Projection Methods

Geometric Numerical Integration

Seminar WS 05/06

Contents

- Projection Methods
- General Situation
- Weak Invariants
- Example: Pendulum Equation
- Standard Projection Method
- Examples
- Kepler Problem
- Outer Solar System
- Volume Preservation
- Orthogonal Matrices

Projection Methods

Suppose we have an $(n-m)$-dimensional submanifold of \mathbb{R}^{n},

$$
M=\{y: g(y)=0\}
$$

$\left(g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}\right)$, and a differential equation $\dot{y}=f(y)$ with the property that

$$
y_{0} \in M \quad \text { implies } \quad y(t) \in M \text { for all } t .
$$

The last assumption is equivalent to $g^{\prime}(y) f(y)=0$ for $y \in M$.

Definition (Weak Invariant)

We call $g(y)$ a weak invariant, if $g^{\prime}(y) f(y)=0$ for $y \in M$; and we say that $\dot{y}=f(y)$ is a differential equation on the manifold \mathbf{M} in the situation above.

Example (Invariant vs. Weak Invariant)

Our assumption by the definition of a weak invariant is really weaker than the requirement that all components $g_{i}(y)$ of $g(y)$ are invariants in the sense of an earlier definition: we only require $g^{\prime}(y) f(y)=0$ for $y \in M$ and not $g^{\prime}(y) f(y)=0$ for all $y \in \mathbb{R}^{n}$.

Example (Pendulum Equation)

Consider the pendulum equation written in Cartesian coordinates:

$$
\begin{gathered}
\dot{q_{1}}=p_{1}, \quad \dot{p_{1}}=-q_{1} \lambda, \\
\dot{q_{2}}=p_{2}, \quad \dot{p_{2}}=-1-q_{2} \lambda,
\end{gathered}
$$

where $\lambda=\left(p_{1}^{2}+p_{2}^{2}-q_{2}\right) /\left(q_{1}^{2}+q_{2}^{2}\right)$. (One can check by differentiation that $q_{1} p_{1}+q_{2} p_{2}$ is an invariant (orthogonality of the position and velocity vectors).)
The length of the pendulum $q_{1}{ }^{2}+q_{2}^{2}$ is only a weak invariant.
There are methods which conserve quadratic first integrals (for example the implicit midpoint rule) but not the quadratic weak invariant $q_{1}{ }^{2}+q_{2}{ }^{2}$.
No numerical method that is allowed to evaluate the vector field $f(y)$ outside M can be expected to conserve weak invariants exactly.

$q_{1}=r \sin \phi$
$p_{1}=r \dot{\phi} \cos \phi$
$q_{2}=-r \cos \phi$
$p_{2}=r \dot{\phi} \sin \phi$

Compare
$\dot{p}_{1}=r \ddot{\phi} \cos \phi-r \dot{\phi}^{2} \sin \phi$
$\dot{p}_{2}=r \ddot{\phi} \sin \phi+r \dot{\phi}^{2} \cos \phi$
with
$\dot{p}_{1}=-q_{1} \lambda=-r \sin \phi \frac{r^{2} \dot{\phi}^{2}+r \cos \phi}{r^{2}}$
$\dot{p}_{2}=-1-q_{2} \lambda=-1+r \cos \phi \frac{r^{2} \dot{\phi}^{2}+r \cos \phi}{r^{2}}$
to get
$r \ddot{\phi}=-\sin \phi$

Definition (Standard Projection Method)

Assume that $y_{n} \in M$. One step $y_{n} \mapsto y_{n+1}$ is defined as follows:

- Compute $\tilde{y}_{n+1}=\Phi_{h}\left(y_{n}\right)$, where Φ_{h} is an arbitrary one-step method applied to $\dot{y}=f(y)$;
- project the value \tilde{y}_{n+1} onto the manifold M to obtain $y_{n+1} \in M$.

For $y_{n} \in M$ the distance of \tilde{y}_{n+1} to M is of the size of the local error, i.e., $O\left(h^{p+1}\right)$.
Therefore, the projection does not deteriorate the convergence order of the method.

