there is a rational function R such that

lf—R “C[a,b] <3e (3)

and

b_ r
degR<2 ), ky+ Dmin? <e+A—/I(——a)>, (6)

T
AEQ em t!

where D = D(r) = D,r?,D, > 1 is an absolute constant.

Proof. Without loss of generality we shall assume that f* is continuous.
Clearly, if theorem 5.2 is true in the special case when m = 2% s an integer,
then it is true in the general case also with another absolute constant D,.
Thus we shall suppose that m = 2°, s an integer.

Next we shall use the following notations:

r

fa¥)=fx)= Y [ —up/v, 7

where A = [u,v] = [q, b],
Niz, M, A)

2" {36 B,r?In%(e + 2“4 (M |A|) e+ Dgm Ut Dy 4 41 (g)

g

¥

where B, > 1 is the constant from lemma 5.3, » > 1 and ¢ > 0 are from the
assumptions of theorem 5.2, u, M and the interval A are parameters.

For brevity we shall write || [|a = I|" lc()-

We need the following two lemmas where we shall use the assumptions
and notations introduced above.

Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,
available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781107340756.006


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.006
https://www.cambridge.org/core

116 Uniform approximation for some function classes

Lemma 5.5. If the conditions of theorem 5.2 are satisfied then for each interval
A€ there is a rational function q, such that

[ fa—dalla<2e,

19all—w,) S(VafCIAlY 26712
and
deg g, < 2k, + 2r.

Proof. Let AeQ and A ={[u,v]. If V,f® =0, then by (7) it follows that
falx) =0 for xeA. Hence, the rational function ¢, = 0 satisfies the assertion
of lemma 5.5.

Denote

0 =) = 3, FOulx
By (4) we have deg#, <k, +r. By (3) we have
| fa=Pals < o)
I | 7ylla > 21 fa s then by ©9) we get

[ fala<IPalla— I fala<lfa—Falla<e

and therefore the rational function ¢, = O satisfies the conditions of lemma 5.5.

Let V,f®>0and || 7, |a <2| falla- Then we set g, = ra/(1 + 5,72) where
Ny =2(Vaf® AN~ 3 Obviously deg g, < 2deg#, < 2k, + 2r. One easily veri-
fies that

1
_ g — V r) Ar3/2 —1/2.
193l S5 == (Fa V1A

It remains to estimate || f, —q,lla- To this end we shall use (9), our
assumptions and the fact that || £, ||, < VA f@|A[", since fQw)=0,v=0,1, ...,
r,and Vo fQ = V,f®. We get

| fa—dalla< ||fA“‘FA||A+’7A||fA||A||'~'A“§

e+l falR<e+4na(VafOIAl) = 2e. ]

By the assumption of theorem 5.2 there exist points x;,i=0,1,...,m,
a=Xxy<X; <--<X,=>b,such that Q= {[x;,x;,,]: i=0,1,...,m—1}. De-
note forO< u<s

Q, = {[x;,X;420):i=0,1,...,m— 2"} (10)
and for A <= [a,b]
Q, = {A* A*eQ A* c A} (11)
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5.2 rthderivative of bounded variation 117

Lemma 5.6. Let 0 < u<s—1 and for each AcQ,, (see (10)) suppose there is a
rational function q, such that

I fa—dalla < @lpe, (12)
where @(u) = 1 depends only on u,
qall— .oy < 2HVaS V1A 26712 (13)
and
degga <2 ), kpe+ N, Vof®,A), (14)
A*eQy

where N(u, M, A} is given by (8).
Then for every AeQ, ., there is a rational function r, such that

| fa—ralla<(o()+2747 1, (15)
[7all= 0,00y S 22T HVfPIAY 26712 (16)
and
degr, <2 z koo + N+ 1,V 9, A), (17)
A*EQA

where the last sum is taken over all intervals A* which belong to the set Q,

defined in (11).

Proof. Let AeQ,., and A=[zy,z5]. I VofOlAI"<e, then || fulla<

VofP|AI" ¢, since f{(z)=0,v=0,1,...,r, and V,fQ =V, f". Then the
rational function r, =0 satlsﬁes (15)—(17).

Now let V,/®|A|" > e Obviously, there is z,eA such that the intervals
Ay =[z,2z,] and A, =[z,,z;] are in Q,. Next we shall denote for short
M= Vo fO M=V [0 M=V n=270"M|AF") ', d, =
[z1,2,+ 1), dy =[z, — 4,25 Clearly M, + M, = M.

By (12)—(14) there are rational functions g,, and g,, such that

l fA,- — da; ”A,- < o(pe, (18)

I qa; “( w0,00) 2u(Mi|Ai|r)3/287 1/2, (19)

degg,, <2 Z kpo + N(u, M A, i=1,2. (20)
A*eQAi

We need an approximation to f, = f,, on the interval A,. Denote pafx)=
Y=o fMz)(x —z)/¥, i=1,2. Since Pa,€P,, then p, (x)=37_ Op(A‘?(ZZ) X
(x —z,)"/v!. We have

o) = F(x) — Pas0) = fa(%) + Pa(x) — pa.(x)
= fa0) — i (Fz2) — PRz (x — 23)"/v!

=fax) = ¥ fR(z)(x ~ z5)"/W.
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118 Uniform approximation for some function classes

Then putting

r

p(x)= Y fAz)(x — z,)"/V!

v=0

we have by (18) with i=2

| fa—P—qa,lla, S 0(W)e. (21

Consider the rational function

N 4
1+1p?’

q T=2TFTYMIA) e

Since fQ(z,)=0,v=0,1,...,r, and V, [ =V, [ =M, then | f{(z,)| <
M A" v=0,1,...,r. Hence

Ipla, < Zo|f(Av)(Zz)|(Zs — z,)"/V!

d -V v 4 r r—v v
=M, Z,O|A1|r A "< M, Z <v>|A1| [A,]

v=0
=M, (A |+ 1A;]) = M, AT,

From this it follows that

Ip—qlla, <TlPIR, < oM |A[) <2747 2%, (22
1
IIqII(-oo,m)S2—\/1<2“(M|A|’)3/2?7”2 (23)
and
degq=2r. (24)

Set §, = g4, + q. Combining (21) and (22) we obtain

HfA_ d, “Az < ||fA_p_ qa, “Az +p— ‘IHAZ < (o(u) + 2_”_2)5- (25)
By (19) and (23) we get

H QZ ”(*oo,ao) g “ qu ”(—oo,oo) + ”q “(—oo,oo)

< zu(Ml lA|r)3/2871/2 + 2u(M‘A|r)3/2871/2 S 2“+1(M{A|r)3/28_1/2.
(26)

By (20) and (24) we get

degd, <2 Y, ko N(u, My, A,) +2r. (27)

A*eQ
We need an estimate of the mdodulus of continuity of f, on A:

o(fa, A5 8) = sup {| falx) —fa(x")|: X', x" €A, |x' — x"| < 6}.
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5.2 rthderivative of bounded variation 119
Since fi(z,)=0, v=0,1,...,r, and V,fQ =V, fO =M, || fulla<M|AI""*
and therefore

o fas A;8) < MIA[15, 630, (28)

Let 4; (i=1,2) be the linear increasing function mapping the interval d,
onto A,;. It is easy to see that

lAi(x) =X, =n i=12 (29)

Set

41(x) = 4,(41(x)) and  g,(x) = G5(A(x)).
Using (18) with g,,, (28) and (29) we obtain

I fa—asllana < I Sa—SalAi)llayna + 11 falA1) = ga, (A1) la; na
So(fp B + | fa, — da, lla, S (@) +2747 ).

Similarly, by (25), (28) and (29) we get

I fa=q2llayna <(@(p) + 2747242747 e

Consequently, we have

I fA_qi ”dmAg((P(.u)*‘&zi”;s)s’ i=12. (30)
It follows by (19) and (26) that
1Gill- w0y S 24T HMIAPY 26712, i=1,2, (31)

and by (20) and (27) that

degq; <2 ) kpo+ N, M, A)+2r, i=1,2. (32)
A*EQA‘_
If A=d, or A «d,, then it follows by (30)-(32) that the rational function
rao=(, Of 1, = g, satisfies (15)—(17).
In the opposite case we have |d; nd,NA| > #. Now, in view of (30)—(32),
we are ready to apply lemma 5.3 with parameters from (30)-(32). Setting
g, =27#7 3¢ we conclude that there exists a rational function r, such that

I fa—ralla<(o(u)+27#" e,
17 all= 0,0y S 24T UM A 2e™ 12
and
degr, < degq, +deggq,

A
+ B,1n (e + |»|> In(e + 224 4(M| A"~ 1)>/2). (33)
n
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120 Uniform approximation for some function classes

The rational function r, satisfies (15) and (16). It remains to prove that r,
satisfies (17). First we note that

Bl In <e +]_%_i)]n(e + 22u+4(M|A|r8—1)3/2)

=B, In(e +2**3M|Ae™)In(e + 2+ 4M|Ale™ 1))
<9B,In*(e +2** 'M|Ale™Y)
<36 Byr?In? (e + 24 (M| A[)HO+ D U+ 1),

From this, (32) and (33) we get

degry <2 z kA* + N(u, M1, A1) + N, M, A)

A*eQ,

+36 B,r?In2 (e + 24 A (MIAP) e Vg e Dy L 4r - (34)

Next, we shall estimate N(u, M,,A,)+ N(u, M,,A,). To this end, we shall
use the following inequality

In? e+ (¢, Y3) 1+ 10) 4 In e + (x,y5) 0+ 1)

r\1/(r+1)
<zmz(e+(i‘%<“%)> ) XY 20 (39)

This inequality is equivalent to the fact that the function F(x,y)=
—1In?(e + (xy")*/"* V) is convex on the set D = {(x, y): x, y > 0}. The function
F is convex on D since 0*F/dx?, 6*F/0y* and 0*F /0x*-0°F/0y* — (0°F/0x0y)*
are nonnegative in D. The same fact follows also from the convexity of
the function F,(x)= —In?(e + x) on [0, o) and convexity of the function
Fy(x,y) = —(xy)*¢*V on D. Thus by the definition of N(u, M, A) in (8) and
the inequality (35) we get

i@
N My, A+ N, My, A< S 20! {36B1r2 1n2<e
v=0

N 2u4Av<M1 -; M, <|A1| —;— |A2|>r>1/(’+1)8—1/(r+1)> +4r}

ptl .
= Z 2’{36317‘211‘12(6—+—2“‘+14_1(M|A|')1/(r+1)8_1/(r+1))+4r},
j=1

Combining this with (34) we see that r, satisfies (17), which completes the
proof of lemma 5.6. O

Completion of the proof of theorem 5.2. Starting from lemma 5.5 and applying
lemma 5.6 s times, we obtain that there is a rational function r, , A =[a,b],
such that

HfA_rA”A<<2+ Y 2_”>8<38
n=1
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5.2 rthderivative of bounded variation 121

and

degry, <2 Y kg4 N(s, Vof®, A).

A¥eQ)
Putting R(x) =r,(x) — > f™(a)(x — a)’/v! we have
v=0

I f— Rilap <3¢
and

degR Sz Z kA*+ N(S,M, [a, b])+ r,
A*eQ)

where M = V2 f®_ It remains to prove that

MIAY
N(s,M,A)<D1r2m1n2<e+8m|r+|1> (36)
where D; = constant. By (8) we have

N(s,M,A)= Y 2°{36B,r*In?(e + 24 (M|A[)"¢* Vg~ 1+ D) 4 4r)
v=0
<82+ Cr? Y 2In*((e+ 27V MIAreTY)-47)
v=0
=8r-2S+Cr2{ Y 2’ln?(e+ 27 DM|AFE )
v=0

+ 2 Un(e + 27 * DM |Ae Y(In4) (s —v)
=0

+ Y 2'(In4)*(s — v)? }
v=0
Since the function 2*(s + 1 + 2/In2 — x)? is increasing on [0,s + 1],

s s s 2
DIRACERI ESDIPACESTEND) 2V<s+1+i—v>
v=0 v=0 v=0 2

In

s+1 2 2 16
2% 1+-—— dx < ——=2%
<L <s+ +1n2 x> x<(ln2)3

Therefore
2 2 M|AY
N(S,M,A)SDIV -2%1In e+m
g2
M|AT
= Dlrzm 1112 <C + W),
i.e. estimate (36) holds. O
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122 Uniform approximation for some function classes

Proof of theorem 5.1. If we are not interested in the form of the constant C(r)
in the estimate (1), then (1) follows as in theorem 5.2. But we need to prove
the estimate (1) with C(r) of the kind C(r) = D', D = constant. To this end,
we shall use the following lemma.

Lemma 5.7. If the function f is defined on A =[a,b] and f@eC,, r = 1, then
fornz=r

Ef)esC

811 e -
n

where C > 0 is an absolute constant, E ([ )¢ is the best uniform approximation
to [ by means of all algebraic polynomials of degree n.

Proof. 1t follows by theorem 3.10 that for n > 1

A ew
n

Ef)c< (38)

Choose peP,_, such that || f" — p ¢ = E,- (f)c and geP, such that ¢’ = p.
Applying (38) we get

AN = llew _ JAIE, (/e
n n

En(f)C = En(f - q)C <

From this and (38) it follows for n > r that

|AIE, -1 (f)c <CZIAIZE.,—:).(f”)c
n = nn—1)

AP/ ey

En(f)C < C

<---<C .
h Cn(n—1)~~-(n—r+1) (39)
On the other hand from Stirling’s formula
k k
(k! = \/2nk-<g> e™12 0«0, < 1>
it follows that forn>=r =1
r i\
n =n(n ) e
nn—1)---n—r+1) n!
This inequality together with (39) implies (37). O

Now we are able to prove theorem 5.1. Let feV.(M,[a,b]),r=1, M =0.
Without loss of generality we shall assume that f”'eC,,, and M > 0.
Let r <n < Ar®, where A= D?e!% D, > 1, is the absolute constant from
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5.2 rthderivative of bounded variation 123

theorem 5.2. Putting p(x) = f")(a)x"/r! we get by lemma 5.7

v (r) _ ,(r)
Rn(f)c<En(f)C:En(f_p)C<C( ay | 7 —p” ¢

nr
Lb=ay L[ =)l _ ., sMb—a)
C e <CAr® T
Hence
Mb —a)
R(f)e<Ch % r<n< Ar®, (40)
where C, = constant.
Let > Ar®. Choose m integer so that
n 2n
At STS 4 (41)

Clearly, there is a division Q of [a, b] into 2m compact subintervals A, disjoint
except for the end points, such that

b— M
Al<”— 2 and V<. 42)
m m

We put for AeQ, A ={[u,v], pa(x)=fOw)x'/rl. It follows by (37), (41) and
(42) that for AeQ)

ErS(f)aA) =Es(f—pa) C(a)

IAI ILf =1 w) Hcm)<c, MIAY
rSr r8rmr+1
<crartsMb—a
nr+1

Consequently, for each AeQ there is a polynomial g, such that || f — g4 [l <
“(M(b—ay/n*Y), C,>1 and degq, < r®.
Now we are able to apply theorem 5.2 with ¢ = C5(M(b—a)/n"*!) and
k, =18, AeQ. We obtain that there is a rational function R such that
. M(b af
ILf— Rllea.n <3C -

+1

and

M(b—a)y
degR<2 8 +D,r*2min?
Cg A;Qr + 1}’ min <e+ C’ZM(b—a)’n_’_l(Zm)’+1>

n r+1
<4r8m+2D1r2mln2<e+<A> >
2m
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124 Uniform approximation for some function classes

Using (41) the fact that n> Ar® = D2e!%% and the inequality In®x < /x
for x > e we obtain

(et ™)<t (e 2 ) <in? (arty < yart
2m 2

and therefore

n 8D.n
degR<~ ! s<n.
egR<5+—% JArt <n
Consequently
. M(b—ay
R(f)e<3C o "> Ar®.
This estimate together with (40) implies estimate (1). O

5.3 Some classes of absolutely continuous functions
and functions of bounded variation

It is not difficult to show that (see 11.1.2, theorem 11.3) the estimate
R,(f)c=0(1) is exact in the class of all functions absolutely continuous on
[a,b]. It turns out that if we consider classes of absolutely continuous
functions and functions of bounded variation which satisfy additional
conditions, then it is possible to obtain a uniform rate of approximation
which is better than the approximation by polynomials. In this section we
shall investigate some classes of this kind.

5.3.1 One technical result
The following technical theorem is basic for the uniform rational approxi-
mation of functions with order of approximation not greater than O(n~1).

Theorem 5.3. Let the function f be bounded on [a,b] and let there exist m + 1
points x;, i=0,1,....m a=xy<x; <--- <Xx,,=b (m=1) such that

Hf_f(xi)|iC(Ai)<89 l=05 13""m_15 (1)

where A;=[x;,x;111, €>0 is a given number. Then there exists a rational
function r such that

W f—r ”C[a,b] < De 2
and

degr <D Z ln<e+blAa|> 3)

where |A;| = X; 41 — X;, D > 1 is an absolute constant.
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5.3 Absolutely continuous, and bounded variation 125

Proof. There is no loss of generality in assuming that m = 2° with s a positive
integer and

2b —
Al = max {|AJ:i=0,1,...,m— 1} < ( )

Indeed, suppose that theorem 5.3 holds true in this situation. Consider the
general case. Set f(x)=f(b) for x > b. Add at most m new points u;e(a, b)
with the property that each interval A;, |A;| > (b — a)/m, is divided by means
of u;,, i=1,2,..., into subintervals with length contained in [(b— a)/2m,
(b — a)/m]. Also, take if necessary, some points v; =b + i(b —a)/m,i=1,2,...,
so that the set N={x;}u{u}u{v;} contains exactly 2°+ 1 points, where
2m < 2° < 4m. Finally, we renumerate the points of the set N in increasing
order and denote them again by x,;, i=0,1,...,2% Clearly,

1S = lemy <26 i=0,1,...2 =1, A=[xp%.1].

Then by our assumption it follows that theorem 5.3 holds true in the general
case, eventually with another absolute constant D.
Thus we shall suppose that m =2* s integer and [A_,,| <2(b— a)/m. Set

_Jfla), x<a,
f(x)_{f(b), x> b,

and
x;—(b—a), i=01,....,m

U= < X m i=m+1,m+2,...,2m,
Xioamt+(b—a), i=2m+1,2m+2,...,3m.

Denote d; = [u;,4;,,],i=0,1,..., 3m — 1, d,,, an interval d; with maximum
length,

klzkvl

Nk=3 ¥ 12Bl(v+1)ln<e vldm“") 4)

v=0 u=1 |d1+u2,

where B, > 1 is the absolute constant from lemma 5.3, k and i are parameters.
Also, denote

fxX)=f(x)—f(x), i=0,1,...,3m— 1.

Next, we shall denote for short |-, = |I*llca)-
Theorem 5.3 we shall prove applying s times the following lemma, where we
use the assumptions and notations introduced above.

Lemma 5.8. Let 0<k<s, k integer. Let there be, for each i, 0<i<3m—2%- 1,
a rational function q; such that

H fi —4q; H[ui‘quh+ 1 < (P(k)S, (5)
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126 Uniform approximation for some function classes

where @(k) = 1, (k) depends only on k,
160~ ooy <24 1) (6)
and
deg g; < N(k, i), (7

where N(k,i) is defined in (4).
Then for each i, 0 <i<3m—2%"1—1, there exists a rational function r,

such that
Hﬁ—thkud<<Mm+y%>& ®)
1l ey <274 1 o)
and
degr, < N(k + 1,). (10)

Proof. Let 0 <i<3m-2¢*!— 1. Denote for short

Zy =y Zy = (Ut Ui 1)/, Z3= Uk,
n=ldiy2l/2, Ay=[z,z,+n], Ay=[z3—n.z3],
A=1[z1,23), G1=6i Go=qiso+fx)— [ (x5 20)

By (1) and (5)—(7) we get

Ifi=dila <o®)e. [d1ll- w0 <@+ e degd, < Nik,i),
I A T S PO s

142 0i= w0 < 11Gis 25 H(—-oc,x:) + 1 (x) = f(x; 4 2)]
2k

S@4 De+ Y 1 fKievr) =S <@+ 1)
v=1
and
deg g, < N(k,i +2%).

Now we are in a position to apply lemma 5.3 to the function f; with the
intervals A,,A,, rational functions §,,§, and &, = @(k)e, A =21 + 1),
ka, = N(k, i), ks, = N(k,i+2%). Set &, =¢/2"'. It follows that there exists a
rational function r; such that

1
I fi—rilla< <‘P(k) + E"TT)E’
Hri H(—oo,oo) < (2k+1 + 1)8
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5.3 Absolutely continuous, and bounded variation 127
and

degrt<N(k’l)+N(kal+2k)

A
+Blln<e+%>ln(e+2k(2"“ + 1)) (11)

Consequently, the rational function r; satisfies (8) and (9). It remains to prove
that degr; < N(k + 1,i). Clearly, we have

A
Blln<e +|2—|)ln(e + 22K 4 1))
n

2k+1 1 d
<B, 1n<e _1_&_“&") 1n(e+22"+2)
|di+2’<|

2k
< 12B(k + l)ln(e + |d‘““|).
ldi+2"|

From this, (11) and the definition of N(k, i) in (4) it follows that

k—1 2Ky 2°ld_.. |
degr, <y Y 12Bl(v+1)ln<e+lﬁ>
v=0 u=1 |di+u'2vl
k-1 287V 2"|d, |
+ z z 12Bl(v+1)ln<e+4&>
v=0 p=1 |di+2"+,l~2“|

241d
+12B,(k + 1)1n<e+—'—"i*|>
|d; 4 2]

+ y
kl»71

ko 27| d o
<) ) 12B(v+1)nfe+ d
v=0 u=1

i+u-2v|

> =N(k+ 1,i).
Thus r; satisfies (10).

O
Now we continue the proof of theorem 5.3. By (1) it follows that
I =Sl s, g <26 fori=0,1,...,m—2 and therefore

1 fi=Ollp, <26 i=0,1,...,3m—2.

Consequently, the assumptions of lemma 5.8 hold with k=0, ¢;=0 and
9(0)=2.

Starting from there and applying lemma 5.8 s + 1 times we obtain that for
every i, 0 <i<m— 1, there exists a rational function r; such that

s+1 ]
||f, - ri”[“iv“i+2m+1] < <2 + z 2k7+1>8 < 3
k=1
and

degr, < N(s + 1,i).
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128 Uniform approximation for some function classes

Choose i, such that degr; =min,;degr; and set r=r,; . Since [a,b] c
(U Ui oms1] forevery i=0,1,....m—1, | f —rl.5n <3¢ ie. r satisfies (2)
with D = 3. From the choice of r it follows that

25—-1

1
degr< Z N(s+ 1,1).

Using the definition of N(k,i) in (4) and the fact |d,, .| =1A
we get

max| < 2(b - a)/m

2s —1

123 S 2’ dmax
degr< Z z Y 12B(v+ 1)1n<e+L—|>
=0 v= |di+y'2v|

p=1
QRCRE N 2| A
<= Y Y 24B(v+1) Z In[e+—"2%
2 v=0 au=1 |Aj|
24B1 s+1 v 1

£x e Zln( )

" (e Bl Y U TS L
<24B, ) Infe+ A Z Y v+
j=o 1A;] ) 2°V=0 =4

m—1
<24Bl Z ln<e |A‘|1)> Z( +1)2 2S+1 v,

j=0
Since the function F(x) =2*(s + 2 + 2/In2 — x)? is increasing in [1, s + 3],

s+1

Z BTy 1) = Z 2i(s +2—j)?

2Sv 0
1 s+2 2
— ——— dx<C,
<2s£ 2<s+2-+—I 3 x> x

where C is an absolute constant. (This is the most essential point in the proof!)
Consequently, there exists an absolute constant D such that

de r<Dmilln e+b—a
g ~= b m|All b

1.e. estimate (3) holds. O

5.3.2 Sobolev classes W },p>1

Consider the Sobolev class W [a,b], p> 1, of all functions f absolutely
continuous on [a,b] such that f'eL,[a,b]. First YuA. Brudnyi (1979)
announced that for the functions feW,, p > 1, the estimate R,(f)c = O(n™1)
holds. The first proof of this result was given by V.A. Popov (1980). Note
that for feW,,1 < p < oo, we have only E,(f); = o(1). We shall next prove
this result as a consequence of theorem 5.3.
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5.3 Absolutely continuous, and bounded variation 129

Theorem 5.4. If feW}[a,b], p > 1, then the following estimate holds for n > 1:

’
I/ e,
n B

R,(fles<C (12)

where C=C,p{p — 1) (b —a)! V7, C, = constant.

Remark. The estimate (12)is exact for the class W, p > 1. For every individual
function fe W}, p> 1, the o-effect appears (see 10.2).

Proof. To prove theorem 5.4 it is enough to consider the case [a,b] =[0,1]
and || f'],=1. Indeed, let theorem 54 be true in that case. Suppose
f'eL,[a,b]. The case when | f'||,=0is trivial. Let || f'[,> 0. Consider the
function g(x)=f(a+ (b—a)x)/| f'Il(b—a)*~"?. Obviously, we have
Ig'llL,10,17= 1. Hence by our assumptions R,(g)c < C(p)/n, n> 1. Then we
get

R(Nec=11"1,b—a) " ""R(g)c < Clp)(b —a)'~ ””@, nzl.

Thus we shall suppose that [a,b]=[0,1] and | f'||,= 1. Put f(x)=f(1)
for x > 1. Clearly, there are points x;, i = 1,2,...,m, where n < m < 2n, such
that

1
O=Xxg<X < <Xp_;<I<x, <14+-
n

and for each i,0 <i < m— 1, one of the following two conditions is fulfilled:

(i) [alf'(0)ldx=1/n and [A] < 1/n,
(i) falf(x)dx <1/n and |A;]=1/n,

where A; = [x;, x4, ]

Indeed, set x, = 0 and define by induction x;, ; = max {x:x; <x < x; + I/n
and jﬁilf’(t)ldtg 1/n}, i = 1. Finally, denote by x,, the first point x;> 1.
Because || f'll,, <| f'll., =1 these points x; satisfy the required conditions.

Obviously, we have

1
||f—f(x,-)llcm,-)<J Ifeldx <, i=0,1....m—1. (13)
A;
Denote by N, and N, the sets of all indices i, 0 <i < m -- 1, which satisfy

(1) and (ii) respectively.
If ieN,, then by Holder’s inequality we get

1/p
l=j If’(X)IdX<<f lf’(X)I”dX> |A;T e
h A Aq
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130 Uniform approximation for some function classes

Hence for ieN,

1
’MW\J [ f'()|Pdx

and since || f'|,=1,

1
e L 14
AP .
One easily verifies the following inequality:
2 2 1
n{e+= )<L —— o0<x<lp>1l (15)
X p—1x?P

By (14) and (15) we get

m—1 2 2

i§01“< 1A|> Zl( |A|> .GZM“’(” |A|)+i§ml”(e+2)
2p 1
p— L&, (n|AL) !

From this and (13), applying theorem 5.3 we conclude that there is a rational
function r such that

~

+2m<<—+4>n<
p—1 p

2
If - "”cro,l] <‘n“

and
m— 1 6Dp
degr<D In <— >1.
er<b < mlAv|> PR
These estimates imply (12). |

As a consequence of theorem 5.1 and theorem 5.4, we shall obtain relations
between rational uniform approximation of functions and polynomial
L,-approximation of their derivatives. First P. Turan noted that there should
exist relations of this kind. Here we shall present the results of V.A. Popov
(1980).

Theorem 5.5. Let feW'[0,1],r = 1,p> 1,ie. fV€L,[0,1]. Then the estimate

E(f")
R2n+r(f)C<C(par)“'n—rJ9 nz la

holds true in the following situations:

M) r=1,p>1,
(i) r=2,p=1,
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5.3 Absolutely continuous, and bounded variation 131
where E,(f"), denotes the best L,-approximation to f by means of algebraic
polynomials of degree n.

Proof. Consider the case when r=1 and p> 1. Choose p,eP, such that
I f"=pilly, =E(f"), and qeP, ., such that ¢'=p,. In view of theorem 5.4
we get

Ry i(f)e SRS —g)e < Clp)

1= _ o
n

ES)p
.

In the other case we proceed similarly, applying theorem 5.1. O

5.3.3 Absolutely continuous functions with derivative in Orlicz space L log L
The function ¢ is called an Orlicz function if it is continuous, strictly
increasing and convex in [0, o0), ¢(0) =0 and lim,_, (¢(x)/x) = c0.

The function

Y(y) =max {xy — ¢(x)}, y=0,

x=0
is called the complementary function to ¢.
The Orlicz space L,[a, b], generated by the Orlicz function ¢, is defined as
the set of all functions f measurable in [a, b] such that there exists a constant
K > 0 with the property

J $(| f(x)/K)dx < 0.

a

The Orlicz space Ly[a,b] is a Banach space under the norm

IIfIIL¢=KiI>1{){K+Kf d)(lf(X)I/K)dX}-

We need some simple facts concerning Orlicz spaces which will be given
without proofs (for a detailed study of the theory of Orlicz spaces see
Krasnoselskii, Rutitskii (1958)).

If y is the characteristic function of a measurable set E < {a,b], ie.

(x) = 1, xe€E,
)= 0, xela,b\E,
then
7., = mes By~ (16)
2L, = mesE )’

where y ~! is the inverse function to .
Holder’s inequality is valid: if f €L [a,b] and geL,[a,b], then f-geL [a,b]
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132 Uniform approximation for some function classes

and

b
J f)g)dx < | flle,lgllL, (17)

e
dx< 1. 18
L¢<Ilf||%> X< as)

Next, we shall consider the Orlicz space L%[O, 1], where

If feL,la,b], then

Inx x>=1,

Polx)=x1In, x, ln+x={0’ D<x<l

This space is denoted usually by Liog L. A light computation establishes that
the function

¥, 0<y«],

el y>1,

Yoly) = {

is complementary to ¢g.
Next we shall prove the following result of A.A Pekarskii (1982).

Theorem 5.6. If the function f'is absolutely continuous on [0, 1] and f'eLlog L,
then for n= 1

Rfee! st (19)

where ¢ is an absolute constant.

Remark. This theorem is an improvement of theorem 5.4.

Note that LlogL consists exactly of those functions f in L, for which
IM [, <oo, where M fis the Hardy-Littlewood maximal function for f
(see section 5.4). Moreover, the Orlicz norm ||-|| ;. i equivalent to the norm
| f|l defined with || f|| = | M f||.,. Now the estimate (19) is equivalent to the
following: if f is absolutely continuous on [0,1] and M f'eL,[0,1], then for
n=1
ML,

n

Rn(f)C <

Proof of theorem 5.6. Without loss of generality we shall suppose that

H f’ ”LlogL = “ fl “L(ﬁo[o'l] = 15 d)o(x) =X ln+ X.

Then by (16) and (17) it follows that

1
L L O < f ey 0y, < 1. (20)
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5.3 Absolutely continuous, and bounded variation 133

Let n= 1. Set f(x)=f(1) for x>1. Exactly as in the proof of theorem 5.4,
in view of (20) there exist points x;, i=0,1,...,m, where n < m < 2n, such
that

1
O=x,<x; < <x,_;<I<x, <l +-
n

and for each i, 0 <i<m— 1, one of the following two conditions is fulfilled:
1
(@) falf(®)dx == and A< 1/n
(i) fa,lf'(x |dx<1/n and |A;| = 1/n,

where A, = [x;,x;, 1]
Denote by N, and N, the sets of indices i, 0 < i< m— 1, which satisfy (i)
and (ii) respectively. We need the following inequality:

) IA|¢0<|AI lf/(X)ldX><J Dol /' (x))dx, (21)
A; 0

ieN;

Where Ai = [Xi, xi+ 1].
Since ¢, is convex, then by Jensen’s inequality we have for ie N,

¢0<|A|J.|lf( )Idx) A, J Goll f'(X¥)])dx.

Multiplying by [A;| and summing over ie N, we obtain (21).
By (18) we have

' , |/ (x)
L doll f'(x)[}dx J ¢>o<”f Tey, )dx< 1.

From this, (21) and the fact that condition (i) holds for ie N, it follows that
In
1;1 +< 1A |>
Consequently, we have

Zln(” |2A|> mfl (HnleiI)

Zln(e—{— |2A|>+Zln(e+2)<cn (22)

ieNy ieNy

On the other hand

1
If =S llean < Lllf’(X)ldx <o, i=01L..,m—1. (23)
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134 Uniform approximation for some function classes

Now we are ready to apply theorem 5.3 for the function f on [0,x,.],
1 < x, < 2. In view of (22) and (23) we conclude that there exists a rational
function r such that

]

I f—r “0[0,1] <

and

m-—1 2
degr<D Infe+—— )< Dcn,
g i=ZO < m|A,| >
D = constant.
Theorem 5.6 follows from this immediately. O

5.3.4 Functions with bounded variation and given medulus of continuity
Denote by V(w)= V(M,[a,b], ) the set of all functions f continuous on
[a,b] for which Vif <M and o(f;6) < w(d), § >0, where w(f;d) is the
modulus of continuity of fand w is a given modulus of continuity. A function
o is called a modulus of continuity if w is a nondecreasing function on [0, o),
lim;_, o 0(0) = w(0) =0 and w(d, + J,) < w(d,) + w(d,) for §;,6,=0.

First G. Freud (1966) and E. P. Dolzenko and A.A. Abdulgaparov have
shown that the class V(cé%), 0 <o < 1, can be approximated uniformly by
rational functions better than by polynomials. Later on A.P. Bulanov (1975b)
considered the rational approximation of the class V(w) for arbitrary w. The
final estimate was obtained by A.A. Pekarskii (1978b) and P.P. Petrushev
(1977).

Theorem 5.7. Let feV(M,[a,b]l, w), where M =0, w is an arbitrary modulus
of continuity. Then we have for n > 1

R(f)c<c inf {¥ + w<b:—‘f>} (24)

nft
1<tgn te

where ¢ is an absolute constant.
Corollary 5.1. (i) If feV(cd?), c>0,0<a <1, then R(f)c=O(nn/n).
() If feV(c(n(1/8))77), ¢,7 >0, then R(f)c= O(n~ 71+,
@) If feV(e(nln---In(1/6))™%), ¢7>0, k=2, then R(f)c=

k
O((inln ---lnn)™7).
o
Remark. The estimate (24) is exact with respect to the order (see definition
5.2 in section 5.1) in the class V(w), where the modulus of continuity w satisfies
lim,_, o (@(d)/6) = co. This nontrivial fact, to be established in section 11.2,
shows that there is no o-effect in this case. However, we shall prove in section
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5.3 Absolutely continuous, and bounded variation 135

10.2 that the o-effect appears for the uniform rational approximation of all
absolutely continuous functions f in V(w) for some . Note that for
polynomial approximation of such functions we have only E,( f). = O(w(n ™ 1)).

Proof of theorem 5.7. We shall use theorem 5.3. First, consider the trivial
case 1 <n<2D, where D> 1 is the constant from theorem 5.3. Obviously,
we have
2D
R(Ne<Vaf SM<——.

This estimate implies (24) in the case 1 <n < 2D.

Now, let n>2D. We shall denote for short w(d) = w(f;4), 6 = 0. We shall
consider three situations.

(i) If M < o((b — a)/e”?P), then

Rinesvir <m<of 0

which implies (24).
(i) Let 2DM/n > w(2D(b — a)/ne). Then by Jackson’s theorem (see theorem
3.10)

ne

2D(b — a)) - 2DcM
n

Rife < Ef)e < cw(b%“) < cw<

which implies (24).

(iii) Let M = w((b — a)/e™?P) and 2DM/n < w(2D(b — a)/ne). The function
F(t) = M/t is strictly decreasing and the function F,(t) = o((b — a)/te"’*?") is
nondecreasing on [1,n/2D]. Consequently, there exists exactly one point
toel1,n/2D] such that

M b—a
— =0 —75p- |- 25
o) 25
Now we define a partition of [a,b] in the following way. Pick x,=a
and suppose that x4, x4,...,x, are defined. To define x,,; we consider the
set

M
Apiq = {xe[a, b1:x > x| f(x) = f(x)| = t}.
0
If A # & we put x; . =inf{x:xed,, }.
Clearly, after a finite number m + 1 of steps we get 4,,,; = . Set x,, = b.
So we have a division of [a, b],

a=Xxy<Xx; < - <X,=h,

m
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136 Uniform approximation for some function classes

with the properties

M ) 2
S 1) =) <21 26)
2
1) =Dl STM’ i=0,1,...,m—1. 27)

Now we are able to apply theorem 5.3. Using (27) we conclude that there
exists a rational function r such that

1S = rlegany < 22M (28)
ty
and
degrstilln<e+b_a> (29)
i=0 m|Ai‘

where A; = [x;,x;,,1, D> 1.
It follows from (25) and our assumptions that

M b—a < inf M N b—a
— =0\ —5p inf <—+o|—% |
tO toen/ZDto ~ | <tenD t ten/ZDt

From this and (28) it follows that

M b—a
—rlicrap <c Inf <—+ ol ——|¢.
I/ ”C[ o 1<t<n{ t < te"! >}

It remains to estimate degr. Since Vif < M, then by (26)

M m—1
Tt—< »Zo | f(x) =[xl <M

¢

and therefore m < t,. Also, by (25) and (26) we have for i=0,1,...,m—1

b—
w<Tfj,o>—M<|f(xi>—f(x,-ﬂ>a

- ~
to€ to

and consequently

Then by (29) we get
t
degr < Dmln <e + B_en/ZD,(,)
m
n

< Dtgln(e + e"?P) <,

where we have used the fact that the function F(x) = xIn (e + 1/x) is increasing
on (0, o0). This implies (24). |
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5.4 DeVore's method 137

Proof of corollary 5.1. The assertions (i), (i) and (iii) in corollary 5.1 follow
immediately setting consecutively t=n/(alnn), t=n"1*" and t=

(Inln ---Inn)" in (24).
k—1

5.4 DeVore’s method

5.4.1 Hardy-Littlewood maximal function
It is well-known that the Hardy-Littlewood maximal function and its
modifications have many important applications in analysis — for example in
the differentiation theory of muitivariate functions (see E. Stein (1970),
E. Stein and G. Weiss (1971)). Ronald DeVore (1983) was the first who showed
that the maximal functions may be very useful in the theory of rational
approximations. Before describing his method, we shall give the properties
of the Hardy-Littlewood maximal function we need.

Let f be an integrable function on the interval [a, b] or (— o0, o0). For every
xe[a,b] (or (— o0, c0)) we define the function

meﬂwiJUWM

A:xeAlA' A

where the sup is taken over all subintervals A =[c,d]} =[a,b] ((— 00, 0)),

which contain the point x, and |A]=d — ¢ is the length of the interval A,
The most essential property of the Hardy-Littlewood maximal function

is perhaps the following one.

Theorem 5.8. Let f be an integrable function on (— oo, o0} (i.e. feL{— 00, 00)).
Then for every a >0 we have

2
mes { x:(M f){x) > a} S&H S lLs= .05

where mes A = | A| denotes the Lebesgue measure of the set A.

Remark. Usually this property of the maximal function M f'is expressed as
follows. The operator M [ is of the weak type (1, 1).
To prove theorem 5.8 we shall need a covering lemma of Vitali type.

Lemma 5.9. Let Ay,...,A, be a finite family of open intervals in (— o0, c0).
Then there exists a subfamily of intervals 8,,9,,...,0,, such that 3; are pairwise
disjoint and

m 1 n

mezum«

i=1 i=1
Proof. Obviously we can consider only the case when the intervals A,,
i=1,...,n, are such that no interval A, is contained in the union of the others.
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138 Uniform approximation for some function classes

Let A; = [a;, b;] and let us assume that we have ordered the intervals in such a
way that
a, <a,<--<a,.
Then b;,, >b; holds since otherwise A; ., = A,. Also a;,,>b;_, since
otherwise A, A,_;UA,;,;. Therefore the even-numbered intervals and
odd-numbered intervals are disjoint. Obviously

LIEWINE Oq. 1)

ieven i=1

For {4;} we take {A;:i even} or {A;:i odd} in dependence on which one
of the sums Y ;. ., OF X ;.44 is bigger. Then from (1) it follows that

$16125 U a
=1 2[5

Proof of theorem 5.8. Let fel(—0,0) and a>0 be given. Using the
definition of M fit is not difficult to see that the set G, = {x:(M f)(x) > o} is
open and therefore measurable. Again using the definition of M f'we get that
for every xeG, we have an open interval A, containing x such that

1
mL |f(O)ldt > a 2

O

For every compact subset K of G, we can choose a finite subset of intervals
A, i=1,...,n, x,€K, such that K< | JJ_, A, Applying lemma 5.8 to the
intervals A, ,i=1,...,n, we obtain a subset of pairwise disjoint intervals A,
i=1,...,m, such that
>3lK|. 3)

xl‘

IIC§

m 1
214023,
Since the intervals A, are pairwise disjoint, from (2) it follows that

5[

m

12Lumm

xi=1

i

1 L[ 1
=—J If(t)ldtSI fO1dt =—11 fllLi- w,m)- (4)
2 JU s, °< fx

The inequalities (3) and (4) give us
2
K|l<- - .
l | a”f ”L( 00,00}

Since the compact subset K < G, was an arbitrary one, we have

2
IGa|=meS{x1(Mf)(X)>a}<&||fl|u—w,m)~ O

Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,
available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781107340756.006


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.006
https://www.cambridge.org/core

5.4 DeVore’s method 139

Remark. If feL,[a,b], then setting f(x) =0 if x¢[a, b] we obtain the estimate

mes { x:(M f)(x) > a} <§f | f(t)|dt.

The function
m(g; o) = mes {x:|g(x)| > o}

is called a distribution function of g. Obviously if g is an integrable function
then m(g; o) is defined for > 0 and is a decreasing function of a.

Lemma 5.10. Let feL (— o0, 0), 0<p<oco. Then

j 1 fPdx = f " ot f; 2)da. )

Proof. Let
G={(x,a):xe(—00,0), 0<a<|f(x)}.

Using Fubini’s theorem we obtain

© r w© U
f [ f(x)|Pdx = fdxdazf J po? ldadx
— vG —~o JO

=| peP  mes{x:|f(x)|>a}da
JO
* 0

=1 po"im(f;0)da. O

JO

Now we shall prove the results for the Hardy—Littlewood maximal function
we need. The first one is the following

Theorem 5.9. Let feL,[a,b]. For 0 <p <1 we have

b 1/p
q I(Mf)(x)l"dx> <cp, b= a)l f L ey

where the constant c¢(p,b — a) depends only on p and the length b — a of the
interval [a,b].

Remark. The constant ¢(p, b — a) tends to oo as p tends to 1 — 0.
Assume that || {0 = 1. We have

+ J =1, +1,.
a {x:(M )x)>1} {x(M )< 1}

b
f (M f)(x))Pdx = f
For the first integral I, we have from lemma 5.10 and theorem 5.8 (see the
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140 Uniform approximation for some function classes

remark after the theorem)

PR

I = j (M f)x))Pdx = PJ o tm(M f; a)dat
{x:(M f)x)> 1}

1

© 2 b 2
épj a”_lj | f(0)dtda < P
o Jq l—p

1

since HfHLl[a,b] =1
For I, we have trivially I, <b — a, therefore

a

r((Mf)(x))”dx < % +b—a=c(p,b—a).

I f L # 1, we set g = f/| f I Ls1a.e- Then [|g | 0, =1 and using the
fact that M(dg) =|A|Mg we obtain

b b f p
f (Mg)(x)ydx = j <<M-——>(x)> dx < c(p,b— a),
a a ”f ”L1[a,b]

ie.
J (M f)x)ydx < c(p.b—a)ll fIIf a5

therefore

b 1/p
<j ((Mf)(X))”dX> < (p.b—a)'" || [ lLygany- [

a

The second result that we need is the famous M. Rieze theorem.
Theorem 5.10. Let feL (— o, o), 1 <p< . Then
IMf I, <) S
where the constant c(p) depends only on p.

Proof. If p= oo, then obviously | Mf |, < || flle- Now let 1 <p< 0. For
every fixed a =0 let us set

S, 1 fX¥)]>a/2,
0, If)I<o/2.

Then | f(x)| < | fAx)| + /2 for every x and therefore (Mf)(x) < (Mf)(x)+
/2. We obtain from this inequality

fdx) = {

A= {x:(Mf)(x) > o} = {x:(Mf)() > 2/2} = B,

and therefore |4,| <|B,|.
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5.4 DeVore’smethod 141

Using theorem 5.8 we obtain:
4
lAal=m(Mf;0<)<lBal=m(Mfa;ot/2)<;Hfal|1- ()
But from the definition of f, we get
[falli= | 1f()ldx. (7)
If)z o2
The inequalities (6) and (7) give us

MM <t [ 1fldx. ®)

%) f@izan

Now we shall use lemma 5.10. We have

o0

jw (M f)(x)|Pdx = prd"_lm(Mf;a)da SJ j Pd”_lilf(x)ldxda
0 (12 52 o

— 0 0
© 200
=4PJ If(x)lj o~ *dordx
') 2 p—1 2p+1 0
=4pf_w|f(x)|( S dx=p_fj_w|f(x)|"dx.

Hence the theorem follows with a constant c¢(p) =(2°*!p/(p — ))'?. [

Remark 1. We see that ¢(p)— oo when p— 1, more exactly ¢(p) = O(1/(p — 1)),
p—1.

Remark 2. We give theorem 5.10 for the interval (— o0, o). If feL,[a,b],
1 <p< o0, we also have

| Mf ”L,[a,b] <cdpll f ”Lp[a,b]' 9)

This follows immediately, since we can set f(x)=0 for x¢[a,b], then

I f lpi=c0n00) = 1S Nepiasrs | M N epasy S TMF N Ly o009
We shall use M. Rieze’s theorem in the form (9).

Lemma 5.11. Let feL(— o0, o) and [a,b] be a given finite interval. Then Mf
attains its inf in [a,b].
Proof. Indeed, using the definition of Mf it is not difficult to see that the set

{x:xe[a,b],(Mf)(x) > o}
is closed. O

5.4.2 More on the class W},p>1
First we shall demonstrate the method of R. DeVore on the functions
belonging to the class W}, p> 1. We proved the following theorem in 5.3.2:
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142 Uniform approximation for some function classes

Theorem 5.4. Let feW,[0,1], p>1. Then

Rn(f)C[O,l] <cpn | f Hp!

where the constant c(p) depends only on p.
Here we present another proof of this theorem.

Proof. We can assume that || f'[|, = 1. Let us divide the interval [0, 1] into
2n subintervals A;=[x;_;,x;],j=1,....2n, 0 =x, < x; < - < Xx,, = 1, such
that

() 1a;1<n™t, |Ajl=x— x4, j=1,...,2n.} (1)

(i) [a,lf@OPde<n™!, j=1,....2n

Since || f||, = 1, such intervals can be got by first finding # intervals which
satisfy (i) and then subdividing them so as to guarantee (ii).
Now let us choose £;eA; so that

(Mf")() =inf {(Mf")(x): xeA},

where Mf’ is the Hardy-Littlewood maximal function for f’. The inf is
attained by lemma 5.10.
We set

Px) =1+ A2 (x =72 j=1,....2n,

6= Y b Ri=0/9.
R = Y. S(ERAY)

We have the following properties of the functions ¢;, ¢ and R:

d{x) =272 for xeA;, j=1,...,2n, therefore
2n

Px)= 3 ${(x)>2"% xe[0,1]; 2

i=1
¢; is a rational function of degree 4, therefore
¢eRg,, ReR,.
Let us mention also that
2n
Z Rj(x)= 19 Rj(x)>09 XE[Oal]a
i=1

(3)
Rix) <41+ A" x—¢)%) 2%, xe[0,1].

Let us estimate now | f(x) — R(x)], xe[0, 1]. First we have, using the choice
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5.4 DeVore’s method 143

of ¢;, theorem 5.10 (more exactly remark 2 after the theorem), and (1) (i),
| f(x)=fE)I < Ix = &l—5= ff’(t)dt
E é ),

1/p
<Ix = |(IA,I LJ((Mf)(t))”dt>

1/p
<|x—¢jl IA,-I”"C(p)<J If’(t)l"dt>
Aj

<cp)lx —&lnlA )71, )

where ¢(p) is a constant depending only on p (¢(p) is the constant from theorem

5.10: c(p) = 2”””(1)/(1) D)P).
Since 3’72, R{x) =1 for xe[0, 1], we have, using (3) and (4),

< lx = &IMS)E)

| f(x) = R(x)[ < Zlf(x —fENIR(x)]

< 4c(p) le ElmA) P+ A Hx — £ 72

~4clp) 3. 50 )

where s/(x) is the sum of those terms for intervals A; which satisfy
277 <A <27 n ! (recall that [A;| < n ™!, because of (1) (i)).
It is easy to see that
X — &I TA (1 + A 72 (x = E)H)H 2 (6)
Indeed, |A;] (1 +]A;1 72 (x = IV = (JA)1* + (x = &) = | x = &jl.
Using (6) and the definition of s, we obtain

S(X) K (n-27 ™ )T T I TR (L AT (x — &) T3

AJEAV

:2.2v(1/p—1)n—1 Z (1 + |Aj|—2(x_ éj)2)~3/2’ (7)

AJeAv

where A, is the set of those A; which appear in s,. Each A;e 4, has a length
> 27*n"! and the intervals are disjoint. Therefore for any integer k = 0 there
are four &; at most which satisfy

k277 x =&l <(k+ 1)27°n 1
Using this in (7) we obtain
S(x) <8127 UP N (1 4 (k/2)P) 7 < crlon 27T, (8)
k=0

where ¢ is an absolute constant.
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144 Uniform approximation for some function classes
From (5) and (8) we obtain, using that p > 1,
0
| /() = R(x)| < delp)e-16n™" 3, 2701 =c(pn?,
v=1

where the constant ¢'(p) depends only on p. Since ReR 4, (see (2)), the theorem
follows. O

5.4.3 Functions with derivative of bounded variation

Here we shall apply the method of R. DeVore for rational uniform
approximation of functions with derivative with bounded variation. In section
5.2 was considered the general case of rational uniform approximation of
the class V, (theorem 5.1). For r =1 we have the following,.

Theorem 5.1'. Let feV [a,b]. Then

b—aVaf’

Rn(f)C[a,b] < c n

where c is an absolute constant.

s

Proof. (DeVore, 1983). If we consider the function g(x) =f(a + (b — a)x) we
see that it is sufficient to take only the case when [a,b] =[0,1]. We see also
that we can consider only the case when V} ' = 1. Since any function f with
V3f' < oo can be approximated uniformly by functions g with ||g” [l.0.1) =
lg”ll; < VS, it will be sufficient to prove the following estimate only.

If f"eL(0,1) and || f"||, =1 then

Rn(f)C[O,l] <en?, (1)

where ¢ is an absolute constant.
Let f be such that || |, = 1. Using theorem 5.9 and putting p = 2 (every
p, 3 < p <1, will work infact), we have the estimate

1 4/3
<J ((Mf")(x))** dX> <cl|fli=c¢ 2
0

where ¢ is an absolute constant and Mf” is the Hardy—Littlewood maximal
function for f”.

Now let us choose the intervals A;=[x;_;,x;], j=1,...,2n, 0=x,<
Xy <-- < Xy, =1, such that

) 1Al <n™h 1A =x— x4, j=1,...,zn,}

(i) fa, (Mf7)())*# dx <41, 3)

where ¢ is the constant from (2).
Since by (2) {§((Mf")(x))**dx < ¢**, such intervals can be obtained by
first finding » intervals which satisfy (i) and further subdividing them so as

to guarantee (ii).
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5.4 DeVore’s method 145

Later on we shall work as in subsection 5.4.2. Choose ¢;eA; so that
(Mf")(&;) = inf {(Mf")(x): xeA,}.
The inf is attained by lemma 5.11. Now let us set
P (x)=f(&)+f () (x—¢))
Pfx)=(1+ A2 (x=&)H7% j=1,...,2n

b= 3 b0 R=6/s

2n
R= Z PﬁjRJ
=1
As in subsection 5.4.2 we have the following properties:
¢{x)=272 for xeA;, j=1,...,2n, therefore
2n
=) ¢{x)=272 xe[0,1]; (4)

i=1

¢’jER4: $eRg,, ReR,

(since Py, are linear).
Let us remark also that

%Rj(X)=1, R{x)>0, xe[0,1],
=1
R(x)<4(1+ (A7 2(x—&)» 7%, xe[0,1].

