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FAST LEAST-SQUARES PADÉ APPROXIMATION

OF PROBLEMS WITH NORMAL OPERATORS

AND MEROMORPHIC STRUCTURE

FRANCESCA BONIZZONI, FABIO NOBILE, ILARIA PERUGIA,
AND DAVIDE PRADOVERA

Abstract. In this work, we consider the approximation of Hilbert space-
valued meromorphic functions that arise as solution maps of parametric PDEs
whose operator is the shift of an operator with normal and compact resolvent,
e.g., the Helmholtz equation. In this restrictive setting, we propose a simplified
version of the Least-Squares Padé approximation technique studied in [ESAIM
Math. Model. Numer. Anal. 52 (2018), pp. 1261–1284] following [J. Approx.
Theory 95 (1998), pp. 203–2124]. In particular, the estimation of the poles of
the target function reduces to a low-dimensional eigenproblem for a Gramian
matrix, allowing for a robust and efficient numerical implementation (hence
the “fast” in the name). Moreover, we prove several theoretical results that
improve and extend those in [ESAIM Math. Model. Numer. Anal. 52 (2018),
pp. 1261–1284], including the exponential decay of the error in the approxi-
mation of the poles, and the convergence in measure of the approximant to
the target function. The latter result extends the classical one for scalar Padé
approximation to our functional framework. We provide numerical results that
confirm the improved accuracy of the proposed method with respect to the one
introduced in [ESAIM Math. Model. Numer. Anal. 52 (2018), pp. 1261–1284]
for differential operators with normal and compact resolvent.

1. Introduction

Parametric PDEs arise in a wide variety of contexts in physics, applied mathe-
matics, and engineering. In most cases, the interest is in the evaluation or approx-
imation of the solution map

(1.1) S(μ) : μ �→ A(μ)−1f(μ),

which associates a (possibly multidimensional) parameter to the corresponding so-
lution of a PDE based on the differential operator A(·) and on the data f(·). The
parameter μ usually represents a collection of physical or geometric properties,
which characterize the underlying complex system, and are allowed to vary within
some range of interest.
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In many applications, computing the solution of the underlying PDE by some
discretization scheme may be very costly even at a single point μ in the parameter
domain. Thus, the direct evaluation of the solution map over a large number of
parameter values is not feasible. Within this framework, model order reduction is
often applied to obtain a surrogate solution map, with good approximation prop-
erties in the whole parameter range of interest. Depending on the existence and
on the stability properties of the resolvent operator A(·)−1, difficulties may arise
in devising a reasonably accurate reduced model, and special techniques may be
required, due to the resolvent A(·)−1 not existing or being “nearly unbounded” at
some points in the range of interest; see, e.g., [8, 16, 19].

One particular and common instance of such problems is related to the lack of
coercivity of the parametric PDE over a subset of the parameter range of interest.
In this paper, we specifically address this situation by considering parametric PDEs
for which the operator has an eigenproblem-like structure, i.e., is of the form

(1.2) A(μ) = L − z(μ)I,
with L an operator with sufficient regularity (the exact requirements amount to
invertibility, and normality and compactness of the resolvent), I the identity op-
erator, and z(μ) a complex-valued smooth function. Indeed, such operator lacks a
bounded resolvent whenever z(μ) falls into the spectrum of L, and is “nearly un-
bounded” for nearby values of the parameter. The problems which may fall within
this framework include the Helmholtz, Maxwell, and Schrödinger equations with
suitable boundary conditions and constraints, to cite just a few.

In this context, rational approximations of the solution map S(μ) are particularly
appealing, as they can potentially capture those critical values of the parameter μ
for which the resolvent is not defined [6,11–13]. In this paper we focus on the work
[6]. There, following the Least-Squares Padé approach introduced in [11] for mul-
tivariate complex-valued functions, a general approach is proposed (in particular,
without the hypothesis of normality) to build Padé-type rational approximations
of Hilbert space-valued monovariate maps. In particular, the construction of the
approximant relies on evaluating the target function and its derivatives at a single
point in the parameter domain. Such approximation strategies are summarized in
Section 3, where their main convergence results are also stated.

In this work, we focus on problems with the particular structure (1.1)–(1.2), with
L−1 normal and compact, and propose a simplified version of the Least-Squares
Padé formulation proposed in [6], which can be constructed by a fast and robust
algorithm based on progressive orthogonalization techniques. Moreover, our new
“fast” method leads to approximations that are more accurate than those produced
by the Least-Squares Padé method in [6], by better exploiting the eigenproblem-like
structure of the solution map.

The particular normal structure and simplified Padé construction allow us to
obtain theoretical convergence results (Theorem 6.3 and Corollary 6.4) that extend
those in [6], by relaxing the hypotheses on the approximant parameters and by
showing better convergence rates, as attested also by numerical experiments. In
addition, within the framework of this paper, we are able to prove exponential
convergence rates (Theorem 5.5) in the approximation of the critical values of the
parameters, for which the PDE is ill-posed.

The outline of this work is as follows. In Section 2, we describe the precise
assumptions on L in (1.2), and investigate their consequences on the solution map S.
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In Section 3, we briefly summarize the rational approximation technique introduced
in [6], along with the corresponding convergence result. In Section 4, we introduce
our new “fast” Least-Squares Padé approach. In Sections 5 and 6, we derive several
convergence results in approximating the spectrum of L and the solution map,
respectively. In Section 7, some techniques to enhance the numerical stability of
the method are described. A numerical experiment comparing the approach of
[6] with the new one is reported in Section 8. Lastly, Section 9 contains some
concluding remarks.

2. Problem setting

Let (V, 〈·, ·〉V ) be a separable Hilbert space over C, with induced norm ‖·‖V .
We consider a bijective linear operator L : D(L) ⊂ V → V whose domain D(L) is
dense in V and whose resolvent L−1 : V → V is compact and normal, i.e.,

L−1
(
L−1

)∗
=

(
L−1

)∗ L−1 over V ,

with
(
L−1

)∗
denoting the adjoint of L−1, namely

(
L−1

)∗
: V → V linear and

bounded, such that

〈L−1v, w〉V = 〈v,
(
L−1

)∗
w〉V for all v, w ∈ V .

The spectral theorem for normal compact operators [5, 15] can be applied to L−1,
leading to the following properties:

• the spectrum of L, which, since L is closed [9, Proposition 1.15], can be
characterized as

(2.1) Σ(L) = {λ ∈ C : ∃v ∈ D(L) \ {0},Lv = λv} ,

is discrete and does not include 0;
• whenever Σ(L) is not finite (i.e., when V is infinite-dimensional), its only
limit point is ∞;

• for all λ ∈ Σ(L), the eigenspace associated to λ, namely

(2.2) Vλ = {v ∈ D(L) : Lv = λv} ,

has finite dimension;
• the eigenspaces Vλ and Vν are V -orthogonal whenever λ, ν ∈ Σ(L), λ �= ν;
• the family of orthogonal projections onto the eigenspaces, which we denote
by {Pλ}λ∈Σ(L) (with the same indexing as the eigenspaces), is a resolution
of the identity on V , i.e., for any v ∈ V ,

(2.3) v =
∑

λ∈Σ(L)

Pλv with convergence in V .

Given an arbitrary v� ∈ V and the (scalar) parameter z ∈ C \Σ(L), we consider
the problem

(2.4) find S(z) ∈ D(L) : (L − zI)S(z) = v�

(with I : V → V being the identity operator), which defines uniquely the map

(2.5) S : C \ Σ(L) → V , z �→ S(z).
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In particular, for all λ ∈ Σ(L), due to (2.3) and to the fact that the spectral
projector Pλ commutes1 with L over D(L), we have that

(2.6) Pλv
� = Pλ (L − zI)S(z) = (L − zI)PλS(z) = (λ− z)PλS(z).

Accordingly, the map (2.5) can be expressed as

(2.7) S(z) =
∑

λ∈Σ(L)

PλS(z) =
∑

λ∈Σ(L)

Pλv
�

λ− z
with convergence in V ,

and its V -norm at z ∈ C \ Σ(L) is bounded by ‖v�‖V /minλ∈Σ(L) |λ− z|.
From the orthogonal decomposition (2.7), we can deduce that S is meromorphic

over C, and that all its poles are simple and belong to the spectrum of L. In
particular, it is possible to compute the Taylor coefficients of S at z0 ∈ C \ Σ(L),
which we denote by

(S)0,z0 = S(z0) and (S)α,z0 =
1

α!

dαS
dzα

(z0) for α = 1, 2, . . . ,

by solving the problems

(2.8) find (S)α,z0 ∈ V : (L − z0I) (S)α,z0 = (S)α−1,z0
for α = 1, 2, . . . .

2.1. Example: The Helmholtz solution map. As an instance of the framework
described above, we consider the solution map of the Helmholtz problem with
parametric wavenumber and homogeneous Dirichlet boundary conditions, which
has been considered by the authors also in [6, 7].

Let Ω ⊂ R
d, d ∈ {1, 2, 3}, be an open Lipschitz bounded domain. Given z ∈ C,

we consider the Helmholtz problem

(2.9)

{
−ΔS(z)− zS(z) = f in Ω,

S(z) = 0 on ∂Ω,

with f ∈ L2(Ω). In particular, we cast the problem in the same functional setting
as (2.4), as

find S(z) ∈ D(Δ) : (−Δ− zI)S(z) = f in L2(Ω),

where we have defined D(Δ) =
{
v ∈ H1

0 (Ω) : Δv ∈ L2(Ω)
}
and V = L2(Ω).