For the computation of y_{n+1} we have to solve the constrained minimization problem

$$
\left\|y_{n+1}-\tilde{y}_{n+1}\right\| \rightarrow \min
$$

subject to

$$
g\left(y_{n+1}\right)=0
$$

A standard approach is to introduce Lagrange multipliers $\lambda=\left(\lambda_{1}, \ldots, \lambda_{m}\right)^{T}$, and to consider the Lagrange function

$$
L\left(y_{n+1}, \lambda\right)=\left\|y_{n+1}-\tilde{y}_{n+1}\right\|^{2} / 2-g\left(y_{n+1}\right)^{T} \lambda .
$$

The necessary condition $\partial L / \partial y_{n+1}=0$ then leads to the system

$$
y_{n+1}=\tilde{y}_{n+1}+g^{\prime}\left(\tilde{y}_{n+1}\right)^{T} \lambda, \quad 0=g\left(y_{n+1}\right)
$$

We have replaced y_{n+1} with \tilde{y}_{n+1} in the argument of $g^{\prime}(y)$ in order to save some evaluations of $g^{\prime}(y)$.

By the middle-value-theorem follows the existence of an x such that

$$
\begin{gathered}
\left\|g^{\prime}\left(\tilde{y}_{n+1}\right)-g^{\prime}\left(y_{n+1}\right)\right\| \leq\left\|g^{\prime \prime}(x)\right\|\left\|\tilde{y}_{n+1}-y_{n+1}\right\| \\
\leq C\left\|\tilde{y}_{n+1}-y_{n+1}\right\|=O\left(h^{p+1}\right)
\end{gathered}
$$

for some $C>0$.

Inserting the first relation $\left(y_{n+1}=\tilde{y}_{n+1}+g^{\prime}\left(\tilde{y}_{n+1}\right)^{T} \lambda\right)$ into the second $\left(0=g\left(y_{n+1}\right)\right)$ gives a non-linear equation for λ, which can be efficiently solved by simplified Newton iterations:

$$
\begin{gathered}
\Delta \lambda_{i}=-\left(g^{\prime}\left(\tilde{y}_{n+1}\right) g^{\prime}\left(\tilde{y}_{n+1}\right)^{T}\right)^{-1} g\left(\tilde{y}_{n+1}+g^{\prime}\left(\tilde{y}_{n+1}\right)^{T} \lambda_{i}\right) \\
\lambda_{0}=0, \quad \lambda_{i+1}=\lambda_{i}+\Delta \lambda_{i}
\end{gathered}
$$

Simplified Newton iteration is Newton iteration with \tilde{y}_{n+1} at some position instead of $\tilde{y}_{n+1}+g^{\prime}\left(\tilde{y}_{n+1}\right)^{T} \lambda$.

$$
g(x, y, z)=x^{2}+y^{2}-1=: A(x, y, z)
$$

$$
g(x, y, z)=x^{2}+y^{2}+z^{2}-1=B(x, y, z)
$$

$$
g(x, y, z)=\binom{x^{2}+y^{2}-1}{x^{2}+y^{2}+z^{2}-1}=\binom{A(x, y, z)}{B(x, y, z)}
$$

Examples

Example (Kepler Problem)

Two first integrals: Hamiltonian function $H(q, p)$ and angular momentum $L(q, p)$

$$
\begin{gathered}
H(q, p)=\frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}\right)-\frac{1}{\sqrt{q_{1}^{2}+q_{2}^{2}}}-\frac{0.005}{2 \sqrt{\left(q_{1}^{2}+q_{2}^{2}\right)^{3}}}, \\
L(q, p)=q_{1} p_{2}-q_{2} p_{1}
\end{gathered}
$$

Initial values: $q_{1}(0)=1-e, \quad q_{2}(0)=0$,

$$
p_{1}(0)=0, \quad p_{2}(0)=\sqrt{(1+e) /(1-e)}
$$

(eccentricity $e=0.6$)

Remark:

The last term in the Hamiltonian function $-\frac{\mu}{3 \sqrt{\left(q_{1}^{2}+q_{2}^{2}\right)^{3}}}$ is the perturbation term.

- $\mu \neq 0$: perturbed Kepler problem, precession of the perihelion
- $\mu=0$: Kepler problem, orbit is an ellipse

Now we discuss the perturbed Kepler problem.

Applied one-step methods:

- explicit Euler: $y_{n+1}=y_{n}+h f\left(y_{n}\right)$
- symplectic Euler:

$$
p_{n+1}=p_{n}-h \frac{\partial H}{\partial q}\left(p_{n+1}, q_{n}\right), \quad q_{n+1}=q_{n}+h \frac{\partial H}{\partial p}\left(p_{n+1}, q_{n}\right)
$$

Explicit Euler: Projection onto $H(q, p)-H\left(q_{0}, p_{0}\right)$ has a wrong qualitative behaviour.
Only projection onto both invariants gives the correct motion.
Symplectic Euler: Surprisingly, projection onto $H(q, p)-H\left(q_{0}, p_{0}\right)$ destroys the correct motion without any projections. Projection onto both invariants re-establishes the correct behaviour.

