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Abstract

This paper is a survey on the multivariate Padé approximation. Two types of approximants are considered: those
which can approximate general meromorphic functions f = h/g where both 4 and g are holomorphic, and those which
are specialized to the approximation of functions of the same form where g is a polynomial. Algorithms are described,
together with the different techniques used for proving convergence. (©) 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction: from univariate to multivariate Padé approximation

Let f(z) be a function defined on a subset of the complex plane. In many applications, the function
is known through the first terms of its power series expansion. For example, in Electromagnetics
or in Mechanics, the electric field (respectively the displacement) is the solution to a square linear
system which depends on a parameter z (e.g. the frequency):

(A + Bz + Cz*) f(2) = b(2).

If the matrix 4 € .#,(C) is invertible and if b(z) is holomorphic, then the solution f(z) is holomor-
phic around the origin, and has a power series expansion

f@)=> a, aecC" (1)

k=0
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The vectors ¢, in this series can easily be computed by solving successively the systems
AC() = bo,
Acy = —Bcy + by,

Acy =—Bcy_y — Cepp + by, k=2,

where b(z)=Y",., biz* [13]. These systems are obtained by the identification of the coefficients of z*
in (A+Bz+Cz*) > o cxz* =450 biz". Of course, only a finite number of coefficients ¢, 0<k <N,
are computed and a good approximation of f(z) may be obtained by a Taylor polynomial

f(z) ~ Z ez,
=0

However, such an approximation will be accurate if series (1) itself converges, that is, if |z| < p,
where p is the convergence radius of the series. Unfortunately, p is often finite because there are
complex numbers z;, i = 1,2,..., such that det(4 + Bz, + Cz?) = 0, for which f(z;) is not defined.
Hence, the function f(z) is usually a meromorphic function with poles z; and a convergence radius
p = min;|z;]|.

In such a case, it is well known that a Padé approximation can be far more accurate than a Taylor
approximation. Essentially, it is a consequence of the famous Montessus de Ballore theorem, who
established in 1902 the uniform convergence of Padé approximants on compact subsets excluding the
poles. Particularly, a good approximation of f(z) can be obtained outside the disk of convergence
of series (1), where the Taylor expansion fails to converge.

The above-mentioned example depended on a single variable z. Often, there are, in fact, some
other parameters like shape variables, material properties (Hookes law, electromagnetic properties),
boundary conditions, etc. For such cases, it would be desirable to construct a multivariate Padé
approximation. However, the problem in several variables is much more difficult than in one variable,
and many research has been done in the last 30 years in order to find a generalization with good
convergence properties.

In order to understand these difficulties, and the different solutions which have been proposed to
overcome them, first let us consider the univariate Padé approximant of a scalar and meromorphic
function f defined on the complex plane,

£y =", @)
v(z)
where u and v are both holomorphic functions on C and v(0) # 0. For given integers m and n, let
p(2)/q(z), deg p<m, degq<n, be a nontrivial solution to the homogeneous and linear system

q(2)f(z) = p(z) = O(""""). (3)
The proof of the Montessus de Ballore theorem is essentially based on the fact that the zeros of the
function v form an at most countable set Z = {z,z,,23,...} of isolated points. This property, which
is particular to the univariate case, allows to rewrite the function f on a given disk D(0,r) as a
fraction with a polynomial denominator:
h(z) "
f(Z):@: g(Z): H(Z_Zi)‘a VZED(O:F)\Za (4)

|zi| <r
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where o; is the order of the pole z;, and A(z) = u(z)g(z)/v(z) is holomorphic on D(0,r). Let n
be the degree of the polynomial g. Using this form of the function f, the Montessus de Ballore
theorem states that the Padé approximants p(z)/g(z) solution to (3) converge uniformly to f on
all compact subset of D(0,7)\Z when m — co. A natural generalization of this theorem would ask
for multivariate rational approximants to converge to f uniformly on compact subsets excluding the
zero set of the denominator.

There are mainly two difficulties in the generalization to several variables. The first one is that the
substitution of a polynomial for v in Eq. (2) is no longer possible for a multivariate meromorphic
function. The reason is that usually the zero set of an holomorphic function in C¢, d > 1, does not
coincide, even locally, with the zero set of a polynomial. This implies that for a general meromorphic
function, one cannot hope from a sequence p/q of fractions where the degree of ¢ remains bounded,
to converge to f. The first way for overcoming this difficulty was proposed in 1988 by Chafty
who introduced the Padé o Padé approximants [3]. In the case of two complex variables x, y, they
are obtained in two steps. The first one consists in the computation of the Padé approximant of the
function f, : x — f(x, y) with respect to the variable x. The second step consists in the computation
of the Padé approximant of the resulting function with respect to the variable y. Using a similar
approach, one of the authors introduced the nested Padé approximants [11]. The difference lies in the
second step, where the Padé approximants of the coefficients of the first step result are computed.
These two approximants are rational approximants of f in the field C(x, y) of fractions in x and y
with coefficients in C, but they are computed in the field C(x)(y) (or C(y)(x) for the second one) of
fractions in y with coefficients in C(x). Of course, these fields are the same, but the representation
is changed, and particularly the number of coefficients is not the same for a given degree. It may
seem that such a representation is not as elegant as the usual one. For example, the symmetry in
x, v is lost, though this fact may be used when the two variables are of different nature. However,
what is gained through this representation is that convergence can be obtained for a large class
of meromorphic functions, even with non polynomial denominators. The proofs of convergence are
based on the fact that under some suitable assumptions the zeros of a function v(x, y) can locally
be identified with the zeros of a function g(x, y) which is a polynomial with respect to one variable,
that is of the form g(x, y)=[[._,(x —x,(»)). Then univariate techniques can be applied to this form.

In order to get around the previous difficulty, many authors have concentrated their attention on
the functions f which can be written in the form

_ h(2)

9(z)’
where /£ is holomorphic and ¢ is a polynomial of degree n.