5

Let us estimate now | f(x) — R(x)|. Using the Taylor formula with integral
remainder, the choice of {; and (3), (i) we get

If(x)—Péj(x)l=}f(x) _f(éj)_x;éjf/(éj) = r(X—t)f”(t)dt
<|x €|2| f | £ (@) de| < [x — &AM "))
=(x— J)thnm(Mf "))

1 4/3
S(x—=¢ )2< ((Mf”)(t))3’4dt>
IAJI Aj
<clx— &) n|A) P,
Using this together with (5), we get
2n
| f(x) = R(x)] < ; | f(x) = Pg(x}] | R;(x)]

<de 3 (e EP0I8) 0 +IAL e ) T =de 5 s,
(©)
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146 Uniform approximation for some function classes

where s,(x) is the sum of those terms for intervals A; which satisfy
27T <A <27 e

We have
(= &P <A +14)1 72 (x = &) (7
Using (7) and the definition of s, we get
() <4227 2 Y (1A 72 (x = &)D) 7 8
Agd,

where A, is the set of those A; which appear in s5,. Each A;e 4, has a length
>227"n"" and the A, are disjoint. Therefore for any integer k >0 there are
four ¢; at most such that

k27 n P <|x =& <(k+1)27n7 L

Using this in (8) we obtain
5, ()< 16n722723 Y (14 (k/22) "1 <cln 2272, )
k=0

where ¢’ is an absolute constant.
From (6) and (9) we obtain

| f(x) = R(x)| <dccn™2 ) 272 =¢"n"2 O
v=0

5.5 Convex functions

One of the interesting classes of functions for rational approximations is the
class Conv,,[a,b] of all convex and continuous functions f on the interval
[a,b] such that || f{l¢es < M. A.P. Bulanov (1969) showed that there exists
a universal order O(in? n/n) for the uniform rational approximation of the
class Convy, [a,b], while we have only E,(f)cja, = 0(1) for feConvy, [a,b].
We shall prove first the exact order O(n~') obtained by V.A. Popov and
P.P. Petrushev (1977). There are many results concerning the uniform rational
approximation of convex functions with a given modulus of continuity (see
the notes at the end of the chapter). We shall consider here only the class of
convex functions with modulus of continuity of the type w( f; ). = O(6%). The
rational approximation in uniform and L -metric of some classes of piecewise
convex functions and functions with piecewise convex derivatives will be
investigated in chapter 7.

Theorem 5.11. Let M > 0 and let [a, b] be an arbitrary compact interval. Then

sup Rn(f)C[a,b] <cMn™l,

feConvyy[ab]

where ¢ is an absolute constant.
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5.5 Convex functions 147

Proof. Theorem 5.11 we shall prove applying another method for rational
approximation. Note that this method was used for obtaining the final results
for uniform rational approximation of the class V, (see also the notes at the
end of the chapter).

Let us denote by K[a, b] the set of all convex nondecreasing functions on
the interval [, b], continuous at the point b, and by K,,[a, b] the subset of
K[a,b] consisting of those functions feK[a,b] for which || f |¢e <M,
f(x)=0 for xe[a,b].

Let us set

¢n=sup {R(f)cro.17: /€K [0, 11},

¢Gpa= sup inf{|l f—rlico.) reR,,0<r(x) < 4 for every xj.

JeKy[0,1]

Lemma 5.12. We have the equality
sup {Rn(f)C[a,b]:fEKM[a’ b]} =M¢,.

Proof. Let feK,[a,b]. Then g(x)= M~ f{a+ (b — a)x) belongs to K [a,b]
and consequently there exists reR, such that | g —rll¢o,1; < ¢,, i€

x—a
f(x)—Mr<b_a>

Sup {Rn(f)C[a,b]:feKM[a’ b]} < M¢n '

The converse is established similarly. |

¢,= max |[M~f(a+(b—a)x)—r(x)| = M~ ! max

xe[0,1] xela,b]

This shows that

Lemma 5.13. We have the inequality
sup inf | f—r “C[a,b] <Moo, ,.

feKi[a,b] reR,
VEf<M 0<r(x)<AM+1

Proof. Let feK,[a,b] and VEf< M, M >0. Then the function g(x)=
M~ Y(f(a+ (b—a)x)—f(a)) belongs to K;[0,1]. Let reR, be such that
0<r(x)< Aforevery x and {|g —rllcro,17 < Pn.a» 1€

10— <f(a)+ Mr<x - “))'
b—a

Since 0< f(a)+ Mr((x—a)/(b—a))<1+MA and f(a)+r((x — a)/(b—a))e
R,, the lemma follows. O

¢n.4 = max |g(x) —r(x)| = M~ ! max
xe[0,1] xefa,b]

Lemma 5.14. Let x,€(0,1). Then for arbitrary J, 0 < < 1/3, the fractional-
linear function oa(xq;x) = (x — x0)/(1 — xx,) satisfies
axg;— )= —1, alxg;1)=1, axe;x9—8)< —39,
Uxg;xg +8) =0, e=361—xq).
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148 Uniform approximation for some function classes

Proof. In fact

o(xo; %9 — &)= —36/(1 + x4 + 3x,0) < — 0,

a(xg; %o + &) =36/(1 + xo — 3x0) = 0. O
Lemma 5.15. There exists an absolute constant d >0 such that for every

xo€(0, 1) and every positive integer n > 1 there is a rational function o,(x,;x)e
Ry, N <dlIn?*n, such that

lo(Xo; X <n7%, —1<x<xo—n" (1 —xp),

[1—0o,xo;x)|<n72, xo+n"*(1-xg)<x<1,
0<0,(x0;x) < 1 for every x.
Proof. In view of lemma 5.1 (setting x =n"2/3, B =1, y = n™2/2) there exists
a constant d > 0 such that for every integer n > 1 there is a rational function
d,€Ry, N <din?n, such that
n? —1<

lo(x)| <3n~ x
<$in7? nT¥3<

11— 0a,(x)|

0<a,(x)< 1 for every x.
Then the rational function o,(xy; X) = 0,((x,; x)), &(xe; x), the function from
lemma 5.14, satisfies the requirements of lemma 5.15. O

Lemma 5.16. Let feK,[0,1]. Then
a(f,x;6) =max {| f(x) = f(Y):]x — p| <3} <61 —x) 7"

Proof. The lemma follows from the convexity and monotony of f and the
inequalities 0 <f(x) <f(1) < 1.

< —n7?%3,
x<1,

Lemma 5.17 (Fundamental lemma). There is an integer ng such that if n > n,
and if for k=[3(n—dIln’n)] (d the constant from lemma 5.15) we have
bx,3 < @(k)/k, @(k) > 1, then

2
b1 )0

n

Proof. Let feK;[0,1]. Take a point x,€(0,1) such that Vi f=V; f=
1Vif<i. The function f is convex and nondecreasing, so x,=31. Put
e=n"21—-x,),A; =[0,x, +¢] and A, =[x, — & 1]. By lemma 5.16 and the
assumption feK [0, 1] we have

on+ef onf+ on+£f<%+1 £
(1)

Vieef =Vig—ef + Vi f S 7——
1——x0
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5.5 Convex functions 149

By (1) and lemma 5.13 there are rational functions r,eR,, i = 1, 2, such that
I f=rillcag <(1 +2n7? )Pr.3/2,
1 1
0<ri(x)<3<§+n—z>+ 1 for every x, i=1,2. @
Let g,(x,; x) be the rational function of degree < dIn?n from lemma 5.15,

corresponding to the point x,.
Consider the rational function

Qx) = r(x) + 0,(x0; X)(r2(x) — r1(x)).

We have QeRy, N <2k +dIn’n.
Let xe[0, 1]. Using lemma 5.15 and (2) we obtain the following.
(@ IfO<x<xy,—s¢ then

/(%) — Q)| < f(x) = ()] + [0,(x05 %) |r2(x) — 1(x)]
<(1 +2n‘2)¢k,3/2+n‘2<3<%+nl~2>+1>. (3)
(b) If x, —e < x < xo+¢ then

Lf(x) = Q) < (1 = 0,(x0; X)) f(x) = 71 (X)] + 0,(X05 %) | [ (%) — ra(x)]
S(1+2n72), 5/2. 4
(€) If xo +e<x <1, then

/(%) — Q) <1 f(X) — r,(0)] + 11 — 0,(x0; X){71(x) — r5(x)|
<(1+2n‘2)¢k,3/2+n‘2<3<%+nl—2>+1). (5)

In addition from lemma 5.15 and (2) it follows that for every x, — oo < x < o0,
we have

1 1
|Q()| < (1 — 04(x0; X)) 1(X}] + 0,(x0; X)|F2(x)] < 3<§+nz> +1,
ie.
1 1
196 (- .y < 3<§ +n—2> +1 ©)

Now let n, be so large that for n > n, we have

Q) n>2,
(i) $(n—dn?n)=1, din’n>4,

(ii) 142 : LI 1+4d1n2n n!
n? )2[in—din’n)]  n® n '

Then if n > ny, k = [3(n — dIn* n)] and ¢, 5 < @(k)/k, (k) > 1, we find from
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150 Uniform approximation for some function classes

(3)~(6) that
4d1n* n'\ ok
1~ Qllaoar < {1+ ) 20,023 QeR
N=2k+dln*n<n.

This establishes the lemma.

Lemma 5.18. We have the equality

sup Rn(f)C[a,b] =M sup Rn(f)C[O,l]
SeConvyla,b] feConv[0,1}

The proof is like the proof of lemma 5.12.

Now we shall prove a result a little bit stronger than theorem
5.1

Theorem 5.12. There exists an absolute constant ¢, > 0 such that

Pu3<cnt
Proof. Let N, be such that

(@) Ny > ng, where n, is the constant from lemma 5.17,
(b) the function dIn? x/x decreases in (N, o)
(here d is the constant from lemma 5.15).

Then there is obviously a constant ¢, > 1 such that for n < N, we have
¢z <cyn” ' Put

yx)=[Glx—din®x)], y(x) =" '(x), yx)=x.
Clearly y(x) < x/2 for x = N,. Then for each n > N, there exists an s, such
that y*(n) < N and y**~!(n) > N,. Using lemma 5.17 we obtain successively

4d1n? (y*°~ Y(n)) Cy
¢VS°_ Y3 < < 1+ yso— l(n) yS()* 1(n)’

4din’ (y~'(n)) 4dn* ()| ¢,
¢y302(n),3<<1 +W><l + yso—Z(n) >ys0_2(n),
et 4d1n? (3
Pn3 = Pyom,3 < < I1 <1 + M)

-2
ni=o yi(n)

Using the inequality y**~' > N, the choice of N, and the inequalities
Yy < y* Yn)/2, k < s, — 1, we obtain

ot 4d1n2(y‘(n))> W*( 4d1n2(2so—1-fysv-1(n))>
,DO<1+ v )< LU e

= 4d1n*(2N,)
< 1 —_— | = N
,.Do( *TON, Ca=
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5.5 Convex functions 151

where c; is a constant, depending on d and N, but not on n. Consequently
Pz <Cocan” O]

Proof of theorem 5.11. By lemma 5.18 it is enough to establish the existence
of an absolute constant ¢ such that

sup  Ry(flero. <
SfeConv,[0,1]

I

If we take into account that f can be represented in the form f(x)=
d+f1(x} + (1 — x), where f,eK,[0,1],i=1, 2, then by lemma 5.12 theorem
5.11 will be established if we show that there is an absolute constant ¢, such
that

o, <cn” L.

But ¢, < ¢, 3, so theorem 5.12 gives us the needed inequality. O
Now we shall consider rational uniform approximation of convex functions
with modulus of continuity w(f;d). = O(%), 0 <a < 1.
We shall denote by Conv,,(«, [a,b]) the set of all convex functions on the
interval [a, b] for which

O(f30)cpapy S MO%, 620,

Theorem 5.13. Let 0 <o <1, M >0 and let [a,b] be an arbitrary compact
interval. Then for n =1 we have
M(b —a)*
sup Ru(fetam < C(“)Ta

SeConvy,(a,[a,b])
where c(x) depends only on a.

Proof. 1t is easy to see (compare with lemma 5.12) that for M > 0 we have

sup Rn(f)C[a,b] = M(b —a)* sup Rn(f)C[O,l]'

feConv,,(a,[a,b]) feConv(a,[0,1])

Moreover every function feConv (o, [0, 1]) can be represented in the form
f(x)=d —f1(x)—f>(1 — x), where f;, i =1, 2, is a nondecreasing and concave
function on [0,1], f{0) =0 and w(f;;8)c < 0% 0=0,i=1, 2. Thus we shall
suppose that f is nondecreasing and concave on [0,1], f(0)=0 and
(f;0)c<0% 620, 0 <a< 1. Without loss of generality we shall suppose
also that f'eC[0, 1].

To prove theorem 5.13 it is sufficient to prove that

c(a)

Rn(f)C[O,l] < w2’ (7

\%

Next we shall prove by induction the following lemma, where f is the
function introduced above.
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152 Uniform approximation for some function classes

Lemma 5.19. Let s= 1. For each v, 0 <v <s, there is a rational function r,

such that
=Pl S gt ®
17 ooy < 2% )
degr, <4 Y, 267992 £ 8B,(s s, (10)

where ¢ = ¢(1) is the constant from theorem 5.1 and D, is the constant from
lemma 5.3.

Proof. Putting r,=0 we have

I f=r, ”c[o,z‘sj So(f;279) <27

and therefore r, satisfies (8)-(10) for v=s.

Suppose that 1 < v<s and there is a rational function r, which satisfies
(8)-(10). Now we shall find a rational function r,_; which satisfies (8)—(10)
with v replaced by v — 1.

Denote A=[0,2"""1], A, =[0,27"], A,=[2"""1,27""1]. We need to
approximate f on A,. Since f is nondecreasing and concave on [0, 17, f(0)=0
and o(f;90)c < 6% 6 =0, then

VAzf, Sf(z—v—l)/z—v—l < 2v+1w(f;2—v—1) < 2(v+1)(1—a)' (11)
Choose the integer m so that
2(s—v+1)a/2<m<2,2(3—v+1)a/2' (12)

It follows by theorem 5.1, (11) and (12) that there exists a rational function
geR,, such that

VAZf/|A2| 2(v+1)(1—1),2*v+1 4C

If=dllean S e = < e =5 (13)

Without loss of generality we shall suppose that

lalican <21 flleo,1 < 20(f; D <

Set g, = g/(1 +ng?), n=2"2"2 Clearly, we have
4c 4 4c 1

I f—ax ”C(Az) <\ f- q”C(Az) +7ll f ”C(Az) ||61||C(A2) S 5s +27—+7:F + 5550
(14)
1 S
||q2||c(—w,w)<m:2’ (15)
degq, <2m << 4267V~ a2, (16)
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5.6 Functions with singularities 153

Now we apply lemma 5.3to fon AwithA, =[0,27],A, =[27"" 1271,
the rational functions r, and ¢,, ¢, =4¢ 27+ (s—v+1):27* and 4 =2
Note that by our assumption r, satisfies (8)-(10), g, satisfies (14)—(16). Putting
g, =27 % we conclude that there is a rational function r, ; such that

4c s—v+1 1
If—=r 1 |IC[0,2"V] <'2§+ 525 +ﬁ

b s—(v—1)+1

et o In-ile-ww <25
and
degr,_, <degr,+degq, + B;In| e+ 4] In e+A
gry— Sdegr, +degq, + B, |A;nA,| €2

t=v

s —v+1
<4 Y 20702 4epemv 2 4 gy ln<e +_2v_1>ln (e +2%)

<4 ) 267924 8B (s— v+ 1)s.
i=v-—1
Consequently the rational function r,_, satisfies (8)—(10) with v replaced
by v—1. O
Now we are in position to complete the proof of theorem 5.13. It follows
by lemma 5.19 with v = 0 that for each s> 1 there exists a rational function

ro such that

4c s+1 4de+1
||f_r0”C[0,1]<§§§+ 72s N Hsa

and
degro <4 ) 267942 4 8B s* < B, ()22,
i=0
Clearly from these estimates (7) follows. O

5.6 Functions with singularities

In this section we shall prove a theorem for rational approximation of
functions continuous in the interval [0, 1] with bounded analytic continuation
in the disk {z:|z — 1| < 1}. This result was obtained by A.A. Gonchar (1967a).

Theorem 5.14. Let f be a continuous real function on the interval [0, 1] and
let there exist a bounded analytic function in the disk D = {z:|z — 1| < 1} which
coincides with f on [0, 1]. Denote this function also by f. Then for n = 1 we have

Rn(f)C[O,l] £c, inf {Mteiczn/t + o(f; eit)c},

I<t<w
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154 Uniform approximation for some function classes

where M = sup,.,| f(2)|, and w(f; 8) is the modulus of continuity of f on [0, 1],
¢y, ¢, are absolute constants.

As a consequence of this theorem we shall prove the following theorem
for rational approximation of functions with singularities in the middle point
of [—1,1].

If we consider continuous functions of the type

0, xe[—1,0],
f“’(x):{(p(x), xe(0, 17. } M

then we have the following.

Theorem 5.15. Let f, be a continuous function of type (1) and let us assume
that there exists a bounded analytic function in the disk D = {z:|z — 1| < 1},
which coincides with ¢ on (0, 1]. Denote this function also by ¢. Then for n> 1
we have

Rf cr-1,11< ¢y inf {Mre™ ™ 4 o 2:€ ek (2)

Igt<o

where M = sup,.;,|¢(z)|, &(f,;0)c is the modulus of continuity of f, on the
interval [ — 1,17 and ¢, ¢, are absolute constants.

Corollary 5.2. (i) If o(x)=x* >0, then R (f,)e -1 <e "

@) If o)=exp{-In"(1/x)}, O<p<l, then R(f)q-1.1<
exp {— c(fnPPr I}

(iif) If @(x) =(n(1/x))"7, y >0, then R,(f,)cr- 1,11 < c(y)(Inn/n)’.

Remark. Theorem 5.14 and theorem 5.15, as corollary 5.2 shows, allow us to
obtain order of approximation of the form exp { — cn*}. However, they do
not give always the exact order of approximation.

Proof of theorem 5.14. Let 0 < h <e™ . Define the functional-linear function
w(z) = (az + b)/(z + d) by the conditions

w(h/2)=0, w(l)=1, w(3/2)= 0.
We get w(z)=(z — h/2)(z —3/2) '(h—2)"". Set

h
AR TS T

Obviously h/6 <e<h<e .
Denote by I the preimage of the imaginary axis Re w = 0 under the mapping
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5.6 Functions with singularities 155

w=w(z). It is readily seen that I" is a circle symmetric with respect to the
real axis which intersects the real axis at the points h/2 and 3. Consequently
I'cD and f is holomorphic on the closed disk determined by I' and

sup..r| f(2)| < M.
Let S be the rational function from lemma 5.2 in section 5.1 with a given

n>=1 and ¢ = w(h). We have

IS(W)|<61 exp{— }7 WE[E, 1]

cyh
In(1/¢)
and

[Sw)|=1, Rew=0.

Set Q(z) = S(w(z)). From the above and the choice of w(z) and ¢ we obtain
that deg Q = n,

lQunsclwp{—ﬁﬁgm}<c1wp{—h§ﬁm},zewAJ 3)

and
|Q(2)|=1, zel. 4)

It follows by the definition of S in lemma 5.2 in section 5.1 that Q has only
single zeros in the interval [h, 1]. Denote them by a«y, «,,...,a,. The poles
of Q are at the points §,, f,,...,B8,, which are symmetrical to the zeros a,,
o,,...,o, with respect to I'.

Let r be the rational function of degree n which interpolates f at the points
Oy,...,0, 0,41 =1 and has single poles at 8,,...,8,. This means that

agtaz+--+az"

= TRy =B

()

and
o) =f(a), i=1,2,....,n+ 1. (6)

It is readily seen that there exists exactly one rational function r of kind
(5) which satisfies (6). Indeed, consider the conditions (6) as a system for
obtaining a,, a;,...,qa,. This system has exactly one solution since each
rational function of the type (5) cannot vanish at n + 1 different points «,,
OgyennsOypy-

One casily verifies that for z in the disk determined by I' we
have

4@21J(1_&—a&~&—%+m5—mrwé—mvf@m5
2 o\ Ema) o)) ) €z
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156 Uniform approximation for some function classes

and

(=) (z— o)z~ DE = By)--- (€ — B)f(dE

27ﬂ r(@—o)(E—a)C— 1)z — 1)z~ B)E—2)
Q(2)(z - 1)f(§)d¢
r Q¢ —-1)(-2)

(for details see J.L. Walsh (1960)).
From the last identity, (3) and (4) we get for z=[h, 1]

fl&)—rz)=

c3n
— <cMI — ,
f@—rEI<e exp{ i /h)}
where I = §r|§-— h|~1|d¢|. Quick computation shows that I <cln(1/h), c a
constant. Consequently

/@ =@ <e;M ln“/h)'e"p{‘xnc(slr/lh)} ?

for ze[h, 1].

Let z(x) = (1 — h)x + h. Clearly, z(x) linearly maps [0, 1] onto the interval
[h,1] and |z(x) — x| < h for x€[0, 1]. Then by (7) it follows that for xe[0, 1]
we have

|/ (X) = r(zO) < | f (%) =f O]+ [ S (2(x)) — Hz(x))] < o(f; h)e

+ clMln(l/h)-exp{— 1nc(31r/lh)}‘

Set ¢ = t(h) = In(1/h). Obviously t(h) is a one-to-one mapping of (0,7 %)
onto (1, oo} and therefore for n > 1 we have

Rn(f)qo,x]< inf {Mtex}){__}"‘w(f € t)c},

1<t<w

which establishes theorem 5.14. O

Remark. The proof of theorem 5.14 shows that if f is a real valued function
then the approximating rational function r has real coefficients.

Proof of theorem 5.15. Let n=1 and ¢ "~ ! <h<e ! From the proof of
theorem 5.14 it follows (see the estimate (7)) that there exists a rational
function reR, such that

I fo—7lcm1 < ciMIn(1/h)-exp { - lnc(alr/lh)}’ (8)

where M =sup,.p|¢(2)|, ¢,, ¢; are absolute constants.
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5.6 Functions with singularities 157

Without loss of generality we shall suppose that 0 <c¢; <1, M >0 and
7m0y < 2M. )

Let us set
r

n
= p=Mtexp]- .
=i e"p{ ln(l/h)}

Then by (8) and (9) we get

||f¢_‘1||C[h,1] < f(p_r”C[h,l] + 712||f¢||C[h,1] Hr”é[h,l]
< “f¢_7'||C[h,1]+4’72]\’13

<(e; +4HMIn(1/h)-exp { B 1nc(317h)}’

Thus we have

I fo = dllegnay < M In(1/hyexp { - 1nc(31';h)}' (10
It is easy to see that
1 n
||q”c(_°°’°°)<27]<MeXp{ln(1/h)} 11
and
degg < 2n. (12)

Set A(x) = (1 —h}{(x + h)/(1 + h) + h. Obviously the function A(x) linearly
maps [ —h, 1] onto [h, 1] and |A(x) — x| < 2h.
Consider the rational functions ¢, = 0 and ¢,(x) = g(A(x)). By (10) and the
last arguments we get
l f¢ —{q> ”C[—h.l] < fw —fq,(i) “C[—h,l] + 1l f(p(}“) —q(4) ”C[—h,l]
<olf,; 20+ 1| fo = alcm;

and therefore

can

I fo = 2 lt-n1y < 200/ 3 e + M In (1/h) exp{— nd /h)}- (13)

Clearly, by (11) and (12) we obtain

la: uam,w,sMexp{ln(’{/m}, (14)

degg, < 2n. (15)

Now we are in a position to apply lemma 5.3 from section 5.1 for the
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158 Uniform approximation for some function classes

function f,, using the rational functions q,, q, and the parameters ¢, 4, k;,
i=1, 2, determined by (13)-(15). Setting ¢, = M exp {—n/In(1/h)} we con-
clude that there exists a rational function r such that

I fo=rle-1m<er {Mln(l/h)exp{—lnc(j’}h)}+w(f(,,;h)c}

and

d <2n+ B;In +g In| e +ex 2—n <cn
cersanT S ety Plinam () S

Since h is an arbitrary number in the interval (0,e 1), from here follows
the assertion of theorem 5.15. |

Proof of corollary 5.2. The assertions (i), (i) and (iii) of corollary 5.2 follow

immediately setting successively: ¢(x) =x% t = \/ n, o(x)=exp{—Inf(1/x)},

t=nt1*P; and p(x)=(n(1/x)) "7, t= czn/((y + 1)Inn) in the estimate (2).
O

5.7 Notes

The idea of the basic lemma 5.1 is due to D. Newman (1964a). In a form
similar to that given here lemma 5.1 was obtained by A.A. Gonchar
(19672, 1967b).

The result of P. Szlisz and P. Turan (1966) for best uniform approximation
of the functions of the class V; (more exactly the convex functions of the
class Lip1) was the following:

1
sup Rn(f)C[ab]"O< - n)-

Vi<t

G. Freud (1966) obtained that

In“n
sup R(Neo, 1]—O< r+1> r=zl.
Vi

Before the final result —theorem 5.1 (Popov, 1976a), Popov (1974a)

obtained that .

l
nn
R (f)C[O 11s < c(k, ") Vof(r)

The result of G. Freud (1966) and E.P. Dolzenko, A.A. Abdulgaparov (the
lecture of DolZenko at IMC, Moscow, 1966) for rational uniform approxima-
tion of the functions of the class V(cé%), 0 <a < 1, is the following.
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5.7 Notes 159

If feV(co™) then

1 2
Ry(f)e= 0< “n">,
and also if feV((In(1/8))™") then

R,(f)c=0(n""7?).
The result of Bulanov (1975b) is the following.
If feV(M,[a,b], w) and w(d) is strictly increasing in [0,b — a], then
Rn(f)C[a,b] < cdM,b—a,v)
[In Rn(f)C[a,b]l Inw™ 1(Rn(f)C[a,b])| = n ’

where the constant ¢(M,b — a,w) depends only on M, b — a and w.

For application of the Hardy—Littlewood maximal function to multivariate
rational uniform approximation see the work of R. DeVore and Xiang-ming
Yu (1986).

For the best uniform rational approximation of convex functions we want
to add also the following historical remarks.

For the class Conv,, (a,[a,b]), 0 <a <1, A.P. Bulanov (1969) obtained
the following estimate

1
sup n(f)C[ab]—O<1:l n>-

JeConvy(a,[a,b])

After this A.A. Hatamov (1975a) obtained that

k

Inl |
nln---lnu
sup Rn(f)C[a,b] =0 <T>

SeConv p(a,[a,b])

The final estimate (theorem 5.13) belongs to P. Petrushev (1976b).
For rational uniform approximation of a convex function with a given
modulus of continuity w (w(f; d) < w(d), ¢ = 0) there are the following results.
A.P. Bulanov and A.A. Hatamov (1978):

2

I
RoDean<ez max {w(®)In(1/0)}.

fele —n, 1]

A A. Pekarskii (1977):

Rfle<c inf {“’(5)+%J1 i”fyl)udy}.
n“Jsy

1<igsym® L B
i

0<dg

A.A. Pekarskii (1980a):

reness ([ (o)
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160 Uniform approximation for some function classes

Some other works which have contributed to rational approximation on
the interval and on the whole real axis are G. Freud (1967, 1968,1970),
G. Freud, J. Szabados (1967a,b, 1978), J. Szabados (1967a, b).

V.N. Russak (1974, 1977, 1979, 1984) introduced rational operators which
are analogs of the operators of Fejer and Jackson. He obtained the exact
order of rational approximation of classes of functions similar to V, by means
of such Jackson—Russak operators.

There are many works on the approximation of analytic functions by
means of rational functions, but we shall not consider such problems in this
book. We only want to mention some papers which are near to the questions
considered in this chapter: A.A. Gonchar (1972, 1974), G. Fichera (1970, 1974),
J. Karlsson (1982), V.K. Dzjadik (1966), G. Somorjai (1976), JE. Anderson
(1980), T. Ganelius (1982).
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6

Converse theorems for rational
approximation

In this chapter we shall consider some converse theorems for rational
approximation. In Chapter 3 in the polynomial case we have shown how the
converse theorems are connected with the direct theorems — they give full
characterization of the best polynomial approximation in uniform or L,-norm
by means of the smoothness properties of the function, more precisely by
means of the moduli of smoothness in C or in L,. Unfortunately till now we
have not such a nice characterization of the best rational uniform approxi-
mation. Characterization of the best rational approximation in L, will be
given on the basis of the connection between best rational and best spline
approximation in L, 1 < p < co, in Chapter 8. This characterization use the
converse results given in section 6.3.

First we consider some classical converse results. In section 6.1 we give
the classical results of Gonchar and Dolzenko. The Bernstein type inequality
of Dolzenko (theorem 6.1) gives an estimate of o(f; ), by means of the best
uniform rational approximations. In section 6.2 we give Russak’s inequality,
which is a Bernstein type inequality for the function f and the conjugate
function fof f. In section 6.3 we give Pekarskii’s inequality for the norm of
r® in L,(—1,1), by means of the norm of r in L(—1,1), 1<p< o,
1/6 = s+ 1/p. On the basis of this inequality an estimate for the modulus of
variation in L, of the function f by means of the best approximation to f in
L, by rational functions is given. Using this estimate the connection between
best spline approximation with free knots and best rational approximations
in L,, 1 <p< oo, will be given in section 8.2. The chapter ends with notes.

6.1 Gonchar’s and DolZenko’s results

It is well known that it is impossible to estimate the value of the derivative
of the rational function reR,, in the interval [a, b] by means of the Chebyshev
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162 Converse theorems for uniform approximation

norm of r in [a,b]. This is the great difference from the polynomial case,
where we have the inequalities of Markov and Bernstein (see theorems 3.12
and 3.9).

But, as A.A. Gonchar was the first to note, if we omit a suitable subset
with a small measure, this type of estimates becomes possible. The first results
of Gonchar (1955, 1959) were of the following type.

If R(f)ctapm<cn™ %8>0, then the function f is differentiable almost
everywhere on the interval [a,b].

LetreR,,. For every 6 > O there exists a set E = [a,b], mes E = |E| < 6, such
that for every xela,b]\E we have

P <2
(see also the notes at the end of the chapter).

We shall prove here some later results of DolZzenko (1962, 1963), which
improve this theorem.
Theorem 6.1. Let reR,. Then

(a) i ||L1(a,b) < 2n| r”C[a‘b]’

(b) for every interval [a,b] and every 6 > 0 there exists a subset E = E(d,r)
such that |E| < 6 and for every xe[a, b]\E we have

| 7()| <207 7| cya.ty-

Proof. Since the functionr — o« has at most n zeros forevery ae[ — |7 llc, [ 7]
and has no zeros for a¢[ — ||7|c, [I7]lc], we have

Vor < 2n|r | cra.e1-
But we have
b
Vh=Jlume=thmw
which proves (a).

Let E be the set of the points in the interval [a,b] such that |r'(x)] >
2n8~t|ir )¢ for xeE. Since

b
J‘ [r(x)|dx < 2nHr”C[a,b]
we have
b
2n|r ”C[a,b] = j [¥(x)|dx = 2né~1 I rHC[a,b]|E|s

ie. |E| <. O
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6.1 Gonchar’s and Dolzenko’s results 163

It is evident from the proof that in this theorem only the property of
piecewise monotony of the rational function is used. Nevertheless it is
impossible to improve this theorem: there exist rational functions reR,, such
that || ||, = c¢'n|/r|¢, ¢ an absolute constant.

Theorem 6.2 (Dolienko (1962, 1966a) ).
(a) Let us have for the function f

Z‘o Ro(f)ciap < 0.
Then f is absolutely continuous on [a,b] and almost everywhere on [a, b]
we have f'(x) =1lim,_, , F5{x),
I f =1l cas = Ra Nctap-
(b} We have
c n

o(f;n™') Ll[a RS z R,( f)C[a b]°

Rm=0
where c is an absolute constant.
Proof. We have
0= 3 a0 =i rop=0,
where the series converges uniformly in C[a, b], since
7ok — 1y ”C[a RS <lrp—f “C[a p+ [ -1 —f “C[a,b] < 2R2"“(f)qa,b]

and 3% o Ry f)e < oo.

Since r,x — rx-1€R+1, using theorem 6.1(a) we obtain

Qa0 0 o0

Z [ 755 — 75x-1 ||L1(a b= Z 2-2k%1 7o —Fyp-1]le <32 ZORn(f)C[a,b] < 00,

k=0 = n=
i.e. 2 2% o(ry — ryx-1) is convergent in L,(a, b), therefore almost everywhere

e8]
= 2 (ry(x) = -1 (x))
k=0

and f is absolutely continuous, which proves (a).

To prove (b) we consider the K-functionals between L,(a, b) and Wi(a,b)
and between C(a, b) and Wi(a, b)! (see Chapter 3). By theorem 3.15 we have:

w(f;l> <cK(f,n L L, WY SIK(f,n 1 C W), )
L(a.,b)

n

T In the space W} we use the same quasi-norm as in section 3.5: || f* Ie,-
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164 Converse theorems for uniform approximation

where ¢ is an absolute constant; evidently K(f,t;L,, W} <
max {1,(b —a) }K(f,t; C, W}).

By theorem 3.16 and the Bernstein type inequality from theorem 6.1(a) we
have

¢ &
K(fa n- 1; Ca W}) < ; ZO Rm(f)C[a,b]' (2)

Then (b) follows from (1) and (2).

Remark. The inequality (2) is stronger than statement (b) of the theorem.

6.2 Estimates for L,-norms for the derivatives of rational
functions and their Hilbert transforms

Here we shall give the method and results of V.N. Russak (1979) for obtaining
estimates for L;(— oo, o0) norm of the derivative of a rational function and
the derivative of its Hilbert transform.

Definition 6.1. We define the Hilbert transform Hf of the function
feL(— o0, ) as follows:

(Hf)x) =

_lf”ﬂx+0—ﬂx—0m
T Jo t

LJ St )—fx—9 M)

e»+0 T t

if the limit exists.
Very often Hf is denoted fand is called the conjugate function to f.
The following facts are well known (see for example Zygmund (1959)).
If feL,(— o0, o), then (H f)(x) exists almost everywhere.
If feL,(—o0, ), p>1, then

“fx+1)—flx—t
00 =1f Joctn—Ja—n,
7o t
iee. H''=—H.
We give these results without proofs because we shall not use them in this
book.

The most essential corollary of Russak’s result is the following theorem.

Theorem 6.3 (Russak (1973) ). Let r,,eR,, and all poles of r,, be a complex
and conjugate.” Then

“ r/2n ”Ll(—oo,oo)<2nn||r2n “C(—oo,oo)’ (2)

T In this section the rational functions can have complex coefficients.
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6.2 Russak’stheorem 165

| HrY, [|L1(—oo,cx>)<2nn|lr2n|IC(—ao,oo)' (3)

Remark. The inequality (2) follows from theorem 6.1 (a) of DolZenko, but with
another constant on the right-hand side. We give it here for completeness.
We want also to formulate this theorem in another equivalent way.

Definition 6.2. We shall say that the function f belongs to the Hardy space
H,(— 00,00 if feL(— 0, 00) and feL(~c0,0) (HfeL(— o0, 0)).

One of the facts of analysis is that the Hardy space H ;(— o0, oc) is a Banach
space with a norm

(AR WA PSSP o P

Now we can reformulate theorem 6.3 as follows.

Theorem 6.3'. Let r,,eR,, and all poles of r,,, be complex and conjugate. Then

“ r,2n HH1 < 4nn“r2n”C(—oo,oo)'

We shall need some notations and lemmas for the proof of theorem 6.3.

Let us denote # ={Imz>0} and let z,, k=1,...,n, z, =0, +if, X,
k=1,...,nie B, >0fork=1,...,n

Let us consider the Blaschke product

"
z—z,

B(z)=

kzlz—z_k

Obviously |B(x}| =1 for xeR=(—o0,00), B(z) is analytic in # and
continuous in # = # UR.
On the other hand we have for the logarithmic derivative of B (multiplied

by 1/i):
B(x) Ji L\_1¢ aa
Bx) i&i\x—z, x—2,) 1&0x—z)?

=|B'(x)| > 0.

Z “k)z + B2
Let us define
B0x)= 3 (arg(e, —x) — arg(5— )

It is evident that for xe(— oo, 0)

, B
B =™, ¢(x) = Bg; ~1B()| >0,
@
d(x) - 0, ¢(x) :» 2nn.
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166 Converse theorems for uniform approximation

Let us define also
F(x)=Re(e"B(x)).

The following properties of F,, follow immediately from the definition and

(4):

(i) |F (x| <1, 4)
(i Fysapx)= —Im (e"fB(x)),} o
iii) F(x) —1F, ,5(x) = €'’ B(x).

For every o we have
iv) F(x)coso+ F,,n(x)sina=F, . (x), (7
(v) Fo(x)=F 1 (x)| B(x)]. ®)
(vi} The function
F ,(x) = Re(e'?B(x)) = Re(c"**). 9)
for ¢ # n/2 + kr has exactly 2n real zeros x; < x, < -+ < Xx,,.
The last fact follows from F(x) = cos(¢ + ¢(x)) and (4)
¢x) — 0, ¢(x) —+> 27n.
From property (vi) we obtain that for ¢ # n/2 + kn we have
F (x)=cos ¢ (e = xy) (= x) (10)

nk 1lx_2k‘2

Let now r be an arbitrary (complex-valued) rational function without poles
on R. Let there exist z,, k=1,...,n, z;e#, k=1,...,n, such that

P2nlX) - PankX)
H?: 1((x— O‘i)z + ﬁ;z) HE= x— Zk|2 ’

where the algebraic polynomial p,, has degree 2n at most.

r(x) =

Lemma 6.1. Let x,,k=1,...,2n,x, <X, < X,,, be the zeros of F (x). The
Jfollowing equality holds.

2n
V(X)ZF(p(x){kzlr(xk)m*"cl}a (11)

where ¢, is a constant.

Proof. Let us set
*(x) 22 1
r¥(x ) F )
k= % (x = X ) Fo(x)
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6.2 Russak’s theorem 167

It follows from (10) that r*(x,) = r(x,), k=1,...,2n. Hence r(x) — r¥*(x) =
¢, F ,(x), since the denominators are the same and the numerators are algebraic
polynomials of degree < 2n. O

Lemma 6.2. Let r be a rational function with poles only in C\A# = {Imz < 0}.
Then for the Hilbert transform Hr we have

(H(Rer))(x)=1m r(x) + c,, (12)
(H(Imr))(x)= — Rer(x) + cs,

where ¢, and c5 are constants.

Proof. The direct calculation gives us

1 1 i

From (13), since H is a linear operator, the lemma follows in view of

. 1 x—o 1 -
. = b m—j':—_>7
x—(—if) |x—z)? x—z |x—z?

Rel — 1_ = _ﬂ, , Im ~~1—_ =——x~¥, z=a—if. O
xX—1z |x —z|? xX—z |x —z)?

Lemma 6.3. With the same notation as in lemma 6.2 we have

& F +n _F¢+n
(=70 = =€, = 5 g el 1y

c4 IS a constant.
Proof. If we apply lemma 6.2 to €'*B{x) we obtain, using (6),
(HF,)(x) =Tm(e?B(x)) + c5s = — F 1 12(%) + 5, (15)

¢s a constant.
Again from lemma 6.2, applied to e'?(B(x) — B(x,))/(x — X,), it follows that

H(L(X)) — Im (eww> e

X — X X — X,

_ _~F(p+1r/2(x)_ qu+n/2(xk)+ ¢ (16)
X — X, e

since Re(e'?B(x,)) =0 in view of (10) and Im (e/*B(x)) = — F oyt 2(x) in view
of (6).
Now (14) follows from lemma 6.1, (11), if we apply the Hilbert transform
and use the linearity of H, (15) and (16). O
Let @ #mn/24+kn be given and let us choose o, o#mn/2+kn,
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168 Converse theorems for uniform approximation
a#m/2 + kn— . Let us set

r¥*(x) = r(x)cos o — f(x) sin .

From (7), lemma 6.1 and lemma 6.2 we obtain

22'5 r(x;) F(p+a( X} — Ftp+1t/2(xk)Sina

—cysina. (17
k=1F;;(Xk) X = Xy ¢ 1

V*(X) = ClF(p+a(x)

Let y;, i=1,...,2n, be the zeros of F ., 1,5, 1.€. Fiy,(y) =0 (see (8), (9)).
We have from (17) and (8),

2 r(xy) F¢+a(J’i)_F(p+n/2(xk)Sin°‘_ %2 X
- k) ki

==L F(x;) i — x?

(18)
If we choose the function F ., for r (we can do this in view of (10)), we

obtain from (18), (8) and the definition of r*
F¥(x

(p+n/2(x)cosa - F(p+7r/2(x)Sin o,

)=
F¥(X) = Fy a4 n2(X) — cysine,
)

()= = Fou W) B ()
— & F(p+1z/2(xk) F¢+a(yi)_ Fq)+n/2(xk)Sina
k=1 Fip(xk) (vi— xk)z
B F )= F (X )F 4 ,(y)sina (19)
K=t [B(x)] (i —x)°
since Fg 1 ,(y) =1 (from (6) it follows that |F,, (y)| = |B(y)| = 1).
From (19) we obtain that
2n 1 1 —F, n(x)F,. (y)sina
Br AT @+ r/2\M)E p+al\li ) 20
Bl kzl | B'(x,)] (v — x)? 20
Since |F,y op(x)l < 1, [F, 1, (n)] < 1 (see (5)), we have
11— F(p+n/2(xk)F(p+a(yi) sina = 0;
therefore (20) and (18) give us
2n
B (y)| = Z [Vizls
k=1
[ ()l = |r'(y) cos o — F(y;)sina]
2n
Z il | max I | S TB I o= a0 (1)

=1,..., 2n

The inequality (21) is proved for ¢ #n/2 + kn, a #n/2 +kn, a #7/2 +
kn — @, but since the two sides of (21) are continuous functions of « (obviously
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6.3 Pekarskii’s theorem 169

y; depends continuously on «), (21) remains valid for all «. Let x be such that
d(x)# —a. If we choose ¢ =—a— @d(x)—n/2 then x=y; for some i,
1 <i<2n From (21) we now obtain the following,

Theorem 6.4. Let
Hx) = p(x)/’f[1 |x —zx|?, PEP,,, zH.
Then for every x and o we have
[r'(xycos a —F(x)sina| < [BO 7 lle- o, (22

where B is the Blaschke product

(23)

Proof. For ¢(x)+# o this was proved. Since (22) is continuous with respect
to a, (22) follows for all a. O
From theorem 6.4 follows immediately, since « is arbitrary, corollary 6.1.

Corollary 6.1. Let reR,, be such that all poles of r are complex and conjugate.
Then
{00 +(F )2 < IBIT o w000
where B is the Blaschke product (23) corresponding to the poles of r.
From (4) it follows that

Jw | B'(x)|dx = 2nn. (24)

— o0

Therefore from coroliary 6.1 and (24) follows theorem 6.3. 0

Let us remark, that if reR, and has real coefficients, then the condition
17 lc(=w.0) < o0 gives us that r has only complex and conjugate poles.
Theorefore we obtain from theorem 6.4 and (24) the following.

Corollary 6.2. Let reR, have real coefficients. Then
¥ “1,1(— w0, ) STH fr “C(—oo,oc)’
7 “L‘(—oo,(x)) <mnlr HC(—oo,oo)’

”r/“H‘(*oo,oo) < 27'5”“””(7(700,00)-

6.3 Estimation for higher derivatives of rational functions
and its applications

In this section we shall obtain an estimate for ¥, s > 1, s a natural number,
reR,,inthe metric L (—1,1), 6 = (s + 1/p)” !, by means of || r lp=lrle,c-1.1)
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170 Converse theorems for uniform approximation

1 < p < oo. From this estimation will follow a connection between the best
spline approximations with free knots and the best rational approximations.
This connection for s=1, p= o0, was given by Popov (1974b), for s> 1,
p = oo, by Pekarskii (1980b), and for s> 1, p > 1, by Pekarskii (1986).

Theorem 6.5 (A.A. Pekarskii, 1986). Let reR,, n= 1, and r have no poles on
the interval [ —1,1]. For 1 <p< o0, /o =5+ 1/p, we have

I < c(s, p* vl
where the constant c(s, p) depends only on s and p.

Following Pekarskii (1984, 1986) for the proof of theorem 6.5 we shall need
some lemmas. We shall use the following notations: D, = {z:zeC,|z| < 1},
D_={zzeC,|z| > 1}, T ={z:zeC,|z| =1}, T, = {z:zeT, £ Im z > 0}, where
C is the complex plane; if a,,...,qa, belong to D, we set

B(z:lj _Zk"z ao =0,

B(z) — B(¢) |* — Bi
0.5:0="2= 2 0=,
& (1-lalY 1
‘(Z’B)‘kzo<1z—aka> e P70

If S is a rectifiable curve in the complex plane we set

1/p
I flps= {LI]’(Z)I"IdZI} -

Lemma 6.4. Let zeT and let | be a natural number > 0. Then

]
J 02(z,9)1d¢| = ( Z ( > — 1Y IBTI(z)(Bi(z) 2 T )Y,
Proof. If zeT and £eT, we have |d&| = d&/i and
0. D0 B = —F
QZ(Z’ 6) - Q(Za é)Q(Za é) - B(é)B(Z) QZ(Z’ 6)

since for a,beT we have (a — b)(a — b) = — (a ~ b)?/ab. Consequently

J 0,1(z,O1dE| = 2'B7H(2) I (2), 1
T
where

o=+ [ oo e e

Since I/(z} is continuous in D, U T, it is sufficient to calculate I(z) only for
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6.3 Pekarskii’s theorem 171

zeD,. We obtain for zeD,

! 21 .
CEDY ( , _J.)(— B(z)) I, (2), )
where
L[ BT
I[,j(Z) _IJVTde
Using the Cauchy formula we obtain
I {2)= (212_711)! (Bi(z)zi =@~ 3)

for j=1,...,1. For —I<j<0 the point £ = o0 is a zero of order at least 2
for the function BY(&)E' ™ (€ — z)~ 2, therefore we have I, ;=0forj= —1,...,0.
From equalities (1)—(3) we obtain the statement of the lemma. |

Lemma 6.5. Let zeT and s be a natural number > 0. Then
|B¥)(z)| < 2551 25(z, 1/s).
Proof. Setting b,(z) = (z — a,)(1 — a,z)~ ' we obtain

!
o HERE) b, @

BO@2)=) ——F"—
Z]o!h!“'Jn!

where the summation is over all collections jg,j,,...,j, of nonnegative
numbers satisfying jo +j, + -+ +j,=s. For zeT,0 < k <n, we have

_jM—laPa
(=gt

bY(z) j>0.

For a,eD,,zeT, we have |1 —|a,|| <|z—al,|1 — az| =z — a;|. Therefore
for 1 <j< s we obtain that

. 1— s J
e < 2j!<< '“"') ) . ©)
|z — al |z — al
The lemma follows from (4) and (5). 'l

Lemma 6.6. If zeT and o« > 0 then
1OC, 21 4o 1 < cl@dH Dz, 1 /(@ + 2)).

Proof. Since A*'(z, 1/s,) < 1z, 1/s,) for s, = s,, from lemmas 6.4 and 6.5 it
follows that for zeT, [ > 0, [ a natural number, we have

J 1Q(&, )P [dE] < (D>~ H(z, 1/21 - 1)). (6)
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172 Converse theorems for uniform approximation

Let m be the smallest odd number such that m > a. Let us set
p=m+ D+, g=m+lm—oa)?,
S(z)y={&:EeT, |argé —argz| <A™ Yz,m™ 1)}

Using Holder’s inequality we obtain from (6), since 1/p+ 1/g=1,

j‘ ‘Q(5>Z)|a+ ! |dé| g H 1 Hq,S(z) ” Qa+ 1(.’2) Hp,S(z)
S(2)

1
<cy(m)i” ”“(Z )IQmH(' )11“’<Cz(M))“<Z,m>- (7)

On the other hand we have, using the choice of S(z),

f 1Q(&, 2)|* | dE| <2“°‘J |&—z| 1 *|d¢|
T\S(z) T5(z}

1
< c3(<x))~°‘<z, > (8)

m
Since A(z, ) does not increase in f§ for fixed zeT, we have Az, |/m)<
Mz, 1/(x+2)) and the lemma follows from (7) and (8). OJ

Lemma 6.7. For zeT\{ £ 1} and o> 0 we have

f Qa+1(6,2)Qq4 1 (& DI = E[]dE] S ()] 1 —22|“<i“<z, : >
T

oa+2
1
Az .
+ <Z’a+2>>

Proof. We shall show first that for every z,£e T, we have
11-&

le—zF T

<21 — 22| m 9)

In fact, if we consider the quadrilateral with vertices at the points z,2, ¢
and &, we obtain that |1 —z%{=|z —Z|, |1 — &*| =|& — €| are its bases, and
|& —Z] is its diagonal, therefore

1E—ZI211-2%/2, |E—zI=11-&|2

from which (9) follows.
We can suppose that ze T, . Using lemma 6.6 and (9) we obtain

J; Qa+ l(éaz)Qa-Fl(é’Z_)'l - 52||d€|<221+2|1_22|—aj; Qa+1(é:z)|d5|

<c(a)l —zl‘“i“(z,“—i—z‘> (10)
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6.3 Pekarskii’s theorem 173

since Q,,(&,2)<2* & —z|7* !t for z,£eT.
Analogously

1
f Qs 1(6,2)Q,+1(&, 211 — E2]dE| < ()1 —ZZ|"“/1“<Z_, ) (11)
T a+1

From (10) and (11) the lemma follows. M

Let G be the exterior of the interval [—1,1] (G=C\[—1,1]) and let T
be the boundary of G. I' consists of two intervals [ —1, 1], one upper, the
other lower. Let

e =n+Jn* =1

be the function which maps G into D_ conformally. If reR,, is a rational

function with poles ,, k=1,...,n,7,€G, k=1,...,n, we set a, = 1/p(n,). We
shall consider again the Blaschke product

toon) —a,

Blotm) = 1 oty

nel.

Let us set

| B(g(n)) — B((x))|** | B(o(m)) — B(ep(x))[***
"7 _ x|az+ 1

Kn,x)= » m,xel,a>0.

Lemma 6.8. We have

1/a
f <J K., X)!dﬂl> |dx| < c(an. (12)
r r

Proof. If we make in the integral in (12) the transform

RN
X—E Z+; R
1 1
’I=§<5+E>,

where z, €T, we obtain that we must estimate the integral

A= L(j Qu+1(6:2)Qy4+1(4, 211 ~52||d§i>

Using lemma 6.7 we obtain that

1
A Scl(a)(JT/1<z,a+ 2>|dz| + fT,{(Z_’aleZ)[dZI)'

But it is easy to see that

1—|a\ |dz| _ , \dz|
jT<|Z_ak|> Iz — al == la) J;WSCW),
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174 Converse theorems for uniform approximation

where the constant ¢(ff) depends only on j. Therefore

1 1
R = (7 — <c
JT)~<z,a+2>|dz| L)(z,a+2>|dz| c'(o)n

and we obtain the statement of the lemma. O

Lemma 6.9. Let «>0,1<p<oo,o=(a+1/p)~", feL,. If

g(x)= f S(K (n, x)|dn|
T
then
19l < clo, P f 1l p.r-

Proof. If p= oo, using lemma 6.8 we obtain

1/a a
|Ig||1/,,r<<J<J|f( K (1, %) |an> IdXI> o f - (13)

Let pe(1,0) and a=1—p~'. Then ¢=1 and using again lemma 6.8,
Holder’s inequality and (13) we obtain

lglir SJ Ko, ) e LS ()l iy
r

1/p
(J I Koln, )| /“Idnl> (J If(n)l”ldnl> <cn®| fllpr

since I/p+a=1, l/a>1.

Now let o be arbitrary. Choose positive numbers 7y,7,l,s satisfying the
conditions le(1,p), I ' +5s '= 1,y + t=a, It = 1 — I/p. Then, using Holder’s
inequality we obtain for every xel’

190G < Ky X TR K e )L f OV I = o). (14)
From lemma 6.8 and (13) we obtain

[@ll1yr<csyn’. (15)

Using the fact that the lemma has already been proved for a=1—p~!

(lt=1—(p/D~ 1), we obtain

Il < el pnt = V21 f 1l (16)
Therefore we obtain the statement of the lemma in the case pe(1, «), &> 0,
from the inequalities (14)-(16) and Holder’s inequality. |

Proof of theorem 6.5. We shall use the notations of the previous lemmas.
Let reR, have no poles in the interval [ —1,1]. Let p > 0 be such that all
poles of r are in the exterior of the ellipse I',= {n:|@(n)|=p}, where
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6.3 Pekarskii’s theorem 175

o(n) =n+/(n* — 1). From Cauchy’s formula we obtain

. s! r(n)dn
r9(x) = o L PR xel. (17)

Let 54,...,n, be the poles of r (every pole written so many times as its
multiplicity). Then the function g(n) = r(n)/B(p(r)) is analytic in G and oo is
a zero for g at least of order 2 (a, =0). Therefore

s! r(n) B(p(x)) \* " B(o(x)) \**!
— | —2 _(1-{1- 1— dn=0. (18
2mi r,,(n—x)s“< < B((p(ﬂ))) ( B(q)(n))) > 1 19

Letting p tend to + 0, from (17) and (18) we obtain

!
Ir‘s’(X)IS;If |r(m|Kn, x)|dn|, xel.

