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Abstract 

A collocation method for approximating integrals of rapidly oscillatory functions is presented. The method is efficient 
for integrals involving Bessel functions Jv(rx) with large oscillation parameter r, as well as for many other one- and 
multi-dimensional integrals of functions with rapid irregular oscillations. 
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1. Introduction 

In many areas of applied mathematics one encounters the problem of computing rapidly 
oscillatory integrals of the type 

I=flg(x)S(rx)dx , (1.1) 

where S is an oscillatory function, r is a large parameter and a and b are real and finite. 
Approximating I by usual numerical integration algorithms requires many function evaluations of 
9 and S. Sometimes the evaluation of 9 is very expensive, and the computation becomes highly time 
consuming for very large values of r. The methods of Filon [1, 2] and of Longman [4] are best 
appropriate if S is a trigonometric function. An efficient method for integrals of the type 

= ;~ g(x)e iq~x) dx, (1.2) I 

with maxx~ta, b~ {Iq' (X)[} >> (b - a)- 1 is presented in [3]. The present work is a direct extension of the 
method in [3] for the evaluation of integrals with more general oscillatory weights S. The problem 
of computing the integral is replaced by a problem of finding a solution of a system of linear 
ordinary differential equation, with no boundary conditions, and this last problem is efficiently 
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solved by collocation. As in [3], it is shown here that the efficiency of the method does not 
deteriorate as r increases. The particular case of S(x)= J~(rx) is used as an example, and 
a Mathematica program for testing the method for v = 0, 1 is appended. We point out that for this 
class of integrals, of the form S~9(x)J~(rx)dx, there exist other efficient methods [4-8].  The 
collocation method presented here is applicable to a wide class oscillatory integrals with weight 
functions S satisfying certain differential conditions. For example, it is appropriate for computing 
integrals of the form 

f l  g(x) cos (rlx)J~(r2x) dx (1.3) 

for large rl and r2 and integrals involving S(x) = j2(rx) (Examples 2 and 3 in Section 3). Simple 
classification rules for a large class of oscillatory functions S which satisfy the required conditions 
are presented. The real power of the method is for multidimensional integration of rapidly 
oscillatory functions. The extension of the present work to the multidimensional case is straightfor- 
ward, and is a direct extension of two-dimensional method in [3]. 

2. The general scheme 

We consider a general class of rapidly oscillatory integrals of the form 

I =  f~ ft(x)w(x)dx=- f l  ( f  w>(x)dx, (2.1) 

where f(x)=(fl(x), . . . , f , , , (x)) t is an m-vector of non-rapidly oscillatory functions and 
w(x) = (wl (x) .... , w,,(x)) t is an m-vector of linearly independent rapidly oscillatory functions. We 
further assume that{wi}7'= ~ satisfy a system of ordinary differential equation of the form 

w'(x) = A(x)w(x), (2.2) 

where A(x) is an m × m matrix of non-rapidly oscillatory functions. The integrals considered in [3] 
satisfy (2.1)-(2.2) with m = 1, while integrals involving Bessel functions, as S~9(x)J,(rx)dx with 
large r, satisfy (2.1)-(2.2) with m = 2. Following [3], the idea is to approximate the integrand in 
(2.1) by a derivative of a known function. In particular, here we would like to find an m-vector 
function p(x) = ( Pl (x), ... , pro(x))' such that 

(p,w>',~ <f, w>. (2.3) 

Then we would approximate the integral I as 

fS (p, w>'(x) dx = pt(b)w(b) - pt(a)w(a). (2.4) I 

Expanding (2.3), using (2.2), we find out that p(x) should satisfy 

<p,w>' = <if, W> -k- (p ,w '>  = (p ' ,w> q- <p, Aw> = ( p '  q- Atp, w> ~ ( f ,w>.  (2.5) 
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By the linear independence of the functions {w~}i'= 1 it then follows that p should be an approxima- 
tion to a solution of the system of ordinary differential equations 

Lq = q' + Atq = f (2.6) 

By the above assumptions, f and A are not rapidly oscillatory. Therefore, as argued in [3], the 
system (2.6) has a particular solution which is not rapidly oscillatory, and we shall look for an 
approximation to this particular solution by collocation with 'nice' functions, e.g. polynomials. 

For i = 1,.. . ,  m le t  {U(ki)}~= 1 be some linearly independent basis functions on [a, b]. An n-point 
collocation approximation to the solution of (2.6) is defined as p(")(x) = (p]")(x) . . . . .  p~)(x)) t, where 

pl")(x) = ~ c~i)u~i)(x), i =  1 , . . . ,m ,  (2.7) 
k=l  

where the coefficients ~,'") Xm,, t~k ~= 1,k= i are determined by the collocation conditions 

Lpt")(xi) =f(xj) ,  j = 1, . . . ,n,  (2.8) 

where {x j}7= 1 are regularly distributed in [a,b]. Following (2.4) the corresponding n-point 
approximation to the integral (2.1) is given by 

I,, - ( f ' ) (b)) tw(b) - ( f ' ) ( a ) ) tw ( a ) .  (2.9) 

Some guidelines and examples for choosing the basis functions are presented in [3]. In the next 
section we describe in detail the case of integrals involving Bessel functions, including some 
numerical examples. We conclude this section by the following two simple lemmas which are 
helpful for identifying oscillatory weight functions satisfying (2.2). 

