
1 Linear Multistep Methods

1.1 Cauchy Problem

Consider the autonomous Cauchy problem:
{

y′ = f(y)
y(0) = y0

(1)

where f : Rd → Rd satisfies a local Lipschitz conditio, in order to guarantee existence and
uniqueness of solutions.
Given a step-size h > 0 and a time-step k ∈ N0, we define a time-grid as G = {tk := kh}.
We aim to construct a grid function G → Rd.

As a notational convention, we use fn := f(yn).

Definition 1. A k-step Linear Multistep Method is a numerical method for the ap-
proximation of (1) of the form

k∑

l=0

αlyj+l = h

k∑

l=0

βlfj+l, (2)

where αl, βl ∈ R, and αk = 1.

If βk 6= 0, we call this an implicit method, otherwise it is an explicit method. For the
implicit case, a unique solution for yk exists for sufficiently small h.

1.2 Consistency

Suppose that y is a solution of (1). We are interested in the residual generated by using
exact values of the solution in our numerical method. We consider

τ(h; y0) =
k∑

l=0

αly(tl)− h

k∑

l=0

βly(tl)

Definition 2. We say a linear multistep method for (1) is consistent of order p provided

τ(h; y0) = o(hp+1).

1.2.1 Necessary conditions for consistency

Definition 3. Given a LMSM (2), we define the characteristic polynomials of the
method to be:

ρ(ξ) =
k∑

l=0

αlξ
l; σ(ξ) =

k∑

l=0

βlξ
l.

Letting f ≡ 0 on the right-hand side of (1), it follows that
∑k

l=0 αl = 0, is a necessary
condition for consistency of (2). Or equivalently, ρ(1) = 0. If f(y) = y, then we see that
consistency implies ρ′(1)− σ(1) = 0.
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1.3 Stability

Suppose f = 0. We are naturally led to the homogeneous linear difference equation

k∑
j=0

αjyj = 0. (3)

If ζ is a root of ρ, then yj = ζj is a solution of the homogeneous linear difference equation.
In particular, if the polynomial ρ(ζ) splits with roots {ζ0, . . . , ζk−1}, then

yj = γ0ζ
j
0 + γ1ζ

j
1 + · · ·+ γk−1ζ

j
k−1

is again a solution to the difference equation, by linearity.

Remark 1. If ρ(ζ) = 0 with |ζ| > 1, then slight perturbations of the initial conditions of
the problem are amplified exponentially by the method. If |ζ| = 1, and ρ′(ζ) = 0 as well,
then slight perturbations induce polynomial growth in the outputs of the method. Both of
these cases are undesirable in a linear multistep method, especially in the case where exact
solutions of (1) decay at infinity.

Definition 4. A Linear Multistep Method is stable provided:

(i) ρ(ζ) = 0 ⇒ |ζ| ≤ 1;

(ii) ρ(ζ) = 0 ∧ |ζ| = 1 ⇒ ζ is a simple zero.

1.4 Convergence

”Consistency + Stability =⇒ Convergence”

More precisely, let h > 0 and define εk = yk − y(kh), for 0 ≤ k ≤ T/h. Then for a sta-
ble LMSM of order p we have:

max
0≤k≤T/h

‖ek‖ = C( max
0<l<k−1

‖yl − y(tl)‖+ hp),

where C > 0 is a constant independent of h.

Theorem 1. (Dahlquist barrier)The order of a stable k-step LMSM can be at most





k + 2, k even
k + 1, k odd

k, if the method is explicit, i.e. βk = 0
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1.5 Stability Preservation

When will multistep methods be stiff integrators? That is, if the Cauchy problem is asymp-
totically stable, when can we expect that multistep approximations of the solutions will also
decay at infinity?
Consider the linear model problem:

y′ = λy. (4)

For Reλ < 0, solutions of the model problem decay at infinity. A linear k-step method for
this problem has the form:

k∑

l=0

αlyj+l = λh

k∑

l=0

βlyj+l

Or equivalently,
k∑

l=0

(αl − λhβl)yj+l = 0.

This is a homogeneous linear difference equation. As before, we are naturally led to inves-
tigate the zeros of the polynomial ρz(ζ) := ρ(ζ) − zσ(ζ) ∈ Polyk. We define the stability
domain to be the set

A := {λh : |yn| → 0, as tn →∞}.
Desirable:

(i) A = C− A-stability

(ii) Re(z) → −∞ ⇒ yk → 0 *

Remark 2. Explicit linear multistep methods cannot be A-stable!

Theorem 2. Dahlquist Any A-stable linear multistep method has order at most 2.

In fact, the only linear multistep method that is A-stable and achieves order 2 is the
one-step method

yk+1 − yk =
1

2
(f(yk) + f(yk+1)),

also known as the implicit trapezoidal rule.
Big Disappointment!
In general, linear multistep methods have to settle for A(ϑ)-stability, i.e. the stability region
contains a wedge
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1.6 Backwards Differentiation Formulae Methods

Given y0, . . . , yk−1, fix yk by
yk = p(tk),

where p ∈ Polyk, with p(tj) = yj, for j = 0, . . . , k − 1 and p′(tk) = f(p(tk)). To show
this polynomial exists, one has to invoke a fixed point argument. However, k+1 conditions
uniquely determine a polynomial p. Let lj be a Lagrange basis polynomial for the point tj,
then

p(t) =
k∑

j=0

yjlj(t)

and

p′(tk) =
k∑

j=0

yjl
′
j(tk) = f(yk).

This is a linear multistep method with σ(ξ) = ξk which is stable for k ≤ 6 and A(ϑ)-stable
(The larger the k, the smaller the ϑ)
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