
Journal of Approximation Theory 95, 203�214 (1998)

Generalized Multivariate Pade� Approximants

Philippe Guillaume and Alain Huard

Mathe� matiques pour l 'Industrie et la Physique, Institut National des Sciences Applique� es,
Complexe Scientifique de Rangueil, UMR 5640, CNRS, 31077 Toulouse Cedex, France

and

Vincent Robin

CERFACS, 42, Avenue G. Coriolis, 31057 Toulouse Cedex, France

Communicated by Hans Wallin

Received February 17, 1997; accepted October 29, 1997

A new definition of multivariate Pade� approximation is introduced, which is a
natural generalization of the univariate Pade� approximation and consists in replac-
ing the exact interpolation problem by a least squares interpolation. This new
definition allows a straightforward extension of the Montessus de Ballore theorem
to the multivariate case. Except for the particular case of the so-called homoge-
neous Pade� approximants, this extension has up to now been impossible to obtain
in the classical formulation of the multivariate Pade� approximation. Besides, the
least squares formulation can also be applied to the univariate case, and provides
an alternative to the classical Pade� interpolation. � 1998 Academic Press
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1. INTRODUCTION

Many applications in mechanics or electromagnetism aim to compute a
physical quantity f like strain, stress, reflection, or transmission coefficients.
The computation of such a function f requires solving a partial differential
equation which usually depends upon several parameters like shape,
material properties, or frequency. One needs the knowledge of the quantity
not only for a particular value of each of these parameters, but for a whole
range of their values. Recently, new methods have been introduced which
allow the function f to be expressed as a Taylor series with respect to the
parameters [16�18]. Due to the nature of the problem, the function f is
often not holomorphic but only meromorphic with respect to these
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parameters, and a multivariate Pade� representation of this function is more
appropriate than a simple Taylor expansion.

The problem is that many difficulties appear when one tries to apply the
techniques developed in the univariate Pade� approximation theory to two
or more variables. The natural ordering of N is lost on N2, the concept of
degree is no longer clear, and ``no formal equation analogous to (the
univariate case) gives the correct number of linear equations to determine the
ratios of the coefficients in the approximation'' [6]. Thus several choices
have been made in order to define multivariate Pade� approximants. We
mention only classical Pade� approximants, i.e., rational fractions in several
variables. For other types of approximants, we refer to [5, 15, 23].

J. Chisholm proposed a particular choice in [6], and A. Cuyt proposed
another one in [8], the so-called homogeneous approximants. These two
approximants are diagonal in the sense that they need a symmetric
knowledge of the power series coefficients of the function to be approxi-
mated. This is not convenient in applications where the behavior of the
function is different with respect to each variable, and�or where the deriva-
tives with respect to each variable do not have the same computational
cost.

A general definition including the previous ones was given by D. Levin
in [20]. Unfortunately, only one uncontested proof of uniform con-
vergence has been established, which concerns the particular case of
the homogeneous approximants [9] (see [15] for some comments).
The reason why no convergence has been obtained in the general case is
that there is a lack of consistency if one chooses to write as many equations
as unknowns for more than one variable, where consistency means that
if f =h�g is a rational fraction, then its Pade� approximant P�Q must be
equal to f if the ``degrees'' of P and Q are correctly chosen. Thus it
seems necessary to introduce a new definition of multivariate Pade�
approximation.

If we abandon the arbitrary choice of having as many equations as
unknowns, we will see that it is possible to obtain consistency and that the
difficulties encountered in proving the multivariate Montessus de Ballore
theorem vanish. It will appear that the equations which define the Pade�
coefficients have to be solved in a weighted least squares sense. In the
univariate case and for a particular choice of the interpolation set of
indices, this new definition coincides with the usual definition of the
Pade� approximation; thus it is a generalization of the univariate Pade�
approximation to the multivariate case.

The outline of this paper is as follows. In Section 2, the consistency of a
rational approximation is discussed and a new definition of multivariate
Pade� approximation is proposed. In Section 3, the convergence is estab-
lished and illustrated on a simple example.
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2. GENERALIZED MULTIVARIATE PADE� APPROXIMANTS

First, we recall some standard notation.

2.1. Notation

Let d be a positive integer. For all finite subset M # Nd, we denote by PM

the set of the polynomials P # C[z] having the form P(z)=�: # M P: z:. We
use the standard notation z:=>d

i=1 z:i
i for : # Nd and z # Cd.

