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Abstract

This paper is a survey on the multivariate Pad�e approximation. Two types of approximants are considered: those
which can approximate general meromorphic functions f = h=g where both h and g are holomorphic, and those which
are specialized to the approximation of functions of the same form where g is a polynomial. Algorithms are described,
together with the di�erent techniques used for proving convergence. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction: from univariate to multivariate Pad�e approximation

Let f(z) be a function de�ned on a subset of the complex plane. In many applications, the function
is known through the �rst terms of its power series expansion. For example, in Electromagnetics
or in Mechanics, the electric �eld (respectively the displacement) is the solution to a square linear
system which depends on a parameter z (e.g. the frequency):

(A+ Bz + Cz2)f(z) = b(z):

If the matrix A∈Mn(C) is invertible and if b(z) is holomorphic, then the solution f(z) is holomor-
phic around the origin, and has a power series expansion

f(z) =
∑
k¿0

ckzk ; ck ∈Cn: (1)
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The vectors ck in this series can easily be computed by solving successively the systems

Ac0 = b0;

Ac1 =−Bc0 + b1;
Ack =−Bck−1 − Cck−2 + bk ; k¿2;

where b(z)=
∑

k¿0 bkz
k [13]. These systems are obtained by the identi�cation of the coe�cients of zk

in (A+Bz+Cz2)
∑

k¿0 ckz
k=
∑

k¿0 bkz
k . Of course, only a �nite number of coe�cients ck ; 06k6N;

are computed and a good approximation of f(z) may be obtained by a Taylor polynomial

f(z) '
N∑
k=0

ckzk :

However, such an approximation will be accurate if series (1) itself converges, that is, if |z|¡�;
where � is the convergence radius of the series. Unfortunately, � is often �nite because there are
complex numbers zi; i = 1; 2; : : : ; such that det(A + Bzi + Cz2i ) = 0; for which f(zi) is not de�ned.
Hence, the function f(z) is usually a meromorphic function with poles zi and a convergence radius
�=mini|zi|.
In such a case, it is well known that a Pad�e approximation can be far more accurate than a Taylor

approximation. Essentially, it is a consequence of the famous Montessus de Ballore theorem, who
established in 1902 the uniform convergence of Pad�e approximants on compact subsets excluding the
poles. Particularly, a good approximation of f(z) can be obtained outside the disk of convergence
of series (1), where the Taylor expansion fails to converge.
The above-mentioned example depended on a single variable z. Often, there are, in fact, some

other parameters like shape variables, material properties (Hookes law, electromagnetic properties),
boundary conditions, etc. For such cases, it would be desirable to construct a multivariate Pad�e
approximation. However, the problem in several variables is much more di�cult than in one variable,
and many research has been done in the last 30 years in order to �nd a generalization with good
convergence properties.
In order to understand these di�culties, and the di�erent solutions which have been proposed to

overcome them, �rst let us consider the univariate Pad�e approximant of a scalar and meromorphic
function f de�ned on the complex plane,

f(z) =
u(z)
v(z)

; (2)

where u and v are both holomorphic functions on C and v(0) 6= 0. For given integers m and n, let
p(z)=q(z); degp6m; deg q6n; be a nontrivial solution to the homogeneous and linear system

q(z)f(z)− p(z) = O(zm+n+1): (3)

The proof of the Montessus de Ballore theorem is essentially based on the fact that the zeros of the
function v form an at most countable set Z = {z1; z2; z3; : : :} of isolated points. This property, which
is particular to the univariate case, allows to rewrite the function f on a given disk D(0; r) as a
fraction with a polynomial denominator:

f(z) =
h(z)
g(z)

; g(z) =
∏
|zi|¡r

(z − zi)�i ; ∀z ∈D(0; r)\Z; (4)
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where �i is the order of the pole zi; and h(z) = u(z)g(z)=v(z) is holomorphic on D(0; r). Let n
be the degree of the polynomial g. Using this form of the function f; the Montessus de Ballore
theorem states that the Pad�e approximants p(z)=q(z) solution to (3) converge uniformly to f on
all compact subset of D(0; r)\Z when m→ ∞. A natural generalization of this theorem would ask
for multivariate rational approximants to converge to f uniformly on compact subsets excluding the
zero set of the denominator.
There are mainly two di�culties in the generalization to several variables. The �rst one is that the

substitution of a polynomial for v in Eq. (2) is no longer possible for a multivariate meromorphic
function. The reason is that usually the zero set of an holomorphic function in Cd; d¿ 1; does not
coincide, even locally, with the zero set of a polynomial. This implies that for a general meromorphic
function, one cannot hope from a sequence p=q of fractions where the degree of q remains bounded,
to converge to f. The �rst way for overcoming this di�culty was proposed in 1988 by Cha�y
who introduced the Pad�e ◦Pad�e approximants [3]. In the case of two complex variables x; y; they
are obtained in two steps. The �rst one consists in the computation of the Pad�e approximant of the
function fy : x 7→ f(x; y) with respect to the variable x. The second step consists in the computation
of the Pad�e approximant of the resulting function with respect to the variable y. Using a similar
approach, one of the authors introduced the nested Pad�e approximants [11]. The di�erence lies in the
second step, where the Pad�e approximants of the coe�cients of the �rst step result are computed.
These two approximants are rational approximants of f in the �eld C(x; y) of fractions in x and y
with coe�cients in C; but they are computed in the �eld C(x)(y) (or C(y)(x) for the second one) of
fractions in y with coe�cients in C(x). Of course, these �elds are the same, but the representation
is changed, and particularly the number of coe�cients is not the same for a given degree. It may
seem that such a representation is not as elegant as the usual one. For example, the symmetry in
x; y is lost, though this fact may be used when the two variables are of di�erent nature. However,
what is gained through this representation is that convergence can be obtained for a large class
of meromorphic functions, even with non polynomial denominators. The proofs of convergence are
based on the fact that under some suitable assumptions the zeros of a function v(x; y) can locally
be identi�ed with the zeros of a function g(x; y) which is a polynomial with respect to one variable,
that is of the form g(x; y)=

∏n
i=1(x− xi(y)). Then univariate techniques can be applied to this form.