The second difficulty, which appears when the field C(z,2,...,2z,) is used for the approximation,
is that “no formal equation analogous to (the univariate case) gives the correct number of linear
equations to determine the coefficients” [4]. Thus, several choices have been made in order to
define multivariate Padé approximants. One of the first definitions was proposed by Chisholm in
1973 [4]. A few years later, a most general definition was given by Levin [16], from which a
particular case was studied by Cuyt [5], the so-called homogeneous Padé approximants (see also
[15] for a definition based on orthogonal polynomials). They are closely related to the univariate
approximation, and they allowed Cuyt to obtain in 1985 the first uniform convergence result for the
multivariate case [6], recently improved in [7]. For numerical applications, these approximants suffer

f(=) Z:(zl,zz,...,zd)ECd, (5)
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from a lack of convergence on the complex lines where ¢ — ¢g(#z) has less than n roots. Particularly,
they have a singularity at the origin, which has been carefully studied by Werner [19]. Up to now, no
convergence has been obtained for the general definition proposed by Levin. The standard proofs of
consistency and convergence break down for the same reason that there are not enough equations to
uniquely determine a Padé approximant (see, for example, (11)). In the Padé approximation theory,
consistency usually means that if f'=#/g is a rational fraction, then its Padé approximant P/Q should
be equal to f if the degrees of P and Q are correctly chosen. The least-squares Padé approximants
introduced by the authors in [12] have allowed to obtain consistency and uniform convergence on
compact subsets excluding the zero set of g. In the univariate case, the latter formulation provides
an alternative to the classical Padé approximation, and coincides with it for a particular choice of
the interpolation set.

This paper is organized as follows. The next section discusses the multivariate Padé approximation
of functions f = h/g where & is holomorphic and g is a polynomial, and Section 3 considers the
more general case where g is holomorphic. A simple algorithm is given for computing each kind
of multivariate Padé approximant. We also describe their convergence properties and show how the
proofs of convergence are closely related to the univariate case.

2. Multivariate Padé approximants of f /g with g polynomial

Many definitions have been proposed for the multivariate approximation of a function f(z) =
h(z)/g(z), z€ C? d =1, where h is holomorphic and g is a polynomial of degree n. We will focus
our attention to the two consistent approximations for which uniform convergence has been proved:
the homogeneous (HPA) and the least-squares (LSPA) multivariate Padé approximants. It seems that
although some other approximants may have some historical interest, their lack of convergence is a
serious handicap for numerical applications.

In the HPA, the coefficients of the approximant P/Q are defined by a linear system which is
over-determined for more than two variables. Due the particular choice of the degrees and the
interpolation indices set, this system can be solved exactly. In the LSPA, the over-determined linear
system defining the coefficients is solved in a weighted least-squares sense.

First some notation is introduced, and the consistency of a multivariate Padé approximation is
discussed. Next, we describe the HPA and the LSPA. The proofs of convergence are very similar,
and reported at the end of the section.

2.1. Notation

For a given finite subset M C N?, the set of polynomials P € C[z] having the form P(z) =
S, Puz* is denoted by P,. The standard notation z* = [[¢_, z% is used for « € N and z € C?.

A polynomial Pe Py is said M-maximal if for all polynomial Q€ C[z], the condition
PQ Py implies Q€ C. The degree of a polynomial P = > P,z* is max{|«|, P, # 0} where
lot| = oty + 0y + - - - + o4, and the valuation of a series S =73, S,z* is min{|«|, S, # 0}.

A subset M C N has the rectangular inclusion property if the conditions « € N/, B € M and a < f3
imply o € M. The standard partial order of N is used, that is, « <f means o; <f; for 1<i<d.
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The number of elements of a finite subset M is denoted by |M|, and M + N denotes the set
{a+p; aeM, peN}. If PPy and Q € Py, then PO € Py, .

For a sequence (M,,),0, M,, C N?, we say that lim,,_,., M,, = oo if for all bounded subset B of
N’, there exists an integer k such that B C M,, for all m>k. For the sake of simplicity, we will
omit the subscript m and write M — oc.

For a function f which is holomorphic around the origin, the coefficient of z* in its power series
expansion is denoted by f,, that is, f(z)=Y,., f.z% and for EC N’ fg(z) denotes the partial

sum fp(z) =2, cp fu2".
2.2. Consistency of a rational approximation

Here we suppose that f is a fraction,

h
f(Z):i), hEH:DRa gePSa
9(z)
where R and S are finite subsets of N“, and g(0) # 0. Consider three finite subsets M, N, E C N,
and a fraction P/Q, P € Py, O € Py, such that

(f = P/Q) =0. (6)

If the requirements M C E and |E| = |M|+ |[N| — 1 are added, then this equation corresponds to the
general definition given by Levin [16].

Like in other domains of numerical analysis, consistency is almost necessary for convergence. The
question is under which conditions on the sets M, N, E, does Eq. (6) define a consistent approxima-
tion, that is, Eq. (6) implies P/Q = f.

In the univariate case, one has M =R={0,1,...,m}, N=S=1{0,1,...,n}, and

E=M +N, (7)

B = [M] + N[ - 1. (8)

An extra condition such as Q(0) =1 is usually added in order to avoid the zero solution. Then,
Eq. (8) means that a square system is obtained for the free coefficients of P and Q. We will see that
Eq. (7) is a consistency condition. When the sets M, N, E satisfy the rectangular inclusion property,
the two conditions (7) and (8) are equivalent in the univariate case but incompatible in the multi-
variate case, because the identity |[M + N|=|M|+ |N| — 1 holds only for d = 1. Hence one of them
must be abandoned.

Proposition 2.1. Let f = h/g be an irreducible fraction, where he Pz, g € Ps, g(0) # 0. For a
given E C NY satisfying the inclusion property, let (P,Q) € Py x Py be a nontrivial solution to the
linear and homogeneous system

(Of —P)e=0. %)
If
N+RCE and M+ SCE, (10)
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then
P A

0 g
Moreover, if N =S and if g is N-maximal, then there exists a constant ¢ € C such that

P=ch, Q=cg.

Proof. Due to ¢(0) # 0 and the rectangular inclusion property, system (9) is equivalent to
(Oh — Pg); = 0. Due to Qh€ Py g, Pg€Pyys, N+ RCE and M + S CE, we have Qh = Py.
It follows from the Gauss lemma that there exists a polynomial ¢ such that P = hc, Q = gc, hence
P/O=h/g. If Q€ Py and ¢g is N-maximal, then c€ C. [

This proposition shows that condition (7) is sufficient for consistency when M =R and N = S.
Without any special assumption on the function £, the latter condition is also necessary, as illustrated
by the following example where trying to preserve (8) instead of (7) leads to divergence. Let

1

(I-x)1-=y)

The power series expansion of function f around the origin reads f(x,y) = > x'y. Let
M=R={(i,j))eN? i+ <2}, N=S={0,1}*, E={0,1,2}%, P(x,y)=1+x+y+x*+)y*€Py
and Q(x,y)=1—xy€Py. Then P and Q are solution to Eq. (9), condition (8) is fulfilled, but
P/Q # f. Such an indetermination of the denominator coefficients appears also for higher degrees
of the numerator, making it impossible to obtain uniform convergence of the Padé approximants to
the function f on compact subsets of {(x,y)€ C? (1 —x)(1 — y) # 0} when M increases.