From here and lemma 6.9 the theorem follows. O

Now we shall use the Bernstein type inequality from theorem 6.5 to obtain
some inverse results for rational approximation and to obtain a connection
between best rational approximation and best spline approximation with
free knots in L,.

Let I be a finite interval and feL (). Let E;_(f),, be the best
approximation in L (I) of f by means of algebraic polynomials of degree s — 1.

Definition 6.3. Let feL,(—1,1) and let s>0 be a natural number and
1/o = s+ 1/p. Modulus of variation of f of order s in L, is the following function

of m
n 1/o
Ks,p(f;n)zsup{ ; s—1 f)plk } s

where the sup is taken over all subdivisions of the interval [ —1,1] into n
intervals I, =[x, _ 1, x, ], k=1,...,n, —l=xo<x;, <--<x,=1.

Lemma 6.10. We have

Ko fsm) < f 1],
Proof. Since E_(f),; < |l f i, thelemma follows from Holder’s inequality:

n 1/0 1/a
{k; (Es-l(f),,,,kr’} { Y ||f||,,,k}

n 1—a/p n a/p) /o
<{<Z 1> <Z Hffl’;,zk> } = fl,. O
K=1 K=1

The following lemma connects k; (f;n) with the rational functions.

5N

Lemma 6.11. Let reR,, be such that all poles of r are outside of the interval
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176 Converse theorems for uniform approximation

[—1,1]. Then for 1 <p< 0, 1/6 =5+ 1/p, we have
Ko () S s, p)mlir |,
where the constant c(s, p) depends only on s and p.

Proof. Let {I,}1, I,=[x-1. %), —1=xu<--<x,=1, be an arbitrary
partition of the interval [— 1,1] into n subintervals. We shall separate the
intervals I,, k = 1,...,n, into two classes: M, and M,. If *¥(x) is a monotone
function in the interval I,, we set I, e M, otherwise we set I,e M ,. Obviously
M, contains no more than m(s + 1) intervals. Therefore, using Holder’s
inequality for p' = p/s, ¢ =(1 — 1/p’)~!, we obtain

1/o 1/e
{ Z (Es—l(r)p,lk)a} <{ Z ”r“Z,Ik}

IieM> IxeM2
1-a/p a/p) l/o
<{< 2 1> < )3 llrll,’i.:k> } <csm*lirl,.
IxeM3 IneM,
(19)

If I,eM,, then in view of the fact that #* is monotone in I,, we can apply
theorem 6.7 from the end of this chapter and we obtain that there exists
algebraic polynomials g, of degree < s— 1 such that

lr— gy ”L,,(Ik) <cs)| r® ”a,[k
or

E,_ l(r)p,Ik < c(s) | rt ”a,Ik' (20

From (20), applying theorem 6.5, we obtain

1/0 1/o
{1 ZM (Es—l(r)p.fk)”} < C(S){I ZM I lli,zk}

<) r, < (s prlir,. 21

The lemma follows from (19) and (21). O
In what follows in this section we shall denote the best rational approxima-

tion Rn(f)Lp[—l,ll by Rn(f)p

Theorem 6.6. Let feL,[—1,1], p> 1. For all natural numbers n > 0 and s > 0
we have

n 1/a
Ko p(f 3m) < (s, p){ kZO(T‘stk(f )p)“} , (22)
where 2" < m < 2"*1, ¢(s, p) depends only on s and p and 1/a = s+ 1/p.

Proof. We shall apply Bernstein’s method from Chapter 3. Let r, be the
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6.3 Pekarskii’s theorem 177

rational function of order k of best L,[—1,1] approximation to f, ie.
I f =1, =Ry(f)p k=0,1,.... If we set g, =ryu—ryx-1, r,-1=r,, we have

f=rto=f—rpm+ Y 4.
k=0
Since s > 1, we have o < 1 and therefore

R 3m) = K= roim) S K, —ramim) + 3 K (auim)

(O a) <Y lal® foro<1). (23)
From lemma 6.10 we obtain
Ko p(f = ramm) Sm°|| f —ranll )” = m R3a(f),- (24)
Since g, eRy+1 and || q, ||, < 2| f —rp-1ll, = 2Rpx-1(f),, using lemma 6.11
we obtain
K9 (@i m) < (c(s, p) — 267 D5 2R p-1(f),)° (25)
The inequalities (23)—(25) give us (22). OJ

Using the standard technique (see Chapter 3), we obtain from theorem 6.6
the following.

Corollary 6.3. Let feL,[—1,1],1 <p< o0, s>0 and n>0 be natural num-
bers and 1/a =s+ 1/p. Then

n 1 1l/o
K, (f3m) < s, p){k;) m((k +1PR(f )p)"} ~

Theorem 6.7. Let f€L,(a,b) and let f* be a monotone function in the interval
(a,b) and let f®eL (a,b) for 6 =(k+ 1/p)” . Then there exists an algebraic
polynomial q,_, of degree k — 1 such that

W f—ax-s ”p:= | f— a1 ”Lp(a,b) < f(k) ||La(a,b)‘ (26)

Proof. Obviously we can suppose that f® is a monotone increasing function
in (a, b). Let ce(a, b) be such that f®(x) <0 for x <c¢, f*®(x) = 0 for x = ¢ (if
such a ¢ does not exist, we set ¢ =a). By Taylor’s formula there exists an
algebraic polynomial g, _, of degree k — 1 such that

1 X
fx)=g-1(x) + (*I'{':—I)TJ SO —cf e, xele,b),

1
S0 =109+ g

fcf‘k’(t)(t —cof tdt, xe(a,c),
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178 Converse theorems for uniform approximation

and therefore

. 1 b
I/ — ey |p=((k7_1)!)p{£

+J\
a

We shall prove that

I < (k=D DN ey T <= DY FONE - (28)

Obviously from (27) and (28) the theorem follows.

It is sufficient to estimate I, since I, can be estimated in a similar way.

We shall prove the inequality (28) for I, by induction with respect to k.
Let first k =1. Then we have o, =(1+1/p)"'. For 0 <p < oo, since f’ is
monotone nondecreasing and nonnegative in (c, b), we get:

b X
I, = J J f()dt

<[ ([ worerar)irwpe o

<

b pt+i
= <J (f et “dX> =1L, ch-

(4

p
dx

j xf”"(t)(t — o dr

ch'“"(t)(t — o) tde

p 1

dx= J ( f O ) e ‘)dr)pdx

The case p= oo is trivial. Thus we have

(o)

Let us set

< Hf/”L,,,(c,b)v O<p<o, a;=(1+1/p)~" (29
Lp(c.b)

@ x) = fo OOt — )~y

(p‘”(X)=J Ut NMdt, v=0,1,...,k—1,

x€e(c, b).

We have o®(x)=(k—1)! f%(x) ae. on (c,b). Since evidently ¢ is
nonnegative and nondecreasing in (¢, b), we can apply (29) for each derivative
o™, v=0,...,k — 1. We obtain consequently, using (29),

1
11/p = || (P(O) Hl,p(c,b) < (Pm ”L,,,(c,b) < (P(Z) ”Laz(c.h)
k .
< <O yem == DU g e
Y (lalP+ [bIP) Y < (lal + b)Y, ploz 1.
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6.4 Notes 179

where
=(1+1/p)7",
o,=(1+1o) Y ....o0o=(1+1/o,_ ) ' =(k+ 1/p)" ' =0.
Thus the estimate (28) is proved and the theorem follows. O

6.4 Notes

We shall give first some interesting results of Dolzenko and Sevastijanov
concerning the connection between rational approximations and the con-
vergence of Fourier series.

Let f be an integrable 2n-periodic function and let us consider the Fourier
series for f,

S(f3x) ~ "zi + Y (acos kx + by sin kx),
k=1
where the Fourier coefficients are given by

1 2 1 2
a=-—1 f()cosktdt, b,=—| f(t)sinktdt (1)
2n 0 2n 0

Let S,(f; x) be the nth partial sum of the Fourier series for f:

SAf;5x) Z a; cos kx + by sin kx).

i
2
We shall need also two more definitions.
Let ¢ be an increasing function, continuous and concave on [0, co), ¢p(0) = 0.
We said that the function f has a bounded ¢-variation if

V) =sup 3 91 £5) =S xe-)) < oo,

where the sup is taken over all partitions 0 = x, < --- < x,, = 27 of the interval
[0,2x] into n parts.

Let f be a bounded function on [0,27]. Let M, be the set of all bounded
functions on [0, 2xn] which are n times piecewise monotone on [0,2n], i.e.
peM, if there exist n+ 1 points y;, i=0,...,n, 0=y, < --- <y,=2n such
that in every interval [y;_,,y;], i=1,...,n, ¢ is a monotone function.

Following Dolzenko and Sevastijanov (1976a), we consider the best
uniform approximation to f by means of elements of M,:

M. (f)cro,2m = inf{ Il f—e llcro,2m: peM,}.

The following theorem was proved by E.A. Sevastijanov (1974a):

Vg"f =2 Zo Mn(f)C[O,Zn]'
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180 Converse theorems for uniform approximation
E.P. Dolzenko (1966b) gives the following result: if

20 Rn(f)C[o,zn]("¢_ Y1/n)~ < w

then the function [ has a bounded ¢-variation, i.e. V (f)< co.
This result was improved by Sevastijanov (1974a, 1975) in the following way.
Let V; denote the class of all functions for which V () < co. The necessary
and sufficient condition for every function f for which R,(f)cio,2x < a, to belong
toV,is
Y da) <o, agza;z--za,=-e.
n=0
The first result for connection between rational uniform approximation of
a function and the convergence for its Fourier series is due to DolZenko
(1966b).

If
@ ]
Zl ;Rf(f)C[O,ZK] < 00

then S,(f) converges to f almost everywhere on [0,2n].

If
|
Z ;\/Rn(f)qo,zﬂ] < 0

n=1
then S, (f) converges to f uniformly on [0,2x].
E.A. Sevastijanov (1974a, 1975) improved the last result in the following way.

If
© 1
Zl ;Mn(f)C[O,Zn] <™ 2

then S,(f) converges uniformly to f on [0,2x].
Consequently if

@ 1
Z,l ;Rn(f)C[O,Zn] <0 3)

then S,(f) converges uniformly to f on [0,2x].
It is not possible to improve this result in the following sense.
Let {o,}7 be a nonincreasing sequence of positive numbers such that
® 1

Y —a,=o0.
n=1n
Then there exists a continuous 2rn-periodic function f for which R.(f)ci0.2m < ¢y
for all n =1 and the Fourier series for f diverges at x =0.
A very interesting result concerning absolute convergence of Fourier series
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6.4 Notes 181

was obtained by Sevastijanov (1978). Let R} denote the set of all rational
trigonometrical functions of order n, ie. teR;} if

tztl/tz, tiGTn, l= 1,2.

Let RY(f)cpo.2. be the best uniform approximation of the 2zn-periodic
function f by means of trigonometric rational functions of order n:

RY(f)ero,2m = inf { | f— £l cpo.2m: tERS .
Sevastijanov obtained the following estimate:

00

Y, (i +1bul) <36 3 R Mo zer

where a,, b, are the Fourier coefficients of the function f, given by (1).

This fact that the condition 32 , RY( /)¢ < oo is a sufficient condition for
absolute convergence of the Fourier series for f seems to be really connected
with the rational approximation, as opposed to condition (3) for uniform
convergence of the Fourier series, which is connected with piecewise
monotone approximation (see(2)). The proof uses Russak’s results from
section 6.3.

Sevastijanov also gives the following inequalities for Fourier coefficients
of rational trigonometric functions.

Let us set

27
?(n)=~f tuye ™du, n=0,+1,....

0

If teR}, then

Z |i(k)| < ”t”C[O 2n]-

If r is a rational complex function of nth degree without poles on I' =
{z:|z| =1}, then

0

Y ladI<{2nn+ 1 irlea,

k=—-w
where c,(r) = i(k), t{u) = r(c™).
The following results are given by Sevastijanov (1973).
(a) Let 0 < p < o0, o a positive integer, 0 < g < 1/(a + 1/p). Then there exists
a constant c(p, q, o) such that if reR, then
7=, < clp, g, )n* (|7 - 4)

(b) Let reR,. For every 6 > 0 there exists a set E(d), mes E(d) < d, such that

Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,
available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781107340756.007


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.007
https://www.cambridge.org/core

182 Converse theorems for uniform approximation

for every xe[0, I]\NE(S), x + he[0, 1], we have

Gl -85

() Let R,(f)ii0.1=OMm *7°). Then there exists a set G such that
mes G =0 and for every xe[0, 11\G the function f has a local p-differential of
order A. (We say that the function f has at the point x, a local p-differential
of order 4 if there exists a polynomial pe Py;; such that

r“’(x

p 1/p N R
> < (A, py*d = VPR e,

1f = PllLyo-nxorm="0(h", h>0.

See also Sevastijanov (1974a, 1980), Dolzenko (1978)).

These results are generalized for the many-dimensional case by E.P.
Dolzenko and V.I. Danchenko (1977).

The situation is better if we consider complex rational approximation on
the unit disk. A.A. Pekarskii (1984) obtained Bernstein type inequalities for the
derivatives of rational functions on the unit disk, by means of which it is
possible to get an exact converse theorem for rational approximation on the
unit disk. We shall give here some of the results of Pekarskii (compare with
section 6.3).

Let C be the complex plane, D, ={z:|z| <1}, D_={z|z|{>1}, ['=
{z:]z] = 1}.

We shall use the notation || f||, for

1/p
|f|p=<J If(Z)I”IdZ|> » O0<p<oo, |Ifll,=esssup|f(z)l, p=oc.
r zel

The Hardy space H,, 0 <p < oo, is the set of all functions f, analytic in
D for which

[f = Tim [ f(p)],= lim { If(pe"”)!”dw}/ <a.

p—~>1—0 p—~1-0

We shall consider fractional derivatives of f. The a-derivative in the sense
of Weil for the function f analytic in D, is given by

Jf(z)= Z k+ 177 ()2,

where f(z) =37, f(k)2* for |z < 1.
By H we shall denote the Hardy-Sobolev space of all functions f for
which 3*feH,. We set the seminorm in Hj,

1 ez = 1SN

The Besov space B}, ae(— o0, 0), 0 <p < o0, 0 <g< w,is the set of all
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6.4 Notes 183

functions f analytic in D, for which the quasinorm

1 1/q
|uw%:{f(1—MPWSHvrmmm} . 0<g<o,

0
I fllgz, = sup (1=p)IF** fCP)p q=oc0,
O<p<1
is finite.

We shall consider also the space BMOA (analytic functions with bounded
mean oscillation). feBMOA if there exists ge L (I") such that

fm—ifwm zeD,. )

T 2nmilt—z°
The norm in BMOA is given by

I f llemoa = 1nf [ g1l

where the inf is taken over all geL _(T') for which we have the representation
(5).

Now we can formulate the Bernstein type inequalities of A.A. Pekarskii
(1984).

Let r be a (complex) rational function of nth degree with poles only in D _.
Let >0, pe[1,00], 6 ={(x+ p~ 1)~ 1. Then the following inequalities hold:

17l < 3o P 7
7Lz, < ol Pl
171y, < e5(@n 17 mmon-

(83 HB;‘W)(M) < ca)n™ | 1 [ gumoa-

The history of inequalities of this type is connected with the names of
Gonchar (1966), Russak (1973), Sevastijanov (1973), Danchenko (1977), Peller
(1980), Pekarskii (1980b) (see the paper of Pekarskii (1984)).

Using these inequalities it is possible to obtain converse theorems for the
best rational approximation in Hardy spaces H, and in BMOA.

We shall denote by R,(f)y, the best rational approximation in H, of the
function feH, by means of (complex) rational functions of nth degree, and
by R,(f)smoa the best approximation in BMOA of feBMOA by means of
rational functions of nth degree. Let us set

o0

/g
1S gz, = IIf!IH,,+{ > (2kaR2k(f)Hp)"} ,

k=0
Ifllgz, =1 f N, +  sup 2°Rou( o,
k=0,1,2,...
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184 Converse theorems for uniform approximation

a0 1/q
If “Riq = | f llsmoa + {k;) (2kaR2"(f)BMOA)q} )

1S llge, = |'f|IBMOA+k SUPZ 2Ry famon-
=0.1.2,...

Let >0, 1<p<oo, a=(a+p~")"'. The following inequalities hold
(Pekarskii, 1984):

FAPRIACT I FA S
1 e < 2@ P f
sy < €301 S
1 s, < cal) ] f Il

These inequalities are exact.
For the history of inequalities of this type see the paper of Pekarskii.
Let wy(f;0), be the kth modulus of smoothness of the function feL(T'):

k k .
;0 (_ 1)k+v<;>f(ex(-+vh))

Pekarskii (1984) obtained the following results.
Let o >0, pe(l,0],6 =(x+ p~ 1)~ ! and let k be the smallest natural number
such that k> o. Then

(a) If feH,, then

pmin(2, a)
If

*(1/2)”

*min(2, 1/1)

wi(f30), = sup

|h <8

Lp

S @wf:27M) <cp) ¥ C"Ronl )
(b) If feBMOA then

@ :270 " <) Y @Rl Mpion)

(compare with theorem 6.2 and (4)).
See also Y.A. Brudnyi (1979).
The first characterization of R,(f)gmos Was given by Peller (1980):

z Damoa)’ < oo if and only if fe B,F

(see also Peller (1983), Semmes (1982), J. Peetre (1983)).
The modulus of variation x (f;n) for s=1 was considered by René
Lagrange (1965), Z.A. Chanturia (1974), V.A. Popov (1974b).
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7

Spline approximation and
Besov spaces

Besov spaces appear in a natural way in rational and spline approximations.
In this chapter we shall use Besov spaces to obtain complete direct and
converse theorems for spline approximation in the spaces L,, C and BMO.
In this direction we shall follow the plan from section 3.5 to find pairs of
adjusted inequalities of Jackson and Bernstein type and then to characterize
the spline approximation by the Peetre K-functional generated by the
corresponding spaces. An essential fact here is the appearance of Besov spaces
B: , with index o < 1. This is the reason to begin in section 7.1 with some
facts concerning the spaces L, (0 <p <1). In section 7.2 we define Besov
spaces and give some necessary equivalent quasi-norms. In section 7.3 are
established direct and converse theorems for spline approximation in L, C
and BMO.

The results proved in this chapter will be applied in Chapter 8 for the
rational approximation.

71 L,(0 <p<1) spaces
The spaces L, (0 < p < 1) appear in a natural way in the theory of rational
and spline approximations in L, (1 < p < c0) metric.
By definition L,[a,b], 0 <p <1 consists of all measurable functions f
defined on [a, b] such that {5| f(x)|"dx < co. The space L, (0 < p < 1) equipped
with the distance

d(f,g)=J |f(x) = g(x)IP dx

is a complete metric space. The completeness of L [a,b] when O < p <1 can
be proved exactly as in the case p > 1.
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186 Spline approximation and Besov spaces
We shall denote

1/p
Hf =1 f i ptan = <J L f(x |”d><>

which is a quasi-norm in L, (0 <p <1}

If+gl, <CESf N, +1gl,), Clp)=20""".

We shall frequently make use of the inequality

P
Ji
i P

which replaces the Minkovski inequality. The inequality (1) follows immedia-
tely from the semiadditivity of the function x? (0 < p < 1)

(Zixi(>p<2_|x,~l". )

<Y f0 (1)

t

The spaces L, (0 < p < 1) have some exotic properties which make them
unpleasant as function spaces. For instance, there is no nontrivial convex
open set in L,. Consequently, there is no linear continuous functional in L,
except the zero functional. However, for the purposes of approximation theory
there is no substantial difference between the spaces L, (0<p<1) and L,
(1<p< )

Next we give some well-known inequalities that will be useful later and
will be used frequently even without any indication. Of course we shall use
the Minkovski inequality in L, and I, (1 < p < o), the inequalities (1) and
(2), and Holder’s inequality for functions and sequences. Also, we shall use
the following well-known inequality:

i/p i/q
<z|x,~|"> <(Z|xi|4> , 0<g<p< . 3)

The well-known inequalities of Hardy will be of great importance for us: if
£ is measurable and f(x) = 0 for xe(0, o), & >0 and p = 1, then

p 1/p

(), o) <al ], cror )
4 1/p ke i/p

<j <f fu)d“) ‘”) <;<j (t“f(t))"%f> . )

In order to prove the inequality (4) we first substitute u=tx in the
left-hand-side integral, then apply the Minkovski inequality and finally
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7.1 L,(0 < p < 1)spaces 187

substitute t = v/x. We get

©f [0 du\de\r (e dx\d
(o (e V)=, (e )
41([% f(r) dt>wd~x
[ 0 t X
1 0 1/p
_ f x“di‘( J (vaf(uw@)
o X \ o v

which implies (4). The inequality (5) can be proved in the same manner.
The modulus of smoothness w,(f;d), in L,[a,b] (0<p<1) is defined
exactly as in the case 1 < p < oo:

b—kh 1/p
o f:8),= sup < f 1Ai:f(x>|"dx> .
0<h<gd a
Now, we get some properties of moduli of smoothness w,(f;d), for
feL,fa,b],0<p<1, k=1 (compare with section 3.1):
(i) }slrr(l) wdf90),=
(i) wy(f;9), is a nondecreasing function on [0, o),
(i) oo+ Bys O < |y (136 + | B Peoyly: O,
(iv) wlf:nd), < Clk,pi* "' " YPwy(f:8), and  therefore  w(f;29), <
Clk, P2+ 171 Pay(f56),, 220,
() If feL,[a,b] and w(f;0),=0(*"""""), then f is a polynomial of
degree k — 1 for almost all xe(a, b).

Property (i) can be proved just as the same property is proved in the case
p=1;see A. Zygmund (1959) or A. Timan (1960). Properties (ii) and (iii) are
trivial. In order to prove property (iv) we shall use the following equality (see
(5) in section 3.1):

n—1 n—1  n—

A f(x)= 3] Z ZAfx+vh+vh+ -+ vh).

vi=0v2=0 vie=0
Hence
(n— 1)k
A f(x) = Z APALf(x + vh), (6
where A%, v=0, 1,...,(n— 1)k are given by the identity
(n—1)
(I+t4+24 -+ = Y AP
v=0
Obviously 4% > 0. Now, we shall prove by induction that
AD <l =01, (n— Dk %
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188 Spline approximation and Besov spaces

Clearly A" =1,v=0,1,...,n— 1. Suppose that A <n* "1, v=0,1,...,(n— k.
Then by the equalities

n—1)k
(L+e422+ et ( Z APy >(1+t+t2+---+t"‘1)

(n—1)(k+1)
— Z A&k*‘l)tv
v=0

we conclude that

A" D <nmax AV <k, v=0,1,....(n— 1)(k+ 1)
Estimates (7) are proved.
Now by (6) and (7) in view of inequality (2) we get

b—kh

r—mmzhf( WPdx<' 2 40y f |ALF(9[P dx

a a

<C(kbp)n(k 1)p+1wk(f!5)5’ 0<h<5,

which implies property (iv).
From property (iv) there follows immediately the following estimate:

Wlf302),/057 1 TP < Clh, P f501),/0171 TP, 0<8y <6y

Then, if w,(f;3),=0(3*"*17), then w,(f;6),=0, 6 >0, and according to
lemma 7.8, which will be proved later on, we conclude that f coincides with
a polynomial of degree kK — 1 a.e. in (a, b).

Note that we have for
0, xe(—1,0),
S)= {xk-l, xe(0, 1),

the estimate w,(f;d), = O(3* ' *'/7).

We remark that there is no upper estimate of w,(f;4), by w,_,(f";9), or
| f®1l, when f'eL, or f®eL,, respectively, in the case 0 <p < 1. Indeed,
consider the function

0 xe[—1,0],
px)=< ¢ 'x, xe(0,¢],
1, xe(e 1],

where &> 0 is sufficiently small. It is readily seen that wy(¢,;d), > C(§)>0
and | ¢;,ll,=¢'"""' >0 as ¢>0. This fact is of central importance and will
influence fundamentally our further discussion.

Next, we prove some more complicated properties of moduli of smoothness.

Lemma 7.1. Let feL,[0,1],0<p< o0, k=1and 0<3<1/(k+1). Then we

Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:21, subject to the Cambridge Core terms of use,
available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781107340756.008


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.008
https://www.cambridge.org/core

7.1 L,(0<p<1)spaces 189

have:

() If0<p<, then

r1/k+1) dt
W f30) < C‘W{ o (05 1S HZ}- (8)
Jo
(i) If L <p < 0, then
. f1/k+1) d[
w(f39), < C5k< t o, (f; t)p?+ Hf“p)_ 9)
Jo

In (8) and (9) C = Clk, p).

Proof- We shall prove only the estimate (8). The estimate (9) can be proved
similarly.
We shall use the following identity:

A’;ﬁf(X)=2_"<A’§hf(X)—ki i < )A"“fX+lh)> (10)

i=0j=

Indeed, by induction it is readily seen that (see (5) in section 3.1)

n—-1 n—1  n—

=3 Y - ZAfx+vh+v2h+ -4 v,h).

vi=0v;=0 w=0

Hence
A f(x) = vio i: flx+vih+ - +wvh)
=ALf(x) + I;)Aﬁf(x+h)+-~+(i>A£‘,f(x+kh). (11)
Obviously
ALf(x +jh) = AL f(x) + Z AL (x + ih).

Then by (11) we get

k (k
0= % (4 ) st em
=2¥Akf(x) + Z ( >Z A fix + ih)

= 2*ALf +Z 3 <>A"“f(x+lh)

i=0j=i+1

which implies (10).
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190 Spline approximation and Besov spaces

Suppose 0 < p < | and denote briefly
1/2 1/p
Q,(9) = sup (J IALS(x )I"dX> :
O<h<gd 0

Let 0 < h < 1/4k. By (10) and semiadditivity of x” (0 < p < 1) (see inequality
(2)), we get

— k
IA';if(x)l”ST""(IA x)|”+ Z > < ) |AR T S (x + k)P >
i=0 j=i+1
Now we integrate over [0,4] and take supremum. We obtain for 0 < § < 1/4k
Q,(0)) < 27KPQ(20) + Can 4(f30)5,  C = Cp,k). (12)
Let r=>1and 0 < <1/2""'k. Then by (12) we have for i=0, 1,...,r — 1
27RIQ21)p L 27REEDQURITTIS) + C2 M, (£, 200)0.

Summing these inequalities over i=0, 1,...,r — | we get

r—1
Qo <274 Q(20)h + C _ZO 27 i, (3 200)

) r—1 21*1 d[
<27kp(r7“”f”§+clakp'z J‘ t"“’wk+1(f;t)§—[-~

i=0 J2is

Consequently, for 0 < < 1/2" 1k,
2ré dt
QB <27 f8 + Clékpf t™ P, (f; l)ZT-
]
Clearly, from this estimate it follows that for 0 < < 1/2" "1k

279 dt
wk(f;é)i,’<2'2""”"'“||fl|’;+2C15’”’J t M (f3 Oy (13

é

Let 0 < d < 1/4k. Choose r =1 such that 1/2"* 2k < 8 < 1/2"* k. Then by
(13) we obtain

1/4k

ol f;0)h < Cé"”{J

4

- dr
t k”wk+1(f;t)57+ Hfll’,f}
which implies (8). O

Corollary 7.1. Let feL,[0,1],0<p<oo,m>k>1and 0< < 1. Then we
have

(i) If 0O<p<1, then
wk(f;é)ﬁSC(Sk”{J £ P, (f3 05— +||f|1”} (14)
[
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7.1 L,(0 < p<1)spaces 191

() If 1<p< oo, then

1

wk(f;é)ngé"{J t
]
In (4) and (5) C = C(k, p,m).

d
o (5054 1S |1,,}. (15)

Proof. We shall only prove the inequality (14) by induction with respect to
m. The inequality (14) holds with m =k + 1 by lemma 7.1.

Suppose that (14) holds for some m = k + 1. Then by lemma 7.1 with k =m
and the Hardy inequality (5) we get

1 1
wk(f;é)ggcékp{J <[mp—kp—1J‘ u_’"”_lwkﬂ(f;u)‘;du)dt
3 t
1
+J TR f flpde + Iflii,’}
9

1
<C15k"{f £8P0, (f; l)" an ||f\|”} O
P

Lemma 7.2. Let feL,[a,h],0<p< oo, k>1and 0<d<(b—a)k. Then we
have:

(i) If 0<p<1, then

w(f59), < C<ljajhgkl|Aff(x)|"dxdt>1/p
5 0 Ja

b—kt 1/p
J |Aff(x)|”dx> de. (16)
@) If 1 <p< oo, then

¢ A*f(x)lPd "
d), 5 . | S (X)[Pdx t
1 1/p
<ff |Aff(x)|”dxdt> . 17)
0Ja

(f30)

(iii) If p = oo, then
f ’ sup | A¥f(x)|dr. (18)

0 xela,b—kt]

Qr\r:

In the estimates (16)—(18) ¢ is a constant depending only on p and
k: ¢ = c(p, k).

Proof. We shall prove only the estimate (16). Estimates (17) and (18)
can be established similarly. The estimate (16) follows immediately from
the following estimate:
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192 Spline approximation and Besov spaces
If s>0and a+ s+ 2ko < b, then

a+s c é ffats+ké
supj | Ak f(x )|"dx<5j j [Ak f(x)|Pdxdh, O<p<l1, (19)

0ghsd Ja 0Ja

where ¢ = ¢(p, k).
In order to prove the estimate (19) we shall use the following identity:

k Ak
A’,ff(x) = Z (— 1)l< i ) {A?(t—h)/kf(x + ih)_Aﬁﬂ(z—h)/kf(x)}- (20)

Z (— l)k_v<k)Aﬁ+v(t h)/kf(x)

JECr (D)
i=0 1 k
) (") f<x+ih+”"“k‘ ’”)

) it~ h)/kfx+lh)

||[\/]»

M?c-
IIMa—-

o[
-Ler(]
-

IIMz-

which implies (20).
By (20) it follows that

f )P < c(p, k) z (|At(t h)/kf(x +ih)|P + |Aﬁ+i(t—h)/kf(x)lp)'

Integrating with respect to t€[0, 4] and dividing by § we get

k k s
( P) 1 {f |A?(t—h)/kf(x +ih)|Pdt
i= 0

4
+J‘ |Az+i(t—h)/kf(x)|pdt}a xe[a9a+s]’ he[oyé]
0

Now we integrate with respect to xe[a,a + s] and we obtain for he[0, 5]

a+s c(k,p) k é ffats )
J ASePdx <N | | 18w O+ i)dxdr

a

a

3 (fa+s
+j j |Aﬁ+i(z—h)/kf(x)|dedt}- (21)

Next we shall estimate each term in the sum on the right side of (21).
Substituting x + ih = u and i(t — h)/k = v we obtain

d ffats i(d—h)/k ffat+s+ih
I; :f J | A= (x + ih)ldedt=j f |AS f ()1 du do.
0 Ja

—ih/k +ih
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7.1 L,(0 < p < 1)spaces 193

Using the fact that.
Ak f(u)=(— 1A~ (u + kv)
and the substitution u — kv = x we get

ats+ih ihjk a+s+th
j j | A f(u) |”dudv—f Ak f(u— kv)|P dudo
—ihlk

a+ih a+ih

ihik fa+s+ih—kv
=f J [AX £(x)|P dx dv
<

0 a+ih—kv

fjaJerélAff(x)I"dxdt.

a

Consequently

é ffats+kd
[,<2 f j [A¥ £ (x)[7 dx dt.
0 Ja

The other integrals in'(21) are estimated similarly. Thus the estimate (19)
is proved.
If 0 < 6 < (b — a)/4k, then by (19) we obtain

5 (la+b)2+ké
f J | AL £ (x)|P dx dt

JJ |A* f(x)|P dx dt.

b—kh b
sup J |ALf(x)IPdx = sup j | AL f ()] dx
(

0<h<d J(a+b)/2—kh 0<h<é J(a+b)/2

c 3 *b—kt
SJ J | A f(x)|? dx dt.
0 Ja

Consequently estimate (16) holds true when 0 < 6 < (b — a)/4k.
In the case (b — a)/4k < 6 < (b — a)/k estimate (16) follows from the case
0= (b— a)/dk. O

Now we shall prove some technical inequalities for the polynomials.

(a+by2
sup J |ALf ()P dx <

0<hgdJa

Qf;lﬁ

sz\f\

By symmetry we have

Lemma 7.3. Let k=20, 0<q<p< co. Then for every polynomial Qe P, and
every finite interval A we have

d l/q 1 q 1/p 1 d 1/q
q < 14 <c q ,
(IAIJ 1Q(x)] x) <|A'LIQ(>¢)I X> c<|A|LIQ(X)I X>

where ¢ = c(q, k) and when g = o0 or p= o0 the corresponding expression is
replaced by | Q ”wa’ |A| the length of A.
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194 Spline approximation and Besov spaces

Proof. The left hand inequality is an immediate consequence of Holder’s
inequality. It is enough to prove the right hand inequality for p = o0. To this
end choose a point x,eA such that |Q(xo)| =11Q]; . Using Markov’s
inequality k

221Q1,
AP ————

(see theorem 3.12), we obtain that there exists a constant ¢y = ¢o(k) > 0 such
that for xeA we have

|x — Xol
[A|

Thus if we set A; = {x:xeA, |x — x| <|A]/2¢o}, then |A{|=1A]/2¢, and
for xeA, we have

10(x) 2 1Qxo)l — 10(x) — Qxo)l 23121l -

Integrating we find

1 1/p 1/p
10111 <2( 1 | tewran ) s [ rorar) o

The next lemma estimates the coefficients of a polynomial.

10(x) = Q)| < 1% = Xo | 10"} 0y < €0 Q1 1o

Lemma 7.4. Let k=0, p>0, and let A be an arbitrary finite interval. Then
for every polynomial

K
Z (x — xo), Xo€A,

we have

k 1/p
5 |av||A|V<c< f IQ(X)I”dx> , (22)
Al

where ¢ = c(p, k).

Proof. By translating the interval we can assume that x, =0 and A =0, b].
In view of lemma 7.3 we need to prove (22) for p=co. The case A =[0,b]
and p = o follows from the case A=[0,1], p= oc, by a simple change of
variables. Finally, the case A=[0,1], p= oo, follows from the fact that
any two norms in (k + 1)th dimensional space P, are equivalent. |

Lemma 7.5. Let k>0 and 0 < p, q < co. Then for every polynomial Qe P, and
for every finite interval A the following inequality holds true:

1O Iy S clAIY™HPZHIQ L)

where ¢ = c(k, p).
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Proof. By lemma 7.3 and Markov’s inequality
1Q'l, 4 < 2K AT QI o)

we get

1O gy STAIHQ Ly S 2ZPTAITTHIQN L i)
Scl,p)I AP Q) |

Theorem 7.1 (Whitney, 1957, p=c0). Let 0 <p< oo, feL,[a,b] and k= 1.
Then there exists a polynomial Qe P, _ | such that

b—
| f= Qltytam < co <f;k“> : 23)

where ¢ = c(k, p).

Proof of theorem 7.1 in the case p= oo. Clearly it is enough to prove the
theorem in the case [a,b] = [0, 1] since the general case follows from this
case by a simple change of variables. Thus we shall assume that feL (0, 1).
Next we shall use the following modified Steklov function as an intermediate
approximation (compare with theorem 3.5):

S Ll L eo=(0)
e =" | | | ko) =10+ = Do)+ -
h 0JO 0 1

+(—1)"1<kk1>f(x+0)}dt1dt2---dtk, (24)

where

it

0 = 0(x) .

hx, 0<h<1/k.

Clearly if 0<x<1 and 0<¢t,;<h, i=1, 2,...,k, then O0<x+i0<1,
i=1,2,...,k, and therefore f; ,(x) is defined correctly for each xe[0,1]. For
every x€[0, 1] we have

—lk h ~h h
f(x)—fk,,.(x)=( hk) J f J Asf(x)dt, dt,---dt,
0 JO 0

and for almost all xe[0, 1] we have

(_ l)k_l

i {(1 — khyA¥ f(x — khx)

Six) =
k ko\ KAk
— <1><m> (1= (k= D) AG— 1y f (x — (k= 1)hx)
+ o (= DM — h)FAG f (x — hx)}.
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196 Spline approximation and Besov spaces

Consequently
1 =Sl on S @S5 ) (25)
1Sk e oy < cUOh ¥ (f3 ). (26)
Let x,€[0, 1] and let us set
kot (x — xq)"
00 = ¥, fehno 2

Obviously QeP,_, and

H fk,h - Q “Lm[o,]] < ” f;ck;x ”Lm[O,I]'
From this estimate, (25) and (26), setting h = 1/k we get

If=@lle <l f=finlx+ ka,h—QNwak<f;%> + llfi’fiflooSC(k)wk<ﬁ %) :

Thus theorem 7.1 is proved in the case p= o0.

Next, we shall prove theorem 7.1 in the case 0 < p< 1. Thecase | <p < 0
is well known and can be proved similarly.

The following lemma proves theorem 7.1 in the case k=1,
O<p<ow.

Lemma 7.6. LetfeL,,[a, b],0 < p < 0. Then there exists a constant ¢ such that

I f=cllf,a b]\ f J [ f(x)—f(y)iFdxdy
2 b—a fb—t
=_b__.df J | f(x+ 8 —f()Pdxdt <2w,(f;b—a)h, (27)
- 0 a
where the constant ¢ can be taken as ¢ =(b—a)™? fzf(t)dt when p = 1.
Proof. Consider the function

b
¢(y)=J |fG) =fWIPdx,  yela,b].

Clearly, there exists yo€[a, b] such that

1 b
o) <EJ d(y)dy

and therefore setting ¢ = f(y,) we obtain

b 1 b (*b
J If(X)—CI"dxst J | f(x) —f(»)IPdxdy. (28)
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Also, we have

b b b b
- f J If(x)—f(y)l”dxdy=J f ()~ f)IP dydx
4 f f () — ()P dyds.

Substituting y =x +t and y = x —t respectively in the last two integrals
and changing the order of integration we get

zsz* | f(x) f(x+z)|”dtdx+ff | £() —f(x — )P dt dx

0

J J | f(x) fx+tl"dxdt+j j f(x)—f(x—0))Pdedx

=2j —HJ rtlf(x+t)—~f(x)|”dxdt.

This equality together with (28) implies (27). O

Lemma 7.7. Let feL [0,1], 0<p< 1. Then for every natural number n> 1
there exists a step-function @, with jumps at the pointsim=x;,,i=1,...,n— 1,
such that

1/n *1—t¢
If— wnlli,,(o,u<2nf f | fx+0)—f(x)7dxdt <20,(f3n 1)}
0 o]

Proof. By lemma 7.6 there exist constants ¢;, i = 1,...,n, such that

Xi 1/n Px;i—t
J |f(x)—cl”dx<2nj J | flx+t)—f(xPdxde, i=1,...,n

Xi—1 0 Xi-1

Then the step function ¢,(x) = ¢; for xe(x;_,x;), i=1,...,n, satisfies the
assertions of lemma 7.7. ]

Proof of theorem 7.1 in the case 0 < p < 1. A simple change of variables shows
that we can consider only the case [a,b] =[O0, 1].

Suppose that theorem 7.1 does not hold true. Then there exists a sequence
of functions { f,.}w=1, fmeL,(0,1), such that

P

. 1
lnf “fm_Q”ip(O,l)>mwk<fm;k> ’ m:1)27~~--
QcPy P

Since the set of all polynomials QeP, ; such that Q] o,y <1 is a
compact set in L0, 1), then for each m there exists a polynomial Q,,eP,_,
such that

| fon — Qm”L,,(on— inf || f,,— Q||L,,(o.1>~

eP, 1
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198 Spline approximation and Besov spaces

Consequently

p

1
Hfm_Qm“5>mwk<fm’k> » m:1’27"-° (29)

p

Let us set

gm:’lm(fm_ Qm)’ im = H fm' Qme_lv
By (29) it follows that

gmll,= ilglf lgm—Ql,=1 (30)
and o
Odgm k™5 <1/m, m=12,.... 31)

We shall prove that {g,,}{" is a precompact set in L,(0, 1), i.e. there exist a
function geL, and a subsequence {g,,} such that ||g —g,, [,—>0 as i— 0.
To this end it is sufficient to prove that for each &> 0 there exists a finite
e-net for {g,,}w_-, in L,0,1) (L,(0,1), 0 <p<1,is a complete metric space).

It follows by corollary 7.1 with k=1, m = k and (30), (31) that

Lo 1de 1
wl(gm;é)‘;écé"{f (TP——+ 1}<c1(4+51’>
5 mt m

for0<d<1and m=1,2,...,and therefore for each &> 0 there exist m, >0
and &, > 0 such that

@i{gp; 0 <e for0<d<d, and m>m,. (32)

Fix n> 1/6,. It follows by lemma 7.7 and (32) that for each m > m, there
exists a step function ¢, , with points of discontinuity i/n, i=1,...,n—1,
such that

[ gm — Pmon lp < 201 (g n ™ 1)} < 2e. 33)
On the other hand by (30) and (33) we get

”qom,n H,’;S Hgm ”§+ “ Im — (Pm,n Hg < 1 + 28'

Since ¢, ,(x) is a constant for xe((i — 1)/n,i/n), i=1,...,n, for m>m, we
have

1 1/p
I @mn i 07 < <"J |¢m,n(x)|”dX> <((1+2g)'" = M.
0

Consider the set W of all step functions ¢ of the type

i—1 i
o(x) =rel/?, xe( - ,;), i=1,..,n r=0,+L...loll, o <M.
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7.1 L,(0<p<l)spaces 199

Clearly

1
inf “ Pmn— @ Hg < j (gl/p)p dx=¢

pe¥ [4]

and therefore W is a finite e-net for the set {¢,, ,} - o+ 1. From this and (33)
it follows that W is a finite 3e-net for the set {g,}m=mo+1-

Consequently the set {g,}m-; is precompact in L,0,1) and for an
appropriate subsequence {g,, }{%, we have | g,,, — gl ,—0 as i > co for some
geL,(0,1). Hence, in view of (30), we have

inf [|g—Ql2= inf (g, —Qlo—1g—gmll?
QePy—y QePy
=1-1g—gnlls—1 as i— oo,
and therefore

inf |lg—Qll,=1 (34)

QePy_,

On the other hand by (31) we get
1\? 1\?
@y g;*> ka<gm.;> +2(lg — g |50 as i—co.
k/, k), ;

Thus ,(g; 1/k),=0. As we shall show below this equality implies that
g=Q a.e. for some QeP, |, and so we have a contradiction with (34). ]
It remains to prove the following.

Lemma 7.8. Let feLya,b), 0<p<1, and wf;(b—a)k),=0. Then there
exists a polynomial QeP, _, such that f= Q almost everywhere in [a,b].

Proof. We shall prove the lemma by induction with respect to k. In the case
k =1 the lemma follows by lemma 7.6. Suppose that the lemma holds true
for some k > 1. Without loss of generality we can assume that [a,b] = [0, 1].
Suppose that

1 p 1—(k+1)h
wk+1<f )= sup J |AF T f(0)[Pdx = 0. (35)

5
k+1/, ocncimsnJo

First we shall prove that

1—khi—h
J AEALF()Pdx=0, hy,h>0, kh, +h<l. (36)

0

Indeed, if h, = ah and o« =m/n with some integers m and n, then by the
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200 Spline approximation and Besov spaces

identity (5) from section 3.1 we get

m—1m—1 p

IA(M/n)hA f |p< z Z Z

vi=0v2=0 ve=0

vh vih  vh\|?
Akt <x+‘7+---+2+—> .

n

h h
A} A f<x+v1 + - +vkn>

m—1 m—1 m—1n-1

Sy XXX

vi=0v2=0 ve=0v=0

Integrating with respect to xe[0,1—(km/n+ 1)h] and using (35) we
conclude that (36) holds true in the case considered.

Suppose that h; =ah, >0 an irrational number. Choose a sequence
{a;}{2 of rational numbers such that o; —a as i —» o0 and 0 < o; < o. We have

v=0

[AGAL f ()] < |ASAGL ()] + \12 (I\f){lf(x +vah + h) — f(x + vogh + h)|
+ | flx + vah) — f(x + vah)| ],

and therefore

1 —kah—h 1—kash—h
J | AGAi f ()] dx < f | Asn i S0P dx

0 0
+clk, pYoy(f; ko — a)h)y
= c(k, p)oo, (f s k(e — ), (37)

where we have used that (36) holds true for o; a rational number. Since
w,(f;9),—0 as 6 -0, (37) implies (36).

We note, without proof, that A§ Al f(x) can be represented as a finite linear
combination of differences of the type AkF! f(x + p); see P. Binev, K. Ivanov
(1985). This fact together with (35) implies (36) immediately.

In view of (36) our induction hypothesis gives that for each h, 0<h< 1,
there exists a polynomial Q,eP,_, such that A} f(x) = Q,(x) for almost all
xe[0,1—h], ie.

Sx+h)—f(x)= Zo a,(h)x” (38)

almost everywhere in [0, 1 — A].
We shall prove that each coefficient a (h) is a continuous function of he[0, 1).
Let 0< hy,h, < 1. We apply lemma 7.4 to the polynomial

k-1

2 (ahy) — a(h))x* =f(x + hy) = f(x + hy)

v=0
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7.2 Besov spaces 201

for the interval A = [0,1 — k], h=max {h;, h,}. We obtain

1/p

k=1 1 1-h
Zolav(hl) —a,(h)lI1 —h|* < clk, p)<]~ “hf | fx+h)—f(x +hz)l”d>c>
v= - 0

1 1/p
< C1(k,l’)<mw1(f; lhy — hz[)ﬁ) .

Since w,(f;6),—0 as 6 -0, it follows that a,(h) is continuous function of
hel0,1).

Applying now an arbitrary (k + 1)th difference A**! to (38) as a function
of h we obtain

M+ = (A )

for almost all xe(0,1 —h—(k+ 1)t)and t, k=20, h+(k+ 1)t < 1. By (34) it
follows that for almost all xe[0,1 —(k+ k], 0<h<1/(k+ 1), we have
Ak*1f(x) =0, and therefore since a,(h) is a continuous function of h we have

At (h)=0, O<h<l—(k+1)3, O<t<ljk+1), v=01,. .. k—1.

Then by the case p = oo of theorem 7.1, which has already been proved,
we conclude that for each interval [0, 4], 0 < A < 1, a(h) coincides with some
polynomial Q,eP,. Consequently there exists exactly one polynomial Q,e P,
such that a(h) = Q,(h) for he[0,1), v=0,1,...,k — 1. In view of (38) this fact
implies the lemma. U

7.2 Besov spaces

Besov spaces occur in spline and rational approximations. Here we give only
some needed notations and facts concerning Besov spaces. For more details
one can see S.M. Nikol’skij (1969), J. Bergh, J. Lofstrom (1976), J. Peetre
(1976), H. Triebel (1978).

Suppose feL,0,1),0<p,q< oo and « > 0. Taking k = [a] + 1 we define

! de\'"
|f|1B;,q=< f (t (S r),,)q7> . g<w, (1)
and
17 g, = supt™“wy(f31),,
where w,(f 1), is the usual modulus of smoothness of f'in L,(0, 1) (see section

7.1). The Besov space B, is defined as the set of those functions feL (0, 1)
such that the quasi-norm || || B, is finite. This is the homogeneous Besov space.
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202 Spline approximation and Besov spaces

Let us indicate the properties of quasi-norm |- | = || HB W f1=0for
feB3 . butitis possible || f || =0 and f#0, (ii) | Af || =]A] I}fll for feBs ., A
a real number, (iii) || f+ g | S C(| f I + Il g}) for f, geB ,, where C > 1.

More frequently Besov spaces Bj, are considered with the quasi-norm
1A =0 l,+10f gz, .Ttis well known that the Besov space B is a complete
quasi-normed space (Banach space when 1 < p, g < o).

Note that, since w,(f;1t), = w,(f;1/k), for t = 1/k, then the quasi-norm (1)
is equivalent to the corresponding quasi-norm, if the integral in (1) is replaced
by integral over (0, 1/k) or (0, c0).

The choice k = [«] + 1 in the definition of Besov space Bj, , is not essential.
According to the properties of w,(f;t), (see section 7.1), it suffices to take
k > a (more precisely k>ao when p>1and k>a+1—1/p when 0 <p < 1).

In order to prove direct and converse theorems for spline approximation
we shall make use of the following variant of Besov spaces B} ;. Denote by
B3, the set of all functions feL (0, 1) such that the following quasi-norm is

finite.
1 d 1/q
Hfhm=<J(f%Mﬂnm;> : @)
Q

where 0<p, g< o0, a>0, k= 1.

Obviously B; , coincides with B, , when k = [O(] + 1, but k in the definition
of B, is not directly connected w1th o.

In our considerations we shall mostly make use of spaces BZ , with
o<1 and we shall denote briefly B, =B; , and ||z, =Ils,,
"We remark that the space B%, with 0 <o <1 is nontrivial when 0 <o« <
k— 1+ 1/o, while, with ¢ > 1, it is nontrivial when 0 <a < k.

Next we give some other equivalent quasi-norms in B?

o a\1/q
1, =( 5 (2 r5) )
v=0 p

17k de \14
“f“m :<J (t_a|A:t(f(.)”Lp(O,lAkt))q_t>

ke Denote

t
Lemma 7.9. Let 0<p, q< o0, >0 and k= 1. Then we have

(@) Ml and |15 are equivalent and
(i) - llgz,, and || Hgf;‘)q:,( are equivalent in the case p < q.

Proof. The quasi-norm ||-|\‘”k is the discrete variant of quasi-norm
I|~HB . Clearly both quasi-norms are equivalent, since w, (ft),is a monotone
functlon.

¥ We set also B? = B2,
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7.3 Spline approximation 203

Obviously | f %le <1/ g, for feB; . In order to prove an estimate in

the opposite direction we first observe that for feB; ,

1/k dt 1/q
I fllBﬁq;kgC(J (taa)k(f;t)p)"t) , C=C(x,p),

0

since wy( f;1), = w(f; 1/k),fort = 1/k. Now, in view of lemma 7.2 in section 7.1
and Hardy’s inequality (see (4) in section 7.1), we get for p<gq

17k - ' du\v?Pdr\ Ve
N O g u”Aﬁf(')“z,,(o,l—ku)l -
P 0 0 u l‘

1/k dr \Va
<C2<J (ta”A:cf(.)HLp(O,l—kt))q-t_> =C2i|f}|§;’;:k O

0

Lf

7.3 Spline approximation

The aim of this section is to prove direct and converse theorems for the spline
approximation in the spaces L,, C and BMO. Our point of view is that the
natural way to obtain such theorems is to prove pairs of adjusted inequalities
of Jackson and Bernstein type and then to characterize the spline approxima-
tion by the K-functional of Peetre between the corresponding spaces (see
section 3.5). The spline approximation is a good illustration of this idea.
Besov spaces appear in a natural way in this case.

7.3.1 Introduction
Spline functions were first introduced in approximation theory by I. Schoenberg
{1946). They have a great number of applications for the following reasons:

(i) Splines are solutions of series of natural extremal problems;
(i) Splines are convenient as a tool for interpolation and approximation;
(iii) Splines are useful in analysis, numerical methods, etc.

Denote by S(k, n) the set of all spline functions of degree k — 1 with n — 1 free
knots, ie. seS(k,n) if seC* ?(—oo,o0) and there exist points (knots)
—0=Xe<X; <X, << X,_; <X,=o00 such that s is some algebraic
polynomial of degree k — 1 in each interval (x;_, x;).

It is readily seen that each spline seS(k, n) can be represented in the form

n—1

S0 =00+ ¥ afx—xH
where QeP,_(,

-1 )0, x<0,
x*1 x>0
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204 Spline approximation and Besov spaces

This and other basic facts related to splines one can find in C.de Boor (1978)
and L. Schumaker (1981).

The splines, similarly to the rational functions of fixed degree, are a
non-linear approximation tool. Moreover, as we shall see in Chapter 8, the
rational approximation is closely connected to the spline approximation.
This fact motivates the consideration of spline approximation in this book.

In this section we shall be concerned only with the order of the spline
approximation of functions so that, as we shall see, the smoothness of splines
will be not necessary.

Denote by S(k,n) the set of all piecewise polynomial functions of degree
k—1 with n—1 free knots, ie. seS(k,n) if there exist points (knots)
— 0 =Xy<Xx; < <Xx,= 00 and polynomials Q,e P, _, such that s(x} = Q{x)
for xe(x;_;,x;), i=12,...,n. We shall suppose that s(x;)=s(x;,—0) or
s(x;) = s(x; + 0) at each knot x;. We shall call piecewise polynomials briefly
also splines (they are splines with defect).

Also, we shall denote by S(k, n, [a, b]) the set of all splines se S(k, n) restricted
to [a, b]. In this case the end-points a and b of the interval will be also called
knots of s.