Standard results in functional analysis [10] can be used to prove that, with
the choice of spaces introduced above, L = −Δ satisfies the hypotheses of the
previous section. In particular, it is bijective, and has self-adjoint (hence normal)
and compact resolvent. Thus, S is meromorphic and has the form (2.7), with
Σ(L) ⊂ R+ due to the positiveness of L.

From (2.2), it can be observed that all eigenspaces Vλ, for λ ∈ Σ(L), are subsets
of H1

0 (Ω). Actually, as remarked also in [6], they are mutually orthogonal with
respect to the H1

0 (Ω) inner product as well, and their direct sum in the topology
of H1

0 (Ω) is dense in H1
0 (Ω). Thus, the spectral expansion (2.7) holds true also in

H1
0 (Ω).

1For all λ ∈ Σ(L), the orthogonal projector Pλ commutes with the resolvent L−1 [15], i.e.,

(∗) PλL−1v = L−1Pλv for all v ∈ V .

For all w ∈ D(L) it suffices to set v = Lw and to apply L to both sides of (∗) to obtain the desired
result.
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3. Least-Squares Padé approximation

In the setting of the previous section, it is reasonable to look for rational approx-
imations of the map S(z). The following Least-Squares (LS) Padé approximant of
S centered at z0 ∈ C \ Σ(L) was defined in [6, 7].

Definition 3.1. Let z0 ∈ C \ Σ(L), ρ ∈ R and N,M,E ∈ N be fixed, with ρ > 0
and E ≥ M +N . Define the polynomial spaces

(3.1) PM (C;V ) =

{
P : C → V, P(z) =

M∑
j=0

pj(z − z0)
j with {pj}Mj=0 ⊂ V

}
and
(3.2)

P
z0
N (C) =

{
Q : C → C, Q(z) =

N∑
j=0

qj(z − z0)
j with {qj}Nj=0 ⊂ C,

N∑
j=0

|qj |2 = 1

}
.

An [M/N ] LS-Padé approximant of S centered at z0 (which depends parametri-
cally on E and ρ) is defined as

(3.3) S [M/N ](z) =
P [M/N ](z)

Q[M/N ](z)
,

with (P [M/N ], Q[M/N ]) ∈ PM (C;V ) × P
z0
N (C) a global minimizer of the functional

jE,ρ : PM (C;V )× P
z0
N (C) → R+, given by

(3.4) jE,ρ(P, Q) =

(
E∑

α=0

‖(QS − P)α,z0‖
2
V ρ2α

)1/2

.

The minimization of jE,ρ always admits at least one solution, i.e., an [M/N ]
LS-Padé approximant always exists. Indeed, since P ∈ PM (C;V ) has degree at
most M ,

jE,ρ(P, Q)2 =
M∑
α=0

‖(QS − P)α,z0‖
2
V ρ2α +

E∑
α=M+1

‖(QS)α,z0‖
2
V ρ2α.

In particular, for any fixed Q ∈ P
z0
N (C), a (unique) minimizer of

M∑
α=0

‖(QS − P)α,z0‖
2
V ρ2α

over PM (C;V ), which achieves the value 0, can always be found by imposing the
conditions

(3.5) (P)α,z0 = (QS)α,z0 for α = 0, . . . ,M .

Thus, the minimization of jE,ρ can be split into two parts: first, the optimal
denominator is computed by minimizing

(3.6) jE,ρ(Q)2 =

E∑
α=M+1

‖(QS)α,z0‖
2
V ρ2α

over P
z0
N (C); a minimizer always exists since jE,ρ(Q) is continuous and P

z0
N (C) is

compact. Then the corresponding optimal numerator is found by enforcing (3.5).
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In [6], the convergence of LS-Padé approximants to the solution map S, as M
increases while N stays constant, was proven. We recall the result for completeness.

Theorem 3.2 ([7, Theorem 2.4]). Let N ∈ N be fixed. Consider R > 0 such that
the disk B(z0, R) = {z ∈ C, |z − z0| < R} contains at most N poles of S, with no
element of Σ(L) on the boundary ∂B(z0, R).

Given ρ < R, denote by S [M/N ] the [M/N ] LS-Padé approximant of S at z0 with
parameters E and ρ. Then, for all z ∈ B(z0, ρ) \ Σ(L) there exists M� ∈ N such
that

(3.7)
∥∥S(z)− S [M/N ](z)

∥∥
V
≤ C

( ρ

R

)M

for all M ≥ M�,

where C depends on z0, ρ, R, E −M , N , Σ(L), minλ∈Σ(L) |z − λ|, and ‖v�‖V .

Several numerical experiments [6,7] in the case of Helmholtz frequency response
problems, lead us to believe that the bound (3.7) may not be sharp with respect
to ρ. Actually, no appreciable dependence of the error on ρ has been detected, and
the empirically observed convergence rate in M for fixed N was

(3.8)
∥∥S(z)− S [M/N ](z)

∥∥
V
≤ C ′

(
|z − z0|

R

)M

;

see [6, Remark 7.1] and [7, Section 4.2], even when z ∈ B(z0, R) \ B(z0, ρ), a case
which is not addressed by Theorem 3.2.

4. Fast LS-Padé approximants

As the dependence on ρ of the approximation error appears empirically negligible,
we may wish to derive a simplified version of an LS-Padé approximant that does
not depend on ρ. Accordingly, we consider the following definition.

Definition 4.1. Let z0 ∈ C \ Σ(L), and N,M,E ∈ N be fixed, so that E ≥
max{M,N}. We define an [M/N ] fast LS-Padé approximant of S centered at z0
(which depends parametrically on E) as

(4.1) S[M/N ](z) =
P[M/N ](z)

Q[M/N ](z)
,

with Q[M/N ] ∈ P
z0
N (C) being a global minimizer of the functional j̃E : Pz0

N (C) →
R+, given by

(4.2) j̃E(Q) = ‖(QS)E,z0
‖V ,

and P[M/N ] ∈ PM (C;V ) satisfying(
P[M/N ]

)
α,z0

=
(
Q[M/N ]S

)
α,z0

for α = 0, . . . ,M .

Fast LS-Padé approximants can be formally interpreted as the limit for large
ρ of standard LS-Padé approximants given in Definition 3.1, since the simplified
functional j̃E in (4.2) (and, consequently, its minimizer) can be obtained from (3.6)
by letting ρ tend to ∞. To understand what this simplification entails, it is useful
to interpret the vectors of coefficients of the denominators Q[M/N ] and Q[M/N ] as
eigenvectors of Hermitian matrices, as follows.
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Any element Q ∈ P
z0
N (C) is uniquely identified by the vector q = (qj)

N
j=0 ∈ CN+1

of its components with respect to the basis
(
( · − z0)

N−j
)N
j=0

, so that

Q(z) =

N∑
j=0

(Q)N−j,z0
(z − z0)

N−j =

N∑
j=0

qj(z − z0)
N−j .

In particular, as Q is normalized, q belongs to the unit sphere of CN+1.
Using this representation, we can express

j̃E(Q)2 = ‖(QS)E,z0
‖2V =

∥∥∥∥∥∥
N∑
j=0

(Q)N−j,z0
(S)E−N+j,z0

∥∥∥∥∥∥
2

V

= 〈
N∑
j=0

qj(S)E−N+j,z0
,

N∑
i=0

qi(S)E−N+i,z0
〉V

=

N∑
i=0

N∑
j=0

〈(S)E−N+j,z0
, (S)E−N+i,z0

〉V qjq
∗
i

= q∗G̃Eq,(4.3)

where the unary operator * denotes complex conjugation for scalars and Her-
mitian transposition for vectors and matrices. In particular, we have defined
G̃E ∈ C(N+1)×(N+1) as the Hermitian positive semidefinite Gramian matrix whose
entries are given by

(4.4) (G̃E)i,j = 〈(S)E−N+j,z0
, (S)E−N+i,z0

〉V for i, j = 0, . . . , N .

From equation (4.3), we infer that a minimizer of j̃E(Q) is a (normalized) eigen-
vector of G̃E corresponding to the minimal eigenvalue. This allows us to compute
fast LS-Padé approximants using Algorithm 1 below. In practice, the matrix G̃E

need not be built explicitly, and a better conditioned eigenproblem can be solved
instead, as detailed in Section 7.

Algorithm 1 Computation of fast LS-Padé approximants

1: Fix z0 ∈ C \ Σ(L), M,N,E ∈ N, with E ≥ max{M,N};
2: Compute the Taylor coefficients (S)α,z0 for α = 0, . . . , E, by solving (2.4) and

(2.8);
3: Build the Hermitian positive semidefinite Gramian matrix G̃E as in (4.4);
4: Compute a normalized eigenvector q ∈ C

N+1 of G̃E corresponding to the min-
imal eigenvalue;

5: Define the Padé denominator as Q[M/N ] =
∑N

j=0 qj(· − z0)
N−j ;

6: Compute the Taylor coefficients
(
Q[M/N ]S

)
α,z0

for α = 0, . . . ,M ;

7: Compute the numerator P[M/N ] :=
∑M

α=0

(
Q[M/N ]S

)
α,z0

( · − z0)
α;

8: Return S[M/N ] = P[M/N ]/Q[M/N ].

Remark 4.2. A similar derivation can be carried out for jE,ρ in (3.6); see [7, Propo-
sition 3.2]. In particular, (4.3) becomes

(4.5) jE,ρ(Q)2 = q∗

⎛⎝ E∑
γ=M+1

ρ2γG̃γ

⎞⎠q.
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In (4.5), each of the (N+1)×(N+1) matrices G̃γ , for γ ≥ N , can be obtained as a
diagonal block of the infinite-dimensional Gramian matrix based on the derivatives
of S, whose entries are defined as

(4.6) (G)i,j = 〈(S)j,z0 , (S)i,z0〉V for i, j ∈ N;

see Figure 1. The matrices G̃γ for γ < N can be obtained similarly, by adding
zero-padding to G, or equivalently by defining (S)α,z0 = 0 for α < 0.