Figure: eE

Figure: eEH

Figure: eEHL

Figure: sE

Figure: sEH

Figure: sEHL

Figure: npeE

Figure: npsE

Example (Outer Solar System)

Aim: motion of the five planets Jupiter, Saturn, Uranus, Neptune and Pluto relative to the sun. Here q and p are the supervectors composed by the vectors $q_{i}, p_{i} \in \mathbb{R}^{3}, 0 \leq i \leq 5$.

$$
\begin{gathered}
H(q, p)=\frac{1}{2} \sum_{i=0}^{5} \frac{1}{m_{i}} p_{i}^{T} p_{i}-G \sum_{i=1}^{5} \sum_{j=0}^{i-1} \frac{m_{i} m_{j}}{\left\|q_{i}-q_{j}\right\|} \\
L(q, p)=\sum_{i=0}^{5} q_{i} \times p_{i}
\end{gathered}
$$

$G \approx 2.96 \cdot 10^{-4}$ is the gravitational constant.

Applying the explicit Euler method with projection onto $\mathrm{H}-\mathrm{H}_{0}$ and onto $H-H_{0}$ and $L-L_{0}$, we see a slight improvement in the orbits of Jupiter, Saturn and Uranus (compared to the explicit Euler method without projections), but the orbit of Neptune becomes even worse.

This problem contains a structure which cannot be correctly simulated by methods that only preserve the total energy H and the angular momentum L.

In the next two examples we want to compute the projection step in concrete problems.

Example (Volume Preservation)

Consider the matrix differential equation

$$
\dot{Y}=A(Y) Y
$$

where $\operatorname{trace}(A(Y))=0$ for all Y.
From last time we know the following Lemma:

Lemma

If trace $(A(Y))=0$ for all Y, then $g(Y):=\operatorname{det}(Y)$ is an invariant of the matrix differential equation.

Moreover $g^{\prime}(Y)(B Y)=\operatorname{trace}(B) \cdot \operatorname{det}(Y)$.

Let $a_{1}, \ldots, a_{n} \in \mathbb{R}^{n}$.
Definition (Parallelepiped)

$$
P\left(a_{1}, \ldots, a_{n}\right):=\left\{x=\sum_{\nu=1}^{n} t_{\nu} a_{\nu}: t_{1}, \ldots, t_{n} \in[0,1]\right\}
$$

Theorem

$$
\operatorname{Vol}\left(P\left(a_{1}, \ldots, a_{n}\right)\right)=\left|\operatorname{det}\left(a_{1}, \ldots, a_{n}\right)\right|
$$

\tilde{Y}_{n+1} : numerical approximation obtained with an arbitrary one-step method

We consider the Frobenius norm $\|Y\|_{F}=\sqrt{\sum_{i, j}\left|y_{i j}\right|^{2}}$ for measuring the distance to the manifold $\left\{Y: g(Y)=\operatorname{det}\left(Y_{0}\right)\right\}$.

Lagrange function:

$$
L\left(Y_{n+1}\right)=\left\|Y_{n+1}-\tilde{Y}_{n+1}\right\|_{F}^{2} / 2-g\left(Y_{n+1}\right)^{T} \lambda
$$

necessary condition:

$$
L^{\prime}\left(Y_{n+1}\right)(Q)=0 \quad \forall Q \in \mathbb{R}^{n \times n}
$$

Choose $B \in \mathbb{R}^{n \times n}$ s.t. $B \tilde{Y}_{n+1}$ contains only one non-zero element, for example $\left(B \tilde{Y}_{n+1}\right)_{i j}=1 \neq 0$.

