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Projection Methods

Suppose we have an (n −m)-dimensional submanifold of Rn,

M = {y : g(y) = 0}

(g : Rn → Rm), and a differential equation ẏ = f (y) with the
property that

y0 ∈ M implies y(t) ∈ M for all t.

The last assumption is equivalent to g ′(y)f (y) = 0 for y ∈ M.

Definition (Weak Invariant)

We call g(y) a weak invariant, if g ′(y)f (y) = 0 for y ∈ M; and
we say that ẏ = f (y) is a differential equation on the manifold
M in the situation above.



Example (Invariant vs. Weak Invariant)

Our assumption by the definition of a weak invariant is really
weaker than the requirement that all components gi (y) of g(y) are
invariants in the sense of an earlier definition: we only require
g ′(y)f (y) = 0 for y ∈ M and not g ′(y)f (y) = 0 for all y ∈ Rn.



Example (Pendulum Equation)

Consider the pendulum equation written in Cartesian coordinates:

q̇1 = p1, ṗ1 = −q1λ,

q̇2 = p2, ṗ2 = −1− q2λ,

where λ = (p1
2 + p2

2 − q2)/(q1
2 + q2

2). (One can check by
differentiation that q1p1 + q2p2 is an invariant (orthogonality of
the position and velocity vectors).)
The length of the pendulum q1

2 + q2
2 is only a weak

invariant.
There are methods which conserve quadratic first integrals (for
example the implicit midpoint rule) but not the quadratic weak
invariant q1

2 + q2
2.

No numerical method that is allowed to evaluate the vector
field f (y) outside M can be expected to conserve weak
invariants exactly.





q1 = rsinφ p1 = r φ̇cosφ
q2 = −rcosφ p2 = r φ̇sinφ

Compare

ṗ1 = r φ̈cosφ− r φ̇2sinφ
ṗ2 = r φ̈sinφ + r φ̇2cosφ

with

ṗ1 = −q1λ = −rsinφ r2φ̇2+rcosφ
r2

ṗ2 = −1− q2λ = −1 + rcosφ r2φ̇2+rcosφ
r2

to get

r φ̈ = −sinφ



Definition (Standard Projection Method)

Assume that yn ∈ M. One step yn 7→ yn+1 is defined as follows:

• Compute ỹn+1 = Φh(yn), where Φh is an arbitrary one-step
method applied to ẏ = f (y);

• project the value ỹn+1 onto the manifold M to obtain
yn+1 ∈ M.

For yn ∈ M the distance of ỹn+1 to M is of the size of the local
error, i.e., O(hp+1).
Therefore, the projection does not deteriorate the
convergence order of the method.



For the computation of yn+1 we have to solve the constrained
minimization problem

‖yn+1 − ỹn+1‖ → min

subject to
g(yn+1) = 0.

A standard approach is to introduce Lagrange multipliers
λ = (λ1, ..., λm)T , and to consider the Lagrange function

L(yn+1, λ) = ‖yn+1 − ỹn+1‖2 /2− g(yn+1)
Tλ.

The necessary condition ∂L/∂yn+1 = 0 then leads to the system

yn+1 = ỹn+1 + g ′(ỹn+1)
Tλ, 0 = g(yn+1).

We have replaced yn+1 with ỹn+1 in the argument of g ′(y) in order
to save some evaluations of g ′(y).



By the middle-value-theorem follows the existence of an x such that∥∥g ′(ỹn+1)− g ′(yn+1)
∥∥ ≤ ∥∥g ′′(x)

∥∥ ‖ỹn+1 − yn+1‖

≤ C ‖ỹn+1 − yn+1‖ = O(hp+1)

for some C > 0.



Inserting the first relation (yn+1 = ỹn+1 + g ′(ỹn+1)
Tλ) into the

second (0 = g(yn+1)) gives a non-linear equation for λ, which can
be efficiently solved by simplified Newton iterations:

∆λi = −(g ′(ỹn+1)g
′(ỹn+1)

T )−1g(ỹn+1 + g ′(ỹn+1)
Tλi ),

λ0 = 0, λi+1 = λi + ∆λi .

Simplified Newton iteration is Newton iteration with ỹn+1 at some
position instead of ỹn+1 + g ′(ỹn+1)

Tλ.









