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Abstract. The RKFIT algorithm outlined in [M. Berljafa and S. Güttel, SIAM J. Matrix
Anal. Appl., 36 (2015), pp. 894–916] is a Krylov-based approach for solving nonlinear rational least
squares problems. This paper puts RKFIT into a general framework, allowing for its extension to
nondiagonal rational approximants and a family of approximants sharing a common denominator.
Furthermore, we derive a strategy for the degree reduction of the approximants, as well as methods
for their conversion to partial fraction form, for the efficient evaluation, and for root-finding. We
also discuss similarities and differences between RKFIT and the popular vector fitting algorithm. A
MATLAB implementation of RKFIT is provided, and numerical experiments, including the fitting of
a multiple-input/multiple-output (MIMO) dynamical system and an optimization problem related
to exponential integration, demonstrate its applicability.
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1. Introduction. Rational approximation problems arise in many areas of engi-
neering and scientific computing. A prominent example is that of system identification
and model order reduction, where calculated or measured frequency responses of dy-
namical systems are approximated by (low-order) rational functions [20, 26, 2, 23, 19].
Some other areas where rational approximants play an important role are analog filter
design [7], time stepping methods [43], transparent boundary conditions [28, 17], and
iterative methods in numerical linear algebra (see, e.g., [32, 42, 18, 27, 33]). Here we
focus on discrete rational approximation in the least squares (LS) sense.

In its simplest form the weighted rational LS problem is the following: given
data pairs {(λi, fi)}Ni=1 with pairwise distinct λi, and positive weights {wi}Ni=1, find a
rational function r of type (m,m), that is, numerator and denominator of degree at
most m, such that

(1.1)
N∑

i=1

wi|fi − r(λi)|2 → min.

The weights can be used to assign varying relevance to the data points. For example,
when the function values fi are known to be perturbed by white Gaussian noise, then
the wi can be chosen inversely proportional to the variance.

Even in their simplest form (1.1), rational LS problems are challenging. Find-
ing a rational function r = pm/qm in (1.1) corresponds to a nonlinear minimization
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A2050 MARIO BERLJAFA AND STEFAN GÜTTEL

problem, as the denominator qm is generally unknown, and solutions may depend dis-
continuously on the data, be nonunique, or even nonexistent. An illustrative example
inspired by Braess [10, p. 109] is to take fixed m ≥ 1 and N > 2m and let

(1.2) λi =
i− 1
N

and fi =

{
1 if i = 1,
0 if 2 ≤ i ≤ N.

Then the sequence of rational functions rj(z) = 1/(1 + jz) makes the misfit for (1.1)
arbitrarily small as j → ∞, but the fi do not correspond to values of a type (m,m)
rational function (there are too many roots). Hence a rational LS solution does not
exist. If, however, the data fi are slightly perturbed to f̂i = rj(λi) for an arbitrarily
large j, then of course rj itself is an LS solution to (1.1).

A very common approach for solving (1.1) approximately is linearization. Con-
sider again the data (1.2) and the problem of finding polynomials pm and qm of degree
at most m such that

(1.3)
N∑

i=1

wi|fiqm(λi)− pm(λi)|2 → min.

This problem has a trivial solution with qm ≡ 0, and to exclude it we need some nor-
malization like, for example, a “pointwise” condition qm(0) = 1. Under this condition
the linear problem (1.3) is guaranteed to have a nontrivial solution (pm, qm), but the
solution is clearly not unique; since fi = 0 for i ≥ 2, any admissible denominator poly-
nomial qm with qm(0) = 1 corresponds to a minimal solution with pm 6≡ 0. On the
other hand, for the normalization condition qm(1) = 1, the polynomials qm(z) = z and
pm ≡ 0 solve (1.3) with zero misfit. This example shows that linearized rational LS
problems can have nonunique solutions, and these may depend on normalization con-
ditions. With both normalization conditions, the rational function r = pm/qm with
(pm, qm) obtained from solving the linearized problem (1.3) may yield an arbitrarily
large (or even infinite) misfit for the nonlinear problem (1.1).

The pitfalls of nonlinear and linearized rational approximation problems have not
prevented the development of algorithms for their solution. An interesting overview
of algorithms for the nonlinear problem based on repeated linearization, such as
Wittmeyer’s algorithm, is given in [3]. Robust solution methods for the linearized
problem using regularized SVD are discussed in [22, 21].

The aim of this paper is to present and analyze an extension of the RKFIT
algorithm initially outlined in [6]. RKFIT is an iterative method for solving rational
LS problems more general than (1.1). For given matrices {A,F} ⊂ CN×N and a
vector b ∈ CN , RKFIT attempts to find a rational function r such that

(1.4) ‖Fb − r(A)b‖22 → min.

Note that this problem contains (1.1) as a special case with F = diag(fi), A =
diag(λi), b = [

√
w1 . . .

√
wN ]T . For RKFIT the matrices A and F are not required

to be diagonal. In many applications F is a matrix function of A or an approximation
thereof, i.e., F = f(A) or F ≈ f(A).

A main contribution of this work compared to [6] is the extension of RKFIT to
nondiagonal approximants, i.e., allowing one to compute rational functions of the
general type (m + k,m) with k ≥ −m. Further, we extend RKFIT to rational ap-
proximation problems involving a family of matrices {F [j]}`j=1 ⊂ CN×N and a block
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THE RKFIT ALGORITHM A2051

of vectors B = [b1 . . . bn] ∈ CN×n. More precisely, we seek a family of rational
functions {r[j]}`j=1 of type (m + k,m), all sharing a common denominator qm, such
that the relative misfit is minimal, i.e.,

(1.5) misfit =

√√√√
∑`
j=1 ‖D

[j][F [j]B − r[j](A)B]‖2F∑`
j=1 ‖D

[j]F [j]B‖2F
→ min.

The matrices F [j] may, for instance, correspond to values of a parameter-dependent
matrix function like F [j] = exp(−tjA), and in section 6 we consider an application of
such a problem. The matrices D[j] act as elementwise weights, whereas the vectors in
B can be viewed as spectral weights relative to the eigenpairs of A.

To summarize our terminology, here is a list of the data in problem (1.5):

A : interpolation node matrix of size N ×N ,
F [j] : interpolation data matrices of size N ×N ,
D[j] : elementwise weight matrices of size N ×N ,
B : block of spectral weight vectors, an N × n matrix,
r[j] : rational functions sharing the same denominator qm,

(m+ k,m) : type of the rational functions r[j] with k ≥ −m.

We show how rational Krylov techniques can be used to tackle problems of the
form (1.5). The outgrowth of this work is a new MATLAB implementation of RKFIT,
which is part of the Rational Krylov Toolbox [5] available online.1 One particularity
of RKFIT is its ease of use. For example, with ` = 1 and the matrices A, F, B and a
vector of initial poles xi being defined in MATLAB, the user simply calls

[xi, r, misfit] = rkfit(F, A, B, xi)

to obtain a rational function r represented as a MATLAB object of class RKFUN,
which stands for rational Krylov function. The toolbox implements several RKFUN
methods, for example, the evaluation of r at scalar arguments or as a matrix function;
the commands r(z) and r(A,B) evaluate r(z) and r(A)B, respectively (where A and
B can be different from the matrices used for the construction of r). The conversion
of an RKFUN to partial fraction form (the residue command), root-finding (roots),
or easy-to-use plotting (ezplot) are provided as well. The use of the MATLAB
object-oriented programming capabilities for these purposes is inspired by the Chebfun
system [14].

Alongside the extension of RKFIT to nondiagonal approximants in section 2,
another contribution of this paper is Theorem 2.2, which shows that RKFIT solves
(1.4) exactly if F is a rational matrix function of type (m + k,m). In section 3 we
propose a procedure for automatically decreasing the degree parameters m and k,
thereby reducing possible deficiencies in the rational approximants. That section also
contains Theorem 3.1, which relates the roots of an RKFUN to the eigenvalues of a
matrix pencil. Based on this theorem, we present a new procedure to obtain good
starting guesses for RKFIT after a degree reduction has been performed.