As usual, a finite subset M/Nd has the rectangular inclusion property if
the conditions : # Nd, ; # M, and :�; imply : # M. The standard partial
order of Nd is used; that is, :�; means :i�;i for 1�i�d. All the finite
subsets of Nd which are considered in this paper are supposed to have the
rectangular inclusion property, and we denote by |M| the number of
elements of M.

We say that a polynomial P # PM is M-maximal if for all polynomial
Q # C[z], the condition PQ # PM implies Q # C.

If M and N are two finite subsets of Nd, we denote by M V N the set
[:+;; : # M, ; # N]. If P # PM and Q # PN , then PQ # PM V N .

For a function f which is holomorphic around the origin, we denote by
f: the coefficient of z: in the power series expansion f (z)=�: # Nd f: z:.

2.2. Consistency of a Rational Approximation

Let us recall the definition of a Pade� approximant P�Q of a function f
in the univariate case. The coefficients of the polynomials P # PM and
Q # PN are defined by the three sets M=[0, 1, ..., m], N=[0, 1, ..., n],
E=[0, 1, ..., e], the linear and homogeneous system

(Qf &P):=0, \: # E, (1)

and the conditions

E=M V N, (2)

|E|=|M|+|N|&1. (3)

An extra condition such as Q(0)=1 is usually added in order to avoid the
zero solution, and a square system is obtained.

The two conditions (2) and (3) are equivalent in the univariate case, and
it seems to be a rather complicated way of writing e=m+n. Nevertheless
it is impossible to preserve both of them for more than one variable,
because the equality |M V N|=|M|+|N|&1 holds only for d=1.

Up to now, almost all the attempts to define multivariate Pade�
approximants have been made in order to preserve condition (3), which
leads to a square system. The drawback of this choice is the lack of
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consistency. This can be illustrated by the following example. Let f (x, y)=
1�(1&x)(1& y), M=[(i, j) # N2; i+ j�2], N=[0, 1]2, E=[0, 1, 2]2,
P(x, y)=1+x+ y+x2+ y2 # PM , and Q(x, y)=1&xy # PN . Then P and
Q are solutions to Eq. (1), condition (3) is fulfilled, but P�Q{ f. Such an
indetermination of the denominator coefficients appears also for higher
degrees of the numerator, making it impossible to obtain uniform con-
vergence of the Pade� approximants to the function f on compact subsets of
[(x, y) # C2; (1&x)(1& y){0] when M increases.

We choose to preserve condition (2), which yields the following elementary
result.

Proposition 2.1. Let f =h�g be an irreducible fraction, where h # PM ,
g # PN , g is N-maximal, and g(0){0. Let (P, Q) # PM_PN be a solution to
the system

(Qf &P):=0, \: # M V N. (4)

Then there exists a constant c # C such that

P=ch, Q=cg.

Proof. Due to g(0){0 and the rectangular inclusion property, system
(4) is equivalent to (Qh&Pg):=0, for all : # M V N. Since Qh&Pg #
PM V N , we have Qh=Pg. It follows from the Gauss lemma that there exists
a polynomial c such that

P=hc, Q= gc.

Now Q # PN and g is N-maximal, thus c # C. K

Observe that system (4) has a non-trivial solution, e.g., (h, g), although
it is usually strongly over-determined. However, in the case where h is not
a polynomial, this system generally has no solution other than zero. For
this reason, we propose a least squares formulation of the problem.

2.3. Definition

Let a function f : Cd � C be holomorphic around the origin. For two
polynomials P # PM , Q # PN , for E/Nd and \ # Rd

+ , we define

j(P, Q)=\ :
: # E

\2: |(Qf &P): | 2+
1�2

. (5)

The choice of \ will be stated precisely in the next section.
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Definition 2.1. Let M, N/Nd, and E$M V N. A generalized multi-
variate Pade� approximant of f is a fraction P�Q with (P, Q) # PM_PN ,
�: # N |Q: |2=1, and

j(P, Q)� j(R, S), \(R, S) # PM _PN , :
: # N

|S: | 2=1. (6)

A solution to this problem will be denoted by [M, N]f .

Remark 2.1. For d=1 and E=M V N, this definition coincides with
the standard definition of univariate Pade� approximants (except that the
usual condition Q(0)=1 is replaced by �: # N |Q: |2=1). For d=1 and
E#M V N, we obtain a least squares formulation of the univariate
Pade� approximation which provides an alternative to the exact Pade�
interpolation.