Lemma 1. l f  w(x) = (wl(x), . . . ,  win(x)) t satisfies (2.2) and q(x) is a monotone function on [a, b], then 
u(x) = w(q(x)) satisfies 

u'(x) = B(x)u(x) ,  (2.10) 

where B(x) is an m x m matrix o f  non-rapidly oscillatory functions. 

Lemma 2. Let  u (x) = (u 1 (x) . . . .  , uk(x))t satisfy u'(x) = B (x) u(x) and let v(x) = (v 1 (x) , . . . ,  vl(x))t sat- 
isfy v'(x) = C(x)v(x)  with B(x) a k × k matrix and C(x) an I x l  matrix o f  non-rapidly oscillatory 

functions. Then 

w = {ulvj l i  = 1 , . . . , k , j  = 1 .. . .  ,1} 

satisfies w'(x) =- A(x)w(x)  with A(x)  an m x m matrix o f  non-rapidly oscillatory functions, m = kl. 

3. Numerical examples 

In this section we demonstrate the application of the collocation method to three type of 
oscillatory functions. The first is the well-studied case S(x) = Jv(rx), also treated in [4-8].  The 
other two examples are S(x) = JZ~(rx) and S(x) = cos(rlx)Jv(r2x) which seem more complicated to 
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handle. However, as shown below, the collocation method is easily applicable for all these cases, 
and is very efficient. 

Example 1. The computat ion of S~g(x)J~(rx)dx. 
The basis to the treatment of integrals involving 

differential recurrence relations: 
Bessel functions are the following two 

v - 1  
J ~ - l ( x ) -  J ~ - l ( x ) - J ~ ( x ) ,  (3.1) 

x 

3;(x) = J~_ 1 (x) - v_ J,(x),  (3.2) 
x 

It follows that the 2-vector function w(x) = (Jr-~(rx),  J v ( r x ) )  t satisfies (2.2) with 

A = ( (v - r " (3.3) 

For  v = 1 the collocation method is applied for the approximation of integrals of the form 
~ ( f l ( x ) J o ( r x )  + f2 (x ) J l ( x ) )dx .  An n-point approximation was computed by solving the collo- 
cation equations (2.8) with L defined by (2.6) and A given by (3.3) with v = 1. As collocation points 
we chose equidistant points in [a, b], xj = a + [ ( j  - 1)/(n - 1)-] (b - a), j = 1 . . . .  , n, and as basis 
functions we take the polynomials 

a + b )  k-1 
Utki)(x)= X 2 , k =  1 , . . . ,n ,  i =  1,2. 

Table 1 shows the relative errors in n-point approximation to the integral ~2 (x 2 + 1)- 1Jo(rx) dx. 
The results were obtained by the Mathematica program given in the Appendix. The table exhibits 
the fast convergence of the approximation as n increases. It also shows that with the same amount  
of work we can obtain similar relative errors for small and for large oscillation parameter r. 

We remark that for r = 1 similar accuracy can be obtained by using n-point Gauss-quadrature 
rules. For  r --- 1000 however, to achieve the accuracy obtained here with only 9 points, classical 
quadrature rules require ~ 1 0  6 points. 

Table 1 
Relative errors in n-point 
Sx(x2 2 + 1)-lJo(rx)dx 

approximation to 

r n=3  n = 5  n = 9  

1 2.7E - 3 1.7E - 5 2.8E - 9 
10 1.8E - 2 6.4E - 4 7.7E - 8 

100 2.6E - 4 9.1E - 6 4.2E - 9 
1000 6.0E - 4 5.4E - 5 2.2E - 9 



b X Example 2. ~,g( )cos(hx)J,(r2x)dx. 
u(x) = e ir'x satisfies (2.2) with m = 1 and v(x) = (J~_ l ( r 2 x ) ,  J v ( r 2 x ) )  t satisfies (2.2) with A given in 

(3.3). Then, by Lemma 2, an integral of the form (1.3) can be handled by the collocation method 
with m = 2. Explicitly w(x) = elrlx(J~_ l(r2x), J~(r2x)) t satisfies (2.2) with m = 2 and 

A = ( i r l  + ( v - - 1 ) / x  - r 2  ) 
r2  iri -- v/x " (3.4) 

We have applied the collocation method to the integral 

I[rl,r2] = f l  (x2 ÷ l)-lc°s(rlx)J°(rEX)dx 

for several values of r l and r2, using the same basis functions and sets of collocation points as in 
Example 1. In Fig. l, we plot the function for r 1 = 100 and r E = 170. In Table 2 we present the 
relative errors in the collocation approximation. 