Denote by S(/), = SK(/. [4,61),, SH/)e = S/, [a,b])es (), and S4(f)e
the best approximations of f in L, and uniform metrics by means of the
elements of S(k,n) and S(k, n) respectively. For instance

Sif)y=inf || f=sll,
seS(k,n)

We shall investigate the behavior of {S¥f),} instead of {S%f),}. The
following lemma shows that there is no substantial difference between
piecewise polynomials and splines with respect to the order of approximation
in L, and uniform metric that both classes produce.

Lemma 7.10. Let feL,[a,b],0<p< o and feCy,,, for p= cv. Then we have
fork=z2and n=1

Sl Sy <SHS)p 0<p< oo,

where m=(n— )k + 1.
In order to prove lemma 7.10 we need so-called B-splines. We shall use
without proof the following lemma.

Lemma 7.11. Let — o0 <xq<X; < <X, <0, k=1and

ko k(x— x ) !
B(x)=vzo———(xw,(iv)) , w(x)=i 0

=

(x—x;).

Then BeS(k,k+2), B(x)=0 for xe(— o0,x,]ulx, o), B(x)=0 for
xe(— oo, 00) and [©, B(x)dx = 1. The spline B has knots x,, x,,...,X,. See
C. de Boor (1978, p. 108), L. Schumaker (1981, p. 118).
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7.3 Spline approximation 205

Lemma 7.10 is an immediate consequence of the following.

Lemma 7.12. Let Q., Q,€P,_ 1, k= 2. Then for each ¢ > 0 there exists 5, >0
such that for each 8, 0 < § < &, there exists a spline s,eS(k, k + 1) with knots
0=x,<x, <--<x,=9 such that

si(x)=0,(x), x<0, )
sk(x) = QZ(x)a Xz 5’
0,(0) —e<8(x)<Q5(0)+¢, x€(0,0), 0,00)< Qz(é),} 2
Q,(0)—e<5(x)<Q,(0)+¢,  x€(0,0), Q,(0)> Q5(9).

Proof. We shall prove the lemma by induction with respect to k. The lemma
is obvious for k =2.

Suppose that it holds for some k = 2. Let Q,, Q,eP, and ¢ > 0.

Choose 6, 0 <3, <, such that for 0 <o <4,

o{1Q1(0)] +1Q5(0) + 2¢} <e. ©)

Such a choice of §; is possible since Q, and Q, are polynomials of fixed degree.

Let 0 <0 <6, <J,. Because of 97, Q5eP,_, and our assumption there
exists a spline function s,eS(k,k + 1) with knots O =u, <u, < --- <u, =90
such that s satisfies (1), (2) with Q,, Q, replaced by Q}, Q5.

Choose an arbitrary uye(0, ) such that u, #u;, i =1,2,... k. Let {u;}f_o =
{x;}¥_oand 0= x, < x; < --- < x, = J. Let Be§(k, k + 2) be the B-spline from
lemma 7.12 with knots x4, x;,...,%,. Set ¢(x)= j’im B(t)dt. It follows from
lemma 7.12 that ¢(x) = 0 for x < 0, p(x) = 1 for x = 6,0 < ¢(x) < 1 for xe[0, 5],
o is increasing and @eS(k + 1, k + 2).

Now consider the spline

x 4

sit)de + w(x)<Qz(5) - 0,0 —j Sk(t)dt>~

0

Ser1(x)=Q4(0) + j

[4]
Clearly s,,,€S(k+ 1,k +2) and s has knots {xq,x;,...,%} <[0,]. Also
S+ 1(X) = Q1(x) for x <0 and s, ,(x) = Q5(d) + jg sdt)dt = Qy(x) for x=0.
Finally, we have for xe(0,9)

é

stydt — (p(x)f s()dt.

0

X

Si+1(x) = (1 = 0(x))21(0) + @(x)Q2(0) + J

0

Hence, in view of (2) and (3) with Q,, Q, replaced by Q, 05,

4
I8+ 1(0) = {(1 = 0(x))Q1(0) + @(x)Q,(8) } | < L Isyn)lde

<O{1Q1(0) +]Q5(0)] + 2¢} <.
Consequently, s, , , satisfies (2). 0O
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206 Spline approximation and Besov spaces

Proof of lemma 7.10. Let seS(k,n)and 0 < p < oc. Using lemma 7.12 on each
knot of s in place of the origin we conclude that, for each & >0, §’,‘,,(s)p <
S, +e¢ for m=(n— 1)k + 1, which implies the assertion of lemma 7.10 in
the case 0 < p < o. The case when feCy, ;. p= 0 is also clear in view of
lemma 7.12. O

As already mentioned we are interested only in the order of spline
approximation. Other questions connected with spline approximation will
not be considered. The only fact we use is the existence of best approximating
element in S(k,n) in L, and uniform metrics (compare J. Rice (1969, vol. 2,
section 10-3)). Of course the existence is not necessary for our evaluations.
We use this fact only to reduce some proofs.

Next we shall be concerned in some simple estimates for spline approxima-
tion that will be useful later.

Lemma 7.13. Let f be defined on [a,b], f"~V (r = 1) be absolutely continuous
andfWeL,[a,b](1 <g< o). Let 1 <p < oo andk> 1. Then we have for n =1,

2,...
b — q)tp—lagk fin
Slg:lrr(f)pg( Cl) e n(f )q (4)
ST () <(b—ay 1P HESY(fO),. ©)

Proof. Suppose seS(k,n,[a,b]) and
I f(r) -s HLq[a,b] = Sﬁ(fm)f

Then there exist points a = xy, < x; < --- < x,, = b such that s is an algebraic
polynomial of degree k — 1 in each interval (x;_, x,).

Clearly, there exist points a =ug <u, < --- < uz,=b such that {x;}{_,
{u}i2os u;—u;_y <(b—a)/n and

u; 1
j £ ~s@ltdx S SK =123

Ui

Set
r=1 £y —u_ 1 x
(P(X) _ vzof (u, l)i'x U; 1) + (r - 1)‘ J;ivl (X _ t)r* IS([)dt

for xe[u;_ ,uy), i=1,2,...,3n, and @(b)= @(b—0). Clearly, @eS(k +r,3n,[a,b]).
Denote A; = [u; -1, u;)- By Taylor’s formula we get

lf—o ey < Sup

(1n_rﬂ““” (0 — s()d

SIAL TS = sllyan STAFTH LSO =5 yan

b—ay™"e . .
S,

AN
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7.3 Spline approximation 207

and therefore

(b—a)y~1'n

S5 (e < Tsﬁ(f -
Hence
g\t Up= Yagk( £
S5y < b—arsir(ne <O U
Thus (4) is proved. The estimate (5) can be proved similarly. O
Theorem 7.2. () If VEf< o0 and 1 <p< oo then
VEf(b—a)tlr
siny< O i ©
(i) If VP f®W < oo, r=1, then
Vb (r)b_ r
S (Ne< ) e o @

n

Proof. Clearly, there exists a partition of [a,b] into n subintervals a=
Xg<X; <.+ <Xx,=b such that the variation of f in each open interval
(X;—1,x;) does not exceed Vif/n. Set s(x)=f(x;_, +0) for xe[x;_,,x,),
i=1,2,...,n and s(b) = s(b —0). Then seS(1,n,[a,b]) and

||f—s||p<(b_a)l/p“f—sllw<M

which implies (6)."
The estimate (7) follows from lemma 7.13 and the estimate (6) applied to
f© with p=1. O

7.3.2 Direct and converse theorems in L, (0 < p < o0)
As already mentioned in section 3.5, in order to obtain complete direct and
converse theorems in approximation theory it is enough to prove pairs of
adjusted inequalities of Jackson and Bernstein type. Now we follow this plan
approximating by splines in L, (0 < p < 00) metric.

We begin with formulation of the main statements.

Theorem 7.3 (Jackson type inequality). Let feB%,, where a>0, 6=

¥ We suppose f(a)=f(a +0), f(b) =f(b—0).
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208 Spline approximation and Besov spaces

(0+1/p)y" ', 0<p<co and k= 1. Then feL,0, 1) and

|(f|lB%;k, n=12,..., (8)
n

SHf),<C
where C = C(a, p, k).

Theorem 7.4 ( Bernstein type inequality). Let
seSk,n,[0,1]), kn=1, O<p<oo, a>0
and ¢ = (ot + 1/p)~*. Then
sl Bz, < Cr*ll sl ©)

where C = C(a, p, k). However, the estimate (9 ) does not hold in the case p = co.
According to theorem 3.16 in section 3.5 theorems 7.3 and 7.4 imply the
following direct and converse theorems:

Theorem 7.5 (direct theorem). Let fel,0,1), O0<p<oo, a>0, o=
(a+1/p)~ ' and k= 1. Then

S’rj(f)pgCK(fan_a;LpaBi,k), n= 1’2,---5
where C = C(a, p, k).

Theorem 7.6 (converse theorem). Let feL (0,1), O<p< oo, >0, 0=
(x+1/p)" Y and k= 1. Then

n

1 1/4
K(f,n‘“;L,,,BZ;kKCn‘“(Z ;(V“S’é(f),,V) on=12..,

v=1

where 2 =min {0, 1}, C = C(a, p, k).
As a consequence of theorems 7.5 and 7.6 we obtain similarly as in section
3.5 the following.

Corollary 7.2, Let feL (0,1), 0 <p < o, k=1 and let w be nonnegative and
nondecreasing function on [0, oo} such that w(2t) < 28w(t) for t = 0(f = 0). Then
we have

Su(f), =00 "om 1Y), 0<f+y<a iff K(f,tL, B;)=O00"w(t'").
In particular
SKN,=0m™7"), O<y<a, iff K(fit;L,, B:,)=0(@".

Denote
0 1/q
S;".k(Lp) = {feLp[O, 1:0 f ”Syk(L ( Z 2vak (f) p)q> < OO}
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7.3 Spline approximation 209

and
SLLy) = {feL L0, 1T:11 [ 15, 1., = Supn’Si(f), < oo},

where L,[0,1]=C, ,; when p= 0.
As usually, we shall denote by (X,,X )y, the real interpolation space
between quasi-normed spaces X, and X, with quasi-norm

o0 1 a\1/q
”f“(xo,x,)e,q:(ZO<2VBK<f,2v;X0,X1>)> , O0<g< oo,

and
S g x = Sug’ tK(f, X0, X ).
>

Corollary 7.3. Let 0<p<o0,y>0,0<g< 0, k=1, a>y and o =(a+1/p) 1.
Then we have

ST ALy) = (Ly, B),ag

with equivalent quasi-norms.
In order to prove theorem 7.3 we shall prove the following embedding
result:

Theorem 7.7. Let feB:,, >0, o=(a+1/p)™", O<p<oo, k=1 Then
feL,0,1) and

E (), <Cllfls (10)

where E,_(f), denotes the best approximation to f in L0, 1) by means of all
polynomials of degree at most k — 1, C = C(a, p, k).

According to inequality (3) in section 7.1, if feB;,, then feB;  and
I f Vg, < U f g, since ¢ < p. Then by (10) it follows that, if feBj,, then
felL, and

a
ok ?

Ee i), <Clflg,. C=Clop,k). (11)

In order to prove theorem 7.7 we need some auxiliary statements.
Denote by E(k,n) the set of all piecewise polynomial functions of degree
k — 1 with fixed knots at the points i/n, i=0, 1,...,n, ie. peEk,n) if ¢ is a
polynomial of degree k — 1 ineach interval ((i — 1)/n,i/n),i =1,2,...,n. Denote
Exf),= inf | f—ol,.

@p<E(k,n)
Lemma 7.14. If feL,(0,1), 0 <p < oo and k > 1, then
1
Eﬁ(f)pgcwk<f;>’ n=1,27---a
kn

p

where C = C(p, k).
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210 Spline approximation and Besov spaces

Proof. Denote A, = ((i — 1)/n,i/n). By theorem 7.1 in section 7.1 there exists
a polynomial Q, of degree k — 1 such that

A,
1= Qo< Con( 771 . e ctp,

Hence, in view of lemma 7.2 in section 7.1 we have

1/kn ijn—ku
f=Qilf a0 < Clnj J |ALS(x)[” dx du. (12)
(

0 i—1)/n

Put ¢(x) = Q(x) for xeA;, i=1,2,...,n. Then by (12) we get

n 1/p
[ f—o HL,, = <;1 I f—0Q; ”i,,(A,'))

1/kn n {i/n) —ku 1/p
<C1n<f <Z f |Aﬁf(x)|”dx)du>
0 i=1 J@Gi-1)n
1/kn (*1 —ku 1/p 1
< Cx"(f f | A ()17 dx du> < Clwk<f;_> . O
0 0 kn/,

Lemma 7.14 shows that in order to prove theorem 7.7 it suffices to prove
that feL (0, 1) and

oG

E.(f),<C <Z (™ESNf P)l/p, C = C(a, p, k). (13)

The estimate (13) will be proved by using the following.
Lemma 7.15. Let 0 <o <p<oo and let there exist a sequence {u,}y-, of
nonnegative functions u,eL (0, 1) such that
Nupllg <Ay Apr1 <PA,, n=12,..., where 0<f <1, (14)
and for some 6, >0 and any r (¢ <r < o0) we have
I, ll, < Clo, L1, n=1,2,.... (15)
Then we have for the function f =3 ,_ u, feL,0,1) and

0 1/p
1f0,< C(mlhﬁ)( ; 55”’”-5) : (16)

This lemma we shall prove applying several times Holder’s inequality
for sums and integrals, the inequality (3) from section 7.1 and Abel’s
transformation:

N N-—
Zl U, = Zl Un(vn —Up+ 1) + UNUN’ (17)
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7.3 Spline approximation 211
where U, =3,y forn=1,2,...,N and also
N N
Z Uy, = Z U:((Un"vnfl)_k UTUI (18)
n=1 n=2

where U¥=3N_ u, forn=1,2,... N.
We shall use also the following.

Lemma 7.16. Let %, o,,...,%y be nonnegative numbers and 1 < p < oo. Then
we have

v=n

i oc,,(i ozv>p<p” JZV: a,,( Zn: ocv>p. (19)

Proof. Obviously b? —a” < pb? " '(b —a) when 0 <a <b, p>1. Using this
inequality and Abel’s transformation (17) with u, = a, and v, = (X, a,)P we
get

e E BB S) ()4

se) (2)

Hence, if p=1, then (19) is proved. Let p>1. Then applying Holder’s
inequality to the last sum we obtain

N N pYyl1-1lp( N n pylp
t<ofiof Lo E A5
n=1 v=n n=1 v=1
N p)l/p
=pA11/p{Z“n< )} ,
n=1 v=1

which implies (19). O

o
1

=T
1=

v

1=

Proof of lemma 7.15. Consider the case p=2, 6= 1. Put Sy=>_,u,. By
lemma 7.17 and the inequality (@ + by < 2" }(a"+ b"), where a, b= 0, r = 1,
we get

<cp) Y u( b u) .

n=1
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212 Spline approximation and Besov spaces

Now, by Holder’s and Minkovski’s inequalities we obtain

J SE(x C(p) Z J )< Zn:l uv(x)>p— dx
o)

wy. nmu( ¥ uvuaf(,,_l,)

g’

p—1

p—1

owy 1,,< ) nuvnof(,,_n) =y, (0

where 1/0+ /o’ = 1.
We continue applying Abel’s transformation (18) and obtain

N N n p—1 n—1 p—1
AN: ;2< ; iv){( Zl “uv “(r’(p—l)) _<vzl H uv ||a’(p—1)> }
+< 1/%)(llul||<,r<,,f1))”‘1

n p—2
( Z A >H“n ||a'(p1)< Zl Il 2, Na'(;wl)) .

y (14) it follows that

[Ingk:

<(

an

1

N 0
A< Y pr=——3,
vzn vZOﬂ l_ﬁ

Using the above inequalities and again Holder’s inequality we get

N n p—2
ANSCP. ) X Al n,,»(,,n( X1 uvn,,,(,m)>
N 1/(p-1)/ N n p—IN(p-2)/(p—1)
Clp, ﬁ)( Zl Al un“g’?pll)> ( Zl ln< Zl ”uvHo"(p—l)) >

N 1p—1)
= C(p, ﬁ)A%’_z’/“’”< > Aullu, Hﬁf?,}_u) :
n=1
Hence
paﬁ) Z /1 “u ”a(p 1) (21)

We have ¢'(p — 1)=oa(p — 1)/(6 — 1) > ¢ and by (15)
24 1155 1) < Cla, p)OE 1251 (22)
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7.3 Spline approximation 213
The estimates (20), (21) and (22) entail
N
ISxl5 < Clo,p, ) Y. o7 1AL,
n=1

which implies (16).
Now let 1 <o < p<2. Put v, =(u,)”? Then

Go-lEerTe(Ee) o

Write ¢ =20/p (¢ > 1). We have

1 p/2c
loally= <J u,‘f(x)dx) = |lu, |22 < A% =4,

0

Thus {v,} , satisfies (14). On the other hand, if g <r < o0, then s=3pr>a

n=1

and by (15) we have
[onll, = ] < CORIT™ 192382 = C3}/a=17,,

Consequently, {v,};2, satisfies the assumptions of lemma 7.15 in the case
already considered (1 < ¢ < 2) and we obtain using (23)

0 0

<Clo.p.p) 3, 67107 = Clo.p.p) 3, 67740

2
2 n= n=1

IRAIES

a0
2 o
n=1

a

The case 0 <o < 1, ¢ <p < o0 is considered similarly. Put v, = ug, then
0 P oo plo
< z un) <( z U")
n=1 n=1

1
ol =J u(x)dx < A7 =1,

0

and

Wehavefor 1 <r < o ||v,], < Cd, ~*'n,. Put s = p/c (s > 1). Then we obtain
as above

s

o0
1A 2 v
n=1

<Clo.pf) Y. o' n=Cle.pH) Y 8 O

s

Proof of theorem 7.7. As already mentioned, in order to prove theorem 7.7
it is sufficient to prove that feL,(0,1) and the estimate (13).
Choose ¢,.€E(k,2") such that

If = @anlle=E5(f)y, n=0,1,.... (24)
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214 Spline approximation and Besov spaces

Now, we define by induction integers n, =0 <n; <n, < --- such that
| :
B < a7y Esl ) < s (25)

fori=0,1,...,where y=min {l,0}.
Put u; =|@5m — @,n-1|. Then by Minkovski’s inequality when 1 <o <
and inequality (1) in section 7.1 when 0 < p < 1, using (24) and (25), we get

e i s =l @rer = @pllz Z 1 f = @pelli — I f = @ymis 15
= E( )y — Eni(f)i 2 2E5 (),

and
et o 15 < ESl f )+ Edic () STES ()
Hence
e e <GV ulls, i=1,2,.. (26)
The following inequality holds:
i, < €277 27

where ¢ <r < oo, C=C(k,p,r).
Indeed, by lemma 7.3 in section 7.1 we have

el ) < CIA Y 0] € = Clk,r),

where A, =((v — 1)/2",v/2"), v =1, 2,...,2". Then in view of inequality (3) in
section 7.1 we get

2ni 1/r
l[u; ], =< Zl llu; H’L,(AV)>

v=

2ni 1/r
< cz"f“m-lf”( Yl uzamv,>
v=1

o /e
< C2"‘(1/o_1/r)< > Hm“ﬂmd) =C- 2Ty,
v=1

Inequality (27) is proved.
Put ;= |lu;,, 6; =2",i=1, 2,.... Inequalities (26) and (27) indicate that
the requirements of lemma 7.15 are fulfilled. Therefore we have

2 U
i=1
By (24) and (25) we get as above

240170 |y 2. Clor 2017 D ES(f )y 4 By ()
< Cy{a 2 T VE S (f)L.

%0 i/p
< Clk, p, 0)< Y, 2mrie = ui”g) : (28)
p

i=1
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7.3 Spline approximation 215
Combining these estimates together with (28) we get

” Z u; C(k, o, p)< Z Jnilpio — 1’E" ) >1/p

1/p
Clk, o, p)( Z (2nte UP EY (f)a)”> : (29)

n=0

Since feL(0,1) and by the definition of ¢,. it follows that the series

M8

(@yn— Qymi-)

i=1

represents the function f— ¢, in L (0, 1). The inequality (29) shows that the
same series converges in L,(0, 1). Therefore feL,(0,1) and by (29)

K

1/p
Ei (f)p<Ilf =i ll, < Clk, p, o) (Z (2™EX.(f) "> .

Theorem 7.7 is proved. |

Proof of theorem 7.3. In order to prove theorem 7.3 we shall use theorem
7.7, more precisely the estimate (11). Of course estimate (11) holds also with
the following quasi-norm in the right-hand side (see section 7.2):

1/k dt 1/o

I, = (f (= Ai‘f(‘)lh,(o_lm)"7> . (30)
0

Now we transform the estimate (11) with quasi-norm (30) to an arbitrary

interval A = (u, v) < (0, 1). Consider the function g(x) = f(u + (v — u)x), xe(0, 1).
By (11) we have

E._\lg )Lp(on\C“gH(z) (31)

Clearly

1/p
Ek~1(Q)L,,(o,1) inf <J [+ (v —u)x) — Q(x)|"dx>

QePy_ 4

1 L/p
mplglf <J Lf(n)— (I)|pdl>
1

= WEk‘ l(f)Lp(A)'
Thus we have

1 :
E, 1(Q)LP(0.1) = |‘AV|71/” E._(f )Lp(m- (32)
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216 Spline approximation and Besov spaces
On the other hand we have

1-kt
I Afg(- )HL ©,1—kt) <J |A|[f(u+(v~u)x)l”dx>
0

1 v— kAl 1/e
=IA—|1/5<J |A|A|tf(Y)|adJ’>

= W [ A\kA\rf() ||La(ux”‘k|A\I)’

/o

where we have substituted y = u + (v — u)x. Now substituting |A|t = h we get

vk de e
%2)k=<f (¢ “flAfg(')HL,,(o,lm)"T>
(¢}
_ ” Amuf(’)”La(u,rfk\Alt) ag te
0 |A|1/¢7tfx t
1 1Al dh\le
~ el [ A O )

{(v—u)/k B dt 1/0
Ilfllmu,v):(f ( “IAi‘f(')ilL,(u,vkt))"—)

o t

g

Denote

The previous equalities together with (31) and (32) imply that for each interval
A= (u,v)=(0,1)

Ex—i(fNepa < CILS M- (33)

Let n= 1. We define by induction points x,, x;,.... Set x, =0. Let x,,
X1,--.,%;_, be already defined such that 0 =x,<x; < - <x;_; <1. Now
we define x; as follows:

xizsup{y:xi—l <y<l, Hf“g(x,”)\ I f %0, 1)}

Suppose x,, < 1 for some m > 1. Denote A, = (x;_,, x;). Then we have

m |Al/k dt

LI M= 2 1 T IA O oo
i=1 i=1J0

1/k dt
=J‘ t‘“< > AT o, 1xkl)> p

0 1A =kt

1/k ‘ dl
< t MHAtf(')HZU(oJfkt)T: ”f||B(0,1)-

0
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7.3 Spline approximation 217

Thus we have

.Zmll H f H%(Ai) < ” f HGB(OJ). (34)

On the other hand the function F(v) = | f lpu.)» (4, v) =(0,1), is obviously
continuous and nondecreasing for ve(u, 1]. Hence

1 .
”f”%(A.-):;Hf”;;(O,l)’ i=12,....m—1.

These equalities and (34) imply that there exists m < n such that x,, = 1. Also,
by the definition of x4, x;,...,x,, it follows that

1 .
||f||§(A,-)<;“f||§(o,1)s i=12..,m (35)

Now we apply the estimate (33) to the function f in each interval A;. In
view of (35) we get

C
2 P
Ek—1(f)L,,(A,-)Sm”f“%;?,‘,’ i=12,... . mm<n

Hence

2
clf Hfa;)k

n*

SHf)p < (ZEk lf)LP(A)> <C

Proof of theorem 7.4. Here we shall use the following Besov quasi-norm (see

section 7.2):
1 l/e
||f|!B;:k=( f (¢ 50,7 ‘f) .
0

Let seS(k,n,[0,1]). Then there exists a partition of [0,1], O0=x,<
X, <-<x,=1 and polynomials Q,eP,_,, i=1, 2,...,n, such that s(x)=
Qix) for xeA;=(x;_{,x), i=1,2,....n

We need to estimate w,(s,t), for fixed te(0,1). Observe that, since
s(x) = Q,(x), xeA, and Q,eP,_,, Aks(x) =0 for x, x + kheA,. Hence

1 —kh
wy(s;1); = sup f | Als(x)|7dx

O<h<t JO

<C{ Y [s(x)|°dx + Y <J |s(x)|°dx+f |s(x)|”dx>} (36)
A<kt J A Al >kt A; A!

where A} = (x;_{,x;_; + kt), A} = (x; — kt, x;), the first sum is taken over all i
such that |A;| < kt and the second sum over all i such that |A;| > kt.
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218 Spline approximation and Besov spaces

Next, we shall make use of the following inequalities:

l/o
<J |s(x)|“dx> 5Ty <A 5l (7)
A;
t/a
(f |s(x)|"dx> = 5l < COTIAL S G8)
5

1/a
<j IS(X)I“dx> SCEPIAITP s ag (39)
Af "'

where C = C(p, «, k).

The inequality (37) follows from Hélder’s inequality. In order to prove
estimates (38) and (39) we shall apply again Holder’s inequality and the
right-hand-side inequality from lemma 7.3 in section 7.1. We get

ISl ap < |Aj 2| Sl < (k)= || Sl )< CtYo| A~ VP s ”L,,(A,-r

The estimate (39) can be proved similarly.
Combining (36) with (37)-(39) we obtain

(Uk(S;t)ch{ Z LA MIS 1T a0+ Y HALT?|s ZP(AI-)}'
A <kt |A] >kt

Now we are ready to estimate ||s
w(fi1), we get

g,- Applying the above estimate for

! - d[ ! —ag—1 74 a
(Troyls 0, <C) 0 > AU S T a0

0 0 A <kt

+ Y I|Ai|"/pHSHZ,,(A,-)>dt

1A >kt
n €O
<C) (IA.-I““ |‘S“(IT4,,(A,-)J t2 7 de
i=1 |Al/k
1Ak
+ |Ai|4“/p|5||i,,(A.-)J' tﬂwdt>
0

n n a/p
< C_Zl ISIIZ, a0 < C<,ZI I's |£,,(Af)> ntoow
i= i=

= Cn*® H S ”L(o.w

where we have applied the discrete variant of Holder’s inequality. These last
estimates imply (9).
It remains to prove that the inequality (9) does not hold in the case p = co.
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7.3 Spline approximation 219

Consider the spline

0, xe[0,1/2],
s(x)=<e Mx—1/2), xe(1/2,1/2+%¢),
1, xe(1/2 4,17,

where ¢>0 is a sufficiently small number. It is casily seen that [s| >
Cln(l/e), C=C(a,k)>0and |s||, = 1. Consequently, the estimate (9) does
not hold when p= 0. O

According to the arguments of section 3.5, theorems 7.5 and 7.6 and
corollaries 7.2 and 7.3 are immediate consequences of theorems 7.3 and 7.4.

Finally, we give one simple inequality of Bernstein type which is weaker
than inequality (9) in theorem 7.4. Unfortunately the corresponding Jackson
type inequality does not hold.

Lemma 7.17. Let seS(k,n,[a,b]), k,n=1, O0<p<<oo, m21 and o=
(m+ 1/p)~ . Then we have

157 < Cl k™ 51 “)

Proof. First we prove estimate (40) in the case m = 1. Since seS(k, n, [a,b]),
then there exist points a = x, < x; < -+ < x, = b such that s is a polynomial
of degree k — 1 in each interval A; =(x;_,,x;). By lemma 7.5 in section 7.1
we have

Is HL”(Ai) <C(p. k)| s Hl,ptA,»}'

Hence, using the discrete variant of Holder’s inequality we get

n 1/o n 1/o
15 am = Zmew> <C<2uﬂmM
L= 1=
n aip 1/a
<C Z s HZP(A.-) n' = =Cn|s HL,,(a.b)a
i=1

where we have supposed that p < oc. The case p = oc is similar.
Let m> 1. Write 6o =p, 6, = 1/(1+ 1/p), 6, =1/2+1/p)....,00,=Lfim+ 1/p).
By the inequality (40) when m =1 it follows that

[ s ”L,,‘.ta‘h) <Cual A ”Lm L V= ,2,...,m.
Multiplying the above inequalities we establish (40). O
7.3.3 Direct and converse theorems in uniform metric and in BMO
We have already explained in section 3.5 our point of view concerning direct

and converse theorems in approximation theory. We need pairs of adjusted
estimates of Jackson and Bernstein type.
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220 Spline approximation and Besov spaces

In this section we prove estimates for uniform approximation by smooth
splines instead of piecewise polynomials. In view of lemma 7.11 this is not
essential for our discussion. The only formal reason for it is that the
approximating splines are in the class of absolutely continuous functions.

We begin with the following trivial estimates.

Theorem 7.8. (i) If feL (0, 1) and V}f< oo, then

S(f)ao\VOf, n=1,2,.... (41)

(i) For each seS(k,n,[0,1]), n=1, k=1, we have
Vos < Clkn | sl - (42)

Proof. The inequality (41) is established in theorem 7.2 in section 7.3.1. The
estimate (42) is obvious since s is piecewise monotone with at most kn pieces.
O
The estimates (41) and (42) form a pair of adjusted inequalities of Jackson
and Bernstein type. Consequently, they imply just as in the method of section
3.5 complete direct and converse theorems. Those are theorems which
characterize L, spline approximation by the K-functional between spaces
L, and V. However, they can be used successfully for orders of approximation
not better than O(rn ™ !). In order to characterize classes of functions with
order of uniform spline approximation better than O(n~ ') we shall make use
of the following inequalities of Jackson and Bernstein type.

Theorem 7.9 (Jackson type inequality). If fis absolutely continuous on [0, 1],
f'eBil,a>1and k=2 then

s HBMi 1

S5 f)e < Cla, k)12~ =1,2,.... (43)

Proof. By lemma 7.10 and lemma 7.13 in subsection 7.3.1 we have for
n=1,2,....

ggkn(f)c < Sgn(f)c <
and (44)
SN <SS

On the other hand by theorem 7.3 in subsection 7.3.2 we have

S <c ()an!Bff‘ Lon=12,.... (45)

S U
n

The estimates (44) and (45) imply (43). O
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7.3 Spline approximation 221

Theovem 7.10 (Bernstein type inequality). If seS(k,n,[0,1]), k=2, n>1
and o> 1, then

15 g, < Clas k)n* | sic- (46)

Proof. By theorem 7.4 in subsection 7.3.2 we have

15 Doy, < Clos ko~ 8' 1, (47

and by estimate (42)
I NL, < CEnllsc. (48)
The estimate (46) follows from (47) and (48). O

Denote by B “. the set of all functions f absolutely continuous on [0, 1]
such that f'eB?%, with quasi-norm HfHB;:k = f’ HBM.

According to theorem 3.16 in section 3.5 theorems 7.9 and 7.10 imply the
following direct and converse theorems.

Theorem 7.11 (direct theorem). If feCy 1}, x> 1 and k = 2, then we have for
n=1,2,...

SKe < CK(fin™%C B L),
where C = C(a, k).

Theorem 7.12 (converse theorem). If feCy, 1, o> 1 and k > 2, then we have
forn=12,...

K(f,n™%C Bl )< (Z S/ )”"), C = Clo, k).

The following corollary follows from theorems 7.11 and 7.12 in view of
corollary 3.6 in section 3.5.

Corollary 74. If a>1,0<y<a, 0<g< o0 and k 22, then
Si(C)=(C, B, ),

vlo,q

with equivalent quasi-norms, where C = Cyo 1y and S} (C) is defined in sub-
section 7.3.2.

The BMO space appears in a natural way in many problems of analysis,
see details in P. Koosis (1980), J. Garnett (1981). Next, we shall briefly establish
direct and converse theorems for spline approximation in BMO which are
similar to those in the uniform case.

The space BMO is defined as the set of all functions feL,(a, b) such that

I flamo= 1 f HBMO(u py = SUp

1 .
wj 1169 —faldx < o0,
Acfab)
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222 Spline approximation and Besov spaces

where f, = |A[~ 1fAf(t)dt and supremum is taken over all intervals A = (a, b).
Thus we have a semi-norm ||-||guo in BMO. Clearly || f {lgmo < 2||f1|Lm.

The following lemma is basic in our discussion (compare with lemma 7.18
in subsection 7.3.2).

~

Lemma 7.19. If seS(k,n,[0,1]), k=2, n>=1, then
5", < Clknllslamo- (49)

Proof. First we shall prove that for each polynomial QeP, ; and for each
interval A

10 I Lya) < CR)1Q llBmO1a)- (30)

Indeed, the factor-space P,_,/P, is finite dimensional and then | Q" =
Q' iL,0.1and [1Q11® = || Q {lzmoco. 1 are equivalent norms there. Consequent-
ly, for each polynomial Qe P, _, the following inequality holds:

19" 1Li0.1) < CRYI @ llBmoc0.1)- (51)
The inequality (50) follows from (51) by simple change of variables.

If se§(k, n,[0,1]), then there exists a partition of [0, 1] into n subintervals
0=x,<x, <-<x,=1and polynomials {Q;}!_ |, Q;€P, _, such that s(x) =

Q4x) for xeA,; =(x;_,,x;). Now applying (50) to s in each interval A; we get

s HL1(O,1) = _Zl I Q: HLl(A,-) < C(k) .Zl 10; lamomy < Clkn| s “BMO(O,l)‘ O

By theorem 7.4 in subsection 7.3.2 we have: if seS(k,n,[0,1]), k=2, n>1
and « > 1, then

Is lggay., < Clou )n~HIs .,
This inequality together with (49) gives
I W, < Clon, Kn* 18" [lgmo- (52)
On the other hand by theorem 7.8 we have: if f is absolutely continuous
on [0,1] and f'eB{_, |, a>1, k>2, then we have forn=1,2,...

I gtk

S Pavo < 284 f)c < Cla, k) (53)

where

SXemo = Inf { || f— s | smo: s€S(k, n, [0,11)}.

The inequalities (52) and (53) form a pair of inequalities of Jackson and
Bernstein type. They imply direct and converse theorems for spline approxi-
mation in BMO which are similar to theorems 7.10 and 7.11. The only
difference is that uniform metric is replaced by BMO.
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7.4 Notes 223

7.4 Notes

For the inequalities of Hardy ((4),(5) in section 7.1) see Hardy, Littlewood,
Polya (1934).

Theorem 7.1 was proved by H. Whitney (1957,1959) for the case p = c0.
For 1 <p< oo see Yu.A. Brudnyi (1971), for 0 < p <1 see E.A. StoroZenko
(1977). Bl. Sendov (1985, 1987) proved that in the case p = oo the constant
c(k, 00) is bounded, i.e. ¢ does not depends on k. Bl. Sendov has the estimate
¢ <6.

The function f; , in (24) of section 7.1 was introduced by Bl. Sendov.

Almost all of the lemmas in section 7.1 are well known, but we give their
proofs for completeness.

The basic results of subsections 7.3.2 and 7.3.3 are due to P. Petrushev
(1985). Let us mention that another connection between best spline
approximations and Besov spaces was formulated without proofs by Yu.A.
Brudnyi at the conference on approximation theory, Kiev, 1983.

The critical index ¢ =(x+ 1/p)” ! appears, as far we know, for the first
time in de Boor (1972). Lemma 7.10 is due to Brudnyi (1971). Theorem 7.2
appears in G. Freud, V.A. Popov (1969, 1970) and Yu.N. Subbotin,
N.I. Chernyh (1970).

The problem of characterization of the best spline approximations (with
free knots) was considered by many authors. We do not want to go here into
details, but we want to mention the following works: D. Gaier (1970),
Yu.A. Brudnyi (1971, 1974), J. Nitsche (1969a,b), J. Bergh, J. Peetre (1974),
V.A. Popov (1973, 1976b), H.G. Burchard (1974, 1977), H.G. Burchard,
D.F. Hall (1975), J. Peetre (1976), L. Schumaker (1981).

The embedding result — theorem 7.7 — was obtained by P. Oswald (1980).

We would like to remark that J. Peetre (1976) was the first who understood
that Besov spaces B% with g < 1 are very essential for spline approximation.

DeVore, Popov (1986) have obtained that

|
(Lp’ B:‘)y/a,q = BY, ; =o+

q

therefore corollary 7.3 becomes
S;;k(LI’) = Bg:k’ k> 75
1

=y+-.
p

= |-
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8

Relations between rational
and spline approximations

It is well known that the rational and spline approximations are closely
connected. Our point of view is that the splines are the most simple and
well-known nonlinear tool for approximation and therefore it is very useful
to investigate the connections between rational and spline approximations
of functions.

In section 8.1 we prove that the rational functions are not worse than
splines as a tool for approximation in L, (1 < p < o) metric. In section 8.2
we prove an estimate of spline approximation in L, (1 < p < o0) by means
of the rational approximation in L. In section 8.3 we establish some relations
between the rational and spline approximations of functions and their
derivatives in different L, metrics.

8.1 The rational functions are not worse than spline functions
as a tool for approximation in L, (1 < p < 00) metric

The basic result in this chapter is the following,

Theorem 8.1. If feL,[a,b], 1<p<oo, k=1 and a>0, then for n> max
{1,k—1}

n

R,(f),<Cn"® Z a=1gk(f (1)

Moreover, if we put f(x) =0 for xe&(— oo, cw)\[a,b], then for n>k — 1
RS-0y <Co{1f 1y § S, 0
Also, if feL(— oo, o), then
R(f.(— 0. c0)), < Cn™* 3 v SH(f, (=0, 0)), ()
In the estimates (1)—(3) C = C(p, k, o) depends only on p,k and .
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8.1 Estimate of rational by spline 225

Remark. Clearly, the estimates (1)-(3) do not hold true for p=oo. The
presence of spline approximations in the right-hand side of estimates (1)—(3)
is essential. Spline approximations in these theorems cannot be replaced, for
example, by piecewise monotone approximation.

Theorem 8.1 is full of corollaries which will be given after the proof. The
proof is based on the following statement.

Theorem 8.2. Let peS(k,m,[a,b]), wherek > 1,m>= 1and [a,b]is an arbitrary
compact interval, and let 1 < p < 0o. Put ¢(x) =0 for xe(— o0, oo)\[a, b]. Then
for each A >0 there exists a rational function R such that

1
degR < Dmln2<e + /1>
and
o —~R ”LP(—:x),oo) <Aile ||1,p[a,b],

where D = D(p, k) > 1.
The same statement in another form: Under the hypotheses above the
following estimate holds true for n = 1:

n
Rn(q)a(_ o0, OO))p < 2exp{ - C\/m} ” [ HLp[a,b]9
where C = C(p, k) > 0.
In order to prove theorem 8.2 we need the following lemma.

Lemma 8.1. Let QeP,, k>0, 1 <p< oo and let A=1[a,b] be an arbitrary
compact interval. Then for each 4> 0 there is a rational function R such that

|
degR<D1n2<e+I>,
10~ Rl < DA Q1 s
and
AL V210l
< £ H - s Aa
o<y ) A set- e

where D = D(p, k),

a—x, x<a,
olx,Ay=< 0, X€A,
x—b, x=b,

is the distance from the point x to the interval A and [A|=b —a.
The proof of lemma 8.1 is based on the following two lemmas.

Lemma 8.2. If QeP,, k=0, 1<p<oo and A=[—b,b], b>0, then for
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226 Relations between rational and spline approximations

xe(— oo, wHA

k
0] < c”—‘ﬂ%
where C = C(k).

Proof. The lemma follows immediately from the following well-known
inequalities:

(i) If QeP,, then for {x| =1
Q)< 1@ |‘Lw[—1,l]| T, <10 H141[~1,1](|xl + \/(x2 - 1))k

<2kHQHL,[—1,1]|x|k,

where T,(x) = cos (k arccos x), | x| < 1, is the Chebyshev polynomial (see
Natanson (1949)). Consequently, if Qe P,, then for |x|=b

k
0N <241 Q- m'Zl 22"%
() If QeP,, then

2l
101, < CK) T/”
(see lemma 7.3 in 7.1). O

Lemma 8.3 ( The fundamental lemma). [fd>0,0<5<1,0<y<landr=0,
r integer, then there exists a rational function o such that

1 1
dega<B1n<e+5>ln<e+—>+4r, (4)

7
0<1~a(x)<y, [x[<d-dd, )
0<o(x)< i 4r~ (x| =d+od (6)

S S d+|x| Vs X| =2
and

0<o(x)<1, xe(—o0, ), 7

where B > 1 is an absolute constant.

Proof. According to lemma 5.2 in section 5.1,if 0 < ¢ < 1/2 and n > 1 then the
rational function S(x) = P(x)/P(—x), P(x) = [ /=, (x — &), SeR,, satisfies the
following inequalities

1 C,n
1 (X)l/—e p{ xe[—1, —¢] (&)

In(1/e )}
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8.1 Estimate of rational by spline 227
and
C,n
REIES clexp{—fﬁﬁ}, xele 1], ©)

where C,, C, > 0 are absolute constants.
Put, using the notations above,

1
T er 2
1+C? 1 1 1
n= [ 2+C ! 1n;1n<e +—> + 1], a(x) =
—x
2 ’ Sz(x)<~—~> +1
I+x
where [x] denotes the integer part of x.
It is readily seen that
1 1
dego, =2n+2r<B,In e-i—g Infe+—- |+ 2r, (10)
Y

where B, >0 is an absolute constant. By (8) and the choice of ¢ and n we
get for xe[—1, —¢g] o[ -1, — /2]

(1+x* _ Cil+x)>

N R S To
exp In(1/e)

<(1+x)*y (11)

and by (9) we get for xe[e, 1] 2 [6/2,1]

5 1 —x 2r
S (x)(1 n >
11— oy(x)| = 1 xxz, <(1—x)S*)<(1—x)¥y.  (12)
R _
S (x)<1 n x) +1
Clearly
0<o,(x)<1 for xe(— o0, o0). (13)

Consider the rational function
o(x) = 0,(e(x)),  @(x)
We shall show that ¢ satisfies (4)—(7). Indeed, by (10) we obtain

1 1
dego =2dego, <2Blln<e+5>1n<e+>+4r
¥

=Bln<e+l>ln(e+l>+4r,
0 ¥
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228 Relations between rational and spline approximations

i.e. o satisfies (4). Obviously, (13) implies (7). It remains to show that o satisfies
(5) and (6). Clearly, the function ¢ is even, strictly decreasing on [0, c0),
00)=1, o(d) =0, lim,_, . ,, p(x) = — 1. Since p(d — éd) = 6/2 and ¢(d + éd) <
—0/2,
2<pxy< ], |x|<d—dd, (14
—1<px)< —0/2, |x|=d+dd (15)

By (12) and (14) we get 0 <1 —a(x) <y for | x| <d — dd, i.e. o satisfies (5). By
(11) and (15) we obtain

) 242 2r 2d \*"
osa(x)<(1+<0(x))zyz<d2+x2> K(dw) ’

for |x| = d + dd, ie. o satisfies (6). [l

Proof of lemma 8.1. Without loss of generality we shall assume that A=
[—b,b]. If A = 1 then the rational function R = 0 satisfies the requirments of
lemma 8.1.

Let 0 < A < 1. Consider the rational function

R =00,

where ¢ is the rational function from lemma 8.3 applied with
o0=—, d=——, y=4, r=k+1

By (4) we get

1 1
degR<dega+degQ<Bln<e+6>ln<e+>+4r+k
v

_ 2 1
= Bln e+}7’ In e+z +4k+1)+k
and hence
1
degR < B, In? (e +/1>, B, = B,(p. k). (16)
Now we estimate || f — R, (- By (5) we obtain
1—90
1Q(x) = R(x)| = (1 — a(x))|Q(x)| < 4| Q(x)], IXISd—5d=mb. (17)
Ifd—dd<|x|<d+dd ie.

1-5
——=b<|x|<b,
ol SIMIsh
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8.1 Estimate of rational by spline 229

then by (7) and lemma 8.2. we get

k
10x) — R  <10(x)| < am% <cii By
2—b>
146

Using (17) and (18) we obtain

i/p
1Q—RllL,= <J [Q(x) — |pdx>
—((1 —8)/(1+d)b (1 -9)/(1+d)b b 1/p
(J Lo i)
—({(1—&)/1+anNb (1 =8)/(1 +8))b
R PR AL R TN N
146 NG b

< G410 1,

Hence

1@ —RIl Loa) S CA1Q “LP(A)’ C, = Cyp, k). (19)
If |x| > b, then by (6), lemma 8.2 and the fact that 4r = k + 4 we obtain

LA k 2 4r
|R(x)|=|o(x)Q(x>|<C"ﬂ!:‘+;/’f’ ( d > y

d+|x|
Q1 (A)lxlk 2b ke [A] 4MIQHL (A)
<C L AL C Ea
|AFTYE A\ b+ x| Al + x| —b YR
Hence
|A| A 1y

R(x)| < C(k 2 b.

|R(x)| < C( )<|A|+p(x,A)> AT | x| > (20)
The estimates (16), (19) and (20) prove lemma 8.1. O

Proof of theorem 8.2. Suppose @eS(k,m,[a,b]), k = 1, m = 1. Then there exist
a division a=x,<x; <---<Xx,=>b of [a,b] and polynomials Q,eP,_,,
i=1,2,...,m such that ¢(x)=0(x) for xe(x,_,, x;). Put ¢(x)=0 for
xe(— oo, 0)\[a,b]. Let A>0and 1 <p< 0.

In what follows we shall use the following notations:

A=[ab], Aj=(—00,x5], A=[x;_1,x], i=12,....m,

), A= e “LP(A_)_.

A, =[x,
m+ 1 m
’ mlP

Without loss of generality we shall assume that | @l @, #0fori=1,2,....m
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230 Relations between rational and spline approximations

Now we apply lemma 8.1 for the function ¢ in each interval A; (1 <i<m)
with 4, = AA4/|| @ |1, For each i (1 <i<m) there exists a rational function R;

such that
deg R; < DIn? e+l = DIn? e—i—M 2n
' A AA ’
lo —R; HL,,(A,v) < D/:i Il HL,,(A,-) =DI1A (22)
and
|A;l 4 A4
R' <D > - 5 Ai, 23
| l(x)| <!A,| +p(x’ A;) lAill/p XE( 0 OO)\ ( )

where D = D(p, k) > 0.
We shall show that the rational function

R;

t

M=

R=

i

1

satisfies the requirements of theorem 8.2. First we estimate deg R. To this
end we use (21) and the facts that the function F(x) = —In?(e + x) is convex
on [0, c) and In? (e + x) < 41In? (e + x?) for x > 0. We get

Dln? (e I I ||L,,(A,-)>

M=

R< Y degR;< :
deg i; eg R, A

i=1

<4D = In2 H(/’HZP(A,-) <4DmIn? +7:n=1|1(PH{,,(A,<)
<4D ) In ety | S4DmIn? e+ S e

”(PHL,(A) 2 1 2 2 1
:4Dmln2<e+m =4Dmln e+i_” < 4Dp*min e—l—z .

Thus we have

1
degR<D1mln2<e+/—1>, D, = D,(p, k). (24)

It remains to estimate {|¢ — R, (— o0, ). Note that if p=1 then the
required estimate follows from (22) and (23) immediately. But the case p > 1
is nontrivial. First we introduce some auxiliary notions.

Let {A;:i=0,1,...,m+ 1} be the division of (— oo, o0) considered above.

Definition 8.1. We shall call the set of intervals {A,:ig <v<i }, 1<izg<i; <

m+1, a left class of intervals or briefly a left class, if |A,| < |A;] for

v=ig,ig+1,...,iy —Vand |A, _{| =4 ).
We shall suppose that [Ay| =|A,+ .| >1A,v=1,2,...,m.
By Q we shall denote the set of all left classes of intervals.
Some properties of the left classes of intervals:

(a) If K,KeQ, then KnIZ:@ or K =K or K = K. Therefore K = K is
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8.1 Estimate of rational by spline 231

an order-like relation in the set Q with maximal element the left class
Asl<v<m+1}

(b) Foreach i (1 <i<m+1)there is exactly one left class K;eQ such that
the interval A, is the last interval in K, i.e. K; = {A,:i, < v < i} for some i,.
In the sequel K is always the left class corresponding to the interval A,. Thus
there is defined a one-to-one mapping of the set {A,: 1 <v<m+ 1} onto the
set Q. Consequently, the number of the elements of Q is m + 1.

{c) f KeQ and A;eK (1<i<m+ 1), then K; = K.

Definition 8.2. We shall call the left class Ka left subclass of first order of the
left class K, ifIZ c K, K # K and there is no class K¥eQ, K* # K such that
KcK*cK, ie K follows K immediately.

By Q, (1 <i<m+ 1) we shall denote the set of all subclasses of first order
of the left class K; and by y; the number of the elements of ;.

(d) We havefori=1,2,...,m+1

K;= ) Ku{A;}

KeQ;

More exactly, for each i (1 <i<m+ 1)

Hi
Ki={Aij0+1<V<i}= U Kjvu{A,-}

v=1
for appropriate indices 0 < j, <j; < <j,=i—1,

Q=K 1<vep) K, = (Ao +1<5<)).

v

Hence

|Ajl Z 1A > A = A,

JO| 11| | 2|>

and
A <IA L s=jy—1+ Lj—1+2,..j,— L v=12. .

(e) Each class KeQ, K#K,,,; ={A;:1 <v<m+ 1}, is a left subclass of
first order of some left class and therefore
m+1
Q= U Qiu{Km+1}'
i=1
On the other hand Q,nQ; = J for i # j. Consequently
m+1

'Z‘l Hy=m. (25)

The properties (a)—(e) of the left classes follow immediately from the
definitions.
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232 Relations between rational and spline approximations

Analogously (more exactly by symmetry) we introduce the notion right
class of intervals and right subclass of first order of some right class. We shall
denote by Q* the set of all right classes, by K¥ the right class in which A, is
the first interval, by QF the set of all right subclasses of first order of K¥ and
by u¥ the number of elements in QF. The right classes have properties
symmetrical to the properties (a)—(e). We formulate only the following

property:
Y uF=m. (26)
i=o

The following lemma uses the notations introduced above.

Lemma 8.4. The following estimate holds true for 1 <i<m:

<C< Al >3 #A x> X, 27

R
L RO <Cmr=y) iame

AeK;

where C = C(p, k).

Proof. Let K;={A,:i, <v<i}. If i =1, then the estimate (27) follows by
(23) immediately.
Let iy <i and x = x;. By (23) we obtain

<D)Azi: Al -
b ) vV=ip Z;:les,_*_x“xi ’Avll/p.

By the definition of left class it follows that |A,| < |A;],v=1iy,io + 1,...,i— 1.
Denote for r=1,2,...

2 R(x)

AeK;i

G_,={vip<v<i27T|A] <|A| <27 AL

Clearly, for r = |
_ 1A, | !
Ur—V5;r<Z;v|As|+x_xi |Av|1/p

® 27THHA 4 1
<Y = —_—
sSo\S 2 AN H A+ x—x; ) 2TTIANYP
Since the function under the last >, is decreasing on se[0, oo), the last
series can be estimated by an appropriate integral. Thus we get

< 2Ar+1|Ai| 4 1 + 0 2_r+1IAi| 4 dt
TNAlx—x ) @TIADY? T Jo \e 2T IAL 1A+ x —x; ) 27TIADT?

e [ P
<C-2 3-1/p)r ! .
<|Ai|+x"xi IAi|1/p
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8.1 Estimate of rational by spline 233

Consequently

Y. Ryx)

A,eK;

DAY ¥ A, ‘o
S UTELE \ YA x —x, ) A

AL Y s
gcl“( a2 2

[A]+x—Xx;
<C Al g C=C(p,k
Sl rxx ) jape C=CPR o

The importance of the notations introduced above becomes clear by the
following lemma.

Lemma 8.5. The following estimate holds true for i=2,3,....m+ 1

j i-1
Al V=

p
Y R(x)| dx < Cly; + 1)AP AP,
v=1

where C = C(p, k).

Proof. Let 2<i<m+ 1. By property (d) of the left classes of intervals it
follows that there are indices 0 <j, <j; < --- <j,, = i— 1 such that

Ki={Ajjo+1<s<i}= U K, u{A}

v=1

K; ={Agj, 1 +1<s<j,}, Q={K;:1<v<;.