3. CONVERGENCE OF THE GENERALIZED
MULTIVARIATE PADE� APPROXIMANTS

In this section we give the main result of this paper, which is the proof
of the convergence. It is based on the technique used by J. Karlsson and
H. Wallin for proving the convergence in the univariate case [19].

Let a function f be meromorphic on a neighborhood of the polydisc
B� (0, \)=[z # Cd; |z i |�\ i , i=1, ..., d]. We suppose that the function f is of
the form

f (z)=
h(z)
g(z)

,

where g is a polynomial such that g(0){0, and h is holomorphic on a
neighborhood of B� (0, \). A finite subset N/Nd is chosen in such a way
that g is N-maximal.

We need the following definition: for all sequences (Mn)n�0 , Mn /Nd,
we say that limn � � Mn=� if for all bounded subsets B of Nd, there exists
an integer k such that B/Mn for all n�k. For the sake of simplicity, we
will omit the subscript n and write M � �.

Consider the decomposition of the polynomial g into irreducible factors

g= `
l

i=1

g{i
i ,

and the associated algebraic set G with its decomposition into irreducible
components Gi :
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G=[z # Cd; g(z)=0],

Gi=[z # Cd; g i(z)=0].

Theorem 3.1. Assume that Gi & B(0, \){< for 1�i�l, and that
h(z){0 for all z # G & B(0, \). Let ([M, N]f)M be a sequence of generalized
multivariate Pade� approximants with M � �. Then

lim
M � �

[M, N] f (z)= f (z),

uniformly on all compact subsets of [z # B(0, \); g(z){0].

Proof. Let (PM, QM) # PM_PN be a solution to problem (6). Consider
the function

HM= g(QMf &PM), (7)

which is holomorphic on a neighborhood of B� (0, \). We need the following
lemma, whose proof is given at the end of the section.

Lemma 3.2. We have

lim
M � �

H M(z)=0, (8)

uniformly on all compact subsets of B(0, \).

According to Definition 2.1, the sequence (QM)M is bounded in the finite
dimensional space PN equipped with the norm &P&=(�: # N |P: |2)1�2. Con-
sider an arbitrary subsequence, still denoted by (QM)M for simplicity,
which converges to a polynomial Q # PN with &Q&=1. The subsequence
(QM)M converges also to Q uniformly on all compact subsets of Cd when
M � �.

Due to the assumptions of the theorem, the set Gi & B(0, \) is non-
empty. For z # Gi & B(0, \), we have H M(z)=h(z) QM(z) and (H M)M

converges to 0 on B(0, \), thus h(z) Q(z)=0, and Q(z)=0 because
h(z){0. The set of regular points of Gi is open, connected, and dense in
Gi , thus Q=0 on Gi , and it follows from the Nullstellensatz that gi divides
Q [2, 24]. Similarly we can prove that g{i

i divides Q by considering the
partial derivatives of HM, which implies that g divides Q. But Q # PN and
g is N-maximal, thus there exists c # C, |c|=1�&g&, such that

Q=cg.
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Hence limM � � QM=cg uniformly on all compact subsets of Cd, and if we
divide (7) by gQM, we obtain with (8)

lim
M � � \ f &

PM

QM+ (z)=0,

uniformly on all compact subsets of [z # B(0, \); g(z){0]. As this holds
for all convergent subsequences of the bounded sequence (QM)M , the
whole sequence f &PM�QM converges to zero in the same way.

Proof of the lemma. Denote by 1+ the torus [z # Cd; |zi |=\ i ,
1�i�d] with its usual orientation. We have gPM # PM V N and E$M V N,
thus

H M
: ={(hQM):

(g(QMf &PM)E):

if : � E,
if : # E,

where (QMf &PM)E (z)=�: # E (QMf &PM): z:. Using the Cauchy integral
we can write

H M
: =

1
(2i?)d |

1+

hQM

z:+1 dz if : � E, (9)

H M
: =

1
(2i?)d |

1+

g(QMf &PM)E

z:+1 dz if : # E, (10)

where :+1=(:1+1, ..., :d+1). We study the two cases (9) and (10)
separately.

v The case : � E. The sequence (QM)M is bounded in PN ; thus there
exists a constant c1 such that |QM(z)|�c1 for all z # 1+ . The function h is
continuous on 1+ , and, with c2=maxz # 1+

|h(z)| and c=c1c2 , we obtain

|H M
: |�

c
\: if : � E. (11)

v The case : # E. Using the change of variable z=(\1 exp(2i?%1), ...,
\d exp(2i?%d)) in Eq. (10), we have

H M
: =|

[0, 1]d

g(QMf &PM)E

z: d%.

