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Lie Group Methods

Consider a differential equation
Y=AY)Y, Y0) =Y
on a matrix Lie Group G :
Yo € G, AlY)eG VYYeG.

Since this is a special case of differential equations on manifold,
e projection methods as well as
¢ methods based on local coordinates

are well suited for their numerical treatment.

Now we study further approaches which also yield
approximations that lie on the manifold.



Crouch-Grossman Methods

The numerical approximation of explicit Runge-Kutta methods
is obtained by a composition of the following two basic operations:
e an "evaluation of the vector field f(Y) = A(Y)Y"” and

¢ a "computation of an update of the form Y + haf(Z)

In the context of differential equations on Lie groups, these
methods have the disadvantage that,

even when Y and Z € G, the update Y+haA(Z)Z is in general ¢ G.

The idea of Crouch-Grossman is to replace the "update”
operation with exp(haA(Z))Y :



Definition (explicit s-stage Crouch-Grossman Method (1993))

Let bi,a; (i,j =1,...,s) be real numbers.
Then, the step Y, — Y11 is defined as follows:

Y(’) = exp(ha,-,,-,lK,-,l) Ca exp(ha,-lKl)Y,,, K,' = A( Y(i)),

Ynt1 = exp(hbsKs) - ... - exp(hbi K1) Y.

By construction, the methods of Crouch-Grossman give rise to
approximations Y, which lie exactly on the manifold defined by
the Lie group.
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Yooy = e (hhske ). exp(hbi) Y,



Theorem

Let ¢; =3_; aj. A Crouch-Grossman method has order p (p < 3)
if the following order conditions are satisfied:
e order 1: Y, bj=1
e order 2: ). bici=1/2
e order 3: >, bic? =1/3
2_jjbiajc;=1/6
E,- b,-2C,' + 22i<j b,'C,'bj = 1/3.

Proof:

The order conditions can be found by comparing the Taylor series
expansions of the exact and the numerical solution.

Y(O) = Y,

Y(h) = Yo+ h-A(Ya)Ya + O(H?),

Y1 = Yo+ h- (32 b)A(Yn)Ya + O(h?).
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The theory of order conditions for Runge-Kutta methods has
been extended to Crouch-Grossman methods.

It turns out that the order conditions for classical Runge-Kutta
methods form a subset of those for Crouch-Grossman methods.

Example (Two Crouch-Grossman methods of order 3)

0
-1/24 | -1/24
17/24 | 161/24 -6
1 2/3 2/3
0
3/4 | 3/4
17/24 | 119/216 17/108
13/51  -2/3  24/17



Munthe-Kaas Methods

Idea:
Write the solution as Y(t) = exp(Q2(t)) Yo
and solve numerically the differential equation for Q(t).

We replace the differential equation Y =(*) A(Y)Y by a more
complicated one.

However, the nonlinear invariants g(Y) = 0 of (x) defining
the Lie group are replaced with linear invariants g/'(/)(Q2) =0
defining the Lie algebra.

We know that essentially all numerical methods (for example all
explicit and implicit Runge-Kutta methods) automatically conserve
linear invariants.



Now we need two Lemmata from section |l1.4:
Lemma

The derivative of exp§2 = Zkzo %Qk is given by

(-2 exp)H = (dexp(H))exp,
where
dexpq(H Z (k+ adQ H),

k>0

and adq(A) = [Q, A] = QA — AQ.
(Convention: ad3(A) = A)

The series dexpq(H) converges for all matrices Q.



Lemma (Baker (1905))

If the eigenvalues of the linear operator adq are different from 2/
with | € {+1,42, ...}, then dexpq is invertible.
Furthermore, we have for ||Q|| < 7 that

_ B
dexpg'(H) =Y k—fadg(H),
k>0

where By are the Bernoulli numbers, defined by
Zkzo(Bk/k!)Xk = x/(e* = 1).

1 1 1
By =1, 312—5, 32:6, forodd k >1: B, =0, 842—5,...



The following Theorem from section V.7 is important:
Theorem (Magnus (1954))

The solution of the differential equation Y = A(t)Y (apart from
continuous dependence on t, no assumption on the matrix A(t) is
made) can be written as Y (t) = exp(Q2(t)) Yo with Q(t) defined by

(%) Q = dexpg (A(t)), Q(0) = 0.

Proof:
Comparing the derivative of Y(t) = exp(2(t)) Yo,

(1) = (5 expQ£))42(t) Yo = (dexpage)(A1)exp(Q(£)) Yo,

with the differential equation we obtain A(t) = dexpq(s)(£2(t)).

Applying the inverse operator dexp§1 to this relation yields the
differential equation (xx) for Q(t).



Now we apply these results to our situation:
Y = A(Y)Y, Y(0) = Y differential equation on the matrix Lie
group G.

Idea:

Write the solution as Y(t) = exp(Q2(t)) Yo

and solve numerically the differential equation for Q(t).

We write Y(t) = exp(£2(t)) Yo, where Q(t) is the solution of
Q = dexpg (A(Y(1))), Q(0)=0.