In order to get around the previous di�culty, many authors have concentrated their attention on
the functions f which can be written in the form

f(z) =
h(z)
g(z)

; z = (z1; z2; : : : ; zd)∈Cd; (5)

where h is holomorphic and g is a polynomial of degree n.
The second di�culty, which appears when the �eld C(z1; z2; : : : ; zd) is used for the approximation,

is that “no formal equation analogous to (the univariate case) gives the correct number of linear
equations to determine the coe�cients” [4]. Thus, several choices have been made in order to
de�ne multivariate Pad�e approximants. One of the �rst de�nitions was proposed by Chisholm in
1973 [4]. A few years later, a most general de�nition was given by Levin [16], from which a
particular case was studied by Cuyt [5], the so-called homogeneous Pad�e approximants (see also
[15] for a de�nition based on orthogonal polynomials). They are closely related to the univariate
approximation, and they allowed Cuyt to obtain in 1985 the �rst uniform convergence result for the
multivariate case [6], recently improved in [7]. For numerical applications, these approximants su�er
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from a lack of convergence on the complex lines where t 7→ g(tz) has less than n roots. Particularly,
they have a singularity at the origin, which has been carefully studied by Werner [19]. Up to now, no
convergence has been obtained for the general de�nition proposed by Levin. The standard proofs of
consistency and convergence break down for the same reason that there are not enough equations to
uniquely determine a Pad�e approximant (see, for example, (11)). In the Pad�e approximation theory,
consistency usually means that if f=h=g is a rational fraction, then its Pad�e approximant P=Q should
be equal to f if the degrees of P and Q are correctly chosen. The least-squares Pad�e approximants
introduced by the authors in [12] have allowed to obtain consistency and uniform convergence on
compact subsets excluding the zero set of g. In the univariate case, the latter formulation provides
an alternative to the classical Pad�e approximation, and coincides with it for a particular choice of
the interpolation set.
This paper is organized as follows. The next section discusses the multivariate Pad�e approximation

of functions f = h=g where h is holomorphic and g is a polynomial, and Section 3 considers the
more general case where g is holomorphic. A simple algorithm is given for computing each kind
of multivariate Pad�e approximant. We also describe their convergence properties and show how the
proofs of convergence are closely related to the univariate case.

2. Multivariate Pad�e approximants of f
/
g with g polynomial

Many de�nitions have been proposed for the multivariate approximation of a function f(z) =
h(z)=g(z), z ∈Cd; d¿1; where h is holomorphic and g is a polynomial of degree n. We will focus
our attention to the two consistent approximations for which uniform convergence has been proved:
the homogeneous (HPA) and the least-squares (LSPA) multivariate Pad�e approximants. It seems that
although some other approximants may have some historical interest, their lack of convergence is a
serious handicap for numerical applications.
In the HPA, the coe�cients of the approximant P=Q are de�ned by a linear system which is

over-determined for more than two variables. Due the particular choice of the degrees and the
interpolation indices set, this system can be solved exactly. In the LSPA, the over-determined linear
system de�ning the coe�cients is solved in a weighted least-squares sense.
First some notation is introduced, and the consistency of a multivariate Pad�e approximation is

discussed. Next, we describe the HPA and the LSPA. The proofs of convergence are very similar,
and reported at the end of the section.

2.1. Notation

For a given �nite subset M ⊂Nd, the set of polynomials P ∈C[z] having the form P(z) =∑
�∈M P�z

� is denoted by PM . The standard notation z� =
∏d
i=1 z

�i
i is used for �∈Nd and z ∈Cd.

A polynomial P ∈PM is said M -maximal if for all polynomial Q∈C[z], the condition
PQ∈PM implies Q∈C. The degree of a polynomial P = ∑

� P�z
� is max{|�|; P� 6= 0} where

|�|= �1 + �2 + · · ·+ �d; and the valuation of a series S =∑� S�z
� is min{|�|; S� 6= 0}.

A subset M ⊂Nd has the rectangular inclusion property if the conditions �∈Nd, �∈M and �6�
imply �∈M . The standard partial order of Nd is used, that is, �6� means �i6�i for 16i6d.
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The number of elements of a �nite subset M is denoted by |M |, and M + N denotes the set
{�+ �; �∈M; �∈N}. If P ∈PM and Q∈PN , then PQ∈PM+N .
For a sequence (Mm)m¿0; Mm⊂Nd; we say that limm→∞Mm =∞ if for all bounded subset B of

Nd; there exists an integer k such that B⊂Mm for all m¿k. For the sake of simplicity, we will
omit the subscript m and write M → ∞.
For a function f which is holomorphic around the origin, the coe�cient of z� in its power series

expansion is denoted by f�; that is, f(z) =
∑

�¿0 f� z
�; and for E⊂Nd; fE(z) denotes the partial

sum fE(z) =
∑

�∈ E f� z
�.

2.2. Consistency of a rational approximation

Here we suppose that f is a fraction,

f(z) =
h(z)
g(z)

; h∈PR; g∈PS ;

where R and S are �nite subsets of Nd; and g(0) 6= 0. Consider three �nite subsets M; N; E⊂Nd;
and a fraction P=Q; P ∈PM ; Q∈PN ; such that

(f − P=Q)E = 0: (6)

If the requirements M ⊂E and |E|= |M |+ |N | − 1 are added, then this equation corresponds to the
general de�nition given by Levin [16].
Like in other domains of numerical analysis, consistency is almost necessary for convergence. The

question is under which conditions on the sets M; N; E; does Eq. (6) de�ne a consistent approxima-
tion, that is, Eq. (6) implies P=Q = f.
In the univariate case, one has M = R= {0; 1; : : : ; m}; N = S = {0; 1; : : : ; n}; and
E =M + N; (7)

|E|= |M |+ |N | − 1: (8)

An extra condition such as Q(0) = 1 is usually added in order to avoid the zero solution. Then,
Eq. (8) means that a square system is obtained for the free coe�cients of P and Q. We will see that
Eq. (7) is a consistency condition. When the sets M; N; E satisfy the rectangular inclusion property,
the two conditions (7) and (8) are equivalent in the univariate case but incompatible in the multi-
variate case, because the identity |M +N |= |M |+ |N | − 1 holds only for d=1. Hence one of them
must be abandoned.

Proposition 2.1. Let f = h=g be an irreducible fraction, where h∈PR; g∈PS ; g(0) 6= 0. For a
given E⊂Nd satisfying the inclusion property; let (P;Q)∈PM ×PN be a nontrivial solution to the
linear and homogeneous system

(Qf − P)E = 0: (9)

If

N + R⊂E and M + S ⊂E; (10)
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then
P
Q
=
h
g
:

Moreover; if N = S and if g is N -maximal; then there exists a constant c∈C such that
P = ch; Q = cg:

Proof. Due to g(0) 6= 0 and the rectangular inclusion property, system (9) is equivalent to
(Qh − Pg)E = 0. Due to Qh∈PN+R; Pg∈PM+S ; N + R⊂E and M + S ⊂E; we have Qh = Pg:
It follows from the Gauss lemma that there exists a polynomial c such that P = hc; Q = gc; hence
P=Q = h=g. If Q∈PN and g is N -maximal, then c∈C.

This proposition shows that condition (7) is su�cient for consistency when M = R and N = S.
Without any special assumption on the function f, the latter condition is also necessary, as illustrated
by the following example where trying to preserve (8) instead of (7) leads to divergence. Let

f(x; y) =
1

(1− x)(1− y) : (11)

The power series expansion of function f around the origin reads f(x; y) =
∑

ij x
iyj. Let

M = R= {(i; j)∈N2; i + j62}; N = S = {0; 1}2, E = {0; 1; 2}2; P(x; y) = 1 + x + y + x2 + y2 ∈PM
and Q(x; y) = 1 − xy∈PN . Then P and Q are solution to Eq. (9), condition (8) is ful�lled, but
P=Q 6= f. Such an indetermination of the denominator coe�cients appears also for higher degrees
of the numerator, making it impossible to obtain uniform convergence of the Pad�e approximants to
the function f on compact subsets of {(x; y)∈C2; (1− x)(1− y) 6= 0} when M increases.
Observe that system (9) has the nontrivial solution (h; g), although it is usually strongly over-

determined. When h is not a polynomial, depending on the choice of the sets M; N; E; this system
will not necessarily have some nontrivial solutions. In the homogeneous approach, system (9) can
always be solved exactly by letting |N | → ∞ when M → ∞. In the least-squares approach, the set
N is kept constant with N = S, and system (9) is solved in a least-squares sense.