G̃3

G =

⎡⎢⎢⎢⎢⎢⎢⎣
〈S0,S0〉V 〈S1,S0〉V 〈S2,S0〉V . . .
〈S0,S1〉V 〈S1,S1〉V 〈S2,S1〉V 〈S3,S1〉V . . .
〈S0,S2〉V 〈S1,S2〉V 〈S2,S2〉V 〈S3,S2〉V 〈S4,S2〉V . . .... 〈S1,S3〉V 〈S2,S3〉V 〈S3,S3〉V 〈S4,S3〉V . . .... 〈S2,S4〉V 〈S3,S4〉V 〈S4,S4〉V . . ....

...
...

⎤⎥⎥⎥⎥⎥⎥⎦
Figure 1. Gramian matrix associated to the map S through the
scalar product 〈·, ·〉V . To lighten the notation, we write Sα instead
of (S)α,z0 (for α ∈ N) to denote a Taylor coefficient of S at z0. We
have highlighted the sub-matrix extracted for N = 2 and E = 3,
which corresponds to G̃3.

Within this framework, the computation of standard LS-Padé approximants re-
lies on a combination of Gramian blocks, see (4.5), while, for the same value of
E, fast approximants only consider the last of these blocks, i.e., the one on the
bottom-right.

In the next section, we derive some properties of Padé denominators, by ex-
ploiting features of the Gramian matrix G. In particular, we show that diagonal
blocks which are related to derivatives of higher order lead to a more accurate
estimation of the poles of S. As such, in choosing the parameters for standard LS-
Padé approximants, we may want to opt for larger values of ρ, in order to enhance
the contribution of high-order derivatives of S. Therefore, fast Padé denominators
provide a better approximation of the poles of S than standard Padé ones.

5. Convergence of fast LS-Padé denominators

From here onwards, we will assume without loss of generality that all removable
singularities of S have been discarded, i.e., that v� is such that Pλv

� �= 0 for all
λ ∈ Σ(L). This is not a limiting assumption, since from (2.7) it is clear that the
poles of S are {λ ∈ Σ(L) : Pλv

� �= 0}, so that we are entitled to ignore those
elements λ ∈ Σ(L) for which Pλv

� = 0.
Moreover, we denote by {λα}∞α=1 the elements of Σ(L), ordered in such a way

that |λα−z0| ≤ |λα+1−z0| for α = 1, 2, . . ., and we set v�α = Pλα
v� for α = 1, 2, . . ..

Additionally, we assume that z0 ∈ C \ Σ(L) is fixed and that Σ(L) consists of
infinitely many elements, unless otherwise explicitly stated (this is just to simplify
the notation, since all the results below apply to the finite-dimensional case as well).

In Theorem 5.5 below, we prove that, for a fixed denominator degree N > 0, the
poles of the fast LS-Padé approximant with denominatorQ[M/N ] (see Definition 4.1)
converge to the closest poles of S, as the number of employed derivatives E goes
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to ∞. More precisely, denoting by {λ̃(E)
β }Nβ=1 the roots of Q[M/N ], we prove that,

for α = 1, . . . , N ,

min
β=1,...,N

∣∣∣λ̃(E)
β − λα

∣∣∣ � ∣∣∣∣ λα − z0
λN+1 − z0

∣∣∣∣2E ,

where the hidden constant depends on α but is independent of E. In order to do
that, after rewriting the target functional j̃E in Definition 4.1 in a convenient way,
we prove three preliminary results in Lemmas 5.1, 5.3, and 5.4. We conclude this
section by proving convergence of the poles of the fast LS-Padé approximant to the
closest poles of S also for increasing N ; see Theorem 5.7 below.

We start by deriving a useful alternative expression for j̃E in Definition 4.1.
Thanks to (2.7), we can compute each Taylor coefficient of S at z0 as

(5.1) (S)γ,z0 =

∞∑
α=1

(
(λα − ·)−1

)
γ,z0

v�α =

∞∑
α=1

v�α
(λα − z0)γ+1

,

so that we can express j̃E(Q), for Q ∈ P
z0
N (C), as

j̃E(Q)2 =

∥∥∥∥∥∥
N∑
j=0

(Q)N−j,z0
(S)E−N+j,z0

∥∥∥∥∥∥
2

V

=

∥∥∥∥∥∥
∞∑

α=1

N∑
j=0

(Q)N−j,z0
(λα − z0)

N−j v�α
(λα − z0)E+1

∥∥∥∥∥∥
2

V

=

∥∥∥∥∥
∞∑

α=1

v�α
(λα − z0)E+1

Q(λα)

∥∥∥∥∥
2

V

=
∞∑

α=1

‖v�α‖
2
V

|λα − z0|2E+2
|Q(λα)|2 ,(5.2)

by the V -orthogonality of {v�α}∞α=1.
The first technical lemma provides some bounds on normalized polynomials in

terms of their roots.

Lemma 5.1. Let Q ∈ P
z0
N (C) have (possibly non-distinct) roots z1, . . . , zN . For

any z ∈ C we have the lower bound:

(5.3) |Q(z)| ≥
N∏

α=1

|zα − z|
1 + |zα − z0|

.

Moreover, if z0 /∈ {zα}Nα=1, the following upper bound holds true for all z ∈ C:

(5.4) |Q(z)| ≤
N∏

α=1

∣∣∣∣ zα − z

zα − z0

∣∣∣∣ .
Proof. We can express Q as a normalized interpolation polynomial: there exists
τ > 0 such that

(5.5) |Q(z)| = τ |	N (z)| ,
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where

(5.6) 	N (z) =

N∏
α=1

(zα − z) .

Due to the normalization of Q, we have that

τ−2 = τ−2
N∑
j=0

|(Q)j,z0 |
2
=

N∑
j=0

|(	N )j,z0 |
2
,

which can be evaluated using the Hadamard multiplication theorem [17, Section
4.6]:

(5.7) τ−2 =

∫ 1

0

∣∣	N (
z0 + e2πiθ

)∣∣2 dθ =

∫ 1

0

N∏
α=1

∣∣zα − z0 − e2πiθ
∣∣2 dθ.

The two claims will follow from (5.5) and (5.6) by employing an upper and a lower
bound for τ−2, respectively:

• the triangular inequality yields

τ−2 ≤
∫ 1

0

N∏
α=1

(
|zα − z0|+

∣∣e2πiθ∣∣)2 dθ =

N∏
α=1

(|zα − z0|+ 1)
2
,

from which (5.3) follows;
• the Cauchy-Schwarz inequality in L2(0, 1) applied to (5.7) allows us to
derive

τ−2 ≥
∣∣∣∣∣
∫ 1

0

N∏
α=1

(
zα − z0 − e2πiθ

)
dθ

∣∣∣∣∣
2

=

∣∣∣∣∣∣
∫ 1

0

⎛⎝ N∏
α=1

(zα − z0) +
N∑
j=1

cje
2πijθ

⎞⎠ dθ

∣∣∣∣∣∣
2

,

for some coefficients {cj}Nj=1 ⊂ C independent of θ, whose exact expression
is not relevant; indeed, by linearity, it can be shown that

τ−2 ≥

∣∣∣∣∣∣
N∏

α=1

(zα − z0) +
N∑
j=1

cj

∫ 1

0

e2πijθdθ

∣∣∣∣∣∣
2

=

∣∣∣∣∣
N∏

α=1

(zα − z0)

∣∣∣∣∣
2

,

leading to (5.4). �

Remark 5.2. In the proof of Lemma 5.1, it can be observed that both τ and the
absolute value of the interpolation polynomial |	N (z)| at any point z ∈ C depend
continuously on the roots of Q; see (5.7) and (5.6), respectively. Thus, due to (5.5),
|Q(z)| depends continuously on the roots of Q as well for all z ∈ C.

The second lemma establishes a sort of optimality bound for fast Padé denomi-
nators.

Lemma 5.3. Let j̃E and Q[M/N ] be the target functional and the fast Padé denom-
inator, respectively, as in Definition 4.1. Then,

(5.8) j̃E
(
Q[M/N ]

)
≤ C ′

|λN+1 − z0|E+1
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with

(5.9) C ′ = ‖v�‖V
N∏

α=1

(
1 +

∣∣∣∣λN+1 − z0
λα − z0

∣∣∣∣) .

Proof. Let g be the exact denominator of S with degree N , i.e., some element of
P
z0
N (C) with roots {λα}Nα=1.
Thanks to (5.2) and to the optimality of Q[M/N ], see Definition 4.1, we obtain

j̃E
(
Q[M/N ]

)2 ≤ j̃E (g)
2
=

∞∑
α=1

‖v�α‖
2
V

|λα − z0|2E+2
|g(λα)|2

=

∞∑
α=N+1

‖v�α‖
2
V

|λα − z0|2E+2
|g(λα)|2 .

Now Lemma 5.1 and the triangular inequality can be applied, yielding

j̃E
(
Q[M/N ]

)2 ≤
∞∑

α=N+1

‖v�α‖
2
V

|λα − z0|2E+2

N∏
β=1

∣∣∣∣λβ − λα

λβ − z0

∣∣∣∣2

≤
∞∑

α=N+1

‖v�α‖
2
V

|λα − z0|2E+2

N∏
β=1

(
1 +

∣∣∣∣λα − z0
λβ − z0

∣∣∣∣)2

≤ sup
α≥N+1

⎛⎝ 1

|λα − z0|E+1

N∏
β=1

(
1 +

∣∣∣∣λα − z0
λβ − z0

∣∣∣∣)
⎞⎠2

∞∑
α=N+1

‖v�α‖
2
V .