Examples

Example (Kepler Problem)

Two first integrals: Hamiltonian function H(q, p) and angular
momentum L(q, p)

H(q, p) =
1

2
(p2

1 + p2
2)−

1√
q2
1 + q2

2

− 0.005

2
√

(q2
1 + q2

2)
3
,

L(q, p) = q1p2 − q2p1

Initial values: q1(0) = 1− e, q2(0) = 0,

p1(0) = 0, p2(0) =
√

(1 + e)/(1− e)

(eccentricity e = 0.6)



Remark:

The last term in the Hamiltonian function − µ

3
√

(q2
1+q2

2)
3

is the

perturbation term.

• µ 6= 0 : perturbed Kepler problem, precession of the
perihelion

• µ = 0 : Kepler problem, orbit is an ellipse

Now we discuss the perturbed Kepler problem.



Applied one-step methods:

• explicit Euler: yn+1 = yn + hf (yn)

• symplectic Euler:

pn+1 = pn − h
∂H

∂q
(pn+1, qn), qn+1 = qn + h

∂H

∂p
(pn+1, qn)

Explicit Euler: Projection onto H(q, p)− H(q0, p0) has a wrong
qualitative behaviour.
Only projection onto both invariants gives the correct
motion.
Symplectic Euler: Surprisingly, projection onto H(q, p)− H(q0, p0)
destroys the correct motion without any projections.
Projection onto both invariants re-establishes the correct
behaviour.



Figure: eE



Figure: eEH



Figure: eEHL



Figure: sE



Figure: sEH



Figure: sEHL



Figure: npeE



Figure: npsE



Example (Outer Solar System)

Aim: motion of the five planets Jupiter, Saturn, Uranus, Neptune
and Pluto relative to the sun. Here q and p are the supervectors
composed by the vectors qi , pi ∈ R3, 0 ≤ i ≤ 5.

H(q, p) =
1

2

5∑
i=0

1

mi
pT
i pi − G

5∑
i=1

i−1∑
j=0

mimj

‖qi − qj‖
,

L(q, p) =
5∑

i=0

qi × pi ,

G ≈ 2.96 · 10−4 is the gravitational constant.



Applying the explicit Euler method with projection onto H − H0

and onto H − H0 and L− L0, we see a slight improvement in the
orbits of Jupiter, Saturn and Uranus (compared to the explicit
Euler method without projections), but the orbit of Neptune
becomes even worse.

This problem contains a structure which cannot be correctly
simulated by methods that only preserve the total energy H
and the angular momentum L.



In the next two examples we want to compute the projection step
in concrete problems.



Example (Volume Preservation)

Consider the matrix differential equation

Ẏ = A(Y )Y ,

where trace(A(Y )) = 0 for all Y .

From last time we know the following Lemma:

Lemma

If trace(A(Y )) = 0 for all Y , then g(Y ) := det(Y ) is an invariant
of the matrix differential equation.

Moreover g ′(Y )(BY ) = trace(B) · det(Y ).





Let a1, ..., an ∈ Rn.

Definition (Parallelepiped)

P(a1, ..., an) :=

{
x =

n∑
ν=1

tνaν : t1, ..., tn ∈ [0, 1]

}

Theorem

Vol(P(a1, ..., an)) = |det(a1, ..., an)|



Ỹn+1 : numerical approximation obtained with an arbitrary
one-step method

We consider the Frobenius norm ‖Y ‖F =
√∑

i ,j |yij |2 for

measuring the distance to the manifold {Y : g(Y ) = det(Y0)} .

Lagrange function:

L(Yn+1) =
∥∥∥Yn+1 − Ỹn+1

∥∥∥2

F
/2− g(Yn+1)

Tλ

necessary condition:

L′(Yn+1)(Q) = 0 ∀Q ∈ Rn×n

Choose B ∈ Rn×n s.t. BỸn+1 contains only one non-zero element,
for example (BỸn+1)ij = 1 6= 0.