We point out that initially, in sections 2 and 3, we only consider problem (1.4),
which is a special case of (1.5) for a single rational function (` = 1) and a single

1See http://rktoolbox.org.
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A2052 MARIO BERLJAFA AND STEFAN GÜTTEL

vector B = b (n = 1). The generalization to the full problem (1.5) is discussed
in section 4. In section 5 we develop a new approach for the efficient evaluation
of the RKFUNs produced by RKFIT. We also show how to compute the roots of
RKFUNs and how to convert them into partial fraction form. Numerical examples are
given in section 6, including the fitting of a multiple-input/multiple-output (MIMO)
dynamical system and a new pole optimization approach for exponential integration.
An appendix discusses the connections of RKFIT and other approximation algorithms,
in particular, the popular vector fitting (VFIT) method [26].

2. The RKFIT algorithm. The nondiagonal version of the RKFIT algorithm
considered here aims to find a rational function r = pm+k/qm of type (m + k,m)
which solves problem (1.4). As the denominator qm is not known and (1.4) depends
nonlinearly on it, RKFIT tries to iteratively improve a starting guess for qm by solving
a linearized problem at each iteration. Once a satisfactory qm is obtained, the linear
part pm+k is easily found.

The method is succinctly described in Algorithm 2.1. Different from the basic
version presented in [6], it makes use of two linear spaces in CN , a search space S
and a target space T , both of which are (rational) Krylov spaces. Given a matrix
A ∈ CN×N , a (so-called) starting vector b ∈ CN , an integer m ≥ 0, and a nonzero
polynomial qm ∈ Pm with roots disjoint from the spectrum of A, we define the
associated rational Krylov space of order m as

Qm+1(A, b, qm) := {pm(A)qm(A)−1b : pm ∈ Pm}.

The roots of qm are called poles of the rational Krylov space, and they are denoted by
ξ1, ξ2, . . . , ξm. For convenience, we sometimes refer to qm itself as poles of the rational
Krylov space. If deg(qm) < m, then m − deg(qm) of the poles are set to ∞, and we
refer to them as formal (multiple) roots of qm. If all poles are set to∞, we obtain the
(polynomial) Krylov space Km+1(A, b) := {pm(A)b : pm ∈ Pm} as a special case of
a rational Krylov space. The smallest integer m such that Km(A, b) = Km+1(A, b) is
denoted by M ≡M(A, b) and called the invariance index of (A, b).

Algorithm 2.1. High-level description of RKFIT. RKToolbox [5]: rkfit
1. Take initial guess for qm.
2. repeat
3. Set search space S := Qm+1(A, b, qm).
4. Set target space T := Km+k+1(A, qm(A)−1b).
5. Find v̂ = argmin v∈S

‖v‖2=1
‖ (I − PT )Fv‖2.

6. Let q̂m ∈ Pm be such that v̂ = q̂m(A)qm(A)−1b.
7. Set qm := q̂m.
8. until stopping criteria is satisfied.
9. Construct wanted rational approximant r.

By PT in line 5 of Algorithm 2.1 we denote the orthogonal projection onto T . The
essence of Algorithm 2.1 is the relocation of poles in line 7. Since with any polynomial
q̂m ∈ Pm we can associate a vector v̂ = q̂m(A)qm(A)−1b ∈ S, and the other way
around, we may identify q̂m, the improvement of qm, by looking for the corresponding
vector v̂ ∈ S. Theorem 2.2 below, a consequence of Lemma 2.1, provides insight into
the RKFIT pole relocation, i.e., lines 5–7 of Algorithm 2.1.

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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THE RKFIT ALGORITHM A2053

Lemma 2.1. Let qm, q
?
m ∈ Pm be nonzero polynomials with roots disjoint from the

spectrum of A ∈ CN×N . Fix −m ≤ k ∈ Z, and let b ∈ CN be such that 2m + k <
M(A, b). Assume that F = p?m+k(A)q?m(A)−1 for some p?m+k ∈ Pm+k. Define S and
T as in lines 3 and 4 of Algorithm 2.1, respectively, and let V̂m+1 be an orthonormal
basis of S. Then the matrix (I−PT )FV̂m+1 has a nullspace of dimension ∆m+1 if and
only if ∆m is the largest integer such that p?m+k/q

?
m is of type (m+k−∆m,m−∆m).

Proof. Let v̂ = p̂m(A)qm(A)−1b ∈ S, with p̂m ∈ Pm being arbitrary. Then

F v̂ = p?m+k(A)q?m(A)−1p̂m(A)qm(A)−1b =: p2m+k(A)q?m(A)−1qm(A)−1b

has a unique representation in terms of p2m+k/(q
?
mqm) since 2m + k < M . Assume

that F v̂ ∈ T . In this case we also have the representation F v̂ = p̃m+k(A)qm(A)−1b,
with a uniquely determined p̃m+k ∈ Pm+k. By the uniqueness of the rational rep-
resentations we conclude that p2m+k/(q

?
mqm) = p̃m+k/qm or, equivalently, that q?m

divides p2m+k = p?m+kp̂m. Hence, the poles of p?m+k−∆m/q
?
m−∆m ≡ p?m+k/q

?
m must

be roots of p̂m. The other ∆m roots of p̂m can be chosen freely, giving rise to the
(∆m+ 1)-dimensional subspace

(2.1) N :=
{
p∆m(A)q?m−∆m(A)qm(A)−1b

∣∣∣ p∆m ∈ P∆m

}
⊆ S,

whose elements v̂ are such that F v̂ ∈ T . Hence, ∆m + 1 is the dimension of the
nullspace of (I − PT )FV̂m+1.

Theorem 2.2. Let qm, q
?
m, F,A, b,m, k,S, and T be as defined in Lemma 2.1.

Then p?m+k and q?m are coprime and either deg(p?m+k) = m + k or deg(q?m) = m if
and only if Fv ∈ T is solved uniquely (up to scaling) by v ∈ S. This solution is given
by v? = γq?m(A)qm(A)−1b with some nonzero scaling factor γ ∈ C.

The theorem asserts that if Fb = pm+k(A)q?m(A)−1b and ∆m = 0, then the
“roots” of v? = γq?m(A)qm(A)−1b match the unknown poles q?m, and the next ap-
proximate poles become qm := q?m. Hence RKFIT identifies the exact poles within
one iteration independently of the starting guess qm. If ∆m > 0, the exact m−∆m
poles are also found, but additional ∆m superfluous poles at arbitrary locations are
present as well. In section 3 we develop a procedure for automatically reducing the
denominator degree m by ∆m and adapting k. Comments regarding the convergence
of RKFIT when dealing with noisy data (and roundoff) or when Fb cannot be ex-
actly represented as r(A)b for a rational function r of type (m + k,m) are included
in section A.5 of the appendix.

In the remaining part of this section we discuss line-by-line how Algorithm 2.1
can be implemented using rational Krylov techniques. These considerations are also
important for developments in the forthcoming sections.
• Line 3: An orthonormal basis V̂m+1 ∈ CN×(m+1) for the search space S =
R(V̂m+1) can be obtained with the rational Arnoldi algorithm which, given A, b
and qm, constructs a decomposition of the form

(2.2) AV̂m+1K̂m = V̂m+1Ĥm,

where (Ĥm, K̂m) is an (m + 1) ×m upper-Hessenberg pencil satisfying |ĥj+1,j | +
|k̂j+1,j | 6= 0 for j = 1, . . . ,m and with {ĥj+1,j/k̂j+1,j}mj=1 being the (formal) roots
of qm, i.e., the poles of the rational Krylov space S. A decomposition of the form
(2.2) is called a rational Arnoldi decomposition (RAD). For details of the rational
Arnoldi algorithm and properties of RADs we refer the reader to [4, 6, 35, 37, 38].

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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A2054 MARIO BERLJAFA AND STEFAN GÜTTEL

• Line 4: Since T = Qm+k+1(A, b, qm), we can compute an orthonormal basis
Vm+k+1 for T using once again the rational Arnoldi algorithm. A computationally
more economic alternative is to reuse (2.2). Indeed, if k = 0, we simply have T = S.
Otherwise, S has to be either expanded (if k > 0) or compressed (if k < 0) to get T :
– In the case of superdiagonal approximants (k > 0), T = Qm+k+1(A, b, qm) is

the rational Krylov space of dimension m + k + 1 with m poles being the roots
of qm and additional k poles at infinity. In order to get an orthonormal basis
for Qm+k+1(A, b, qm), we expand (2.2) into AVm+k+1Km+k = Vm+k+1Hm+k by
performing k additional polynomial steps with the rational Krylov algorithm.
Let us, for convenience, label by Vm+k+1 := V̂m+k+1 the orthonormal basis for
T when k ≥ 0. Thus, PT = Vm+k+1V

∗
m+k+1.