Since E ≥ N , the supremum is achieved for α = N + 1, leading to

j̃E
(
Q[M/N ]

)2 ≤ 1

|λN+1 − z0|2E+2

N∏
β=1

(
1 +

∣∣∣∣λN+1 − z0
λβ − z0

∣∣∣∣)2 ∞∑
α=N+1

‖v�α‖
2
V .

The claim follows by exploiting the V -orthogonality of the {v�α}∞α=1:

∞∑
α=N+1

‖v�α‖
2
V ≤

∞∑
α=1

‖v�α‖
2
V =

∥∥∥∥∥
∞∑

α=1

v�α

∥∥∥∥∥
2

V

= ‖v�‖2V .

�

The last technical result provides a bound for the absolute value of the fast
LS-Padé denominator when evaluated at the elements of Σ(L) closest to z0.

Lemma 5.4. Let N ∈ N\{0} be fixed, and consider the fast LS-Padé denominator
Q[M/N ] computed with E ≥ N derivatives of S at z0 ∈ C \ Σ(L) (the choice of
M is irrelevant, as it does not affect j̃E). Then, for α = 1, . . . , N , the fast Padé
denominator satisfies the bound:

(5.10)
∣∣Q[M/N ](λα)

∣∣ ≤ cα

∣∣∣∣ λα − z0
λN+1 − z0

∣∣∣∣2E ,

with cα independent of E.
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Proof. Let E ≥ N be fixed, and consider the vector qE ∈ CN+1, with ‖qE‖2 = 1,
such that qE =

((
Q[M/N ]

)
N−j,z0

)N
j=0

. For each α = 1, 2, . . ., let ωα ∈ CN+1 be
defined as

ωα =
[
(λα − z0)

N , . . . , λα − z0, 1
]∗
,

so that Q[M/N ](λα) = ω∗
αqE .

Moreover, consider the Hermitian matrices G̃E , ĜE ∈ C
(N+1)×(N+1) defined as

G̃E =

∞∑
α=1

‖v�α‖
2
V

|λα − z0|2E+2
ωαω

∗
α

and

ĜE =
N∑

α=1

‖v�α‖
2
V

|λα − z0|2E+2
ωαω

∗
α.

In particular, we remark that G̃E is positive definite, due to the linear independence
of {ωα}∞α=1, which, in turn, follows from the fact that the {λα}∞α=1 are distinct:

q∗G̃Eq =

∞∑
α=1

‖v�α‖
2
V

|λα − z0|2E+2
|ω∗

αq| > 0 for all q ∈ C
N+1 \ {0}.

Due to (4.4) and (5.2), qE is an eigenvector of G̃E , corresponding to the minimal
eigenvalue, which we denote by σ, and for which, by employing Lemma 5.3, we
proceed to find an upper bound:

(5.11) σ = q∗
EG̃EqE = j̃E

(
Q[M/N ]

)2 ≤ C ′2

|λN+1 − z0|2E+2
,

with C ′ independent of E.
As a preliminary step, we prove a bound for the perturbation ‖ĜE − G̃E‖2 using

the Cauchy-Schwarz inequality:

‖ĜE − G̃E‖2 = max
q∈CN+1,‖q‖=1

q∗ (ĜE − G̃E)q

= max
q∈CN+1,‖q‖=1

∞∑
α=N+1

‖v�α‖
2
V

|λα − z0|2E+2
|ω∗

αq|
2

≤
∞∑

α=N+1

‖v�α‖
2
V

|λα − z0|2E+2
‖ωα‖22

=

∞∑
α=N+1

‖v�α‖
2
V

|λα − z0|2E+2

N∑
j=0

|λα − z0|2j

≤ sup
α≥N+1

⎛⎝ 1

|λα − z0|2
N∑
j=0

|λα − z0|2j−2E

⎞⎠ ∞∑
α=N+1

‖v�α‖
2
V .

Since E ≥ N , the supremum is achieved for α = N + 1. This yields
(5.12)

‖ĜE − G̃E‖2≤
1

|λN+1 − z0|2E+2

N∑
j=0

|λN+1 − z0|2j
∞∑

α=N+1

‖v�α‖
2
V =

C ′′2

|λN+1 − z0|2E+2
,

with C ′′ independent of E.
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Now, let

W =
[
ω1

∣∣ · · · ∣∣ωN

]
∈ C

(N+1)×N

and

ΛE = diag

(
‖v�1‖

2
V

|λ1 − z0|2E+2
, . . . ,

‖v�N‖2V
|λN − z0|2E+2

)
∈ C

N×N ,

so that ĜE = WΛEW
∗. In particular, W is a rank-N matrix, due to the fact

that the {λα}∞α=1 are distinct. As such, it admits a left inverse, i.e., a matrix
W † ∈ C

N×(N+1) such that W †W = IN , whose rows we denote by

W † =
[
w†

1

∣∣ · · · ∣∣w†
N

]∗
.

Now, since G̃EqE = σqE , we obtain

WΛEW
∗qE = ĜEqE = (ĜE − G̃E)qE + σqE .

Applying W † from the left leads to

ΛEW
∗qE = W † (ĜE − G̃E)qE + σW †qE ,

i.e., element-wise,

‖v�α‖
2
V

|λα − z0|2E+2
ω∗

αqE = w†
α

∗
(ĜE − G̃E)qE + σ w†

α

∗
qE for α = 1, . . . , N .

Thus, the triangular and Cauchy-Schwarz inequalities, and the normalization of
qE lead to∣∣Q[M/N ] (λα)

∣∣ = |ω∗
αqE | ≤

|λα − z0|2E+2

‖v�α‖
2
V

(∣∣∣w†
α

∗
(ĜE − G̃E)qE

∣∣∣+ σ
∣∣∣w†

α

∗
qE

∣∣∣)
≤|λα − z0|2E+2

‖v�α‖
2
V

∥∥w†
α

∥∥
2
(‖ĜE − G̃E‖2 + σ)

for α = 1, . . . , N . The claim follows by exploiting (5.11) and (5.12). �

We are now ready to provide our main result on convergence of fast LS-Padé
approximant poles to the N closest poles of S.

Theorem 5.5. Consider the framework of Lemma 5.4, and, for fixed E, denote

the roots of Q[M/N ] by {λ̃(E)
β }Nβ=1. Then, for α = 1, . . . , N , we have that

(5.13) min
β=1,...,N

∣∣∣λ̃(E)
β − λα

∣∣∣ ≤ c′α

∣∣∣∣ λα − z0
λN+1 − z0

∣∣∣∣2E for E large enough,

with c′α independent of E.

Proof. Throughout the proof we assume that α ∈ {1, . . . , N} is fixed. Also, for
fixed E, let

λ̃(E) : {λγ}∞γ=1 → {λ̃(E)
β }Nβ=1

be the function mapping each pole of S to the closest root of the Padé denominator
(in case of ambiguity, any of the closest roots suffices), i.e.,∣∣∣λ̃(E)(λγ)− λγ

∣∣∣ = min
β=1,...,N

∣∣∣λ̃(E)
β − λγ

∣∣∣ for γ = 1, 2, . . . .
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Since Q[M/N ] is normalized, Lemma 5.1 applies, yielding

(5.14)
∣∣Q[M/N ](λα)

∣∣ ≥ N∏
β=1

∣∣∣λ̃(E)
β − λα

∣∣∣
1 +

∣∣∣λ̃(E)
β − z0

∣∣∣ ≥
N∏

β=1

∣∣∣λ̃(E)
β − λα

∣∣∣
1 + |λα − z0|+

∣∣∣λ̃(E)
β − λα

∣∣∣ ,
thanks to the triangular inequality.

We introduce the strictly increasing continuous function

(5.15) φα(x) =
x

1 + |λα − z0|+ x
,

defined over the positive real numbers, with φα(0) = 0 and whose inverse is

φ−1
α (y) = (1 + |λα − z0|)

y

1− y

for 0 ≤ y < 1.
Now, (5.14) and the monotonicity of φα lead to

∣∣Q[M/N ](λα)
∣∣ ≥ N∏

β=1

φα

(∣∣∣λ̃(E)
β − λα

∣∣∣) ≥
(
φα

(∣∣∣λ̃(E) (λα)− λα

∣∣∣))N

,

so that, thanks to Lemma 5.4,

∣∣∣λ̃(E) (λα)− λα

∣∣∣ ≤ φ−1
α

⎛⎝(
cα

∣∣∣∣ λα − z0
λN+1 − z0

∣∣∣∣2E
)1/N

⎞⎠ ,

provided the argument of φ−1
α is smaller than 1, i.e., for E large enough. If

|λα − z0| = |λN+1 − z0|, the claim follows trivially by defining c′α = φ−1
α

(
c
1/N
α

)
.

Thus, for the rest of the proof we assume that |λα − z0| < |λN+1 − z0|.
Since cα is independent of E, the continuity of φ−1

α yields

lim
E→∞

∣∣∣λ̃(E) (λα)− λα

∣∣∣ ≤ φ−1
α

⎛⎝ lim
E→∞

(
cα

∣∣∣∣ λα − z0
λN+1 − z0

∣∣∣∣2E
)1/N

⎞⎠ = 0,

i.e.,

(5.16) lim
E→∞

∣∣∣λ̃(E) (λα)− λα

∣∣∣ = 0.

