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Lie Group Methods

Consider a differential equation

Ẏ = A(Y )Y , Y (0) = Y0

on a matrix Lie Group G :

Y0 ∈ G , A(Y ) ∈ G ∀Y ∈ G.

Since this is a special case of differential equations on manifold,

• projection methods as well as

• methods based on local coordinates

are well suited for their numerical treatment.

Now we study further approaches which also yield
approximations that lie on the manifold.



Crouch-Grossman Methods

The numerical approximation of explicit Runge-Kutta methods
is obtained by a composition of the following two basic operations:

• an ”evaluation of the vector field f (Y ) = A(Y )Y ” and

• a ”computation of an update of the form Y + haf (Z )”.

In the context of differential equations on Lie groups, these
methods have the disadvantage that,

even when Y and Z ∈ G , the update Y +haA(Z )Z is in general /∈ G .

The idea of Crouch-Grossman is to replace the ”update”
operation with exp(haA(Z ))Y :



Definition (explicit s-stage Crouch-Grossman Method (1993))

Let bi , aij (i , j = 1, ..., s) be real numbers.
Then, the step Yn 7→ Yn+1 is defined as follows:

Y (i) = exp(hai ,i−1Ki−1) · ... · exp(hai1K1)Yn, Ki = A(Y (i)),

Yn+1 = exp(hbsKs) · ... · exp(hb1K1)Yn.

By construction, the methods of Crouch-Grossman give rise to
approximations Yn which lie exactly on the manifold defined by
the Lie group.





Theorem

Let ci =
∑

j aij . A Crouch-Grossman method has order p (p ≤ 3)
if the following order conditions are satisfied:

• order 1:
∑

i bi = 1

• order 2:
∑

i bici = 1/2

• order 3:
∑

i bic
2
i = 1/3∑

ij biaijcj = 1/6∑
i b

2
i ci + 2

∑
i<j bicibj = 1/3.

Proof:
The order conditions can be found by comparing the Taylor series
expansions of the exact and the numerical solution.
Y (0) = Yn,
Y (h) = Yn + h · A(Yn)Yn + O(h2),
Yn+1 = Yn + h · (

∑
i bi )A(Yn)Yn + O(h2).



The theory of order conditions for Runge-Kutta methods has
been extended to Crouch-Grossman methods.
It turns out that the order conditions for classical Runge-Kutta
methods form a subset of those for Crouch-Grossman methods.

Example (Two Crouch-Grossman methods of order 3)

0
-1/24 -1/24
17/24 161/24 -6

1 -2/3 2/3

0
3/4 3/4
17/24 119/216 17/108

13/51 -2/3 24/17



Munthe-Kaas Methods

Idea:
Write the solution as Y (t) = exp(Ω(t))Y0

and solve numerically the differential equation for Ω(t).

We replace the differential equation Ẏ =(∗) A(Y )Y by a more
complicated one.
However, the nonlinear invariants g(Y ) = 0 of (∗) defining
the Lie group are replaced with linear invariants g ′(I )(Ω) = 0
defining the Lie algebra.
We know that essentially all numerical methods (for example all
explicit and implicit Runge-Kutta methods) automatically conserve
linear invariants.



Now we need two Lemmata from section III.4:

Lemma

The derivative of expΩ =
∑

k≥0
1
k!Ω

k is given by

(
d

dΩ
expΩ)H = (dexpΩ(H))expΩ,

where

dexpΩ(H) =
∑
k≥0

1

(k + 1)!
adk

Ω(H),

and adΩ(A) = [Ω,A] = ΩA− AΩ.
(Convention: ad0

Ω(A) = A)

The series dexpΩ(H) converges for all matrices Ω.



Lemma (Baker (1905))

If the eigenvalues of the linear operator adΩ are different from 2lπi
with l ∈ {±1,±2, ...} , then dexpΩ is invertible.
Furthermore, we have for ‖Ω‖ < π that

dexp−1
Ω (H) =

∑
k≥0

Bk

k!
adk

Ω(H),

where Bk are the Bernoulli numbers, defined by∑
k≥0(Bk/k!)xk = x/(ex − 1).

B0 = 1, B1 = −1

2
, B2 =

1

6
, for odd k > 1 : Bk = 0, B4 = − 1

30
, ...



