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Projection Methods

Suppose we have an (n — m)-dimensional submanifold of R"”,

M={y:g(y) =0}

(g : R" — R™), and a differential equation y = f(y) with the
property that

yo € M implies y(t) € M for all t.

The last assumption is equivalent to g’(y)f(y) =0 for y € M.
Definition (Weak Invariant)

We call g(y) a weak invariant, if g’(y)f(y) =0 for y € M; and
we say that y = f(y) is a differential equation on the manifold
M in the situation above.



Example (Invariant vs. Weak Invariant)

Our assumption by the definition of a weak invariant is really
weaker than the requirement that all components g;(y) of g(y) are
invariants in the sense of an earlier definition: we only require
g'(y)f(y) =0 for y € M and not g’(y)f(y) =0 for all y € R".



Example (Pendulum Equation)

Consider the pendulum equation written in Cartesian coordinates:
G1=p1, P1L=—GQiA,

Go=p2, P2=—1—@qA,

where X = (p1® + p2® — @2)/(q1” + 92°). (One can check by
differentiation that gi1p1 + ga2p2 is an invariant (orthogonality of
the position and velocity vectors).)

The length of the pendulum ¢;° + ¢, is only a weak
invariant.

There are methods which conserve quadratic first integrals (for
example the implicit midpoint rule) but not the quadratic weak
invariant g2 + g»°.

No numerical method that is allowed to evaluate the vector
field f(y) outside M can be expected to conserve weak
invariants exactly.






q1 = rsin¢ p1 = rocosg
gy = —rcos¢ p2 = rosing

Compare

p1 = rgcosp — r¢?sing
po = rosing + r¢?cosg

with

pr=—qu) = —rsing " HEes0

pp=—-1—qgpA=-1+ rcosqbr%zfi{cow
to get

ré = —sing



Definition (Standard Projection Method)

Assume that y, € M. One step y, — yp+1 is defined as follows:
e Compute ¥pr1 = Pp(yn), where @y, is an arbitrary one-step
method applied to y = f(y);
e project the value y,11 onto the manifold M to obtain
Yni+1 € M.

For y, € M the distance of y,11 to M is of the size of the local
error, i.e., O(hP+L).

Therefore, the projection does not deteriorate the
convergence order of the method.



For the computation of y,,1 we have to solve the constrained
minimization problem

||Yn+1_)7n+1|| — min

subject to
g(yn+1) = 0.

A standard approach is to introduce Lagrange multipliers
A= (A1,..., Am)", and to consider the Lagrange function

LYni1,A) = Va1 = Inral® /2 = 8(nr1) TN
The necessary condition 9L/0y,+1 = 0 then leads to the system
Yn+1 = Ynt1 + g/()ﬂ/nJrl)T)‘v 0= g(ynt1)-

We have replaced y,+1 with J,1+1 in the argument of g’(y) in order
to save some evaluations of g’(y).



By the middle-value-theorem follows the existence of an x such that
&' (Fns1) — &' (vat1)|| < ||&" () || 17n+1 — Ynsall

<C H}N/n—i-l - )/n-i-lH = O(thrl)

for some C > 0.



Inserting the first relation (yoi1 = Jne1 + &' (Vnr1) " A) into the
second (0 = g(yn+1)) gives a non-linear equation for A, which can
be efficiently solved by simplified Newton iterations:

AN = —(g' (7n+1)8' (Fn+1) ") " g(Fns1 + &' (Fns1) " Ni),
A =0, Ai1=A+ A\

Simplified Newton iteration is Newton iteration with ¥,11 at some
position instead of 7n11 + &' (Vn+1) T .
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Examples

Example (Kepler Problem)

Two first integrals: Hamiltonian function H(q, p) and angular
momentum L(gq, p)

0.005

P1 +p3) —
\/q1+q2 \/ q1+q2

L(q,p) = q1p2 — q2p1
Initial values: g1(0) =1—e, g¢2(0)=0,

p1(0) =0, p2(0) = V(1 +e)/(1—e)

H(q,p) =

(eccentricity e = 0.6)



Remark:

The last term in the Hamiltonian function —% is the
3 (Q1+q2)3

perturbation term.

e 11 # 0 : perturbed Kepler problem, precession of the
perihelion

e 1 = 0: Kepler problem, orbit is an ellipse

Now we discuss the perturbed Kepler problem.



Applied one-step methods:
e explicit Euler: ypi1 = yn + hf(yn)
e symplectic Euler:

OH OH
Pn+1 = Pn — haiq(Pn—&-lv qn)a gn+1 = Qgn + haip(Pn—i-l, qn)

Explicit Euler: Projection onto H(q, p) — H(qo, po) has a wrong
qualitative behaviour.

Only projection onto both invariants gives the correct
motion.

Symplectic Euler: Surprisingly, projection onto H(q, p) — H(qo, po)
destroys the correct motion without any projections.

Projection onto both invariants re-establishes the correct
behaviour.
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Example (Outer Solar System)

Aim: motion of the five planets Jupiter, Saturn, Uranus, Neptune
and Pluto relative to the sun. Here g and p are the supervectors
composed by the vectors g;, pi € R3,0 < i < 5.

5
mmJ

1 5

i:O i=1 j=0

5
L(q,p) =Y ai x pi,
i=0

G =~ 2.96 - 10~* is the gravitational constant.