In order to obtain the rate (5.13), we define

r = min
1≤β<β′≤N

|λβ − λβ′ | > 0.

For E large enough, (5.16) implies that

(5.17)
∣∣∣λ̃(E)(λγ)− λγ

∣∣∣ < r

2
for γ = 1, . . . , N .

In particular, the approximate poles {λ̃(E)(λγ)}Nγ=1 form a subset of

B =
⋃

γ=1,...,N

B
(
λγ ,

r

2

)
.
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But B has N disjoint connected components. Thus, thanks to (5.17), the map λ̃(E)

is injective over {λγ}Nγ=1, and we can write⎧⎨⎩
∣∣∣λ̃(E)

β − λα

∣∣∣ < r
2 if λ̃

(E)
β = λ̃(E)(λα),∣∣∣λ̃(E)

β − λα

∣∣∣ ≥ r
2 for all other β = 1, . . . , N .

From (5.14) it follows that

∣∣Q[M/N ](λα)
∣∣ ≥ N∏

β=1

φα

(∣∣∣λ̃(E)
β − λα

∣∣∣)

= φα

(∣∣∣λ̃(E)(λα)− λα

∣∣∣) N∏
β=1

˜λ
(E)
β 
=˜λ(E)(λα)

φα

(∣∣∣λ̃(E)
β − λα

∣∣∣)

≥
(
φα

(r
2

))N−1

φα

(∣∣∣λ̃(E)(λα)− λα

∣∣∣) ,

provided E is large enough.
By Lemma 5.4 and by applying φ−1

α , it follows that∣∣∣λ̃(E)(λα)− λα

∣∣∣ ≤φ−1
α

((
φα

(r
2

))1−N

cα

∣∣∣∣ λα − z0
λN+1 − z0

∣∣∣∣2E
)

=
(1 + |λα − z0|)

(
φα

(
r
2

))1−N
cα

1−
(
φα

(
r
2

))1−N
cα

∣∣∣ λα−z0
λN+1−z0

∣∣∣2E
∣∣∣∣ λα − z0
λN+1 − z0

∣∣∣∣2E
for E large enough.

For E large enough,(
φα

(r
2

))1−N

cα

∣∣∣∣ λα − z0
λN+1 − z0

∣∣∣∣2E <
1

2
,

so that∣∣∣λ̃(E)(λα)− λα

∣∣∣ ≤ 2 (1 + |λα − z0|)
(
φα

(r
2

))1−N

cα

∣∣∣∣ λα − z0
λN+1 − z0

∣∣∣∣2E ,

and the claim (5.13) follows. �

Corollary 5.6. Consider the framework of Lemma 5.4, and let g ∈ P
z0
N (C) have

roots {λα}Nα=1. As E increases, the complex magnitude of the Padé denominator∣∣Q[M/N ]

∣∣ converges to |g|, uniformly over all compact subsets of C.

Proof. Theorem 5.5 shows that the roots of Q[M/N ], namely {λ̃(E)
β }Nβ=1, converge

to those of g as E increases. Due to Remark 5.2, the absolute value of a polynomial
in P

z0
N (C) depends continuously on its roots, and the claim follows. �

All the results above hold for increasing E with constant denominator degree N .
A convergence result can be proven also in the case of increasing N , as follows.

Theorem 5.7. Consider a sequence

(Ek, Nk)
∞
k=1 ⊂ {(E,N) ∈ N

2, E ≥ N},
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such that Ek+1 > Ek and Nk+1 ≥ Nk for all k. Let Q[Mk/Nk] be the fast LS-Padé
denominator computed with Ek derivatives of S at z0 ∈ C \ Σ(L), whose roots are

denoted by {λ̃(k)
β }Nk

β=1 (the choice of Mk is irrelevant, as it does not affect j̃Ek
). If

limk→∞ Nk = ∞, then, for all α = 1, 2, . . .,

(5.18) lim
k→∞

min
β=1,...,Nk

∣∣∣λ̃(k)
β − λα

∣∣∣ = 0.

Proof. Let α ∈ {1, 2, . . .} be fixed. Due to (5.2), we have that

‖v�α‖V
|λα − z0|Ek+1

∣∣Q[Mk/Nk](λα)
∣∣ ≤

⎛⎝ ∞∑
β=1

‖v�β‖
2
V

|λβ − z0|2Ek+2

∣∣Q[Mk/Nk](λβ)
∣∣2⎞⎠1/2

=j̃Ek

(
Q[Mk/Nk]

)
,

so that Lemma 5.3 implies

(5.19)
∣∣Q[Mk/Nk](λα)

∣∣ ≤ ‖v�‖V
‖v�α‖V

Nk∏
β=1

(
1 +

∣∣∣∣λNk+1 − z0
λβ − z0

∣∣∣∣) ∣∣∣∣ λα − z0
λNk+1 − z0

∣∣∣∣Ek+1

.

As in the proof of Theorem 5.5, Lemma 5.1 and the triangular inequality yield

∣∣Q[Mk/Nk](λα)
∣∣ ≥ Nk∏

β=1

∣∣∣λ̃(k)
β − λα

∣∣∣
1 +

∣∣∣λ̃(k)
β − z0

∣∣∣
≥

Nk∏
β=1

φα

(∣∣∣λ̃(k)
β − λα

∣∣∣)

≥φα

(
min

β=1,...,Nk

∣∣∣λ̃(k)
β − λα

∣∣∣)Nk

,

with φα as in (5.15). This, together with (5.19), leads to

(5.20) φα

(
min

β=1,...,Nk

∣∣∣λ̃(k)
β − λα

∣∣∣)

≤

⎛⎝ ‖v�‖V
‖v�α‖V

Nk∏
β=1

(
1 +

∣∣∣∣λNk+1 − z0
λβ − z0

∣∣∣∣) ∣∣∣∣ λα − z0
λNk+1 − z0

∣∣∣∣Ek+1
⎞⎠1/Nk

.

Due to the monotonicity and continuity of φα, in order to prove the claim it
suffices to show that the right-hand side of (5.20) converges to zero as k increases.
To this aim, we consider its natural logarithm

τ
(α)
k =

1

Nk
log

‖v�‖V
‖v�α‖V

+
1

Nk

Nk∑
β=1

log

(
1 +

∣∣∣∣λNk+1 − z0
λβ − z0

∣∣∣∣)+
Ek + 1

Nk
log

∣∣∣∣ λα − z0
λNk+1 − z0

∣∣∣∣
≤ 1

Nk
log

‖v�‖V
‖v�α‖V

+
1

Nk

Nk∑
β=1

log

(
2

∣∣∣∣λNk+1 − z0
λβ − z0

∣∣∣∣)+
Ek + 1

Nk
log

∣∣∣∣ λα − z0
λNk+1 − z0

∣∣∣∣
=

1

Nk
log

‖v�‖V
‖v�α‖V

+log 2+
1

Nk

Nk∑
β=1

log

∣∣∣∣λα − z0
λβ − z0

∣∣∣∣+Ek + 1−Nk

Nk
log

∣∣∣∣ λα − z0
λNk+1 − z0

∣∣∣∣
and prove a bound for each term separately.
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Trivially,

lim
k→∞

1

Nk
log

‖v�‖V
‖v�α‖V

+ log 2 = log 2.

Moreover, since Ek ≥ Nk for all k, the last term satisfies

Ek + 1−Nk

Nk
log

∣∣∣∣ λα − z0
λNk+1 − z0

∣∣∣∣ < 0

whenever |λα − z0| < |λNk+1 − z0|, i.e., (thanks to the unboundedness of {Nk}∞k=1

and of the spectrum Σ(L)) for k large enough.
In order to find a bound for the remaining term, we remark that

{
log

∣∣λα−z0
λβ−z0

∣∣}∞
β=1

is decreasing and unbounded, due, once more, to the unboundedness of the spectrum
Σ(L). Thus, the Stolz-Cesàro theorem [1] can be applied to a strictly monotone
subsequence (Nkl

)∞l=1 to prove that

lim
k→∞

1

Nk

Nk∑
β=1

log

∣∣∣∣λα − z0
λβ − z0

∣∣∣∣ = −∞.

In summary, limk→∞ τ
(α)
k = −∞, and the claim follows. �

Remark 5.8. If Σ(L) is finite, Lemmas 5.3 and 5.4, as well as Theorems 5.5 and
5.7, and Corollary 5.6, still hold whenever N < #Σ(L), where #A denotes the
cardinality of the set A. Also, if N ≥ #Σ(L), some of the results become even
stronger: within the frameworks of the respective lemmas and theorem, (5.8)-(5.10)-
(5.13) become

j̃E(Q[M/N ]) = 0,

and ∣∣Q[M/N ](λα)
∣∣ = 0 and min

β=1,...,N

∣∣∣λ̃(E)
β − λα

∣∣∣ = 0 for α = 1, . . . ,#Σ(L).

Remark 5.9. Due to Remark 4.2, all the results in the present section can be
generalized to standard LS-Padé approximants, see Definition 3.1, whenever the
target map S can be expressed using an orthogonal decomposition as in (2.7).
However, the main bounds (5.8)-(5.10)-(5.13) hold only asymptotically in E. In
particular, numerical tests, see Section 8, have shown that, in order to achieve
an accuracy which is comparable to that of fast LS-Padé approximants, standard
LS-Padé approximants require N more derivatives of the target map S.

6. Convergence of fast LS-Padé approximants

Given the results from the previous section, it remains to check whether fast
LS-Padé approximants inherit the convergence in V from that (in C

N+1) of their
denominators, and whether their convergence rate is the same as the one for stan-
dard LS-Padé approximants (3.7).