2.3. The homogeneous multivariate Pad�e approximants

The HPA were introduced by Cuyt [5]. Let f(z) = h(z)=g(z) be a meromorphic function where g
is a polynomial of degree n with g(0) 6= 0.

2.3.1. De�nition
The polynomials P and Q and the interpolation set E are chosen in the following way. For a

given m¿0; consider the three sets

M = {�∈Nd; mn6|�|6mn+ m}; (12)

N = {�∈Nd; mn6|�|6mn+ n}; (13)

E = {�∈Nd; 06|�|6mn+ m+ n}: (14)



P. Guillaume, A. Huard / Journal of Computational and Applied Mathematics 121 (2000) 197–219 203

We look for polynomials P ∈PM and Q∈PN such that
(Qf − P)E = 0: (15)

For R = {�∈Nd; 06|�|6m} and S = {�∈Nd; 06|�|6n}; one has M + S = N + R = E; and it
follows from Proposition 2:1 that this approximation is consistent.
The idea is to introduce the univariate polynomials p and q de�ned, for �xed z ∈Cd;

by p(t) = t−mnP(tz) and q(t) = t−mnQ(tz); t ∈C, of respective degrees m and n (at most). The
coe�cient of tk in P(tz) is an homogeneous polynomial in z of degree k; which explains the name
given to these approximants. One can consider p and q as elements of the ring C[z][t]; and compute
a univariate Pad�e approximant solution to the linear system

q(t)f(tz)− p(t) = O(tm+n+1): (16)

This system with m+ n+ 2 unknown coe�cients and m+ n+ 1 equations has always a nontrivial
solution in (C[z])m+n+2. Moreover, if the denominator below is not zero, a solution is given explicitly
by Jacobi’s determinant representation

p(t)
q(t)

=

∣∣∣∣∣∣∣∣∣∣∣

tnFm−n(t) tn−1Fm−n+1(t) · · · Fm(t)

fm−n+1 fm−n+2 · · · fm+1
...

...
...

fm fm+1 · · · fm+n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

tn tn−1 · · · 1

fm−n+1 fm−n+2 · · · fm+1
...

...
...

fm fm+1 · · · fm+n

∣∣∣∣∣∣∣∣∣∣∣

(17)

with

fk =
∑
|�|=k

f� z� if k¿0; fk = 0 if k ¡ 0; Fk(t) =
k∑
i=0

fiti:

It follows from (16) that tmnq(t)f(tz)− tmnp(t)=O(tmn+m+n+1) in C[z][[t]], the ring of power series
in t with coe�cients in C[z]. By construction, the coe�cient of tk in tmnq(t)f(tz) − tmnp(t) is
homogeneous in z of degree k. This implies that (q(1)f − p(1))E = 0. Moreover, P(z) = p(1) and
Q(z)= q(1) are polynomials in z with valuations at least mn and respective degrees at most mn+m
and mn+ n; thus P and Q are a solution to Eq. (15).
Observe that as Qf − P has valuation at least mn; Eq. (15) can also be written
(Qf − P)E′ = 0; E′ = {�∈Nd; mn6|�|6mn+ m+ n}: (18)

For the particular dimension d= 2; (Qf − P)E′ = 0 is an homogeneous and linear system with

s=

(
mn+ m+ n+ 2

2

)
−
(
mn+ 1

2

)

equations and s+1 unknowns. Hence it is not surprising to �nd a nontrivial solution. However, for
d¿ 2; the latter system becomes over-determined, but still has some nontrivial solutions.
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The solution P=Q found above is not necessarily an irreducible fraction. If P1=Q1 is another solution
to Eq. (15), then PQ1 − P1Q = 0. Hence the irreducible form P(m;n)=Q(m;n) of P=Q is unique.

De�nition 2.1. The [m; n] homogeneous multivariate approximant of the function f is the irreducible
form P(m;n)=Q(m;n) of P=Q where P and Q satisfy (15).

When P=Q is not irreducible, it may happen that the valuation of the polynomial Q=Q(m;n) has a
positive valuation s; and there is a “backward shift” s on the valuations of P and Q. In that case,
the polynomials P(m;n) and Q(m;n) do not necessarily satisfy Eq. (15). For example, if the backward
shift is mn; then one can only guaranty (Q(m;n)f− P(m;n))F = 0 where F = {�∈Nd; 06|�|6m+ n}.
In a more algebraic presentation, and following Brezinski’s univariate theory, Kida de�nes in [16]

the same multivariate approximant as a particular case of a Pad�e-type approximant for which the
generating polynomial is precisely q(t) in (17). However, one can observe that the substitution of
tz for z; which allows to use the univariate construction, is made possible because of the particular
choice of the sets E; M; N (12)–(14).

2.3.2. Computation
The [m; n] homogeneous multivariate approximant can be computed in several ways. One

possibility consists in solving directly (18). Here the unknowns are complex numbers. Although over-
determined if d¿ 2; this system has always some nontrivial solutions. The algorithm is the following.

Algorithm 1: HPA computation

1. Choose three enumerations (�i)16i6|M |; (�i)16i6|N |; (i)16i6|E′\M |; of the respective subsets
M = {�∈Nd; mn6|�|6mn + m}; N = {�∈Nd; mn6|�|6mn + n} and E′\M = {∈Nd;
mn+ m¡ ||6mn+ m+ n}.

2. Compute the coe�cients of the |E′\M | × |N | complex matrix A:
Aij = fi−�j ; 16i6|E′\M |; 16j6|N |;

where f� := 0 if 0
 �.
3. Compute a nontrivial solution v∈C|N | to the system Av= 0; and de�ne the polynomial Q by

Q(z) =
|N |∑
i=1

viz�i :

4. Compute

wi =
|N |∑
j=1

vjf�i−�j ; 16i6|M |

and de�ne the polynomial P by

P(z) =
|M |∑
i=1

wiz�i :

5. The fraction P=Q is the [m; n] HPA of the function f.
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A second possibility is to use symbolic computation for solving (16) in the ring C[z]. Here
the unknowns are complex polynomials, and this system is always under-determined (size (m + n
+ 1) × (m + n + 2)). Such an approach is also used for computing the Pad�e ◦Pad�e approximants
(cf. Section 3.3).
Finally, one can also take advantage of the construction of the homogeneous approximant. For

z ∈Cd such that t 7→ g(tz); t ∈C, has exactly n roots, the rational fraction t 7→ P(m;n)(tz)=Q(m;n)(tz) is
the [m; n] univariate Pad�e approximant of the function fz(t) :=f(tz). Hence all the algorithms devel-
oped in the univariate case can be applied to compute P(m;n)(tz)=Q(m;n)(tz) = [m; n]fz(t).
Particularly, computation of staircase sequences like in the �-algorithm or the qd-algorithm can
be used. For a description of these two algorithms, we refer the reader to [8].

