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Orthonormal Vector Fitting: A Robust Macromodeling
Tool for Rational Approximation of Frequency

Domain Responses
Dirk Deschrijver, Bart Haegeman, and Tom Dhaene

Abstract—Vector Fitting is widely accepted as a robust macro-
modeling tool for approximating frequency domain responses of
complex physical structures. In this paper, the Orthonormal Vector
Fitting technique is presented, which uses orthonormal rational
functions to improve the numerical stability of the method. This re-
duces the numerical sensitivity of the system equations to the choice
of starting poles significantly and limits the overall macromodeling
time.

Index Terms—Macromodeling, rational functions, system iden-
tification.

I. INTRODUCTION

ACCURATE frequency-domain macromodels are be-
coming increasingly important for the design, study, and

optimization of complex physical structures, such as, e.g.,
electronic packages. These compact macromodels approximate
the complex electromagnetic (EM) behavior of high-speed
multiport systems at the input and output ports in the frequency
domain by rational functions. Rational linear least-squares
approximation techniques are often applied to identify the
model parameters; however, they are known to suffer from poor
numerical conditioning if the frequency range is rather broad,
or when the macromodel requires a large amount of poles.

Gustavsen and Semlyen recently proposed an iterative macro-
modeling technique, called vector fitting (VF) [1], which is ba-
sically a reformulation of the Sanathanan–Koerner (SK) itera-
tion [2] using a partial fraction basis [3]. Initially, the poles of
these partial fractions are prescribed, and they are relocated in
successive iterations until the SK iteration is converged. The ro-
bustness of the method is mainly due to the use of rational bases
instead of polynomials, which are numerically advantageous if
the prescribed poles are properly chosen. This method has been
widely applied in many scientific communities, such as power
systems and microwave engineering.

In this paper, the Orthonormal Vector Fitting (OVF) technique
[4] is presented, which is numerically more robust than the clas-
sical VF algorithm. It is shown that the use of orthonormal ra-
tional functions makes the system equations significantly better
conditioned, especially when the initial poles are not chosen in
an optimal way. Since the poles are identified more accurately,
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less iterations are needed, and the overall macromodeling time
can be reduced. The computational complexity of both methods
is approximately the same per iteration. Once the rational model
is identified, it is represented as a state-space realization, and
can easily be converted to a SPICE or EMTP circuit.

First, the new iterative method is placed in a broader context of
macromodeling and it is related to some of the existing work. Af-
terwards, the technique is described in detail and the robustness
is illustrated by a simulation-based example. The Appendices
offer a more thorough analysis for the interested reader.

II. IDENTIFICATION ALGORITHM

A. Goal

The major goal of macromodeling is to identify the mapping
between the inputs and outputs of a complex system by an ana-
lytic model. For continuous-time linear time invariant (LTI) sys-
tems in the frequency domain, this reduces to finding a rational
transfer function

(1)

which approximates the spectral response of a system over some
predefined frequency range of interest . The spec-
tral behavior is characterized by a set of frequency-domain data
samples , , which can be obtained
from observations, such as, e.g., measurements or circuit simu-
lations [5].

and are the real-valued system parameters which need
to be estimated, and and represent the order of numerator
and denominator, respectively. In many situations, the amount
of available data samples is quite numerous, so numerically
stable fitting techniques are required which estimate the model
coefficients in a least-squares sense [6].

B. Nonlinearity of the Estimator

Rational least-squares approximation is essentially a non-
linear problem, and corresponds to minimizing the following
cost function [7]

(2)
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Due to its nonlinear nature, it becomes quite hard to estimate
the system parameters in a fast and accurate way.

In many papers, e.g., [8], this difficulty is avoided by as-
suming that a priori knowledge about the poles is available.
In this case, the nonlinear problem reduces to a linear problem
since the denominator parameters are assumed to be known. In
practice, however, this situation is often not a realistic one.

Another possible option is the use of nonlinear optimization
techniques, such as Newton–Gauss type algorithms, in order to
minimize (2). This approach is computationally not always ef-
ficient, and the solutions may converge to local minima, even
when Levenberg–Marquardt algorithms are used to extend the
region of convergence [9], [10].

