Lie Group Methods

Geometric Numerical Integration

Seminar WS 05/06

Contents

- Lie Group Methods
- Crouch-Grossman Methods
- Munthe-Kaas Methods
- Example
- Rigid Body

Lie Group Methods

Consider a differential equation

$$
\dot{Y}=A(Y) Y, \quad Y(0)=Y_{0}
$$

on a matrix Lie Group G :

$$
Y_{0} \in G, \quad A(Y) \in \mathcal{G} \quad \forall \mathrm{Y} \in \mathrm{G}
$$

Since this is a special case of differential equations on manifold,

- projection methods as well as
- methods based on local coordinates
are well suited for their numerical treatment.
Now we study further approaches which also yield approximations that lie on the manifold.

Crouch-Grossman Methods

The numerical approximation of explicit Runge-Kutta methods is obtained by a composition of the following two basic operations:

- an "evaluation of the vector field $f(Y)=A(Y) Y$ " and
- a "computation of an update of the form $Y+\operatorname{haf}(Z)$ ".

In the context of differential equations on Lie groups, these methods have the disadvantage that,
even when Y and $Z \in G$, the update $Y+h a A(Z) Z$ is in general $\notin G$.

The idea of Crouch-Grossman is to replace the "update" operation with $\exp (h a A(Z)) Y$:

Definition (explicit s-stage Crouch-Grossman Method (1993))

Let $b_{i}, a_{i j}(i, j=1, \ldots, s)$ be real numbers.
Then, the step $Y_{n} \mapsto Y_{n+1}$ is defined as follows:

$$
\begin{gathered}
Y^{(i)}=\exp \left(h a_{i, i-1} K_{i-1}\right) \cdot \ldots \cdot \exp \left(h a_{i 1} K_{1}\right) Y_{n}, \quad K_{i}=A\left(Y^{(i)}\right), \\
Y_{n+1}=\exp \left(h b_{s} K_{s}\right) \cdot \ldots \cdot \exp \left(h b_{1} K_{1}\right) Y_{n}
\end{gathered}
$$

By construction, the methods of Crouch-Grossman give rise to approximations Y_{n} which lie exactly on the manifold defined by the Lie group.

Theorem

Let $c_{i}=\sum_{j} a_{i j}$. A Crouch-Grossman method has order $p(p \leq 3)$ if the following order conditions are satisfied:

- order 1: $\sum_{i} b_{i}=1$
- order $2: \sum_{i} b_{i} c_{i}=1 / 2$
- order 3: $\begin{aligned} & \sum_{i} b_{i} c_{i}^{2}=1 / 3 \\ & \sum_{i j} b_{i} a_{i j} c_{j}=1 / 6\end{aligned}$

$$
\sum_{i} b_{i}^{2} c_{i}+2 \sum_{i<j} b_{i} c_{i} b_{j}=1 / 3
$$

Proof:
The order conditions can be found by comparing the Taylor series expansions of the exact and the numerical solution.
$Y(0)=Y_{n}$,
$Y(h)=Y_{n}+h \cdot A\left(Y_{n}\right) Y_{n}+O\left(h^{2}\right)$,
$Y_{n+1}=Y_{n}+h \cdot\left(\sum_{i} b_{i}\right) A\left(Y_{n}\right) Y_{n}+O\left(h^{2}\right)$.

The theory of order conditions for Runge-Kutta methods has been extended to Crouch-Grossman methods.
It turns out that the order conditions for classical Runge-Kutta methods form a subset of those for Crouch-Grossman methods.
Example (Two Crouch-Grossman methods of order 3)

0			
$-1 / 24$	$-1 / 24$		
$17 / 24$	$161 / 24$	-6	
	1	$-2 / 3$	$2 / 3$
0			
$3 / 4$	$3 / 4$		
$17 / 24$	$119 / 216$	$17 / 108$	
	$13 / 51$	$-2 / 3$	$24 / 17$

Munthe-Kaas Methods

```
Idea:
Write the solution as Y(t)=\operatorname{exp}(\Omega(t))\mp@subsup{Y}{0}{}
and solve numerically the differential equation for }\Omega(t)\mathrm{ .
```

We replace the differential equation $\dot{Y}={ }^{(*)} A(Y) Y$ by a more complicated one.
However, the nonlinear invariants $g(Y)=0$ of $(*)$ defining the Lie group are replaced with linear invariants $g^{\prime}(I)(\Omega)=0$ defining the Lie algebra.
We know that essentially all numerical methods (for example all explicit and implicit Runge-Kutta methods) automatically conserve linear invariants.