Observe that system (9) has the nontrivial solution (4,g), although it is usually strongly over-
determined. When / is not a polynomial, depending on the choice of the sets M, N, E, this system
will not necessarily have some nontrivial solutions. In the homogeneous approach, system (9) can
always be solved exactly by letting |[N| — oo when M — oc. In the least-squares approach, the set
N is kept constant with N = §, and system (9) is solved in a least-squares sense.

S y)= (11)

2.3. The homogeneous multivariate Padé approximants

The HPA were introduced by Cuyt [5]. Let f(z)=h(z)/g(z) be a meromorphic function where g
is a polynomial of degree n with g(0) # 0.

2.3.1. Definition
The polynomials P and Q and the interpolation set £ are chosen in the following way. For a
given m >0, consider the three sets

M = {ae N’ mn<|o| <mn+m}, (12)
N ={ae N’ mn<|oa|<mn+ n}, (13)

E={aecN 0<|a|<mn+m+n}. (14)
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We look for polynomials P € Py, and QO € Py such that

(Qf = P)e=0. (15)
For R={0e N9 0<|o|<m} and S = {a € N?, 0<|x|<n}, one has M + S =N + R =E, and it
follows from Proposition 2.1 that this approximation is consistent.

The idea is to introduce the univariate polynomials p and ¢ defined, for fixed ze€ CY,
by p(t) =t "™P(tz) and ¢q(t) = 7" Q(tz), t € C, of respective degrees m and n (at most). The
coefficient of ¥ in P(#z) is an homogeneous polynomial in z of degree k, which explains the name
given to these approximants. One can consider p and g as elements of the ring C[z][¢], and compute
a univariate Padé approximant solution to the linear system

q(t) f (1) — p(t) = O, (16)

This system with m + n + 2 unknown coefficients and m + n + 1 equations has always a nontrivial
solution in (C[z])"*"*2. Moreover, if the denominator below is not zero, a solution is given explicitly
by Jacobi’s determinant representation

t" mfn(t) tn_lmenJrl(t) e Fm(t)

fm—n+1 fm—n+2 e fm+1

p(t)i fm fm+1 fm+n
q(t) t" | (17)

fm—n+1 fm—n+2 T fm-H

fm fm+l te fm+n

with

k
fi=Y_ faz" if k=0, fi=0 ifk<0, F@)=> fi
| i=0

o|=k
It follows from (16) that t™q(t) f(tz) — ™ p(t) = O(¢"™ ™ *+1) in C[z][[#]], the ring of power series
in ¢ with coefficients in C[z]. By construction, the coefficient of #* in t™q(¢)f(tz) — t" p(t) is
homogeneous in z of degree k. This implies that (¢(1)f — p(1))r = 0. Moreover, P(z) = p(1l) and
0(z)=¢q(1) are polynomials in z with valuations at least mn and respective degrees at most mn + m
and mn + n, thus P and Q are a solution to Eq. (15).
Observe that as Qf — P has valuation at least mn, Eq. (15) can also be written

(Of —P)e =0, E ={acN mn<|o|<mn+m-+n}. (18)
For the particular dimension d =2, (Qf — P)r =0 is an homogeneous and linear system with
mn+m+n+2 mn + 1
()

equations and s+ 1 unknowns. Hence it is not surprising to find a nontrivial solution. However, for
d > 2, the latter system becomes over-determined, but still has some nontrivial solutions.
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The solution P/Q found above is not necessarily an irreducible fraction. If P;/Q; is another solution
to Eq. (15), then PO, — PO = 0. Hence the irreducible form P, ,)/Om.n of P/Q is unique.

Definition 2.1. The [m, n] homogeneous multivariate approximant of the function f is the irreducible
form Py, )/Oimny of P/O where P and Q satisfy (15).

When P/Q is not irreducible, it may happen that the valuation of the polynomial Q/Q,. ., has a
positive valuation s, and there is a “backward shift” s on the valuations of P and Q. In that case,
the polynomials P, ,) and Q. do not necessarily satisfy Eq. (15). For example, if the backward
shift is mn, then one can only guaranty (Quu..f — Piunm)r =0 where F = {a e N, 0<|o| <m + n}.

In a more algebraic presentation, and following Brezinski’s univariate theory, Kida defines in [16]
the same multivariate approximant as a particular case of a Padé-type approximant for which the
generating polynomial is precisely ¢(¢) in (17). However, one can observe that the substitution of
tz for z, which allows to use the univariate construction, is made possible because of the particular
choice of the sets £, M, N (12)—(14).

2.3.2. Computation

The [m,n] homogeneous multivariate approximant can be computed in several ways. One
possibility consists in solving directly (18). Here the unknowns are complex numbers. Although over-
determined if d > 2, this system has always some nontrivial solutions. The algorithm is the following.

Algorithm 1: HPA computation

1. Choose three enumerations (o)i<i<im|> (Bi)i<i<iv)s (Vi)i<i<jg\m|» of the respective subsets
M = {oeN) mn<|a|<mn + m}, N = {feNY, mn<|f|<mn + n} and E'\M = {ye N9,
mn+ m < |y|<mn+m+ n}.

2. Compute the coefficients of the |E’\M| x |[N| complex matrix A:

Aij:f‘/i—[fp 1<l<‘E/\M‘: 1<]<’N‘=
where f,:=01if 0 £ a.
3. Compute a nontrivial solution v € CIVl to the system 4v =0, and define the polynomial Q by

V]

0(z)=> vzl

4. Compute

V]

Wi:zv/foti—ﬁﬂ 1<l<’M’

=1
and define the polynomial P by

|M|

P(z)= Z wiz™.
i=1

5. The fraction P/Q is the [m,n] HPA of the function f.
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A second possibility is to use symbolic computation for solving (16) in the ring C[z]. Here
the unknowns are complex polynomials, and this system is always under-determined (size (m + n
+ 1) x (m + n+ 2)). Such an approach is also used for computing the Padé o Padé approximants
(cf. Section 3.3).