Define $h\left(Y_{n+1}\right):=\left\|Y_{n+1}-\tilde{Y}_{n+1}\right\|_{F}^{2} / 2$
$L^{\prime}\left(Y_{n+1}\right)\left(B \tilde{Y}_{n+1}\right)=h^{\prime}\left(Y_{n+1}\right)\left(B \tilde{Y}_{n+1}\right)-\lambda g^{\prime}\left(\tilde{Y}_{n+1}\right)\left(B \tilde{Y}_{n+1}\right)=0$

- $h^{\prime}\left(Y_{n+1}\right)\left(B \tilde{Y}_{n+1}\right)=$

$$
\begin{aligned}
& \lim _{\epsilon \rightarrow 0} \frac{\frac{1}{2}\left\|Y_{n+1}+\epsilon B \tilde{Y}_{n+1}-\tilde{Y}_{n+1}\right\|_{F}^{2}-\frac{1}{2}\left\|Y_{n+1}-\tilde{Y}_{n+1}\right\|_{F}^{2}}{\epsilon}= \\
& \lim _{\epsilon \rightarrow 0} \frac{\epsilon\left(\left(Y_{n+1}\right)_{i j}-\left(\tilde{Y}_{n+1}\right)_{i j}\right)+O\left(\epsilon^{2}\right)}{\epsilon}=\left(Y_{n+1}\right)_{i j}-\left(\tilde{Y}_{n+1}\right)_{i j}
\end{aligned}
$$

- $B=B \tilde{Y}_{n+1} \cdot \tilde{Y}_{n+1}^{-1}$ is a matrix with non-zero elements only in row i and this row is the row j of \tilde{Y}_{n+1}^{-1},

$$
\begin{aligned}
& \Rightarrow \operatorname{trace}(B)=\left(\tilde{Y}_{n+1}^{-1}\right)_{j i} \\
& \Rightarrow g^{\prime}\left(\tilde{Y}_{n+1}\right)\left(B \tilde{Y}_{n+1}\right)=\left(\tilde{Y}_{n+1}^{-1}\right)_{j i} \cdot \operatorname{det}\left(\tilde{Y}_{n+1}\right)
\end{aligned}
$$

It follows $\left(Y_{n+1}\right)_{i j}-\left(\tilde{Y}_{n+1}\right)_{i j}-\lambda\left(\tilde{Y}_{n+1}^{-T}\right)_{i j} \cdot \operatorname{det}\left(\tilde{Y}_{n+1}\right)=0$
and therefore $Y_{n+1}-\tilde{Y}_{n+1}-\lambda \tilde{Y}_{n+1}^{-T} \cdot \operatorname{det}\left(\tilde{Y}_{n+1}\right)=0$.
So the projection step yields $Y_{n+1}=\tilde{Y}_{n+1}+\mu \tilde{Y}_{n+1}^{-T}$ with $\mu=\lambda \operatorname{det}\left(\tilde{Y}_{n+1}\right)$.

Since one has to solve $g\left(Y_{n+1}\right)=g\left(Y_{n}\right)$, this leads to the nonlinear equation $\operatorname{det}\left(Y_{n}\right)=\operatorname{det}\left(\tilde{Y}_{n+1}+\mu \tilde{Y}_{n+1}^{-T}\right)$ for μ, for which we apply the simplified Newton iteration.

True Newton iteration is $\mu_{i+1}=\mu_{i}-\left(f^{\prime}\left(\mu_{i}\right)\right)^{-1} f\left(\mu_{i}\right)$, where $f(\mu):=g\left(\tilde{Y}_{n+1}+\mu \tilde{Y}_{n+1}^{-T}\right)-g\left(Y_{n}\right)=0$.
$f^{\prime}(\mu)=\lim _{\epsilon \rightarrow 0} \frac{\operatorname{det}\left(\tilde{Y}_{n+1}+(\mu+\epsilon) \tilde{Y}_{n+1}^{-T}\right)-\operatorname{det}\left(\tilde{Y}_{n+1}+\mu \tilde{Y}_{n+1}^{-T}\right)}{\epsilon}=$
$\lim _{\epsilon \rightarrow 0} \frac{\operatorname{det}\left(\left(\tilde{Y}_{n+1}+\mu \tilde{Y}_{n+1}^{-T}\right)\left(I+\epsilon\left(\tilde{Y}_{n+1}+\mu \tilde{Y}_{n+1}^{-T}\right)^{-1} \tilde{Y}_{n+1}^{-T}\right)\right)-\operatorname{det}\left(\tilde{Y}_{n+1}+\mu \tilde{Y}_{n+1}^{-T}\right)}{\epsilon}=$
$\lim _{\epsilon \rightarrow 0} \frac{\operatorname{det}\left(\tilde{Y}_{n+1}+\mu \tilde{Y}_{n+1}^{-T}\right)\left(\operatorname{det}\left(I+\epsilon\left(\tilde{Y}_{n+1}+\mu \tilde{Y}_{n+1}^{-T}\right)^{-1} \tilde{Y}_{n+1}^{-T}\right)-1\right)}{\tilde{\epsilon}_{\tilde{Y}}}=$
$\lim _{\epsilon \rightarrow 0} \frac{\operatorname{det}\left(\tilde{Y}_{n+1}+\mu \tilde{Y}_{n+1}^{-T}\right)\left(\epsilon \operatorname{trace}\left(\left(\tilde{Y}_{n+1}+\mu \tilde{Y}_{n+1}^{-T}\right)^{-1} \tilde{Y}_{n+1}^{-T}\right)+O\left(\epsilon^{2}\right)\right)}{\epsilon}=$ $\operatorname{det}\left(\tilde{Y}_{n+1}+\mu \tilde{Y}_{n+1}^{-T}\right) \operatorname{trace}\left(\left(\tilde{Y}_{n+1}^{\epsilon}+\mu \tilde{Y}_{n+1}^{-T}\right)^{-1} \tilde{Y}_{n+1}^{-T}\right)$