Hence
(Al 2 18] > A [Z[AL1= - 2[4, ]
and (28)
Al <14 I, s=jo_y+ Lj, 1420, =1 v=1L2...u.
We have
i—1 p Jo
j ZRv(x) dx<2”_1j
Ai|lv=1 Ailv=1
i—1 P
+2”_1J‘ Y Rx)| dx=1,+1,.
Ai|v=Jot1

First we estimate I, using (23) and the fact that |A; | > |A,| (see (28)). We
obtain for xeA,
Jo

LR

v=1

A\ A4
Z D<\A Fx_x, ) INEG

<DiAd & 1A, | o1
h vzl iorlesl_*_x_xi*l ‘Avll/p

Denote for r =0, +1, +2,...
G, ={v:2A,) <]A, | <277 AL 1<v<jo).
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234 Relations between rational and spline approximations

Now, using arguments similar to the arguments of the proof of lemma 8.4
we get for r >0, xeA;

v ( 1A, >“ 1
VG \ DA+ x =Xy ) AP
o r+1 4
< Z(z-zrmz. |+l?cjix. > (2'|A1- e
=1 o i—1 jo
<( 2r+1|Aml >4 1
2’.Aj0| + X=X (2r|Ajo|)1/p

Y] 2r+1|Aj0| 4 1 C
+ r r 1/ dt< ¥/ 1/p’
p \2 |Ajo| +x-x_,/) (2 |Aj0|) 4 2 p|Ajo| i

Also, if r < — 1, then

|A,] R
V;r< go‘—'v|As|+x_xi—l |Av|1/p
: 2’+1|A0| . 1
< Z < OTA A : _ A i/p
s=o\ 52" j0|+| j0|+x X1/ (27 j0|)

< 2r+1|A}0l )4 1
<
| j0|+x Xi—1 (2r]Ajo|)1/p

o or+i IA | 4 dr 263 -1/pr
Jo SC .
t'2r|Aj0|+|Aj0|+x_xi—1 (2r|Aj0|)1/p |Ajo|1/p

-+
J0

Conscquently

Z R(x)| <

v=1

r=— o0 veGy i():v.Asl—'_x_xi—l |Av|1/p

1 1 2@ 1pr
CM{ZMA w2 T, |”"}
< CAA/IA; PP, C=C(p,k).

Integrating we obtain

A

where C; = C,(p, k).
Now we estimate I,. In view of lemma 8.4 we have

Hi A 3 /‘LA
> Z R( C521<|A |+X—x ) A, [ (30)

s=1|v=j._,+
Denote y,=x;_; + 245, ]A; | for I=1,2,...,;and y,, ., = x,_;. Obviously
Xio g = Vo1 <V, <0 <Yip-
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8.1 Estimate of rational by spline 235

If xe[y,, o), then by (28) and (30) we get

izl |A; >3 AA
R(x)|<C
Z ) Z <Zf' A I+ x—y; |Aj5|1/p

v=jo+1
|4, 1
< CAA Js
Z <S|A [+x—y /) 1AM

Hence
wo| i-1 p 1/p
<f Y Ryx) dx)
y1 |v=jo+1
© /o 1A, | )3 1 >P }l/p
<ClA Js dx
{Ll <SZI<S|AJ.,-|+X—Y1 1A 117
i o |AJ| >3p 1 }l/p
: dx
Z{f <S|A [+ x—y, |Ajs|
<CiAY oo
Consequently
w| -1
f R (x) dx C,PAP, C,=Cp,k) (31)
yi {v=jot1

Let xe[y;. 1, 1], 1 <1<y, By (30) we obtain

| P
<CiA A,
{ < |-|—x Yiv1 |AJQ|1/‘7

3 |A;,l ) 1 }
: = CAA{c, +0,).
S=lz+1<z€Ll+1|Aj‘|+x“yl+l IA; 1P {01 2}
First we estimate o,. Denote for r=0,1,...

G, ={s2|A

Y R

v=jo+1

—+

LSIAL <AL 1<s< )

Using (28) we obtain

g, < i < |AJ:' )3 1
! r=0s5eG, lv=s|A,-v|+X“YI+1 IA |1/p

0 0 2r+1|Al| 3 1
<LE( S

m-2’ ’A,,| +X = Vit

<5 C c,
= 02r/p|A |1/p |A |1/p

Ci(p).
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236 Relations between rational and spline approximations

Using (28) again we get

N

5=

() s,
NG DA, +x— s ) 18,77

Consequently
T R <C)A{ + ”Z ( 1Al t
= T T UAY T\ = DIA X =y ) 1AL

where C = C(p, k).
Now we take the L, norm and obtain

»i r 1/p v p
(j dx> mA{(f dX)
Y+ yl+1|Ajl|
Hi M |A| 3"dx tp
S ) )
=i\ Dy NS =DIA I+ x =y ) 1A

T R

v=jo+1

R(x)| dx <CiPA?, C=C(p.k)

jyl
Yi+1
Combining this estimate with (31) we get

i—1 p 0
12:2”_1j Y R(x) dx<2”_1j
A; Xi-1

v=jp+1
where C = C(p, k). From this and (29) follows the lemma. O
The following lemma can be proved in a similar (symmetrical) way.

v=jo+1

P
dx < Cy; + 1)APA?,

Y R

v=jo+1

Lemma 8.6. The following estimate holds true for i=0,1,...,m—1:
J\Ai

Completion of the proof of theorem 8.2. It follows by (22), (25), (26), lemma
8.5 and lemma 8.6 that

m P
Y R)| dx < Cluf + 1)irar,

v=i+1

where C = C(p, k).

m

N(P - RHLF(—OU,(X))Z H(P - Z Rv
Lp(—0,00)

v=1
<m+1 r >1/p
i=0 Lp(A)
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8.1 Estimate of rational by spline 237

Y R(x)

S{m+l3"_1<J

i=0 Ailv<i

+ f Y Rx) pdx)}l/p
Ay

< 3{C(u3‘ + 1)APA7 + Y (Cly; + 1)APAP + DPAPAP + C(uf + 1)APAP)

i=1

" dx + J [o(x) — R{x)|Pdx
Ay

1/p
+ Cltty s + mw}

m+ 1 1/p
<C M( Z i+ m+ Zm)

<3Cm'PiA=3C A9,
Consequently

¢ =Rl w0 S CAlQ N Ly1ap, €= Clp,k).
This estimate together with (24) establishes theorem 8.2. O

Proof of theorem 8.1. Foreachm = 1,2,... choose ¢, eS(k,m,[a,b]) such that
If = @mlle, = Si(f),, A={[abl Clearly, for i> 1 we have ¢, — @yi-1€
S(k,2'*1, A) and

@2~ Qa1 SIS — @2l 1 f — @214 < 285-1(f),.

Let s = 0 be an integer. Applying theorem 8.2 for the function ¢,: — @,i-1
(i = 1) with 4; = 297 9= we find that there exists a rational function R; such that

degR,<D-2""'In%(e +2°° 9%, D=D(p,k)>1, (32)
and
@2 — @ai-1 — Ry Lp(a) S 20795 @i — @1 “LP(A) SPANM A 1S’§i*1(f)p, (33)

Consider the rational function R =Y{_,R; where R, = ¢,eP,_,. First we
estimate deg R. By (32) we obtain

N=degR< ) degR;<k~1+ ) D-2"*'In%(e + 267
i=0 i=1

S

<k+D,(2+1)? Z (s —i)? < Do+ 1)?-2%,

Consequently

N =degR < D(a+ 1)225, D = D(p, k). (34)

Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,
available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781107340756.009


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.009
https://www.cambridge.org/core

238 Relations between rational and spline approximations
Now we estimate || f — Rl ). By (33) we get

I f RHL,,(A) ||f Pas “L,,(A) + Z @y — @yi-1 — Ri”L,,(A)

+ @1 —Rollp,m < S’Es(f)p + .Zl 2(i—5)“+1S’§i—1(f)p

s

<2a+12fsa Z 2laS§x(f)p\221+12 so Z - 1Sk(f)

i=0 v=1

From this and (34) it follows that for each s >0

23
Ry(f), <2127 Zl VLS (35)

where N < D(ax+ 1)2-2%, D=D(p k)>1
Now, let n > max{1,k—1}. If n < A = D(o + 1)* then

n

Rn(f‘)p < Rk* 1(f)p < Sli(j)p < A™m~* Z vailsl‘i(f)p'

v=1
Consequently

n

R(f),<Cn™* 3 v*7'S84f),, max{lLk—1}<n<A4, (36)

v=1

where C = C(p, k, ).
Let n> A. Choose s >0 such that 4-2°<n < 4-2°"', Then by (35)

2s
Rn(f)p < 221+ 12—51 Z v 1 SI:(f‘)p

v=1

=

C.(p, k,a)n Z ISUS

This estimate together with (36) implies (1). The estimate (2) can be proved
in a similar manner. It is readily seen that (2) implies (3). O
Next, we shall give some corollaries of theorem 8.1.

Corollary 8.1. Let feL,(A), 1 <p< oo and A=[a,b] or A=(~o00,0). Let

S A),=O0m 7w(n ")), where k 2 1,y >0 and w is any increasing function

on [0, o0) such that lim;_,, w(d) = 0 and w(20) < 2w(d) for 6 = 0. Then
R,(f.A), =0 "w(n" ).

Of course theorem 8.1 can be used successfully in more general situations
than in that of corollary 8.1.

Corollary 8.2. Let feL,(A), where 1 <p < oo, A is some interval (finite or
infinite). Let @ be a non-decreasing and nonnegative function on [0, cc) such
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8.1 Estimate of rational by spline 239

that 1(26) < 2°a(8) for 5 = 0 (B = 0). Then, ifSﬁ(f)Lp(A, =0(n Yo(n 1Y), y>0,
k=1, then R,(f) ay=Om "w(n™")).

Proof of corollary 8.1 and corollary 8.2. Clearly corollary 8.1 is special case
of corollary 8.2.

In order to prove corollary 8.2 we observe that, since w(25) < 2%w(é) for
32 0,w(2%8) < 2"%w(d) for 6 = 0,v = 0. Hence w(nd) < 2nYfw(d)for§ =0, n> 1
and therefore

@(40) < (24 + D)Yw(d), 8,4=0. (37)

The assertion of corollary 8.2 follows immediately from estimate (1) or
estimate (2) in theorem 8.1 with some «>y+ f. Indeed, since Sif),=
O(n "w(n™1)), in view of (37), we get

R(f),<Cn™* Y v vl )
v=1

<Cin"Yo(n™?). O
Theorem 8.1 and theorem 7.3 in subsection 7.3.2 imply the following

Jackson type estimate.

Theorem 8.3. Let feB*, >0, o=(x+1/p)~" and 1<p<oo, then
feL,[0,1] and

”f“B’

Rn(f)p < C % U, n> [O(],
n

where C = C(a, p).
Proof. By theorem 7.3 in subsection 7.3.2 we have feL,[0,1] and

sify,<c, 1 e ”f“" 1.2

where k=[a]+ 1, C, =C(, p).

Combining this estimate with estimate (1) in theorem 8.1 with « replaced
by a4+ 1 we get

R, <Can ™' 3 S,

sczn'“< 5 1>|f|33=czn—“|f|35. .
v=1

For other applications of theorem 8.1 see section 8.3 and Chapter 10.
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240 Relations between rational and spline approximations

8.2 Estimate of spline approximation by means
of rational in L, 1 < p<

Here we shall obtain an estimation for the best spline approximation of
functions by means of best rational approximation in L,, 1 <p < co. This
estimation, together with the results in section 8.1, gives a characterization
of the best rational approximation by means of the best spline approximation
inL, 1<p<c0.

Theorem 8.4. Let feL,[—1,1], 0<p< 0. Then for every natural number
k>0 we have

Sﬁ(f)p < n_kKk,p(f; n)a

where K, (f;n) is the modulus of variation of f of order k in L,, defined in
section 6.3.

Proof. Let us consider the so called ‘balanced’ partition in L, of the interval
[—L1: (=, 10=io, I, =[xy, %], —1=x,<x; < <x,=1and"

(Ek— l(f)p,ll)p = (Ek— 1(f)p,1,-)p = fxn.p! l = 25 By (5

(it is easy to see that such partition exists).
By the definition of the best spline approximation we have

n 1/p
(Z (Ex-1(f)p.1) > = (not, ,)''". (1

=1

On the other hand

anlfi 0= £ By )
n Ys
(3, m5) " =nesi o
From (1) and (2) the theorem follows:
SH)p < Paly <ntPT Vi o (f1m)
=n"fk (fin), lo=k+1/p. O
Theorem 8.5. Let feL,(—1,1), 1 <p< co. Then:

(@) for 2<m<2""' /o =k+ 1/p, we have

n /o
Sl f)p < elk, p)nf"{ ZO(T"sz(f )p)"} ; 3)

¥ we use the notations from section 6.3.
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8.2 Estimate of spline by rational 241

(b) for every o, 0 < o < k, we have

m

Sulf)p < clk, p,or Z v+ PTIR()y (4)

{c) for every g >0 and 0 <o < k we have
ZO(Z”“Szv(f ),V < clo k, p,q) 20(2”“R2v(f )p)’ 5)
Proof. The inequality (3) follows direct from theorems 6.6 and 8.4. To prove
(4), we obtain from (3), using Holder’s inequality forp' =1/6 > 1,4'=(1 — )™},

n 1/aq
Sm(f)p < clk, p)m"< ZO 2”""“"’"’) ZO 2YRy(f),

<clak,pym™ Y (v+ 1 IR (f),
v=0
The inequality (5) follows now from (4), if we change the order of summation;
see lemma 3.10. |
Corollary 8.3. If we have R,(f),=O(n"™%), 1 <p< o0, 0 <a <k, then
Si(f)y =0(n™").

The corollary follows from the inequality (3).
The following result can be considered as an inverse to theorem 6.6 and
corollary 6.3.

Lemma 8.7. We have for 1 <p < oo
Rn(f)p < C(p’ k)n_kkk,p(f; n))
where the constant ¢(p, k) depends only on p and k.

Proof. The lemma follows from theorem 8.1 and theorem 8.4. Indeed, let us
set in theorem 8.1 a = k + 2. Since the modulus of variation x, ,(f;v) of f of
order k in L, is a monotone increasing function, we obtain from theorems
8.1 and 84

(f)p<C1 p’k)n k=2 Z Vk+1Sk
<cl(p5k)n‘k_2 Zl VKk‘p(f;v)

ca(p, kn ™ " 2r ,(f 1) ; v <clp. ki~ r o f3m). O

The inequality (5) together with (1) from theorem 8.1 gives us the following
impressive theorem.
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242 Relations between rational and spline approximations

Theorem 8.6. Let 1 <p < oo, a<k,q>0. There exist constants c,(ak, p,q)
and c,(a, k, p, q) depending only on a,k,p and q such that

w0 1/q 50 1/q
%k, p.q { Z (2S5 f p)q} { Z (2R (f)p)* }

Ol k p.q { i 2msk (] p)q}l/q'

The set of all functions, for which we have

{4,

for some best approximation E,vin some space X, is called the approximation
space for the corresponding best approximation in X. Following DeVore
and Popov (1986) we shall denote these spaces by A} E,; X):

1/q
AZ(EV;X)={f:{Z (2"ENx )‘*} < 00}-

n[\/]s

1/4
(2¥Ey(f)x )"} <

So theorem 8.6 gives us the remarkable fact that the approximation spaces
for the best free-knots spline approximation in L, and for the best rational
approximation in L,, 1 <p < oo, coincide.

A special case of theorem 8.6 is the case g= oo, which follows from
corollaries 8.1 and 8.3. We shall formulate this case separately because of its
importance.

Theorem 8.7. For 1 <p < o0, 0 <a <k, we have

R(f), =07
if and only if

SHf)p=O(n"").
The connection between approximation spaces and interpolation spaces is
studied in detail in DeVore and Popov (1986), where historical remarks are
given also (compare with Chapter 3, 3.5, and Chapter 7). In particular, on

the basis of interpolation of Besov spaces the following theorem is proved
in DeVore, Popov (1986):

AYSG L) =B, o=@+1/p)"" p<oo, k>uo, (6)

The equality (6) together with theorem 8.6 gives us the following basic
characterization of the best rational and best free-knots spline approximation
in L, by means of Besov spaces.

Theorem 8.8. For | <p < oo, 6 =(x+1/p)" ", k > a, we have
AXSY;L,) = AXR,;L,)=B:,.

Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,
available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781107340756.009


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.009
https://www.cambridge.org/core

8.3 Functions and their derivatives 243

Remark. The equality (6) was formulated without any indication of proof by
Yu.A. Brudnyi in 1983 at the conference on approximation theory in Kiev.
We shall end this section with one useful counter-example.

Lemma 8.8. Let f,(x)=x"'",0<p<oo and k> 1. There exists a constant
¢ =c(p,k) >0 such that

Sﬁ(fp)L,,[l/ZZ",l] >cl fp |[L,,[1/22n,1], n=12.... (7

Proof. We have

—i

p

dt

007
Y

2 1
inf J x4 — Q(x)|”dx = inf ‘[
2 1

QP J2 07D QePy 1 J1/2

1

= inf J [t~ VP — Q()|Pdt = ¢,(k, p) > 0.
QeP,_ J12

(®)

Let seS(k, n,[27 2", 1]). It is readily seen that there exist intervals (1/2™ "',
1/2™), 0 < my <my < ---m, < 2n — 1, such that each of them does not contain
a knot of the spline s. Therefore using (8) we get

1 1/p n 27 1/p
XU —s)Pdx ) = Y inf |x~ 17 — Q(x)|Pdx
5= 2n vE1QeP,_, Jomtmt D)

= (c4(p, kyn)*.
Hence
S pLytaj2en 1y = (e1(p k) Pnt e, 9)
On the other hand
Lodx e
IS pllipr1j2om 1= (f . ?> =(2In2)"Pn'/>. (10)
5 2n
The estimates (9) and (10) imply (7). 0

Lemma 8.8 shows that theorem 8.5 does not hold in the case p =1, since
f1lx)=1/xeR,.

8.3 Relations between rational and spline approximations
of functions and rational and spline approximations
of their derivatives

We begin with the basic results. As usually we denote by W' [a, b] the Sobolev
class of all functions f such that f*~ ) is absolutely continuous on [a, b] and
feL,[a,b].
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244 Relations between rational and spline approximations

Theorem 8.9. If fe W' [a,b], >0 and m > 1, then the estimates

h

R(f)y<cin™ ™Y (v+ 1 'R(f™),, n=r, (1)
v=0
and
RAf)y<eon 7Y VTISH(fD),, nzr+m—1, )
v=1

hold in the following situations:

@ r=1L1<g<mw,p=1,
(11)r=1,q—oo,1<p<oo,
(i) r =2, g= o0, p=1,

where ¢, = c(p,q,r,0)(b —a) IO ¢, = c(p, g, r o, m)(b — a) T HOTWP,

Remark. The estimates (1) and (2) do not hold inthe caser=1,9g= o0, p=1,
since {R,(f)c}s, may tend to zero as slowly as we want in the class of all
absolutely continuous functions f (see theorem 11.3 in subsection 11.1.2).

Theorem 8.10. If feW'[a,b], >0, k >+, then the estimate

n

SKa Z v+ 1PTIR(f™),, n=1, (3)

holds in the following situations:

)r=11<g<ow,p=1,
(i) r=1,g=00,l<p<
(i) r=2,9g=0,p=1,

where ¢ = c,(p, q,r,00)(b — ay TR~ 1/p),

Remark. The right-hand-sides of estimates (1)—(3) involve rational or spline
functions as tools for approximation. From our proofs it will become clear
that these tools can be replaced by more general ones. Namely, it is sufficient
that the approximating functions and their derivatives up to a certain order
are monotone in O(n) subintervals. However, such a general formulation is
not used here, since other approximating tools that produce a better order
of approximation are not known to us.
Next, we shall prove theorem 8.9. We need some auxiliary results.

Theorem 8.11. Let feWi[a,b], 1 <p< oo, and assume that there exist a
partition of [a,b] into m (m = 1) subintervals a = x0 <Xy <--<Xx,=b and
rational functions {r;}7=' such that for i=0,1,. -1

I f—r HC[x,«.x,-H] <8 “)
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8.3 Functions and their derivatives 245

and
degr; <k, (5)

where ¢, >0 and k; = 0 are given numbers.
Then for each &, > 0 there exists a rational function r such that

| f—r lcrap <€+ &2 (6)
and

(7

m—1 , b_ 1p
degr <2 ) k;+Dp'min’ (e +M>’
i=0

where D > 1 is an absolute constant, p' = (1 —1/p)~ %

Proof. We shall proceed similarly as in the proof of theorem 5.2 in section 5.2.
Since the function F(x) = x In? (e 4 1/x) is increasing in (0, o), it is readily
seen that, if the theorem holds for m =25, 5 =0, 1,..., then it holds with some
other constant D for all m=1,2,.... Thus we shall suppose that m=2°, s
integer, and also without loss of generality 1 <p < o0.
Next, we shall make use of the following notations: f,(x) =f(x) — f(u) for
each interval A = [u,v] < [a,b];

Lo P
N(u,A)=6B.p’ ), 2'In*(e + 247" f'll )| A" e "), ®
v=0

where B, > 1 is the constant from lemma 5.3 in section 5.1, f,p and &, are
from the assumptions of theorem 8.11, i and the interval A are parameters.
To avoid more complicated indexation we shall denote

Q, = {[xX42:1:i=0,1,....m—=2"}, 0<u<s, 9)
and
Q, = {A% A*eQy, A* c A). (10)

Note that Qy = {[x;,x;+11:i=0,1,...,m— 1}. Also, we set r, =r; and k, = k;
for each interval A =[x;,x;, ], AeQ,.

Briefly we shall denote |||, = || ll¢(a)-

We need some lemmas, where we shall use the assumptions and notations
introduced above.

Lemma 8.9. For each interval A€, there exists a rational function Q, such

that
[ fa—Qalla<e; +e5/2, (11)
1OAll (= ) S 2V f) 26512 (12)

and
deg O, < 2k,. (13)

Proof. Let AeQ, and A =[u,v]. If V,f=0, then, obviously, the rational
function Q, = 0 satisfies (11)-(13).
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246 Relations between rational and spline approximations

If [ ra—f@)lla> 21 flla thenby (4) we get || fulla < lra—fWla—1fala<
| f—ralla <&, and therefore the rational function Q, = 0 satisfies (11)—(13).

Let Vyf>0and ||ry—f(u)lla <2 falla- Consider the rational function

S
[ ny(ra(0) — f (@)

It is readily seen, in view of (5), that

Oulx)

Ha =%(VAf)_352-

deg O, < 2degr, <2k,

and

1
_ < <2 V 3/2.*1/2’
HQAH( 0,0) 2\/’7A ( A.f) &

ie. Q, satisfies (12) and (13). It remains to estimate | f, — Qalls. By our
assumptionsand (4) we get | fa — Qalla <1l f~ ralls + #allra —f@ 311 falla<
e +anall falld ey +4n(Vaf)? = ¢, + ¢,/2. Hence Q, satisfies (11). O

We shall prove theorem 8.11 starting from lemma 8.9 and applying several
times the following lemma.

Lemma 8.10. Let 0 < u<s— 1. Assume that for each AeQ, there exists a
rational function Q, such that

I fa— Qalla <1+ @(we,, (14)
where @(u) = 3 depends only on p,
1 Qa H(—:n,m) < 2(VAf)3/28£ b2 (15)
and
deg Q<2 Y kao+ N(1 D). (16)
A*eQ,

Then for each Aef, ., there exists a rational function Q. such that

1
”fA_QA”A<81+<(»0(1u)+2u+1>82a (17
HQall(— ey S 2AVaf) 126,12 (18)

deg Qa<2 ) ku+ N(u+1,4), (19)
A*eQ,

where the last sum is taken over all intervals A*eQ,, N(u,A), Q, and Q, are
defined in (8), (9) and (10) respectively.

Proof. Let AeQ, ., and A =[z,,z;]. If V,f<e,/2, then, since || fylla < VoS,
the rational function Q, = 0 satisfies (17)-(19).
Let Vi f > ¢,/2. Clearly, there exists a point z,€A such that the intervals
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8.3 Functions and their derivatives ’ 247

Ay =[z;,z;]and A, =[z,,z;] belong to Q,. Next, we shall denote for brevity
M, = VAlf: M,= VAzf’ M=V,f=M,+M,,
£y 4
"=\ savzyv,n | > di=[z,25+n), dy=[z;—1n,23}
272 f N piay

Note that || f'|I,,) >0, since Vyf=If"|1,a >0
By (14)—(16) there exist rational functions Q,,, Q,, such that fori=1, 2

I fA,- —Oala<e + o(1e,, 20

||QA,-||(—oo,w)<2Mi3/25£1/2a (21)

deg 0, <2 Z kas + N(, Ay (22)
A*eQy,

We need an estimate of the modulus of continuity of the function f on A:
ol f, A; 8)c = sup {| f(x') —f(x")]: X', x"€A, | X — x"| < }.

By Holder’s inequality we get, for x', x"€A, x’ <x”,

X

foldx < f x| X"~ X7 Up,

|f(x") =S (x")] <J

X

’

Consequently
o f,8;0) < I f a0’ 020 (23)
Let o; (i=1,2) be the linear increasing function which maps d; onto A,.
Clearly
loadx) — xlig,=n, i=12. 24
Put r (x) = Q,,(«;(x)) and ry(x) = QAZ(O‘z(X)) —f(z4) +f(z,). By (20), (23) and
(24) we get

| fa—ry ”dlmA <l fA, “fm(al) ”dlnA + || fas o) — QA1(°‘1) ”d1 S wlfy,Asn)
1
+ “.fA1 — QO lla, S8 + (‘P(ﬂ) +W>52-

Thus we have

. 1
I fa—1, “dmA<51+<(P(,u)+‘2m>32- (25)
By (21}, (22) we obtain
174 1= o) S 2M 3285 V2 < 2MP1265 12 (26)
degr, <2 Y kat NGAy). (27)
A*eQ,,
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248 Relations between rational and spline approximations
Similarly, by (20), (23) and (24) we get

1
| fa—r2llasna <81 +<¢(ﬂ)+w>8z- (28)

By (21) and the fact that M > ¢,/2 we get

72 ”(—oo,w) < f(z) —fE) + [ Qa, “(—oo,oo) <M+ 2M§/28_1/2

K2M MY Y2 4 OM MY2e; V2 = 2M312¢5 112, (29)
By (22) we have
degr, <2 Y k*+ N(uA,). (30)
A*eQ,

If A=d, or A =d,, then it follows by (25)—(30} that the rational function
r, Or r,, respectively, satisfies (17)—(19).

In the opposite case we have |d, nd,"A|>#n. Now we are able to apply
lemma 5.3 in section 5.1 to the function f, with the corresponding values of
parameters A, A,, ¢,, A and k; from (25)—(30). Setting ¢,/2**? in place of
&, we conclude that there exists a rational function Q, such that

1
| fa—Qalla<er + <¢(ﬂ)+w)32, 1 Qa H(—oo,m)SZMyzEz_l/z,

deg Qs <2 ) kao+ N(u,A)+ N(p, Ay)

A¥eQy

+ B,In{ e+ 4] In e+2M3/282—1/2
! ld, nd, A ,/2"%2 [
Consequently Q, satisfies (17) and (18).
It remains to prove that Q, satisfies (19). Since
ldind,nAl>n, M=Vyf=|fTLa<If ”LP(A)lAP/p, and M >e,/2

we have

B/ Inle+ Al In e+2]\43/282—1/2
! ld, nd, A £,/21 %2

=B In(e+2* 2| f'llL,m| A" ey ) In (e + 2473 (Me; 1)>2)
S6Bp'In?(e+ 2471 | f' Ml Al ex ).
Hence, it suffices to prove that

N(, Ay + N(p, Ag) + 6B In? (e + 247 1| f | a |AI ez ) S N(A, n+ 1),
(31)
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8.3 Functions and their derivatives 249
To this end we shall make use of the following inequalities:
3 2 5 X+ X,
In*(e + x;) +1n%(e + x,) < 2In e+—7— , X1,X,20, (32)

1 Nepant Al + 1 i panl Ao <UL sl AP 33)

The inequality (32) follows from the fact that the function F,(x)= —In?(e +x)
is convex on [0, co) and (33) from the fact that the function F y(x, y)= — x!/Py!/?’
is convex on the set {(x, y): x,y = 0} (1/p + 1/p’ = 1) and also from the discrete
Holder inequality.

Using the definition of N(g, A) in (8) we get

N(p, Aq) + N, Ay) + 6B, p'In* (e + 2471 | f [l )| AIV7'e5 )
= 6311)’2‘:0 2{In* (e + 247" | f'llLanl Ar 1M Pe ")
+1n% (e + 247" f' |0/ A2l 7er 1)}
+6Bp' In?(e+ 2471 f'llL,mlAI" e ")
<6B,p v‘i 277 02 e + 2247 f ol AL + 1 Ve pan] 2] P)es )
+6Bp'In? (e + 27| f' [l AlYPex )
6B Y 27 In e 27TV f A )
+6B,p' In? (e + 271 /[l | A" ey ) = N(u + 1, A).
Thus the inequality (31) is established. U

Completion of the proof of theorem 8.11. Starting from lemma 8.9 and applying
lemma 8.10 s times we obtain that there exists a rational function Q,,
A =[a,b] such that
s 1
| fa—Oalla<e + uZOE[H—l &y <&+ &

and

deg 0, <2 Y ky+ N(s,[a,b]).

AeQo
Putting r = Q, + f(a) we have
1= lap &1+ &2
and

degr<2 ) ky+ N(s,[a,b]).

AeQo
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250 Relations between rational and spline approximations
It remains to prove that
1 A 1/p’
NGs,A) < Dp'mw(e I, AT ) (34)
me,
By (8) it follows that
s ’ A 1/p
N(s,A)<6B,p’ ¥ 2'In? <<e +%¢L>4s-v>
v=0 &a

Arguments similar to that of the proof of theorem 5.2 (see p. 121) show that
the last estimate implies (34). O

Theorem 8.11 provides a new proof of the well-known theorem 5.4 in
sections 5.3.2 and 5.4.2:

Theorem 54. If feW)}[a,b], p> 1, then

’
1f'1,
s
n

R(f)c<C- n=12..., (35)

where C = C,p'(b — a)¥'?', C, = constant.

Proof. Clearly (see theorem 7.2 in section 7.3), for each m > 1 there exist
points a = x, <X, <---<X,=bsuch that fori=0,1,...,m— 1

b 1 ’ _ 1p’
WV Vi P Vi i
m m m

Then applying theorem 8.11 for the function f withe; =&, = f'||, (b—a)'" /m
when || f'[|;, > O (the case || f*[|,, = 0 is trivial) we conclude that there exists
a rational function r such that

2SN b =)t

| f—r ”C[a,b] = m
and
N, (b — a)\/?7
degr < Dp'mIn? <e + M) < Cp'm.
me,
These estimates imply (35) immediately. Ul

Theorem 8.12. Let f be defined on [a,b], f'eL,[a,b], 1 <p< oo, and f’,
[ ..., f® (k= 1) be monotone but possible unbounded on (a,b). Then

Ny (b — al’*
Ryfe<c L Nudb=al® s (36)

n

where C = C,(k)(py*®+ 1.
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8.3 Functions and their derivatives 251

Proof. Suppose [a,b]=[0,17, || f'll,,=1,1<p<o0,and fPeC(0,1). Clearly,
if theorem 8.12 holds in this case then it holds also in the general case.
Denote x;=1/2" and y;=1—1/2 i=1,2,.... First we estimate | f®(x,)|
and | f®(y)| fori=1,2,....
Since /" is monotone in (0,1) and 0 <x; <4, 1 = [} f'(x)[Pdx =] f'(x)|"x;
and therefore | f'(x;)| <277 Similarly | f'(y;)| <24, i=1,2,.... Since f” is
monotone, f” is either convex or concave and therefore, for i=2,3,...,

L) —f v )| 1 (x) =06 1) }

k4
Xi — Xiy1 Xi— Xi—q

| [ (el S 222071 fr(y)| <2820 UL i=1, 2,

| /" (x) < max {

and

) =f'G)| (') = (32)

E
X1 — X3 V1= Y2

| f"(x ) <maX{

Hence

Just in the same manner we estimate | f™(x;)| and | f(y)], i=1,2,....
Finally we get

(37)

lf(k)(x-)| < Pkt 1)29ik = 1+ 1/p) __ Ytk + D29itk = 1/p")
L
|f Oy g2kt = 1.2,

Denote A =¢e!8D*(k + 1)%(p)*, where D>1 is the constant from
theorem 8.11.
Clearly

k+1

R(Ne<Vof=1f" e, <UL, S lsnsd (38)
Let n> A. Choose s to be an integer and s > 2 such that

k+1)p’
g2 <L (39)
16k(k + 1)p’

Denote A; =[x; ., x;] and A¥ =y, y;,Jfori=12,...,8 Ay =[0,x,]
and A, ={y,4, 1] Put

nin2 .

where [x] denotes the integer part of x.
From the choice of n and s it follows that n,=n* =k, i=1,2,...,s. Then
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252 Relations between rational and spline approximations

by theorem 5.1 in section 5.2 and (37) we get fori=1,2,...,s

Vi SO (1 f O 41/ Pxi 0 DDA
Rm(f)C(A.-) < C(k) * et < Clk) ! ) k1 =

2(k+ 1)2+k+ 12i(k—1/p')2—(i+1)k Cl(k)(p/)k+1

nin?2 k+1 pett
32(k + Lyp'-27® 1P

Hence, for each i = 1,2,...,s there exists a rational function r,€R,, such that

Cl k k+ 1
I =iy < 2OPY (40)

< C(k)

Put r,, ; =f(x,4,)- Clearly, by (39) we get

If=reeileann S Vau /=1 o, g SIS I}LP(AS+I)|A5+1'1/I’,
1/p’ rNk+1
o[ L\ 16Kk £ Dp V<
PARE nin2

Cok)(p)
1= reville@n S5 Tesi€Ro. (41)

Hence

Similarly, for each i = 1,2,...,s there exists a rational function r}€ R, x such

that
17 oy < 2RV @)
Put r¥, , =f(y,+ 1) As above we have
=iy < OP e, (43)

In addition by the choice of n;, and n¥

"Mh
!!Mm

T s niln2 < nin2 i 1 !
A i & i ~= i=18(k+l)pl.zi/(k+1)17'\4(k+l)p/izl 21/(k+1)1"

B nln2
_4(k + l)p/(ean/(k+ 1) _ 1)

<

s

Thus we have

'Z‘I n;+ Zﬁ n¥ < (44)

Now, in view of (40)—(43) we are able to apply theorem 8.11. Setting

N
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8.3 Functions and their derivatives 253

€, = 1/m**! we conclude that there exists a rational function r such that

Ck)(p)!

I f=7llero.; < T
and

degr<2i;1 ni+2,-; n¥+ Dp'-2(s + 1)1n2<e +§(sllt—fl)!1Lle>

By (39), (44) and because of | f'||, =1, n>A=e""D*k+1)°p)* and
In? x < /x for x >e'® we get
4Dk + 13 (p)*In® n

In2

degr <g+ 4Dp'sin’(n* Y < - +

NS

<§+8Dm+1ﬂyf¢n<n

Consequently
Clhy(p'y+t
n(f)C\—“le_“s n>A. (45)
The estimates (38) and (45) prove theorem 8.12. O

Theorem 8.13. Let feW[a,b], 1 <p< oo, and assume that there exists a
partition of [a,b] into m (m = 1) subintervals a =xy<x, < - <X, =b such
that f',f",....f® (k = 1) are monotone but possibly unbounded in each interval
( 1—1’ 1)' Then

1 it — )t
R 1 Mol L n=12, (46)

where C = C,(k)(p')*** 1.

Proof. Denote A =¢e'°D(k + 1)*(p')*m, where D > 1 is the constant from
theorem 8.11. If 1 <n < A4, then by theorem 5.4 in subsection 5.3.2 we have

Ry(fe< e Ll =0 o 1l 20

Hence

£l (b —a)'”'m*
&Ukéclf “MH , l<sn<A. (47)

Now consider the case n> A. Suppose | f'[|;, >0 (the case || f'{|,, =0 is
trivial) and put

h I/l (A~)|Ai|1/1" 1/¢k+1)
L= — PR . 1 5 Ai: i— 15X
) Loy,
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254 Relations between rational and spline approximations

Then by theorem 8.12 for f in the interval A; we obtain

I s 81 _ 1 (o= 0 ,
R8s AL el AT o W e TN gy

Hence, for each i=1,2,...,n there exists a rational function r,eR,, such that

c 1L b~

Hf HC(A) nk+1

From this estimate using theorem 8.11 with

_o Wb —ay et b — @)t
e pktl v 8= PrES]

and k; = n; we conclude that there exists a rational function r such that

£, (b—a)'"'m*
”f_rHC[a,b] <€+ Lpnk+1 (48)

n k+1
degr<?2 Z n; + Dp'mIn? ( <A> >
i=1 m

It remains to estimate degr. Using twice discrete variants of Hdlder’s
inequality (see (33)) we get

3 I/ HLP(A)|A|1/1’ 1k +1)
2,; 1\2,;{ <“f||L,,( b—a)"'m +1

n
4(“f ”L ( 1/p)1/(k+1)mk/(k+l)

and

m
X 2 (LS e papl A PYHEF DIRETD
i=1

n
4( ” f/ ||Lp(b - a)l/p/)l/(k+ l)mk/(k+ 1)

<L2m+

m 1k +1)
X (Z f f’”LP(A,-)|Ai|”p) mk/k* L)
i=1

<L2m+-<

=

n
2
On the other hand, since In? x < /x for x >¢'® and n> 4 we have

k+1
Dp’mln2<e+<%> ><4D(k+1)2p’mln2< ><4Dk+1 P/ (mn) <

Ni:
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8.3 Functions and their derivatives 255

Thus reR, and by (48) we obtain

I (b—a)''"'m*
Rn(f)C < ‘Lpnk+1 ’ n> A

This estimate and (47) imply (46). |

Proof of theorem 8.9. First we consider the case r=1, p> 1, g = oco. We shall
prove only the estimate (2). The estimate (1) can be proved similarly. We
shall proceed similarly as in the proof of theorem 8.1.

Choose ¢,eS(m, 2% [a,b]) such that

1f =@yl =SSP, (49)
Clearly
@y = @p-1llL, <28%-1(f), (50)

Set ¢,(x) = [ @p(x)dx and k=[] + 2.
Let s be an arbitrary non-negative integer. For each v (I <v <s) choose
N, to be a positive integer and

%NVS2(S(a+1)+v(k*a))/(k+l)<NV. (51)
Put Ng=m+1, N, =25 N=3%LL N, . Clearly, we have

Ry(f)e < RNS+1(f_ $)c + Ry (= dy-1)c + RNS_,(d)zs’l —¢r-2)c
+ -4 Ry, (931 — dy0)c + Ry (h0)c- (52)

Consider the function ¥,» = ¢,x— ¢,r-1. Obviously Y= @,y — @16
S(m,3-2""1,[a,b]) and therefore there exist at most m,+1<
327 A+ 1 424 m+ 1< 32 i m+ 12 + 1 points a=xY <
x << x{)=b such that the functions ¥}, ¥,...,Y% are monotone

in each interval (x,x). Then by theorem 8.13

@y — @1l (b—a)'""mi
NE+I ’

RNv(d)z" —¢yp-1)csC

where C = C,(k)(p)*** ). From this estimate and (50) we obtain

, 2(v— l)asmv7 ‘(f/)
Ry (62— dr1)e < Calb — a)! 17 = L8722 (53)

Also, by theorem 5.4 in subsection 5.3.2 and (49) we get

(~dae< Cpto—ay v 10N < PS54

Ns+1 2s(a+ 1)

Obviously
RNo(d)O)C =0. (55)
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256 Relations between rational and spline approximations
Combining (52) with (53)—(55) and (51) we get

Ry{(f)c S Cy(b—a)!/P275a* D % 2vgn(f7),,
v=0
where

s+1

N = zONV<m+1+ gl 2,2(s(a+1)+v(k‘a))/(k+1)_+_2s

9k + 1)om+ 1)

< 25 < Yo + 3)(m + 1)2°.
k—o

Consequently, for each s =0
Ry(f)c < Clb —a)'/7- 27+ 1 5 2S3(f), (56)
v=0

for some N < Yo+ 3} (m + 1)2°.
Ifm<n<A=90a+ 3)m+ 1), then
Ry(f)c S Ro(f— ¢20)c + Ruld1)c = Ro(f — ¢1)e < VIS — b))
=) f =Pl SO =Y | f =l =b—a)"" | f =iy,
=(b~a)'"ST(f"),

SO@+3)m+ DP*ib—a)tPn-er Dy e igm f)

v=1

P

Thus we have
R(f)c<Cb—a)Pn=erD % vy 1sm(f) . m<n< A (57)
v=1

Let n > A. Choose s to be integer and A-2° < n < A-25*1, By (56) we obtain
R{(fe < Ru(fe < Cy(b —a)”""fs‘““’{s’f(f')p + 3 2‘”“““85'5(1”)1}
v=1

s 2¥
<Cz(b—a)‘/”'n""+“{S'1"(f')p+Z Y u"“lSL"(f’)p}
v=1u:2v—1+1
Hence

R(f)c<Cb—a)'"n™+D % v 1ST(f"),, n>A.
v=1
This estimate and (57) imply (2) in the case r=1, p> 1, g = 0.
Now we prove theorem 8.9 in the case r=1, 1 g < o0, p=1. We shall

prove only the estimate (1). The proof of estimate (2) is similar.
If1<n<[a]+1, then

R(f)g<(b—a)'"Ry(f)c < (b—a)'"Ro(f),
<@ D b=t =t Y 0+ RS,
vy=0
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8.3 Functions and their derivatives 257
Thus we have

R(f);<C@b—a)tn ! Z v+ DR, I<n<[e]+1. (58)

v=0

Let n> [a] + 1. By theorem 8.1 with « replaced by « + 2 and k=[a] +2
we have fornzk—1=[a]+1

R(f), <Cn~* Z VHISH ). C = Clg, 9. (59)

On the other hand by theorem 8.10 with k=[a] +2>a+ 1 we have for
n=12,...

SN < Cn~ T (et DR, (60)

where C = C,(q,2)(b — a)'/4.
Combining (59) and (60) we obtain

Ry <Con =23 Y (ut DR,

v=1u=0

=

=c2n-“—2{g (u+ 17 (z 1) () + <z )Ro(f/)l}.
Hence

R(f), <Cn 'S v+ 1F 'R(f),, n>[a]+1, C=Cslga)b—a)™
v=0
(61)

The estimates (58) and (61) imply estimate (1) in the case r=1, 1 < g < o0,
p=1.

Theorem 8.9 in the case r =2, g =00, p=1 can be proved in the same
manner as above using inequality (2) in the case r =1, g = o0, p> 1 and the
estimate (3) in theorem 8.10 in an appropriate situation. The details are
omitted. O

In order to prove theorem 8.10 we need the following.

Theorem 8.14. Let f be absolutely continuous on [a,b] and assume that there
exists a partition of [a, b] into m (m = 1) subintervalsa = xy <x; < - <X, =b
such that f, f',....f %V (k = 1) are monotone but possibly unbounded in each
interval (x;_,,x,). Let 1 <q< 0. Then forn=1,2,.
k—1 "
S/, < CMM (©)

nk

where C = C(q, k)(b — a)'/%.
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258 Relations between rational and spline approximations

Proof of theorem 8.14 in the case m = 1. Without loss of generality we shall

suppose that [a,b] =[0,1], | f'|l,,=1and f* " VeCq.4, k =2.
Denote 4 = 16%k?g/(In 2)°.
If | <n< A, then obviously
Vol 1S, A
Sﬁ(f)qgsﬁ(f)cg‘n—:Tgn—k.
Thus we have

Clg, k)
> 1<n<A

n

S3(f)g <

(63)

Letn> A.Denote x; = 1/2, y,=1—1/2i=1,2,.... Exactly as in the proof

of theorem 8.12 we get

|f(k—1)(xi)| < C1(k)'2i(k_ 1)’
FE7 00 < Colk)- 270, =12,

Choose s = 0 to be an integer such that

1 g\ 1
<l - ) €45
2s+1 <I’l> 25

(64)

(65)

Denote Ai: [xi+1’xi]’ Al*: [yi’yi+1]’ i= 1»23---’Ss As+1 = [0a1/25+1]s
A*  =[1—-1/2°"11]. Put n,=[nIn2/(16kq-2"**%] and n¥=n, for i=
1,2,...,s. From the condition n> A4 and (65) it follows that n,=n}*>1,

i=1,2,...,s

Using theorem 7.2 in subsection 7.3.1, (64) and the choice of n; we obtain

(Vo * D)IA 1 v

S A, < |ANMVISH(f. Ade < ClR) 7
n;
I (k—l)xil+ . (k—1) xi Aik—1+1/q
< L S 1A
2i(k—1)2—i(k71+1/q)
< Cl(q’ k) (n/zi/qu)k
Hence
Clg, k) .
Sﬁi(f,Ai)qénkfzi/zi, i=1,2,...,s.
Similarly
Clg. k
S:f(f,Ai)<M i=1,2,...s.

9 gk Hiizg?

Obviously in view of (65)

2s+1 n

K ' LA™ _¢"
Sl(f’As+l)q<|As+1|/qu’”L1<|As+1‘l/q=< > <

(66)

(67)

(68)
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8.3 Functions and their derivatives 259

Similarly

k
q

SEf AR ), < (69)
n

In addition, by the choice of n;, and n} we have

s 3 § nin2 2nin2
— e+ 224+ <.
Lty 24 Tokg 2 TS At g Ty S
Hence
'Zﬁ n; + '21 n¥+2<n (70)

Finally, using (66)—(70) we obtain

Suf. [0, 1])q\{5"(f A )i+ Z Shlfs A+ Z Silf, AN+ S1(f, Ak ) }Uq

1 s 1 q)1l/q
Q@“ﬁwﬂ;<ww%>}'

Thus we have

SYf), <=, n> A (71)

The estimates (63) and (71) imply (62) in the case m = 1.

Proof of theorem 8.14 in the general case. If 1 <n<2m, then

(=" s o1y ga™ IS
S T

Si)g < (b —a) M 1S(f)e < (b—a)

as required.
Let n> 2m. Set

n ”f,“L (A >1/k :l
=\ =t +1 4§ A=[x_x],
|:2<mk 1||f ”Ll[a,b] !

when || f"||, > O (the case || f'||;, =0 is trivial). Then by theorem 8.14 with
m=1 we have
”f/”m[a,b]‘Ai!l/qu—l

Z(q’ k) k . (72)

n

A ;
A s ¢

i

S,r:,-(f’ Ai)q < Cl
Using a discrete variant of the Holder’s inequality we obtain

m
n _
Zm<m+~<~—wﬁﬁzn1Mﬁ TRy, (73)

=1 201 ey
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260 Relations between rational and spline approximations

Finally, by (72) and (73) we get

m 1/q m L k 1 A 1/a\g) 1/q
mﬁq<;$yaﬁ>\\ {;Cunln|| >}

<Cyg, k)b — a)l/q_@%.

Theorem 8.14 is proved. O

Proof of theorem 8.10. One can prove theorem 8.10 in the case r=1,
1<g< o0, p=1 as a consequence of theorem 8.14 just as theorem 8.1 was
proved in section 8.1 using theorem 8.2 and also as theorem 8.9 was proved
by means of theorem 8.13. The details are omitted.

Theorem 8.10 in the case r = 1, g = o0, p > 1 can be proved using theorem
8.5 in section 8.2 and lemma 7.13 in subsection 7.3.1 just as theorem 8.9 was
proved in the case r =1, 1 € g < o0, p = 1. In the same manner theorem 8.10
inthe case r = 2, g = oo, p =1 can be proved using theorem 8.10,r =1, g < co,
p=1, and lemma 7.13 in subsection 7.3.1. The details are omitted. O

Remark. Corollaries similar to corollaries 8.1-8.3 follow from theorems 8.9
and 8.10. For some other consequences of theorem 8.9 see Chapter 10.

8.4 Notes

Theorem 8.2, and as a consequence theorem 8.1, is based on lemma 8.3, which
gives a ‘good’ rational approximation of the function

{0, ixI>d,
ﬂ”‘{hlﬂsd

In our opinion this lemma is the L, analog of Newman’s theorem 4.1 for
uniform rational approximation of |x|:

Rn(|x|)C[‘1,1]:O(e_wn)- (1)

Lemma 8.3 can be used successfully also for rational uniform approxima-
tion on the whole real line of functions with finite support. It is easy to see
that lemma 8.3 implies for example the following estimate:

SE% Rn(l//a)C(— w0,0) — O(egC\/n)a c> Oa (2)
where
—Ixl/o, x| <o,
b=, = ®)

The estimate (2) is a generalization of Newman’s estimate (1).
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8.4 Notes 261

The functions y,, given by (3), are a typical example of integrals of ‘atoms’.
Let us remember that a function ¢, defined on (— oo, %), is called an ‘atom’
if its support is a finite interval A and

f p(x)dx =0, |o(x)] <1/|A] for every xe(— oo, ).

The most essential fact connected with the ‘atoms’ is the following
description of the Hardy space H, (— o0, o0):

feH(—oo,00) if and only if f=32 Lip;, where 32 (14| <o and ¢,
i=1,2,...,are ‘atoms’ (see Coifman (1974), Latter (1978), Kashin and Saakjan
(1984)).

Let us note that from here follows the famous Fefferman theorem
(Fefferman, 1971) that H, and BMO are dual spaces.

E. Moskona proved that if f(x) = |*, ¢(t)dt, where ¢ is an ‘atom’, then

Rn(f)C(—oo,oo) = O(n_ 1)'

Our conjecture, which in our opinion is very important for rational
approximations, is that if f'eH,, then

C = constant.

IS M,
Rn(f)C(—oo,oo) < CTHa

If this conjecture is true, then together with the Bernstein type inequality
of Russak from section 6.2, theorem 6.3, we can obtain a complete character-
ization of the best uniform rational approximations of order O(n %),
O<a<1.

The theorems 8.1, 8.2, 8.3, 8.9 and 8.10 are due to P. Petrushev (1984a, b,
1987), see also P. Petrushev (1981, 1983a). Theorem 8.5 is proved by
A. Pekarskii (1986).

The first who remarked that the spaces L, 0 <p <1, are important for
rational approximation, was Yu.A. Brudnyi (1979); see also Brudnyi (1980).
Let us mention that at the conference on approximation theory, Kiev, 1983,
Brudnyi announced without proofs some connections between best rational
approximations and Besov spaces.

In Brudnyi (1979, 1980) the following estimates are given without proof:

For every n> 4 we have

0 qa)1l/q
Rn(f)LP(O,l)g%{Z 1(] (Uk< }) > } s

where q > q(A,p)=(A+1/p)~!
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262 Relations between rational and spline approximations

For every t >0 we have

1/q*
ol fi0), < cﬂ{ ¥ l.ulR,{f)p)q*} ,
ogjer 1S
where g* =min[1,q], g=q(L,p)=(1+1/p)~ L.
The Jackson type theorem for best rational approximations to analytic
functions on the unit disk as well as a characterization of the corresponding
approximation spaces as Besov spaces are proved by Pekarskii (1985).
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9

Approximation with respect to
Hausdorff distance

In this chapter we shall consider rational approximation of functions with
respect to the Hausdorff distance. The Hausdorff distance in the space C[a, b]
of the continuous functions in the interval [a, b] was introduced by BI. Sendov
and B. Penkov (1962). After this Bl. Sendov developed the theory of
approximation of bounded functions by means of algebraic polynomials with
respect to the Hausdorff distance. Many mathematicians have obtained
results in the theory of approximation of functions with respect to the
Hausdorff distance — the results are collected in the book of Bl. Sendov (1979).

In section 9.1 we give the definition of Hausdorff distance in the set of all
bounded functions in a given interval and we consider some of its properties.

In section 9.2 we consider the most interesting examples of rational
approximation in Hausdorff distance — rational approximation of sign x. In
our opinion this result is basic in the theory of rational approximation — from
here follows the most essential results for uniform and L, rational approxi-
mation — for example Newman’s result for | x|. The Hausdorff distance is the
natural distance by means of which we can explain the fact that sign x can
be approximated to order O(e ~“Y") by means of rational functions.

In section 9.3 we consider the general case of rational approximation of
bounded functions with respect to the Hausdorff distance. From the estimate
obtained it follows for example that functions with bounded variation can
be approximated by rational functions in order O(n ™ ') in Hausdorff distance,
while the order of the best polynomial Hausdorff approximation of this class
of functions is O(ln n/n).

In the notes at the end of the chapter we give some other results connected
with rational Hausdorff approximation.
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264 Approximation with respect to Hausdorff distance

9.1 Hausdorff distance and its properties

Let F, be the set of all closed and bounded sets in the plane which are convex
with respect to the y-axis and the projection of which on the x-axis coincides
with the interval A = [a, b].

The Hausdorff distance with a parameter a, « > 0, between two sets F and
G, FeF,, GeF,, is defined as follows:

rF, G;2) = max {max mind (A, B), max min d{A, B)}, (1

AeF  BeG AeG  BeF
where
da(A’ B) = da(A(al s aZ)’ B(bl’ bZ)) = max {OC_ ! |a1 - bl ‘ ‘aZ - b2 | } (2)

Here A(a;,a,), B(b,,b,) denote the point A, respectively B, in the plane
with coordinates (a,,a,), respectively (b,, b,).