2.3.3. Convergence
Here we consider sequences of [m; n] HPA where n is �xed and m → ∞. The degrees and the

valuations of the numerator and the denominator in the nonreduced form P=Q increase when m→ ∞,
and the convergence is obtained on compact subsets excluding the zero set of g if there exists a
subsequence of approximants P(m(k); n)=Q(m(k); n) such that Q(m(k); n) 6= 0. This implies that the backward
shift in the denominator Q of [m; n] must be at least mn. For a given function f, the existence of
such a subsequence remains to our knowledge an open question. When it exists, it can be interpreted
as a particular case of the LSPA for which the underlying system is solved exactly. In the general
case, the HPA converge on a smaller subset obtained by removing also the complex cone formed
by the vectors z for which t 7→ g(tz); t ∈C, has less than n roots (Theorem 2:3).
Suppose that f = h=g is meromorphic on a neighborhood of a polydisc �D(0; �)={z ∈Cd; |zi|6�i;

i = 1; : : : ; d}, and h is holomorphic on a neighborhood of �D(0; �). The polynomial g is normalized
in such a way that

∑
�∈N |g�|2 = 1. Its decomposition into irreducible factors reads

g=
l∏
i=1

g�ii

and the associated algebraic set G with its decomposition into irreducible components Gi are:

G = {z ∈Cd; g(z) = 0};
Gi = {z ∈Cd; gi(z) = 0}:

Suppose also that Gi ∩D(0; �) 6= ∅ for 16i6l; and that h(z) 6= 0 on a dense subset of G ∩D(0; �).
The following theorem was proved in [6].

Theorem 2.2 (Cuyt [6]). Let (P(m(k); n)=Q(m(k); n))k¿0 be a subsequence of homogeneous multivariate
approximants such that Q(m(k); n)(0) 6= 0 for all k¿0. Then

lim
k→∞

P(m(k); n)=Q(m(k); n)(z) = f(z)

uniformly on all compact subsets of {z ∈D(0; �); g(z) 6= 0}.Moreover, the subsequence (Q(m(k); n))k¿0
converges to g(z) uniformly on all compact subsets of D(0; �).

The following result has been obtained in [7] where more general sets than the polydisc D(0; �) are
considered. Let � be the set of vectors z ∈ @D(0; �) for which the polynomial t 7→ g(tz); t ∈C, has
less than n roots counted with multiplicity in �D(0; 1); and denote by E� the cone {tz; t ∈C; z ∈�}.
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Theorem 2.3 (Cuyt and Lubinsky [7]). If h(z) 6= 0 for z ∈G; then
lim
m→∞ P(m;n)=Q(m;n)(z) = f(z)

uniformly on all compact subsets of {z ∈D(0; �); z 6∈E�; g(z) 6= 0}.

2.4. The least-squares multivariate Pad�e approximants

Studying least-squares orthogonal polynomials, Brezinski proposed recently a least-squares formu-
lation for univariate Pad�e approximants [2]. This idea has been generalized to the multivariate case
in [12]. The formulation [2] did not involve any particular weights in the least-squares approxima-
tion, whereas some weights were introduced in [12], which have an important role as it can be seen
from the proof of Theorem 2:4.

2.4.1. De�nition
The requirements on the function f are the same than in Section 2.3.3. The norm on PN is de�ned

by ||Q||= (∑�∈N |Q�|2)1=2. For P ∈PM ; Q∈PN ; and a �nite set E ⊂Nd; consider the function

j(P;Q) =

(∑
�∈ E

�2�|(Qf − P)�|2
)1=2

: (19)

De�nition 2.2. Let M; N; E⊂Nd be three �nite subsets such that E⊃M + N and E satis�es the
inclusion property. A least-squares multivariate Pad�e approximant of the function f is a fraction
P=Q with (P;Q)∈PM × PN ; ||Q||= 1; and

j(P;Q)6j(R; S); ∀(R; S)∈PM × PN ; ||S||= 1: (20)

A solution to this problem is denoted by [M;N ]f.

For d= 1 and E =M + N; this de�nition coincides with the standard de�nition of the univariate
Pad�e approximation. For d=1 and E ! M +N; the least-squares formulation provides an alternative
to the exact Pad�e interpolation.
Observe that j(P;Q)=0 if (g; h)∈PM ×PN , and it follows from Proposition 2:1 that this approx-

imation is consistent. Although there may exist several LSPA for given M; N and E (even if one
considers the irreducible form), the next theorem shows that it has no incidence on the convergence.

2.4.2. Computation
In order to solve (20), �rst the coe�cients of Q are computed, then the coe�cients of P are

recovered by expanding and truncating the product Qf; that is, P = (Qf)M . The coe�cients of Q
are solution to

min
||Q||=1

∑
�∈ E\M

�2�|(Qf)�|2;

which can be written in the form

min
||s||2=1

s∗A∗As; (21)
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where the vector s∈C|N | contains the coe�cients of Q; A is an |E\M | × |N | complex matrix and
A∗ is the conjugate transpose of A. The optimality condition reads

A∗As= �s; �∈R:
Hence s∗A∗As = �¿0; and a solution is given by any normalized eigenvector associated to the
smallest eigenvalue value of A∗A. The algorithm is the following.

Algorithm 2: LSPA computation

1. Choose three enumerations (�i)16i6|M |; (�i)16i6|N |; (i)16i6|E\M |, of the respective subsets M; N
and E\M .

2. Choose �∈Rd+ and compute the coe�cients of the matrix A:
Aij = �ifi−�j ; 16i6|E\M |; 16j6|N |;

where f� := 0 if 0
 �.
3. Compute an eigenvector v∈C|N | associated to the smallest eigenvalue of A∗A, and de�ne the
polynomial Q by

Q(z) =
|N |∑
i=1

viz�i :

4. Compute

wi =
|N |∑
j=1

vjf�i−�j ; 16i6|M |

and de�ne the polynomial P by

P(z) =
|M |∑
i=1

wiz�i :

5. The fraction P=Q is an [M;N ] LSPA of the function f.

2.4.3. Convergence
In the following theorem [12], the set N is �xed, and can be any �nite subset of Nd such that

g∈PN and g is N -maximal (cf. Section 2.1).

Theorem 2.4 (Guillaume et al. [12]). Let [M;N ]f = P
M=QM be a sequence of least-squares multi-

variate Pad�e approximants with M → ∞. Then
lim
M→∞

[M;N ]f(z) = f(z)

uniformly on all compact subsets of {z ∈D(0; �); g(z) 6=0}. Moreover, the sequence QM (z) con-
verges to g(z) uniformly on all compact subsets of D(0; �).