In this section we prove that fast approximants converge at exponential rate
in M , provided the denominator degree stays constant. Also, we show that their
convergence rate is better than that in (3.7), and is consistent with the numerically
observed rate (3.8).

Moreover, we show that fast LS-Padé approximants converge to the target map S
along more general paths of the Padé table, in particular on para-diagonal sequences
[N + δ/N ] for δ ≥ −1, under some reasonable assumptions on the choice of E.

First, we prove a bound for fast LS-Padé residuals in terms of both M and N .
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Lemma 6.1. For any E,M,N ∈ N, with M ≥ N − 1 and E = max{M,N},
consider the (meromorphic) fast LS-Padé residual H[M/N ] : C \Σ(L) → V , defined
as

(6.1) H[M/N ] = Q[M/N ]S − P[M/N ].

For z ∈ C, let

dΣ(L)(z) = min
λ∈Σ(L)

|λ− z| .

Then, for all z ∈ C \ Σ(L), we have the bounds:

(6.2)
∥∥H[M/N ](z)

∥∥
V
≤ C ′

dΣ(L)(z)

∣∣∣∣ z − z0
λN+1 − z0

∣∣∣∣E+1

if M ≥ N

and
(6.3)∥∥H[M/N ](z)

∥∥
V
≤ C ′

(
1

dΣ(L)(z)
+

1

|z − z0|

) ∣∣∣∣ z − z0
λN+1 − z0

∣∣∣∣E+1

if M = N − 1.

In particular, the common constant C ′ is given by (5.9).

Proof. We can exploit (5.1) to derive

(6.4) Q[M/N ](z)S(z) =
∞∑

α=1

v�α
λα − z

Q[M/N ](z).

Due to Definition 4.1 and (5.1), we can express the fast Padé numerator as

P[M/N ](z) =

M∑
j=0

(
Q[M/N ]S

)
j,z0

(z − z0)
j =

M∑
j=0

j∑
l=0

(
Q[M/N ]

)
l,z0

(S)j−l,z0
(z − z0)

j

=
M∑
j=0

j∑
l=0

(
Q[M/N ]

)
l,z0

∞∑
α=1

v�α

(λα − z0)
j−l+1

(z − z0)
j

=

∞∑
α=1

v�α
λα − z0

M∑
l=0

(
Q[M/N ]

)
l,z0

(z − z0)
l

M∑
j=l

(
z − z0
λα − z0

)j−l

=
∞∑

α=1

v�α
λα − z0

M∑
l=0

(
Q[M/N ]

)
l,z0

(z − z0)
l

(
z−z0
λα−z0

)M−l+1

− 1

z−z0
λα−z0

− 1

=

∞∑
α=1

v�α
λα − z

M∑
l=0

(
Q[M/N ]

)
l,z0

(z − z0)
l

(
1−

(
z − z0
λα − z0

)M−l+1
)
.

Under our hypotheses, we can replace the upper summation indexM in the last sum
by N . Indeed, this is trivially true for M ≥ N , since

(
Q[M/N ]

)
l,z0

= 0 for l > N .
In the case M = N − 1, direct inspection shows that the addend corresponding
to l = N is zero, thus justifying its addition to the sum. Hence, the fast Padé
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numerator can be expressed as

P[M/N ](z) =

∞∑
α=1

v�α
λα − z

N∑
l=0

(
Q[M/N ]

)
l,z0

(z − z0)
l

(
1−

(
z − z0
λα − z0

)M−l+1
)

=

∞∑
α=1

v�α
λα − z

(
Q[M/N ](z)−

N∑
l=0

(
Q[M/N ]

)
l,z0

(λα−z0)
l

(
z − z0
λα − z0

)M+1
)

=
∞∑

α=1

v�α
λα − z

(
Q[M/N ](z)−

(
z − z0
λα − z0

)M+1

Q[M/N ](λα)

)

=Q[M/N ](z)S(z)−
∞∑

α=1

v�α
λα − z

Q[M/N ](λα)

(
z − z0
λα − z0

)M+1

;

see (6.4).
Thus, by exploiting (6.1) and the V -orthogonality of {v�α}∞α=1, we can express

the squared norm of the residual as
(6.5) ∥∥H[M/N ](z)

∥∥2
V
= |z − z0|2M+2

∞∑
α=1

‖v�α‖
2
V

|λα − z|2 |λα − z0|2M+2

∣∣Q[M/N ] (λα)
∣∣2 .

We distinguish two cases:

• Case E = M ≥ N . From (6.5), by exploiting (5.2) we can derive

∥∥H[M/N ](z)
∥∥2
V
≤ |z − z0|2M+2 1

infλ∈Σ(L) |λ− z|2
∞∑

α=1

‖v�α‖
2
V

|λα − z0|2M+2

∣∣Q[M/N ] (λα)
∣∣2

= |z − z0|2M+2 1

dΣ(L)(z)2

∞∑
α=1

‖v�α‖
2
V

|λα − z0|2M+2

∣∣Q[M/N ] (λα)
∣∣2

= |z − z0|2M+2 1

dΣ(L)(z)2
j̃E

(
Q[M/N ]

)2
.

Lemma 5.3 can now be applied, leading to

∥∥H[M/N ](z)
∥∥2
V
≤ C ′ 2

dΣ(L)(z)2

∣∣∣∣ z − z0
λN+1 − z0

∣∣∣∣2E+2

.

• Case E = N = M + 1. Equation (6.5) can be written equivalently as

∥∥H[M/N ](z)
∥∥2
V
= |z − z0|2M+2

∞∑
α=1

‖v�α‖
2
V

|λα − z0|2M+4

∣∣Q[M/N ] (λα)
∣∣2 ∣∣∣∣λα − z0

λα − z

∣∣∣∣2 .
Now we observe that, for any α ≥ 1,∣∣∣∣λα − z0
λα − z

∣∣∣∣ ≤ |λα − z|+ |z − z0|
|λα − z| = 1 +

∣∣∣∣ z − z0
λα − z

∣∣∣∣ ≤ 1 +
|z − z0|
dΣ(L)(z)

,

which yields

∥∥H[M/N ](z)
∥∥2
V
≤ |z − z0|2M+2

(
1 +

|z − z0|
dΣ(L)(z)

)2

j̃E
(
Q[M/N ]

)2
.
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To conclude, it suffices to apply Lemma 5.3:∥∥H[M/N ](z)
∥∥2
V
≤ C ′ 2

(
1

dΣ(L)(z)
+

1

|z − z0|

)2 ∣∣∣∣ z − z0
λN+1 − z0

∣∣∣∣2E+2

. �

Remark 6.2. If Σ(L) is finite, Lemma 6.1 still holds true whenever N < #Σ(L).
Moreover,

∥∥H[M/N ]

∥∥
V
= 0 over all C \ Σ(L) if M + 1 ≥ N ≥ #Σ(L).

Finally, we can use the previous results to prove the convergence in measure of
fast LS-Padé approximants within the region of the Padé table where M ≥ N − 1
and E = max{M,N}.

Theorem 6.3. Let z0 ∈ C \ Σ(L) and R > 0 be fixed, so that no pole of S lies on
∂B(z0, R). Also, let N ∈ N be the number of poles of S within B(z0, R). Consider
a sequence

(Mk, Nk)
∞
k=1 ⊂ {(M,N) ∈ N

2,M ≥ N − 1},
such that Mk+1 > Mk and Nk+1 ≥ Nk for all k, with limk→∞ Nk ≥ N .

Let S[Mk/Nk] be the [Mk/Nk] fast LS-Padé approximant of S, computed with
E = max{Mk, Nk} for k = 1, 2, . . .. For any ε > 0,

(6.6) lim
k→∞

∣∣{z ∈ B(z0, R) :
∥∥S(z)− S[Mk/Nk](z)

∥∥
V
> ε

}∣∣ = 0,

with |A| denoting the Lebesgue measure of the set A.

Proof. Let k be fixed. We indicate with {λ̃α}Nk
α=1 the roots of Q[Mk/Nk], ordered

with respect to their distance from z0, and we consider the integer N ′
k ∈ {0, . . . , Nk}

such that

(6.7) |λ̃α − z0| ≤ 2R for α = 1, . . . , N ′
k

and

(6.8) |λ̃α − z0| > 2R for α = N ′
k + 1, . . . , Nk.

Since Q[Mk/Nk] belongs to P
z0
Nk

(C), Lemma 5.1 applies, yielding

∣∣Q[Mk/Nk](z)
∣∣ ≥ Nk∏

α=1

|λ̃α − z|
1 + |λ̃α − z0|

.

In order to prove a lower bound for
∣∣Q[Mk/Nk]

∣∣ over a suitable subset of B(z0, R),
we consider each factor separately. For the terms corresponding to 1 ≤ α ≤ N ′

k, by
(6.7) we can write

|λ̃α − z|
1 + |λ̃α − z0|

≥ |λ̃α − z|
1 + 2R

.

To find a bound for the factors for N ′
k + 1 ≤ α ≤ Nk, we remark that the function

ψ(x) = x/(1 + x) is increasing for x > 0. This, together with the triangular
inequality and (6.8), for all z ∈ B(z0, R) leads to

|λ̃α − z|
1 + |λ̃α − z0|

≥ |λ̃α − z0|
1 + |λ̃α − z0|

− |z − z0|
1 + |λ̃α − z0|

≥ 2R

1 + 2R
− R

1 + 2R
=

R

1 + 2R
.
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In summary, we have the bound

∣∣Q[Mk/Nk](z)
∣∣ ≥ RNk−N ′

k

(1 + 2R)
Nk

N ′
k∏

α=1

|λ̃α − z| = RNk−N ′
k

(1 + 2R)
Nk

∣∣∣	N ′
k
(z)

∣∣∣
for all z ∈ B(z0, R), with 	N ′

k
being a monic polynomial of degree N ′

k.

