Discrete and Continuous Laplace transform
 Proseminar on Numerical Convolution

Jan Ernest
ETH Zürich

October 26, 2009

Laplace transform - Definition

Definition

Let $u:[0, \infty] \rightarrow \mathbb{R}$ and piecewise continuous. Then the Laplace transform of u is given by:

$$
\begin{equation*}
\mathcal{L}(u)=\int_{0}^{\infty} e^{-s t} u(t) d t \tag{1}
\end{equation*}
$$

Comments:

- $\mathcal{L}(u)$ is a function of the complex variable $s=x+i y$

$$
\begin{align*}
\mathcal{L}(u) & =\int_{0}^{\infty} e^{-x t}(\cos (y t)-i \sin (y t)) u(t) d t \\
& =F(x, y)+i G(x, y) \tag{2}
\end{align*}
$$

$\rightarrow \quad$ When does the integral (1) exist?

Existence conditions

To ensure that $\mathcal{L}(u)=\int_{0}^{\infty} e^{-s t} u(t) d t[\rightarrow(1)]$ exists, we impose the following conditions:

Let $u(t)$ be a piecewise continuous function on $[0, \infty)$
(1) Let $c_{1}, c_{2} \in \mathbb{R}$ s.t. for $t \rightarrow \infty$

$$
\begin{equation*}
|u(t)|<c_{1} e^{c_{2} t} \tag{3}
\end{equation*}
$$

(2) For any finite T

$$
\begin{equation*}
\int_{0}^{T}|u(t)| d t<\infty \tag{4}
\end{equation*}
$$

$\rightarrow(1)$ converges absolutely and uniformly for $\operatorname{Re}(s)>c_{2}$, since

$$
\begin{equation*}
\int_{0}^{\infty}\left|e^{-s t} u(t)\right| d t \leq c_{1} \int_{0}^{\infty}\left|e^{\left(c_{2}-\operatorname{Re}(s)\right) t}\right| d t<\infty \tag{5}
\end{equation*}
$$

Comparison: Fourier transform

Definition
The Fourier transform of a function is given by:

$$
\begin{equation*}
\hat{f}(\omega)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} f(t) \mathrm{e}^{-\mathrm{i} \omega t} \mathrm{~d} t \tag{6}
\end{equation*}
$$

where f belongs to the so called Schwartz space

$$
\begin{equation*}
\mathcal{S}\left(\mathbb{R}^{n}\right)=\left\{f \in C^{\infty}\left(\mathbb{R}^{n}\right) \mid\|f\|_{\alpha, \beta}<\infty \forall \alpha, \beta\right\} \tag{7}
\end{equation*}
$$

where

$$
\|f\|_{\alpha, \beta}=\sup _{x \in \mathbf{R}^{n}}\left|x^{\alpha} D^{\beta} f(x)\right|
$$

\rightarrow Laplace transform is much more powerful than Fourier transform

Properties of Laplace transform - 1

- Linearity

$$
\begin{gather*}
\mathcal{L}(u+v)=\mathcal{L}(u)+\mathcal{L}(v) \tag{8}\\
\mathcal{L}(\lambda u)=\lambda \mathcal{L}(u)
\end{gather*}
$$

- Uniqueness [Lerch's Theorem]

Distinct continuous functions on $[0, \infty)$ have distinct LTs (\rightarrow Be careful transforming functions with discontinuities)

- Translation in s- and t-space

$$
\begin{gather*}
\mathcal{L}\left(e^{-b t} u(t)\right)=F(s+b) \tag{9}\\
\int_{1}^{\infty} e^{-s t} u(t-1) d t=e^{-s} L(u) \tag{10}
\end{gather*}
$$

Properties of Laplace transform - 2

- Laplace transform of integral

$$
\begin{equation*}
\mathcal{L}\left(\int_{0}^{T} f(t) d t\right)=F(s) / s \tag{11}
\end{equation*}
$$

- Multiplication by t

$$
\begin{equation*}
\mathcal{L}(t f(t))=-\frac{d F(s)}{d s} \tag{12}
\end{equation*}
$$

- Division by t

$$
\begin{equation*}
\mathcal{L}\left(\frac{f(t)}{t}\right)=\int_{0}^{s} F(p) d p \tag{13}
\end{equation*}
$$

Some transformed functions

For basic functions, the Laplace transform has been calculated using equation (1) and properties (5) to (13).