Finally, one can also take advantage of the construction of the homogeneous approximant. For
z € C? such that ¢ — g(tz), ¢ € C, has exactly n roots, the rational fraction ¢ — P, ,)(12)/Qm.n(12) is
the [m, n] univariate Padé approximant of the function f.(¢):= f(#z). Hence all the algorithms devel-
oped in the univariate case can be applied to compute P .)(12)/Omn(tz) = [m,n], (¢).
Particularly, computation of staircase sequences like in the ¢-algorithm or the qd-algorithm can
be used. For a description of these two algorithms, we refer the reader to [8].

2.3.3. Convergence

Here we consider sequences of [m,n] HPA where n is fixed and m — oo. The degrees and the
valuations of the numerator and the denominator in the nonreduced form P/Q increase when m — oo,
and the convergence is obtained on compact subsets excluding the zero set of g if there exists a
subsequence of approximants P, ),)/Oumei,n such that Q.. 7 0. This implies that the backward
shift in the denominator QO of [m,n] must be at least mn. For a given function f, the existence of
such a subsequence remains to our knowledge an open question. When it exists, it can be interpreted
as a particular case of the LSPA for which the underlying system is solved exactly. In the general
case, the HPA converge on a smaller subset obtained by removing also the complex cone formed
by the vectors z for which ¢ — g(z), t € C, has less than n roots (Theorem 2.3).

Suppose that f = /g is meromorphic on a neighborhood of a polydisc D(0, p) = {z € C?; |z| < p;,
i=1,...,d}, and & is holomorphic on a neighborhood of D(0,p). The polynomial g is normalized
in such a way that >, . |g,/* = 1. Its decomposition into irreducible factors reads

!
g=]19
i=1
and the associated algebraic set G with its decomposition into irreducible components G, are:
G={zecC% g(z)=0},
G,‘ = {Z c Cd, g,‘(Z) = 0}

Suppose also that G; N D(0, p) # () for 1<i</, and that 4(z) # 0 on a dense subset of GND(0,p).
The following theorem was proved in [6].

Theorem 2.2 (Cuyt [6]). Let (Piu)n)/Qumiinm k=0 be a subsequence of homogeneous multivariate
approximants such that Quuu,m(0) # 0 for all k=0. Then

klirgo Pniiyn)/ Qmiir.n)(2) = f(2)

uniformly on all compact subsets of {z € D(0,p); g(z) # 0}. Moreover, the subsequence (Quuy.n) k>0
converges to ¢(z) uniformly on all compact subsets of D(0, p).

The following result has been obtained in [7] where more general sets than the polydisc D(0, p) are
considered. Let A be the set of vectors z € dD(0, p) for which the polynomial 7 — g(iz), t € C, has
less than 7 roots counted with multiplicity in D(0, 1), and denote by E, the cone {zz; t€C, z € A}.
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Theorem 2.3 (Cuyt and Lubinsky [7]). If h(z) # 0 for z € G, then
n111—>n<;lo P(m,n)/Q(m,n)(Z) = f(Z)

uniformly on all compact subsets of {z € D(0,p); z& E4, g(z) # 0}.
2.4. The least-squares multivariate Padé approximants

Studying least-squares orthogonal polynomials, Brezinski proposed recently a least-squares formu-
lation for univariate Padé approximants [2]. This idea has been generalized to the multivariate case
in [12]. The formulation [2] did not involve any particular weights in the least-squares approxima-
tion, whereas some weights were introduced in [12], which have an important role as it can be seen
from the proof of Theorem 2.4.

2.4.1. Definition
The requirements on the function f are the same than in Section 2.3.3. The norm on Py is defined
by |10]] = (X, en |0.*)"2. For PPy, Q€ Py, and a finite set E C N’ consider the function

1/2
J(P,0) = <ZP2“|(QfP)a|2> - (19)

Ay

Definition 2.2. Let M, N, E C N’ be three finite subsets such that £ DM + N and E satisfies the
inclusion property. A least-squares multivariate Padé approximant of the function f is a fraction
P/Q with (P,Q)E I]:DM X |]:DN3 HQH = 19 and

A solution to this problem is denoted by [M,N],.

For d =1 and E = M + N, this definition coincides with the standard definition of the univariate
Padé¢ approximation. For d =1 and £ 2 M + N, the least-squares formulation provides an alternative
to the exact Padé interpolation.

Observe that j(P,Q)=0 if (g,h) € Py, x Py, and it follows from Proposition 2.1 that this approx-
imation is consistent. Although there may exist several LSPA for given M, N and E (even if one
considers the irreducible form), the next theorem shows that it has no incidence on the convergence.

2.4.2. Computation

In order to solve (20), first the coefficients of QO are computed, then the coefficients of P are
recovered by expanding and truncating the product Qf, that is, P = (Qf)y. The coefficients of Q
are solution to

min > PPN

o€ E\M

which can be written in the form

min s*A4A*As, (21)

[[sl[>=1
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where the vector s € CVl contains the coefficients of Q, 4 is an |E\M| x |[N| complex matrix and
A* is the conjugate transpose of A. The optimality condition reads
A*As =1s, LeR.

Hence s*A*As = 2>0, and a solution is given by any normalized eigenvector associated to the
smallest eigenvalue value of 4*4. The algorithm is the following.

Algorithm 2: LSPA computation

1. Choose three enumerations ()1<i<ul, (Bh<i<ivps (Vi)1<i<jp\m|» of the respective subsets M, N
and E\M.
2. Choose p € R and compute the coeflicients of the matrix A:
Ay =p"frp, 1<i<|E\M|, 1<j<|N|,

where f,:=01if 0 £ a.
3. Compute an eigenvector v € CV associated to the smallest eigenvalue of 4*4, and define the
polynomial Q by
[N

0(z) = Z vizP.
=

4. Compute
V]
Wi:ZUjf%i—/f/’ ISZS‘M‘
=1
and define the polynomial P by
M|

P(z)= Z w;z™.

i=1

5. The fraction P/Q is an [M,N] LSPA of the function f.

2.4.3. Convergence
In the following theorem [12], the set N is fixed, and can be any finite subset of N“ such that
g€ Py and g is N-maximal (cf. Section 2.1).