Now we need two Lemmata from section III.4:

Lemma

The derivative of $\exp \Omega=\sum_{k \geq 0} \frac{1}{k!} \Omega^{k}$ is given by

$$
\left(\frac{d}{d \Omega} \exp \Omega\right) H=\left(\operatorname{dexp}_{\Omega}(H)\right) \exp \Omega
$$

where

$$
\operatorname{dexp}_{\Omega}(H)=\sum_{k \geq 0} \frac{1}{(k+1)!} a d_{\Omega}^{k}(H)
$$

and $\operatorname{ad}_{\Omega}(A)=[\Omega, A]=\Omega A-A \Omega$.
(Convention: $\operatorname{ad}_{\Omega}^{0}(A)=A$)
The series $\operatorname{dexp}_{\Omega}(H)$ converges for all matrices Ω.

Lemma (Baker (1905))

If the eigenvalues of the linear operator $\operatorname{ad}_{\Omega}$ are different from $21 \pi i$ with $I \in\{ \pm 1, \pm 2, \ldots\}$, then $\operatorname{dexp}_{\Omega}$ is invertible.
Furthermore, we have for $\|\Omega\|<\pi$ that

$$
\operatorname{dexp}_{\Omega}^{-1}(H)=\sum_{k \geq 0} \frac{B_{k}}{k!} a d_{\Omega}^{k}(H),
$$

where B_{k} are the Bernoulli numbers, defined by
$\sum_{k \geq 0}\left(B_{k} / k!\right) x^{k}=x /\left(e^{x}-1\right)$.
$B_{0}=1, B_{1}=-\frac{1}{2}, B_{2}=\frac{1}{6}$, for odd $k>1: B_{k}=0, B_{4}=-\frac{1}{30}, \ldots$

The following Theorem from section IV. 7 is important:

Theorem (Magnus (1954))

The solution of the differential equation $\dot{Y}=A(t) Y$ (apart from continuous dependence on t, no assumption on the matrix $A(t)$ is made) can be written as $Y(t)=\exp (\Omega(t)) Y_{0}$ with $\Omega(t)$ defined by

$$
(* *) \dot{\Omega}=\operatorname{dexp}_{\Omega}^{-1}(A(t)), \quad \Omega(0)=0
$$

Proof:
Comparing the derivative of $Y(t)=\exp (\Omega(t)) Y_{0}$,

$$
\dot{Y}(t)=\left(\frac{d}{d \Omega} \exp \Omega(t)\right) \dot{\Omega}(t) Y_{0}=\left(\operatorname{dexp}_{\Omega(t)}(\dot{\Omega}(t))\right) \exp (\Omega(t)) Y_{0}
$$

with the differential equation we obtain $A(t)=\operatorname{dexp}_{\Omega(t)}(\dot{\Omega}(t))$. Applying the inverse operator $\operatorname{dexp}_{\Omega}^{-1}$ to this relation yields the differential equation $(* *)$ for $\Omega(t)$.

Now we apply these results to our situation:
$\dot{Y}=A(Y) Y, Y(0)=Y_{0}$ differential equation on the matrix Lie group G.
Idea:
Write the solution as $Y(t)=\exp (\Omega(t)) Y_{0}$
and solve numerically the differential equation for $\Omega(t)$.

We write $Y(t)=\exp (\Omega(t)) Y_{0}$, where $\Omega(t)$ is the solution of $\dot{\Omega}=\operatorname{dexp}_{\Omega}^{-1}(A(Y(t))), \quad \Omega(0)=0$.

Since it is not practical to work with the operator $\operatorname{dexp}_{\Omega}^{-1}$, we truncate the series

$$
\operatorname{dexp}_{\Omega}^{-1}(H)=\sum_{k \geq 0} \frac{B_{k}}{k!} a d_{\Omega}^{k}(H)
$$

suitably and consider the differential equation:

$$
(* * *) \dot{\Omega}=A\left(\exp (\Omega) Y_{0}\right)+\sum_{k=1}^{q} \frac{B_{k}}{k!} a d_{\Omega}^{k}\left(A\left(\exp (\Omega) Y_{0}\right)\right), \quad \Omega(0)=0
$$

This leads to the following method:

Definition (Munthe-Kaas Method (1999))

The step $Y_{n} \mapsto Y_{n+1}$ is defined as follows:

- Consider $(* * *)$ with Y_{n} instead of Y_{0} and apply a Runge-Kutta method (explicit or implicit) to get an approximation $\Omega_{1} \approx \Omega(h)$.
- Then define the numerical solution by $Y_{n+1}=\exp \left(\Omega_{1}\right) Y_{n}$.