2.5. Proof of Theorems 2.2, 2.3 and 2.4

The proofs are an extension of the beautiful technique introduced by Karlsson and Wallin in the
univariate case [14], which is based on the uniform convergence to zero of the function HM in (22).
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2.5.1. Proof of Theorems 2.2 and 2.4
Theorem 2:2 can be seen as a particular case of Theorem 2:4 by using the set E′ = {�∈Nd;

06|�|6m + n + mn − s} instead of E (where s; mn6s6mn + n, is the backward shift on the
valuation of Q, coming from the assumption Q(m;n)(0) 6= 0), the notation PM = P(m;n); QM = Q(m;n),
and the fact that (QMf − PM )E′ = 0, that is, the least-squares approximation is exact for the HPA.
We outline the proof of Theorem 2:4.
Let (PM ;QM )∈PM × PN be a solution to problem (20) and consider the function

HM = g(QMf − PM ); (22)

which is holomorphic on a neighborhood of �D(0; �). The keystone of the proof is the following
lemma, whose proof is given at the end of the section.

Lemma 2.5. One has

lim
M→∞

HM (z) = 0 (23)

uniformly on all compact subsets of D(0; �).

According to De�nition 2:2, the sequence (QM )M is bounded in PN . Consider an arbitrary sub-
sequence, still denoted by (QM )M for simplicity, which converges to a polynomial Q∈PN with
||Q|| = 1. The subsequence (QM )M converges also to Q, uniformly on all compact subsets of Cd
when M → ∞.
The set Gi ∩ D(0; �) was supposed nonempty. For z ∈Gi ∩ D(0; �), one has HM (z) = h(z)QM (z)

and (HM )M converges to 0 on D(0; �), thus h(z)Q(z) = 0, and Q(z) = 0 because h(z) 6= 0 on a
dense subset of G ∩ D(0; �). The set of regular points of Gi is open, connected and dense in Gi,
thus Q = 0 on Gi and gi divides Q [1,18]. Similarly g�ii divides Q (consider the partial derivatives
of HM ), which implies that g divides Q. One has Q∈PN and g is N -maximal with ||g||= 1, thus

Q = cg; |c|= 1:
Hence limM→∞QM =cg uniformly on all compact subsets of Cd, and after division of (22) by gQM ,
one obtains with (23)

lim
M→∞

(
f − PM

QM

)
(z) = 0

uniformly on all compact subsets of {z ∈D(0; �); g(z) 6= 0}. As this holds for all convergent
subsequences of the bounded sequence (QM )M , the whole sequence f − PM=QM converges to zero
in the same way.

Proof of the Lemma. The main line is the following. One has gPM ∈PM+N and E⊃M + N , thus

HM
� =

{
(hQM )� if � 6∈E;
(g(QMf − PM )E)� if �∈E

(and HM
� = 0 for the HPA if �∈E′). The Cauchy integral yields

HM
� =

1
(2i�)d

∫
�+

hQM

z�+1
dz if � 6∈E; (24)
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HM
� =

1
(2i�)d

∫
�+

g(QMf − PM )E
z�+1

dz if �∈E; (25)

where � + 1= (�1 + 1; : : : ; �d + 1). The sequence (QM )M is bounded in PN and h is continuous on
�+, thus

|HM
� |6 c

��
if � 6∈E: (26)

The change of variable z = (�1 exp(2i��1); : : : ; �d exp(2i��d)) in Eq. (25) yields

HM
� =

∫
[0;1]d

g(QMf − PM )E
z�

d�:

The Cauchy–Schwarz inequality and Parseval’s formula give

|HM
� |6

(∫
[0;1]d

|g|2
�2�

d�

)1=2(∑
�∈ E

�2�|(QMf − PM )�|2
)1=2

:

Thus, using de�nition (19) of the function j, one has (possibly with a di�erent c)

|HM
� |6 c

��
j(PM ;QM ) if �∈E: (27)

Due to the de�nition of PM , QM and to (hM ; g)∈PM × PN , one has j(PM ;QM )6j(hM ; g), and
gathering Eqs. (26) and (27), one obtains

|HM (z)|6c

j(hM ; g)∑

�∈ E

∣∣∣∣ z�
∣∣∣∣
�

+
∑
� 6∈ E

∣∣∣∣ z�
∣∣∣∣
�

 ; (28)

where |z=�|� = |z1=�1|�1 · · · |zd=�d|�d . It follows from

j(hM ; g) =

(
1

(2i�)d

∫
�+

|hE\M |2
z

dz

)1=2
;

that limM→∞ j(hM ; g) = 0, hence limM→∞|HM (z)| = 0, uniformly on all compact subsets of
D(0; �).

2.5.2. Proof of Theorem 2.3
The proof is based on a univariate projection, which allows to shift the degrees of P(m;n) and

Q(m;n), that is, for a given z ∈ @D(0; �), the univariate Pad�e approximant of t 7→ f(tz) reads

Pm;z(t)=Qm;z(t) = P(m;n)(tz)=Q(m;n)(tz);

where degPm;z6m; degQm;z6n. Here again, the key idea is to show that the function

Hm;z(t) = g(tz)(Qm;z(t)f(tz)− Pm;z(t))
=Qm;z(t)h(tz)− Pm;z(t)g(tz);

converges uniformly to zero. A local extension of an estimation similar to (26) is obtained, which
leads to the local convergence (in z) of Qm;z to a polynomial Qz; degQz6n. Particularly, if g(tz)=0,
then Hm;z(tz)=Qm;z(t)h(tz). Taking the limit, it follows from h(tz) 6= 0 that Qz(t)=0. Hence Qz has
exactly the same n roots than the polynomial t 7→ g (tz), which allows to complete the proof after
division by gQz.
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3. Multivariate Pad�e approximants of f
/
g with g holomorphic

In this section are presented the Pad�e ◦Pad�e approximants (PRPA) and the nested Pad�e approxi-
mants (NPA) for a meromorphic function f(z) = h(z)=g(z). Both of them have a natural recursive
structure and can be de�ned for z ∈Cd; d¿ 1. For the sake of simplicity they are here presented in
the case of two complex variables x and y. For more variables z1; z2; : : : ; zd, one substitutes z1 for x
and (z2; : : : ; zd) for y. Both PRPA and NPA are consistent and convergent, and start for �xed y with
the univariate Pad�e approximant [m; n]fy(x) of the function fy : x 7→ f(x; y). The fraction [m; n]fy(x)
is an element of C[[y]](x), and is nothing else than a parameterized univariate Pad�e approximant.
In the PRPA, one computes in C(x)[[y]] the power series expansion of [m; n]fy(x), and then, for

�xed x, one computes the univariate Pad�e approximant of the function x 7→ [m; n]fy(x). The calcula-
tions are done in the �eld C(x), hence a good way of doing them is to use symbolic computation. In
the NPA, one computes directly the univariate Pad�e approximants of the coe�cients of [m; n]fy(x),
which belong to C[[y]]. The computation does not need symbolic computation.
We point out the fact that in both cases only univariate Pad�e approximants are computed, for

which much knowledge has been accumulated. Also noteworthy is that this kind of approximation
can be applied to a larger class of functions than the approximations described in Section 2 because
g needs not to be a polynomial.
Due to their construction, the convergence of PRPA or NPA cannot be obtained on all compact

subset excluding the singularity of f. The complex lines (x; y) such that [m; n]fy is not de�ned must
also be removed from the convergence set. It is a sort of intermediate situation between the HPA
and the LSPA, where the extra singularities of the HPA have been shifted away: instead of complex
lines passing through the origin, these lines are here parallel to the x-axis.
First some notation is introduced. Then we describe the �rst step and give an intermediate con-

vergence result which will be used for the convergence analysis of both PRPA and NPA.