Theorem 2.4 (Guillaume et al. [12]). Let [M,N], =PM/OM be a sequence of least-squares multi-
variate Padé approximants with M — oco. Then

Jim [M,N,(2) = f(2)

uniformly on all compact subsets of {z € D(0,p); g(z)#0}. Moreover, the sequence Q"(z) con-
verges to ¢(z) uniformly on all compact subsets of D(0,p).

2.5. Proof of Theorems 2.2, 2.3 and 2.4

The proofs are an extension of the beautiful technique introduced by Karlsson and Wallin in the
univariate case [14], which is based on the uniform convergence to zero of the function H* in (22).
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2.5.1. Proof of Theorems 2.2 and 2.4

Theorem 2.2 can be seen as a particular case of Theorem 2.4 by using the set £ = {a € N9,
0<|a|<m + n + mn — s} instead of E (where s, mn<s<mn + n, is the backward shift on the
valuation of Q, coming from the assumption Q. .,(0) # 0), the notation P = P, .5, O = Qpn.n)»
and the fact that (O™ f — PM)p = 0, that is, the least-squares approximation is exact for the HPA.
We outline the proof of Theorem 2.4.

Let (PM,0M) € Py, x Py be a solution to problem (20) and consider the function

HY =g(Q" f — P"), (22)

which is holomorphic on a neighborhood of D(0,p). The keystone of the proof is the following
lemma, whose proof is given at the end of the section.

Lemma 2.5. One has
Jim HY (z)=0 (23)
uniformly on all compact subsets of D(0, p).

According to Definition 2.2, the sequence (Q),, is bounded in Py. Consider an arbitrary sub-
sequence, still denoted by (Q),, for simplicity, which converges to a polynomial Q€ Py with
||Q|| = 1. The subsequence (Q"),, converges also to Q, uniformly on all compact subsets of C*
when M — oo.

The set G; N D(0, p) was supposed nonempty. For z € G, N D(0, p), one has HY(z) = h(z)O"(z)
and (HM),, converges to 0 on D(0, p), thus A(z)Q(z) = 0, and Q(z) = 0 because i(z) # 0 on a
dense subset of G N D(0,p). The set of regular points of G; is open, connected and dense in G,
thus Q =0 on G; and g; divides Q [1,18]. Similarly g; divides O (consider the partial derivatives
of H), which implies that g divides Q. One has Q € Py and ¢ is N-maximal with ||g|| = 1, thus

O=cg, |c|]=1
Hence lim,_... OM = cg uniformly on all compact subsets of C?, and after division of (22) by gO¥,
one obtains with (23)

. PM
Jim < _QM> (z)=0
uniformly on all compact subsets of {z€D(0,p); g(z) # 0}. As this holds for all convergent

subsequences of the bounded sequence (QY)y,, the whole sequence f — P™/OM converges to zero
in the same way. [

Proof of the Lemma. The main line is the following. One has gP" € Py, .y and E DM + N, thus
v (hQ"), if o ZE,

(9" f —P")g), ifacE
(and HY =0 for the HPA if o € E’). The Cauchy integral yields

1 hoM
HY / Q dz if a&E, (24)
r

o Qin)? Jp, z++1
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1 g(Q"f — P")g ,
HY = / dz if a€E, 25
“ = Qinyl Jr. o z hoe (25)
where oo + 1= (o + 1,...,04 + 1). The sequence (Q"),, is bounded in Py and 4 is continuous on
I',, thus
HY|< S if agE. (26)
pil

The change of variable z = (p; exp(2in0,),..., ps exp(2inl,)) in Eq. (25) yields
e | 9(Q"f — Py
o [0.13¢ P :
The Cauchy—Schwarz inequality and Parseval’s formula give

) 12 12
\HM| < (/{W Md9> (ZPZ“I(QMf—PM)xV) :

20
p o€EE

Thus, using definition (19) of the function j, one has (possibly with a different ¢)
Y| << j(PY,Q%) if a€E. (27)
pO(

Due to the definition of Py, Oy and to (hy,g) € Py x Py, one has j(PY,0")<j(hy,g), and
gathering Eqs. (26) and (27), one obtains
) ; (28)

z o
=+
k>
where |z/p|* = |zi1/p1|" - - - |za/pa]™. Tt follows from

o ZE
1/2
) 1 |hew|?
h = d
.]( Mag) <(217T)d Zﬂr z z 5

that limy .. j(hy,g) = 0, hence limy ..|HY(z)| = 0, uniformly on all compact subsets of
D(0,p). O

z
0o€EE p

[HY(z)] <c (j(hM,g) >

2.5.2. Proof of Theorem 2.3
The proof is based on a univariate projection, which allows to shift the degrees of P, ,, and
Om,ny» that is, for a given z € 0D(0, p), the univariate Padé approximant of ¢ — f(fz) reads

Pm,Z(t)/Qm,Z(Z) = P(m,n)(tz)/Q(m,n)(tZ)a

where deg P, . <m, degQ,,.<n. Here again, the key idea is to show that the function

H,, (1) = g(12)( O, (1) f (1z) — Pp(1))
= Qm,Z(t)h(tZ) - Pm,Z(t)g(tZ)s

converges uniformly to zero. A local extension of an estimation similar to (26) is obtained, which
leads to the local convergence (in z) of Q,, . to a polynomial Q,, deg Q. <n. Particularly, if g(zz)=0,
then H,,.(tz) = O,,..(¢)h(tz). Taking the limit, it follows from A(#z) # 0 that Q.(¢)=0. Hence Q. has
exactly the same n roots than the polynomial # — g (#z), which allows to complete the proof after
division by gQ.. 0
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3. Multivariate Padé approximants of f /g with g holomorphic

In this section are presented the Padé o Padé approximants (PRPA) and the nested Padé approxi-
mants (NPA) for a meromorphic function f(z) = h(z)/g(z). Both of them have a natural recursive
structure and can be defined for z € CY, d > 1. For the sake of simplicity they are here presented in
the case of two complex variables x and y. For more variables z;,z,,...,z4, one substitutes z; for x
and (z,,...,z4) for y. Both PRPA and NPA are consistent and convergent, and start for fixed y with
the univariate Pad¢ approximant [m,n], (x) of the function f,:x — f(x,y). The fraction [m, n], (x)
is an element of C[[y]](x), and is nothing else than a parameterized univariate Padé approximant.