In [11], it was proposed to minimize a Kalman-linearized cost
function that is nonquadratic in the system parameters [12], [13]

(3)

This formulation basically reduces to (2), if the weighting factor
is set equal to one for all frequencies . Clearly,

this weighting will bias the fitted transfer function, and this often
results in poor low-frequency fits, due to an undesired overem-
phasis of high-frequency errors.

In this paper, the use of a Sanathanan–Koerner iteration is ad-
vocated [2]. First, an estimate of the poles is obtained by min-
imizing the Kalman-linearized cost function. Given this initial
(iteration step 0) or previous (iteration step ) estimate of the
poles, the model parameters of the next iteration step are calcu-
lated by minimizing the weighted linear cost function:

(4)

By analyzing the gradients of the error criterion, it is straight-
forward to show that this method generates solutions that do
not converge asymptotically to the solution of (2) either, even
though the error criterion itself tends asymptotically to the
fundamental least squares criterion [14]. In practice, however,
this approach often gives favorable results for sufficiently high
signal-to-noise ratios and sufficiently small modeling errors.

The interested reader is hereby referred to an excellent survey
[7] which analyzes these and several other techniques in more
detail.

C. Choice of Basis Functions

To solve the identification problem, (4) reduces naturally to a
linear set of least-squares equations, which needs to be solved
with sufficient accuracy.

Suppose that ,
, and is defined as

(5)

Then the least-squares solution of can be calculated to
estimate the parameter vector , provided that , and are
defined as

(6)

(7)

(8)

Each equation is split in its real and imaginary part to enforce
the poles and zeros to be real, or to occur in complex conjugate
pairs (under the assumption that the basis functions are
real-valued as well). This ensures that the coefficients of the
transfer function are real, and that no imaginary terms occur in
the time-domain.

Now it’s easy to estimate the system parameters by solving
the normal equations

(9)

or, e.g., by using a QR decomposition with column pivoting, or
a least-squares singular value decomposition (SVD), which are
often more accurate.

It becomes clear that the accuracy of the parameter vector
and the numerical conditioning of this problem is highly depen-
dent on the structure of the normal equations [6]. If the
basis functions are chosen to be a monomial power series
basis , the matrix will be a Vandermonde matrix
which is notoriously ill-conditioned.

Adcock and Potter [15] suggested the use of polynomials
which are orthogonal with respect to a continuous inner product,
such as Chebyshev polynomials, as basis functions. The large
variation of the Chebyshev polynomials with increase in order
makes it possible to downsize the effects of ill-conditioning.

On the other hand, Richardson and Formenti [16] proposed
the use of Forsythe polynomials which are orthonormal with
respect to a discrete inner product, defined by the normal equa-
tions of the estimator. This implies that a different set of basis
functions is used for numerator and denominator. Rolain et al.
[17] have shown that a basis transformation from the Forsythe
polynomials to a different, arbitrary polynomial basis results in
an inferior conditioning of . Hence, the Forsythe polyno-
mial basis is optimal in a sense that there does not exist any
other polynomial basis resulting in a better conditioned form of
the normal equations.

III. VECTOR FITTING

Although polynomial bases are probably the most natural
choice, it is well-known that rational basis functions have a lot
of numerical advantages. Quite recently, Gustavsen and Sem-
lyen [1] proposed the use of partial fractions as basis functions
for the numerator and denominator

(10)
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provided that and represent the residues, and are a
set of prescribed poles. The denominator has an additional basis
function which equals the constant value 1. Its coefficient can be
fixed to one, since numerator and denominator can be divided
by the same constant value without loss of generality. Other
nontriviality constraints are also possible [18]. Given the con-
straint that the poles of the numerator and denominator expres-
sion of (10) are the same, it is easy to see that these basis func-
tions are complete, in a sense that they can approximate any
strictly proper transfer function with distinct poles arbitrarily
well. To approximate systems which require a proper or im-
proper transfer function, an optional constant and linear term
can be added to the numerator expression.

In the first iteration , this choice of basis functions
implies that becomes

(11)

and that the parameter vector consist of unknown residues

(12)

The matrix is then a Cauchy matrix, which makes the normal
equations often well-conditioned if the prescribed poles are well
chosen. As suggested in [1] and [19], the poles are optimally
selected as complex conjugate pairs on a vertical or skew line,
close to the imaginary axis. Due to the iterative behavior of the
SK-iteration, the prescribed poles are relocated until the poles
converge in such way that the SK cost function is minimized. In
general, this happens quite fast (i.e., iterations).

