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Conservative mechanical systems: Invert initial velocity — same
solution (with inverted direction of motion).
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Figure: The system is invertible
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Reversible Differential Equations

Definition
Let p be an invertible linear transformation in the phase space of

y = f(y). This differential equation and the vector field f are
called p-reversible if

pf(y) =—f(py) forally.
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Satisfied in the mechanical system
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Figure: Reversible vector field
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Figure: Reversible vector field and reversible map
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motivates the following
Definition
A map ®(y) is called p-reversible if
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Example

p(u,v) = (u, —v), — invertion of initial velocity in a mechanical
system

If we just say "reversible”, we mean reversible wrt this p.



Important Example

We often encounter partitioned systems
ij:f(ua V)v V:g(U, V),

where f(u, —v) = —f(u,v) and g(u, —v) = g(u, v).
And p is given by p(u,v) = (u,—v).
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Important Example

We often encounter partitioned systems
ij:f(ua V)v V:g(U, V),

where f(u,—v) = —f(u,v) and g(u, —v) = g(u, v).

And p is given by p(u,v) = (u,—v).

— U= g(u), written as i = v, v = g(u) are reversible.

For scalar u, v: Reversible and cross u-axis twice — periodic
motion.
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Symmetric Numerical Methods

Definition
A numerical one-step method @y, is called symmetric or
time-reversible, if it satisfies

®hod_p=id orequivalently b, =
Recalling the definition of the adjoint method, the condition for

symmetry reads ®;, = O}
— Example: Implicit midpoint rule



Symmetric Methods < Reversible Flows

Theorem (Criterion for Reversibility of the Numerical Flow)

If a numerical method, applied to a p-reversible differential
equation, satisfies

poPr=>_pop (%)

then the numerical flow ®y, is a p-reversible map iff ®y, is a
symmetric method.



Symmetric Methods < Reversible Flows

Theorem (Criterion for Reversibility of the Numerical Flow)

If a numerical method, applied to a p-reversible differential
equation, satisfies

podp=>_pop  (x)

then the numerical flow ®y, is a p-reversible map iff 4, is a
symmetric method.

Compared to the symmetry of the method, (x) is much less
restrictive. It is satisfied by most numerical methods. For example



Methods that satisfy (x)

Runge-Kutta methods (explicit or implicit, also partitioned
ones)

Composition methods ¢ o Wy, if ®f and W, do.

Projection methods on manifolds, if the basic method does
and p maps the manifold unto itself and is an orthogonal
matrix



Symmetric Runge-Kutta Methods

Collocation methods: Symmetric if collocation points are taken
symmetrically around the midpoint of the integration step.
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Theorem (Symmetry of Collocation Methods)

The adjoint method of a collocation method based on ci, ..., cs is

a collocation method based on cf, ..., ck, where

*
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In the case that ¢; = 1 — cs4+1-;Vi, the collocation method is
symmetric.



Theorem (Symmetry of Collocation Methods)

The adjoint method of a collocation method based on ci,...,cs is

*

a collocation method based on cf, ..., c}, where

E
¢ =1—-csp1-i.

In the case that c; =1 — cs11-; Vi, the collocation method is
symmetric.

Figure: Symmetry of collocation methods



Example

The Gauss formulas and the Lobatto IlIA and IlIB formuals are
symmetric integrators

L_v3| 1 1 ¥
2 6 4 6
1 ; 1 3 1
1,¥311, 38 1
2 6 4 6 4
1 1
p 3
1 Vi5 2 VI5 5 VIb
2 10 36 9 15 36 30
1 5 + 15 2 5 V15
2 36 24 G 36 24
1 15 5 15 p 15 5
1,¥15 15 Vi5 2 I 5
2 10 36 30 15 36
5 4 5
18 9 18

Figure: Gauss methods of order 4 and 6



Symmetry for s-stage RK-Methods

Theorem

The adjoint of an s-stage Runge-Kuttag method is again an
s-stage Runge-Kutta method. Its coefficients are given by
a;;‘ = bs+1—j — ds41—is+1—j, b;k = bs+1—i
If
asy1-ist1—j +aj = b Vi, j, (%)

then the Runge Kutta method is symmetric.



Symmetry for s-stage RK-Methods

Theorem

The adjoint of an s-stage Runge-Kuttag method is again an
s-stage Runge-Kutta method. Its coefficients are given by
a;;‘ = bs+1—j — ds41—is+1—j, b;k = bs+1—i
If
asy1-ist1—j +aj = b Vi, j, (%)

then the Runge Kutta method is symmetric.

Explicit Runge-Kutta methods cannot fulfill (x) with i=j and no
explicit Runge-Kutta method is symmetric.



DIRK's

The simplest case of symmetric RK-methods: DIRK's (Diagonally
implicit RK methods) — Non-zero diagonal elements allowed, but
ajj =0 for i > j +1 — Condition for symmetry becomes

ajj=bj=bsy1_j for i>j+1, aj+asti—js+1—j = b;.

Sample Butcher diagram for s=5:

€1 11
Co by age
c3 by by asy
1—co by bo by a4 A

1- (5] f)l ])2 b;; E}Q ass
‘ bl by b;; bg fJ]

with asz3 = b3/2, aga = by — axp,and ass = by — a1



Partitioned Runge-Kutta Methods

Consider the partitioned system

y = f(y,z), z= g(y,z). (*)

A partitioned RK method applied to this system is symmetric only
if both are symmetric ( y = f(y), z = g(z) are special cases of (x)

).



Partitioned Runge-Kutta Methods

Consider the partitioned system

y = f(y,z), z= g(y,z). (*)

A partitioned RK method applied to this system is symmetric only
if both are symmetric ( y = f(y), z = g(z) are special cases of (x)
).

Partitioned RK methods can be symmetric and explicit for
problems of the form

y="1(z), z=gl(y)



Partitioned Runge-Kutta Methods

Consider the partitioned system

y = f(y,z), z= g(y,z). (*)

A partitioned RK method applied to this system is symmetric only
if both are symmetric ( y = f(y), z = g(z) are special cases of (x)
).

Partitioned RK methods can be symmetric and explicit for
problems of the form

y="1(z), z=gl(y)

y = g(y), written y = z, z = g(y), as well as Hamiltonian systems
with separable Hamiltonian H(p, q) = T(p) + V(g) have this
structure.



Stormer /Verlet: symmetric and implicit

Example

Figure: Stérmer/Verlet scheme

Apply thisto y = f(z), z=g(y). We get:

210 = 20+ h/2g(y0)
yi = Yo+ hf(z)
z1 = zip+h/2g(y1)
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