– In the subdiagonal case (k < 0), the target space is T = Km+k+1(A, qm(A)−1b).
Note that Qm+1(A, b, qm) = Km+1(A, qm(A)−1b). Therefore, we aim at trans-
forming the RAD (2.2) for Qm+1(A, b, qm) into an RAD

(2.3) AVm+1Km = Vm+1Hm

for Km+1(A, qm(A)−1b). An orthonormal basis for T is then given by truncat-
ing Vm+1 to Vm+k+1, the first m + k + 1 columns of Vm+1. Using a sequence
of Givens rotations in a QZ fashion (as explained in [39, p. 495] or [4, sec-
tion 5.2]), we get unitary matrices Qm+1 and Zm such that Km = Q∗m+1K̂mZm

is upper-triangular and Hm = Q∗m+1ĤmZm is upper-Hessenberg. Fittingly,
the poles hj+1,j/kj+1,j of (2.3) with Vm+1 = V̂m+1Qm+1 are all at infinity.
Hence R(Vj+1) = Kj+1(A, qm(A)−1b) for j = 0, 1, . . . ,m, and we can set PT =
Vm+k+1V

∗
m+k+1.

• Line 5: Defining the matrix

(2.4) S = FV̂m+1 − Vm+k+1

(
V ∗m+k+1FV̂m+1

)
∈ CN×(m+1),

a solution is given by v̂ = V̂m+1ĉ, where ĉ is a right singular vector of S corre-
sponding to a smallest singular value σmin.

• Lines 6–7: What we need in line 3 as input for the rational Arnoldi algorithm are
the poles of the rational Krylov space that is being constructed, that is, the roots
of q̂m. Let Qm+1 be unitary with first column Qm+1e1 = ĉ; then the roots of q̂m
are the eigenvalues of the m×m pencil

(2.5)
([

0 Im
]
Q∗m+1Ĥm,

[
0 Im

]
Q∗m+1K̂m

)

(see [6, section 5] for details).
• Line 9: The approximant r of type (m+ k,m) is computed by LS approximation

of Fb from the target rational Krylov space T . More precisely, if Vm+k+1 is an
orthonormal basis for T , then the approximant r is represented by a coefficient
vector c ∈ Cm+k+1 such that r(A)b = ‖b‖2Vm+k+1c. The coefficient vector is
given by

(2.6) c = V ∗m+k+1
(
Fb
)
/‖b‖2.

Computing the coefficient vector c at each iteration does not significantly increase
the computational complexity because Fb needs to be computed only once. The
availability of c also enables the cheap evaluation of the relative misfit (1.5), which
allows us to stop the RKFIT iteration when a desired tolerance εtol is achieved.

c© 2017 SIAM. Published by SIAM under the terms of the Creative Commons 4.0 license
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THE RKFIT ALGORITHM A2055

3. Tuning degree parameters m and k. In some applications, one may want
to construct a rational function of sufficiently small misfit without knowing the re-
quired degree parameters m and k in advance. In such situations one can try to fit
the data with high enough (for instance, the maximal one is willing to use) degree
parameters and then, after RKFIT has found a sufficiently good approximant, reduce
m and k without deteriorating much the approximation accuracy. In this section we
present a strategy for performing this reduction.

We assume to have at hand an (m + k,m) approximant r such that ‖Fb −
r(A)b‖2 ≤ ‖Fb‖2εtol. We then propose the following three-step procedure. (1)
Reduce m to m − ∆m ≥ 0, with ∆m such that m − ∆m + k ≥ 0. (2) Find a
lower-degree approximant of type (m−∆m+ k,m−∆m). (3) Reduce k if required.
These steps are discussed in the following three subsections for the case that F is a
rational matrix function, while in subsection 3.4 we provide a numerical illustration.
In subsection 3.5 we discuss the case when F is not a rational matrix function. This
is followed by another numerical illustration in subsection 3.6.

3.1. Reducing the denominator degree m. Assume that F is a rational
matrix function. Our reduction procedure for m is based on Lemma 2.1, which asserts
that a defect ∆m + 1 of the matrix S = (I − PT )FV̂m+1 corresponds to F being of
type (m − ∆m + k,m − ∆m). Due to numerical roundoff, the numerical rank of S
related to a given tolerance ‖Fb‖2εtol (with, e.g., εtol = 10−15) is computed. More
precisely, we reduce m by the largest integer ∆m ≤ min{m,m+ k} such that

(3.1) σm+1−∆m ≤ ‖Fb‖2εtol,
where σ1 ≥ · · · ≥ σm+1 are the singular values of S.

3.2. Finding a lower-degree approximant. If ∆m ≥ 1, then m needs to
be reduced, and a new approximant of lower numerator and denominator degree is
required. As seen in the proof of Lemma 2.1, the ∆m+1 linearly independent vectors
spanning N all share as the greatest common divisor (GCD) the polynomial q?m−∆m,
and its roots should be used as poles of the reduced-degree rational approximant. The
following theorem shows how these roots can be obtained from the pencil (Ĥm, K̂m)
in (2.2).

Theorem 3.1. Let (2.2) be an RAD for Qm+1(A, b, qm) with m+ 1 < M(A, b),
and let the rj ≡ V̂m+1cj for j = 1, . . . ,∆m + 1 be linearly independent. Assume
that the numerators of rj share as GCD a polynomial of degree m − ∆m. Let X ∈
C(m+1)×(m+1) be a nonsingular matrix with Xej = cj for j = 1, . . . ,∆m+1. Introduce

K̂? =
[
O Im−∆m

]
X−1K̂m

[
O

Im−∆m

]
, Ĥ? =

[
O Im−∆m

]
X−1Ĥm

[
O

Im−∆m

]
.

Assume further that K̂? is nonsingular. Then the roots of the GCD are the eigenvalues
of the (m−∆m)× (m−∆m) generalized eigenproblem (Ĥ?, K̂?).

Proof. We transform the RAD (2.2) into AVm+1Km = Vm+1Hm, where Vm+1 =
V̂m+1X, Km = X−1K̂mY , and Hm = X−1ĤmY , and with Y = blkdiag(I∆m,K?)

−1.
Written in scalar form, we hence have for all z ∈ C the relation

zr(z)Km = r(z)Hm ⇐⇒ r(z)
(
zKm −Hm

)
= 0T ,

where r(z) = [r1(z) . . . r∆m+1(z) r∆m+2(z) . . . rm+1(z)]. Introduce K? and
H? as the bottom-right (m−∆m)×(m−∆m) submatrices ofKm andHm, respectively.
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A2056 MARIO BERLJAFA AND STEFAN GÜTTEL

Since Λ(Ĥ?, K̂?) = Λ(H?,K?), we need only show that Λ(H?,K?) are the roots of the
GCD.

Let λ be a common root of {rj}∆m+1
j=1 . Then the last m − ∆m columns of

r(λ)(λKm − Hm) = 0T assert that λ is a generalized eigenvalue of (H?,K?) with
left eigenvector r?(λ)∗ = [r∆m+2(λ) . . . rm+1(λ)]∗ 6= 0. This handles simple roots.

Let us now assume that λ is a root of multiplicity 2. Note that K? = Im−∆m.
Differentiating the scalar RAD with respect to λ gives

r ′(λ)
(
λKm −Hm

)
+ r(λ)Km = 0T ⇐⇒ r ′(λ)

(
λKm −Hm

)
= −r(λ)Km.

The last m−∆m columns in the latter relation give

r ′?(λ)
(
λK? −H?

)
= −r?(λ)K? = −r?(λ) 6= 0T .

In particular r ′?(λ) 6= 0T . Further r ′?(λ)
(
λK? − H?

)2 = −r?(λ)
(
λK? − H?

)
= 0T .

Hence r ′?(λ) is a generalized eigenvector for the eigenvalue λ of (H?,K?), which is
hence of multiplicity two or greater. The proof for roots of higher multiplicity follows
the same argument.

Remark 3.2. The assumption that K? is nonsingular is used in the proof of The-
orem 3.1 for the case of repeated roots only. We conjecture that this assumption can
be removed also when there are multiple roots, and that it follows from the fact that
the numerators of {rj}∆m+1

j=1 have as GCD a polynomial of degree m−∆m.