When poles are chosen too far to the left in the complex plane,
the real part of the poles dominates the matrix entries, which
deteriorates the numerical conditioning

(13)

(14)

Note, however, that for most physical systems, the real part of
the poles is usually rather small. This means that the condi-
tioning of the normal equations often improves as the SK-iter-
ation relocates the poles to their optimal location. This process
is described in more detail in Appendix A. Even when the ini-
tial poles are inappropriately chosen, the algorithm succeeds in
minimizing (4), at the expense of additional iterations.

To make sure that the transfer function has real-valued coef-
ficients, a linear combination of and is formed
to make the residues complex conjugate if the poles

. This way, two basis functions of the following
form are obtained:

(15)

(16)

This causes the corresponding elements in the solution vector to
become equal to and After parameterization of

, (10) can be simplified by cancelling out common poles. This
means that the zeros of the denominator expression become the

poles of the final transfer function. Calculating the zeros can
easily be done as follows.

The minimal LTI state-space realization

(17)

(18)

of the denominator

(19)

can be obtained by a parallel connection (initally
and )

(20)

of the minimal state space realizations of each
simple fraction, with

(21)

provided that is real. If and constitute a com-
plex conjugate pair of poles (i.e., ), the corre-
sponding state space realization of the linear combination is
given as

(22)

Afterwards, the constant term 1 of (18) can simply be added to
the scalar D. This transformation makes the state-space realiza-
tion of

(23)

real-valued, such that the poles and zeros occur as complex
conjugate pairs. The zeros of (23) can then be solved by cal-
culating the eigenvalues of A-BC. After simplification of (10),
these eigenvalues will become the relocated poles of the transfer
function

(24)

and this procedure can be iterated until the SK-cost function
is minimized. Solving the residues becomes a linear problem,
since the poles are now identified

(25)

This technique was called “Vector Fitting” [1], and it has
been widely applied to many modeling problems within power
systems, high-speed interconnection structures, electronic
packages, and microwave systems.
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IV. ORTHONORMAL VECTOR FITTING

Instead of using the partial fractions as rational basis func-
tions, it was shown that orthonormal rational basis functions
can lead to significant improvements in numerical conditioning
[20], [21]. A straightforward way to calculate an orthonormal
basis, is to apply a Gram–Schmidt procedure on the partial frac-
tions [11], [22], [23]. Hence, orthonormal rational functions

are obtained, which are in fact linear combinations of the
partial fractions, of the form

(26)

for and an arbitrary polynomial of order
, such that

(27)

with , . If the inner product is defined as

(28)

then the polynomial can be determined by imposing
the orthonormality conditions on the basis functions. As an
example, consider the construction of the first function: .

(29)

(30)

(31)

To normalize , must equal ,
where is an arbitrary unimodular complex number. is
then obtained as

(32)

Now consider the construction of the second function .
First of all, must be orthogonal to

(33)

which implies that must vanish for . Therefore,
. This constant is determined by im-

posing the normalization condition

(34)

(35)

Clearly, it follows that , where is an arbi-
trary unimodular complex number. So, is then given by

(36)

Similarly continuing this approach, the general polynomials are
obtained:

(37)

This basis originates from the discrete-time Takenaka–
Malmquist basis [24], [25], and has later been transformed
to the continuous time domain. It is a generalization of the
Laguerre basis [26], where all poles are the same real
number, and the two-parameter Kautz bases [27] where all
poles are the same complex conjugate pair with

. A theoretical analysis of these basis functions
is well described in literature. The interested reader is referred
to [28] which gives an excellent survey.

To make sure that the transfer function has real-valued coef-
ficients, a linear combination of and is formed
which can be made real-valued if the poles are real or occur in
a complex conjugate pair. This way, two orthonormal functions
of the following form are obtained:

(38)

(39)

with real , , , and . To impose the orthogonality

(40)

and are set to be , and ,
respectively. Similarly, and are set to

. Note that this choice is not unique, and that other
possibilities exist. Note also that the orthonormalization of the
basis functions is done analytically instead of numerically, so it
does not require any additional computation time.

