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Motivation

Conservative mechanical systems: Invert initial velocity → same
solution (with inverted direction of motion).
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Reversible Differential Equations

Definition

Let ρ be an invertible linear transformation in the phase space of
ẏ = f (y). This differential equation and the vector field f are
called ρ-reversible if

ρf (y) = −f (ρy) for all y .



Illustration

We need
ρf (y) = −f (ρy) for all y .

Satisfied in the mechanical system

Figure: Reversible vector field
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Reversible maps

Notice that for ρ-reversible differential eqns, the flow φt satisfies

ρ ◦ φt = φ−t ◦ ρ = φ−1
t ◦ ρ

Figure: Reversible vector field and reversible map
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Reversible maps

The equality
ρ ◦ φt = φ−t ◦ ρ = φ−1

t ◦ ρ

motivates the following

Definition

A map Φ(y) is called ρ-reversible if

ρ ◦ Φ = Φ−1 ◦ ρ

Example

ρ(u, v) = (u,−v), → invertion of initial velocity in a mechanical
system

If we just say ”reversible”, we mean reversible wrt this ρ.
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Important Example

We often encounter partitioned systems

u̇ = f (u, v), v̇ = g(u, v),

where f (u,−v) = −f (u, v) and g(u,−v) = g(u, v).
And ρ is given by ρ(u, v) = (u,−v).

→ ü = g(u), written as u̇ = v , v̇ = g(u) are reversible.
For scalar u, v : Reversible and cross u-axis twice → periodic
motion.
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Symmetric Numerical Methods

Definition

A numerical one-step method Φh is called symmetric or
time-reversible, if it satisfies

Φh ◦ Φ−h = id or equivalently Φh = Φ−1
−h.

Recalling the definition of the adjoint method, the condition for
symmetry reads Φh = Φ∗

h

→ Example: Implicit midpoint rule
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Symmetric Methods ↔ Reversible Flows

Theorem (Criterion for Reversibility of the Numerical Flow)

If a numerical method, applied to a ρ-reversible differential
equation, satisfies

ρ ◦ Φh = Φ−h ◦ ρ (∗)

then the numerical flow Φh is a ρ-reversible map iff Φh is a
symmetric method.

Compared to the symmetry of the method, (∗) is much less
restrictive. It is satisfied by most numerical methods. For example
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Methods that satisfy (∗)

• Runge-Kutta methods (explicit or implicit, also partitioned
ones)

• Composition methods Φh ◦Ψh, if Φh and Ψh do.

• Projection methods on manifolds, if the basic method does
and ρ maps the manifold unto itself and is an orthogonal
matrix

• . . .



Symmetric Runge-Kutta Methods

Collocation methods: Symmetric if collocation points are taken
symmetrically around the midpoint of the integration step.

Theorem (Symmetry of Collocation Methods)

The adjoint method of a collocation method based on c1, . . . , cs is
a collocation method based on c∗1 , . . . , c∗s , where

c∗i = 1− cs+1−i .

In the case that ci = 1− cs+1−i∀i , the collocation method is
symmetric.
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Example

The Gauss formulas and the Lobatto IIIA and IIIB formuals are
symmetric integrators

Figure: Gauss methods of order 4 and 6



Symmetry for s-stage RK-Methods

Theorem

The adjoint of an s-stage Runge-Kuttag method is again an
s-stage Runge-Kutta method. Its coefficients are given by

a∗ij = bs+1−j − as+1−i ,s+1−j , b∗i = bs+1−i

If
as+1−i ,s+1−j + aij = bj ∀i , j , (∗)

then the Runge Kutta method is symmetric.

Explicit Runge-Kutta methods cannot fulfill (∗) with i=j and no
explicit Runge-Kutta method is symmetric.
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DIRK’s

The simplest case of symmetric RK-methods: DIRK’s (Diagonally
implicit RK methods) → Non-zero diagonal elements allowed, but
aij = 0 for i ≥ j + 1 → Condition for symmetry becomes

aij = bj = bs+1−j for i ≥ j + 1, ajj + as+1−j ,s+1−j = bj .

Sample Butcher diagram for s=5:

with a33 = b3/2, a44 = b2 − a22, and a55 = b1 − a11



Partitioned Runge-Kutta Methods

Consider the partitioned system

ẏ = f (y , z), ż = g(y , z). (∗)

A partitioned RK method applied to this system is symmetric only
if both are symmetric ( ẏ = f (y), ż = g(z) are special cases of (∗)
).

Partitioned RK methods can be symmetric and explicit for
problems of the form

ẏ = f (z), ż = g(y).

ÿ = g(y), written ẏ = z , ż = g(y), as well as Hamiltonian systems
with separable Hamiltonian H(p, q) = T (p) + V (q) have this
structure.
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Störmer/Verlet: symmetric and implicit

Example

Figure: Störmer/Verlet scheme

Apply this to ẏ = f (z), ż = g(y). We get:

z1/2 = z0 + h/2g(y0)

y1 = y0 + hf (z1/2)

z1 = z1/2 + h/2g(y1)
















