Reversibility and Symmetric Integration

Julian Jordi

19.12.2005

Motivation

Conservative mechanical systems: Invert initial velocity \rightarrow same solution (with inverted direction of motion).

Motivation

Conservative mechanical systems: Invert initial velocity \rightarrow same solution (with inverted direction of motion).

Figure: The system is invertible

Contents

In this talk we will discuss

Contents

In this talk we will discuss

- Reversible differential equations/reversible maps

Contents

In this talk we will discuss

- Reversible differential equations/reversible maps
- Symmetric numerical (one-step) methods

Contents

In this talk we will discuss

- Reversible differential equations/reversible maps
- Symmetric numerical (one-step) methods
- Symmetric Runge-Kutta methods

Reversible Differential Equations

Definition

Let ρ be an invertible linear transformation in the phase space of $\dot{y}=f(y)$. This differential equation and the vector field f are called ρ-reversible if

$$
\rho f(y)=-f(\rho y) \quad \text { for all } y .
$$

Illustration

We need

$$
\rho f(y)=-f(\rho y) \quad \text { for all } y .
$$

Illustration

We need

$$
\rho f(y)=-f(\rho y) \quad \text { for all } y .
$$

Satisfied in the mechanical system

Figure: Reversible vector field

Reversible maps

Notice that for ρ-reversible differential eqns, the flow ϕ_{t} satisfies

$$
\rho \circ \phi_{t}=\phi_{-t} \circ \rho=\phi_{t}^{-1} \circ \rho
$$

Reversible maps

Notice that for ρ-reversible differential eqns, the flow ϕ_{t} satisfies

$$
\rho \circ \phi_{t}=\phi_{-t} \circ \rho=\phi_{t}^{-1} \circ \rho
$$

Figure: Reversible vector field and reversible map

Reversible maps

The equality

$$
\rho \circ \phi_{t}=\phi_{-t} \circ \rho=\phi_{t}^{-1} \circ \rho
$$

motivates the following

Definition

A map $\Phi(y)$ is called ρ-reversible if

$$
\rho \circ \Phi=\Phi^{-1} \circ \rho
$$

Reversible maps

The equality

$$
\rho \circ \phi_{t}=\phi_{-t} \circ \rho=\phi_{t}^{-1} \circ \rho
$$

motivates the following

Definition

A map $\Phi(y)$ is called ρ-reversible if

$$
\rho \circ \Phi=\Phi^{-1} \circ \rho
$$

Example

$\rho(u, v)=(u,-v), \rightarrow$ invertion of initial velocity in a mechanical system

If we just say " reversible", we mean reversible wrt this ρ.

Important Example

We often encounter partitioned systems

$$
\dot{u}=f(u, v), \quad \dot{v}=g(u, v)
$$

where $f(u,-v)=-f(u, v)$ and $g(u,-v)=g(u, v)$.
And ρ is given by $\rho(u, v)=(u,-v)$.

Important Example

We often encounter partitioned systems

$$
\dot{u}=f(u, v), \quad \dot{v}=g(u, v)
$$

where $f(u,-v)=-f(u, v)$ and $g(u,-v)=g(u, v)$.
And ρ is given by $\rho(u, v)=(u,-v)$.
$\rightarrow \ddot{u}=g(u)$, written as $\dot{u}=v, \dot{v}=g(u)$ are reversible.

Important Example

We often encounter partitioned systems

$$
\dot{u}=f(u, v), \quad \dot{v}=g(u, v)
$$

where $f(u,-v)=-f(u, v)$ and $g(u,-v)=g(u, v)$.
And ρ is given by $\rho(u, v)=(u,-v)$.
$\rightarrow \ddot{u}=g(u)$, written as $\dot{u}=v, \dot{v}=g(u)$ are reversible.
For scalar u, v : Reversible and cross u-axis twice \rightarrow periodic motion.