It is easily seen that r(F, G; ) is a real distance in F,, i.e. r satisfies the
three axioms for distance.

The distance d,(A, B) between the points 4 and B in the plane may be
defined in another way as well, not only by (2), for example in the case a =1
we can use the usual Euclidean distance e(A, B) = \/((a; — b;)* + (a, — b,)?).
The choice of the distance d, is convenient for some calculations which
appear in the theory of Hausdorff approximation.

Now we shall define the notion of the complemented graph fof the function
f which is bounded on the interval A = [a, b]. The complemented graph f of
the function f is the following set of points in the plane:

f={(\F:FeF,, f<F},

where f denotes the usual graph of the function f, ie. the set of points
f=1(xy)rxeh y=f(9)}.

Obviously feF,.

We define the Hausdorff distance with a parameter « in the set of all
functions bounded in the interval [a,b] as the Hausdorff distance with
parameter « between the complemented graphs of the functions:

(S, g;2) = r(f, G ).

The so defined distance r(f,g; ) is not a real distance in the set of all
bounded functions in the interval [a, b], since evidently there exist different
functions fand g for which f= g and consequently r(f, g;a) = 0, for example
for the functions f and g, given in [ — 1, 1] by

0, xe[—1,0)
0, xe[—1,0 ’
ro= {0 YT =44 a0
’ ’ 1, xe(0,1],
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9.1 Hausdorffdistance and its properties 265

This fact will not be essential for us.

The Hausdorff distance with a parameter o may be considered as a
generalization of the uniform distance in the space C[a,b]. For feC[a,b]
we have obviously f=, i.e. the complemented graph of f coincides with the
graph of f. It is easily seen that in this case the Hausdorlf distance between
feCfa,b] and geCla,b] can be defined as follows:

rf,g;0) = max{max min max {o~ Yx =yl f(x)— g},

xela,b] yela,b]

max min max {o~'[x — y|, [ f(y) — g(x)|} ;- (3)
xefa,b] yela,b]

From (3) it follows immediately that

f.g)<f—g HC[a,b] 4

(take in (3) y = x instead of min,, 4)).

It is not difficult also to obtain an estimate for || f — gll¢a by means of
r(f,g;2) and the modulus of continuity of one of the functions f or g. The
following lemma holds.

Lemma 9.1. Let feCla,b], geCla,b]. Then
I f = gllctam < Hfs 950 + @lgs ar(f, g; ). )

Proof. From the continuity of f and g and the definition (3) it follows that
for every xe[a,b] there exists a point y_e[a, b] such that

r(f.g;0) = max {a " Hx —y.l, [ f(xX)— gy},

ie.
a x =yl <r(fs g5 ),
|f(x) =gl <r(f,g50)
On the other hand for every xe[a, b] we have
() =g < 1f(x) = gl + [9(y,) — g(x)]
<, g:0) + olgs[x —y ) <r(f.9:90) + wlg;ar(frg0). O
From lemma 9.1 we immediately obtain the following.

Corollary 9.1. Let feCla,b] and {f,}3-., f.€Cla,b], be such that
(f, f;0)— 0. Then || f — fullctasy — 0.

In other words, the topologies in the space Cla,b] generated by the
Hausdorff distance and the uniform distance coincide.
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266 Approximation with respect to Hausdorff distance
Corollary 9.2. If feCla,b], geCla,b], then

limr(f,g;0)=1f—g HC[a.b]'

20

Corollary 9.2 follows directly from (4) and (5), setting in (5) « —>0.

This corollary shows that the Hausdorff distance with a parameter « can
be considered as a generalization of the uniform distance — if we have some
result for the Hausdorff distance with a parameter o we can obtain the
corresponding result for the uniform distance setting o —0.

To conclude this section we shall give one working lemma, as follows.

Lemma 9.2. Let f and g be bounded functions in the interval A =[a,b] and
0> 0. Iffor every xeAthere are intervals A, A, xe A, xeAL, [A,| < 6,|AL] <0,
such that

inf {g(t):te A} <y <sup{g(t):teA,}, Y(x,y)ef,
inf { f(e) teAL} <y <sup {f(e): teAL, Vix,¥)ed,
then
r(f,g;0) <a 16

Proof. Since f and § are connected, from the conditions of the lemma it
follows that for every ¢ > 0 and every (x, y)ef there is (x',z)eg such that

X' — x| <A, <5,}
ly—zI<se, (6)
and for every (x, y')eg there is (x”,z')ef such that
Ix" — x| <|ALI <9,
Iy —z'[<e. ()
From (6), (7) and the definition (1), (2) it follows that

r(f,g;0) = r(f. G ®) < max {a 15,8},

Since ¢ > 0 is arbitrary, the lemma follows. OJ

9.2 Hausdorff approximation of the jump

We shall consider best rational and polynomial approximation of bounded
functions on the interval [a, b] in respect to the Hausdorff distance with a
parameter o, a > 0.

The best Hausdorff approximation with a parameter « to the function f
bounded on the interval [a,b] by means of algebraic polynomials of nth
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9.2 Hausdorff approximation of the jump 267

degree is given by

E(f;o)=E(f;0;[a,b]) =inf {rf, p;a): peP,},

and the best Hausdorff approximation to f with a parameter « by means of
rational functions of nth degree is given by

R, (fi®) = R(f; [a,b]) =inf {r(f q;2): geR,}.

The basic result in the theory of approximation of function with respect
to the Hausdorff distance is the following result of Bl. Sendov (1962), see also
Bl. Sendov (1979).

Let f be a bounded function in the interval [a,b]. Then

Ef:0) < el (b — ), )

where the constant c(o,b — a} depends only on a and the length b— a of the
interval [a,b].

We shall not give here the proof of this result.

Typical functions for which the order Inn/n is obtained are

—1, xe[—1,0), 0, xe[—1,0),
o(x)=signx = 0, x=0, ox)=< 1, x=0,
1, xe(0,1], 0, xe(0,1].

In BL Sendov, V.A. Popov (1972) (see also Bl. Sendov (1979, pp. 127, 135)), it
is proved that

lim " Efo; ;[ —1,1]) = L,
Inn

n—w

) @
lim —E/6;1;[—1,1])= L.
In

n— o n

These exact asymptotics can be obtained also for the whole class of
uniformly bounded functions, see Bl. Sendov, V.A. Popov (1972), BL. Sendov
(1979), p. 135.

In this section we shall consider the best Hausdorff rational approximation
to the functions ¢ and 4.

Theorem 9.1. We have for n>2
R, (60 [—1,11)=0.

Proof. Obviously for every o > 0 we have
rl o L. —0 O
14 Ax¥’ * Amoe
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268 Approximation with respect to Hausdorff distance

To obtain an estimate for R, {sign x; 1; — 1, 1]) we shall need two lemmas.
The first lemma is a very useful one in obtaining lower bounds in rational
approximation (not only for the Hausdorff rational approximation — see
Chapter 11).

Lemma 9.3. Let 0 <e<1 and n>= 1. Then the rational function reR,,
x)—p(—x n
") :P( ) — bl J’ p(x) = 1—[ (x +8(2v—1)/2n)’
v=1

satisfies the conditions

Isign x — r(x)| > ¢ mn 3)
—r(x)| > exp<{ —
g P (e
Sfor
xefe oo {— e
and sign x — r(x) has alternate signs at the points — 1, —e'",..., —¢e,¢,...,e'" 1.

Proof. Let x = ¢, 0 <i<n. Obviously |p(—x)|/|p(x)| < 1. Then we have
2lp(=¥)l  _ 2[p(=x)l/lp(x)

|sign x — r(x)| = >
[p(x) +p(—x)| = 1+ |p(— )I/IP(X)I
. ifn _ (2v—1)2n no1_ S2ji=1)2n\2
NLEIEAG (e
p(X) = Ez/n + 8(2v—1)/2n i=h 1 + 8(21-1)/211
n l_gj/Zn 2 1 8]/2n
> —_— 2 1
() el gl
For |x| <1 we have
lnl -x x  x2k—1
1 +X—- =12k —1
Therefore
n 0 (gj/Zn)Zk—l
|51gnx—r(x)|>exp{ 4% 3 —_}
== 2k—1
.—_exp{—4 Z . — Z (8‘2’"“/2")’}
=h2k—1;5
o0 1 8(2k—1)/2n(1 __8(2k—1)/2)
- exP{"“,ﬁé 2k—1 -0

8(2k71)/2n
>exp{ 4 Z 2]{—1 1 S(Zk—l)/Zn}'
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9.2 Hausdorff approximation of the jump 269

We have In(1/x) < (1 — x)/x for 0 < x < 1. Using this inequality we obtain

) * 1 1
|s1gnx ~V(X)| > exp _4k=1 2k _ 1 ln(l/g)(zk—lj/Zn

- 8n & 1 _ , n
_eXp{_ln(l/e)k;(Zk—1)2}_CXP{_” 1n(1/3)}'

Therefore the estimate (3) is proved for x=¢&" i=0,...,n. The case

x=—¢™M i=0,...,n, is similar.
Since
p(x) — p(—x) " 1
rx)="""——— p(x)=[] (x+e> 1
p(x) + p(—x) vl‘——“ll
it is evident that H(—e® " V2" = 1, v=1,...,n and r(® V) =1, v=

1,...,n. Since the points —g®*~ /2" y =1 .  n, g2~ V2 y=1 ... n, sepa-

rate the points —e"", v=0,...,n, &, v=0,...,n, condition (3) gives us that

sign x — r(x) has alternate signs at the points — 1, — &', ..., —¢,¢,...,e¥" 1.

O

We shall need also one particular application of a theorem of the type 2.3

(de la Vallée—Poussin theorem) to the function sign x. By the same method
as in theorem 2.3 it is possible to obtain the following result.

Lemma 9.4. Let A(e)=[—1, —¢]ule 1]. Let there exist 2n + 2 points x; <
Xy <o <Xgnias X;€AE), i=1,...,2n+ 2, and a rational function reR, such
that

signx; —r(x;)=u(— 4, u==+1 14,>0, i=1,...,2n+2
Then
R,(sign X)ea = min {A:i=1,...,2n+2}.
Lemmas 9.3 and 9.4 give us

Corollary 9.3. For every ¢, 0 << 1, we have

' n
R,(s1g0 X)ciacey) = €XP { - In(1/ 8)}'

Theorem 9.2. There exist absolute constants ¢, and ¢, such that
e ™" R, (signx; 1;[—1,1]) < c eV,
Proof. The upper bound for R, (sign x; 1; [ - 1, 1]) we shall obtain using lemma

5.1. Let us set in lemma 5.1 f=1, a=¢~ V", y =e~v". We obtain that there
exists a rational function reRy, N < Bln(e +e""In(e +¢e"")< B;n, B, an
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270 Approximation with respect to Hausdorff distance

absolute constant, such that

Irx)l<e ™", xe[—1,—e V"],
|1 _r(x)|<e V/n’ xe[eAN/nyll
0<rx)<t, Vx.

Therefore the rational function g =2r — 1eRy, N < B, n, satisfies

I—l—-q(x”\ € \/na XE[—’I, _eivrn],
|1—q(x)I< e " xe[e™n 1],
<rx) <1, Vx

Therefore the graph of g belongs to the domain
G={(x,yre "< |x|<1, |y —signx|<2e™ " [x[<e V" [y < 1)

Using the definition of the Hausdorff distance with a parameter 1 we obtain
that

rsignx, q; 1;[—1,1]) < 2e V™
Since ge Ry, N < Bn, B, an absolute constant, we obtain the upper bound
R(signx; ;[ —1,1]) < c e v,
To prove the lower bound let us assume the converse, that
R (signx; ;[ —1,1]) <e™ ™™,

Using the definition of the Hausdorff distance we obtain that there exists a
rational function reR,, such that

Isignx —r(x)| <e ™", e<|x|<1, 4)

Tn

where g =e™™",
—l—e<rx)<1+e |x|<e

But (4) gives us that

M h —TnJn

—nyn

since e =e
The inequality (5) contradicts corollary 9.3. O

Remark. Using the same method it is possible to prove that
C3(Ot)e_04(a)vn <R, (signx;o[—1,1]) < CI(O()GACZ(G)‘"

where the constants c¢f{«), i =1,...,4, depend only on .
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9.3 Bounded functions 271

9.3 Bounded functions

In this section we shall consider the general case of rational Hausdorff
approximation of bounded functions. We shall obtain an analog of Sendov’s
theorem (1) in section 9.2, but in the logarithm will appear the so-called
averaged modulus t(f;0). Therefore we shall give first the definition and
some properties of the averaged modulus.

We define the local modulus of continuity of the bounded on [0, 1] function
f at the point xe[0, 1] by

o(f,x;0)=sup {| f(x) — f(x")]: x',x"€[x — 6/2,x + §/2]1~[0,1]}.

Then the averaged modulus of f is the following function of J, § > 0:

1

of;0)=| w(f";é)“m(o.l) :J‘ o(f,x;8)dx.

0

For the history of the averaged modulus see Bl. Sendov (1979).
The following properties of (f; §) are evident.

(i) W(fd)<t(f:;d), d<d.
(i) ©(f +g;0) < t(f;6) + 1(g; 9).

We shall need also the following two properties.
(iii} t(f;nd) < nt(f;9), n>0, n integer.

Proof. We have
o(f,x;nd)= sup{lf(x’) —f(x”)l:x’,x”elix —%5, X +nz(5]m[0, 1]}

<3 sup { L16) = FG)]:,

n—1-2i 0 n—1-—2i é
e VA e 1
e[x 5 o 2,x 3 5+2:|m[0, ]}

n_l —1-2i
<Y w(f,x—ﬁT—l&;‘s)’
i=0

where we set f(x)=f(0) for x <0, f(x)=f(1) for x> 1.
From here we get

r(f;n5)=rw(f,x;5)dx<"1J w(f;x—%_%ﬁ)dxgm(f;a). O
0 i=0Jo

(iv) If f is a function with bounded variation in [0, 1] then

W(f;0) < VLS.
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272 Approximation with respect to Hausdorff distance

Proof. Let us set again f(x) = f(0) for x <0, f(x)=f(1) for x > 1. Then
ol(f, %0 < Vi,
therefore

1 1 1

V’é*"/zfdx~‘[ Ve ¥ fdx

0

r(f;5)<J

0

virtgran= |

0

1+4/2 1-9/2 1
:f V’éfdx—j gfdxgj Vidx +8/2Vif <SVLS.
/2 —8/2 1-4/2
O

We shall need also the following lemma.

Lemma 9.5. Let f be a bounded function in the interval [0, 1]. For every natural
number m > O there exists a step function ¢,, with jumps at the points x; = i/2m,
i=1,...,2m—1, such that

(@) r(f, 0, < 1/m}
® 1f—n ||L1(0,1] <2(fsm” 1),
(©) Vopm<Oma(f;m™?).

Proof. Let us denote x; =i/2m, i=0,...,2m, x_; =x0=0, Xyp,1 1 =X, = 1,

m;=inf { f(x):xe[x;_ 1, X111}
M;= SuP{f(x):xe[xi—ule]}-

We set
Mai—1, X€[Xpi2,X5i-1), i=1,...,m,
Pm(X) =< My, xe[xy; 1, %), i=1...,m,
Om(X2m—1)s x=1.

From the construction of ¢, and lemma 9.2 it follows that r(f, ¢,) <
m™1, ie. we have (a).
For the difference f(x) — ¢,,(x) we have, using again the definition of ¢,,,

| f(X) — @u(x)| S o(f, x;2m ™),

therefore, using property (iii) of 1(f; ) we obtain (b):

1 1
[If—fpmf|1=f |f(x)—¢m(x)|dx<fo o(f,x;2m™dx < 2t(f;m™ 1),
0

t In this section we set r(f,g; 1) =r(f,g).
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9.3 Bounded functions 273

Finally let us estimate the variation of ¢,,. We have

2m-—1 2m-1
Vo=, 10nx)— @ulxic IS Y off,x;;2m™1)
i=1 i=1
2m—1 Xi Xi

2m—1
o(f,x;2m™Ndx<2m Y f wl(f,x;3m™ Y)dx
3

Xi-1

=2m Yy
=T

i-1

<2mf1w(f,x; 3m™Vdx = 2mr(f;3m ™) < 6mr([f; ),

0
since evidently for xe[x;_,x;] we have
o(f,x32m™ ) < o(f,x;3m™1). 0
Theorem 9.3. For every function f bounded in the interval [0, 1] we have

RAL0 < RO sy

where ¢ is an absolute constant.

Proof. Let f be a bounded function in the interval [0, 1]. Let us consider
first the case when
In(e +nt(f;n" 1))

o, = 8eD > 1,
n

where D is the constant from theorem 5.1.
Since obviously R,(f,1;[0,1])< 1, we have

RS [0, 1] < e, MO TR 0
with a constant ¢, = 8eD.
Now let a, < 1. We set
r=[In(e+nt(f;n""))], h=2eD/n, m:[“’l'hil. )
Since rh<i,m>=1, D> 1, we have
ﬁ <rh< %, 3)
m < (4rh)~' < n/8. @)

For m so defined let us consider the step function ¢, from lemma 9.5. We
set @,(x) = ¢(0) for x <0 and @,(x)= @,(1) for x > 1. Let us consider the
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274 Approximation with respect to Hausdorff distance

function

1

1 H
l//(x)-wJ_H(pm(x-"t)dt’ H:@

For the function y we have @, (x) = y(x) if

1 1 .
xe[x;—, + H, xi—H]:[xi1 +@’xi_l6m]’ i=1,...,2m.

Moreover  is continuous and linear in the intervals [x;,— H,x; + H],
i=0,...,2m.

From the properties of ¢ and lemma 9.5 we obtain

Vol = Vi, <ému(f;m™'). &)
Let us consider the function ¥, , given by
n/2 n2
(/J,’,,(x)zh"J‘ f W(x 4+t + - +1,)de, ---de,.
—hj2 —h/2

Since rh/2 < 1/8m, we obtain, using the properties of the function y given
above, that

Youlx; + 1/4m) = f(x; + 1/4my = ¢, (x; + 1/4m), i=0,....2m—1,

min{q)m(xi‘l)5 (pm } < wr h(x)<max{(pm 1) (pm 1)} fOf xe[xi_ 1/4"’!,
x;+ 1/d4m], i= 1,...,2m—1.
Therefore lemma 9.2 gives us

1

r((pm’ l//r,h) < ﬁ (6)

From here and lemma 9.5 we get

o) SIS @) + 1@ U, ) <2m7 L (7
On the other hand we have

U= Y ( > 0F " (x + vh — rhy2).

From here and (5) we obtain
V¥l <2'h™m-6mr(f;m ). (8)
Using theorem 5.1, (8), (2)—(4) and property (iii) of (f; ) we get.

(r)
Jh
Rn(l//r h)C[O 11 = <D r+;

r . -1 . -1
< D,( 2 ) 6me(fim™") _6mr(fim™?)
hn n en
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6met(f; 8rh) P 6en([2eDIn (e + nr(f; nTN]4 D(f;n7h

Se+nt(f;n Y (e+nt(fin™ H)n
< lgelpwm_,l)i)_ 9)
n

From (7), (2)—(4) and (9) we obtain
Rn(fs la [O’ 1]) < r(f’ l//r,h) + Rn(lpr,hv 1’ [Ov ]])
<2m™' 4 R, wcro.ny < 1671h

In(e +nt(f;n 1))
n

In(e +nt(fin™ 1))

+ 18¢2D < 50e’D , (10
n

i.e. we have the statement of the theorem with ¢ = 50e2D.
From (1) and (10) the theorem follows with ¢ = 50e2D. |

Corollary 9.4. Let f be a function of bounded variation on the interval [0, 1].
Then

R,(f;1:[0,1])=0On"").
The corollary follows directly from theorem 9.3 and property (iv} of =(f; ).

9.4 Notes

As we mentioned in the introduction to this chapter, the Hausdorff distance
between bounded functions was introduced by Bl. Sendov and B. Penkov
(1962). The results for approximation of functions with respect to the
Hausdorff distance by means of polynomials, splines, rational functions, linear
operators, are collected in the book of Bl. Sendov (1979). We shall restrict
ourselves to rational Hausdorff approximations.

In connection with theorem 9.2 we want to mention the following upper
bound given by S.A. Agahanov and N.Sh. Zagirov (1978) (compare with A.P.
Bulanov (1975a))

n

« nz
R,,(sign X)e(a@) < € €XP < ~ 21n (1/5)>’ v

where A(e)=[—1, —¢]u[e 1], e€(0,e "), ¢ a constant.
The exact lower bound is given by A.A. Gonchar (1967b), (see also A.P.
Bulanov (1975a)):

e T\ R sign ) 2)
xpl ————— | < R(SI1Z0 X)¢(are)-
P\ 2m@/s S Heaw

It is not very difficult to obtain from the estimates (1) and (2) the following
asymptotics for the best Hausdorff rational approximation to sign x, which
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improves theorem 9.2:

R, (signx; 1;[—1, lj)xexp<—?/n—2—\/n>

(compare with theorem 4.2).

Theorem 9.3 is proved by P. Petrushev (1980b). This theorem is exact in
the following sense (P. Petrushev, 1980c):

For every function 1(8), 6 =0, such that 1(8)=1(g; ) for 6 =0, where g
is a bounded function on the interval [0,1] with unbounded variation (i.e.

7(6)/0 —> 0), there exists a bounded function on the interval [0,1] such that
60

1(f;0) < 1(d), 6 =0, and
lim sup (R,(f; 1510, 1T)n/In(e + nt(1/n))) > 0.

Corollary 9.4 also can be improved (P. Petrushev, 1980d): for every function
f with bounded variation on [0, 1] we have R,(f;1;[0,1])= o{(1/n).

Let us remark that there exists an absolutely continuous function f on
[0, 1] for which the order of the best polynomial Hausdorfl approximation
is exactly Inn/n (see Bl. Sendov (1979)).

Many interesting results concerning rational Hausdorff approximation are
given by E.P. Dolzenko and E.A. Sevastijanov (1976a,b) and E.P. Dolzenko
(1976). These results are connected with the so-called piecewise monotone
approximation.

For example if 32 o(R,(f; 1;A))Y* converges for s = 1 then the function f
has almost everywhere on the interval A a differential of order s, and this
result is exact

If R,(f;1; A) =0(1/n), then fis univalent and continuous almost everywhere
on A.

Finally, we want to give the generalizations of Gonchar’s results from
section 5.6 given by Bl. Sendov (see Bl. Sendov (1979)).

Let the function f be analytic in the unit disk D = {z:|z| < 1}. We say that
[ belongs to the class A4 if

2n
lim %j In. | f(pe")|dt = A(f) < oo,

p1-0 0

where In , a = max {0, In a}, and that f belongs to the class H, (Hardy spaces) if
1 (% .
im — | f(pe®)[Pd0 = H () < co.
p—=1-0 27[ 0
The result of Bl. Sendov is the following,
Let f be a continuous real valued function on the interval (0, 1], which is
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9.4 Notes 271

bounded from above or from below in (0, 1]. Let there exist an analytic function
F(z)in {z:|z — 1| < 1} which coincides with f on (0, 1]. Then if F(z — 1)€ A, then

R(f:15(0,17) = 0<1“7">

If F(z— 1)eH ,, then
R,(f;1;(0,1]) = O(e "),

where ¢ is a positive constant.
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10
The o-effect

As we have noted in section 5.1 a characteristic property of the rational
approximation is the appearance of the o-effect in the order of approximation
of individual functions of some functional classes. The chapter is devoted to
the study of this phenomenon.

In section 10.1 is established and characterized the o-effect for uniform
rational approximation of the functions from the class V, and for the rational
L, approximation of functions of bounded variation. Section 10.2 investigates
the o-effect for the rational uniform approximation of functions in some
classes of absolutely continuous functions. The same effect for the rational
uniform approximation of convex functions is considered in section 10.3.
The o-effect for the rational L, approximation of functions of bounded
variation is investigated in section 10.4.

10.1 Existence and characterization for uniform
approximation of individual functions of the class ¥, and
for L, approximation of functions of bounded variation

The class V, = V,(M,{a,b]) of all functions f for which V2" < M < w is
basic for rational approximation. In theorem 5.1 in section 5.2 we established
the exact order for the rational uniform approximation of the class V,(r = 1)

1
sup R,(f)c =0 <—+—1>
fevV, n

In this section we prove that for each function feV, there exists a sequence
{e.(f) 3= 15 8(f)— 0 as n— o0, such that

&a(f)

nr+1 >

R,(fNc< n=12,...,
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10.1 V, and bounded variation 279

i.e. the o-effect appears. In addition, we characterize this effect. More precisely
we replace ¢,(f) in the last estimate by one new functional characteristic.
Also, we consider the same problem for the spline approximation. We
investigate the o-effect for the rational L, approximation of functions of
bounded variation. Finally we present some generalizations.

10.1.1 One new functional characteristic

Definition of the function 8(f). Suppose that f is a function of bounded
variation on [a, b]. The general notion of complemented graph f for a given
function f was defined in section 9.1. In our case (V5 f < o0) f consists of
the graph f of the function f and all closed line-segments in the plane that
joint the points (x, f{x — 0)), (x, f(x)) and (x, f(x + 0)) for each point xe[a, b]
of discontinuity for f. Note that the complemented graph f coincides with
the graph f when the function f is continuous.

We consider the complemented graph f of f as a curve in the plane. Since
V?f < o, the curve f is rectifiable, i.e. f is of finite length. Further we shall
denote always the length of f by [ =I(f).

Let s be the natural parameter (the arc length) of f so that

fix=x(s), y=ys), se[0,1], x(0O)=a, x(I)=bh. ()

Naturally, the points (x, y)ef for which y is not between f(x — 0) and f(x + 0)
are obtained from (1) for two different values of s. For example, the
complemented graph f of the function

0, 0<|x|<1,
f(x)—{l, o,

is the set f={(x,0): — 1 <x<1}uU{(0,y):0< y< 1} and f has the following
parametric equations:

1
s—1, se[0,1], 0.~ sel0 1],

-1 1,2],
x(s) =<0, ; se(;,:], Hs) = ;—S: 222,31

s—3, s5e(3,4], 0, se(3,4],
I(f)=4.

Lemma 10.1. For the parametric equations (1) of f (V2f < c0) we have x(s),
y(s)eLip, 1" and

()P + (V)2 =1 for almost all se[0,1]. 2)

Tx(s)eLipl 1 means that |x(s') — x(s")| < |s' — 5|, for 5, s"€[0,1].
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280 The o-effect

Proof. From the definition of length of arc it follows that
{(x() = x(5")* + (W) = p(s")*} 2 < U8 =57, 8,s"€[0,1],

and therefore x(s), y(s)eLip, 1.
Now we prove (2). First we observe that

(X'(sH)?* +(V(s))* <1 almost everywhere (a.e.) in [0,1]. 3)
Indeed, by the definition of length of arc we have
(s + ) — x(9))> + (s + B) — W)H)2 < |k, 5,5+ he[0,1]

and hence

(EUES) NEEUEY
A h

Taking the limit in this inequality with h—0 we obtain (3) a.e. in [0,/].
Also, we shall prove that

J (XS +('(5))) 2 ds > 1. )

0

To this end it suffices to prove that

s*

((x(s) — x(")? + (1) — Ms)P) 2 < J (X6 + () 2ds (5

s

for0<s <s" <L
Set |° x(s)ds = pcosa and [, y'(s)ds = psina,p >0. Then we have

5" 2 s 2312
((x(s) = x(5")? + (¥(s) = y(s"N)'? = { < J XS d5> + <J y'(s) dS> }

=p=pcosPa+psin®a= j (x'(s)cos a + y'(s) sin &) ds.

This and the obvious inequality
|x'(s)cos o + y'(s) sin o] < ((x'(5))* + (y'(s))2)/?
give (5) and (5) implies (4). The equality (2) follows from (3) and (4) immediately.
O

Denote

E = E(f) = {se[0,11:(<(5)? + ()" = 1}.

By lemma 10.1 we have mesE = [.
Now we are able to define the function & = 0(f). For cach se E we define
0(s) = 0(f, s) as the oriented angle between the real axes and the tangent
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10.1 V, and bounded variation 281

vector (x'(s), '(s)) to f at the point (x(s), y(s)), i.e. we define

y'(s)

, SeE, Xx'(s)#0,
x'(s)

0(s) = arctan

and

0(s) = gsign y(s), seE, x'(s)=0.

Some properties of the function 6 = 6(f). By the definition of 8 it follows that
0 is defined a.e. in [0, 1], @ is measurable and |6(s)| < =/2 a.e. in [0,[].

The essential difference between the functions 6 and f” is that (g, f(a)) and
0 a.c. in [0,1] determine uniquely the complemented graph f of f, while
f(a) and f’ a.e. in [a, b] determine completely f and hence f only when f
is absolutely continuous.

The complemented graph f of f has the following representation which
uses 0

x=x(s)=a+ jscos O(s,)ds;,
0 se[0,1]. (6)

5

y=y@)=f(a)+ f sin 0(s,) ds;,

0

VE

Indeed, by the definition of 8 it follows that x'(s) = cos 8(s) and y'(s) = sin (s)
a.e. in [0, /] which implies (6).

Let the function f be absolutely continuous on [a, b]. Then the function
x(s) is strictly increasing on [0,!]. Denote by s(x), xe[a, b] the converse
function to x(s). It is well known that s(x) = [5./(1 + (f'(t))*)dt for xe[a,b].
Clearly 6(s) = arctan f'(x(s)) a.e. in [0, []. It is readily seen that, if feCy, ),
then 6(s) = arctan f'(x(s)) for each s€[0,[].

Further we shall apply the following functional characteristic

I—h
(B, ), = sup J |0(s + h) — B(s)}ds, 0=0,
0<h<sJ0
to describe the o-effect in some situations.
Since 0(f) is measurable and bounded a.e. in [0,[], then w(8; ), —0 as
6 —0.If f is convex and bounded on [a, b], then 6 is monotone and bounded.
Hence w(8; ), = O(d). Also, w(8; 5), satisfies the usual properties of the
integral moduli of continuity; see section 3.1. A very essential property of
w(8; 8),, is provided by the following lemma.

Lemma 10.2. If { is absolutely continuous on [a, b] and 6 = 8(f), then
o(8;0), < Ca(f59), 620, (7

where C >0 is an absolute constant.
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282 The o-effect

Proof. Our arguments are based on the following well-known inequality (see
lemma 7.6 in section 7.1): if geL,, ,;, then

v 1 v 2 v—u ffv—t
j Ig(X)*;J g(t)dtlde*“j J lg(x + 1) —g(x)|dxdz. (8)
u v—u), v—1u "

Consider the case 0 <h<o<(b—a)/4<!/3, where [ =[(f) is the length
of the graph f of the function f. Note that f ={, since f is continuous. Set
n=/[1/2h]. Then we have

jl_h|0(s+ h) — 8(s)|ds

0

v=0 J2vh

n—1 {fRQv+1)h
<Y J |0(s + h) — B(s)|ds

N "iz J(ZV+2)h |0(s + h) — 0(s)|ds + JI_M |0(s + h) — O(s)|ds

v=0 J(2v+1)h 1-3h

I—-h
+j |[8(s+h)—0(s)|ds=0, + 0, + 05+ 04
1—2h

Now we estimate each integral in the sum ¢,. Let f:x = x(s), y = y(s),
se[0,1], x(0) = a be the parametric equations of the graph f of the function
f with respect to its natural parameter s. By s(x), xe[a, b] we denote the
converse function to x(s), se[0, [].

Denote x, = x(vh), A, = [x,, X, »], K, = |A,| 7' f, f'(w)du.

Clearly, we have

(2v+2)k

(2v+ 1)h
Ivzf |6(s + h) — B(s)|ds < 2J\ |6(s) — arctan K, |ds.

2vh 2vh

Since f is absolutely continuous, s'(x) = /(1 + (f'(x))?) a.e. in [a,b] and

(2v+2)h
I,< 2J |arctan f'(x(s)) — arctan K 5, |ds
2vh

= 2J ' larctan f'(t} — arctan K,,|./(1 + (f/(t)?) dt,
X2y

where we have made the substitution ¢ = x(s).

Because of
, _ xarctanx 1
(WL xDaretanf =+ 2
and
. _.L_._
V) =27
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10.1 ¥, and bounded variation 283

we have for x, x,e{— oo, o0)

| /(1 + x})arctan x; — /(1 + x3)arctan x, |

< xarctanx+ X | |< 7'E+1 |
< su — S T 5" X1 — X | & | T Xy —X
xs(fo?,oc) \/(1 +X2) \/(1 +x2) 1 2 2 1 2

and

(S +x3) — (1 + X§))arctanx2|

T
S5 sup I
xe( oo, ao)\/(l +X

The last inequalities imply that

T
Xy — x2|<§|x1 — X2l

Iv<2j IV +(f'(0)Parctan f'(t) — /(1 + K3,)arctan K ,,|dt
+ ZJ‘ (VA + K3)— /(1 +(f' (1)) arctan K, |dt

<2m+ l)f |f'(t) — K,,|dt.

Thus we have for v=0,1,...,n—1

[ s n- e <2ein | ro-Ke o

2vh A,

v

Choose 5 such that 20 <y <40 (0<d < (b—a)/4) and n=(b — a)/2m for
some positive integer m.

Denote d; = [a + iy, a + (i + 2)y]. Also, denote by Q, the set of ail intervals
A, =[x, x,,,] such that A, = d,, for some i (0 <i<m—1) and by Q, the
set of all intervals A, such that A, = d,; ., for some i (0 <i<m—1). Clearly
{Ayv=0,1,...,n—1} =Q,0LQ,. Set

1 ’
C, = ZL; f'w)du.

If A, = d, then

j L/ () — K, |dt SJ |f(1) = Cildt

+>J‘
AV

< 2J £~ Cildr.
Av

dt

1 !
Ci—vaf(u)du
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284 The o-effect

Consequently, we obtain for fixed i (0<i<2m—2)

) J |f)=K,ldx<2 Y | [f(x)—Cildx

Ajcd;JA,

<2f £~ Cildx.

Hence, in view of the inequality (8) we obtain

5y j - K Jdx<2'S | 1700~ Caildx

AeQ, i=0 Jdy

m 11 a+(2i+2);y—-t
f f |f/(x +t)— f'(x)|dx dt

i= 0’7 a+2in

2
SEL f Lf'(x + 0 —f'(x)|dx dt < 4a(f", 29)y..

Thus we have
Y | (%) — K, |dx < 320(f"; 9),. (10)

2,60, Ja,

Similarly we find

Aen, J. |f(x) — K,|dx < 32w(f";0),. 11)

The estimates (9)—~(11) imply that for 0 < < (b —a)/4

o, <Cw(f’;d),, C=-constant. (12)

Similarly we obtain for i=2,3,4
bh—
o< Cof0), 0<6<— 4

Consequently, we have in the case 0 <o <(b—a)/4
(13)

I—=h
J [6(s + h)— O(s)|ds < 4Co(f"; 0), 0<h<d.

0

Hence
(6;0), <4Cw(f";8),, 0<I<(b—a)d (14)

Since w(8; 6), = w(8;1),, for & = I (I = b — a), the case § = I for the inequality
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10.1 V, and bounded variation 285

(14) contains the case 6 > I. On the other hand w(f; b — a), <4w(f";9), for
(b —a)/4 <3 <b—a and therefore the case (b —a)/4 <3 <b—a for (14) is
contained in the case d = b — a. Consequently, to prove the inequality (14)
when d > (b — a)/4 it suffices to establish the inequality (13) with O <h <!

and 6=b—a.
Now, suppose 0 < h < I. Then we obtain similarly as in the proof of estimate
(12)

f-h|()(s +h)—0(s)|ds

0(5)—arctan< ! fb f'(w) du> ds
b—a]l,

1
SZJ‘
0

<2(m+ l)r f (x)—bLJ S'(w)du|d
“ b—a (bt
<4(n+1) _aL L [ff(x+ 1) —f'(x)dxdt
Hr+ Do(f';b—a)
as required. Thus lemma 10.2 is proved. O

Remark. A lower estimate of w(6(f);d), by w(f”;d) is not true in general.
Indeed, for instance, if f is convex and bounded on [0, 1], then 8 =0(f) is
monotone and bounded on [0, /()] and therefore w(8; ), = O(5). On the
other hand, it is readily seen that w(f”;d), = o(f;d). for 0 < <1 where
w(f; d)c is the modulus of continuity of f, which may tend to zero as slow
as we want with 6 »0. However, if feLip 1, then one can easily prove that
a(f’; 8), = O(m(B; 8).), 1.e. in this case w(B; 3}, = O(w(f"; J).).

10.1.2 The o-effect in some spline approximations

We start with two lemmas concerning the intermediate approximation by
means of polygons (broken lines). The first lemma is trivial, but the second
one not and plays the main role in this chapter.

Lemma 10.3. Let f be absolutely continuous on [a, b] and ¢ be the polygon

withknots x;=a+i(b—a)/n,i=0,1,...,n,(n = 1) which interpolates f at these

knots, i.e. p(x;)=f(x;) and ¢ is a linear function on each interval [x; 1, x;].
Then we have for i=1,2,...,n

2n b—a)yn (*x;—t ,
1 =0lete g <5 f f £+ 0 —f ()| dx e
0

Xi-1
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286 The o-effect

and therefore

2(b —a) ,b—a
“f_(pHL[a,h]< " ? w(f, " )L-

Moreover

b—a
I f = HL[a.b] < 2w<f’§ " >
L

and

n b—a
Vip' <—— ;5 ,
W Sy 0 <f p >L
where we take @'(x)=%¢@'(x;—0)+ @' (x;+0)), i=1,2,...,n—1, when we
calculate Vi¢'.

Proof. By our assumptions we have for xe[x;_,, x;]

Fox) = fxi-y)

Xi — Xi—1

e(x)=f(x;- 1)+ (x—x;—)

i

x 1 xi
=f(x;-)+ Ll <;_Tl: J‘x{_‘f,(u)du>dt.

Using the estimate (8) in subsection 10.1.1, see also lemma 7.6 in section (7.1),

we get for xe[x; _;, x;]
fx (f’(t) S J f’(u)du>dt
X1 X = Xi—1 Yi—1
Xy 1 Xi
< f SO~ ——— f f'w)du

Xp—Xio1 s

o [E-aym
g J f fx+1t)—f'(x)|dx d.

In the same manner we obtain

| f(x) = o(x)| =

dt

J |f(x) — ¢'(x)|dx

J‘XI
=1%oy Xi—1

b-—a)n Fx;—t
T 1_[ f [f'(x+1t)—f'(x)|dxdt

< J(M)/nj 1t B — (0 dx dr < 2w(f b_“>
b_ a n L

dx

X; X;—

13 L

fi(x)— _IJ‘x{ f'(u)du
1

alo
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10.1 V, and bounded variation 287

and also

n Xit g n

b—al. f’(u)du—b_aJ;Hf’(u)du

n—1 Xi b_
s 8] r{eetst) o

n b—(b—a)n b—a
<3 f f’<X+A> —f(x)
—a}, n

Lemma 10.4. Let [ be a function of bounded variation on [a,b] and the
complemented graph of f have the parametric equations

Fix=x(s), y=us), se[0,1], I=I(f), x(0)=a, (15)

with respect to the natural parameter s. Denote 0 =0(f). Let n>1 and ¢ be
the polygon that interpolates f at the points (x(s;), y(s,)), s;=il/n, i=0,1,...,n,
i.e. @ is the polygon which connects consecutively with line-segments the points
(x(s3), ¥(s3))-

Then we have

dx

h_
dxgbn w(f’; a). D
—a noJr

[ l
“f_(l’||L[a,b]<Cw<0;> (16)
n nj
and
n [
Vg"’@((p)cho<0;> , amn
l nj/

where we have taken 0(¢, s;) = (6, s; — 0) + 8¢, s; + 0)) at the knots s; when
VE90(¢) is calculated, C > 0 is an absolute constant.

To prove lemma 10.4 we need some auxiliary statements.

The Hausdorfl distance between the functions will play an essential role
in our evaluations. The Hausdorff distance with a parameter « was defined
and applied in Chapter 9. Here we shall consider only the Hausdorff distance
r(f, g)=r(f, g; 1) with parameter « = 1, i.e. the Hausdorff distance generated
by the following distance in the plane:

d(4, B)=d(A(ay, ay), B(b,, by)) = max {|a, —by|,Ja, —b,[}.  (18)

We shall need the Hausdorff distance r(f, f,) between functions f, and f,
that may be defined on different intervals A, and A, respectively. By definition

r(f19f2)=r(flﬂAl;fZ?AZ):r(flaf_Z)’

where f; (i = 1,2) is the complemented graph of the function f; defined on A,.
Also, the Hausdorff distance can be defined as follows. For fixed ¢ >0
denote by D, = {(x, y):d((x, y),(0,0)) < ¢} the ¢-neighborhood of the origin
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288 The o-effect

with respect to the distance (18). Define for each two sets F and G in the plane
FAG={(x,y):x=x;+ X5,y =y, + s (X, y)EF, (x5, y2)€G}.  (19)

Then the e-neighborhood f* of f is defined by f¢ = f + D,. Clearly, we have
r(fi, f)=infle f, e f5 f /i) (20)

We shall denote by p(A4, B) the Euclidean distance between the points 4
and B in the plane, i.e.

p(A, B) = p(A(ay, ay), B(by, by)) = ((a; — by)* +(ay — b))%
Note that d(A4, B) < p(A, B).

Lemma 10.5. Let f be a function of bounded variation on [a,b] and the
complemented graph of [ have the following parametric equations:

f_:x=x(s), y=ws), se[0,1], I=I(f), x(0)=a, 2D

where s is the natural parameter of f. Suppose 0 <s, <s, <! and f is the arc

of f which is obtained from (21) for s€[s,,s,]. Denote x;=x(s), y; = y(s;),

i=1,2. Let ¢ be the closed line-segment with endpoints (x,, y,) and (x,, y,).
Then we have

~ 8 $2— 81 S2—t
rf, o) < J J [0(s + 1) — O(s)|ds dt (22)
S2—S51 Jo 5
and
1 S2 27( §2—81 sy —t
‘9(@ - J 6(s) ds s—jf f |6(s + t) — O(s)|ds dt,
S2 =81 Jsy (52=51)° Jo s1
(23)

where

arctan <u>, X <Xy,
X, —X
oo)=y
Z‘Sign(h_h), Xy =X, 0=0(f).
Proof. The case x, = x, is trivial.
Let x; < x,. Consider the linear function

Y(x)=y, +tan () (x — x,), xelx,,x;],
where

o) = . : Jsz O(s)ds, x3=2x;+ (s, —s;)cos O()).

2781 Jsy

Clearly, I() = I(f) = s, — 5,. Denote y, = y(x).
The arcs f and ¢ (the graph of the function ) have the following parametric
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10.1 V¥, and bounded variation 289
equations (see (6) in subsection 10.1.1):

x=x.(s) = x, +J cos (s, +t)dt,

0

~

/ s
y=ys)=y, + J sinf(s, + t)dt, se[0,s, —s,],
0
and
X = X,(s) = x; +J cos O(y) dt,
Y ;

y=yus)=y; + r sin8(y)dt, sel[0,s, —s,]

¢
From the above representations of / and y we get

p((x 5(5), y(5)): (xy(s), yyls))
= ((x () — xy(8)* + (v, (s) — yy(s)H)!?

JS (cos O(s, +t) — cos 6(y)) ds| + r (sin B(s, + 1} —sin B())ds

0

<

<2J‘s: SII O(s; +t)—0(Y)|ds =2 J | 0(s) — O(y)|ds.

0

Set

S2—81 S2—t
- * J f 10(s + ) — 0(s)|ds dt.
) St

Sy — 8

Then by the last estimates and the estimate (8) in subsection 10.1.1 (see also
lemma 7.6 in section 7.1), it follows that

P((x4(3), y (), (xy(8), vy (N < T, s€[0,5, — 5] (24)
Hence

r(Ay)< T (25)

Since ¢ and Y are line-segments with common endpoint (x,, y,} and the
other endpoint of ¢ is on f, we have from (24) with s=s, — s,

r(@, ) < p((x3, y2), (X3, ¥a)) < T.
From this and (25) we get

r(f, @) <r(f,¥) + r(y, 0) < 2T,

i.e. the estimate (22) holds.

It remains to estimate |08(¢p) — 8(y)|. Consider the case |8(¢) — O(y)| < =/2.
Let (x,, y4) be the orthogonal projection of the point (x5, y;) on the line
continuation of ¢. By (24) with s =5, —s; we have p((x;, y,), (x5, y3)) < T
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290 The o-effect

and hence p((x4, ¥4), (x5, ¥3)) < T. Then we have

2 . P((Xm y4)3 (X3, y3)) T
160) — 0wl <sinjfe) — 0y <7 IR

which implies (23).
Now, let |8(p) — 0()| = /2. Because of p((x,, y,), (X3, ¥3)) < T we have
53— 51 < p((x2 ¥2) (X3, ¥3)) < T.

Hence |0(¢) — 0(y)| < n < T /s, —s,) which implies (23). O
The next lemma gives a relation between L,-distance and the Hausdorff
distance between functions of bounded variation.

Lemma 10.6. If V2 f < 0 and Vg < oo, then

I = llLa.py < 9min {I(f). Ug) }r(f. 9). (26)
where I(f) and l(g) are the lengths of [ and § respectively.

Proof. Suppose I() <I(g). Set & = r(f, g). Obviously £ < b — a. Denote by f°
the e-neighborhood of f with respect to the distance d(4, B) from (18), i.e.
fi=f+D, where D, = {(x,y):d((x, ¥),(0,0)) < ¢}. Then in view of (20) we
have § —f* and therefore

N f—g | Lia.py < MeES, f_ga (27)

where mes, f* is the two-dimensional Lebesgue measure of the set f*.
Denote

E = {(x,y):xe{0,¢ — ¢}, |yl <el,
Eg = {(x,y):ye{(), &, —8}7 |X| gg}’

and E,=E,UE].
Clearly, since ¢ < b — q, it follows that (see (19))

F=f+D.=f+E,=([+E)U([+E)

and therefore by (27)

1f = gllLia < mes, (f + E) + mes, (F + E).
It is readily seen that all the sets in consideration are measurable and

mes,(f + E)) = 6e(b —a), mes,(f + E/)<6eVif.

Hence

1S = G lleian < 62(b — a+ Vif) < US)r(f, 9) O
Proof of lemma 10.4. Denote by f; the arc of the curve [ which is obtained
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10.1 V, and bounded variation 291

from (15) for se[s;_y,s;], s;=il/n, and by ¢; the line-segment of ¢ which
connects the points (x(s;_,), y(s;_ ;) and (x(s;), y(s;)). Also denote
arctan (5) =
(s X(8;- 1) < x(s3),

Zsign () = ylsi- ) ¥sio 1) = x(6)

and

Ay = [x(5;-1), x(s;) ]

By lemma 10.5 we have for i=1,2,...,n

In fsi—t
o 0) < S_an j 10(s + 1) — 0(s) ds dt (28)
0 Jsi—y
and
2an? (U [
0,-0r1 < 10(s + 1) — 6(s)|ds dr. (29)
0 Jsi—y

The estimate (28) and lemma 10.6 imply that for i=1,2,...,n

si—t

9l '/"
Hf—(p||L(Ai)$r(f,-,(pl-)<72J j |0(s + t) — O(s)|ds dt.
n 0 5

Si—1

Summing these inequalities we get

1= @hutons = 3 15~ 0l
<72Z J f [0(s +t) — O(s)|ds dt
0 Si—
<72f J 10(s + 1) — O(s)| ds dt
0 0

I
\72160(0- >
n n/L

i.e. the estimate (16) holds.
Now we estimate V§?0(¢p). By (29) we obtain

VEP0(@)= 3 10, —0,_,| < Y |0F — 0% (| +2 3 0, — 6F|
i=2 i=2 i=1
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292 The o-effect

<y 1] <s+ ) o(s)
T’V( 3 rﬂ|0(s+ )~ 0(s)|ds>dt
0 =l
<(1 +4n)?w<9,l> .
l nj

Thus the estimate (17) is established. O

Now we shall apply the functional characteristic w(8,d), for describing
the o-effect in some spline approximations. As in the previous chapters (see
section 7.3), we shall denote by Si(f), and naturally by Sk(f), the best
approximations of the function f by means of all piecewise polynomial
functions of degree k —1 with n+ 1 (free) knots on [a, b] with respect to L,
and Hausdorff metric respectively.

Lemma 10.4 directly implies the following theorem.

ds

Theorem 10.1. Let V®f < co. Then we have

SH/ = 0(1) (30)

Moreover
[ l
n n/L

where I =I(f), C = constant.

Theorem 10.2. Let feV,, r>= 1. Then we have

n

1
Sﬁ”(f)c=0<—r+-1>' (32)
Moreover

w(0(/), i/n),

S;+2(f)C<C r+1 ) n=1,2,..., (33)

where 1 =1(f"), C=C,()l(b—ay .
Proof. By lemma 7.13 in section 7.3 we have

Sb—ar

n

S f)e < 52 (™), n=12,...

This estimate and (31) imply (33). O
Theorem 10.3. Let V2 f < co. Then we have

Sa(f) = 0<1>- (34)

n
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10.1 ¥, and bounded variation 293

Moreover
S,Z,(f),scg)(e(frzﬂ, =1,2,..., (35)
where | =1(f), C = constant.
Proof. Let
fix=x(s), y=wus), s€[0,1], x(0)=a, (36)

be the parametric representation of the complemented graph f of the function
f with respect to the natural parameter s. Suppose n = 1. Set

0,(8) = K;‘J‘A. O(s)ds, seA;= l:(i — 1)l’il:|’

n n

i

i=1,2,...,n, where 8 = 6(f). By lemma 7.6 in section 7.1 it follows that

|| 0— 91 “L[O,l] = .Zl ” 0— 01 ”L(A.-)

n 2n lin (Pitin—1t l
<) 10(s + t) — 6(s)|ds dt < 20| 6;— | .
( n

o
i=1 0 i—1)/n L

Hence, there exist points 0 =, <t; < --- <t,=1[ such that
2 [ .
10 =0l <=0 8-}, i=L2...n 37
n nj

Let {s;}i2o={il/n}l-ou{t;}i-o and 0=s5,<s5, <--- <5y, =1 Then (37)

implies that
2 l
”0_01||L[3i-l’3i]<nw<6;n>L (38)

and 0, equals some constant in each interval (s;_, s;).

Denote by f; the arc of f which is obtained from (36) for se[s;_,, s;]. Let
¢ be the polygon that is defined connecting the consecutive points (x(s;), y(s;)),
i=0,1,...,2n, with line-segments. By ¢; we denote the line-segment of ¢
which connects the points (x(s;_ ), y(s;_ 1)) and (x(s;), y(s;)).

By lemma 10.5 and (38) we get

o)< —— f - j 10(s + 1) — 0(s)|ds dt
Si—Si—-1Jo St
8 5i=8i—1 [si—t
= f J‘ [0(s + 1) — O,(s + t) — (O(s) — 0,(s))|ds dt
Si—Si—1Jo Sio1

32 l
<16]0—40 S — i~ ] .
| g n w<0 n>L
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294 The o-effect

Consequently
r(f, o)< 2w<0;l>
n n L
and
@eS(2,2n,[a,b]).
Hence

2
S5, <3w<e;1> el
n njL
This estimate implies (35) for n > 2. The estimate (35) for n =1 follows from
lemma 10.5. .

Remark. The estimates (30), (32) and (34) are exact in the corresponding
function classes. The exactness of these estimates can be established similarly
as for the rational approximation; see section 11.1.

10.1.3 Uniform approximation of individual functions of the class
V., and L, approximation of functions of bounded variation
In theorem 5.1 in section 5.2 we proved that

1
sup R,,(f)c=0<ﬁ>, r= 1.
fevy n

The following theorem establishes the existence and character of the

o-effect for the rational uniform approximation of every individual function
Sfev.,.

Theorem 10.4. Let feV, (r = 1). Then we have

1
R.(f)c= °(;T+T> (39)
Moreover
Rn(f)cscw, nzr+1, (40)

where | =1(f") and C=C,(r)l(b—ay L.

Remark. In theorem 11.4 in subsection 11.1.3 we prove that the estimate (39)
is exact with respect to the order in the class.

Corollary 10.1. (i) If f is defined on [a,b] and f® (r=1) is absolutely
continuous, then

w(f(’“’;l/n)L> 1

Rn(f)C=O< n,+1

(compare with theorem 10.6 in section 10.2).
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10.1 ¥, and bounded variation 295
(i) If f is defined on [a,b] and {7 (r = 1) is convex and bounded, then

1
Ro(f)e=0 <f> 42)

Proof of theorem 10.4. We shall prove the estimate (40) only in the case r > 2.
The proof of (40) in the most essential case r = 1 is complicated and needs
more precise techniques which are unfortunately too long to be included in
this book.
By theorem 8.9 in section 8.3 we have forn>=r+1 and r =2
b=tV 1S§(f(r))1

R(f)c<C ¥ ) (43)

where C = C,(r,®)(b — ay' "' and « > 0. On the other hand, by theorem 10.1
in subsection 10.1.2 we have forn=1,2,...