Example 3. ~b g(x)j2(rx) dx. 
Applying L e m m a 2  for u(x)=v(x)=(Jv_l(rx),Jv(rx)) t, it follows that w(x)=(J2_l(rx), 

Jv_ l(rx)Jv(rx), j2(rx))t satisfies (2.2) with A(x) being a 3 x 3 matrix. Explicitly here 

A = 

0.06 

0.04 

0,02 

-0.02 

-0.04 

-0.06 

2 ( v - - 1 ) / x  -- 2r 0 I 

r - 1/x --r ) .  

0 2r -- 2v/x 

(3.5) 
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Fig. 1. Plot of the function (.X 2 "4y 1)-  1 COS (lOOx)Jo(17Ox) in [1, 2]. 
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Table 2 
Relative errors in the n-point approximation to I [r l, r2] 

rl,r2 n = 5 n = 9 n = 17 

10,17 2.1E - 4 6.5E - 8 2.9E - 13 
100,170 2.0E - 4 1.1E - 7 2.6E - 12 
1000,1700 9.8E - 7 7.7E - 10 1.9E - 14 

Table 3 
Relative errors in the n-point approximation 
to S 2 J2o(rx)dx 

r n = 3  n = 5  n = 9  

1 3.7E - 3 2.4E - 5 7.2E - 9 
10 9.0E - 3 2.4E - 4 4.2E - 8 

100 2.3E - 3 2.3E - 5 7.8E - 8 
1000 1.8E - 3 1.6E - 4 7.9E - 8 

W e  app l i ed  the  c o l l o c a t i o n  m e t h o d  to  the  c o m p u t a t i o n  o f  j-2 Jg(rx)dx us ing  the  s a m e  bas is  

f u n c t i o n s  a n d  sets o f  c o l l o c a t i o n  p o i n t s  as in E x a m p l e  1. T a b l e  3 dep ic t s  the  re la t ive  e r ro r s  in the  

n - p o i n t  c o l l o c a t i o n  a p p r o x i m a t i o n .  

4. Summary 

A s imple  gene ra l  s c h e m e  for  c o m p u t i n g  r a p i d l y  o s c i l l a t o r y  in tegra l s  is p r e s e n t e d  a n d  tested.  

A l t h o u g h  an  e r r o r  ana lys i s  a n d  e r r o r  e s t i m a t i o n  a re  still miss ing ,  it is s h o w n  t h a t  the  m e t h o d  

h a n d l e s  efficiently qu i t e  c o m p l i c a t e d  o sc i l l a t o ry  in tegrals .  

Appendix 

A Mathematica testing program for  approximating S~ (f(x)Jo(rx) + 9(x)J1 (x))dx 

a = 1; b = 2; r = 100; n = 5; n2 = 2n 

jo I x _ ]  :=  Besse l J  [0, x ] ;  j l  [ x _ ]  :=  B e s s e l J [ 1 ,  x ]  
d = (a + b)/2 + 0 .0000000000001  ( ,  to  a v o i d  0 ^ 0  in u[x ,k]  , )  
u [ x _ , k _ ]  :=  (x - d)^(k - 1); u p r i m e [ x _ , k _ ]  :=  (k - 1)(x - d)^(k - 2) 

f [ x _ ] : =  1 / ( x ^ 2  + 1); O[x-] := 0 
p o i n t  = T a b l e [ a  + ( j  - 1)(b - a)/(n - 1), {j, 1, n} ]  
rhs  = T a b l e [ 0 ,  {j ,  1 , n2} ]  

D o  [ r h s  [ [ i ] ]  = f [ p o i n t [ [ i ] ] ] ,  {i, 1, n} ]  



D. Levin / Journal of Computational and Applied Mathematics 67 (1996) 95-101 101 

DoErhsE[n + i]] = gEPo in t [ [ i ] ] ] ,  {i, 1, n}] 
ma t  = Table[0 ,  {j, 1,n2}, {k, 1,n2}] 
Do  [ m a t  [ [  j, k]]  = upr ime  [poin t  [ [ j ] ] ,  k], { j, 1, n}, {k, 1, n} ] 
D o [ m a t [ [ j , k ] ]  = r u [ p o i n t [ [ j ] ] , k  - n], {j ,  1,n}, {k,n + 1,n2}] 
D o [ m a t [ [ j  + n,k]] = - r u [ p o i n t [ [ j ] ] , k ] ,  { j ,  1,n}, {k, 1,n}] 
D o [ m a t [ [ j  + n, k] ]  = u p r i m e [ p o i n t [ [ j ] ] ,  k - n] - u [ p o i n t [ [ j ] ] ,  k - n ] / p o i n t [ [ j ] ] ,  { j ,  1, n}, 
{k,n + 1,n2}3 
c = LinearSolve [mat ,  rhs]  
approx  = X [ S u m [ c [ [ k ] ] u [ b , k ] ,  {k, 1, n}] jo[rb]  - S u m [ c [ [ k ] ] u [ a , k ] ,  {k, 1, n}] jo[ra]  + 
S u m [ c [ [ n  + k]]u[b ,k] ,  {k, 1,n}] j , [ r b ]  - S u m [ c [ [ n  + k]]u[a ,k] ,  {k, 1,n}] j , [ r a ] ]  
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