3.1. Notation

Recall that in the univariate case, if the following linear system

q(x)u(x)− p(x) = O(xm+n+1); q(0) = 1 (29)

has a unique solution, then the fraction p=q is irreducible and is called the [m; n] Pad�e approximant
of the function u=

∑
k¿0 ukx

k . This fraction is denoted by [m; n]u. The Hankel matrix corresponding
to this system is denoted by H (u; m; n), and the right member by C(u; m; n):

H (u; m; n) =



um−n+1 : : : um
...

...

um : : : um+n−1


 ; C(u; m; n) =−



um+1
...

um+n


;

where ui := 0 if i¡ 0. The coe�cients S = (qn; : : : ; q1)T are solution to the system

H (u; m; n)S = C(u; m; n) (30)

and the other coe�cients pi; 06i6m, are recovered by expanding the product u(x)q(x).
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3.2. First step (a parameterized Pad�e approximant)

Let f be a meromorphic function on a neighborhood of a polydisc �D(0; �1; �2),

f(x; y) =
u(x; y)
v(x; y)

;

where the functions u and v are holomorphic on a neighborhood of �D(0; �1; �2). For the sake of
simplicity, we make the following assumption: v(x; y) =

∑n
i=0 vi(y)x

i is a polynomial in x such that
x 7→ v(x; 0) has n simple roots with v(0; 0) 6= 0. A particular case is when v is a polynomial in the
two variables x and y. In the general case, the set where v(x; y) vanishes is not necessarily algebraic.
Let Y0⊂D(0; �2) be an open subset where the function y 7→ f(0; y) is holomorphic and the

determinant of H (fy; m; n) is nonzero, and suppose that 0∈Y0. For a �xed y∈Y0, we can consider
the [m; n] Pad�e approximant of the function fy : x 7→ f(x; y),

[m; n]fy(x) =
Um(x; y)
Vm(x; y)

=
∑m

i=0 s
m
i (y)x

i

1 +
∑n

i=1 s
m
m+i(y)xi

: (31)

The subscript m indicates the dependence on m, whereas n is �xed once for all.

3.2.1. Computation
The coe�cients of this parameterized Pad�e approximant can be computed in C[[y]] in the follow-

ing way. For y∈Y0, the vector S(y) = (smm+n(y); : : : ; s
m
m+1(y))

T is the unique solution to the linear
system

H (fy; m; n) S(y) = C(fy; m; n): (32)

Due to the assumption detH (f0; m; n) 6= 0, the vector-valued function S(y) is holomorphic around
zero and has a power series expansion

S(y) =
∑
j¿0

Sjyj; Sj ∈Cn:

The power series expansion of H and C read

H (fy; m; n) =
∑
j¿0

Hjyj; Hj ∈Cn×n;

C(fy; m; n) =
∑
j¿0

Cjyj; Cj ∈Cn:

It follows from (32) that the vectors Sj are solution to the systems

H0S0 = C0; (33)

H0Sj =−
j∑
k=1

HkSj−k + Cj; j¿1; (34)

which all have the same matrix. Like in the univariate case, the other coe�cients smi (y); 06i6m
are obtained by expanding in x the product fy(x)Vm(x; y). The pseudo-algorithm is the following
(series are here considered, which will be later truncated in Algorithms 4 and 5).
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Algorithm 3: Intermediate Pad�e approximant computation

1. Compute

Hj =



fm−n+1; j : : : fm;j

...
...

fm;j : : : fm+n−1; j


; Cj =−



fm+1; j
...

fm+n; j


; j¿0;

where f(x; y) =
∑

i; j¿0 fi; jx
iyj and fi; j := 0 if i¡ 0.

2. Solve (33) and (34) for j¿1. Using the numbering Sj = (smm+n; j; : : : ; s
m
m+1; j)

T, de�ne

smm+i(y) =
∑
j¿0

smm+i; jy
j; 16i6n;

V (x; y) = 1 +
n∑
i=1

smm+i(y)x
i:

3. Compute

smi; j =
n∑
k=0

smm+k; jfi−k; j; 06i6m; j¿0;

where smm;0 := 1 and s
m
m; j := 0 for j¿ 0, and de�ne

smi (y) =
∑
j¿0

smi; j y
j; 06i6m;

U (x; y) =
m∑
i=0

smi (y)x
i:

4. The function U (x; y)=V (x; y) is the [m; n] intermediate Pad�e approximant of f.

3.2.2. Intermediate convergence
The convergence is a direct consequence of the theory developed in the univariate case. Let

Y⊂D(0; �2) be an open subset with 0∈Y such that for all y∈Y:

• v0(y) 6= 0; vn(y) 6= 0,
• the polynomial x 7→ v(x; y) has n simple roots �i(y); 16i6n; |�i(y)|¡�1, the functions �i being
holomorphic on Y (simple roots can be replaced by roots of constant multiplicity),

• u(x; y) 6= 0 if v(x; y) = 0.
The following lemma was proved in [3].

Lemma 3.1 (Cha�y-Camus [3]). For all compact subsets Ky⊂Y, there is an integer m0 such
that for all m¿m0 and all y∈Ky, there is a unique intermediate Pad�e approximant [m; n]fy =
Um(x; y)=V m(x; y). Let O be the open subset

O= {(x; y)∈D(0; �1; �2); y∈Y; v(x; y) 6= 0}:
The sequence ([m; n]fy)m¿m0 converges uniformly to f on all compact subsets of (D(0; �1)×Y)∩O.
Moreover, the sequence (Vm(x; y))m¿0 converges to v(x; y) uniformly on all compact subsets of
C×Y.
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Proof. We give the main line of the proof, which is adapted from the very elegant technique used
by Sa� in the univariate case [17]. De�ne

Ũ
m
(x; y) =

Um(x; y)
smm+n(y)

; Ṽ
m
(x; y) =

Vm(x; y)
smm+n(y)

:

After dividing in f the numerator and the denominator by the function vn (which does not vanish
on Y), the function f can be put in the following form which �ts the form Ũ

m
=Ṽ

m
of [m; n]fy :

f(x; y) =
h(x; y)
g(x; y)