3.3. Numerator degree-revealing basis. We now assume that the denomi-
nator degree m := m − ∆m has already been reduced and a new approximant r of
type (m + k,m) such that ‖Fb − r(A)b‖2 ≤ ‖Fb‖2εtol has been found. Reducing
the numerator degree is a linear problem, and we can guarantee that the misfit stays
below εtol after the reduction.

Let T = Km+k+1(A, qm(A)−1b) be the final target space such that r(A)b ∈ T ,
and let Vj be an orthonormal basis for Kj(A, qm(A)−1b) for j = 1, . . . ,m + k + 1.
As the vectors in Vj have ascending numerator degree, this basis reveals the degree
of r(A)b by looking at the trailing expansion coefficients c ∈ Cm+k+1 satisfying
r(A)b/‖b‖2 = Vm+k+1c.

Introduce c−i = [O Ii]c ∈ Ci for i = 1, . . . ,m+ k. By the triangle inequality,
∥∥∥∥Fb/‖b‖2 − Vm+k+1c + Vm+k+1

[
0

c−i

] ∥∥∥∥
2
≤
∥∥∥Fb/‖b‖2 − Vm+k+1c

∥∥∥
2

+
∥∥∥∥
[

0
c−i

] ∥∥∥∥
2
.

The degree of the numerator of r can therefore be reduced to m+ k−∆k, where ∆k
is the maximal integer 1 ≤ i ≤ m+ k such that

(3.2) ‖c−i‖2 ≤ ‖Fb‖2εtol − ‖Fb − r(A)b‖2,

or ∆k = 0 if such an integer i does not exist. The last ∆k components of c may hence
be truncated, giving c∆ ∈ Cm+k−∆k+1 such that r∆ ≡ Vm+k−∆k+1c∆ still satisfies
‖Fb − r∆(A)b‖2 ≤ ‖Fb‖2εtol.

3.4. Example: Degree reduction for a rational matrix function. In Fig-
ure 3.1 we report some results for the degree reduction procedure when fitting Fb,
where F = A(A+I)−1(A+3I)−2, A = tridiag(−1, 2,−1) ∈ RN×N , and b = e1 ∈ RN ,
with N = 150. Note that F is of type (1, 3). The initial poles of the search space are
all at infinity.
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0 1 2 3 4 5 6 7 8 9
2
3
4
5
6
7
8
9

m + k
m




2.5 × 10−02

−1.3 × 10−03

−4.6 × 10−03

6.0 × 10−04

4.5 × 10−18

1.8 × 10−18




︸ ︷︷ ︸
cQ




1.9 × 10−02

1.7 × 10−02

−5.7 × 10−17

1.5 × 10−17

4.5 × 10−18

1.8 × 10−18




︸ ︷︷ ︸
cK

4

11

1

3

2

5
6
7

Fig. 3.1. Degree reduction when fitting a rational matrix function; see section 3.4.

The table on the left shows the number ∆m+1 of singular values of (I−PT )FV̂m+1

below the tolerance ‖Fb‖2εtol = 10−15 for different choices of m and k. For the choice
(m + k,m) = (3, 9), for instance, we obtain ∆m = 2, and hence the reduced type is
(1, 7). In this case m is not fully reduced because k was chosen too small. For the
choice (m + k,m) = (8, 6) we obtain ∆m = 3, giving the reduced type (5, 3). The
roots of the GCD are −1 and −3 ± i2.32 × 10−7. With these three finite poles and
another two poles at infinity, the type (5, 3) approximant r produces a relative misfit
7.02×10−17. The expansion coefficients cQ of r in the orthonormal rational basis are
listed to the right of the table. They indicate that the last two poles at infinity are
actually superfluous, and r is of type at most (3, 3). Only the expansion of r in the
orthonormal polynomial basis, as explained in subsection 3.3, reveals that r is of type
(1, 3). The coefficients cK in this polynomial basis are also given.

3.5. General F . The following lemma extends Lemma 2.1 to the case when F
is not necessarily a rational matrix function.

Lemma 3.3. Let qm, A, b,m, k,S, T , and V̂m+1 be as in Lemma 2.1. Assume that
for F ∈ CN×N we have found a rational approximant r = pm+k/qm of type (m+k,m)
such that ‖Fb − r(A)b‖2 ≤ ‖Fb‖2εtol. If the matrix (I − PT )FV̂m+1 has ∆m + 1
singular values smaller than ‖Fb‖2εtol, then there exists a (∆m + 1)-dimensional
subspace Ng ⊆ S, containing b, such that

min
p∈Pm+k

∥∥F v̂ − p(A)qm(A)−1b
∥∥

2 ≤ ‖Fb‖2εtol

for all v̂ ∈ Ng, ‖v‖2 = 1.

Proof. Consider a thin SVD of the matrix (I − PT )FV̂m+1 = UΣW ∗, where
Σ = diag(σ1, . . . , σm+1) ∈ R(m+1)×(m+1) and σm+1 ≤ · · · ≤ σm−∆m ≤ ‖Fb‖2εtol by
assumption. Equivalently, (I − PT )FV̂m+1W = UΣ. Then the final ∆m+ 1 columns
of V̂m+1W form a basis for Ng. It follows from the assumption ‖Fb − r(A)b‖2 ≤
‖Fb‖2εtol that b ∈ Ng.

Recall that if F is a rational matrix function, then the space Ng defined in
Lemma 3.3 corresponds to the exact nullspace N = K∆m+1(A, q?m−∆m(A)qm(A)−1b)
defined in (2.1), where the (numerators of the) rational functions share as GCD the
polynomial q?m−∆m. In the general case Ng is only a subspace of the larger rational
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3 4 5 6 7 8 9 10 11 12
2
3
4
5
6
7
8
9
10
11

m + k

m

11

1
2

3
4

4

4

5

5
6
7
8

3 4 5 6 7 8 9 10 11 12
2
3
4
5
6
7
8
9
10
11

m + k

m 0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0
0

0
0
0
0
1
0
1

0
0
0
0
0
1
0

0
0
0
0
0
0
1

0
0
0
0
0
0
0

Fig. 3.2. Degree reduction when fitting a nonrational matrix function; see section 3.6.

Krylov space S, and the rational functions present in Ng do not necessarily share
a common denominator. However, for every v̂ = p̂m(A)qm(A)−1b ∈ Ng the vector
F p̂m(A)qm(A)−1b is well approximated in the 2-norm by some vector p(A)qm(A)−1b,
with p ∈ Pm+k. This suggests that the polynomials p̂m corresponding to vectors
v̂ ∈ Ng share an approximate GCD (see, e.g., [8]) whose roots approximate the poles
of a “good” rational approximation r(A)b for Fb. We therefore propose to use the
same reduction procedure as suggested by Theorem 3.1.

As there is no guarantee that after reduction RKFIT will be able to find an
approximant of relative misfit below εtol, the use of a safety parameter εsafe is rec-
ommended. More precisely, we reduce m by the largest integer ∆m ≤ min{m,m+k}
such that

(3.3) σm+1−∆m ≤ ‖Fb‖2εtolεsafe,

where σ1 ≥ · · · ≥ σm+1 are the singular values of S. By default we use εsafe = 0.1.

3.6. Example: Degree reduction for a nonrational matrix function.
Figure 3.2 illustrates our reduction strategy for the function F =

√
A+A2, where

A = tridiag(−1, 2,−1) ∈ RN×N and N = 150. The vector b is chosen as b = e1. The
poles of the search space are obtained after three RKFIT iterations with all initial
poles at infinity.

The table on the left shows the number ∆m+1 of singular values of (I−PT )FV̂m+1

below ‖Fb‖2εtolεsafe = 10−5 for different choices of m and k. For the choice (m +
k,m) = (9, 10) we obtain ∆m = 4, implying the reduced type (5, 6). The choice
(m + k,m) = (11, 6) is reduced down to (9, 4) as ∆m = 2. Representing this new
approximant in the numerator degree-revealing basis allows for a further reduction to
type (5, 4). The table on the right visualizes how many RKFIT iterations are required
after reduction to reobtain an approximant of misfit below εtol = 10−4, using the
approximate GCD strategy for selecting the poles for the restart of RKFIT. Note that
in most instances the misfit remains acceptable after the reduction, while otherwise
only one further RKFIT iteration is needed to obtain an acceptable approximation.
This shows the benefit of the developed reduction strategy. (Another example is given
in section 6.1.)
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THE RKFIT ALGORITHM A2059

4. Extensions. In this section we discuss extensions of RKFIT for solving prob-
lems of the more general form (1.5).

4.1. Family of rational functions. In order to tackle the more general prob-
lem (1.5) of finding a family {r[j]}`j=1 of rational functions with a common denomina-
tor, we only need to modify line 5 in Algorithm 2.1 to

5. Find v̂ = argmin v∈S
‖v‖2=1

∑`
j=1 ‖D

[j] (I − PT )F [j]v‖22.