So true Newton iteration is

$$
\Delta \mu_{i}=\frac{g\left(Y_{n}\right)-g\left(\tilde{Y}_{n+1}+\mu_{i} \tilde{Y}_{n+1}^{-T}\right)}{\operatorname{det}\left(\tilde{Y}_{n+1}+\mu_{i} \tilde{Y}_{n+1}^{-T}\right) \operatorname{trace}\left(\left(\tilde{Y}_{n+1}+\mu_{i} \tilde{Y}_{n+1}^{-T}\right)^{-1} \tilde{Y}_{n+1}^{-T}\right)}
$$

Now we take a simplified version:

$$
\Delta \mu_{i}=\frac{g\left(Y_{n}\right)-g\left(\tilde{Y}_{n+1}+\mu_{i} \tilde{Y}_{n+1}^{-T}\right)}{\operatorname{det}\left(\tilde{Y}_{n+1}+\mu_{i} \tilde{Y}_{n+1}^{-T}\right) \operatorname{trace}\left(\tilde{Y}_{n+1}^{-1} \tilde{Y}_{n+1}^{-T}\right)}
$$

We get: $\Delta \mu_{i}$
$=\frac{g\left(Y_{n}\right)}{\operatorname{det}\left(\tilde{Y}_{n+1}+\mu_{i} \tilde{Y}_{n+1}^{-T}\right) \operatorname{trace}\left(\left(\tilde{Y}_{n+1}^{T} \tilde{Y}_{n+1}\right)^{-1}\right)}-\frac{1}{\operatorname{trace}\left(\left(\tilde{Y}_{n+1}^{T} \tilde{Y}_{n+1}\right)^{-1}\right)}$,

$$
\mu_{i+1}=\mu_{i}+\Delta \mu_{i} .
$$

Example (Orthogonal Matrices)

$\dot{Y}=F(Y)$, where the solution $Y(t)$ is known to be an orthogonal matrix, or, more generally, an $n \times k$ matrix $(n \geq k)$ satisfying $Y^{T} Y=I$ (Stiefel manifold).

The projection step requires the solution of the problem $\|Y-\tilde{Y}\|_{F} \rightarrow$ min subject to $Y^{T} Y=1$.

The projection can be computed as follows: If \tilde{Y} has the singular value decomposition $\tilde{Y}=U^{T} \Sigma V$, where U^{T} and V are $n \times k$ and $k \times k$ matrices with orthonormal columns, $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{k}\right)$, and the singular values $\sigma_{1} \geq \ldots \geq \sigma_{k}$ are all close to 1 . Then the solution is given by $Y=U^{T} V$.

We prove the statement for $\mathrm{n}=\mathrm{k}$ (orthogonal matrices).
Assume $\tilde{Y}=U^{T} \Sigma V$.
Since $\left\|U^{T} S V\right\|_{F}=\|S\|_{F}$ holds for all orthogonal matrices U and V, it is sufficient to show the case $\|\Sigma-I\|_{F}=\min$ in order to prove $\|\tilde{Y}-Y\|_{F}=\left\|U^{T} \Sigma V-U^{T} V\right\|_{F}=\min$.

Since $\sigma_{i}>0$ close to 1 :
$\min _{A \in O(n)}\|\Sigma-A\|_{F}^{2}=\min _{A \in O(n), A=\operatorname{diag}(\pm 1, \ldots, \pm 1)}\|\Sigma-A\|_{F}^{2}=$ $\|\Sigma-I\|_{F}^{2}=\sum_{i=1}^{n}\left(\sigma_{i}-1\right)^{2}$.