For any fixed 0 < δ′k ≤ πR2, classical results on lemniscates for monic polyno-
mials (see, e.g., [3, Theorems 6.6.3–6.6.4]) prove the existence of a set E ′

k ⊂ C, with
Lebesgue measure |E ′

k| ≤ δ′k, such that

∣∣∣	N ′
k
(z)

∣∣∣ ≥ (
δ′k
π

)N ′
k/2

for all z ∈ C \ E ′
k.

Hence, for all z ∈ B(z0, R) \ E ′
k,

(6.9)
∣∣Q[Mk/Nk](z)

∣∣ ≥ (
R

1 + 2R

)Nk
(√

δ′k/π

R

)N ′
k

≥
(√

δ′k/π

1 + 2R

)Nk

.

Now, let z ∈ B(z0, R)\ (E ′
k ∪ Σ(L)) and assume Mk ≥ Nk; the case Mk = Nk−1

can be treated in an analogous way. Lemma 6.1, together with (6.9), yields

∥∥S(z)− S[Mk/Nk](z)
∥∥
V
=

1∣∣Q[Mk/Nk](z)
∣∣ ∥∥H[Mk/Nk](z)

∥∥
V

≤ C ′

dΣ(L)(z)
∣∣Q[Mk/Nk](z)

∣∣
∣∣∣∣ z − z0
λNk+1 − z0

∣∣∣∣Mk+1

≤ C ′

dΣ(L)(z)

(
1 + 2R√
δ′k/π

)Nk ∣∣∣∣ z − z0
λNk+1 − z0

∣∣∣∣Mk+1

,

with C ′ as in Lemma 6.1.
The term 1/dΣ(L)(z) diverges as z gets close to Σ(L). As such, we proceed by

excluding small neighborhoods of the poles of S within the region of convergence.
To this aim, let 0 < δ′′k < Nπ

( ∣∣λN+1 − z0
∣∣−R

)2
be given. The set

E ′′
k =

⋃
α=1,...,N

B
(
λα,

√
δ′′k
Nπ

)

has Lebesgue measure |E ′′
k | ≤ δ′′k and satisfies

dΣ(L)(z) ≥
√

δ′′k
Nπ

for all z ∈ B(z0, R) \ E ′′
k .

In particular, we remark that, thanks to the ordering of the elements of Σ(L),
the condition δ′′k < Nπ

( ∣∣λN+1 − z0
∣∣−R

)2
allows us to ignore all the poles with

distance from z0 larger than R in the estimation of dΣ(L) over B(z0, R).
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If we define Ek = E ′
k ∪ E ′′

k , whose measure is not greater than δ′k + δ′′k by con-
struction, for all z ∈ B(z0, R) \ Ek, we have that

(6.10)
∥∥S(z)− S[Mk/Nk](z)

∥∥
V
≤

√
Nπ ‖v�‖V√
δ′k

Nk δ′′k

∣∣∣∣ z − z0
λNk+1 − z0

∣∣∣∣Mk+1

×
(
|λNk+1 − z0|

R

)Nk Nk∏
α=1

((√
πR(1 + 2R)

)( 1

|λNk+1 − z0|
+

1

|λα − z0|

))
,

which, by exploiting the ordering of the poles {λα}∞α=1, implies

(6.11)
∥∥S(z)− S[Mk/Nk](z)

∥∥
V
≤

√
Nπ ‖v�‖V√
δ′k

Nk δ′′k

(
R

|λNk+1 − z0|

)Mk+1−Nk

×
Nk∏
α=1

2
√
πR(1 + 2R)

|λα − z0|
.

To conclude the proof we consider two cases:

• Case (Nk)
∞
k=1 bounded. There exists K > 0 such that Nk = liml→∞ Nl

=: N� for k ≥ K. For k ≥ K, (6.11) can be expressed as

(6.12)
∥∥S(z)− S[Mk/N�](z)

∥∥
V
≤ C√

δ′k
N�

δ′′k

(
R

|λN�+1 − z0|

)Mk+1

for all z ∈ B(z0, R) \ Ek, with C independent of k. Since R < |λN�+1 − z0|
and limk→∞ Mk = ∞, we can easily see that

lim
k→∞

(
R

|λN�+1 − z0|

)Mk+1

= 0 for all z ∈ B(z0, R).

For all k ≥ K, let

δ′k = min

⎧⎨⎩πR2,

(
C

ε

(
R

|λN�+1 − z0|

)Mk+1
)1/N�⎫⎬⎭

and

δ′′k = min

{
Nπ

( ∣∣λN+1 − z0
∣∣−R

)2
,
C

ε

(
R

|λN�+1 − z0|

)Mk+1
}
.

With these definitions, (6.12) implies that∥∥S(z)− S[Mk/N�](z)
∥∥
V
≤ ε for all z ∈ B(z0, R) \ Ek,

with |Ek| ≤ δ′k + δ′′k . As both δ′k and δ′′k converge to 0 as k increases, the
claim follows.

• Case (Nk)
∞
k=1 unbounded. As in the previous case, we leverage (6.11) to

obtain suitable definitions for δ′k and δ′′k : for all k = 1, 2, . . ., we set

δ′k = min

⎧⎨⎩πR2,

(
Nk∏
α=1

2
√
πR(1 + 2R)

|λα − z0|

)2/Nk
⎫⎬⎭
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and

δ′′k = min

{
Nπ

( ∣∣λN+1 − z0
∣∣−R

)2
,
C2

ε2

(
R

|λNk+1 − z0|

)2(Mk+1−Nk)
}
.

As before,
∥∥S(z)− S[Mk/Nk](z)

∥∥
V
≤ ε for all z ∈ B(z0, R) \ Ek, with |Ek| ≤

δ′k+δ′′k . To prove the claim, it now suffices to show that δ′k and δ′′k converge
to 0 as k increases.

Let us consider δ′k first: for all k we have that

δ′k ≤ exp

{
2

Nk

Nk∑
α=1

log
2
√
πR(1 + 2R)

|λα − z0|

}
.

Since the spectrum Σ(L) has a single limit point at infinity, we obtain

lim
α→∞

log
2
√
πR(1 + 2R)

|λα − z0|
= −∞.

Now, since (Nk)
∞
k=1 is non-decreasing and unbounded, the Stolz-Cesàro

theorem [1] can be applied to a strictly monotone subsequence (Nkl
)∞l=1 to

prove that

lim
k→∞

2

Nk

Nk∑
α=1

log
2
√
πR(1 + 2R)

|λα − z0|
= −∞,

or, equivalently, that limk→∞ δ′k = 0.
The second parameter δ′′k is easier to deal with: since Mk ≥ Nk for all

k, the convergence of δ′′k to 0 can be verified by exploiting once more the
unboundedness of the spectrum Σ(L). �

Corollary 6.4. Assume that the hypotheses of Theorem 6.3 hold with Nk = N� ≥
N for all k. For any δ > 0 there exist C ′′ independent of k and of z, and Ek ⊂ C,
with |Ek| ≤ δ, such that, for all z ∈ B(z0, R) \ Ek, the approximation error admits
the following bound:

(6.13)
∥∥S(z)− S[Mk/N�](z)

∥∥
V
≤ C ′′

∣∣∣∣ z − z0
λN�+1 − z0

∣∣∣∣Mk

.

Proof. The claim follows from (6.10). �
Remark 6.5. Theorem 6.3 and Corollary 6.4 still hold if Σ(L) is finite. In particular,
if limk→∞ Nk ≥ #Σ(L), both results are satisfied by setting Ek = Σ(L) ∩ B(z0, R),
and the right-hand side of (6.13) is identically 0 for large k.

Remark 6.6. The sequence of sets {Ek}∞k=1 in the proof of Theorem 6.3 and in
Corollary 6.4 is used to account for the instabilities of the solution map S and
of the rational approximant S[M/N ] near the respective poles. In particular, the
proof of Theorem 6.3 shows that each Ek can be defined as the union of suitable
neighborhoods of poles of S and of S[M/N ].

Remark 6.7. With a small effort (the necessary theoretical tools can be found, e.g.,
in [3, Section 6.6]), Theorem 6.3 can be extended to show that (6.6) still holds true
if logarithmic capacity [3,14] replaces Lebesgue measure. Similarly, the sets in the
family {Ek}∞k=1 in Corollary 6.4 can be shown to have arbitrarily small logarithmic
capacity. In this way, optimal convergence results in classical Padé approximation
[3] find their counterparts for fast LS-Padé approximants.
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7. Numerical implementation of fast LS-Padé approximants

In this section, we give some details on the practical implementation of Al-
gorithm 1. Consider a compact set K ⊂ C where we wish to approximate the
meromorphic map S. To guarantee the convergence of LS-Padé approximants in
K \ Σ(L), we must choose z0 ∈ C \ Σ(L) and estimate the number N ∈ N of poles
contained in the smallest disk which includes K. Still, in most applications, Σ(L)
is not known explicitly. Hence, a preliminary approximate localization of Σ(L) (or,
at least, of the elements of Σ(L) closest to K) is necessary.

A description or analysis of such a procedure falls outside the scope of this paper.
However, we envision two possible strategies:

• the number of elements of Σ(L) within a certain real interval can be ap-
proximated through a priori eigenvalue estimators, e.g., by applying Weyl’s
law; see [4];

• an estimate of the positions of the poles of S closest to z0 may be obtained
adaptively through the application of fast LS-Padé approximants, where the
value of N is updated according to some a posteriori estimator computed
from Padé denominators.