Once again, a solution is v̂ = V̂m+1ĉ, where ĉ is a right singular vector corresponding
to a smallest singular value of the matrix

S = [ST1 ST2 . . . ST` ]T ∈ CN`×(m+1), where(4.1)

Sj = D[j]
[
F [j]V̂m+1 − Vm+k+1

(
V ∗m+k+1F

[j]V̂m+1

)]
∈ CN×(m+1).(4.2)

The ` rational approximants {r[j]}`j=1 may be represented by the coefficient vectors

(4.3) c[j] =
(
D[j]Vm+k+1

)†(
D[j]F [j]b

)
/‖b‖2,

which reduces to c[j] = V ∗m+k+1
(
F [j]b

)
/‖b‖2 if D[j] = IN . The remaining parts of

RKFIT, with the exception of the degree-reducing strategy, are unaffected. In order
to make sure that all of {r[j]}`j=1 share the same denominator, the reduction of m
should be based on the singular values of S, and not the individual Sj . The numerator
reduction can be performed for each r[j] individually.

4.2. Block case. Let us consider the case B = [b1 . . . bn] ∈ CN×n with
n > 1. Introduce the Nn×Nn matrices

(4.4) D [j] = In ⊗D[j], F [j] = In ⊗ F [j], and A = In ⊗A,
where In ⊗X = blkdiag(X, . . . ,X). Since

‖D[j][F [j]B − r[j](A)B]‖2F = ‖D [j][F [j]vec(B)− r[j](A)vec(B)]‖22,
we recover the single-column case n = 1 considered so far, with b = vec(B).

Our implementation [5] supports the case n > 1 and takes advantage of the
structure present in (4.4) so that only {D[j], F [j]}`j=1 and A are stored, while D [j],F [j],
and A are never constructed explicitly. In fact, D[j], F [j], and A are not explicitly
needed either, as all that is required is the ability to compute D[j]x , F [j]x , Ax for
arbitrary x ∈ CN , as well as the ability to solve shifted linear systems (A− ξI)x = v .

4.3. Avoiding complex arithmetic. If {D[j], F [j]}`j=1, A, and B are real-
valued and the set of starting poles {ξj}mj=1 is closed under complex conjugation,
we can use the “real version” of the rational Arnoldi algorithm and avoid complex
arithmetic; see [36]. The matrix S in (4.1) is guaranteed to be real-valued, and
the generalized eigenproblem (2.5) is real-valued as well. This guarantees that the
relocated poles appear in complex-conjugate pairs. For more details we refer the
reader to [4, section 6.1.4].

5. Working with rational functions. After the RKFIT algorithm has termi-
nated, a rational function r of type (m+ k,m) is represented by the pencil (Hd,Kd),
satisfying AVd+1Kd = Vd+1Hd with d := max{m,m + k}, and with the coefficients
c = V ∗d+1Fb/‖b‖2. We now show how to perform computations with such an RKFUN
representation r ≡ (Hd,Kd, c).
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5.1. Evaluation. We consider the evaluation r(Â)b̂, where Â ∈ CN̂×N̂ and
b̂ ∈ CN̂ . For this we require that Λ(Â) does not contain any of the poles ξ1, . . . , ξm of
r. Note that Â and b̂ may be different from A and b used to obtain r. Indeed, they
may be of different dimensions as well. For example, if N̂ = 1 and b̂ = 1, we retrieve
the scalar evaluation r(z). Derivatives of r can be evaluated by using a Jordan block
for Â. For example, if Â = [ λ 1

0 λ ] and b̂ = [0 1]T , then r(Â)b̂ = [r′(λ) r(λ)]T .
The pencil (Hd,Kd) encodes recurrence relations for orthogonal rational functions

r1, r2, . . . , rd+1 such that rj(A)b/‖b‖2 = vj , the jth column of Vd+1; see [6]. In this
notation, we have r =

∑d+1
j=1 cjrj , where c = [c1 c2 . . . cd+1]T . This suggests a

two-step procedure for computing r(Â)b̂. First, we construct Wd+1 ∈ CN×(d+1) so
that rj(Â)b̂ = Wd+1ej , and second, we form r(Â)b̂ = Wd+1c.

Let us elaborate on the first part. We need to form an RAD-like decomposition

(5.1) ÂWd+1Kd = Wd+1Hd

by rerunning the rational Arnoldi algorithm with the starting vector Wd+1e1 = b̂.
Note that (5.1) is equivalent to

(ρÂ− ηI)Wd+1(νHd − µKd) = (νÂ− µI)Wd+1(ρHd − ηKd)

for any scalars µ, ν, ρ, η ∈ C such that µρ 6= νη. By taking µ/ν ≡ hj+1,j/kj+1,j , we
can compute

Wd+1ej+1 ≡ wj+1 = γ−1
j

[
(νÂ− µI)−1(ρÂ− ηI)Wj(νhj − µkj)−Wj(ρhj − ηkj)

]
,

where γj = ρhj+1,j − ηkj+1j for j = 1, 2, . . . , d.
We have overloaded the feval function in MATLAB for RKFUN objects to im-

plement this evaluation procedure. The function can be invoked by typing either
feval(r, A, b) or r(A, b).

5.2. Root-finding. For finding the roots of r, we recall that r(A)b/‖b‖2 =
Vd+1c = pd(A)qm(A)−1b. Let us assume that c 6= e1; otherwise r(A)b = c1b, i.e., r
has no roots. Define P = Im+1 − 2uu∗, where u = (γc − e1)/‖γc − e1‖2 and γ ∈ C
is a unimodular scalar such that γe∗1c is real and nonnegative. It follows from [6,
Theorem 4.4] that the roots of pd are the eigenvalues of the d× d pencil

([
0 Id

]
PHd,

[
0 Id

]
PKd

)
.

If k < 0, then among the d eigenvalues there are −k infinite eigenvalues, or numeri-
cally, eigenvalues of large modulus. In our implementation roots of the RKToolbox [5]
we hence sort the roots by their magnitudes and return only the m+ k smallest ones.

5.3. Conversion to partial fraction form. Here we only consider the case
k ≤ 0, i.e., d = m, and pairwise distinct finite poles ξ1, . . . , ξm; generalizations are
discussed in section 7. The conversion of a type (m + k,m) rational function r into
partial fraction form can be achieved by transforming the RADAVm+1Km = Vm+1Hm

in such a way that it reveals the residues. We aim to transform the latter RAD into

(5.2) AWm+1




0
1

1
. . .

1




= Wm+1




1 1 · · · 1
ξ1

ξ2
. . .

ξm



,
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THE RKFIT ALGORITHM A2061

Algorithm 5.1. Conversion to partial fraction form. RKToolbox [5]: residue
Input: Upper-Hessenberg pencil (Hm,Km) with finite distinct poles.
Output: Invertible matrices Lm+1 and Rm representing the conversion.

1. Set Rm = ([0 Im]Km)−1, Hm := HmRm, and Km := KmRm.
2. Set Lm+1 = blkdiag(1, Q−1

m ), where [0 Im]HmQm = Qmdiag(ξ1, . . . , ξm).
3. Update Rm := RmQm, Hm := Lm+1HmQm, and Km := Lm+1KmQm.
4. Introduce Dm+1 = [−e1 Km].
5. Update Lm+1 := Dm+1Lm+1, Hm := Dm+1Hm, and Km := Dm+1Km.
6. Update Rm := RmDm, Hm := HmDm, Km := KmDm, where Dm = diag(1/h1j).
7. Redefine Dm := diag(1/kj+1,j) and Dm+1 := blkdiag(1, Dm).
8. Update Lm+1 := Dm+1Lm+1, Hm := Dm+1Hm, and Km := Dm+1Km.

where Wm+1e1 = v1. One then easily verifies that the columns of Wm+1 satisfy
wj+1 = (A− ξj)−1v1. This conversion is achieved via left- and right-multiplication of
the pencil (Hm,Km) by invertible matrices given in Algorithm 5.1.