; g(x; y) =
n−1∑
i=0

gi(y)xi + xn;

where the functions h and g are meromorphic on D(0; �1; �2) and holomorphic on D(0; �1)×Y. The
idea is to search Ṽ

m
(x; y) under the form

Ṽ
m
(x; y) = g(x; y) +

n−1∑
k=0

wmk (y)Wk(x; y);

where W0 ≡ 1; Wk(x; y) = (x− �1(y)) · · · (x− �k(y)) is a polynomial in x of degree k, holomorphic
on C×Y, and to reformulate the problem as follows.
For �xed y∈Y, let �m(x; y) be the Taylor expansion of degree m + n at x = 0 of the function

x 7→ Ṽ
m
(x; y)h(x; y). The coe�cients wmk (y) are chosen in such a way that the polynomial in

x; �m(x; y) vanishes at the n roots �k(y) of g(:; y). Hence, there exists a polynomial in x; Ũ
m
(x; y)

such that �m(x; y)=Ũ
m
(x; y)g(x; y), and it follows that (hṼ

m−gŨm
)(x; y)=O(xm+n+1). If Ṽ

m
(0; y) 6=

0, these conditions coincide with the ones de�ning Um and Vm.
Owing to Hermite’s formula

�m(x; y) =
1
2i�

∫
|z|=�1

(
1−

(
x
z

)m+n+1) Ṽ m(z; y)h(z; y)
z − x dz; (35)

the coe�cients wm0 (y); : : : ; w
m
n−1(y) are solution to the system

n−1∑
k=0

Amjk(y)w
m
k (y) = B

m
j (y); j = 1; 2; : : : ; n;

Amjk(y) =
1
2i�

∫
|z|=�1

(
1−

(
�j(y)
z

)m+n+1) Wk(z; y)h(z; y)
z − �j(y) dz;

Bmj (y) =
1
2i�

∫
|z|=�1

(
�j(y)
z

)m+n+1 g(z; y)h(z; y)
z − �j(y) dz;

which converges uniformly on Ky to a triangular, homogeneous and invertible system. Thus, for
m¿m0 su�ciently large and y∈Ky, the coe�cients wm0 (y); : : : ; w

m
n−1(y) are uniquely determined,

holomorphic in y, they converge uniformly to zero, and Ṽ
m
converges uniformly to g on all compact

subsets of C×Ky. The proof is completed as in Section 2.5.
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3.3. The Pad�e◦Pad�e approximants

The Pad�e ◦Pad�e approximants were introduced by Cha�y [3]. In Section 3.2 were de�ned the
intermediate Pad�e approximant [m; n]fy(x) = U

m(x; y)=V m(x; y) of the function f = u=v, where Um

and Vm belong to C[[y]][x], and have respective degrees m and n in x. The basic idea is now to
compute an [m′; n′] Pad�e approximant of [m; n]fy(x) with respect to the variable y.
Some restrictions are made which are more technical than really necessary. For instance, a disk

D(0; �3) is substituted for Y because, in order to apply once more Lemma 3:1, one needs to be sure
that the function y 7→ v(x0; y) has exactly n′ simple zeros in D(0; �3). The Pad�e ◦Pad�e approximant
is de�ned locally in x in the following way.
Let �3¿ 0 be such that D(0; �3)⊂Y and v(0; y) 6= 0 for all y∈D(0; �3). Let x0 ∈D(0; �1) be

�xed such that v(x0; 0) 6= 0, and suppose that the function y 7→ v(x0; y) has exactly n′ simple zeros
in D(0; �3). The case of zeros of constant multiplicity could also be considered.
Recall that Vm(x; y) converges to v(x; y) uniformly on all compact subsets of C ×Y. It follows

from the implicit functions theorem, Lemma 3:1 and Rouch�e’s theorem, that there exists an integer
m0 and a neighborhood V(x0) of x0 such that for m¿m0 and (x; y)∈V(x0)×D(0; �3), v(x; y) and
Vm(x; y) can be written under the form

v(x; y) = c
n′∏
i=1

(y − �i(x))w(x; y);

V m(x; y) = cm
n′∏
i=1

(y − �mi (x))Wm(x; y);

where the functions �i and �mi are holomorphic and do not vanish on V(x0), the functions w and
Wm are holomorphic and do not vanish on V(x0)×Y. Moreover limm→∞ �mi (x) = �i(x) uniformly
on all compact subsets of V(x0).

De�nition 3.1. For �xed m¿0, let s(x; y) = [m; n]fy(x). The Pad�e ◦Pad�e approximant [m′; n′]y ◦
[m; n]x(f), if it exists, is de�ned on V(x0) by

[m′; n′]y ◦ [m; n]x(f)(x; y) = [m′; n′]sx(y):

Remark 3.1. The rational fraction r(x; y)=[m′; n′]y ◦ [m; n]x(f) has the following interpolation prop-
erty:

@kxr(0; 0) = @
k
xf(0; 0); 06k6m+ n;

@kyr(x; 0) = @
k
ys(x; 0); 06k6m′ + n′; ∀x∈V(x0):

If 0∈V(x0) (for example if x0=0), then the Pad�e ◦Pad�e satis�es at the origin the usual interpolation
property. This follows from s(0; y) = [m; n]fy(0) = f(0; y) for small |y|.

3.3.1. Convergence
We are now in the same position than the beginning of the �rst step if we exchange the variables

x and y, and substitute [m; n]fy(x) for the function f. The next theorem [3] follows from Lemma
3:1 applied �rst to the function [m; n]fy(x), next to the function fy.
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Theorem 3.2 (Cha�y-Camus [3]). There exists an integer m′
0 and a neighborhood V(x0) of x0 such

that for all m′¿m′
0 and all x∈V(x0), there is a unique Pad�e approximant [m′; n′]y ◦ [m; n]x(f).

The Pad�e ◦Pad�e approximants converge in the following sense:

lim
m→∞

(
lim
m′→∞

[m′; n′]y ◦ [m; n]x(f)(x; y)
)
= f(x; y)

uniformly on all compact subsets of {(x; y)∈V(x0)× D(0; �3); v(x; y) 6= 0}.

3.3.2. Computation
In order to compute [m′; n′]y ◦ [m; n]x(f), one �rst need to compute the double power series

expansion of [m; n]fy(x). Using symbolic computation, one expands fraction (31), [m; n]fy(x) =
(
∑m

i=0 s
m
i (y)x

i)=(1 +
∑n

i=1 s
m
m+i(y)x

i), in the form

[m; n]fy(x) =
∑
j¿0

bj(x)yj; (36)

where the bj’s are rational fractions, solution in C(x) to (37)–(38). Observe that b0(x) is a fraction
with degrees at most [m; n], and more generally bj(x) is a fraction with degrees at most [m +
jn; (j + 1)n]. Next the Pad�e ◦Pad�e approximant of f is obtained by computing the univariate Pad�e
approximant of (36) with respect to y. Here again symbolic computation is used to solve the
associated linear system in the �eld C(x), and the degrees in x will increase once more. The
algorithm is the following.