Symmetric Numerical Methods

Definition

A numerical one-step method Φ_{h} is called symmetric or time-reversible, if it satisfies

$$
\Phi_{h} \circ \Phi_{-h}=i d \quad \text { or equivalently } \quad \Phi_{h}=\Phi_{-h}^{-1} .
$$

Symmetric Numerical Methods

Definition

A numerical one-step method Φ_{h} is called symmetric or time-reversible, if it satisfies

$$
\Phi_{h} \circ \Phi_{-h}=i d \quad \text { or equivalently } \quad \Phi_{h}=\Phi_{-h}^{-1}
$$

Recalling the definition of the adjoint method, the condition for symmetry reads $\Phi_{h}=\Phi_{h}^{*}$

Symmetric Numerical Methods

Definition

A numerical one-step method Φ_{h} is called symmetric or time-reversible, if it satisfies

$$
\Phi_{h} \circ \Phi_{-h}=i d \quad \text { or equivalently } \quad \Phi_{h}=\Phi_{-h}^{-1}
$$

Recalling the definition of the adjoint method, the condition for symmetry reads $\Phi_{h}=\Phi_{h}^{*}$
\rightarrow Example: Implicit midpoint rule

Symmetric Methods \leftrightarrow Reversible Flows

Theorem (Criterion for Reversibility of the Numerical Flow)

If a numerical method, applied to a ρ-reversible differential equation, satisfies

$$
\rho \circ \Phi_{h}=\Phi_{-h} \circ \rho \quad(*)
$$

then the numerical flow Φ_{h} is a ρ-reversible map iff Φ_{h} is a symmetric method.

Symmetric Methods \leftrightarrow Reversible Flows

Theorem (Criterion for Reversibility of the Numerical Flow)

If a numerical method, applied to a ρ-reversible differential equation, satisfies

$$
\rho \circ \Phi_{h}=\Phi_{-h} \circ \rho \quad(*)
$$

then the numerical flow Φ_{h} is a ρ-reversible map iff Φ_{h} is a symmetric method.

Compared to the symmetry of the method, $(*)$ is much less restrictive. It is satisfied by most numerical methods. For example

Methods that satisfy (*)

- Runge-Kutta methods (explicit or implicit, also partitioned ones)
- Composition methods $\Phi_{h} \circ \Psi_{h}$, if Φ_{h} and Ψ_{h} do.
- Projection methods on manifolds, if the basic method does and ρ maps the manifold unto itself and is an orthogonal matrix

Symmetric Runge-Kutta Methods

Collocation methods: Symmetric if collocation points are taken symmetrically around the midpoint of the integration step.

Symmetric Runge-Kutta Methods

Collocation methods: Symmetric if collocation points are taken symmetrically around the midpoint of the integration step.

Theorem (Symmetry of Collocation Methods)

The adjoint method of a collocation method based on c_{1}, \ldots, c_{s} is a collocation method based on $c_{1}^{*}, \ldots, c_{s}^{*}$, where

$$
c_{i}^{*}=1-c_{s+1-i} .
$$

In the case that $c_{i}=1-c_{s+1-i} \forall i$, the collocation method is symmetric.

Theorem (Symmetry of Collocation Methods)

The adjoint method of a collocation method based on c_{1}, \ldots, c_{s} is a collocation method based on $c_{1}^{*}, \ldots, c_{s}^{*}$, where

$$
c_{i}^{*}=1-c_{s+1-i}
$$

In the case that $c_{i}=1-c_{s+1-i} \forall i$, the collocation method is symmetric.

Figure: Symmetry of collocation methods

Example

The Gauss formulas and the Lobatto IIIA and IIIB formuals are symmetric integrators

$\frac{1}{2}-\frac{\sqrt{3}}{6}$	$\frac{1}{4}$	$\frac{1}{4}-\frac{\sqrt{3}}{6}$	
$\frac{1}{2}+\frac{\sqrt{3}}{6}$	$\frac{1}{4}+\frac{\sqrt{3}}{6}$	$\frac{1}{4}$	
$\frac{1}{2}-\frac{\sqrt{15}}{10}$	$\frac{5}{36}$	$\frac{2}{9}-\frac{\sqrt{15}}{15}$	$\frac{5}{36}-\frac{\sqrt{15}}{30}$
$\frac{1}{2}$	$\frac{5}{36}+\frac{\sqrt{15}}{24}$	$\frac{2}{9}$	$\frac{5}{36}-\frac{\sqrt{15}}{24}$
$\frac{1}{2}+\frac{\sqrt{15}}{10}$	$\frac{5}{36}+\frac{\sqrt{15}}{30}$	$\frac{2}{9}+\frac{\sqrt{15}}{15}$	$\frac{5}{36}$
	$\frac{5}{18}$	$\frac{4}{9}$	$\frac{5}{18}$

Figure: Gauss methods of order 4 and 6

Symmetry for s-stage RK-Methods

Theorem

The adjoint of an s-stage Runge-Kuttag method is again an s-stage Runge-Kutta method. Its coefficients are given by

$$
a_{i j}^{*}=b_{s+1-j}-a_{s+1-i, s+1-j}, \quad b_{i}^{*}=b_{s+1-i}
$$

If

$$
a_{s+1-i, s+1-j}+a_{i j}=b_{j} \quad \forall i, j, \quad(*)
$$

then the Runge Kutta method is symmetric.