S2(/), <Clo <0<f<”);’> (44)
n n/.

where [ =[(f) and C = constant.
Combining (43) with x =3 and (44) we get

R,(f)e < C)b—ay- 11&@%{‘”_);”&

0= vn/v + D (@) I/n),

nr+3

-1 @O k),

nr+1

<CH(b—~ay'

< Cy(r)(b—a)

Thus the estimate (40) is proved when r > 2 and (40) implies (39) in this case.
Now we prove (39) in the case r = 1. By theorem 8.9 in section 8.3 we have
forn=1,2,...

nvO la—le ) /p
R(fle< €= (v:ail L, 45)

where C=C,(p,0)(b—a)* "7, >0,p> 1. Theorem 10.11 in section 10.4
implies that

1
Rn(fl)p =0 <n> (46)
The estimates (45) and (46) imply (39) in the case r = 1. O

Proof of corollary 10.1. If f© (r > 1) is absolutely continuous on [, b], then
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296 The o-effect

by lemma 10.2 in subsection 10.1.1 we have o(0(f™7); ), < Ca(f**1;8), for
d 2 0. Then (41) follows from (40) immediately.

Suppose [ (r=1) is convex and bounded on [a,b]. Then 6(f") is
monotone and bounded on [0, ()] and hence w(B(f"); §), = O(J). Thus
(40) implies (42) directly.

Theorem 10.1 in subsection 10.1.2 establishes the o-effect for the L, spline
approximation of functions of bounded variations: if Vf < co, then

sﬂﬁlsciw<9uml), n=12..., (47)
L

n

where [ = [(f), C = constant.
A similar estimate holds also for the rational approximation.

Theorem 10.5. Let Vi f < co. Then we have

1
Ru(f)s = o() (48)
n
Moreover
R,,(f)lsclw<9(f);1>, n=12,..., (49)
n n/,

where [ =I(f), C = constant.

Remark. The exactness of the estimate (48) is proved in theorem 11.6 in
subsection 11.1.5.

Proof of theorem 10.5. By theorem 8.1 in section 8.1 we have for each o > 0

n x—1Q2
RAﬁlst%Jiﬂ%Fiigé n=1,2,.... (50)

Then by (47) and (50) with a =3 we get

R,(f)

v=1YoO(f); 1/v)
<Gyl 1 S L

<Cyl -w
sy " 20

vy + D@Ly _ ! (e(f)- l)
’n L'

Thus the estimate (49) is proved and obviously (49) implies (48). O

10.2 Uniform approximation of absolutely continuous functions

In section 5.3 we considered the rational uniform approximation of some
classes of absolutely continuous functions. Here we investigate the o-effect
for these approximations.
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10.2 Absolutely continuous functions 297

Theorem 10.6. If fe W7 [0, 1], then the estimate

1
Rn(f)q = O<r> (1)
n
holds in the following situations:
@ r=Lp=1L1<g<x,
@@ r=1,p>1,q=o00,
() r=2,p=1,qg= 0.

Moreover for an arbitrary positive integer k the estimate

(r).l
R, <y k1, C=Coark, @
n

holds in the above situations (i)—(ii1).

Proof. If feW?[0, 1], then by theorem 8.9 in section 8.3 the estimate

n_ a—lsk (r)
R,(f),<C v—lvnrMV(f )p, n=r+k—1, C=C(p,qrkua), (3)

holds in the situations (i)—(iii) from the suppositions of the theorem.
On the other hand by lemma 7.14 it follows that for each feL [0,1],
I<p<ow,and k=1

S'ﬁ(f)pSC(p,k)wk<f;%> , n=12... @)

The estimates (3) with « =k + 1 and (4) imply that

Sh= Ve (S5 1)
Rn(f)q < C] - nr+kk+1 -

= v+ Diol (S5 1/n), ka(f‘”; 1/n),

<C
1 =~
lr+k+ n

The estimate (2) implies (1). |
Theorem 10.7. If f is absolutely continuous on [0,1] and f'eLlogL, then
, 1
R,(f)c= 0<~>~ (%)
n
Proof. By theorem 5.6 (see also theorem 5.5) we obtain

E(f
_"(fn)&, =12,..., ©)

Ryp1(flesC
where E,(f")110¢1 1S the best approximation to f* in the Orlicz space Llog L
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298 The o-effect

by means of algebraic polynomials of degree no greater than n. It is well
known that for geLlog L E,(g);,e;, — 0 as n— cc and (6) implies (5). O

Now we establish the exact order of the rational uniform approximation
of individual absolutely continuous function with a given modulus of
continuity. Consider the class V(w)=V(M,[a, b],w) of all functions f
continuous on [a,b] such that V5f< M and w(f;d)c < w(d), § =0 where w
is a given modulus of continuity. In theorem 5.7 in subsection 5.3.4 we proved

that for each
M b—
R,(f)c < C min { ; +a)< a)} n=12,.... (7

nft
I<tsn te

In theorem 11.7 in section 11.2 we establish the exactness of this estimate in
the class V(w) when w(d)/0 - oo as d »0. Of course the estimate (7) holds
also for all absolutely continuous functions in V() and it is exact for this
class. However, the o-effect appears for ‘good’ moduli of continuity w.

Theorem 10.8. Let f be absolutely continuous on [a,b] and w(f;d)c < w(d)
Jor 6 =0, where w is a given modulus of continuity. Then there exists a sequence
{e.(N)}a= 1, ()0 as n— oo, such that

Rie<C min {n(tf) w<bt;ﬁ“>}, n=12...., ®)

where C >0 is an absolute constant. Moreover

Ry(f)c < C min {“’(f/;(b_ /), +w<b _/a>} n=1,2.... (9)

Igtign t te

The estimates (8) and (9) imply the following estimates.

Corollary 10.2 (Newman’s conjecture). If feLip 1, then

Ry(f)e = o<1>. (10)
n

Corollary 10.3. (i) If f is absolutely continuous on [a, b] and o(f; 0)c = O(5?),
0<y <1, then

R,(f)c = o(lnn/n).

(ii) If f is absolutely continuous on [a,b] and w(f;8)c =O((In(1/8))™"),

y >0, then
R,(f)c=o(n™"1¥").

(iti) If f is absolutely continuous on [a,b] and w(f;d). = ((ln n(1/0))”

y>0,k=2, then o
R,(f)e=0O((n---Inn)™"),
N—

k-1
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10.2 Absolutely continuous functions 299

Remark. The estimates (8), (10) and those of corollary 10.3 are exact with
respect to the order in the corresponding classes. This fact can be proved in
a similar way to the exactness of estimate (7) in V(w) (see theorem 11.7 in
section 11.2). The precise proof of the exactness of the above estimates is
omitted.

Proof of theorem 10.8. We shall prove the estimate (9) which implies (8) with
e(f) = o(f";(b—a)/n),.

Let n>1 and 1 <t <n. Set m=[n?/t]. Let ¢ be the polygon with knots
x;=a+ilb—a)m, i=0,1,...,m, which interpolate f at these knots. Set
@'(x) =30’ (x;—0)+ ¢'(x; +0)) for i=1,2,...,m— 1. Then by lemma 10.3
in subsection 10.1.2 we have

b —
VA =)= 11" = @' lbtam < 2w<f’, _ ") (1)

and

m b—a
b ./ < '
Va(P \b_aw<fs m )L‘ (12)
It is not difficult to see that

o(f — @, 0)c < 20(f; 6)c < 2w(d), 9=0. (13)

By (7), (11) and (13) we get

h pa— —
Ro(f — @) < C{M* w(f— @-”——/“>}

cacfAL ooy (=)

te

On the other hand by theorem 5.1 in section 5.2 and (12) we obtain

Vigb—a) _ . mao(f"(b— aym
Ripre<c, 20 < o molsb Zamy

<2, QU =i,

Consequently, for each te[1, n]

R2n(f)C < Rn(f_ (p)C + Rn(q))C
<@C + 2c1){ﬂw(f/;(b —apn), | w<b - “)}

t te™!

which implies the estimate (9). O
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300 The o-effect

Proof of corollary 10.2. The estimate {10) follows immediately from (9) setting
t=max {l,n/ln(e + /w(f", 1/n),)}. O

Proof of corollary 10.3. The assertions (i)—(iii) in corollary 10.3 follow

immediately setting for sufficiently large n consecutively t=an/(21lnn),

t= /e, f)n" P +2 and t =(in---Inn)’ in the estimate (8). O
k-1

10.3 Uniform approximation of convex functions

In section 5.5 we found the exact order of the rational uniform approximation
of the class Conv,[a, b] of all functions f convex and continuous on [a, b]
such that || f licie.s; < M. The same problem was solved also for the class
Conv,(a, [a, b]) of all functions f convex on [a, b] such that w(f, 8)c < M5*
for 6 =2 0. Here we shall prove the existence of the o-effect for the rational
uniform approximation of each individual function of these classes.

Theovem 10.9. Let the function [ be convex and continuous on [a, b]. Then

Rine=o( ;) )

Moreover
o(f;(b—a)/n)c

n

R(f)c<C =1,2,..., (2)

where C = constant.

Remark. The estimate (1) is exact in the class Convy[a, b] (see theorem 11.5
in subsection 11.1.4). However, the estimate (2) is not exact with respect to
the order of w(f;d).. In this book we do not consider the rational
approximation of the class of all convex functions with a given modulus of
continuity except the class of all convex and Lip « functions.

Proof of theorem 10.9. Set

FX)=3(f(x—0)+f(x+0)), xela,b),
fla+d)+f(a+0)(x—a—3), xe[aa+d],
Ji(x) ={f(x), xe(a+9,b—9),

fb—=8)+f(b—08)(x—b+3), xe[b—4,b],

where 6 =(b—a)/2nand f, =f—f,.
Clearly, f, is a primitive of the function [’ (x)=1(f’(x —0) + [ (x + 0)),
xe(a, b), and since f is convex

VL <Tb—0)-Tra+ o)< 220 4 w<f;b1“> |
—a 2n Je
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10.3 Convex functions 301

Then by theorem 5.1 in section 5.2 we obtain

Velb—a) _,oolf:(b—a)2n)c o

n n

R(fi)e<C

On the other hand, obviously f, is convex and continuous on [a, b] and

b —
I f2llcan < @(f;0)c = w(f, —in—a>c‘

Hence, by theorem 5.11 in section 5.5

R(fy)e < ¢, M ellawn o @Uf3b—a)/2n)c

n n

This estimate together with (3) gives

Ron(fe < Ru(f e+ Ru(f2)e < (4C + cl)%;“)/%@_c

which implies (2). O
Theorem 10.10. If f is convex on [a,b] and w(f; d)c < Md* for 6 =0, where

M>0,0<a<1, then
1
Rn(f)C:O 2|
n

Proof. 1t is readily seen that it suffices to prove the theorem only in the case
[a,b]=[0,1], M =1 and f nonincreasing on [0, 1].

Let & > 0. Choose de(0, 1) such that 122C(x)d* < ¢/2, where C(x) > 0 is the
constant from theorem 5.13 in section 5.5. Denote A, =[0,d] and A, =[4, 1].
By theorem 5.13 it follows that for each n > 6 there exists a rational function
r1€Ry,6 such that

A 1* 122C(a)d* f
< < -—.
[n/6]* n? 2n?

I f—ry HC(Al) < C(o) (4)

Since f is convex and nonincreasing on {0, 1] and w(f;0)c<d% 6 =0, f
is a primitive of the function f’(x)=21(f"(x —0)+f'(x + 0)), xe(0,1) and
Vi, f' <f'(d) < oo. Then by theorem 10.4 in subsection 10.1.3 it follows that
there exists a sequence {&,}s-;, &, — 0 as n— oo such that

8"
R,(f,8)c< 5, n=12,.... (5)
Choose n, such that for n>n, we have ;3[,,/6]/[n/6]2 <¢/2n%, 2/n<¢/2 and

B, In(e + n**)In(e + n®) < n/3, where B, > 1 is the constant from lemma 5.4
in section 5.1.
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302 The o-effect

By (5) it follows that for each n > n, there exists a rational function r,e R},
such that

ey & (6)

| f—=r, HC(A2)<W\ZF'

Now we apply lemma 5.4 in section 5.1 for ‘joining’ of rational functions
with &, = 1/n?® and & = (1/n*)"*. We conclude that for each n > n, there exists
a rational function r such that

& 2 I
llf—ri|C[o,11<W+nT<n7

and

1 1
degr < 2degr, +2degr2+len<e+5>ln<e+‘>

€2

@ 3/a 3
< 3 + B,In(e + M In(e +n’)<n

Hence for n > n, we have R,(f) < ¢/n* and therefore n?R (). — 0 as n— oo.

0

10.4 L, approximation of functions of bounded variation

In theorem 10.5 in subsection 10.1.3 we have proved that, if V2f < oo, then
R,(f); = o(1/n). Here we extend this result for L, rational approximation.

Theorem 10.11. If V2 f < oo and 1 < p < o0, then

1
Ry = °<n)- M

Remark. In theorem 11.6 in subsection 11.1.5 we prove that the estimate (1)
is exact with respect to the order in the class under consideration.

To prove theorem 10.11 we shall make use of the relation between rational
and spline approximations in L, metric from theorem 8.1 in section 8.1.

It is well known that each function f of bounded variation on [qa, b] can
be represented in the form f = f, + f,, where f| is absolutely continuous and
[, is a singular function. We have established in theorem 10.6 in section 10.2
that the estimate (1) holds for absolutely continuous functions f. It remains
to prove it for singular functions.

We shall make use of the following functional characteristic for singular
functions f. Let Q, = {A;};_, be a partition of [a, b] into n compact intervals
A;=[x;_1,x;] such that a = x, < x,; < --- < x, =b. Denote

n (r+1)/p
pp(f,Qn):{Z |Aill/(p+1)(VAif)p/(p+l)} , p>0.

i=1
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10.4 Functions of bounded variation 303

We define

plf )= i(rzlfpp(f ) @

where inf is taken over all partitions of [a, b] into n compact subintervals
disjoint except for the endpoints.

Lemma 10.7. If f is a singular function on [a,b] and p >0, then p(f,n)—0
as n—» oo.

Proof. Since f is singular, then for each &> 0 there exists a partition
Q,,={A;}iZ, of [a,b] such that 33_,[Ay|<eand 35_, V,  f<e (see
S. Saks (1937)). Hence, using Holder’s inequality we get

PoS Q20) = { 2 AL YOIV, )P
k=1

n L (p+1)/p
+1 g +1
+ Z IAZk—l| /(p )(VAz;‘qf)p/(p )}
k=1

n 1Mp+1)/ n plip+1)
(3 m)" (5 )
k=1 k=1
n /ip+1) n ) pip+ 1)) (pt+1)/p
+<kZI|A2k—1|> <kzl VAZk_1f> }

< {81/(p+ 1)(V2f)p/(p+ 1) + (b - a)l/(p+ l)sp/(p+ 1)}(p+ 1)/p.
The lemma is proved. O

Lemma 10.8. Let f be a singular functionon[a,b] and 1 < p < co. Then we have

1
Sa(f)p= 0(>. 3)
n
Moreover
Sin(f)p<pp(f’n), n=1,2..., @)

n
where p (f,n) is defined in (2).

Proof. We shall apply the following trivial estimate: if V', f < oo, A an interval,
then

AIYPV,f
u, n=12.... (5
n

Sa(fs ), STAIMPS,(f.A), <

Indeed, it is sufficient to divide A = [u, v] into n subintervals u = x, < x, <
--» < x, = v such that the variation of f in each open interval (x;_,, x;) does
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304 The o-effect

not exceed V,f/n and to approximate f by means of the step-function
o(x)=f(x;—; +0) for xe(x;_,,x), i=1,2,...,n

Let Q,={A;}]-, be an arbitrary partition of [a,b] into n subintervals
disjoint except for the endpoints. Choose

n|Ai|1/(p+ 1)(VA_f)p/(p+ 1)
n; = [ZZ=1 |Ak|1/(l7+ 1)(VAkf)p/(p+ ) + 1:|

Clearly, we have >7_, n; <2n and by (5)

ALYV
Srh-(f’ Ai)p < TA .
Hence
n 1/p n Ai V. fP\Lr
st e, <( 5 sty ) (5 A0
QAR TR p (£, Q)
= n n
which implies (4). In view of lemma 10.7 (4) implies (3). O

Proof of theorem 10.11. If V2 f < oo, then f can be represented in the form
f =f1+f,, where f, is absolutely continuous and f, is singular. By theorem
10.6 in section 10.2 we have

RS, = 0(1). ©)
n

By theorem 8.1 in section 8.1. we have for each n> 1

:: N IS‘I
Rfo)y < Clpog 2t Sy @
On the other hand, by lemma 10.8 we have
L 1
Sn(fZ)p:o ;i . (8)
It follows from (7) with « =2 and (8) that
1
Rn(fl)p =0 H .
This estimate and (6) imply (1). O
10.5 Notes
D. Newman (1964b) asked whether the estimate
1
R,(f)c= O<n> for each feLipl )]
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10.5 Notes 305

holds. G. Freud remarked that, if

R,,(f)C=O<n—r1+—1> for each feV, (r=1) (2)

(see section 5.2), then the estimate (1) holds. V.A. Popov (1977) proved the
estimate (2) and as a consequence proved Newman’s conjecture (the estimate
(1)); see corollary 10.2.

The o-effect for the rational uniform approximation of each individual
function in the class V, (r = 1) is proved by P. Petrushev (1979); see the estimate
(39) in theorem 10.4. The results in section 10.1 are due to P. Petrushev
(1980a, 1983b) except the estimate (41) in corollary 10.1 which is due to
Yu.A. Brudnyi (1979). Note that A. Abdulgaparov (1974), A. Hatamov (1975b)
and P. Petrushev (1976a) have estimated the rational uniform approximation
of functions with convex rth derivative. The final estimate is found by
P. Petrushev (1976b,c); see the estimate (42) in corollary 10.1.

Theorem 10.5 is proved in P. Petrushev (1980d).

A natural generalization of the function 6(f) is the following function © ( f).
Suppose VEf < o0 and f:x = x(s), y = y(s), s€[0,1], I = I(f), x(0) = a, are the
parametric equations of the complemented graph f of f with respect to its
natural parameter s. Set

tode
Fy=\| ——, te(— = 0.
1) L1+M“ €(—0,00), 7y >0

Denote as in subsection 10.1.1

E ={s:5¢[0,1],(x'(s))* + (y/(s))* =1}, mesE=]

We define

'(s)
Fy<y, >, seE, x'(s)#0,
0,f5={ X0

lim F.(t)signy'(s) seE, x'(s)=0.
t—>

Clearly ©,(f) = 0(f). Note that ©.(f,s) = F (tan 8(f,s)) for seE, where we
take tan(+n/2)= + 00 and F (o0} =1lim,_ ,  F.(0)

If necessary we define in a suitable way ©.(f,s) also for se{0,/]\E. Thus
when we calculate the variation V{,®,(f) we always take (if possible)

Of,5)=HO,f,s—0)+O,(f;s+0)), se(0,]),
0.0)=0,0+0)
and

0,1)=0.(—0).
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306 The o-effect

Note that, if V40, (f) < oo and 0 <y, <y, then
V60,,()<2V40, (). 3)

Indeed, we have for s,,s,€E
J‘tane(f,sl) dt
tan 8(f,s2) 1 +l[|yz

tan0(f,s1) dt
2J 1 1
tan 8(f,s2) + |t|

= 2|®y1(f7 Sl) - ®V1(f’ S2)|

10,,(f.51) = ©,,(f,52)| =

<

~

which implies (3).
On the other hand it is not difficult to see that, if 1 <y, <y,, then there
exists a function f or bounded variation such that

VLo (f) < o«
but
V6O, (f)= .

The following theorems involve @, in the rational approximation.

Theorem 10.12. Let feV, (r=1) and Vi®O(f") <0, 0Ky <r+ 1, I=1(f).
Then we have

VLo (f©
R(Ne< POy, @

where C = C,(r}(b—a) 170,
Moreover we have

Ry(f)e = o( 1) 5)
n

In particular, if /@ (r = 1) is convex and bounded, then the estimate (5)
holds, compare with estimate (42) in corollary 10.1.

Theorem 10.13. If Vif < oo and VLO(f) < oo, I =1(f), then

1
R/, = o<;> ©

In particular, if f is convex and continuous, then the estimate (6) holds.

Note that estimates similar to estimates (4)—(6) hold also for the correspond-
ing spline approximations.

The proofs of theorem 10.12 and theorem 10.13 are much more difficult
and long. Therefore we omit them.
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10.5 Notes 307

Theorem 10.6 was announced by Yu.A. Brudnyi (1979). Theorem 10.7 was
obtained by A. Pekarskii (1982). Theorem 10.8 and corollary 10.2 are proved
independently by P. Petrushev (1976c, 1977) and A. Pekarskii (1977, 1978a).
The estimate (9) in theorem 10.8 is due to A. Pekarskii (1978a). Theorem 10.9
was obtained by V. Popov, P. Petrushev (1977). Theorem 10.10 was
announced by P. Petrushev (1980a). Theorem 10.11 in the case | <p < o0 18
proved by A. Pekarskii (1980a).
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11

Lower bounds

In the previous chapters a number of estimates for rational approximation
were established. Here we shall be concerned with the exactness of these
estimates in the sense of definitions 5.1-5.3 from section 5.1. We use alternance
techniques based on some variants of the well-known Chebyshev theorem
and Vallée-Poussin theorem for rational approximation.

In section 11.1 there will be given some relatively simple lower bounds,
almost all of which are not purely rational in scope. That is, almost all of
them are valid for approximation by piecewise monotone functions or
piecewise convex functions, particularly for spline approximation. In section
11.2 anon-trivial lower bound is obtained for the rational uniform approxima-
tion of functions of bounded variation and given modulus of continuity. Other
lower bounds which can be analogously obtained will be omitted.

11.1 Some simple lower bounds

In this section we give some relatively elementary lower bounds for rational
approximations which are not intrinsically dependent on the nature of the
rational functions as an approximating tool. These bounds are based on
some more general properties of the rational functions such as piecewise
monotony and piecewise convexity.

11.1.1 Negative results for uniform approximation of continuous

functions with given modulus of smoothness

In the preceding chapters classes of functions have been found which can be
approximated by rational functions better than by polynomials. In this section
we show that in the class of all continuous functions with a given modulus
of smoothness the rational functions are in general not better than the
polynomials as an approximation tool in the uniform metric. However, the
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11.1 Some simple lower bounds 309

o-effect appears when Lipschitz functions are approximated by rational
functions.

Theorem 11.1. Let w, be a given modulus of smoothness of order k=1, ie.
0, (0) = (g5 0)¢, 0 20, for some geC_, 1y and let

) o

lim 249 _ (1)

k
-0 5

Then there exists a function f continuous on [ — 1,1] such that

0f;0)c Swd), 620 )
and
. Rn(fa[_lalj)(,‘
1 —=>0.
P ©
Proof. Select indices {n,}Z | such that
n,=9", m, integer, | <m; <m, < -, “4)

1 1
2a)k< >< wk< > 5
Nyt n,
2nfw L <nt o ! 6
Y\n, ) TR noyr) ©

Condition (5) is possible because lim,_,, w(d) = 0 and (6) because of (1).
Consider the function

and

20

fx)= ) g.x), xe[—11],

v=1
where

1 .
gu(x) =40k w, <n> T9nv<:>’ T,(x) = cos(n arc cos x)

is the Chebyshev polynomial. Here the right-hand series converges uniformly
in [—1,1] because of (5).

First we shall prove that w,(f; ) < w,(d) for 6 = 0. To this end we shall
make use of the following inequalities.

() 0fg:90c <2l glles @lg:d)e < g® e, when  geC—1,1],
WGy + 023 0)e S W(g150)c + 0l ) and  w(g; 8,)/0% < 2*w(g; 8,)/0; for
0<d,<0, which follows directly from the inequality w(g;40)c<
(A + D, (g; d)c; see the properties of moduli of smoothness in section 3.1.

(i) Bernstein’s inequality (see theorem 3.11 in section 3.4) provides for PeP,

2 k
HP(k) HC[—;.;]<<‘> nin—1)--(n—k+ l)|‘PHC[—1.1]<2k"k HPHC[AI,I]'

NE
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310 Lower bounds

Now let 1/n;,, <6< 1/n;, j = 1. Then by (5), (6), (i) and (ii) we get

i 0 o
C z gv’ +2k Z gv <5k Z ”q(k)“C+2k Z 1Hgv“C
V= C v=j+

J = 1
Ak 2 wk( 1T e 5.0+ 2 Z wk(‘)}
v=1 v=j+1 nv

ESRE
<40"‘{9"5’°‘; koo <,,iv>+2k» ,Hw"(r:v)}
ol )

1 i 1
2% : —
12/ v+ wk<nj+1)v=;+12‘,?]1}
} w(1/n; < 1 )}
<40 9k5k 2k+1 I
{ (L/n)F O\

<40 K24 1-9kgy (5) + 2+ 1, (8) ) < ().

Similarly it can be proved that w,(f;0)c < w(d) for é = 1/n,. Consequently
[ satisfies (2).

Consider the polynomial P;=3Y}_}g, of degree 9n,_, <n;. Let x;=
2cos(jn/9n;), 3n; <j < 6n;. Clearly x;e[ — 1,17 and in view of (4)

Tgn‘<%>—608(9“ “mimy=(—1y, v=i, 3n,<j<6n,.

Hence

.. 1
Jx) = Pix) =} gx)=(—17407* Zwk(;) (7
ie. f— P, attains the maximum of its absolute value in [ — 1, 1] with alternate
signs at the points x;. The number of these points is 3n; + 1 > 2n; + 2. Then
by Chebyshev’s theorem (see theorem 2.2 in section 2.2} it follows that P; is
the best approximating function to f in R,, and by (7)

© 1
R,(f)c=407*F Zwk<ni) > 40_"wk<n—>

8

i

which implies (3). O
Theorem 11.2. Let k=1, C>0, ¢, 2¢,=2--->0 and g—0 with n—
arbitrarily slowly. Then there exists afunctlonfcontmuous on| —1,1] suchthat
wf30)c < CS*, 620, (®)
and
) g\ !
hrrL sup R,(f)c <;¢> > 1. )
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11.1 Some simple lower bounds 311

Proof. Choose indices {n,};.; such that n,=9", 1<m; <m, <, and
9k> = ¢, < C, where C >0 is from the hypothesis of the theorem.
Consider the function

O &y, X
f(x): Z £T9nv<7>a xe["— 13 1]
v=1H, 2
Obviously the right-hand series converges uniformly in [ — 1, 1]. It is readily
seen that for 6 =0

(f;0)c < 39 Z &, & Co¥,
v=1
i.e. f satisfies (8).
Consider the polynomial

i—1 e x
Pi(x)= T —
l(x) vzl n;vc 9nv<2 )
of degree 9n;_, <n;. As above in the proof of theorem 11.1 P; is the best
approximating function to f in R,, and

Ri(fle= Y. %>

l

which implies (9). ]

11.1.2 One negative result for uniform approximation of absolutely
continuous functions

It was mentioned in section 5.3 that for absolutely continuous functions
f R{f)c may tend to zero with n— co as slow as we want. More precisely the
following statement holds.

Theorem 11.3. For each sequence {e,};-,, & =& =--->0, lim,, ,¢,=0,
there exist an index n, and a function f which is absolutely continuous in [0,1]
(also f is non-decreasing in [0, 1], f(0)=0 and f(1) = 1) such that

Rn(f7[0’1])C>8n’ n>n0'

Proof. Consider the function

0, —1<x<0,
gsx) =4 x/6, 0<x<9,
1, d<x<l,

where 0 <6 < 1.

Corollary 9.3 in section 9.2 implies that for each n>1 there exists a
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312 Lower bounds

number 4, 0 < d, < 1, such that

R(9s,,[— 1, 1> % (10)

For each n> 1 we denote g, briefly g,.
Choose a sequence of indexes 1 < ny <n, <--- such that

Envgz‘.—"z—vﬁ, V:(),l,.... (1])
Denote x,=1-—1/2" and A,=[x,,x,,,). Let 4, be the linear increasing
function which maps A, onto [— 1, 1). Set
1 |
f(X): 1 —F+2"—+]gnv(/lv()€)), XEAV, VZO,I,...,

I, x=1.

It is readily seen that f is absolutely continuous and non-decreasing in [0, 1],
f(0)=0and f(1)=1. By (10) and (11) it follows that, if n,_, <n<n,(v=1)
then

1 1
Rn(fv [O’ 1])C 2 an(f’ Av)C = —2'T+—1an(gnv’ [_ 17 1])C > W 2 Sn‘-—1 > 8n

and therefore

Rn(f’ [031])C>8n’ nzno- D

11.1.3 Lower bound for uniform approximation of the functions of the class ¥V,
Theorem 5.1 in section 5.2 established an upper bound for the rational uniform
approximation of the basic class V,. Existence of the o-effect for the rational
uniform approximation for each individual function feV, was proved in
theorem 10.4 in subsection 10.1.3. The following theorem proves the
exactness of these estimates.

Theorem 11.4. (1) For each r =1 there exists a positive constant C(r) such
that for each M > 0 and compact interval [a,b]
M —a)y
sup R,,(f)pC(ﬁ%, n=12,.... (12)
SeVr(M.[a.b]) h
(i) For each r =1, M >0, compact interval [a,b] and sequence {g,} |,
& =&y 2-->0,lim &, =0, there exists a function fe VM, [a, b}) such that

n— o

-1
lim sup R, f)<ﬁi> > 1. (13)

n—ao

Proof. Suitable change of variables shows that it is sufficient to prove the
theorem only in the case M =1 and [a,b]=[—1,1].
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11.1 Some simple lower bounds 313

For each n > 1 set f,(x) = sin(2znx)/82n)yn"* ! for xe[ —1,1]. It is readily
seen that feV/(1,[—1,1]) and f,(2k—1)/4n)=(— D" | fyll¢-1.0y for
k=—-2n+1, —2n+2,...,—1,0,1,...,2n Then by the Chebyshev theorem
(see theorem 2.2 in section 2.2) it follows that the rational function r =0 is
the best uniformly approximating function to f, in R, and

1

Rn(fn)C = ” fn HC[—I,I] :W

which implies (12).
Now we shall prove the second part of the theorem. Suppose that
g =6, = >0and lim,_ ¢, =0. Choose indices {n,}:_, such that

=9 1<m<my<--- (14)

Y 18:9%, <1. (15)

v=1
Consider the function f(x)=>,g.x) for xe[ —1,1], where g,[(x)=
(84,/1, " )T, (x/2), Tx)=cos(narccosx). Since g,ePy,, from Bernstein’s
inequality exactly as in the proof of theorem 11.1 it follows thatfor k=1,2,...

9%,
||gv “C[ 1, 1]\2k ,+1 [ 9nv“C[—§,;] <anli7- (16)
The estimates (15) and (16) imply that the series 30 (g% ¢ - 1. B converges
when k=0,1,...,r + 1 and therefore feCj*{ , and f“(x)=3 7., g¥(x) for
xe[ —1,1]. Using (15) we get

Vi o< Z Vi g < Z 181,19V llc < ), 18-9%, < 1.
v=1

Consequently feV,(1,[—1,1]).

Now consider the polynomial P,=3*-1g, of degree 9m, _, <n,. Let
x; = 2cos(jn/9n), 3n, <j < 6n,. Exactly as in the proof of theorem 11.1 we
obtain by using (14}

o0 ) 20 Snv
fos) = Pg) = 3 aie) = (= 1V 3. ot (17)
i.e. f— P, attains the maximum of its absolute value in [ — 1, 1] with alternate
signs at the points x;. The number of these points is 3n, + 1 = 2n;, + 2. Then
by Chebyshev’s theorem it follows that P, is the best approximating function
to fin R,, and by (17)

& Snv 8nk
Rnk(f)C = vgkn:+1 > n;‘(+1
which implies (13). 0
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314 Lower bounds

11.1.4 Uniform approximation of convex functions

In theorem 5.11 in section 5.5 it was found an upper bound for the rational
uniform approximation of the class Conv,, [a,b] of all functions f which are
convex and continuous in [a,b] and || /' ||¢1.5 < M. Existence of the o-effect
for the rational uniform approximation of each individual function
feConv,, [a,b] was established in theorem 10.9 in section 10.3. The following
theorem shows that the estimates in theorem 5.11 and theorem 10.9 are exact
with respect to the order.

Theorem 11.5. (i) There exists a positive constant C such that for each M >0
and compact interval [a,b]

M
sup R,,(f)c>C7, n=12,.... (18)

feConv,yla,b]

(ii) For each M >0, compact interval [a,b] and sequence {e,};-.,

g =&y 2 >0, lim,, ¢, =0, there exists a convex function feConv,, [a, b]
such that

n— o n

-1
limsup R,(f)c¢ <F"> =1.

The proof of theorem 11.5 is based on the fact that the derivative ' of
each rational function r is a piecewise convex function. We shall need some
auxiliary statements.

Lemma 11.1. Let g be defined on A ={a,b] and

) h,, xeAy,

X)=

g hy, xeA,,

where A, =(a,¢),A, =(c,b), a<c<b and hy <h,. Then for each function ¢
such that @' is convex or concave in A the following inequality holds:

(h —hl)(min{|A1|,|A2|})2
8IA|

||g_(P||C(A)> (19)

Proof. Denote x,=a, x,=(a+c)/2, x,=c¢, x3=(c+b)/2, x,=b and
di=[x;_1,x;}, i=1,2,3,4. Set Ax)=h; + (h, — h)(x — x,)/(x5 — x,). Note
that A(x;) = g¢'(x,) and A(x;) = g'(x5).

Since ¢’ is convex or concave in A and 4 is linear, then at least one of the
following four inequalities holds: (i) ¢'(x) < A(x) for xed,, (i) ¢'(x) = A(x} for
xed,, (i) ¢'(x) < Ax) for xed;, (iv) ¢'(x) 2 A(x) for xed,. Consider the case
when the inequality (i) is valid. Then the function g — ¢ is monotone on d;
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11.1 Some simple lower bounds 315

and therefore

1
3 L (g'(x) — ¢'(x))dx

lg—o chl) Z%L‘](xo) —@(xg) — (g(x,) — o(x, )| =

1 . . (hy — hy)| A2
> - — A —
ZL (6100 — Ao =20
which implies (19). The other situations are considered similarly. ]

Lemma 11.2. For eachn > 1 there exists a function g, such that g, is increasing,
convex and continuous in [0,1], ¢,0)=0, g,(1)=1, g, is a step-function,
g(+0)>0, g {1l —0)< o0 and

R,(9: [0, 1])c = (20)

1
768n
Proof. Let n21 and denote N=16n—1, h=1/16n and x,=1—1/2". Set
gu(x) = [ gi(t)dt where

2’h, xe(x,_,,x,), v=12,..,N
gulx) =19 5
2%, xe(xy, 1).

It is readily seen that g, is increasing, convex and continuous on [0, 1],
g.(0)=0 and g,(1) = [3g,(x)dx = 1. Also, g, is a step-function, g,(+0)=
2h>0,g(1—-0)=2"h < .

It remains to estimate R,(g,)c. Suppose that reR, and |lg, ~7llco.13=
R,(f)c- Clearly, there exists a division of [0, 1] into at most 8» — 2 intervals
such that #' is convex or concave in each of them. From this and the fact
that N = 16n — 1 it follows that there exists v, 1 <v< N — 1, such that v’ is
convex or concave in the interval [x,_,,x,4+,]. Then applying lemma 11.1
to the functions g, and r in [x,_, x,,;] we conclude that

R(gn)c=lgn — r“qo 1172 =z lg,— r||C[xv—1,xv+1]
@R =2h)x e —x) L
-~ 8(xy+1 —Xy—1) 7680’
which implies (20). O

Proof of theorem 11.5. Simple change of variables shows that it is sufficient
to prove the theorem only in the case M =1 and [a,b] =[0,b] for some
b > 0. Then (i) follows immediately from lemma 11.2.

Now we shall prove the second part. Suppose that ¢, >¢, > --- >0 and
lim,, ,¢,=0.

Choose indices n; <n, < --- such that

Y g, <1 1)
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316 Lower bounds

Now we construct the desired function f by induction using the functions g,
from lemma 11.2. Denote x, =0, x, =1/2 and A, = [x,,x,]. Let 4, be the
increasing linear function which maps A; onto [0, 1]. Set f(x) =¢, 9, (4,(x))
for xeA;. Note that f is continuous, convex and increasing on A,; and
fix,—0)< w.

Let f be defined already on [ x4, x,], v = 1, such that f is continuous, convex
and increasing on [ x4, x,], f'(x, —0) < o0 and 0 < x, < 1. Choose x,,, such
that x, < x,,,; <1 and

[l =0)< g (+0)
Xy+1 — Xy

Such a choice of x, , , is possible since g, ,,(+0) >0 by lemma 11.2. Let 4, ,

be the increasing linear function mapping A,,; =(x,,X,,,} onto (0,1].

Set f(x)=f(x)+4, 6 (uer(), XA, Clearly f(x,+0)=(, /

Xy+1—x)) g, . (+0)=f"(x,—0) and therefore [ is continuous, increasing

and convex on [Xy,x,,]. Also f'(x,+ —0) < cc.

It is readily seen that b=1lim,_,  x, exists and 0 <b < 1.

Thus the function f is defined on [0,b). Set f(b)=1lim,_, f(x). By our
construction and (21) it follows that f is continuous, increasing and convex
on [0,b], f(0)=0and f(b) =32 &, < 1. In view of lemma 11.2 we conclude
that forv=1,2,...

En
Rny(f’ [03 b] )C 2 Rn\.(f’ Av)C = 'gannv(gnva [0’ 1]))C 2 768v s
n,

which implies the theorem. O

11.1.5 L, approximation of functions of bounded variation

In theorem 10.11 in section 10.4 it was proved that for each function f of
bounded variation on [0, 1] the following estimate holds: R,(f),= o(1/n)
(1 < p < ). The following theorem establishes the exactness of this estimate.

Theorem 11.6. For each sequence {&,}5-,, ¢; =&, = -->0, lim,, ¢,=0,

there exists a function f defined on [0,1] such that V3 <1 and for p =1

-1
limsup R,( f),,('g”) > 1. (22)
n—w n

Proof. Set g,(x)=2nsindnnx for xe[0, 1]. The function g, vanishes at the
points x, = v/4n, v=0,1,...,4n, and has alternate signs in the consecutive
intervals A, =(x,_, x,). Then for each rational function reR, there exist at
least n intervals A, such that g,(x)r(x) <0 for xeA,. This fact implies that for
eachreR,and p>1

1/4

lgn— r“LP[O,l] =g, — r“L1[0,1] =2n [ [sindnnx|dx = 1.
Jo
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11.2 Bounded variation and given modulus of continuity 317

Consequently for p > 1

R(9.),=21, n=12,.... (23)
Let g, 2 ¢, 2 --->0 and lim, , . &, =0. Choose indices n, <n, < --- such
that
Y 16m2%, <1. (24)
v=1
Denote d, = (1/2",1/2"~']. Let 4, be the increasing linear mapping of d, onto
(0,1]. Set
2“ﬂgnv(/1 (x)), xed,, v=12,..,
fx)=4 M
0, x=0

Using (24) we get

v=1 v

Vif<'y 2';- Vig,= ¥ 16m-2%, <1.
v=1

In view of (23) it follows that forv=1,2,...

m

R, (f,[0,1]), > R, (f.d\), = "”R (G, [0, 1])1 =~

:

which implies (22). O

11.2 Uniform approximation of functions of bounded
variation and given modulus of continuity

Consider the class V(w) = V(M, [a, b], w) of all functions f continuous in [a, b]
such that V2 f< M and (f; 8). < @(d) for 6 = 0, where w(f; 6)c is the modulus
of continuity of f and w is a given modulus of continuity. In theorem 5.7 in
subsection 5.3.4 we proved an estimate for the rational uniform approxima-
tion of functions fe V(w). The aim of this section is to prove the exactness of
this estimate.

Theorem 11.7. Let @ be a modulus of continuity such that

1im$5)=oo. 1)

550 O
Then for each M >0 and compact interval [a,b] there exists a function
feV(M,[a,b],w) such that
Rn(f)c

lim sup > 0.
" inf {M/t + o((b — a)/te™)}

I<t<n
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318 Lower bounds

Remark. Next we shall show that, if lim;_, o (w(3)/d) # o, then w(d) = O(J)
and therefore V(w) < Lip 1. In this case by theorem 10.8 in section 10.2 for
each feV(w) we have R(f)c=o(n""'). Hence the restriction (1) in the
formulation of theorem 11.7 is essential.

To prove theorem 11.7 we need some auxiliary statements. The following
well-known lemma shows that for the proof of theorem 11.7 it is sufficient
to consider only the case when the modulus of continuity @ is a concave
function.

Lemma 11.3. For each modulus of continuity @' there exists a concave modulus
of continuity & such that

w(0) < @(0) < 2w(d), 9€[0, o). 2)
Proof. Define & as the minimal concave majorant of w, i.e. for 6 =0

)=  sup {a)(tl) + w(é - zl)}

0<ty <951, tz_ 1

(0 — ty)a(ty) + (£, — do(ty)

0t <d<ty ty ~ 1,

The left-hand side inequality in (2) is obvious. Let us prove the right-hand
side one. We get for 6 >0

@(0)=  sup (6 —t,)a(ty) + (2, — d)a(t,))

o<t <d<nnly— 1

1
< sup ((5—t1)<t2+1>+t2—5>w(5)
o<t <é<tzlz — 1 o

1—1t,/6
= su 14— Jo(d) < 2(6
0<t1<rz<tz< 1_51/t2> ©) ©)
where we have made use of the inequality
t t
wlt,) = w<§5> < <§2 + 1)@(5) (seesection 3.1). O

Remark. The restriction that the modulus of continuity @ be concave implies
that the function w(J)/d is nonincreasing for d&(0, co). Indeed, if w is concave
and 0 < d, < 4,, then

P) B
(d,)/, = w((l —i)-o +iaz>/51

> {(1 _ %‘)w(O) + %w(éz)}/él = w(d,)/d,

' We remind the reader that o is called a modulus of continuity, if w is a continuous
nondecreasing function on [0, cc) and w(d, + d;) < w(d,) + w(d,) for §,, 6, =0, w(0)=0.
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11.2 Bounded variation and given modulus of continuity 319

and therefore w(d)/d is nonincreasing. From this fact and lemma 11.3 it
follows that lim;_, , (w(d)/d) # oo implies w(d) = O(J), which was used in the
remark after theorem 11.7.

In the proof of theorem 11.7 the main role is played by the following
auxiliary theorem.

Theorem 11.8. Let f be a function defined on [a,b] and VEf< M < oo and
suppose that Q is a set of m disjoint compact subintervals A; = [a;,b;] of [a,b]
witha<a, <b,<a,<b,<--<a,<b,<band min,_,,_ (a4, —b)=¢,,
where m = 1 and ¢, > 0. Suppose also that for some &, >0 it is true that for
each interval AeQ, A ={[u,v], there exist a rational function r,, degr, =n,,
and a set A, of ky+ 1, k, =0, different points x,€A, arranged in increasing
order, i.e. u<xo<xy < <x, <v, such that

| f(x) = ra(X)| > &5, X€A,,
f—r, has alternate signs at the points xg, Xi,s.on, Xy, and

l7s— f(u)H('[ab] I <V f.
Then R,(f,[a,b])c > e, for

b—a M
n< Yy ka— Y ny—Dmlin[ e+ Infe+—],

where D > 1 is an absolute constant.

Proof. We shall make use of some techniques from the proofs of the theorems
for joining’ of rational functions {see theorem 5.2 in section 5.2, theorem 5.3
in section 5.3). In particular, we shall apply lemma 5.1 in section 5.1 for
rational approximation of a jump-function.

It is not difficult to see that, if theorem 11.8 holds in the spemal case when
m = 2% s integer, then it is valid in the general case with another absolute
constant D > 1. Thus we shall suppose that m =2, s integer.

To avoid some more complicated indexations we shall denote

Qﬂ:{[ai’bi+2“]:i:1’2a"'sm_2u}’ 0<1u'<59 Q—lZQ

and
Q, ={A*: A*eQ and A* = A} for each interval A < [a, b].
Denote
27VA 2%4™°M
N(u, M,A) = Z 6B 2”1n<e+ | |>1n<e+2u—v+gA>,
& R

where B> 1 is the absolute constant from lemma 5.1 in section 5.1, ¢; and
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&, are those from the hypotheses of the theorem, the numbers ¢ and M and
the interval A are parameters.

We shall prove by induction with respect to u the following lemma,
formulated using the assumptions and notations introduced above.

Lemmall.4. Let —1 < pu<s. Foreach AeQ,, A = [u,v], there exist a rational
Junctionry and a set Ay of l + 1 different points x,€A, u<xo<x; < <x, <,
In = 2xcq, Kar, such that

L |
[f(x) = ra(x)] > 82<1 - Z 2v—+7>, xe Ay,
v=0
f—r4 has alternate signs at the points x,, x,,. Xy

s —f(u) ”C([a,b]\A) <Vaf

and

degry < z nas+ N(p, Vo f, A).

A*eQ,

Proof. The lemma holds for u = — 1 by the hypothesis of theorem 11.8.

Suppose that the lemma holds for some p (— | < p<s—1). Now we shall
prove it with u replaced by u+ 1.

Let AeQ,.,. Obviously, there exist points u,,v,,u,,0, such that
U <vy <upy <vy, A=[ug,v,], Ay =[u;,v,1€Q,, A,=[u,,v,]eQ, and
u, — v, =¢,. Also, by our assumptions for i=1,2 there exist a rational
function ry, and a set A,, of Iy, + 1 =3 sueq, ka«+ 1 different points in A; such

that
Lol
o =rawi>e(1- £ 2). xeds, ®)
and f—r,, has alternate signs at the consecutive points of 4,,,

7, —f(w) H(T([a,b]\Ai) < Vaf ]

and
degry, < Z nae+ N(p, Vi, f, Ay )

A*eQy,

Consider the rational function
ra(X) = (1 — o(x — 2))ra (x) + a(x — 2)r, (x),

where z = (v, + u,)/2, ¢ is the rational function from lemma 5.1 in section
5.1 with o =¢,/2, f=|A|, y=min {1/2*%, &,/2***V, f} when V,f >0 (the
case V, f=0 is trivial).
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11.2 Bounded variation and given modulus of continuity 321

By lemma 5.1 it follows that

1 2|A 24y
dega<Bln<e+§>ln(e+;><Bln<e+ | |>ln(e+2“+4+“‘f>

& £,

A utly
<631n<e+U>1n<e+2ﬂ+1 +——A—f).

&y &

Consequently

degr, <degr,, +degr,, +dego

< z Aps+ N, Va, A1) + Z Aps + N, Vi, fL A3)

A*eQy, Arelly,

A 2wty
+6Bln<e+'f|>ln<e+2“+1 +_Q>

& &
< Z nA*+N(.u+1’VAf3A)7
A*eQ,

i.e. r, has the desired order. The last inequality follows from (5) and the
following one:

27VA W4y,
ln<e +‘| 1|>ln<e+2“_v+;—A‘f>

&y €

27YA 2447V,
+ln<e+——| 2|>ln<e+2“”+——~7A2/>
&y &;

27014 +1A 24V, [+,
<2ln e+_w Inle+2*v+ (A1f+ Alf)
2g, 2e,
ERGRY ptlg—(v+1)
<ot 2 o g 2N
& 6

where we have applied the fact that the function F(x, y) = —In(e + x)In(e + y)
is convex on the set D= {(x,y):x,y>0}. The function F is convex since
0 F/ox?, 0°F/0y? and 0*F/6x?-02F/0y? — (0°F/(0xdy))* are nonnegative in
D. Our arguments are similar to those from the proofs of theorem 5.2 in
section 5.2.

Now we estimate ||r, — f(u1) || ¢ 7.4, Since 0< o(x —2) < 1 for xe(— o, ©)
(see lemma 5.1), we get from (4) for xe[a,b\A

Iralx) = fu)] < (1= a(x — 2))|ra,(x) — f(uy)]
+ 00 — 2)(|ra,(x) = f )| + 1 f(uy) — f(u3)])
S —olx—2)V5, [ +olx—2) Vs, S+ Va, IS VS
and therefore |1, —f(u) [l o8 < Vaf as required.
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322 Lower bounds

It remains to estimate | f(x) — r,(x)| at the points xeA,, U A,,. To this end
we shall make use of (3), (4), the fact that u, — v, > ¢,, the choice of o, §, 7
and the properties of ¢ by lemma 5.1. We get for xed,, € A,

Lf(x) = ra() = (1 = a(x — 2))(f(x) = ra, (X)) + 0(x — 2)(f (x) = r5,(x))|
2 (1 —alx —2))| f(x) =15, (x)| — a(x — 2)

(1l T, —flu,) “(’([a,b]\Az) + | fluz) —f())
i & 1 1 €
>62<1 VZOW><1—W>—WVAJ‘

Consequently for each xeA,,

v=0

19—l (1=5 L) ©

and f—r, has alternate signs at the consecutive points of 4,, since f—r,,
has alternate signs there.

Similarly, one proves that for each xeA,, (6) holds true and f—r, has
alternate signs at the consecutive points of A4,,.

From the above arguments it follows that there exists a set A4, of
Ia, + la, + 1= 3 s, kar + 1 different points in A such that

ut1 g
|f(x) = ralx)[ > ¢, <1 - VZO FE) X€Ay,
and f—r, has alternate signs at the consecutive points of 4,, as required.
Thus lemma 11.4 is established with u replaced by p + 1. O
Completion of the proof of theorem 11.8. By lemma 11.4 with p=s there
exist a rational function r and a set 4 of [+ 1 =3, ok, + 1 different points
x;e[a,b], a <xq<x;<-<x,<b, such that

s 1 €
If(X)~r(X)l>82<1— ) 2)>2 xed, U
v=0
and f— r has alternate signs at the points x4, xy,...,x; and
degr< ) ny+ N(s,M,[a,b]). 8)
AeQ

From this it follows that

R/ [ab])c>Z
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11.2 Bounded variation and given modulus of continuity 323

for n< N =3 cokn— Dpcatta— N(s,M,[a,b])— 1. Indeed, suppose to the
contrary that there exists a rational function g such that

I f—q ”C[a.b] <&y/2 9)
and

degg < N. (10)
Then by (7) and (9) it follows that for xe A
[r(x) — q(x)| Z | f(x) — rx)| — [ f(x) — g(x)| > O

and since f— r has alternate signs at x,, x,,...,X;, r — ¢ has alternate signs
at Xg, X;,...,X;. Consequently the rational function r — ¢ # 0 has at least
I=3 .ok, different zeros on [a, b]. On the other hand by (8) and (10) we have

deg(r—q)<degr+degg< ) nmy+ N(s,M,[a,b])+ N=) ky,—1=1-1.
AeQ AeQ

We have a contradiction. Hence
&2
Rn(fs[aab])C>?a ngN

Similarly as in the proof of theorem 5.2 in section 5.2 one easily verifies that

b— M
N(s,M,[a,b])+1<Dmln<e+ a>1n<e+v>

me, me,

and therefore

b—a M
N> ky— n,—Dmln| e+ Infe+—
A;, A A;, a ( me, ) < m£2>
which establishes the theorem. O
Denote

0, x<0
)\’ — b bl
&) {h, x>0,

Lemma 11.5. There exist constants B, > 1 and D, >0 such that for each a,
B, h>0 such that /o= B, there exist a rational function r* of degree
nz Dyln(B/a) and n+ 1 points u;ea, B, o Sug <uy < -+ <u, < f, such that

h
|Ax) =) >, xel— uifi—o U {Uifi-o,

A — r* has alternate signs at the points — u,, — U, _{,..., — Ug, Ugs Uy, ..., U, and

[ r* ||C((/oc,ao)\[fl3vﬂ]) <h.
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Proof. Put By =exp {2n?/In2} and Dy =In2/27% Let o, >0 and f/a > B,.
Consider the rational function r from lemma 9.3 in section 9.2 with ¢ = a/ff
and n =2[(In2/2n%)In(1/¢)], where [x] denotes the integer part of x. Since
B/a= By =exp {2n*/In2} and ¢ = o/B,
In2. § B
degr= n;z—nzln;=Doln;> L.
Put x;=¢e""%" for i=0,1,...,n. From the choice of ¢ it follows that
o/f=x9<x, <--<x,=1. Bylemma 9.3 and the choice of ¢ and n we obtain

. 1
[sign x; — r(x;)| > exp{ — nzln(ri/s)} 25, i=0,1,....,n,
and sign x — r(x) has alternate signs at the points — x,, — X,_ (5..., — Xg, Xg,
X1,-..,X,. Finally, since n is even, by the definition of r in lemma 9.3 it follows
that |r(x)| <1 for xe(— oo, w)\[—1,1].
It is readily seen that the rational function r*(x) = $h(1 + r(Bx)) satisfies

the requirements of lemma 11.5. O
A combination of theorem 11.8 and lemma 11.5 implies the following
lemma.