The algorithm consists of four parts. The first corresponds to lines 1–3, and
it transforms the pencil so that the lower m × m part matches that of (5.2). The
matrix [0 Im]Km is invertible since it is upper-triangular with no zero elements on
the diagonal (there are no infinite poles), and hence Rm is well defined in line 1. The
second part corresponds to lines 4–5, and it zeroes the first row in Km. The third
part, line 6, takes care of the first row in Hm, setting all its elements to one. After this
transformation, as the fourth part, we rescale [0 Im]Km in lines 7–8 to recover Im.

The process corresponds to transforming the original Hm and Km as Hm :=
Lm+1HmRm and Km := Lm+1KmRm, and the rational Krylov basis Vm+1 is trans-
formed accordingly asWm+1 = Vm+1L

−1
m+1. Given a coefficient representation r(A)b =

‖b‖2Vm+1cm+1 in the basis Vm+1, we arrive at the partial fraction expansion

r(A)b = ‖b‖Wm+1dm+1 = d0b +
m∑

j=1

dj(A− ξjI)−1b,

with residues dm+1 = Lm+1cm+1 = [d0 d1 . . . dm]T .
The transformation of Vm+1 into the partial fraction basis Wm+1 has condition

number cond(Lm+1), which can be arbitrarily bad, in particular if some of the poles
ξj are close together. Our implementation residue in the RKToolbox [5] therefore
supports the use of the MATLAB variable precision arithmetic as well as the use of
the Advanpix Multiprecision Toolbox [1].

6. Numerical experiments. In the following we demonstrate RKFIT with nu-
merical experiments. MATLAB files for reproducing these experiments are part of
the RKToolbox [5], among other examples (including those in [6]). Additionally, an
RKFIT-based method for computing perfectly matched layers for Helmholtz problems
on nonhomogeneous media has been developed and tested in [17].

6.1. MIMO dynamical system. We consider a model for the transfer func-
tion of the MIMO system ISS 1R taken from [11]. There are three input and three
output channels, giving ` = 9 functions to be fitted. We use N = 2 × 561 sam-
pling points λj given in [11], appearing in complex-conjugate pairs on the range
±i[10−2, 103]. The data are closed under complex conjugation, and hence we can
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(c) Selecting poles during the reduction.

0 2 4 6 8 10 12
iteration

100

10−1

10−2

10−3

10−4

m
is

fit

RKFIT
VFIT
VFIT relaxed
εtol

(d) Comparison between RKFIT and VFIT.

Fig. 6.1. Low-order model approximation to the MIMO system ISS from [11]. The frequency
responses are plotted in (a). In (b) the progress of RKFIT is given for m = 70 infinite starting poles.
At iteration 4 the degree reduction takes place. The 70 poles after convergence and 54 selected ones
(for the case when stability of poles is enforced) are illustrated in (c). Plot (d) presents a comparison
with VFIT when searching for (55, 56) approximants and using two different starting guesses. More
details are given in section 6.1.

work with block-diagonal real-valued matrices A and {F [j]}`j=1 as explained in sec-
tion 4.3. The magnitudes of the ` = 9 transfer functions to be fitted are plotted in
Figure 6.1(a).

For the first experiment we try to find rational functions of type (70, 70) and
then reduce their degrees. A tolerance of εtol = 10−3 is used. In Figure 6.1(b) two
convergence curves are shown, one for RKFIT as described in the previous sections
(solid line), and the other for an RKFIT variant that enforces the poles to be stable
(dashed line). A pole ξ ∈ C is stable if its real part is nonpositive, i.e., <(ξ) ≤ 0,
and this is enforced in the pole relocation step by simply flipping the real parts of the
poles if necessary. At convergence the poles happen to be stable in both cases. The
initial poles were all placed at infinity, and the misfit at iteration 0 corresponds to
these initial poles. Both RKFIT variants achieve a misfit below εtol at iteration 4,
after which the degree reduction discussed in section 3 takes place. The denominator
degree m = 70 is reduced to m − ∆m = 56 without stability enforcement, and to
m−∆ms = 54 with stability enforcement. For the latter case, the 70 poles obtained
after the fourth iteration and the 54 poles corresponding to the approximate GCD
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THE RKFIT ALGORITHM A2063

are plotted in Figure 6.1(c). The misfit achieved to the new 56 (respectively, 54)
poles corresponds to iteration 5. As this misfit is still below εtol, no further RKFIT
iterations are required.

For the second experiment we compare RKFIT with the vector fitting code VFIT
[13, 24, 26] for two different choices of initial poles, and with different normalization
conditions for VFIT. (We briefly review VFIT in subsection A.2 of the appendix.)
The results are reported in Figure 6.1(d). Here we search for type (m− 1,m) approx-
imants with m = 56, do not enforce the poles to be stable, and do not perform any
further degree reductions. The solid convergence curves are obtained with initial poles
of the form −ξ/100± iξ, with the ξ being logarithmically spaced on [10−2, 103]. This
is regarded as a good initial guess in the literature. The dashed curves result when
using as initial poles the eigenvalues of a real random matrix. In both cases RKFIT
outperforms VFIT, independently of the normalization condition used by VFIT. De-
pending on the 56 initial poles, RKFIT requires either 4 or 6 iterations. This has to
be compared to Figure 6.1(b), where the 56 poles selected by our reduction strategy
immediately gave a misfit below εtol so that no further iterations were required. This
validates our approximate GCD strategy for choosing the poles after degree reduction.

6.2. Pole optimization for exponential integration. Let us consider the
problem of solving a linear constant-coefficient initial-value problem

Ku ′(t) + Lu(t) = 0, u(0) = u0,

at several time points t1, . . . , t`. Problems like this arise, for example, after space-
discretization of parabolic PDEs via finite differences or finite elements, in which
case K and L are large sparse matrices. Assuming that K is invertible, the exact
solutions u(tj) are given as u(tj) = exp(−tjK−1L)u0, and a popular approach for
approximating u(tj) is to use rational functions r[j] of the form

r[j](z) =
σ

[j]
1

ξ1 − z
+

σ
[j]
2

ξ2 − z
+ · · ·+ σ[j]

m

ξm − z
,

constructed so that r[j](K−1L)u0 ≈ u(tj). Note that the poles of r[j] do not depend
on tj and we have

r[j](K−1L)u0 =
m∑

i=1

σ
[j]
i (ξiK − L)−1Ku0,

the evaluation of which amounts to the solution of m decoupled linear systems. Such
fixed-pole approximants have great computational advantage, in particular in combi-
nation with direct solvers (the LU factorization of ξiK−L can be used for all tj) and
on parallel computers.

The correct design of the pole-residue pairs (ξi, σ
[j]
i ) is closely related to the

scalar rational approximation of e−tz, a problem which has received considerable
attention in the literature [34, 32, 42, 18, 9]. Let us assume L is Hermitian positive
semidefinite, and K is Hermitian positive definite, and let us define the vector K-norm
as ‖v‖K =

√
v∗Kv . Then

‖ exp(−tjK−1L)b − r[j](K−1L)b‖K ≤ ‖b‖K max
λ∈Λ(L,K)

|e−tjλ − r[j](λ)|

≤ ‖b‖K max
λ≥0
|e−tjλ − r[j](λ)|,(6.1)
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A2064 MARIO BERLJAFA AND STEFAN GÜTTEL

with Λ(L,K) denoting the set of generalized eigenvalues of (L,K).
In order to use RKFIT for finding poles ξ1, . . . , ξm of the rational functions r[j]

such that the right-hand side (6.1) of the inequality is small for all j = 1, . . . , `, we
propose a surrogate approach similar to that in [9]. Let A = diag(λ1, . . . , λN ) be a
diagonal matrix with “sufficiently dense” eigenvalues on λ ≥ 0. In this example we
take N = 500 logspaced eigenvalues on the interval [10−6, 106]. Further, we define
` = 41 logspaced time points tj on the interval [10−1, 101], and the matrices F [j] =
exp(−tjA). We also define b = [1 . . . 1]T to assign equal weight to each eigenvalue
of A and then run RKFIT for finding a family of type (m − 1,m) rational functions
r[j] with m = 12 so that

absmisfit =
∑̀

j=1

‖F [j]b − r[j](A)b‖22

is minimized. Note that

absmisfit ≥
∑̀

j=1

‖F [j]b − r[j](A)b‖2∞ =
∑̀

j=1

(
max
λ∈Λ(A)

|e−tjλ − r[j](λ)|
)2
,

and hence a small misfit implies that all r[j] are accurate uniform approximants for
e−tjλ on the eigenvalues Λ(A). If these eigenvalues are dense enough on λ ≥ 0, one
can expect the upper error bound (6.1) to be tight.