In the PRPA, one computes in C(x)[[y]] the power series expansion of [m, n], (x), and then, for
fixed x, one computes the univariate Padé approximant of the function x — [m, n], (x). The calcula-
tions are done in the field C(x), hence a good way of doing them is to use symbolic computation. In
the NPA, one computes directly the univariate Padé approximants of the coefficients of [m,n], (x),
which belong to C[[y]]. The computation does not need symbolic computation.

We point out the fact that in both cases only univariate Padé approximants are computed, for
which much knowledge has been accumulated. Also noteworthy is that this kind of approximation
can be applied to a larger class of functions than the approximations described in Section 2 because
g needs not to be a polynomial.

Due to their construction, the convergence of PRPA or NPA cannot be obtained on all compact
subset excluding the singularity of /. The complex lines (x, y) such that [m,n], is not defined must
also be removed from the convergence set. It is a sort of intermediate situation between the HPA
and the LSPA, where the extra singularities of the HPA have been shifted away: instead of complex
lines passing through the origin, these lines are here parallel to the x-axis.

First some notation is introduced. Then we describe the first step and give an intermediate con-
vergence result which will be used for the convergence analysis of both PRPA and NPA.

3.1. Notation

Recall that in the univariate case, if the following linear system

q(x)u(x) — p(x) = 0", ¢(0)=1 (29)

has a unique solution, then the fraction p/q is irreducible and is called the [m,n] Padé approximant
of the function u =3, ., ux*. This fraction is denoted by [m,n],. The Hankel matrix corresponding
to this system is denoted by H(u,m,n), and the right member by C(u,m,n):

7 Uy, U1
H(u,m,n) = : : , C(u,mn)=— : ,
Up e Uppn—i Umtn
where u;:=0 if i < 0. The coefficients S = (g,,...,q;)" are solution to the system
H(u,m,n)S = C(u,m,n) (30)

and the other coefficients p;, 0 <<i<m, are recovered by expanding the product u(x)g(x).
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3.2. First step (a parameterized Padé approximant)

Let / be a meromorphic function on a neighborhood of a polydisc D(0, py, p»),

_u(x,y)
o, y)

where the functions u and v are holomorphic on a neighborhood of D(0, p;,p,). For the sake of
simplicity, we make the following assumption: v(x, y)=> ., v;(y)x' is a polynomial in x such that
x — v(x,0) has n simple roots with v(0,0) # 0. A particular case is when v is a polynomial in the
two variables x and y. In the general case, the set where v(x, y) vanishes is not necessarily algebraic.

Let %, C D(0,p,) be an open subset where the function y — f(0,y) is holomorphic and the
determinant of H(f,,m,n) is nonzero, and suppose that 0 € %,. For a fixed y € %,, we can consider
the [m,n] Padé approximant of the function f, : x — f(x,y),

Un(ry) _ Sy ston
Ve, y) 14200 s ()
The subscript m indicates the dependence on m, whereas n is fixed once for all.

S p)

€19)

[m,n]; (x) =

3.2.1. Computation

The coefficients of this parameterized Padé approximant can be computed in C[[y]] in the follow-
ing way. For ye€%,, the vector S(y) = (s2,,(»),...,sm.(»))" is the unique solution to the linear
system

H(fy,m,n)S(y) = C(fy,m,n). (32)

Due to the assumption det H( f,m,n) # 0, the vector-valued function S(y) is holomorphic around
zero and has a power series expansion

S(y)= Z Sy, S;ecC".
>0
The power series expansion of H and C read

H(fymn)=> H;y, HeC"™,

Jj=0
C(fy:m5n)zz ijj: CJGC".
Jj=0

It follows from (32) that the vectors S; are solution to the systems

H()So = Co, (33)

J
HyS; = — Z HS; v +Cj,  j=1, (34)
k=1
which all have the same matrix. Like in the univariate case, the other coefficients s7(y), 0<i<m
are obtained by expanding in x the product f,(x)V"(x,y). The pseudo-algorithm is the following
(series are here considered, which will be later truncated in Algorithms 4 and 5).
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Algorithm 3: Intermediate Padé approximant computation

1. Compute
fm—n+1,j e fm,j fm-H,j
H; = E : ; C=- : . J=0,
fm,j e fernfl,j fm+n,j
where f(x,y) =27, ,5, fi,x'y and f,;:=0if i <0.
2. Solve (33) and (34) for j>1. Using the numbering S; = (sﬁmj,...,s;"m’j)T, define
Si(V) = Z S;ZH,jy/a 1<i<n,
Jj=0

Vi, y)=1+ sp (v’
i=1
3. Compute
Szlj = Z SZ;+k,jfi—k»j7 0<l<m’ J>O’
k=0
where s, ,:=1 and s, ;:=0 for j > 0, and define
ST(y):ZS;f;yja O<i<m’

j=0
Ul y)=)_ iy
i=0
4. The function U(x, y)/V(x, y) is the [m,n] intermediate Padé approximant of f.

3.2.2. Intermediate convergence
The convergence is a direct consequence of the theory developed in the univariate case. Let
% C D(0, p,) be an open subset with 0 € % such that for all y € %:

o vo(y) #0, v,(y) #0,

e the polynomial x — v(x, y) has n simple roots o;(v), 1<i<n, |o;(y)| < p1, the functions o; being
holomorphic on % (simple roots can be replaced by roots of constant multiplicity),

e u(x,y) # 0 if v(x,y)=0.

The following lemma was proved in [3].