The minimal continuous-time LTI state-space realization

(41)

(42)

of the denominator

(43)
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can then be calculated by cascading the minimal state-space re-
alization of smaller, first-, and second-order sections [29]

(44)

The minimal state-space realization of the all-
pass function

(45)

for is given as

(46)

and the minimal state-space realization of the
low-pass function

(47)

is given as

(48)

for . Then the minimal state-space realization of the com-
pound system (44) is obtained as the cascade construction

(49)

of the smaller state space models, with .
The state matrix A and the input vector B are build such that

the states contain exactly the unnormalized basis functions. The
output vector C and scalar D are chosen to obtain the denom-
inator expression (43), by compensating for the coefficients

and normalization constant in the vector C, and set-
ting the scalar D equal to the constant value 1. The following
real-valued state space realization is obtained:

(50)

provided that the poles are real.
If and constitute a complex conjugate pair of

poles (i.e., ), a real-valued state-space realization
is obtained by replacing

(51)

in the cascade scheme (44) by

(52)

This corresponds to replacing

(53)

in the state matrix A by

(54)

The other state space matrices remain unchanged. Appendix B
describes this transformation in more detail. Again, the zeros
of the denominator are calculated by solving the eigenvalues of
A-BC. These eigenvalues become a new set of prescribed poles,
and the procedure is repeated iteratively until the SK cost func-
tion is converged. Afterwards, the identified poles can be used
to determine the residues, which is essentially a linear problem.
If the poles are stable, the residues can be estimated in the or-
thonormal basis

(55)

If unstable poles are allowed, one can resort to the partial frac-
tion basis

(56)

Both representations can easily be realized to state-space as was
shown before.
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Fig. 1. Representation of striplines.

Fig. 2. Reflection coefficient (S ) of lossy coupled lines.

V. EXAMPLE

The reflection coefficient of two symmetric coupled dis-
persive striplines (length 13 000 mil, width 7.501 mil,
spacing 9.502 mil, thickness 0.36 mil, conductivity
5.8 10 S/m ), laying inbetween two lossy substrate layers
(substrate1: height 13.9 mil, 4.2, tg 0.024 and
substrate2: height 5.24 mil, 2.6, tg 0.004), is mod-
eled using the proposed technique. Fig. 1 shows the structure,
and Fig. 2 shows the magnitude of the spectral response over
the frequency range of interest 50 Hz–10 GHz .

First, a prescribed set of complex conjugate starting poles is
chosen as was proposed by [1]

(57)

(58)

with imaginary parts covering the frequency range of interest.
The frequencies are scaled in gigahertz. The weighted linear
cost function (4) is solved using the orthonormal rational basis
functions (37)–(39), and an estimate for the residues and

is obtained. Using the residues and the poles , the
minimal state-space realization of the denominator

(43) is calculated. From this state-space model, the poles
of the transfer function are calculated by solving the eigenvalues
of A-BC. These poles are chosen as new starting poles, and the
method iterates until the poles are converged to their optimal
location. Once the poles are known, the residues of the transfer
function can be estimated by solving (55) or (56).

In this example, the number of poles was set equal to 86, and
the model is approximated by an improper transfer function in a

Fig. 3. Error fitting model.

TABLE I
CONDITIONING VF VERSUS OVF—OPTIMAL STARTING POLES

AS SUGGESTED BY GUSTAVSEN AND SEMLYEN

least squares sense, using four SK-iterations. The final accuracy
of the model is shown in Fig. 3, and the error

(59)

corresponds to 63 dB, which is quite close to the numerical
noise level of the simulator. Table I compares the condition
numbers of the pole identification for VF and OVF in each iter-
ation, when the initial poles are chosen optimally.

In [1], it was shown that the system equations become se-
verely ill-conditioned if the real part of the starting poles is
chosen nonnegligible. Fig. 4 shows a comparison of these condi-
tion numbers, and Fig. 5 shows a comparison of the RMS error,
if the starting poles are chosen real, and equally spread over
the (scaled) frequency range of interest. The transfer function is
chosen to be a proper rational function. Note that the pole iden-
tification of OVF is significantly better conditioned, and leads
to more accurate fitting models, compared to classical VF. To
obtain an RMS error below the order of 10 , VF needed 13
iterations, while OVF could calculate such a fit using seven iter-
ations. This leads to a reduction of approximately 46% in com-
putation time.