Define h(Yn+1) :=
∥∥∥Yn+1 − Ỹn+1

∥∥∥2

F
/2

L′(Yn+1)(BỸn+1) = h′(Yn+1)(BỸn+1)− λg ′(Ỹn+1)(BỸn+1) = 0

• h′(Yn+1)(BỸn+1) =

limε→0

1
2‖Yn+1+εBỸn+1−Ỹn+1‖2

F
− 1

2‖Yn+1−Ỹn+1‖2

F
ε =

limε→0
ε((Yn+1)ij−(Ỹn+1)ij )+O(ε2)

ε = (Yn+1)ij − (Ỹn+1)ij

• B = BỸn+1 · Ỹ−1
n+1 is a matrix with non-zero elements only in

row i and this row is the row j of Ỹ−1
n+1,

⇒ trace(B) = (Ỹ−1
n+1)ji ,

⇒ g ′(Ỹn+1)(BỸn+1) = (Ỹ−1
n+1)ji · det(Ỹn+1)



It follows (Yn+1)ij − (Ỹn+1)ij − λ(Ỹ−T
n+1)ij · det(Ỹn+1) = 0

and therefore Yn+1 − Ỹn+1 − λỸ−T
n+1 · det(Ỹn+1) = 0.

So the projection step yields Yn+1 = Ỹn+1 + µỸ−T
n+1 with

µ = λdet(Ỹn+1).

Since one has to solve g(Yn+1) = g(Yn), this leads to the
nonlinear equation det(Yn) = det(Ỹn+1 + µỸ−T

n+1) for µ, for which
we apply the simplified Newton iteration.



True Newton iteration is µi+1 = µi − (f ′(µi ))
−1f (µi ), where

f (µ) := g(Ỹn+1 + µỸ−T
n+1)− g(Yn) = 0.

f ′(µ) = limε→0
det(Ỹn+1+(µ+ε)Ỹ−T

n+1 )−det(Ỹn+1+µỸ−T
n+1 )

ε =

limε→0
det((Ỹn+1+µỸ−T

n+1 )(I+ε(Ỹn+1+µỸ−T
n+1 )−1Ỹ−T

n+1 ))−det(Ỹn+1+µỸ−T
n+1 )

ε =

limε→0
det(Ỹn+1+µỸ−T

n+1 )(det(I+ε(Ỹn+1+µỸ−T
n+1 )−1Ỹ−T

n+1 )−1)

ε =

limε→0
det(Ỹn+1+µỸ−T

n+1 )(εtrace((Ỹn+1+µỸ−T
n+1 )−1Ỹ−T

n+1 )+O(ε2))

ε =

det(Ỹn+1 + µỸ−T
n+1)trace((Ỹn+1 + µỸ−T

n+1)
−1Ỹ−T

n+1)



So true Newton iteration is

∆µi =
g(Yn)− g(Ỹn+1 + µi Ỹ

−T
n+1)

det(Ỹn+1 + µi Ỹ
−T
n+1)trace((Ỹn+1 + µi Ỹ

−T
n+1)

−1Ỹ−T
n+1)

.

Now we take a simplified version:

∆µi =
g(Yn)− g(Ỹn+1 + µi Ỹ

−T
n+1)

det(Ỹn+1 + µi Ỹ
−T
n+1)trace(Ỹ−1

n+1Ỹ
−T
n+1)

.

We get: ∆µi

=
g(Yn)

det(Ỹn+1 + µi Ỹ
−T
n+1)trace((Ỹ T

n+1Ỹn+1)−1)
− 1

trace((Ỹ T
n+1Ỹn+1)−1)

,

µi+1 = µi + ∆µi .



Example (Orthogonal Matrices)

Ẏ = F (Y ), where the solution Y (t) is known to be an orthogonal
matrix, or, more generally, an n × k matrix (n ≥ k) satisfying
Y TY = I (Stiefel manifold).

The projection step requires the solution of the problem∥∥∥Y − Ỹ
∥∥∥

F
→ min subject to Y TY = I .

The projection can be computed as follows: If Ỹ has the singular
value decomposition Ỹ = UTΣV , where UT and V are n × k
and k × k matrices with orthonormal columns,
Σ = diag(σ1, ..., σk), and the singular values σ1 ≥ ... ≥ σk are all
close to 1. Then the solution is given by Y = UTV .



We prove the statement for n=k (orthogonal matrices).

Assume Ỹ = UTΣV .

Since
∥∥UTSV

∥∥
F

= ‖S‖F holds for all orthogonal matrices U and
V , it is sufficient to show the case ‖Σ− I‖F = min in order to

prove
∥∥∥Ỹ − Y

∥∥∥
F

=
∥∥UTΣV − UTV

∥∥
F

= min.

Since σi > 0 close to 1 :
minA∈O(n) ‖Σ− A‖2

F = minA∈O(n),A=diag(±1,...,±1) ‖Σ− A‖2
F =

‖Σ− I‖2
F =

∑n
i=1(σi − 1)2.