Symmetry for s-stage RK-Methods

Theorem

The adjoint of an s-stage Runge-Kuttag method is again an s-stage Runge-Kutta method. Its coefficients are given by

$$
a_{i j}^{*}=b_{s+1-j}-a_{s+1-i, s+1-j}, \quad b_{i}^{*}=b_{s+1-i}
$$

If

$$
a_{s+1-i, s+1-j}+a_{i j}=b_{j} \quad \forall i, j, \quad(*)
$$

then the Runge Kutta method is symmetric.
Explicit Runge-Kutta methods cannot fulfill ($*$) with $\mathrm{i}=\mathrm{j}$ and no explicit Runge-Kutta method is symmetric.

DIRK's

The simplest case of symmetric RK-methods: DIRK's (Diagonally implicit RK methods) \rightarrow Non-zero diagonal elements allowed, but $a_{i j}=0$ for $i \geq j+1 \rightarrow$ Condition for symmetry becomes

$$
a_{i j}=b_{j}=b_{s+1-j} \quad \text { for } \quad i \geq j+1, \quad a_{j j}+a_{s+1-j, s+1-j}=b_{j}
$$

Sample Butcher diagram for $s=5$:

$$
\begin{array}{c|ccccc}
c_{1} & a_{11} & & & & \\
c_{2} & b_{1} & a_{22} & & & \\
c_{3} & b_{1} & b_{2} & a_{33} & & \\
1-c_{2} & b_{1} & b_{2} & b_{3} & a_{44} & \\
1-c_{1} & b_{1} & b_{2} & b_{3} & b_{2} & a_{55} \\
\hline & b_{1} & b_{2} & b_{3} & b_{2} & b_{1}
\end{array}
$$

with $a_{33}=b_{3} / 2, a_{44}=b_{2}-a_{22}$, and $a_{55}=b_{1}-a_{11}$

Partitioned Runge-Kutta Methods

Consider the partitioned system

$$
\dot{y}=f(y, z), \quad \dot{z}=g(y, z) . \quad(*)
$$

A partitioned RK method applied to this system is symmetric only if both are symmetric $(\dot{y}=f(y), \dot{z}=g(z)$ are special cases of $(*)$).

Partitioned Runge-Kutta Methods

Consider the partitioned system

$$
\dot{y}=f(y, z), \quad \dot{z}=g(y, z) . \quad(*)
$$

A partitioned RK method applied to this system is symmetric only if both are symmetric $(\dot{y}=f(y), \dot{z}=g(z)$ are special cases of $(*)$).
Partitioned RK methods can be symmetric and explicit for problems of the form

$$
\dot{y}=f(z), \quad \dot{z}=g(y)
$$

Partitioned Runge-Kutta Methods

Consider the partitioned system

$$
\dot{y}=f(y, z), \quad \dot{z}=g(y, z) . \quad(*)
$$

A partitioned RK method applied to this system is symmetric only if both are symmetric $(\dot{y}=f(y), \dot{z}=g(z)$ are special cases of $(*)$).
Partitioned RK methods can be symmetric and explicit for problems of the form

$$
\dot{y}=f(z), \quad \dot{z}=g(y)
$$

$\ddot{y}=g(y)$, written $\dot{y}=z, \dot{z}=g(y)$, as well as Hamiltonian systems with separable Hamiltonian $H(p, q)=T(p)+V(q)$ have this structure.

Störmer/Verlet: symmetric and implicit

Example

$$
\left.\begin{array}{c|ccc|cc}
0 & 0 & 0 & 1 / 2 & 1 / 2 & 0 \\
1 & 1 / 2 & 1 / 2 & & 1 / 2 & 1 / 2
\end{array}\right) 0
$$

Figure: Störmer/Verlet scheme

Apply this to $\dot{y}=f(z), \quad \dot{z}=g(y)$. We get:

$$
\begin{aligned}
z_{1 / 2} & =z_{0}+h / 2 g\left(y_{0}\right) \\
y_{1} & =y_{0}+h f\left(z_{1 / 2}\right) \\
z_{1} & =z_{1 / 2}+h / 2 g\left(y_{1}\right)
\end{aligned}
$$