Lemma 11.6. Let f be a nondecreasing function defined on [a, b]. Suppose that
there exist intervals d;=[u;,v;], i=1,2,...,m, such that 0<u, <v; <u, <
Uy <o <U, <0, <1, mis of the type m=4l, | positive integer, v,—u;=n,
Uy, — Vg1 =e(v=1,2,....20and f(x) = (i — Dhfor xed,,i=1,2,...,m, where
1, & h>0 are given numbers such that nje = B,, B, > 1 is the constant from
lemma 11.5.

Then R(f,[0,1]). > h/8 for each

t
n<iDgmln' —2Dmln <e ¥ 7>,
¢ mn

where D, and D are the constants from lemma 11.5 and theorem 11.8 respectively.

Proof. Put [a;,b]=[us_3.04i-,] for i=1,2,...,m/4. Obviously 0<a, <
by <a,<b, < <@y <bp,a<1and min ., (@, —b)>n. Denote by
Q the set of the intervals [a;, b;].

Now we are in a position to apply lemma 11.5 with x =4¢ and B =1+ 3¢
(B/o = (n + 3e)/3e > 2n/e > B, by our assumptions). We obtain that for each
interval AeQ, A=[u,v], there exist a rational function r, of order
ny = Doln((n +3e)/ie) > Dyln(n/e) and a set A, of k,=2n,+2 different
points X;€A, u <xp < x; < -+ <X, <, such that

h
[f(x) = ra()[ >4, x€Ay,
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11.2 Bounded variation and given modulus of continuity 325

J—r, has alternate signs at the points xo, xy,...,x, and

flra— f(“)“c(c ©.) A]Sh— Vit

Then by theorem 11.8 we conclude that

h
Rn(fs[071])c>§ for n<N=Y ky— Y n,

AeQ AcQ

. { VoS
_ DZln(e +§n_’1>ln<e +m>

4
NZ%DOmlng—iDmln<e+—)ln(€ + 16)
£ my

Clearly

1
iDomln——ZDm1n<e+—n> O

Proof of theorem 11.7. A simple change of variables shows that, if theorem
11.7 holds in the case [a,b] =[0,1] and M = 1, then it holds in the general
case. Thus we shall suppose that [a,b]=[0,1] and M = 1. Also, in view of
lemma 11.3, without loss of generality we shall suppose that the modulus of
continuity w is a concave function on [0, o0) and w £0, since lim; , o (0(3)/d) =
oo from (1). Note that, because  is concave the function w(d)/d is
nonincreasing on (0, oo).

It was proved in theorem 10.8 in section 10.2 that for the rational uniform
approximation of absolutely continuous functions feV(w) with ‘good’
modulus w the o-effect appears. Thus to prove theorem 11.7 we shall construct
a singular function like Cantor’s well-known singular function.

Choose ¢, such that 0 <g, <1, w(eg) <1 and w is strictly increasing on
[0,&,], which is possible since w is nondecreasing and concave on [0, o),
w(0) =0 and w # 0. By ™! we shall denote the converse function of w. Then
w1 is strictly increasing and convex on [0, w(g,)]. Of course w™1(0)=0.
From the last facts and (1) it follows that the function o~ (¢)/r is nondecreasing
on (0, a)(so)] and lim, ., (0w~ X()/t) =

Let {s,}2, be an increasing unbounded sequence of integers such that s,
is in the form s, =4l,, I, a positive integer. Define sequences {m,} % o, {h,}:Z0,
{e,}v=0 and {n,}, as follows: my=1, m,=sm,_; =]1}_,s;; ho = w(eo),
h,=h,_,/s, = hy/m,, where ¢, is from above; e, =w " '(h,); 1, =¢,_1/s, — &

We select the sequence {s,};%, such that for v=1, 2,.

(@) n./e, = By,
(ii) 1Dom,In" — 2Dm, In < e+
&

v

&y
>>§D0mvln%>éDomvln i

vrlv v vy
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326 Lower bounds

1/2
(iii) mv_lw_1< o >><mvw_1<h—o>> ,
mv—l mv

o1 1
(iv) — < wlgy) and H5Dom, In— > 1,
mo ' —
mv
1 1
iD 2 1 d Il < )
(V) 22Dom, ana m,w (mv> e

where B,, D, and D are the positive constants from lemma 11.5 and theorem
11.8.

Such a choice of {s,}:>; is possible because lim, , (™ (z)/1)=0

Now we construct an auxiliary singular function g. Put A" = (0, &). From
the choice of ¢, we have A% < [0, 1]. Divide A(“ into s, disjoint subintervals
of equal length &,/s, by means of the points u'}. = (j — Dgg/s,,j=1,2,.

Set di')=[u{"), o], o{t=ul) 4y, for j= 1 2,...,s, and E, = E‘l” =
U;~1dm'- Now we deﬁne the functlon g on the set E, by g(x)=(j — Dh,
for xed, ;.

The set AY\E, consists of m, =s, open intervals each of them having
length ¢,. Number these intervals in an increasing order by A, i=1,2,...,m,,
and let AP =u{?,1!?). We divide each interval A{® into s, disjoint
subintervals of equal length &, /s, by means of the points u{?) =u{® +(j — )¢, /s,

]—1 2,5, Set d® = [u®, 1)1, v} = u® + 1, and E‘Z’— 2 4@ E, =
1—1 E(Z)
Now we define the function g on the set E, by g(x) = g(ui*) + (j — 1)h, for
xed?).

Similarly we do the third step. The set AYY\(E, U E,) consists of m, disjoint
open intervals with length &,. Number these intervals in an increasing order
by AP, i=1,2,...,m,, and let AP = (u!¥, v!{3"). Divide each interval A® into
s, disjoint intervals of equal length &,/s; by means of the points u{}) = u{® +
(= Deafsai=1,2,....5. Set A =[u®, 037, v) = u®) + 3, EO={ Ji2,d®
and E; = Jm2, E®. Deﬁne the functlon g on E; by g( )=gu®) +(j — Dh,
for xed{).

The sets E,, Es,... are constructed similarly and the function g is defined
on E,, Es,... also in a similar way.

Let g be already defined on the set E = Uﬁ‘; 1+ E, which is dense in [0, &4].
Then we set

g(x)=sup {g(t): teE and t < x}, xe[0,1]\E.

Clearly, the function g is nondecreasing, continuous and singular. Also
g(0)=0and g(1) <1
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11.2 Bounded variation and given modulus of continuity 327

Now we estimate the modulus of continuity of g. It is sufficient to consider
the case 0 < 4 < ¢y. Suppose ¢, < <g,_, k= 1. Then from the definition of
g it follows that

By - e —
(031 <5754 =57 4 ) < 040) + 06 < 2000,

k—1 k— 1
where we have used that w(d)/d is nonincreasing on (0, c0). Consequently
(g, ) < 20(8), 630, (11)

Finally, we shall apply lemma 11.6. Let v>1 and consider g over the
intervals df*), j=1,2,. i=1,2,...,m,_,. The function g satisfies the
assumptions of lemma 11.6 withm=m,, h=h, e=¢,and y=n, (n,/¢, = B,

by (i)). Then we conclude that

V’

h, hy
1 T _ To
Rn(g’ [Oa ])C > 8 8m

for each

n<N,

It

1
1Dym,In"" — 2Dm, In <e + )
& myn,

v

By the definitions of m,, ¢, #, and the properties (i1)—(iv) it follows that

1
> Dom,In
(3
v mv
1

= Dym,In

T
mvw‘1<->
mv

h
Rn(gs [051])C>7Oa US%DOmvln‘_
m,w —
mv

For each v=1,2,... choose n, such that

|
n, <13Dom, ln—— < 2n,.

Consequently for v=1, 2,...

(12)
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328 Lower bounds
Set t, =34Dym,. From (v) it follows that 1 <t,<n,. Then we get

. 1 1 1 l
infl <—+w +w
teren, (F tent t e

24 24

1
v D n——M
°m””{“m@mmm}

< 24 N 24 -1 1 < 24 N 24 4 1 48 i1 1
< 9] — — —=| — —.
Dom, DO m, Dgm, Do mv D, m,

From this and (12) it follows that

1 1
R, (g)e>C mf{ vo g )} v=r2e 13
' I<t<n t re"

where C > 0 is a constant.
By (11) and (13) the function f=4g satisfies the requirements of theorem
11.7. O

11.3 Notes

Theorems 11.1 and 11.2 in the case k = 1 are proved by J. Szabados (1967b};
E.P. DolZenko (1967) has found a comparison between uniform rational and
polynomial approximations which is closely connected to theorems 11.1 and
11.2. Theorem 11.3 is due to E.P. Dolzenko (1962). Theorem 11.4 is proved
by G. Freud (1970). The lower bounds in theorem 11.5 are due to
A.P. Bulanov (1969). Theorem 11.6 is trivial and well-known. Theorem 11.7
(with another proof) is due to A. Pekarski (1980a). The exact lower bound for
uniform rational approximation of absolutely continuous functions with
given modulus of continuity is proved by A.P. Bulanov (1975b).
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12

Padé approximations

One of the most popular domains in the theory of approximation of functions
by means of rational functions is the theory of the Padé approximations.
There exist many books and papers which consider this type of approxima-
tions. We want only to mention the excellent monograph in two volumes of
Baker and Graves-Morris (1981). Here we want to consider some problems
connected with the convergence of the Padé approximants, which are not
entirely included in that monograph. These results are due to A.A. Gonchar
and the group of mathematicians headed by him.

In section 12.1 we give the definition and some promerties of Padé
approximants. In section 12.2 we have direct results for the convergence of
Padé approximants — the classical theorem of Montessus de Ballore and one
of its generalizations, which is due to A.A. Gonchar (1975a). In section 12.3
we give one converse theorem for the convergence of Padé approximants
with fixed degree of denominator (the rows of the Padé-table) which is due
to Gonchar (unpublished). In section 12.4 we give one more converse theorem
of Gonchar connected with the diagonal of the Padé-table. In the notes to
the chapter we give some more information about these problems.

12.1 Definition and properties of the Padé approximants
Let

f@=3 1 (1

be a formal power series. Let n and m be two nonnegative integers.
Usually the Padé approximant 7, = P,,./Qums PumEP s Qpm€ P, of order
(n,m) of (1) is given by the condition

Qnm(z)f(z) - an(z) = O(ZJﬁLm+ 1)'1‘ (2)

T pz) = O " e limsup|o(z)/z" " | < o0
=0
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330 Padé approximations

Let
P(2)=az"+ - +a,z+a,, (3)
Qum(2)=b,2"+ - +byz+b,. 4)
Let us put (1), (3) and (4) in (2):

(bm2m+ s b0)< i fvz”> —(a, 2"+ - +ag) = O(Zn+m+ 1).
v=0

If we write the conditions that the coefficients on the left side before z*,
k=0,...,n+m, are zero, we obtain:

ao = fobo,
a; = foby + fibo,
a,=fob, +f1b +f5bo,

(5)
min{n,m)
a, = Z fn~ibi +fnb05
i=1
bOfrHrl +b1fn + e +bmfn‘m+1 =0’
bOfn+2 +b1fn+1 + e +bmfn—m:0’
(6)

bOfn+m+b1fn+m*1 + o +bmfn:O

(we set here and in what follows f; =0 for i <0).

The system (6) is a system of m linear algebraic equations with m + 1
unknown coefficients by, ..., b,,, which has always a solution. If we know a
solution of the system (6), we can find the coefficients of the numerator q,,
a,...,a, from the equations (5).

One solution of the systems (5), (6) is given by

fn~m+1 fn+1
ﬁmz _ ,
" () fn ) fn+1 ) fn+m )
YIS YAIE T et e Yo S
fn—m+1 .fn*m+2 fn fn+] (7)
- fn*m+2 fn*m+3 fn+1 fn+2
Qnm(z): -
fn fn+1 fn+m*1 fn+m
z" Zm! ez 1

It is not difficult to verify that ﬁnm and Qnm given by (7) satisfy (2).
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12.1 Definition and properties 331

From (7) we see that the condition Q,,,(0) # 0 is equivalent to the condition

fn fn*l fn—m+1

fn+1 fn fn“m

Cn,m)= # 0.

fn+m—1 f'n+m—2 fn

The modern definition by Baker (1973) of Padé approximant of order (n, m)
is the following,

We say that the Padé approximant of order (n,m) exists if there exist two
polynomials P,,,cP, and Q,,cP,, such that

(1) f(Z) - an(z)/Qnm(Z) = O(Zn+m+ 1)’
(i) Qpm(0) = 1.

Then we set T, = P,,/Qm as (n,m)-th Padé approximant.

The conditions (i), (ii) are equivalent to the condition that the system (6)
has a solution with b, = 1. The last condition is equivalent to the condition
C(n,m) #0.

Sometimes the problem of Padé approximation is given in the following
form: find P,,eP, and Q,,€P,, such that

_ Puf)
e

The problems (2) and (8) are equivalent if C(n, m) # 0. But if C(n,m) =0, in
the general case it is not so.

A solution of the problem (2) always exists (for example given by (7)), but
it is possible that there does not exist a solution of the problem (8). For
example it is easy to see that for f(z) = 1 + z? there does not exist a solution
of (8) of order (1, 1) (see Baker and Graves-Morris (1981)).

We shall not go into details when the solution of (8) exists.

In what follows Padé approximant we shall understand in the sense of
Baker (i), (ii).

Usually the Padé approximants of order (n,m) are displayed in a table,
called the Padé-tables, as follows:

1@ =0, @)

n
m 0 1 2 3
0 0,0 (1,0 (2,0) (3,0
1 (0, 1) (LD 21 3.1
0,2) (1,2) (2,2) (3,2)
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332 Padé¢ approximations

The approximants with a given m, (0, m), (1,m), (2,m),..., are called a row
of the Padé-table. The approximants (0,0), (1,1), (2,2),... are called the
diagonal of the Padé-table.

As an example of a Padé approximant let us consider the (n, m)-th Padé
approximant =, = P,,/0,,. to e*. The following representation was given
by O. Perron:

re)

1
an(z) = mf tm(t + Z)neitdta

0
L . o)
Qnm(z)zamjo (t—z)"t"e”'dr.

Obviously we have P,,,eP,,Q,.€P,. On the other hand Q,,0)=1. To
prove that (9) is the (n,m)-th Padé approximant to e* let us calculate
Q.m(z)e” — P,(z). We have

PO a0

€°Qum(z) — Pu(2) = Zn—q—lm—)' {L (t—zy"te ™5 dt — L (e + z)"e‘dt}

1 z _
:mj "t —z)"e " 'dt
sJo

Zn+m+1 1
=(—1)"——J u'(1 — uyme*=du.
n+m) ),

Since the integral is an analytic function in the neighborhood of z =0, the
last equality shows that n,, = P,,/Q,,. given by (9) is the (n,m)-th Padé
approximant to e*.

We shall use in this chapter the following well-known lemma of Cauchy
and Hadamard.

Lemma 12.1. Suppose for the formal series

J@)=3 12
we have

lim sup| f,|'" < p.

n— o

Then f is a holomorphic function in the open disk |z| < 1/p.

12.2 Direct theorem for the rows of the Padé-table

In the theory of convergence of the Padé approximants two types of questions
arise: the direct type theorems and the converse type theorems. Under direct
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12.2 Direct theorem for rows 333

theorem in the theory of Padé approximation we understand the following
one: if we know something about the function f, for which we consider the
formal power series

@)= 3 £ (1

(for example the number of the poles in some domain), what can we say
about the corresponding Padé approximants, for example for their poles?

Under converse theorem in the theory of Padé approximation we under-
stand the following one: if we know something about the Padé approximants
of f, for example the number and situations of their poles, what can we say
about the function f?

A typical direct theorem in Padé approximation is the classical theorem
of Montessus de Ballore.

Theorem 12.1. Let (1) represent the function { in a neighbourhood of z =0 (i.e.

[ is holomorphic in z =0). Let D,, = {z:]z| < R,,} be the greatest disk centered
at the origin inside of which [ has a meromorphic continuation with no more
than m poles (counting multiplicities). If D,, contains exactly k distinct poles
ZyseeesZi— 1,2 Of f of multiplicities p,...,p, respectively and

S p=m, )

then the sequence of (n, m)-th Padé approximants, m fixed, converges uniformly
to f as n— oo on each compact K, K < D,,=D,\{z,,...,z.}.

The poles of denominators Q,,, of the (n,m)-th Padé approximant x,,, =
P,,./0,. tend to the poles of fin D,,.

More exactly, there exists an algebraic polynomial Q,,eP,,,

k k
%@=H@ﬁ%ﬂ4wgﬁ,
such that

. max{|z]: 1 i<k}
lims - ln = :
050p | Oy — Ol &

<1,

where ||| is some norm in P,, (the space of all algebraic polynomials of mth
degree is a finite dimensional normed linear space and all norms in P,, are
equivalent).

A A. Gonchar (1975a) proved that even in the case when p; + --- + p, <m
(see the conditions of theorem 12.1) each pole of f in D,, attracts at least as
many poles of «,,,, m fixed, as is its order of multiplicity.

We shall not prove here this direct theorem because for the converse
theorem 12.3 we shall need only a weaker result (theorem 12.2). For some
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334 Padé approximations

proofs of Montessus’s theorem 12.1 see Baker and Graves-Morris (1981).

It is a well-known fact in the theory of Padé approximations that in general
when we consider (r, m)-th Padé approximants to functions f with numbers
of poles less than m (for example entire functions), the poles of the Padé
approximants 7,, can form a dense set in the plane (see Perron (1957, Chapter
4), Baker and Graves-Morris (1981, Chapter 6)). We shall not consider here
questions of such type. Let us mention only that usually the direct theorems
for the convergence of Padé approximants are given in terms of measure or
capacity (see the notes at the end of the chapter).

In what follows G is an open domain in the complex plane C containing
the origin with boundary I'. We set G=GuUT.

The set of all holomorphic functions in the domain G (in the closed set G)
we shall denote by #(G) (#(G)).

We shall give first two lemmas, following Baker and Graves-Morris (1981).

Lemma 12.2. Let fe#(G) and let f be continuous in G. Then the Padé
approximant of order (n,0) (the Maclaurin polynomial of order n) is given by

1 [n+1_Zn+1 f([)
=c | ——— dt. 3
Two(2) ZRiJ' 2 i (3)
Proof. Since
t"+ 1_ Zn+ 1 n .
-0 iz
t—z jZO z
we obtain that for n,, given by (1) we have
: VIOPe f‘”(
= i~

In what follows we shall assume that appropriate (n, m)-th Padé approxi-
mants exist.

Lemma 12.3. Let fe#(G) and let f be continuous in G. For every algebraic
polynomial R,, of degree at most m, R,(0) # 0, we have

n+m+1 f Qnm m ) [

2miQ,m(2)R,(2) Jr "7 ’

f(Z) - 7Enm( )

where 7, = P,./Qum 1S the (n,m)-th Padé approximant to f.

Proof. Let n,, = P,n/Q.. be the (n,m)-th Padé approximant to f. Let us
consider the Maclaurin polynomials r, o of order n + m for the function
f(@)@um(2)R,(2). By lemma 12.2 we have

[ i
r

Tcn+m,0(z):% t—z tn+m+1 : (4)
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12.2 Direct theorem for rows 335

Since fQ,.R,,e #(G), by Cauchy’s theorem we get
S(OQumlt)R (1)

2ni r t—z

S (@)l 2)R(2) = dr. (5)

From (4) and (5) we obtain

de. (6)

FOODRAD) — o) = - ff O miOR (1)

2ni |y (t—z)ertm e
The Padé condition gives us:
S (@Qum(2IRl(2) — Pum(2)R,(2) = OE"* ™1,
Together with R, (0) =0, we obtain from here
Tyt mo(2) = Pun(2)R(2) + O™ ") = P,(2)R,(2)
and (6) gives us the statement of the lemma. O

Remark. Using lemma 12.3 Saff (1972) gives a generalization of Montessus’s
theorem for multipoint Padé approximation; see also Baker, Graves—Morris
(1981).

Theorem 12.2. Let f(z) be an analytic function at z = 0 and let f be meromorphic
in D = {z:|z} < R} with exactly s poles, counting multiplicity, oy, .., o, |o;] < R,
i=1,...,s. Let m = s and let m,,, = P,,,/Q,m be the (n,m)-th Padé approximant
to f. Let there exist an algebraic polynomial Q,,€P,, such that

H Qnm_ Qm” _>0’ (7)

| dive]

where |- || is some norm in P,,, and the zeros of Q,, are the points z,,z2,,...,z,,.
Then all zeros of f are in the set {z,,...,2,).
On every compact set K,

Kc{zlz| < RI\{z{,22,.. ., 2,0},
we have uniform convergence of n,, to f, n— .

Proof. Let us consider first the case when all points o, i = 1,.. ., s, are different.
Let us set

qs(z) = (Z - (Xl)'”(Z - Ots)'
Then fq,e#(D) and lemma 12.3 with R,, =1 gives us
et (04OQml0) 4
q4z) Jr

27(1Q t—Z n+m+1 t (8)

where 7,,,, = P,,,/Q,m 18 the (n, m)-th Padé approximant to f, and I' {z:|z] = R}.

S(2) = Tunl2) =
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336 Padé approximations

Let us set
D={z|z| <R}, A={oq,...,00,21, s 2y}
Let K be arbitrary compact, K = D\ A. Then
inf{|]z—z2|:zeK,zed} =6 >0
and therefore (7) gives us that for n> N, we have
inf{|Q,m(z)q2)]: zeK} =8, > 0. 9)

Let us set p =sup{|z|:zeK}. Since K < D we have 0 < p <R.

On the other hand the condition (5) gives us that || Q,, llcay <211 @ llcr)
forn>N,.

Consequently from (8), (9) we obtain (n > max {N, N,})

P n+m+1 2 H qu HC{I‘) “ Qm HC(F)
1= Tl <<> T a(R—-p)
C(K) 0y(R—p)

R

Since 0 < p < R, we obtain geometric uniform convergence of «,,, to f on
K. Using (10) we shall prove that every «;, i=1,...,s,is in the set {z,...,z,}.
Let us assume the converse, that there exists o; ¢{z,....,z,}. Then there is
a disk G = {z:]z — o, | < 0,} with the following properties:

(a) if n> N3, 7, is holomorphic in G (this follows from (7)),

(b) G contains no other zeros of f except a;,,

(c) GeD.

From (10) and (a)—(c) it follows that for every n, 0 < 8 < 6,,, for the compact
K@) ={z:0<|z—a;,| <0, we have

I f = Tm ”C(K(())) = O(q(0)"), (11)

where 0 < g(0) < 1, ¢(6) depends on 6.
Using the maximum principle for x,, with respect to G we obtain from
(11) that for n> N5 we have

(10)

1]

I nanC(G)gM’ (12)

where 0 < M < oo (f is holomorphic in K(0), =, is holomorphic in G for
n> N,).

But (12) contradicts (11) for small 8, since | f(z)| = o0, z > a;,.

Therefore o, is in the set {z,...,z,}.

The case when «;, is a pole with multiplicity follows by continuity
arguments. J

12.3 Converse theorem for the rows of the Padé-table

In this section we shall prove one theorem of A.A. Gonchar for the
convergence of the rows of the Padé-table. Let us establish our notations.
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12.3 Converse theorem for rows 337

Let
=3 1 (M)

be a formal power series, and m = 0 be a fixed natural number.
We denote by #,,, = 7,,,(f) the (n, m)-th Padé-approximant for the formal
series (1), i.e. Q,,,(0) =1,

Toom = Pon/Qums  Pum€Ps Qum€Prs 0l 2) f(2) — Ppp(2) = O(2" 1),

We shall assume that such an approximant exists.

Let p > 0. We denote by D, the disk D, = {z:|z| < p}. We set I, =0D, =
{z:]z] = p}.

Let M, (D), respectively M, (D,), denote the classes of functions, analytic
at z = 0, which have meromorphic continuation in D, with < m, respectively
=m, poles in D,

We denote by D, (f) the maximal disk in which (1) has a meromorphic
continuation belonging to M, (D,(f)). Weset R,,(f) = R, the radius of D,,( /),
so Ry(f)= R, is the radius of convergence of the series (1). If (1) diverges
at z=0, we set R, =0.

Theorem 12.3 (A.A. Gonchar, unpublished). Let (1) represent a formal power
series and let m >0 be a fixed natural number. Suppose for every natural
number n 20 we have degQ,,, =m. Let there exist an algebraic polynomial
QeP,, 0(0) #0, such that

lim sup'Ianl_Qlll/n<q< 1 (2)
and /
Q(Z)=<ﬂ (Z_Zk)>/(_l)mnzk’ 3)
k=1 k=1
where ||-|| is some norm in P, (see 12.2).
Then
(a) Ry>0,

(b) feM, (Dg), where Rz max {|z;|: 1 <k <m}/q,
(c) the poles of f in Dy are the points zq,...,z,,.

Remark. Some of the points can coincide.

Proof. Let us have

Qunle) = (ﬁz~z>ﬂ—mﬁak

Since
0(0)#0 4)
we have

0<|z|, k=1,....,m

Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,
available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781107340756.013


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.013
https://www.cambridge.org/core

338 Padé approximations

Since all norms in P, are equivalent, i.e. if || and ||| are two norms in
P,, then there exist constants c¢,(m) and c,(m), depending only on the
dimension m + 1 of P,, such that

cmipl <llpll<cmipl, peP,

and max {|z,]:1 <k <m} =} Q]| is an equivalent norm to [|Q]|, from (2) it
follows that
limsup|z, , —z/|'"" < g < L. (3)
To prove (a) let us consider the algebraic polynomial
Qnm(z) =1+ Az + - + anmzm' (6)

From (3) and (5) it follows that the sequences {z,,}X,, k=1,...,m, are
convergent and therefore the sequences {a,} ., i=1,...,m, are also
convergent. Let us set a; = lim, , . a,;, i = 1,...,m. It follows from (2}, (5), (6)
that

Ozy=1+4+a;z+ -+ a,z™ (7)

Let M = max, _, || Let > 0 be an arbitrary positive number. Then for
every n sufficiently large, n > N, we have

|l <M+6, k=1,....m. (8)
Let us set
c=(M + o)m,
_ . &)
1f,,| = max {|£,}:v <N},

where f, are given by (1).
From the definition of the (n — 1, m)-th Padé-approximant and (6) it follows

that
Jotaw g Joit Gt mfu-m=0. (10)
Let n— 1> N,. From (10), (8) and (9) we get
| f.] < c max [fa—il- (1)
1<ksm

If we set | f,— | =max, ., .|f,—l, then (11) gives us

|fnl<c|fn*k1|9 (12)

where 1 <k, <m.
If n—ky>N,, then applying to |f,_,,| estimates of the types (10), (12)
we get

1fnl<cz‘fn—k1—k2l,

where | f, ., i, =max {| f,_,, 11 <k <m}.
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12.3 Converse theorem for rows 339

If n—k, — k, > N,, again using inequalities of the type (12) we obtain
|ful SEfwbioke il I<ki<m, i=12,3.
Continuing in such a way we obtain that

|l S famiey = = (13)

where n—k; — - —kyy K No<n—k; — - =k 1, 1 <k <m, i = 1,..., [(n).
Using (19) we get

| ful SEPUS
From here we obtain

lim sup| /,|'/* < limsup ™| f, |/

n—+wo n-— o
Since evidently I(n) < n, from here we get

limsup| f,|" = A < c0.

From this inequality and lemma 12.1 it follows that R, = 1/4 > 0, which
proves (a).

Let us prove now (b) and (c).

From R, > 0 it follows that R,, > 0.

We shall prove the following statement: in the assumption of theorem 12.3
if feM(D,) and s <m, then R,, > pq ™' where g is given by (2) and (5).

It follows from the direct theorem 12.2 and the conditions of theorem 12.3
that if feM(D,), s<m, then m,, converges, as n— oo, uniformly to the
function f in every compact K < D¥, D% =D, \{z:z is a pole of f in D},
and the poles of f in D, are in the set {z,,...,z,}. Let the poles of f in D,
be z},...,z; and let us set qz)=11;-1(z—2z), F=fq. Then F is a
holomorphic function in D,. Since degq, <m, the definition of the Padé¢-
approximants gives us

1 J FOOm@ . 1 [ a)Punld) +OC ")

n+m+1 ZZO’ (14)

27 z 27 Zntmtl
T, .

where ¢ >0 is such that |z}|<p—¢, i=1,...,s.
From (14) we obtain

L[ Feee, 1f FE)QE) ~ Q)

: ntm+1 T35 ntm+1
2t )z 2m z

p—e

and using (2) we get

1 F(2)Q(z) g 't
%J Taimi1 42 <6 P ; (15)
T,

z — &
€

Downloaded from https://www.cambridge.org/core. ETH-Bibliothek, on 10 Mar 2022 at 06:43:22, subject to the Cambridge Core terms of use,
available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/CB09781107340756.013


https://www.cambridge.org/core/terms
https://doi.org/10.1017/CBO9781107340756.013
https://www.cambridge.org/core

340 Padé approximations

where ¢, depends on f, m, g, but not on n. Since ¢ > 0 can be arbitrary small,
and

s f F2e)

2mi rﬂfﬁz’””"“ Eoem:
where fn+m is the (n + m)-th Taylor coefficient of the function FQ, we obtain
from (15)

limsup|F,|'" < q/p. (16)

Lemma 12.1 then gives us that FQ is a holomorphic function in D, ,. Since

FQ =fq,0 and all zeros of g, are in the set {z,,...,z,} (the zeros of Q), we

conclude that the function fQ is also holomorphic in D, ,. Therefore f is a

meromorphic function in D,, and has in this disk < m poles, so R, > p/q.
Let us consider now R,, = R, (f). There exist two possibilities for R,

(1) R, <o0;
(2) R, = 0.

In the first case the statement proved above gives us that in Dy the
function f has exactly m poles. Indeed, if we assume that the number of the
poles of f in Dg is less than s, then using this statement we obtain the
contradiction R, > R, /q, 0< g < L.

Therefore in the case (1), according to theorem 12.1, the poles of f in Dy,
are the points z,,..., z,,, which proves (c) in this case. To obtain the estimate
(b) in case (1), we remark that in the disk D, with p=a, —& >0,

=max {|z,|: 1 <k < m}, there are fewer than m poles of f. Therefore again
usmg the statement proved above we obtain that R,, = («,, — ¢)/qg. Since ¢ >0
can be arbitrary small, (b) is proved.

Let us consider now case (2): R,, = co. If f has exactly m poles in C, then
theorem 12.1 gives us that they are z,...,z,. We shall show that in case (2)
it is impossible for f to have fewer than m poles in C. Let us assume the
contrary: feM{C), s<m. Let z,...,z;, s<m, be the poles of f in C. Let
us set

li[ (z—2z), F=fq,

[y

Let

Since F is an entire function, we have by lemma 12.1
lim |F,|'"=0. (17)

n—ro
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12.3 Converse theorem for rows 341

Let us consider the denominator Q,,, of the (n, m)-th Padé-approximant (6):
Omn)=14+a,z+ -+ a,,z™
Since |Q,,— QI —0 with degQ =m, ie. a,#0, we have a,,—a,
(see (7)), and therefonr::O
|Gl = |0 /2>0, B> Ny (18)
We have also like (8)
Gl <M +1, n>N,. (19)

From the definition of Padé-approximant we get

P(z)q4z) ntm
f2)gz) — === 0",
Quml2)
Since deg g, < m, equating the coefficient before z”*™ on the left side, we
obtain
Fn+m + aann+m‘1 + ot aann =0
or

Fn= _(Fn+m+an1Fn+m—1 + oo +anm*1Fn+l)/anm'
Using (18) and (19) we obtain for n > max {N,, N,}
2m(M + 1)

'I:nl< | , max |Fn+m|' (20)
m {<k<sm
If we denote ¢, =2m(M + 1)/]a,,| + 1, we obtain from (20)
|Fn|<cZ|Fn+k1\9 1<k]<m (21)

If we use Q,,,,. . we can obtain a similar estimate for |F,,,,|, continuing
so we can obtain that for every nonnegative integer N we have for
n>max {N, N,}

|F,| < Y| F 1<k;<m, i=1,...,N. (22)

n+k,+---+k~|’ i

From (17) it follows that for n > N5 we have

1 n
IF,.|<<272>- (23)

The inequalities (22) and (23) give us for n > max {N;,N,, N5}

. 1 ndky 4o tky . 1 n+N 1 N
Fl<c( <o L) <(LY).
ol C2<2C2> CZ<2‘32> <2>

Since N can be arbitrary large, it follows that F,=0 for all
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342 Padé approximations

n>max {N, N,, N3}, therefore F is a polynomial. But F = fgq,, therefore f
is a rational function with denominator of degree s < m. This contradicts the
condition of the theorem that deg Q,,,, = m (since f is a rational function, we
have f ==, for sufficiently large n). This contradiction shows that the case
R, = oo, feM(C), s <m, is impossible. O

12.4 The diagonal of the Padé-table

One of the most interesting questions in the theory of Padé approximation
is the asymptotic behavior of Padé approximants of order (n, n), ie. the
asymptotic behavior of the diagonal of the Padé-table of the many problems
connected with this we shall consider only one converse result of A.A. Gonchar
(not the stronger one; see the notes at the end of the chapter). For some
direct resuits see the monograph of Baker and Graves-Morris (1981).

Let again

f@)=Y fi2 (1)

be a formal power series and let us consider the (n, n)-th Padé approximant
of (1)

J(2) = m,(2) = 02", 2
n(2) = pu(2)/Qul2),  Pa€P,, Q,eP,, Q0 =1 3)

We shall assume in this section that the Padé approximant for (1) exists
for every n.

Theorem 12.4 (Gonchar, 1983). Suppose f is represented by (1) and for the
Padé approximant (2), (3) we have for every n> N, that degQ,=n. Let n,
be holomorphic in D = {z:|z| < 1} for n > N,. Then there exists py, 0 < py < 1,
such that Ry =Ro(f)=po and m, converges uniformly to f in D, =
{zi]z] < po}.

For the proof of this theorem we shall need two statements. The first is
the well-known Hermite formula (see Walsh (1960)).

Lemma 12.4. Let G be a domain in C and ge #(G). Let 0,eG, k=1,...,n,
and let reR,,, be a rational function with poles at the points f,, Bay....Bms B:
different from oy, i=1,...,m k= 1,...,n, which interpolate g at the points u,,
k=1,...,n, ie rlo)=glo) for k=1,...,n Then

IJ‘ k=1 — o[ TR= 1t = B g(1) dt
2mi Joo T Tz = BT Th=y(t — o) t — 2

g(z) —r(z) =
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12.4 Diagonal 343

Lemma 12.5. Let peP,, T, ={z:|z|=p;}, i=1,2, p; <p,. Then

p n
Ip “(*(rpz) < (,02> lp HC(l‘m)’

1
where || pllcr, = max{|p(z)|:zeT}.

Proof. Let us denote @(p)=max {|z"p(1/z)|:|z|=1/p}. Since z"p(l/z) is an
algebraic polynomial, by the maximum principle we get. @(p,) < @(p,) if
P22 Py L8

1 1
max{p—nlp(w)lzw=p2}<max{;;!P(W)|1W=P1} : O

2 1

Proof of theorem 12.4. We have

B A"22n+1
B Qn(Z)Qn+ I(Z) ’

since degQ,=n, m,,,(2) = 1,(2) = 7,4 1(2) = f(2) +f(2) — m,(2) = O(z*" ") +
O ") =0(z*"*") and 7, | — M,ER,, 1 ¢-

Let us estimate A, Let &,,, k=1,...,n, be the zeros of Q, By the
assumptions of the theorem &, , > 1forn> Ny, k=1,...,n.

Let &, . be an arbitrary zero of Q,. If we multiply (4) by @, and set after
this z =&, , we obtain

T+ 1(Z) - T(,‘(Z) n> NO’ (4)

An - pn(in,k)anrf:ll(én,k) ) (5)
nk

Since Q,,,(0)=1, we have

n+1

Qn+1(§n,k) = <"1_[1 (fn,k_ €n+1,i)>/(_ 1)"“ 1:[1 €n+1,i

_ et Ty (L _1,>
-k il_II(én,k Cnrri) ©

Let us remark that Q,(Z, ;) # 0 since in the opposite case A, =0 and this
contradicts degQ, ., =n+ 1.
From (5) and (6) we obtain

|A|<"’"”C‘”"’"ﬁl<i— ! ) pu= 1l ™)
" Pu k=1 fn,k fn+1,k " "

since

1PlCndl < [ Pallcir, )
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344 Padé approximations

Let p be such that

2p(1 + p) < (1 —p)*. 8)
If we apply lemma 12.5 to p,, 5,, and p, we obtain
Pn\"
| Pa HC(rﬂ ) S (> || Pn HC(]"p)' )
7\ p
Using that [1/&, .| <1, [1/&, 4. <1, we get from (7) and (9)

n+1

A, < pal -
I P }C(rﬂ)p knl én,k én+ 1.k

: n L+pY
<2 e, 12! @»<2+Wwﬂqw<—;p>, (10)

=<ﬁu—g@/ﬁgk
k=1 k=1

Let us estimate now the difference n,,, ; — 7, on the circle T', = {z:]z| = p}.
Using (4) and (10) we get

L+p\* p
st = Tl < 17 W(~>. :
BT o p ) min [0,(2)Q,1(2)]

1 1

since

<(U+p)zl=

2n+1

Since &, ;> 1, m> N, we have

(Hu—mﬁﬂﬁgk

From here we obtain

min = —-pm

lzl=p

2p 2p(1 +p)\"
_ <=, = ). 11
||nn+1 TCn”c(rﬂ) l—p”n ||rp< (1—p)2 ( )
Let us set
20(1 +
a=atp) =210 1 (see 8))
(I—=p)

Then (11) gives us

7yey — 7, Hc(rﬂ) < || =m, qup)(f'
and

” Tt 1 “C(l"ﬂ) < H Ty ”C(I‘p)(l + q")~
Therefore

n
”nn+1”C{I‘p)<HnN0HC H (1+ 4.
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12.4 Diagonal : 345

Since g < 1, [T{% x, (1 + ¢*) converges and therefore we have for every n
”nn”(‘(rﬂ)gM’ (12)

where M is a constant (depending on N, and g, i.e. on p, but not on n).
Using lemma 12.4 for g ==, ,, ¥ = 7,, we obtain

lf f”lill*ﬁédnwd)

2mi ) et zZ/E ) t—z

Tys 1(2) — Ty(2) = dt, |z|l<p, (13)

since =, interpolates 7, ;2n + 1 times at z = 0.
Now let p’ < p be such that

P\ (1 +p)
= — 1. 14
‘ <p> =k (9
We get from (12), (13)

M p/ 2n+1 1+p n
[ 7ps 1 — 7, ||c ) = T I
p=p'\p l—p

limsup|n,,, —m=, ”(‘r )\‘1 <1

n—+owo

or

From here it follows that the series

TCO(Z)+ Z n+1 ﬂn(Z))

is convergent in ﬁp, ie. {m,}2, converges to a function geéf(D )
uniformly in the disk D , where p’ is given by (14).
We shall show that {n o converges in D to f given by (1). Let

17—l cp,) — 0. (15)
Let o
,(z) = i .2 n=NyoNo+1,...,
and T

From (15) it follows that

T, —>d,.

n— o

n,v

But on the other hand from (1)-(3) it follows that_n,,k =f.,.k=0,1,...,2n
Therefore g, =f, for every v=0,1,2,... and fe# (D, )opo = p". 0

Remark. Using fine calculation it is possible to obtain for p, = p’ a better
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346 Padé approximations

estimation than obtained here. The best result is p, = 1 (A.A. Gonchar, 1982),
which is obtained using another very complicated method.

12.5 Notes

One classical book for Padé approximation is the book of O. Perron (1957).
More modern explanation see in G.D. Baker (1975) and in the encyclopedic
monograph of Baker and Graves-Morris (1981).

The interest in the problem of convergence of Padé-approximants is
connected with some applications in theoretical physics (see Baker (1965,
1970)).

We mentioned in section 12.2 that usually the direct theorems for
convergence of Padé approximants are in terms of convergence in measure
or capacity. Nuttall (1970) proved that for every meromorphic function f,
analytic in z=0, the sequence of the diagonal Padé approximants =,
converges in measure on compact subsets of C; see also Ch. Pommeranke
(1973).

H. Wallin (1974) has shown that for an entire function the Padé approxi-
mants 7, can diverge at each point zeC\0, i.e. the set of poles of the rational
functions =, is everywhere dense in the complex plane C.

A.A. Gonchar (1973) has shown that if f is an analytic function in z =0,
and a single-valued analytic function in its Weierstrass natural domain of
existence Wy, then | f—7,|'”"—0 in capacity inside of W,.

An extension of Montessus de Ballon’s theorem for multipoint Padé
approximants is given by E.B. Saff (1972).

For direct theorems concerning Padé approximants of functions which
have representation by a Markov—Stieltjes integral see Gonchar (1975b),
G. Lépez (1980); for multipoint Padé approximants of such type of functions
see G. Lopez (1978a,b), A.A. Gonchar, G. Lopez (1978).

For inverse results for Padé approximants see the survey paper of G. Lopez,
V.V. Vavilov (1984). The proof of the unpublished theorems of Gonchar (12.3
and 12.4) was given to us by R. Kovacheva. For an analogous result for a
more general situation concerning generalized Padé approximants see
R. Kovacheva (1980). For converse problems for the rows of the Padé-table see
also A.A. Gonchar (1982), Buslaev, Gonchar, Suetin (1983), R. Kovacheva
(1981, 1982, 1984), E.A. Rahmanov (1980), J. Karlsson (1976), S.P. Suetin
(1984), V.N. Buslaev (1982).

More for the converse results for the diagonal of the Padé-table see in
J. Karlsson, Bjorn von Sydow (1976) (for functions with representation by
integrals of Markov—Stieltjes type), A.A. Gonchar, K.N. Lungu (1981),
Gonchar (1983), Gonchar and Rakhmanov (1983).

Very interesting problems exist connected with convergence of sub-
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12.5 Notes 347

sequences of Padé approximants, see Baker (1973), Baker, Graves-Morris
(1981, p.284).

We want to mention also a very interesting work of M.H. Gutknecht
(1984), which is not directly connected with Padé approximants, but deals
with the so-called Carathéodory—Fejér approximations.
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APPENDIX

Some numerical results

Here we shall give some examples of numerical calculation of the best rational
approximation with respect to the uniform and Hausdorff metric.

1. Uniform rational approximation of the function | x| in the interval [ — 1, 1].

Let R, ,.(x) be the rational function of order (n,m) of best uniform
approximation to |x| in [—1,1] and let R,,(|x|) be the corresponding best
uniform approximation. Let T,(x) = cos(narccos x) be the nth Chebyshev
polynomial. Then we have

0.748 09127 4+ 0.728 15549 T,(x)
14 0.543 689 01 T(x) ’

0.827 254 25 + 0.963 52549 T(x) + 0.138 196 6 T,(x)
1+ 0.894427 19 T,(x)

R; 2(x) =R, ,(x)=

3

Ry 5(x) =R, ,(x) =

R ) R, V8679344 + 1117 248 STy (x) + 02494303 T
5400 = Rl = T 1975675 (x) + 0.134 002 83T,(x)

0.893867 51 + 1.238028 3 T,(x)
_ +0.376036 71T, (x) + 0.031 870 565 T¢(x)
T 14 1.2638679T,(x) +0.265 111 55T, (x)

Rs,s(x) = R 4(x)

R7,6(x) = Rs,s(x)

0.9105652 + 1.327433 Ty(x)
B +0.4853394T,(x) + 0.068 471 07T(x)
T 1+ 1.369026 1 T,(x) + 0.399 134 4T,(x) + 0.030 034 3T(x)’

The corresponding best uniform approximations are the following:

Ry 5(1x]) = R, 5(|x]) =0.043689 ...,
Ry 4(Ix]) = Ry 5(Ix])=0018237...,
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Some numerical results 349

Table 1

X [x] = Ry 6(x)

1 —1 0.0022821

2 —0.83750 —0.0022821

3 —0.51850 0.0022821

4 —0.26110 —0.0022821

5 —0.11235 0.0022821

6 —0.04015 —0.0022821

7 —0.01020 0.0022820

8 0 —0.0022821

9 0.01020 0.0022821

10 0.040 15 —0.0022821

11 0.11235 0.0022821

12 0.26110 —0.0022821

13 0.518 50 0.0022821

14 0.83750 —0.0022821

15 1 0.0022821

-1.0 -08 -06 —-04 -02 00 02 04 06 038 1.0
0.016 T T T T T T T T T 1 0.016
0.014 - —40.014
0.012 - 10.012
0.010 |- < 0.010
0.008 -10.008
0.006 |- 4 0.006
0.004 |- < 0.004
0.002 |- 4 0.002
0.000 - - 0.000
—0.002 | 71 —0.002
—0.004 i 1 1 1 1. 1 1 ! i 1 1L —~0.004

-1.0 -08 -06 04 -02 00 02 04 06 08 10

Fig. !
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350 Appendix

Table 2

a R; 5(x) [R;, _faHC[— 1.1]
—0.020942 283 — 0.130 199 79 T,,(x)

0.5 0.0798191

1+ 0.893 557 74 T,(x)

—0.048 181431 —0.116 57235 Ty(x)
04 0.08519
1+ 0.93394145 Ty(x)

—0.068 560 666 — 0.106407 29 T,(x)
0.3 0.089 10
14 0.963 664 64 T,(x)

—0.082725071 — 0.099 358 270 T,(x)
0.2 0.09177
14 0.984 09541 T5(x)

—0.091071953 —0.095202 807 T,(x)
14 0.996 05 T,(x)
—0.093 808 774 — 0.093 849 997 T(x)

0.01 0.093 83
1+0.999 960 70 T,(x)

0.1 0.09332

Rs.4(1x]) = Ry 4(|x|) = 0.008 501 ...,
R 5(|x]) = Rg 4(|x]) =0.004279...,
R, 6(Ix]) = Rg¢(|x]) =0.002282....

It is interesting to compare the best uniform approximation to |x| with
the approximation given by Newman’s rational function from section 4.1.
For this purpose we give a graph of the error. On Fig. 1 the graphs of
[x] — Ng.s(x) and |x| — Rg ¢(x) are shown, where

p(x) — p(—x) > -
Ng o(X) = x=—— (x+&, &C=e )
o=y PO L
For the best approximation rational function R, 4(x) = R ¢(x) we give the
points of alternation and the deviation at these points (Table 1; see also Fig. 1).
Let us mention that [|{x] — N ¢(x)ll¢[—1,1;=0.0128... (see Fig.1).

2. Let us now consider the best uniform rational approximation to the
function f, which is defined in the interval [ —1, 1] as follows:
1 —x/a, 0<x<a,
Jdx)=<0, a<x<l,
fl—x), —1<x<0,

O<a<l.
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Some numerical results 351

Table 3

R 5(x) IRs,—1, ||C[— 1,1]

0.045 74999 — 0.556 257 65 T,(x) + 0.092 685 102 T,(x)
0.5 0.046 574 99
1 +0.795691 62 T,(x)

0.027 380810 — 0.001 156 141 7 T,(x) + 0.079 750 009 T (x)
0.4 . 0.056 090 81
1 4+ 0.889 34108 T,(x)

0.021 363073 + 0.037221 628 T,(x) + 0.069 125404 T ,(x)
0.3 0.065 603 33
14 0.946 701 51 T(x)

0.024 387 398 + 0.063 885 107 T,(x) + 0.060 346 917 T ,(x)
02 0.075078 80
14097951227 T,(x)

0.033 574 507 + 0.081 995 429 T,(x) + 0.053 041 870 T,(x)
0.1 0.084 494 70
1+ 0.995531 10 T,(x)

0.045 440 449 + 0,092 883 026 T,(x) + 0.047 484 261 T,(x)
0.01 0.0929057
1 +0.999 960 21 T,(x)

This function is an integral of an ‘atom’ (se¢ the notes to Chapter 8). The
Tables 2 and 3 show the best uniform approximation to the function f, by
different «€(0,1] using rational functions of order (3,2) and (5,2), the
corresponding rational functions of best uniform approximation are denoted
by R;,(x) and R; »(x)

On Fig. 2 the graph of the functions R; ,(x) are given for a =0.5, 0.4,
0.3, 0.2, 0.1 and 0.01.
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The best uniform rational approximation of order (5,6) of the function
fo.1 is the following:

—0.000647 465 —0.000 864 587 T,(x) — 0.000 216 969 T ,(x)

R ==
s.6(X) 1+ 1.501 479 3T,(x) +0.602 377 42 T,(x)+0.100 897 97 T,(x)
(see Fig. 3).
Theerroris || Rs ¢ —fo.1 lep-1.17 = 0.0224.... On Fig. 4 the graph of the error
is given.

Evidently R; ¢(x) can be used also as a good approximation of the function

Joalx), —1<x<1,
0, |x|>1,

foa(x)= {

on the real line, i.e. |Rs ¢ —'f},.1 (= o0,y = 0.0224. .. and that is because the
degree of the denominator is bigger than the degree of the numerator.

We see that the degree of the best rational uniform approximation of such
‘integrals of atoms’ does not depend very much on a. Let us note that the
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0.4k 404
0.6 - 4 -06
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Fig. 3
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corresponding polynomial approximation is bad. We have

HR16,O _fo.s “C =0.0359..., H R16,0 ‘fo.4|\c =0.0487...,
” R16,o _fo.s ”C =0.0558... s H R16,0 _fo.z ||c = 00869---,
||R16,0 _f0.1 Hc = 0-2777~~-, “Rm,o —f0.01 ”c =0.4966...,

and of course

lijr(l) | Rn,O _faHC[- 1,11 = 0.5.
3. Best Hausdorff approximation to the function sign x by rational functions
in the interval [ —1,1].

The rational functions are a very convenient instrument for approximation
of functions possessing discontinuities. We shall denote by R}, ,(x) the rational
function of order (n,m) of best Hausdorff approximation to signx and by
¥R, .. sign x) the Hausdorff distance with a parameter o =1 between R},
and sign x. Table 4 shows the difference between the best polynomial and
best rational approximation:
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Table 4

(n,m) KR}, ., sign x) (n,m) (R}, ., sign x)
2,2) 0.171573... (4,0) 0.2708...
(3,3) 0.08512... (6,0) 0.2079...
4,4 0.0470... (8,0) 0.17101...
5,5) 0.0278 ... (10.0) 0.1475...
(6,6) 0.0173... (12,0) 0.13011...
(7,7) 0.0112... (14,0 0.11696...

The graphs of the rational functions R% s and R}y, of best Hausdorff
approximation to sign x are given in Fig. 5.

The graphs of the rational functions R’ , and R, , of best Hausdorff
approximation to sign x are given in Fig. 6.
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Let us give the rational functions R’ 5 and RY 5:

R (x)__L81865471(x)+41761431973(x)+-&0953698473(x)
55T 1+ 1.301 398 T,(x) + 0.301 595 6 T, (x) ’

Rr7,7(x)
_ 1.86195T(x) + 1.004 310T;5(x) + 0.261 7459T 4(x) + 0.022 530 5T,(x)
N 1+ 1.473508T,(x) + 0.557 810 6 T,(x) + 0.084 302 46 T4(x)

4. Best Hausdorff approximation of the function

0, 1< x<—172,
1 12 <x<0,
* . s
M= _ k1 o<x<ip,
12, 12<x<1,

by polynomials and rational functions.
Let R} ,{x) be the rational function of order (n,m) of best Hausdorff
approximation to f* and let (R} ,.f*) be the Hausdorff distance with a

parameter o = 1 between R}, and f* (see Chapter 9).
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We have
HRY ¢, f*)=0.0144.. ;KR53 ,0, [*)=0.0842...,
0.4989705 + 0.9032719T,(x) + 0.673 6009 T,(x)
+0.4141603T5(x)+ 0.210 746 4 T,,(x) + 0.085 677 84 T5(x)
, +0.02562947T,(x) + 0.004 219 460 T5(x)
R7,6(X) =

1+ 1756451 T, (x)+ 1.355470T5(x)
+0.786 168 3T5(x) + 0.404 859 9T, (x)
+0.132995 2T(x) + 0.038 723 91 T(x),

R, o(x)= 0.4588875+0.240 521 4T, (x)—0.348 999 3T,(x)
+0.073 673 53T5(x)+0.201 407 3T,(x)
—0.128 726 9T(x) — 0.041 029 47T4(x)
+0.056 801 36 T,(x)
—0.021 748 364 T,(x) + 0.006 473 36 To(x)
+0.048 284 21T, o(x)— 0.087 141 37T, (x)
+0.037407 69T, 5(x)+0.088 398 57T, 5(x).

In Fig. 7 the graphs of the functions f*, R, ¢ and R, , are given.
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