Reversibility and Symmetric Integration

Julian Jordi

19.12.2005

Motivation

Conservative mechanical systems: Invert initial velocity \rightarrow same solution (with inverted direction of motion).

Motivation

Conservative mechanical systems: Invert initial velocity \rightarrow same solution (with inverted direction of motion).

Figure: The system is invertible

In this talk we will discuss

In this talk we will discuss

• Reversible differential equations/reversible maps

In this talk we will discuss

- Reversible differential equations/reversible maps
- Symmetric numerical (one-step) methods

In this talk we will discuss

- Reversible differential equations/reversible maps
- Symmetric numerical (one-step) methods
- Symmetric Runge-Kutta methods

Reversible Differential Equations

Definition

Let ρ be an invertible linear transformation in the phase space of $\dot{y}=f(y)$. This differential equation and the vector field f are called ρ -reversible if

$$\rho f(y) = -f(\rho y)$$
 for all y .

Illustration

We need

$$\rho f(y) = -f(\rho y)$$
 for all y .

Illustration

We need

$$\rho f(y) = -f(\rho y)$$
 for all y .

Satisfied in the mechanical system

Figure: Reversible vector field

Notice that for ρ -reversible differential eqns, the flow ϕ_t satisfies

$$\rho \circ \phi_t = \phi_{-t} \circ \rho = \phi_t^{-1} \circ \rho$$

Notice that for ρ -reversible differential eqns, the flow ϕ_t satisfies

$$\rho \circ \phi_t = \phi_{-t} \circ \rho = \phi_t^{-1} \circ \rho$$

Figure: Reversible vector field and reversible map

The equality

$$\rho \circ \phi_t = \phi_{-t} \circ \rho = \phi_t^{-1} \circ \rho$$

motivates the following

Definition

A map $\Phi(y)$ is called ρ -reversible if

$$\rho \circ \Phi = \Phi^{-1} \circ \rho$$

The equality

$$\rho \circ \phi_t = \phi_{-t} \circ \rho = \phi_t^{-1} \circ \rho$$

motivates the following

Definition

A map $\Phi(y)$ is called ρ -reversible if

$$\rho \circ \Phi = \Phi^{-1} \circ \rho$$

Example

 $\rho(u,v)=(u,-v), \rightarrow$ invertion of initial velocity in a mechanical system

If we just say "reversible", we mean reversible wrt this ρ .

Important Example

We often encounter partitioned systems

$$\dot{u} = f(u, v), \quad \dot{v} = g(u, v),$$

where f(u, -v) = -f(u, v) and g(u, -v) = g(u, v). And ρ is given by $\rho(u, v) = (u, -v)$.

Important Example

We often encounter partitioned systems

$$\dot{u} = f(u, v), \quad \dot{v} = g(u, v),$$

where f(u, -v) = -f(u, v) and g(u, -v) = g(u, v).

And ρ is given by $\rho(u, v) = (u, -v)$.

 $\rightarrow \ddot{u} = g(u)$, written as $\dot{u} = v, \dot{v} = g(u)$ are reversible.

Important Example

We often encounter partitioned systems

$$\dot{u} = f(u, v), \quad \dot{v} = g(u, v),$$

where f(u, -v) = -f(u, v) and g(u, -v) = g(u, v).

And ρ is given by $\rho(u, v) = (u, -v)$.

 $\rightarrow \ddot{u} = g(u)$, written as $\dot{u} = v, \dot{v} = g(u)$ are reversible.

For scalar u, v: Reversible and cross u-axis twice \rightarrow periodic motion.

Symmetric Numerical Methods

Definition

A numerical one-step method Φ_h is called *symmetric* or *time-reversible*, if it satisfies

$$\Phi_h \circ \Phi_{-h} = id$$
 or equivalently $\Phi_h = \Phi_{-h}^{-1}$.

Symmetric Numerical Methods

Definition

A numerical one-step method Φ_h is called *symmetric* or *time-reversible*, if it satisfies

$$\Phi_h \circ \Phi_{-h} = id$$
 or equivalently $\Phi_h = \Phi_{-h}^{-1}$.

Recalling the definition of the adjoint method, the condition for symmetry reads $\Phi_h = \Phi_h^*$

Symmetric Numerical Methods

Definition

A numerical one-step method Φ_h is called *symmetric* or *time-reversible*, if it satisfies

$$\Phi_h \circ \Phi_{-h} = id$$
 or equivalently $\Phi_h = \Phi_{-h}^{-1}$.

Recalling the definition of the adjoint method, the condition for symmetry reads $\Phi_h = \Phi_h^*$

→ Example: Implicit midpoint rule

Symmetric Methods ↔ Reversible Flows

Theorem (Criterion for Reversibility of the Numerical Flow)

If a numerical method, applied to a ρ -reversible differential equation, satisfies

$$\rho \circ \Phi_h = \Phi_{-h} \circ \rho \qquad (*)$$

then the numerical flow Φ_h is a ρ -reversible map iff Φ_h is a symmetric method.

Symmetric Methods ↔ Reversible Flows

Theorem (Criterion for Reversibility of the Numerical Flow)

If a numerical method, applied to a ρ -reversible differential equation, satisfies

$$\rho \circ \Phi_h = \Phi_{-h} \circ \rho \qquad (*)$$

then the numerical flow Φ_h is a ρ -reversible map iff Φ_h is a symmetric method.