Lemma 3.1 (Chafty-Camus [3]). For all compact subsets A, C %, there is an integer my such
that for all m=my and all 'y € #,, there is a unique intermediate Padé approximant [m,n], =
U™(x,y)/V"(x,y). Let O be the open subset

0= {(x’y)eD(Oaplv)OZ)a yE@a U(%J’) 7é 0}
The sequence ([m,n]; Ymw=m, converges uniformly to f on all compact subsets of (D(0,p,)x % )N0.
Moreover, the sequence (V"(x,y))mso converges to v(x,y) uniformly on all compact subsets of
Cx%.
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Proof. We give the main line of the proof, which is adapted from the very elegant technique used
by Saff in the univariate case [17]. Define

Un(x,y)  sm Vm(x,y)
S%Jrn(y) ’ V (x, y) B m+n(y)

After dividing in f* the numerator and the denominator by the function v, (which does not vanish
on %), the function f can be put in the following form which fits the form Um/ 7" of [m,n], :

0" (x,y)=

h(x,y) n—1 .
s g y)=) gy +x",
9(x, ) 4 2; g

S y)=

where the functions / and g are meromorphic on D(0, p1, p) and holomorphic on D(0, p;) x %. The
idea is to search V' (x, y) under the form

n—1

7@ y) = g0 ) + D0 wEOWx, p),
k=0

where Wy =1, Wi(x,y)=(x—a1(y))---(x —ox(y)) is a polynomial in x of degree k, holomorphic
on C x %, and to reformulate the problem as follows.

For fixed y €%, let m,(x, y) be the Taylor expansion of degree m + n at x = 0 of the function
X — I;'m(x, ¥)h(x,y). The coeflicients w}'(y) are chosen in such a way that the polynomial in
x, T,(x,y) vanishes at the n roots o;(y) of g(., y). Hence, there exists a polynomial in x, Um(x, ¥)
such that 7,(x, y)=U" (x, »)g(x, v), and it follows that (hV" —gU" )(x, y)=0(" ). If 7" (0, y) #
0, these conditions coincide with the ones defining U™ and V™.

Owing to Hermite’s formula

1 X\ 7z p)h(z, )
(X, y) = in /Z_pl (1 — <2> > — dz, (35)

the coefficients wg'(y),...,w) () are solution to the system

Z Az (wi(v) =Bj(y), j=12,....n,

w1 o (VN Wiz, »)h(z, )
A4 =557 /Z,,l (1_<z> ) z—a(y) 02

BI'(y)= L /z| X <W>m+n+l 9(z, y)(z, y) dz,

21w z z—o(y)
which converges uniformly on 4} to a triangular, homogeneous and invertible system. Thus, for
m=m sufficiently large and y € %, the coefficients wi'(»),...,w)_,(») are uniquely determined,

holomorphic in y, they converge uniformly to zero, and 7" converges uniformly to g on all compact
subsets of C x .#,,. The proof is completed as in Section 2.5. [J
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3.3. The PadéoPadé approximants

The PadéoPadé approximants were introduced by Chaffy [3]. In Section 3.2 were defined the
intermediate Padé approximant [m,n], (x) = U"(x, y)/V"(x,y) of the function f = u/v, where U"
and V™ belong to C[[y]][x], and have respective degrees m and n in x. The basic idea is now to
compute an [m’,n’] Padé approximant of [m,n], (x) with respect to the variable y.

Some restrictions are made which are more technical than really necessary. For instance, a disk
D(0, p;) is substituted for % because, in order to apply once more Lemma 3.1, one needs to be sure
that the function y — v(xg, y) has exactly n’ simple zeros in D(0, p;). The Padé o Padé approximant
is defined locally in x in the following way.

Let p; > 0 be such that D(0,p3) C% and v(0,y) # 0 for all y € D(0,p3). Let xo € D(0,p;) be
fixed such that v(xy,0) # 0, and suppose that the function y — v(xp, y) has exactly »n’ simple zeros
in D(0, p3). The case of zeros of constant multiplicity could also be considered.

Recall that V™(x, y) converges to v(x, y) uniformly on all compact subsets of C x %. It follows
from the implicit functions theorem, Lemma 3.1 and Rouché’s theorem, that there exists an integer
my and a neighborhood ¥ "(xo) of xy such that for m>m, and (x, y) € ¥ (xy) x D(0, p3), v(x, y) and
V™(x, y) can be written under the form

’

o) = e [ = Blowin ),

V', y) = cn [[ (0 = B (x, »),
i=1

where the functions f; and " are holomorphic and do not vanish on 77(x,), the functions w and
W™ are holomorphic and do not vanish on 77(xy) x %. Moreover lim,, .., f7(x) = f;(x) uniformly
on all compact subsets of ¥ (xo).

Definition 3.1. For fixed m>0, let s(x,y) = [m,n], (x). The PadéoPadé approximant [m',n'], o
[m,n] (f), if it exists, is defined on 7#7(xy) by '

[m',n'], o [m,n](/)x,y)=[m',n'], ().

Remark 3.1. The rational fraction r(x, y)=[m',n'], o [m,n] (/) has the following interpolation prop-
erty:

r(0,0) = 0" £(0,0), 0<k<m+n,

Br(x,0) = d4s(x,0), 0<k<m' 41, Vx €7 (xo).

If 0 € ¥"(x0) (for example if x,=0), then the Padé o Padé satisfies at the origin the usual interpolation
property. This follows from s(0, ) = [m,n], (0) = f(0, y) for small |y|.

3.3.1. Convergence

We are now in the same position than the beginning of the first step if we exchange the variables
x and y, and substitute [m,n], (x) for the function f. The next theorem [3] follows from Lemma
3.1 applied first to the function [m, n], (x), next to the function f,.
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Theorem 3.2 (Chafty-Camus [3]). There exists an integer my, and a neighborhood V" (x,) of xo such
that for all m'=myq and all x € V" (xo), there is a unique Padé approximant [m',n'],o[m,n].(f).
The Padé o Padé approximants converge in the following sense:

lim < lim [m',n'], o [m,n] (f)(x, y)):f(x,y)

m— o0 m’ — oo

uniformly on all compact subsets of {(x,y) € 7 (xo) x D(0, p3), v(x,y) # 0}.

3.3.2. Computation
In order to compute [m',n'], o[m,n] (f), one first need to compute the double power series
expansion of [m,n] 7,(x). Using symbolic computation, one expands fraction (31), [m,n] 7,(x) =

oy sm()x)/(1+ X0, s™ (y)x'), in the form
[m,n], (x) = > bi(x)y, (36)
j=0

where the b;’s are rational fractions, solution in C(x) to (37)—(38). Observe that by(x) is a fraction
with degrees at most [m,n], and more generally b;(x) is a fraction with degrees at most [m -+
jn,(j + 1)n]. Next the Padé o Padé approximant of f is obtained by computing the univariate Padé
approximant of (36) with respect to y. Here again symbolic computation is used to solve the
associated linear system in the field C(x), and the degrees in x will increase once more. The
algorithm is the following.