The following Theorem from section IV.7 is important:

Theorem (Magnus (1954))

The solution of the differential equation Ẏ = A(t)Y (apart from
continuous dependence on t, no assumption on the matrix A(t) is
made) can be written as Y (t) = exp(Ω(t))Y0 with Ω(t) defined by

(∗∗) Ω̇ = dexp−1
Ω (A(t)), Ω(0) = 0.

Proof:
Comparing the derivative of Y (t) = exp(Ω(t))Y0,

Ẏ (t) = (
d

dΩ
expΩ(t))Ω̇(t)Y0 = (dexpΩ(t)(Ω̇(t)))exp(Ω(t))Y0,

with the differential equation we obtain A(t) = dexpΩ(t)(Ω̇(t)).

Applying the inverse operator dexp−1
Ω to this relation yields the

differential equation (∗∗) for Ω(t).



Now we apply these results to our situation:
Ẏ = A(Y )Y , Y (0) = Y0 differential equation on the matrix Lie
group G .
Idea:
Write the solution as Y (t) = exp(Ω(t))Y0

and solve numerically the differential equation for Ω(t).

We write Y (t) = exp(Ω(t))Y0, where Ω(t) is the solution of
Ω̇ = dexp−1

Ω (A(Y (t))), Ω(0) = 0.

Since it is not practical to work with the operator dexp−1
Ω , we

truncate the series

dexp−1
Ω (H) =

∑
k≥0

Bk

k!
adk

Ω(H),

suitably and consider the differential equation:



(∗∗∗) Ω̇ = A(exp(Ω)Y0)+

q∑
k=1

Bk

k!
adk

Ω(A(exp(Ω)Y0)), Ω(0) = 0.

This leads to the following method:

Definition (Munthe-Kaas Method (1999))

The step Yn 7→ Yn+1 is defined as follows:

• Consider (∗ ∗ ∗) with Yn instead of Y0 and apply a
Runge-Kutta method (explicit or implicit) to get an
approximation Ω1 ≈ Ω(h).

• Then define the numerical solution by Yn+1 = exp(Ω1)Yn.





Theorem

The numerical solution of the Munthe-Kaas method lies in G , i.e.,
Yn ∈ G ∀n = 0, 1, 2, ... .

Proof:
It is sufficient to prove that for Y0 ∈ G the numerical solution Ω1

of the Runge-Kutta method applied to (∗ ∗ ∗) lies in G.

Since the Lie bracket [Ω,A] is an operation G × G → G, and since
exp(Ω)Y0 ∈ G for Ω ∈ G, the right-hand expression of (∗ ∗ ∗) is in
G for Ω ∈ G.
Hence, (∗ ∗ ∗) is a differential equation on the vector space G
with solution Ω(t) ∈ G.
All operations in a Runge-Kutta method give results in G, so that
the numerical approximation Ω1 also lies in G.



Theorem

If the Runge-Kutta method is of order p and if the truncation
index in (∗ ∗ ∗) satisfies q ≥ p − 2, then the Munthe-Kaas method
is of order p.

Proof:
For sufficiently smooth A(Y ) we have (Taylor):

Ω(t) = Ω(0)︸︷︷︸
=0

+ Ω̇(0)︸︷︷︸
=A(Y0)+

q∑
k=1

Bk

k!
adk

Ω(0)(A(Y0))︸ ︷︷ ︸
=0

·t+O(t2) = tA(Y0)+O(t2)



Y (t) = Y (0) + tẎ (0) + O(t2) = Y0 + O(t)

[Ω(t),A(Y (t))] = Ω(t)︸︷︷︸
=tA(Y0)+O(t2)

·

=A(Y0)+O(t)︷ ︸︸ ︷
A(

=Y0+O(t)︷︸︸︷
Y (t) )

︸ ︷︷ ︸
=tA(Y0)A(Y0)+O(t2)

−

=A(Y0)+O(t)︷ ︸︸ ︷
A(

=Y0+O(t)︷︸︸︷
Y (t) ) · Ω(t)︸︷︷︸

=tA(Y0)+O(t2)︸ ︷︷ ︸
=A(Y0)tA(Y0)+O(t2)

= O(t2)