Compared to the symmetry of the method, (*) is much less restrictive. It is satisfied by most numerical methods. For example

Methods that satisfy (*)

- Runge-Kutta methods (explicit or implicit, also partitioned ones)
- Composition methods $\Phi_h \circ \Psi_h$, if Φ_h and Ψ_h do.
- Projection methods on manifolds, if the basic method does and ρ maps the manifold unto itself and is an orthogonal matrix

• . . .

Symmetric Runge-Kutta Methods

Collocation methods: Symmetric if collocation points are taken symmetrically around the midpoint of the integration step.

Symmetric Runge-Kutta Methods

Collocation methods: Symmetric if collocation points are taken symmetrically around the midpoint of the integration step.

Theorem (Symmetry of Collocation Methods)

The adjoint method of a collocation method based on c_1, \ldots, c_s is a collocation method based on c_1^*, \ldots, c_s^* , where

$$c_i^* = 1 - c_{s+1-i}.$$

In the case that $c_i = 1 - c_{s+1-i} \forall i$, the collocation method is symmetric.

Theorem (Symmetry of Collocation Methods)

The adjoint method of a collocation method based on c_1, \ldots, c_s is a collocation method based on c_1^*, \ldots, c_s^* , where

$$c_i^* = 1 - c_{s+1-i}$$
.

In the case that $c_i = 1 - c_{s+1-i} \ \forall i$, the collocation method is symmetric.

Figure: Symmetry of collocation methods

Example

The Gauss formulas and the Lobatto IIIA and IIIB formulas are symmetric integrators

Figure: Gauss methods of order 4 and 6

Symmetry for s-stage RK-Methods

Theorem

The adjoint of an s-stage Runge-Kuttag method is again an s-stage Runge-Kutta method. Its coefficients are given by

$$a_{ij}^* = b_{s+1-j} - a_{s+1-i,s+1-j}, \quad b_i^* = b_{s+1-i}$$

If

$$a_{s+1-i,s+1-j} + a_{ij} = b_j \ \forall i,j, \ (*)$$

then the Runge Kutta method is symmetric.

Symmetry for s-stage RK-Methods

Theorem

The adjoint of an s-stage Runge-Kuttag method is again an s-stage Runge-Kutta method. Its coefficients are given by

$$a_{ij}^* = b_{s+1-j} - a_{s+1-i,s+1-j}, \quad b_i^* = b_{s+1-i}$$

If

$$a_{s+1-i,s+1-j} + a_{ij} = b_j \ \forall i,j, \ (*)$$

then the Runge Kutta method is symmetric.

Explicit Runge-Kutta methods cannot fulfill (*) with i=j and no explicit Runge-Kutta method is symmetric.

DIRK's

The simplest case of symmetric RK-methods: DIRK's (Diagonally implicit RK methods) \rightarrow Non-zero diagonal elements allowed, but $a_{ij}=0$ for $i\geq j+1$ \rightarrow Condition for symmetry becomes

$$a_{ij} = b_j = b_{s+1-j}$$
 for $i \ge j+1$, $a_{jj} + a_{s+1-j,s+1-j} = b_j$.

Sample Butcher diagram for s=5:

with $a_{33} = b_3/2$, $a_{44} = b_2 - a_{22}$, and $a_{55} = b_1 - a_{11}$

Partitioned Runge-Kutta Methods

Consider the partitioned system

$$\dot{y} = f(y,z), \quad \dot{z} = g(y,z). \quad (*)$$

A partitioned RK method applied to this system is symmetric only if both are symmetric ($\dot{y}=f(y),\,\dot{z}=g(z)$ are special cases of (*)).

Partitioned Runge-Kutta Methods

Consider the partitioned system

$$\dot{y} = f(y,z), \quad \dot{z} = g(y,z). \quad (*)$$

A partitioned RK method applied to this system is symmetric only if both are symmetric ($\dot{y} = f(y)$, $\dot{z} = g(z)$ are special cases of (*)).

Partitioned RK methods can be symmetric and explicit for problems of the form

$$\dot{y} = f(z), \quad \dot{z} = g(y).$$

Partitioned Runge-Kutta Methods

Consider the partitioned system

$$\dot{y} = f(y,z), \quad \dot{z} = g(y,z). \quad (*)$$

A partitioned RK method applied to this system is symmetric only if both are symmetric ($\dot{y} = f(y)$, $\dot{z} = g(z)$ are special cases of (*)).

Partitioned RK methods can be symmetric and explicit for problems of the form

$$\dot{y} = f(z), \quad \dot{z} = g(y).$$

 $\ddot{y}=g(y)$, written $\dot{y}=z, \dot{z}=g(y)$, as well as Hamiltonian systems with separable Hamiltonian H(p,q)=T(p)+V(q) have this structure.

Störmer/Verlet: symmetric and implicit

Example

Figure: Störmer/Verlet scheme

Apply this to
$$\dot{y}=f(z), \quad \dot{z}=g(y).$$
 We get:
$$z_{1/2} = z_0 + h/2g(y_0) \\ y_1 = y_0 + hf(z_{1/2}) \\ z_1 = z_{1/2} + h/2g(y_1)$$