$\mathrm{f}(\mathrm{t})$	$\mathrm{F}(\mathrm{s})$	$\mathrm{f}(\mathrm{t})$	$\mathrm{F}(\mathrm{s})$
$\frac{n!}{t^{n+1}}(n \in N)$	$\sin \omega t$	$\frac{\omega}{s^{2}+\omega^{2}}$	
$e^{-a t}$	$\frac{1}{s+a}$	$\cos \omega t$	$\frac{s}{s^{2}+\omega^{2}}$
$t e^{-a t}$	$\frac{1}{(s+a)^{2}}$	$t^{n} e^{-a t}$	$\frac{n!}{(s+a)^{n+1}}$
$\delta(t)$ (Dirac delta)	1	$\delta^{(n)}(t)$	s^{n}

- Laplace transform of $n^{\text {th }}$ derivative

$$
\begin{equation*}
\mathcal{L}\left(\frac{d^{n} u}{d t^{n}}\right)=s^{n} \mathcal{L}(u)-s^{n-1} u(0)-\ldots-u^{(n-1)}(0) \tag{14}
\end{equation*}
$$

Proof.

$\underline{\mathbf{n}=1 \text { : Integrating by parts yields: }}$

$$
\begin{aligned}
\mathcal{L}\left(\frac{d u}{d t}\right) & =\int_{0}^{\int_{0}^{\infty} e^{-s t}\left(\frac{d u}{d t}\right) d t \stackrel{P l}{=} e^{-s t} u(t)| |_{0}^{\infty}-\int_{0}^{\infty}(-s) e^{-s t} u(t) d t} \\
& =\underbrace{\lim _{t \rightarrow \infty} e^{-s t} u(t)}_{\rightarrow 0, \text { see (5) }}-u(0)+s \mathcal{L}(u)=s \mathcal{L}(u)-u(0)
\end{aligned}
$$

$\underline{\mathbf{n}-\mathbf{1} \rightarrow \mathbf{n}: \quad \text { Similarly, we get: }}$

$$
\mathcal{L}\left(\frac{d^{n} u}{d t^{n}}\right)=-u^{(n-1)}(0)+s \mathcal{L}\left(\frac{d^{n-1} u}{d t^{n-1}}\right)=s^{n} \mathcal{L}(u)-s^{n-1} u(0)-\ldots-u^{(n-1)}(0)
$$

Solving ODEs

The Laplace transform turns ODEs into simple algebraic expressions.
Example (1)
ODE: $\quad \mathrm{du} / \mathrm{dt}=\mathrm{au}(\mathrm{t})+\mathrm{v}(\mathrm{t}), \quad \mathrm{u}(0)=\mathrm{c}_{1}$
Applying the Laplace transform on both sides gives:

$$
\begin{align*}
\mathcal{L}(d u / d t) & =\mathcal{L}(a u)+\mathcal{L}(v) \\
s \mathcal{L}(u)-u(0) & =a \mathcal{L}(u)+\mathcal{L}(v) \\
(s-a) \mathcal{L}(u) & =c_{1}+\mathcal{L}(v) \\
\Rightarrow \mathcal{L}(u) & =\frac{c_{1}}{(s-a)}+\frac{\mathcal{L}(v)}{(s-a)} \tag{15}
\end{align*}
$$

\rightarrow To find solution $\mathrm{u}(\mathrm{t})$, existence of inverse LT is necessary.

Inverse by Partial fraction expansion

- Partial fraction expansion
(\rightarrow Inverse Transformations for most rational functions easy thanks to known results)

$\mathrm{f}(\mathrm{t})$	$\mathrm{F}(\mathrm{s})$	$\mathrm{f}(\mathrm{t})$	$\mathrm{F}(\mathrm{s})$
$t^{n}(n \in N)$	$\frac{n!}{s^{n+1}}$	$\sin \omega t$	$\frac{\omega}{s^{2}+\omega^{2}}$
$\boldsymbol{e}^{-a t}$	$\frac{1}{s+a}$	$\cos \omega t$	$t^{n} e^{-a t}$

Bromwich Integral

Another method for inversion of the Laplace transform is provided by the Bromwich Integral formula (Fourier-Mellin integral; Mellin's inverse formula).

Let $F(s)$ be a function which satisfies the following conditions:
(a) $F(s)$ is analytic for $\operatorname{Re}(s)>\sigma_{0}$
(b) $F(s)=\frac{c_{i}}{s}+O\left(\frac{1}{|s|^{2}}\right)$ as $|s| \rightarrow \infty$ along $s=b+i t, b>\sigma_{0}$

Let σ_{0} be greater than the real part of all Singularities of $F(s)$. Then the inverse Laplace transformation is given by the line integral

$$
\begin{equation*}
\mathcal{L}^{-1}\{F(s)\}=f(t)=\frac{1}{2 \pi i} \lim _{T \rightarrow \infty} \int_{\sigma_{0}-i T}^{\sigma_{0}+i T} e^{s t} F(s) d s \tag{18}
\end{equation*}
$$

Calculation of Inverse LT

- Complex Analysis - Calculus of Residues

Recall: Residue theorem

Theorem

Let $D \subset \mathbb{C}$ be a domain and $s_{1}, \ldots, s_{n} \in D$ be finite many (pairwise disjoint) points. Further let $f: D \backslash\left\{s_{1}, \ldots, s_{n}\right\} \rightarrow \mathbb{C}$ be an analytic function and $\Gamma:[a, b] \rightarrow D \backslash\left\{s_{1}, \ldots, s_{n}\right\}$ be a closed contour. Then

$$
\begin{equation*}
\int_{\Gamma} f(\zeta) d \zeta=2 \pi i \sum_{j=1}^{n} \operatorname{Res}_{s_{j}}(f) \chi_{s_{j}}(\Gamma) \tag{19}
\end{equation*}
$$

where $\operatorname{Res}_{s_{j}}(f)$ denotes the Residue of f at point s_{j}. $\chi_{s_{j}}(\Gamma)$ is called winding number.