From now on, we assume that z0 and the denominator degree N have been fixed.
For instance, we may have set z0 equal to the Chebyshev center of K, i.e., the center
of the smallest ball which contains K. Moreover, we assume that N is not smaller
than N , so that K ⊂ B(z0, |λN+1 − z0|), where, as usual, we order the elements of
Σ(L) with respect to their distance to z0.

Finally, it is necessary to chooseM and E, withM ≥ N−1 and E = max{M,N};
this last condition is to ensure that Theorem 6.3 and Corollary 6.4 can be applied.
The value of E represents the number of derivatives of S that need to be computed,
and affects the accuracy of the approximation of the poles of S; see Section 5.
However, while a larger E is expected to yield a better approximation of the exact
denominator g, in practice it may be desirable to choose a smaller value, since the
condition number of G̃E increases exponentially with E, leading to numerical insta-
bility (see also [11] for similar observations in the case of least-squares multivariate
scalar Padé approximants).

Once the Taylor coefficients of S at z0, i.e., {(S)γ,z0}
E
γ=0, are computed by

exploiting (2.4) and (2.8), the functional j̃E needs to be minimized. To this aim,
instead of building explicitly the matrix G̃E , its Gram structure is exploited to
obtain a better conditioned problem. In particular, the quasi-matrix

A =
[
(S)E−N,z0

∣∣∣ · · · ∣∣∣(S)E,z0

]
,

whose range is a subspace of V , is assembled, and its QR decomposition is computed
[18], so that

(7.1) A =
[
QE−N

∣∣∣ · · · ∣∣∣QE

]
R,

with {Qj}Ej=E−N ⊂ V forming a V -orthonormal set, and R ∈ C(N+1)×(N+1) being
upper triangular. This allows us to find the denominator Q[M/N ] from a right-
singular vector of R corresponding to the minimal singular value, effectively with
a condition number which is the square root of the one for the original problem.

In many applications (for instance–and in particular–in the field of model or-
der reduction for parametric PDEs), both V and L are actually finite-dimensional
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approximations of some reference infinite-dimensional space V 0 and operator L0,
respectively; see Section 8 for an example. This does not affect the results discussed
in the previous sections, but introduces an additional source of error, namely the
approximation of the PDE, which is not considered in this work.

In this particular but quite common framework, the evaluation of the target
map through the solution of (2.4) and the recursion (2.8) correspond to the so-
lution of linear systems, whose matrices depend parametrically on z. Thus, the
derivatives of S can be interpreted as a basis of the Krylov subspace of V gener-
ated by

(
(L − z0I)−1, v�

)
. As such, an approach based on the Arnoldi algorithm

could be applied to obtain quite naturally the orthogonal decomposition (7.1).

8. Numerical comparison of standard and fast LS-Padé approximants

We devote this section to the comparison of standard and fast LS-Padé approx-
imants for the map S which associates to any value of z the P

3 finite element
discretization of the self-adjoint Helmholtz problem (2.9), with Ω = (0, π)2 and
f ∈ L2(Ω). We refer to [7] for further numerical examples of (standard) LS-Padé
approximation in similar and more general (non-self-adjoint) settings.

In particular, given ν ∈ R
+ and θ ∈ [0, 2π), we define d = (cos(θ), sin(θ))� and

uex(x) = w(x)e−iνd�x ∈ H1
0 (Ω),

with w(x) = 16
π4 x1x2(π − x1)(π − x2) being a bubble vanishing on ∂Ω. Moreover,

we set f = −Δuex − ν2uex, so that uex = S(ν2). For our numerical experiments,
we choose ν2 = 12 and θ = π

3 .
As described in Section 2.1, the spectral decomposition (2.7) holds true, with

v� = f . In particular, as our experiments will be carried out in a finite element
framework, it is crucial to remark that a finite (and finite-dimensional) counterpart
of (2.7) is true in the discrete setting as well. Moreover, the discrete spectrum
of the Laplacian is a good approximation of the infinite-dimensional one, at least
for low/mid-frequencies (here the adjectives “low/mid” have to be understood in a
relative sense with respect to the specific meshsize and finite element degree which
are employed [2]).

Hence, as the solution map S is meromorphic (both in the continuous and discrete
settings), we wish to approximate it for z within the interval of interest K = [9, 15]
using LS-Padé approximants, according to Definitions 3.1 and 4.1. As discussed
in Section 2.1, the problem of computing LS-Padé approximants for S can be cast
within (V, 〈·, ·〉V ), where V = H1

0 (Ω) and

〈u, v〉V = 〈∇u,∇v〉L2(Ω) + ν2〈u, v〉L2(Ω).

We denote by ‖·‖V the norm induced by 〈·, ·〉V .
The interval of interest K contains two simple poles of the solution map λ1 = 13

and λ2 = 10, while the closest pole outside K is λ3 = 8. As parameters for the LS-
Padé approximant, we choose z0 = 12 + i

2 , ρ = RK = maxz∈K |z − z0| and N = 2,
while we vary M ∈ {2, . . . , 8}. For the standard approximant, we set E = M +N ,
whereas we choose E = M for the fast one.

To assess the accuracy of the approximation, we sample uniformly the interval
K, and compare the numerical solution of the Helmholtz equation with the LS-Padé
approximations, measuring the error in the weighted norm ‖·‖V .
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Figure 2. Error (in the weighted H1(D)-norm) achieved by stan-
dard and fast Padé approximants in the approximation of the so-
lution map of (2.9). The high-fidelity solution (obtained with P

3

finite elements) is computed for n = 101 uniformly sampled values
of z ∈ [9, 15].

Figure 3. Convergence plots for the relative error (in the
weighted H1(D)-norm) achieved by standard and fast Padé ap-
proximants at z ∈ {9, 11} with respect to the numerator degree.
In black we have the convergence estimate (6.13) for fast approxi-
mants.

Some numerical results are shown in Figure 2. We observe that standard and
fast LS-Padé approximants achieve a similar accuracy for a fixed numerator degree,
even though the fast approximant requires the computation of N fewer derivatives
of the solution map. Moreover, if we compare the error that the two approximants
deliver with the same amount of information (i.e., with the same E), we can verify
that the fast LS-Padé approximant leads to uniformly better results, which, in turn,
are comparable to those obtained with a standard approximant relying on N more
derivatives of the solution map.

The error convergence in z = 9 and z = 11 with respect to M is shown in
Figure 3. The two types of LS-Padé approximants yield similar errors, and we can
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Figure 4. Convergence plot for the error in the approximation
of the two closest poles of the solution map with respect to the
number of computed derivatives. The results for standard LS-Padé
approximants are in blue, whereas those for fast approximants are
in red. In black we have the a priori convergence estimate (5.13).

verify that the convergence rate (6.13) holds true for both. Several numerical tests
with different values of ρ ∈ {0.1RK , RK , 10RK} have shown no evident dependence
of the standard LS-Padé approximation error (or of its convergence rate) on ρ, as
(3.7) could have led us to believe.

Finally, we wish to check how accurate the two LS-Padé approximants are in the
approximation of the poles of the solution map. To this aim, we compare the roots
of the denominator Q[M/N ] ∈ P

z0
2 (C) of each approximant with the exact poles λ1

and λ2. The results with respect to E are shown in Figure 4. For each pole, the
two types of LS-Padé approximants seem to yield the same exponential decay. In
particular, the closest pole λ1 is approximated better than λ2, and its error decays
at a faster rate, as expected from Theorem 5.5, whose theoretical convergence
rate (5.13) can be observed. Comparing the two approximation kinds, it can be
observed that, for fixed E, the error obtained with fast LS-Padé approximants is
always smaller than the one achieved with standard approximants.

9. Conclusions

In this paper, we have considered Hilbert space-valued meromorphic functions
arising from solution maps of parametric PDEs with the eigenproblem-like struc-
ture (2.4), where L is an operator with normal and compact resolvent. We have
proposed a rational model order reduction approach, based on single-point Least-
Squares Padé approximants, relying on the computation of the coefficients of the
truncated Taylor series of the target function S at a single fixed point. The proposed
approach improves, in terms of computational cost and convergence properties, the
one introduced in [6], which, on the other hand, is not restricted to the case of
normal operators.

Assuming the degree N of the denominator of the approximant to be constant,
an exponential convergence rate with respect to the number of derivatives has been
proven for the error in the approximation of the target map, for values of the
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parameter within a disk centered at z0 and encompassing N poles of S, with the
exception of a set of arbitrarily small measure. A more general convergence result in
measure, namely Theorem 6.3, has also been derived under milder conditions on the
approximant type [M/N ], including, in particular, para-diagonal approximations of
type [M/M ] and [M/M + 1] with M → ∞.

Moreover, it has been proven that the poles of the target function are approxi-
mated with arbitrary precision by the roots of the Padé denominator, as the number
of derivatives increases. In particular, an exponential convergence rate of the poles
is achieved if the degree of the denominator is constant.

We believe that the description of the implementation aspects of the technique
we propose has justified the word “fast” in the title of this work, since Krylov-based
methods (in particular an Arnoldi-type algorithm, for stability purposes) can be
applied to achieve a very efficient model order reduction approach.

Modifications of fast LS-Padé approximants allowing snapshots of the Taylor
coefficients of S to be taken at several points in the parameter domain are under
investigation, in the spirit of rational interpolants, on the approximation theory
side, and of Reduced Basis approaches, on the model order reduction side.
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