Theorem

The numerical solution of the Munthe-Kaas method lies in G, i.e., $Y_{n} \in G \forall n=0,1,2, \ldots$.

Proof:
It is sufficient to prove that for $Y_{0} \in G$ the numerical solution Ω_{1} of the Runge-Kutta method applied to $(* * *)$ lies in \mathcal{G}.

Since the Lie bracket $[\Omega, A]$ is an operation $\mathcal{G} \times \mathcal{G} \rightarrow \mathcal{G}$, and since $\exp (\Omega) Y_{0} \in G$ for $\Omega \in \mathcal{G}$, the right-hand expression of $(* * *)$ is in \mathcal{G} for $\Omega \in \mathcal{G}$.
Hence, $(* * *)$ is a differential equation on the vector space \mathcal{G} with solution $\Omega(t) \in \mathcal{G}$.
All operations in a Runge-Kutta method give results in \mathcal{G}, so that the numerical approximation Ω_{1} also lies in \mathcal{G}.

Theorem

If the Runge-Kutta method is of order p and if the truncation index in $(* * *)$ satisfies $q \geq p-2$, then the Munthe-Kaas method is of order p.

Proof:
For sufficiently smooth $A(Y)$ we have (Taylor):

$$
\begin{aligned}
\Omega(t)=\underbrace{\Omega(0)}_{=0}+\underbrace{\underbrace{\dot{\Omega}(0)}}_{=0} \cdot t+O\left(t^{2}\right)=t A\left(Y_{0}\right)+O\left(t^{2}\right) \\
=A\left(Y_{0}\right)+\underbrace{\sum_{k=1}^{q} \frac{B_{k}}{k!} a d_{\Omega(0)}^{k}\left(A\left(Y_{0}\right)\right)}
\end{aligned}
$$

$$
\begin{aligned}
& Y(t)=Y(0)+t \dot{Y}(0)+O\left(t^{2}\right)=Y_{0}+O(t) \\
& \overbrace{=Y_{0}+O(t)}^{=A\left(Y_{0}\right)+O(t)} \\
& {[\Omega(t), A(Y(t))]=\underbrace{\Omega(t)} \cdot A(\overbrace{Y(t)})} \\
& =t A\left(Y_{0}\right)+O\left(t^{2}\right) \\
& =t A\left(Y_{0}\right) A\left(Y_{0}\right)+O\left(t^{2}\right) \\
& =A\left(Y_{0}\right)+O(t) \\
& \overbrace{=Y_{0}+O(t)} \\
& \underbrace{-\overbrace{=t A\left(Y_{0}\right)+O\left(t^{2}\right)}^{\overbrace{Y(t)}^{\Omega(t)}) \cdot t^{2})}=O\left(t^{2}\right)}_{=A\left(Y_{0}\right) t A\left(Y_{0}\right)+O\left(t^{2}\right)}=
\end{aligned}
$$

This implies that $a d_{\Omega(t)}^{k}(A(Y(t)))=O\left(t^{k+1}\right)$, so that the truncation of the series in $(* * *)$ induces an error of size $O\left(h^{q+2}\right)$ for $|t| \leq h$:
$\sum_{k \geq 0} \frac{B_{k}}{k!} \operatorname{ad} \Omega_{\Omega}^{k}\left(A\left(\exp (\Omega) Y_{0}\right)\right)-\sum_{k=0}^{q} \frac{B_{k}}{k!} \operatorname{ad} \Omega_{\Omega}^{k}\left(A\left(\exp (\Omega) Y_{0}\right)\right)=O\left(h^{q+2}\right)$
Since we take a Runge-Kutta method (for $(* * *)$) of order p, we get:

$$
\Omega_{1}=\underbrace{\Omega(0)}_{=0}+h \sum_{i} b_{i} k_{i}, \quad k_{i}=f(\underbrace{(\underbrace{\Omega(0)}_{=0}+h \sum_{j} a_{i j} k_{j}}_{=O(h)}),
$$

where $f(\Omega)=\sum_{k=0}^{q} \frac{B_{k}}{k!} a d_{\Omega}^{k}\left(A\left(\exp (\Omega) Y_{0}\right)\right)$.

$$
\begin{gathered}
f^{\infty}(\Omega)=\sum_{k \geq 0} \frac{B_{k}}{k!} a d_{\Omega}^{k}\left(A\left(\exp (\Omega) Y_{0}\right)\right) \\
k_{i}^{\infty}=f^{\infty}(\underbrace{\Omega(0)}_{=O(h)}+h \sum_{j} a_{i j} k_{j}^{\infty}) \\
\Omega_{1}=h \sum_{i} b_{i}\left(k_{i}^{\infty}+O\left(h^{q+2}\right)\right)=\underbrace{h \sum_{i} b_{i} k_{i}^{\infty}}_{=\Omega^{\text {exact }}(h)+O\left(h^{p+1}\right)}+O\left(h^{q+3}\right)= \\
\Omega^{\text {exact }}(h)+O\left(h^{p+1}\right)+O\left(h^{q+3}\right)
\end{gathered}
$$