Applying the explicit Euler method with projection onto H — Hy
and onto H — Hp and L — Lg, we see a slight improvement in the
orbits of Jupiter, Saturn and Uranus (compared to the explicit
Euler method without projections), but the orbit of Neptune
becomes even worse.

This problem contains a structure which cannot be correctly
simulated by methods that only preserve the total energy H
and the angular momentum L.



In the next two examples we want to compute the projection step
in concrete problems.



Example (Volume Preservation)
Consider the matrix differential equation

Y =A(Y)Y,
where trace(A(Y)) = 0 for all Y.

From last time we know the following Lemma:

Lemma

If trace(A(Y)) =0 for all Y, then g(Y') := det(Y) is an invariant
of the matrix differential equation.

Moreover g'(Y)(BY) = trace(B) - det(Y).
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Let ay,...,a, € R".

Definition (Parallelepiped)

n
P(a1,...,an) := {x:ZtyaV Doty
v=1

Theorem

Vol(P(ai, ...,an)) = |det(ay, ...

t, € [0, 1]}

7an)|



\7”+1 : numerical approximation obtained with an arbitrary
one-step method

We consider the Frobenius norm ||Y| = /3>, |y,-j|2 for
measuring the distance to the manifold {Y : g(Y) = det(Yy)} .

Lagrange function:
L(Y,,+1):HY,,+1 n+1H /2= g(Yns1)"A

necessary condition:

L'(Ypi1)(Q) =0 VQ € R™"

Choose B € R™" s t. B\N/,,H contains only one non-zero element,
for example (BY,11);j =1#0.



Define h(Ypi1) i= ‘ A ,,+1H /2

L’(Y,,+1)(B\~/,,+1) = h/(Yn+1)(B)~/n+1) - /\g,(f/n-&-l)(B{/nJrl) =0

o H(Yni1)(BYni1) =
%||Yn+1+eB\7n+1—\~’n+1Hi HYn+1 Yn+1HF

lim€_)0

()i Vo)) 4O@) _ (y 1y (V1)

€

/I'meﬂo

e B= BYn+1 Y 1 is a matrix with non-zero elements only in
row i and this row is the row j of YnJrll,
= trace(B) = (\7,;11)],-,
= g'(Yo11)(BYoi1) = (Y, 1h))i - det(Voin)



It follows (Y1) — (Var1)ij — A(V,u k)i - det(Viop1) =0
and therefore Yni1 — Vo1 — AV, ] - det(Vii1) = 0.

So the projection step yields Y 11 = \N/,,H + uY 41 With
1 = Adet( n+1)

Since one has to solve g(Yn+1) = g(Ya), this leads to the

nonlinear equation det(Y,) = det(Y,41 + /,LYnH) for p, for which

we apply the simplified Newton iteration.



True Newton iteration is j; 11 = p1; — (f'(11)) 7 f (i), where
f(p) == g(Varr+pV, ) —g(Ya) =0.

det(Voi1+(pte)Y, ‘T) det(Von1+p¥,i1)

F(1) = lime—o
lim det((yﬂ+1+ﬂ'y +1)(l+6( Yﬂ+1+/"’y +1) n+1 )) det( n+1+MYn+1)

€E—

det( ,,+1+;LY"+1)(det(l+e(Y,,+1+p,Yn+1) S‘/,;I)—l) _

/I'm€_>0
det(Ypi1+pY +1)(etrace((Y,,+1+yYn+1) Y 1)+0(2)

/I'me_,o
det(Vni1 + MYH+1)trace((Yn+1 + Myn+1) Yn+1)



So true Newton iteration is

g(yn) g( Yn+1 +Ml Yn+1)
det(Yny1 + pi Yn+1)trace((Y,,+1 + Wi Yn+1) ! Yn+1)

Apj =

Now we take a simplified version:

g(yn) - g( Y/n-i-l + M:\N/,,_J)
det( Vi1 + pi Yn+1)trace(Yn+1 Yn+1)

i =

We get: Ap;

g(Yn) B 1

 det(Vopr + iV ) trace((VT Vir1)™)  trace((V,] 4 Voi1)t)

Pit1 = pi + Apj.



Example (Orthogonal Matrices)

Y = F(Y), where the solution Y(t) is known to be an orthogonal
matrix, or, more generally, an n x k matrix (n > k) satisfying
YTY = | (Stiefel manifold).

The projection step requires the solution of the problem
HY . »”/HF —s min subject to YTY = I.

The projection can be computed as follows: If Y has the singular
value decomposition Y = UTXV, where UT and V are n x k
and k x k matrices with orthonormal columns,

Y = diag(o1, ...,0k), and the singular values o1 > ... > oy are all
close to 1. Then the solution is given by Y = UT V.



We prove the statement for n=k (orthogonal matrices).

Assume Y = UTY V.

Since HUTSVHF = ||S|| ¢ holds for all orthogonal matrices U and
V, it is sufficient to show the case ||X — /||z = min in order to

prove ||V — | = [|UTEV — UT V|| = min

Since o; > 0 close to 1:
minacom |1Z — Al = minacon) a—diag(1,..+1) |1Z — AlF =
IZ—1F = Yig(oi—1)>2