When the starting poles are chosen complex conjugate, with a
nonnegligible real part, similar conclusions can be made. As an
example, Table II compares the condition numbers of the pole-
identification when the real part of the starting poles is varied
from to to . The imaginary parts are equally spread over
the (scaled) frequency range of interest. Clearly, the condition
number rises for both methods as the distance to the imaginary
axis increases. However, VF becomes severely ill-conditioned
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Fig. 4. Condition number VF versus OVF per iteration—real starting poles.

Fig. 5. RMS Error VF versus OVF per iteration—real starting poles.

(e.g., when the real part of the poles is set to ), while OVF
still remains quite accurate.

Some further improvements in numerical conditioning can be
obtained (for VF, as well as OVF) if the columns of the system
equations are normalized to unit length.

VI. CONCLUSION

This paper introduces the orthonormal vector fitting tech-
nique, which builds accurate compact macromodels based on

TABLE II
CONDITIONING VERSUS. POLE LOCATION—COMPLEX CONJUGATE

STARTING POLES WITH VARYING REAL PARTS

frequency-domain data samples. The method enhanced the nu-
merical stability of vector fitting, by using orthonormal rational
functions instead of partial fractions. This approach leads to sig-
nificantly better conditioned equations when the initial choice of
starting poles is not optimal. It limits the number of required iter-
ations and the overall macromodeling time. The model is repre-
sented as state-space realization, which can easily be converted
to a SPICE or EMTP circuit.

APPENDIX A
SANATHANAN-KOERNER ITERATION

The least-squares SK-cost function is defined as

(60)

If the basis functions are chosen as partial fractions, based on a
prescribed set of poles , then it follows that

(61)

(62)

The denominator has an additional basis function, which equals
the constant value 1. In the first iteration step , a Kalman
linearization is applied to obtain a first guess of the denominator

, as shown in (63) and (64), found at the bottom
of the page. This reduces to solving the following set of least-
squares equations, for all complex frequencies

(65)

(63)

(64)
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One coefficient of the rational function, e.g., can be fixed
to unity, since numerator and denominator can be divided by
the same complex value without loss of generality. So, (65) is
equivalent to

(66)

Once the parameters and are estimated, and
are known (61) and (62). It’s straightforward to cal-

culate and in a robust way, by solving the eigenvalue

problem (24). In practice, only is needed.
Now, the Sanathanan–Koerner linearization can be applied

for iteration step , as shown in (67)–(70), found
at the bottom of the page. Note that the poles of and

remain unchanged, and cancel out in each iteration (68).
Again, this reduces to solving the following set of least-squares
equations, for all complex frequencies

(71)

In successive iterations , the coefficients of
are used to calculate the poles. This does not pose a

problem, as the zeros of and are the same.

APPENDIX B
REAL-VALUED STATE SPACE

This appendix describes how the real-valued state-space re-
alization of

(72)

can be obtained.
Define the state matrix A and input vector B as

(73)

where and are the scalar elements of the matrix and the
vector, respectively. Capitals are used to avoid notational con-
fusion between the poles and the entries of the state matrix.

A first constraint on the entries, is that the poles of (72),
, must equal the eigenvalues of A. More specifi-

cally, the transfer function from the input and to
the states and , respectively, must satisfy

(74)

(75)

The input-to-state transfer function is given by

(76)

(77)

So

(78)

and

(79)

By equating the numerators of (74) to (78), (75) to (79), and
applying some basic linear algebra, the following constraints are
easily obtained

(80)

(81)

(82)

(83)

which determine the input vector B completely. Unfortunately,
the elements of the state matrix A are still ambiguous.

(67)

(68)

(69)

(70)
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By equating the denominators, it follows that

(84)

(85)

so

(86)

(87)

Combining (87) with (82) and (83)

(88)

Using (82) and (88)

(89)

(90)

Obviously from (86) and (90), it results that

(91)

(92)

Combining this with (82) and (83), it follows that

(93)

(94)

which determines A uniquely.
Verifying that the eigenvalues of A are actually equal to

and is trivial.
Now, C and D can easily be formed to obtain (72)

(95)
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