The Cauchy�Schwarz inequality yields

|H M
: |�\|[0, 1]d

| g|2

\2: d%+
1�2

\|[0, 1]d
|(QMf &PM)E |2 d%+

1�2

, (12)
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and the second integral reads with the Parseval formula

\|[0, 1]d
|(QMf &PM)E |2 d%+

1�2

=\|[0, 1]d } :
: # E

(QMf &PM): \:e2i?: } % }
2

d%+
1�2

=\ :
: # E

\2: |(QMf &PM): |2+
1�2

,

where : } %=:1 %1+ } } } +:d%d . Thus, using the definition (5) of the
function j and c$=maxz # 1+

| g(z)|, we have

|H M
: |�

c$
\: j(PM, QM) if : # E. (13)

Due to the definition of PM , QM and to (hM , g) # PM_PN , we have
j(PM, QM)� j(hM , g), and gathering Eqs. (11) and (13), we obtain

|HM(z)|�c$j(hM , g) :
: # E }

z
\ }

:

+c :
: � E }

z
\ }

:

, (14)

where |z�\|:=|z1 �\1 | :1 } } } |zd�\d |:d.

Once more using the Parseval formula and the change of variable
z=\ exp(2i?%) we have

j(hM , g)=\ :
: # E

\2: |(h&hM): |2+
1�2

=\ 1
(2i?)d |

1+

|hE"M |2

z
dz+

1�2

.

The function h is holomorphic on a neighborhood of B� (0, \); thus hE"M

converges to 0 uniformly on 1+ when M � �, and

lim
M � �

j(hM , g)=0. (15)

TABLE I

Convergence of [M, N]f

m=5 m=7 m=9 m=11 m=13 m=15 f (x, y)

x=y=1.5 &62.51 &38.74 &21.01 &19.84 &19.81 &21.46 &19.81
x=y=2 &93.07 &21.18 &46.22 &50.04 &50.36 &20.40 &50.38
x=y=3 &11.5 &42.5 &96.1 &131.4 &144.2 &465.5 &147.7

Cond. number 1.1_108 3.5_109 8.5_1010 1.3_1012 2.3_1013 4.5_1014
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Equations (14) and (15) prove that limM � � |H M(z)|=0, uniformly on all
compact subsets of B(0, \). K

Remark 3.1. Although the choice of \ is important in the proof of
convergence, numerical experiments have shown that the result is not very
sensitive with respect to this choice.

Example 3.1. We illustrate the convergence of the approximants on
the function

f (x, y)=exp \xy
2 +\

1
1&(x�4)2&( y�2)2+

1
1&(2x�3)2&( y�3)2

+
1

1+x�5& y
+

1
1&xy+ .

Here we take N=[0, ..., 6]2, M=[0, ..., m]2, and we let m increase.
Table I compares the approximations [M, N]f (x, y) with f (x, y) for

different values of m, evaluated at the three points (x, y) represented

FIG. 1. Real poles of the approximants [M, N]f .
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FIG. 2. Normalized error |[M, N]f (x, y)& f (x, y)|�exp(xy�2).

by a V in the last picture of Fig. 1. A good convergence can be observed from
m=5 to 13. Numerical instability appears for m�15, due to the increasing
condition number of the system, which is given in the last line of Table I.
The computations have been performed in double precision (IEEE
standard).

Figure 1 shows the singular set of the approximants for some values
of m. The non-real roots of the denominators have been ignored.

Figure 2 shows the convergence of the approximants. Each graph gives
the ``normalized'' error |[M, N]f (x, y)& f (x, y)|�exp(xy�2) computed on
the diagonal segment [(x, y) # R2; y=x, &4�x�4].

4. FINAL COMMENTS

We have shown that if the degree condition |E|=|M|+|N|&1 is used
in order to define multivariate Pade� approximants, where the sets E, M,
and N satisfy the rectangular inclusion property, then the consistency and
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the Montessus de Ballore theorem may be lost, whereas the condition
E$M V N preserves both consistency and convergence. The proofs are
natural generalizations of the univariate proofs, and the corresponding
numerical method is not more difficult to implement than in the univariate
case.

The application of generalized Pade� approximants to a scattering
problem in electromagnetism is actually under way, and will be presented
in a forthcoming paper.
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