Figure 6.2(a) shows the convergence of RKFIT, starting from an initial guess of
m = 12 poles at infinity (iteration 0 corresponds to the absolute misfit of the linearized
rational approximation problem). We find that RKFIT attains its smallest absolute
misfit of ≈ 3.44× 10−3 after 6 iterations. From iteration 7 onwards the misfit slightly
oscillates about the stagnation level. To evaluate the quality of the common-pole
rational approximants for all ` = 41 time points tj , we perform an experiment similar
to that in [42, Figure 6.1] by approximating u(tj) = exp(−tjL)u0 and comparing
the result to the MATLAB function expm. Here, L ∈ R2401×2401 is a finite-difference
discretization of the scaled 2D Laplace operator −0.02∆ on the domain [−1, 1]2 with
homogeneous Dirichlet boundary condition, and u0 corresponds to the discretization
of u0(x, y) = (1 − x2)(1 − y2)ex on that domain. Figure 6.2(b) shows the error
‖u(tj)−r[j](L)u0‖2 for each time point tj (solid curve with circles), together with the
approximate upper error bound ‖ exp(−tjA)b − r[j](A)b‖∞ (dotted curve). We see
that the error is approximately uniform and smaller than 6.21× 10−5 over the whole
time interval [10−1, 101]. The m = 12 poles of the rational functions r[j] are shown in
Figure 6.2(c) (circles).

Another approach for obtaining a family of rational approximants is to use contour
integration [42]. Applying an m-point quadrature rule to the Cauchy integral

e−tjz =
1

2πi

∫

Γ

e−tjξ

ξ − z dξ ≈
m∑

i=1

σ
[j]
i

ξi − z
=: r̃[j](z)

on a contour Γ enclosing the positive real axis, one obtains a family of rational func-
tions r̃[j] whose poles are the quadrature points ξi ∈ Γ and whose residuals σ[j]

i depend
on tj . As has already been pointed out in [42], such quadrature-based approximants
tend to be good only for a small range of parameters tj . In Figure 6.2(b) we see that
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(c) Poles from the two approaches.

m error bound

4 5.71 × 10−02 7.35 × 10−02

8 1.72 × 10−03 4.89 × 10−03

12 6.21 × 10−05 2.47 × 10−04

16 5.94 × 10−06 1.41 × 10−05

20 3.23 × 10−07 7.98 × 10−07

24 9.53 × 10−09 6.62 × 10−08

28 4.54 × 10−10 4.76 × 10−09

32 2.64 × 10−11 2.44 × 10−10

(d) Quality of RKFIT as m increases.

Fig. 6.2. Approximating exp(−tL)u0 for a range of parameters t with rational approximants
sharing common poles. The convergence behavior of RKFIT, for approximants of type (11, 12), is
shown in (a). In (b) we show the approximation error for ` = 41 logspaced time points t ∈ [0.1, 10]
for RKFIT (solid curve with circles) and the contour-based approach (dashed curve with diamonds).
The errors of the RKFIT surrogate approximants are also indicated (these are approximate upper
error bounds for the RKFIT approximants). In (c) we show the pole locations of the two families
of rational approximants in the complex plane. The small rectangle shows a five-fold magnifica-
tion of the RKFIT poles near the origin. The table in (d) shows the maximal RKFIT error and
the approximate upper error bound, uniformly over all time points tj ∈ [10−1

, 101], for various
degrees m.

the error ‖u(tj) − r̃[j](L)u0‖2 increases very rapidly away from t = 1 (dashed curve
with diamonds). We have used the same degree parameter m = 12 as above, and the
poles of the r̃[j], which all lie on a parabolic contour [42, formula (3.1)], are shown in
Figure 6.2(c) (diamonds).

We believe that RKFIT may be a valuable tool for designing efficient exponential
integrators based on partial fractions or rational Krylov techniques (see, e.g., [18,
9]). The table in Figure 6.2(d) shows that very high accuracies can be achieved
with a relatively small degree parameter m. It is also straightforward to incorporate
weight matrices D[j] depending on tj , which may be useful for minimizing the relative
approximation error uniformly over a time interval, instead of the absolute error as
in this example.
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A2066 MARIO BERLJAFA AND STEFAN GÜTTEL

7. Summary and future work. We have presented an extension of the RKFIT
algorithm to more general rational approximation problems, along with other improve-
ments concerning the evaluation and transformation of the underlying rational func-
tions, as well as root-finding. A main feature of the new RKFIT implementation is
its automated degree reduction.

In future work we plan to investigate more closely the relation of our degree re-
duction procedure to the problem of finding an approximate polynomial GCD [8]. We
would also like to extend the partial fraction conversion to the case of repeated poles
(both finite and infinite), which then amounts to bringing the lower m×m part of the
pencil to Jordan canonical form instead of diagonal form. Such transformation raises
the problem of deciding when nearby poles should be treated as a single Jordan block.
A stable algorithm for computing a “numerical Jordan form” has been discussed in
[29].

The automated degree reduction opens the possibility for “Chebfun-like com-
puting” [14] with rational functions, e.g., allowing for summation, multiplication, or
differentiation of rational functions, followed by a degree truncation of the resulting
rational function. However, rational functions are generally more difficult to deal with
than polynomials as, for example, integration is not a closed operation: the integral
of a rational function may contain logarithmic terms.

Other interesting problems include the extension of RKFIT to rational block-
Krylov spaces, with the potential of solving tangential interpolation problems (see,
e.g., [19]), and the application of RKFIT for constructing rational filter functions.

Appendix A. Relations to iterative reweighting and VFIT. Here we con-
sider scalar rational approximation problems like the one encountered in the intro-
duction. In our discussion we refrain from using weights, set ` = 1, and fix the type
of the rational approximant to (m − 1,m) for the sake of simplicity only. Hence, we
consider the following problem: given data {(λi, fi)}Ni=1 with pairwise distinct λi, find
a rational function r of type (m− 1,m) such that

(A.1)
N∑

i=1

|fi − r(λi)|2 → min.

A popular approach for solving problems of this form, introduced in [26] and designed
to fit frequency response measurements of dynamical systems, is VFIT.

As already observed in [6], numerical experiments indicate that RKFIT performs
more robustly than VFIT. The main goal of this section is to clarify the differences
and similarities between the two methods. In section A.1 we briefly review the pre-
decessors of VFIT, followed by a derivation of VFIT in section A.2. In section A.3
we reformulate VFIT in the spirit of RKFIT in order to compare the two methods.
Other aspects of VFIT, applicable to RKFIT as well, are discussed in section A.4.

A.1. Iteratively reweighted linearization. The first attempt to solve the
nonlinear problem (A.1) was through linearization [31]. Let us write r = pm−1/qm
with pm−1 ∈ Pm−1 and qm ∈ Pm. Then the relation

N∑

i=1

|fi − r(λi)|2 =
N∑

i=1

|fiqm(λi)− pm−1(λi)|2

|qm(λi)|2

inspired Levy [31] to replace (A.1) with the problem of finding pm−1(z) =
∑m−1
j=0 αjz

j

and qm(z) = 1 +
∑m
j=1 βjz

j such that
∑N
i=1 |fiqm(λi) − pm−1(λi)|2 is minimal. The
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THE RKFIT ALGORITHM A2067

latter problem is linear in the unknowns {αj−1, βj}mj=1 and hence straightforward to
solve. However, as qm may vary substantially in magnitude over the nodes λi, the
solution r = pm−1/qm may be a poor approximation to a solution of (A.1).