Since it is not practical to work with the operator dexpgl, we
truncate the series

dexpg'(H) = —ads(H),
k>0

suitably and consider the differential equation:



q
(+5%) Q= A(exp(Q) Y0)+Z %adé(A(exp(Q) Yo0)), €(0)=0.
k=1

This leads to the following method:
Definition (Munthe-Kaas Method (1999))

The step Y, — Y,11 is defined as follows:

o Consider (x * *) with Y} instead of Yy and apply a
Runge-Kutta method (explicit or implicit) to get an
approximation ; ~ Q(h).

e Then define the numerical solution by Y11 = exp(21) Y.






Theorem

The numerical solution of the Munthe-Kaas method lies in G, i.e.,
Y, e GVYn=0,1,2,....

Proof:
It is sufficient to prove that for Yy € G the numerical solution €4
of the Runge-Kutta method applied to (* * *) lies in G.

Since the Lie bracket [, A] is an operation G x G — G, and since

exp(Q) Yo € G for Q € G, the right-hand expression of (x * %) is in
G for Q eg.

Hence, (* * x) is a differential equation on the vector space G
with solution Q(t) € G.

All operations in a Runge-Kutta method give results in G, so that

the numerical approximation €2; also lies in G.



Theorem

If the Runge-Kutta method is of order p and if the truncation
index in (% x %) satisfies g > p — 2, then the Munthe-Kaas method
is of order p.

Proof:
For sufficiently smooth A(Y') we have (Taylor):

Q(t) :@+ 9@ t+0(t%) = tA(Yo)+0(t?)
=0

A(Yo) +Z adQ A(Y5))




Y(t) = Y(0) + tY(0) + O(t?) = Yo + O(t)

=A(Y0)+0(t)
——
:Y0+O(t)
~
[Q(t), A(Y(t)] = Q)  -AC Y(t) )
~—~
=tA(Y0)+O0(t?)
=tA(Y0)A(Y0)+0(t?)
=A(Y0)+0(t)
——
=Yo+0(t)
~ =
—A( Y(8) ) Q@) =0(t?)
~—~—~
=tA(Yo)+0(t?)

=A(Yo)tA(Yo)+0(12)



This implies that adgkz(t)(A( Y(t))) = O(tk*1), so that the
truncation of the series in (* * %) induces an error of size O(h9+?)

for [t| < h:
. By
Z 7 A(exp(Q2) Yo)) = O(hq+2)

Since we take a Runge-Kutta method (for (x * x)) of order p, we
get:

Q1 =Q0)+h Y biki, ki=F(QO0)+h> ajk;),
1= Q(0) Z (£2(0) Ej:“)

=0 =0

=0(h)

where f(Q) = 327_, Zradk(A(exp(Q) Yo)).



() = Y 2 adk(Alew()Y6))
k>0

kP = F(Q0) +h > a;ki®)
=0 j

=0(h)
Q= h3 bi(k® + O(h*2)) = h) bik®  +0(h7+3) =

——
:Qexact(h)+o(hp+1)

Qexact(h) + O(hp+1) + O(hq+3)

For g + 2 > p we get:
Vi = exp(S1) Yo = exp(Q%(h) + O(h*1)) Yo =(1ayior)
(exp(Q82<t(h)) + O(hPT1)) Yy = Y&t(h) + O(hPTL).



The most simple Lie group method is obtained if we take
e the explicit Euler method as basic discretization and

e g=0in ().

This leads to the so-called Lie-Euler method
Yn—i—l — exp(hA( Yn))yn ‘

This is also a special case of the Crouch-Grossman methods.



e Taking the implicit midpoint rule (y,11 = y, + h(%)) as
the basic discretization and

e g=0in (x*x%),

we obtain the Lie midpoint rule
’ Yor1 = exp(Q)Y,, Q= hA(exp(2/2)Y,) ‘

(This is an implicit equation in € and has to be solved by fixed
point iteration or by Newton-type methods.)



Example

Example: Motion of a free rigid body, whose centre of mass is at
the origin.

This problem with

o the angular momentum y = (y1,y»,y3)" in the body frame
and

e the principal moments of inertia 1, b, 5

can be written (Euler equations) as:

%1 0 s/l —y»/h %1
v | = —y3/k 0 yi/h v,
V3 yo/b  —y1/h 0O ¥3

which is of the form Y = A(Y)Y with a skew-symmetric matrix
A(Y).



There are two invariants:
2 2 2
° yi +Y5+ Y3

2 2 2
J %(%1 + },% + };—;) (kinetic energy)

We take h =2, h =1, I3 =2/3 and the initial condition:
yo = (cos(1.1),0,sin(1.1)) 7.

As coefficients for the 3rd order Munthe-Kaas and

Crouch-Grossman methods we take:
0

3/4 | 3/4
17/24 | 119/216 17/108
| 13/51  -2/3 24/17




For the computation of the matrix exponential we use the
Rodrigues formula:

sina 1 sin(c/2)

0 —Ww3 Wy

forQ=1 w3 0 —wi | and a = y/w? + w3 + wl.

—Wwy w1 0






Figure: MKq=0






Now, we want to compare Munthe-Kaas and Crouch-Grossman
methods.



If the CG and MK methods are based on the same set of
Runge-Kutta coefficients:

CG MK
evaluations of A(Y) s s
computation of matrix exponentials | s(s +1)/2 | s
computation of commutators no yes (if g > 1)

Every classical Runge-Kutta method defines a Munthe-Kaas
method of the same order,

but Crouch-Grossman methods of high order are very difficult to
obtain, and need more stages for the same order (if p > 4).