Algorithm 4: PRPA computation

1. Use Algorithm 3 to compute the coe�cients smi; j; 06i6m + n; 06j6m
′ + n′ (in Algorithm 3,

substitute 06j6m′ + n′ for j¿0).
2. Solve in C(x) the following triangular system (using symbolic computation):(

1 +
n∑
i=1

smm+i;0x
i

)
b0(x) =

m∑
i=0

smi;0x
i; (37)

j∑
k=0

(
n∑
i=1

smm+i; j−kx
i

)
bk(x) =

m∑
i=0

smi; jx
i; j = 1; 2; : : : ; n′ + m′: (38)

3. Solve the system (using symbolic computation):

bm′−n′+1(x) : : : bm′(x)

...
...

bm′(x) : : : bm′+n′−1(x)





qn′(x)
...

q1(x)


=−



bm′+1(x)

...

bm′+n′(x)


 ;

where bi(x) := 0 if i¡ 0, and de�ne

Q(x; y) = 1 +
n′∑
i=0

qi(x)yi:
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4. Compute

pi(x) =
n′∑
j=0

qj(x)bi−j(x); 06i6m′;

where q0(x) := 1, and de�ne

P(x; y) =
m′∑
i=0

pi(x)yi:

5. The fraction P(x; y)=Q(x; y) is the Pad�e ◦Pad�e of the function f.

3.4. The nested multivariate approximants

The nested multivariate approximants were introduced in [10]. Consider a fraction R∈C(y)(x) of
the form

R(x; y) =
P(x; y)
Q(x; y)

=
∑m

i=0 ri(y)x
i

1 +
∑n

i=1 rm+i(y)xi
; (39)

where the ri(y) are also fractions:

ri(y) =
pi(y)
qi(y)

=

∑mi
j=0 pijy

j

1 +
∑ni

j=1 qijyj
; 06i6n+ m (40)

with

m+ n= d1; mi + ni = d2; 06i6m+ n; (41)

degQ(x; 0) = n; deg qi = ni; 06i6n+ m: (42)

Let E(d1; d2) = {0; 1; : : : ; d1} × {0; 1; : : : ; d2}. For � = (�1; �2)∈N2, we denote by @� the usual
di�erential operator @� = @|�|=@�1x @

�2
y .

De�nition 3.2. Consider the following equation:

@�R(0; 0) = @�f(0; 0) ∀�∈E(d1; d2): (43)

If the fraction R (39) is the unique solution to this equation, it is called the [m; n; (mi); (ni)] nested
Pad�e approximant of the function f and denoted by [m; n; (mi); (ni); x; y]f.

Similarly to the univariate case, existence occurs as soon as the degrees of the numerators are
su�ciently large (cf. Theorem 3:4). A su�cient condition for uniqueness, which implies consistency,
is the following [11]. The fraction R (39) is said irreducible if the fractions x 7→ R(x; 0) and
ri; 06i6n+ m are irreducible.

Proposition 3.3. If the fraction R (39) is a solution to (43) and is irreducible, then it is the unique
solution to (43).
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3.4.1. Computation
Eq. (43) is a nonlinear system of (d1 +1)(d2 +1) equations, with the same number of unknowns.

However the solution of this system can be obtained in two steps by solving small linear systems.
The �rst step has been described in Section 3.2 and Algorithm 3, where the coe�cients smi (y) of
the intermediate Pad�e were obtained. The second step is the following.
For a given m and 06i6d1, degrees mi and ni are chosen in such a way that mi + ni = d2 (see,

e.g., [9] for the choice of the degrees). We suppose here that the following Pad�e approximants:

ri(y) = [mi; ni]smi ; 06i6d1;

exist in the sense of de�nition (29), that their denominators are of degree ni, and that rm+n(0) 6= 0.
Let

R(x; y) =
∑m

i=0 ri(y)x
i

1 +
∑n

i=1 rm+i(y)xi
: (44)

It can easily be proved that if this fraction R is irreducible, then it is the nested Pad�e approximant
of order [m; n; (mi); (ni)] of the function f [10]. The algorithm is the following, which needs no
symbolic computation.

Algorithm 5: NPA computation

1. Use Algorithm 3 to compute the coe�cients smi; j, 06i6d1; 06j6d2 (in Algorithm 3, substitute
06j6d2 for j¿0).

2. For i = 1 to d1:
• solve 


smi;mi−ni+1 : : : smi;mi

...
...

smi;mi : : : smi;mi+ni−1





qni
...

q1


=−



smi;mi+1
...

smi;mi+ni


 ;

where si; j := 0 if j¡ 0, and compute

pj =
ni∑
k=0

qksi; j−k ; 06j6mi;

• de�ne

pi(y) =
mi∑
j=0

pj yj; qi(y) = 1 +
ni∑
j=1

qj yj; ri(y) =
pi(y)
qi(y)

:

3. De�ne

P(x; y) =
m∑
i=0

ri(y) xi;

Q(x; y) = 1 +
n∑
i=1

rm+i(y) xi:

4. The fraction P(x; y)=Q(x; y) is the nested Pad�e approximant of the function f.
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3.4.2. Convergence
The next theorem was proved in [11].

Theorem 3.4 (Guillaume [11]). The sequence of nested Pad�e approximants converges uniformly to
f on all compact subsets of O = {(x; y)∈D(0; �1; �2); y∈Y; v(x; y) 6= 0} in the following sense:
for all �¿ 0 and all compact subsets K⊂O, there is an integer m0 such that for all m¿m0, there
exist integers d0 and nmi 6d0; 06i6m+ n, such that for all d2¿d0, the nested Pad�e approximant
[m; n; (d2 − nmi ); (nmi ); x; y]f of the function f is well de�ned and

sup
(x;y)∈K

|f(x; y)− [m; n; (d2 − nmi ); (nmi ); x; y]f(x; y)|¡�:

Each nmi can be chosen equal to the number of poles (counted with multiplicity) within the disk
D(0; �2) of the function smi ; 06i6m+ n.

Proof. The main line is the following. It follows from Lemma 3:1 that for m¿m0 su�ciently large,
Vm is well de�ned and holomorphic around the origin. Hence the functions smi (y) are holomorphic
around zero. Due to their construction (32), they are meromorphic on D(0; �2) and have a �nite
number nmi of poles (counted with multiplicity) within this disk. Owing to the Montessus de Ballore
theorem, there is an integer d0 such that the Pad�e approximants [d2 − nmi ; nmi ]smi are well de�ned for
d2¿d0, and each sequence ([d2 − nmi ; nmi ]smi )d2 converges to smi uniformly on K when d2 → ∞.

Remark 3.2. Although the number of poles nmi of the functions s
m
i are not known, the technique

described in [9] for counting the number of poles of meromorphic functions within a disk can be
used here. Besides, the existence of an upper bound of the numbers nmi remains an open question,
although numerical tests indicate they are bounded.

4. Final comments

An open question is whether convergence of more or less diagonal sequences in the LSPA table can
be obtained for the approximation of general meromorphic functions. If such a result was obtained,
it could be an improvement over the PRPA or NPA, where, due do their recursive construction,
arti�cial singularities are present.
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