Algorithm 4: PRPA computation

1. Use Algorithm 3 to compute the coefficients s}, 0<i<m +n, 0<j<m’ + n’ (in Algorithm 3,
substitute 0<j<m’ + n’ for j=0).
2. Solve in C(x) the following triangular system (using symbolic computation):

(1 + Z S oX )bo(x) = Z ST, (37)

Z (ZS,W kx)bk(x)—Zsl’"j Loj=12 0+ (38)

k=0 i=1

3. Solve the system (using symbolic computation):

by —wi1(x) .. bw(x) qw(x) br1(x)

b (x) oo buiw—1(x) q1(x) by ()
where b;(x):=0 if i < 0, and define

0 y) =1+ qix)y.

i=0
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4. Compute
pi(x) = Z q;(x)bi_j(x), 0<i<m',
=0
where go(x):=1, and define

P(x,y)=>_ pi(x)y'.

i=0
5. The fraction P(x, y)/QO(x, y) is the Padé o Padé of the function f.

3.4. The nested multivariate approximants

The nested multivariate approximants were introduced in [10]. Consider a fraction R € C(y)(x) of
the form

P(x, y) Do iy’
R(x,y)= = = - (39)
T 00y) T TS )
where the r;(y) are also fractions:
pi(y) E;n;o Pijyj .
r(y) = = o L, 0<i<n+m (40)
q(y) 1+ 950
with
m+n=d,, m+n=d, 0<i<m-+n, (41)
deg O(x,0) =n, deggi=n;, 0<i<n+m. (42)

Let E(di,dy) ={0,1,...,d,} x {0,1,...,d,}. For o = (o,0) € N?, we denote by ¢* the usual
differential operator 0% = 0!l /07 0%.

Definition 3.2. Consider the following equation:
0*R(0,0)=0"£(0,0) VaecE(d,d,). (43)

If the fraction R (39) is the unique solution to this equation, it is called the [m,n,(m;),(n;)] nested
Padé approximant of the function f and denoted by [m,n,(m;),(n),x, y],.

Similarly to the univariate case, existence occurs as soon as the degrees of the numerators are
sufficiently large (cf. Theorem 3.4). A sufficient condition for uniqueness, which implies consistency,
is the following [11]. The fraction R (39) is said irreducible if the fractions x — R(x,0) and
7, 0<i<n—+ m are irreducible.

Proposition 3.3. If the fraction R (39) is a solution to (43) and is irreducible, then it is the unique
solution to (43).
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3.4.1. Computation

Eq. (43) is a nonlinear system of (d; + 1)(d, + 1) equations, with the same number of unknowns.
However the solution of this system can be obtained in two steps by solving small linear systems.
The first step has been described in Section 3.2 and Algorithm 3, where the coefficients s7"(y) of
the intermediate Padé were obtained. The second step is the following.

For a given m and 0<i<d,, degrees m; and n; are chosen in such a way that m; + n; = d, (see,
e.g., [9] for the choice of the degrees). We suppose here that the following Padé approximants:

ri(J/) = [mi7 ni]sm, Oglgdl,

exist in the sense of definition (29), that their denominators are of degree n;, and that r,,(0) # 0.
Let

2ot iy’
1 + Z?:l rm+i(y)xi
It can easily be proved that if this fraction R is irreducible, then it is the nested Padé approximant

of order [m,n,(m;),(n;)] of the function f [10]. The algorithm is the following, which needs no
symbolic computation.

R(x, y) = (44)

Algorithm 5: NPA computation

1. Use Algorithm 3 to compute the coefficients 7 0<i<d;, 0<j<d, (in Algorithm 3, substitute
0<j<d, for j=0).
2. Fori=1 to d;:
e solve

m m m
i,m;—n;+1 R i,m; qni Si,m,-Jrl
>

m m m

Si,m, Si,m,-Jrn,vfl q1 Si,m,Jrni

where s;;:=0 if j <0, and compute
ni
pj = Z qksi,j—ka Ogjgmla
k=0

e define

p,(y):Zpr/, ql(Y):1+qu)f’, V,(y):pl(y)
=0 J=1 qi(»)

3. Define

m

P(x,y)=>Y_ r(y)x,

i=0

Q(X, J’) =1 + Z reri(y)x['

i=1

4. The fraction P(x, y)/QO(x, y) is the nested Padé approximant of the function f.
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3.4.2. Convergence
The next theorem was proved in [11].

Theorem 3.4 (Guillaume [11]). The sequence of nested Padé approximants converges uniformly to
f on all compact subsets of O ={(x,y)€D(0,p,p2),y €W, v(x,y) # 0} in the following sense:
for all ¢ > 0 and all compact subsets A" C O, there is an integer mqy such that for all m=my, there
exist integers dy and n"' <d,, 0<i<m-+n, such that for all d,>d,, the nested Padé approximant
[m,n,(dy — ni"),(n]"),x, y], of the function f is well defined and

sup v’f(x, y) - [m’na (dz - n;”), (n:.'”),x’ y]j('x? y)’ <eé.
(xy)yex
Each n!" can be chosen equal to the number of poles (counted with multiplicity) within the disk
D(0, py) of the function s!', 0<i<m + n.

Proof. The main line is the following. It follows from Lemma 3.1 that for m >m, sufficiently large,
V™ is well defined and holomorphic around the origin. Hence the functions s7"(y) are holomorphic
around zero. Due to their construction (32), they are meromorphic on D(0, p,) and have a finite
number #n”" of poles (counted with multiplicity) within this disk. Owing to the Montessus de Ballore
theorem, there is an integer d, such that the Padé approximants [d, — n!",n}"],,» are well defined for
dy>d,, and each sequence ([d, — n}”,nl’.”]sz,, )a, converges to s uniformly on A when d, —o00. O
Remark 3.2. Although the number of poles n! of the functions s/ are not known, the technique
described in [9] for counting the number of poles of meromorphic functions within a disk can be
used here. Besides, the existence of an upper bound of the numbers #" remains an open question,
although numerical tests indicate they are bounded.

4. Final comments

An open question is whether convergence of more or less diagonal sequences in the LSPA table can
be obtained for the approximation of general meromorphic functions. If such a result was obtained,
it could be an improvement over the PRPA or NPA, where, due do their recursive construction,
artificial singularities are present.
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