This implies that adk
Ω(t)(A(Y (t))) = O(tk+1), so that the

truncation of the series in (∗ ∗ ∗) induces an error of size O(hq+2)
for |t| ≤ h :

∑
k≥0

Bk

k!
adk

Ω(A(exp(Ω)Y0))−
q∑

k=0

Bk

k!
adk

Ω(A(exp(Ω)Y0)) = O(hq+2)

Since we take a Runge-Kutta method (for (∗ ∗ ∗)) of order p, we
get:

Ω1 = Ω(0)︸︷︷︸
=0

+h
∑

i

biki , ki = f (Ω(0)︸︷︷︸
=0

+h
∑

j

aijkj

︸ ︷︷ ︸
=O(h)

),

where f (Ω) =
∑q

k=0
Bk
k! ad

k
Ω(A(exp(Ω)Y0)).



f ∞(Ω) =
∑
k≥0

Bk

k!
adk

Ω(A(exp(Ω)Y0))

k∞i = f ∞(Ω(0)︸︷︷︸
=0

+h
∑

j

aijk
∞
j︸ ︷︷ ︸

=O(h)

)

Ω1 = h
∑

i bi (k
∞
i + O(hq+2)) = h

∑
i

bik
∞
i︸ ︷︷ ︸

=Ωexact(h)+O(hp+1)

+O(hq+3) =

Ωexact(h) + O(hp+1) + O(hq+3)

For q + 2 ≥ p we get:
Y1 = exp(Ω1)Y0 = exp(Ωexact(h) + O(hp+1))Y0 =(Taylor)

(exp(Ωexact(h)) + O(hp+1))Y0 = Y exact(h) + O(hp+1).



The most simple Lie group method is obtained if we take

• the explicit Euler method as basic discretization and

• q = 0 in (∗ ∗ ∗).

This leads to the so-called Lie-Euler method
Yn+1 = exp(hA(Yn))Yn

This is also a special case of the Crouch-Grossman methods.



• Taking the implicit midpoint rule (yn+1 = yn + h( yn+yn+1

2 )) as
the basic discretization and

• q = 0 in (∗ ∗ ∗),

we obtain the Lie midpoint rule
Yn+1 = exp(Ω)Yn, Ω = hA(exp(Ω/2)Yn)

(This is an implicit equation in Ω and has to be solved by fixed
point iteration or by Newton-type methods.)



Example

Example: Motion of a free rigid body, whose centre of mass is at
the origin.

This problem with

• the angular momentum y = (y1, y2, y3)
T in the body frame

and

• the principal moments of inertia I1, I2, I3

can be written (Euler equations) as: ẏ1

ẏ2

ẏ3

 =

 0 y3/I3 −y2/I2
−y3/I3 0 y1/I1
y2/I2 −y1/I1 0

  y1

y2

y3

 ,

which is of the form Ẏ = A(Y )Y with a skew-symmetric matrix
A(Y ).



There are two invariants:

• y2
1 + y2

2 + y2
3

• 1
2(

y2
1
I1

+
y2
2
I2

+
y2
3
I3

) (kinetic energy)

We take I1 = 2, I2 = 1, I3 = 2/3 and the initial condition:
y0 = (cos(1.1), 0, sin(1.1))T .

As coefficients for the 3rd order Munthe-Kaas and
Crouch-Grossman methods we take:
0
3/4 3/4
17/24 119/216 17/108

13/51 -2/3 24/17



For the computation of the matrix exponential we use the
Rodrigues formula:

exp(Ω) = I +
sinα

α
Ω +

1

2
(
sin(α/2)

α/2
)2Ω2

for Ω =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 and α =
√

ω2
1 + ω2

2 + ω2
3.



Figure: CG



Figure: MKq=0



Figure: MKq=1



Now, we want to compare Munthe-Kaas and Crouch-Grossman
methods.



If the CG and MK methods are based on the same set of
Runge-Kutta coefficients:

CG MK

evaluations of A(Y ) s s

computation of matrix exponentials s(s + 1)/2 s

computation of commutators no yes (if q ≥ 1)

Every classical Runge-Kutta method defines a Munthe-Kaas
method of the same order,
but Crouch-Grossman methods of high order are very difficult to
obtain, and need more stages for the same order (if p ≥ 4).