For $q+2 \geq p$ we get:
$Y_{1}=\exp \left(\Omega_{1}\right) Y_{0}=\exp \left(\Omega^{\text {exact }}(h)+O\left(h^{p+1}\right)\right) Y_{0}=($ Taylor $)$
$\left(\exp \left(\Omega^{\text {exact }}(h)\right)+O\left(h^{p+1}\right)\right) Y_{0}=Y^{\text {exact }}(h)+O\left(h^{p+1}\right)$.

The most simple Lie group method is obtained if we take

- the explicit Euler method as basic discretization and
- $q=0$ in $(* * *)$.

This leads to the so-called Lie-Euler method $Y_{n+1}=\exp \left(h A\left(Y_{n}\right)\right) Y_{n}$

This is also a special case of the Crouch-Grossman methods.

- Taking the implicit midpoint rule $\left(y_{n+1}=y_{n}+h\left(\frac{y_{n}+y_{n+1}}{2}\right)\right)$ as the basic discretization and
- $q=0$ in $(* * *)$,
we obtain the Lie midpoint rule
$Y_{n+1}=\exp (\Omega) Y_{n}, \quad \Omega=h A\left(\exp (\Omega / 2) Y_{n}\right)$
(This is an implicit equation in Ω and has to be solved by fixed point iteration or by Newton-type methods.)

Example

Example: Motion of a free rigid body, whose centre of mass is at the origin.

This problem with

- the angular momentum $y=\left(y_{1}, y_{2}, y_{3}\right)^{T}$ in the body frame and
- the principal moments of inertia I_{1}, I_{2}, l_{3}
can be written (Euler equations) as:

$$
\left(\begin{array}{l}
\dot{y}_{1} \\
\dot{y}_{2} \\
\dot{y}_{3}
\end{array}\right)=\left(\begin{array}{lll}
0 & y_{3} / l_{3} & -y_{2} / l_{2} \\
-y_{3} / l_{3} & 0 & y_{1} / l_{1} \\
y_{2} / l_{2} & -y_{1} / l_{1} & 0
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right),
$$

which is of the form $\dot{Y}=A(Y) Y$ with a skew-symmetric matrix $A(Y)$.

There are two invariants:

- $y_{1}^{2}+y_{2}^{2}+y_{3}^{2}$
- $\frac{1}{2}\left(\frac{y_{1}^{2}}{l_{1}}+\frac{y_{2}^{2}}{l_{2}}+\frac{y_{3}^{2}}{l_{3}}\right)$ (kinetic energy)

We take $I_{1}=2, I_{2}=1, I_{3}=2 / 3$ and the initial condition: $y_{0}=(\cos (1.1), 0, \sin (1.1))^{T}$.

As coefficients for the 3rd order Munthe-Kaas and Crouch-Grossman methods we take:

0			
$3 / 4$	$3 / 4$		
$17 / 24$	$119 / 216$	$17 / 108$	
	$13 / 51$	$-2 / 3$	$24 / 17$

For the computation of the matrix exponential we use the Rodrigues formula:

$$
\begin{gathered}
\exp (\Omega)=I+\frac{\sin \alpha}{\alpha} \Omega+\frac{1}{2}\left(\frac{\sin (\alpha / 2)}{\alpha / 2}\right)^{2} \Omega^{2} \\
\text { for } \Omega=\left(\begin{array}{lll}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right) \text { and } \alpha=\sqrt{\omega_{1}^{2}+\omega_{2}^{2}+\omega_{3}^{2}} .
\end{gathered}
$$

Figure: CG

Figure: $\mathrm{MKq}=0$

Figure: $\mathrm{MKq}=1$

Now, we want to compare Munthe-Kaas and Crouch-Grossman methods.

If the CG and MK methods are based on the same set of Runge-Kutta coefficients:

	CG	MK
evaluations of $A(Y)$	s	s
computation of matrix exponentials	$s(s+1) / 2$	s
computation of commutators	no	yes (if $q \geq 1$)

Every classical Runge-Kutta method defines a Munthe-Kaas method of the same order, but Crouch-Grossman methods of high order are very difficult to obtain, and need more stages for the same order (if $p \geq 4$).