As a remedy, Sanathanan and Koerner [40] suggested replacing the nonlinear
problem (A.1) with a sequence of linear problems. Once the linearized problem∑N
i=1 |fiqm(λi) − pm−1(λi)|2 → min has been solved, one can set q̂m := qm and

solve a reweighted linear problem
∑N
i=1

|fiqm(λi)−pm−1(λi)|2

|q̂m(λi)|2
→ min. This process can

be iterated until a satisfactory approximation has been obtained or a maximal number
of iterations has been performed.

A.2. VFIT. VFIT is a reformulation of the Sanathanan–Koerner algorithm,
where the polynomials pm−1 and qm are not expanded in the monomial basis, but
in a Lagrange basis written in barycentric form. Similarly to RKFIT, in VFIT one
starts with an initial guess qm of degree m for the denominator, but here with pairwise
distinct finite roots {ξj}mj=1 ∩ {λi}Ni=1 = ∅, and iteratively tries to improve it as
follows. Write again r = pm−1/qm with pm−1 and qm being unknown. Then r can be
represented in barycentric form with interpolation nodes {ξj}mj=1:

(A.2) r(z) =
pm−1(z)
qm(z)

=
pm−1/q̂m(z)
qm(z)/q̂m(z)

=

∑m
j=1

ϕj

z−ξj

1 +
∑m
j=1

ψj

z−ξj

.

The coefficients ϕj and ψj are the unknowns to be determined. Once found, we use
them to detect better interpolation nodes for the barycentric representation, and it is
hoped that by iterating the process, those will ultimately converge to the poles of an
(approximate) minimizer r.

The linearized version of (A.2) reads

(A.3) r(z)
(

1 +
m∑

j=1

ψj
z − ξj

)
=

m∑

j=1

ϕj
z − ξj

.

Inserting z = λi and replacing r(λi) with fi in (A.3) for i = 1, . . . , N gives a linear
system of equations

(A.4)




1
λ1−ξ1 . . . 1

λ1−ξm

−f1
λ1−ξ1 . . . −f1

λ1−ξm

...
...

...
...

1
λN−ξ1 . . . 1

λN−ξm

−fN

λN−ξ1 . . . −fN

λN−ξm



[
ϕ
ψ

]
= f ,

which is solved in the LS sense. Afterwards, the poles {ξj}mj=1 are replaced by the roots
of the denominator 1 +

∑m
j=1

ψj

z−ξj
. Iterating this process gives the VFIT algorithm.

The reweighting as in the Sanathanan–Koerner algorithm is implicitly achieved in
VFIT through the change of interpolation nodes for the barycentric representation.

A.3. On the normalization condition. Although different approaches are
used, both mathematically and numerically, RKFIT and VFIT are similar. However,
there is a considerable difference in the way the poles are relocated. Let us introduce

Cm+1 =




1 1
λ1−ξ1 . . . 1

λ1−ξm

...
...

...
1 1

λN−ξ1 . . . 1
λN−ξm


 , F =



f1

. . .
fN


 ,
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A2068 MARIO BERLJAFA AND STEFAN GÜTTEL

and Ĉm = Cm+1
[
0 Im

]T . We now rewrite (A.4) in the equivalent form

(A.5)
[
Ĉm −FCm+1

]


ϕ
ψ0
ψ


 = 0,

with ψ0 = 1. For any fixed ψ ∈ Cm, solving (A.5) for ϕ ∈ Cm subject to ψ0 = 1 in
the LS sense is equivalent to solving Ĉmϕ = FCm+1[1 ψT ]T in the LS sense. Under
the (reasonable) assumption that Ĉm ∈ CN×m is of full column rank with m ≤ N ,
the unique solution is given by ϕ = Ĉ†mFCm+1[1 ψT ]T .

Therefore, when solving (A.4) in VFIT, one gets r = p̂m/qm

q̂m/qm
, where q̂m(z)/qm(z) =

1 +
∑m
j=1

ψj

z−ξj
and p̂m(z)/qm(z) =

∑m
j=1

ϕj

z−ξj
is the projection of f q̂m/qm onto

the target space, with f being defined on the discrete set of interpolation nodes as
f(λi) = fi and the target space being represented by Ĉm.

Both VFIT and RKFIT solve an LS problem at each iteration, with the projec-
tion space represented in the partial fraction basis (VFIT) or via discrete-orthogonal
rational functions (RKFIT). Apart from the potential ill-conditioning of the partial
fraction basis, the main difference between VFIT and RKFIT are the constraints un-
der which the LS problems are solved. The constraint in VFIT is for q̂/q to have a
unit absolute term, ψ0 = 1. This asymptotic requirement degrades the convergence
properties of VFIT, especially when the approximate poles ξj are far from those
of a true minimizer and the nodes λi vary over a large scale of magnitudes. This
was observed in [24], and as a fix the author proposed using instead the condition
<
{∑N

i=1

(∑m
j=1

ψj

λi−ξj
+ψ0

)}
= <

{
Nψ0+

∑m
j=1

(∑N
i=1

1
λi−ξj

)
ψj
}

= N , incorporated
as an additional equation in (A.4). This modification to a global normalization condi-
tion avoids the problems with pointwise normalization conditions exemplified in the in-
troduction. VFIT with this additional constraint is known as relaxed VFIT. The nor-
malization condition in RKFIT is also of global nature, ‖v‖2 = ‖q̂(A)q(A)−1b‖2 = 1;
cf. line 5 in Algorithm 2.1.

A.4. On the choice of basis. In VFIT the approximant is expanded in the
basis of partial fractions which may lead to ill-conditioned linear algebra problems, as
can be anticipated by the appearance of Cauchy-like matrices; cf. (A.4). Orthonormal
vector fitting was proposed as a remedy in [12], where the basis of partial fractions was
replaced by an orthonormal basis. Soon after it was claimed [25] that a numerically
more careful implementation of VFIT is as good as the orthonormal VFIT variant
proposed in [12], and hence the orthonormal VFIT never became a reality.

The problem with the orthonormal VFIT [12] is that the orthonormal basis is
computed by a Gram–Schmidt procedure applied to partial fractions, i.e., an ill-
conditioned basis is transformed into an orthonormal one, and hence ill-conditioned
linear algebra is not avoided. The orthonormal basis in RKFIT is obtained from
successively applying a single partial fraction to the last basis vector, which amounts
to the orthogonalization of a basis with typically lower condition number.

Numerical issues arising in VFIT have been recently discussed and mitigated in
[15, 16]. Our approach avoids these problems altogether.

So far we have assumed the interpolation nodes λi to be given. If they can
be chosen freely, one can choose them as nodes of certain quadrature rules tailored
to the application in the hope of improving both the numerical stability as well as
the approximation quality. This idea is suggested in [15, 16] for the discretized H2
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THE RKFIT ALGORITHM A2069

approximation of transfer function measurements, and it carries over straightforwardly
to RKFIT.

A.5. Convergence. To date, no complete convergence analyses for VFIT and
RKFIT are available. Both algorithms have the property that if a rational function is
fitted with sufficiently many nodes, then in the absence of rounding errors this func-
tion is recovered exactly; see [30, Corollary III.1] and our Theorem 2.2. Some further
work is available for VFIT. In [30, section IV], and subsequently in [41], a degree
m = 2 example is constructed where the VFIT fixed-point iteration is repellent and
hence diverges, independently of the starting guess for the poles. Furthermore, it is
known that VFIT does not necessarily satisfy first-order optimality conditions for the
nonlinear LS problem upon convergence to a fixed point [41]. In our numerical exper-
iments we typically observe that RKFIT reduces the fitting error more efficiently than
VFIT; however, oscillations around a stagnation level may still occur (see, e.g., Fig-
ure 6.2(a)). Furthermore, we observed that for the example specified in [41, Table I],
RKFIT exhibits an oscillatory behavior similar to that of VFIT.

Despite a few constructed examples of nonconvergence, VFIT has been used suc-
cessfully by the IEEE community for various (large-scale) rational fitting problems.
We have argued and demonstrated with (scalar) examples that RKFIT is more ro-
bust and typically converges faster than VFIT. Additionally, unlike VFIT, RKFIT is
equipped with an automated degree reduction procedure. Therefore, we believe that
RKFIT may be a useful algorithm for the IEEE community. For nonscalar approxi-
mation problems where A and F are not necessarily diagonalizable, we are currently
not aware of an algorithm similar to RKFIT.

Acknowledgments. We would like to thank Vladimir Druskin, Zlatko Drmač,
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