Some Facts about Residues

Basically, there are three types of Singularities in Complex Analysis:
(1) removable singularities

$$
\text { e.g. } f(z)=\frac{\sin (z)}{z}
$$

(2) poles

$$
\text { e.g. } \quad f(z)=\frac{z}{(z-a)^{5}}
$$

(3) essential singularities

$$
\text { e.g. } f(z)=e^{\frac{1}{z}}=\sum_{k=0}^{\infty} \frac{1}{z^{k} k!}
$$

Calculating Residues

Let $D=\{z|0<|z-c|<R\}$ a punctured disc in the complex plane. f is a holomorphic function defined at least on D .

The residue $\operatorname{Res}_{c}(f)$ of f at singularity c is the coefficient a_{-1} in the
Laurent Series expansion of $\mathrm{f}\left(\right.$ i.e. $\left.f(z)=\sum_{n=-\infty}^{\infty} a_{n}(z-c)^{n}\right)$
Example
(1) removable singularities

$$
\operatorname{Res}_{c}(f)=a_{-1}=0
$$

(2) poles of $n^{\text {th }}$ order

$$
\operatorname{Res}_{c}(f)=\frac{1}{(n-1)!} \lim _{z \rightarrow c} \frac{d^{n-1}}{d z^{n-1}}\left((z-c)^{n} f(z)\right)
$$

$\underline{\text { Remember: Bromwich Integral } \frac{1}{2 \pi i} \lim _{T \rightarrow \infty} \int_{\sigma_{0}-i T}^{\sigma_{0}+i T} e^{s t} F(s) d s, ~(s)}$

Residue theorem can be used to calculate the integral along $\Gamma_{R} \cup C_{R}$:

$$
\frac{1}{2 \pi i} \int_{\Gamma_{R} \cup C_{R}} e^{s t} F(s) d s=\sum_{s_{1}, \ldots, s_{n}} \operatorname{Res}_{s_{i}}\left(e^{s t} F(s)\right)
$$

Depending on f we (hopefully!) can choose Γ_{R} s.t. $\int_{\Gamma_{R}} e^{s t} F(s) d s \rightarrow 0$ as $R \rightarrow \infty$

Example (2)

ODE: $\quad \mathrm{du} / \mathrm{dt}=\mathrm{au}(\mathrm{t})+\mathrm{v}(\mathrm{t}), \quad \mathrm{u}(0)=\mathrm{c}_{1}$
As we derived in (15), we get the following algebraic expression:

$$
\begin{align*}
& \Rightarrow \mathcal{L}(u)=\frac{c_{1}}{(s-a)}+\frac{\mathcal{L}(v)}{(s-a)} \\
& \Rightarrow u(t)=\mathcal{L}^{-1}\left\{\frac{c_{1}}{(s-a)}\right\}+\mathcal{L}^{-1}\left\{\frac{\mathcal{L}(v)}{(s-a)}\right\} \tag{20}
\end{align*}
$$

Using prior results, (e.g. compare basic Laplace transform table), we know:

$$
\begin{equation*}
\mathcal{L}^{-1}\left\{\frac{c_{1}}{(s-a)}\right\}=\underline{\underline{c_{1} e^{a t}}} \tag{21}
\end{equation*}
$$

$\rightarrow \quad$ We still cannot handle the $2^{\text {nd }}$ part. What is $\mathcal{L}^{-1}(f \cdot g)$?

Convolution Theorem

Theorem (Convolution Theorem)
Let f and g be piecewise continuous on $[0, \infty]$ and of exponential order α (cf. (3)), then

$$
\begin{equation*}
\mathcal{L}[(f * g)(t)]=\mathcal{L}(f(t)) \cdot \mathcal{L}(g(t)), \quad(\operatorname{Re}(s)>\alpha) \tag{22}
\end{equation*}
$$

where $f * g$ denotes the convolution of \mathbf{f} and \mathbf{g} which is given by

$$
\begin{equation*}
(f * g)(t)=\int_{0}^{t} f(\tau) g(t-\tau) d \tau \tag{23}
\end{equation*}
$$

Proof.

$$
\begin{aligned}
\mathcal{L}(f) \mathcal{L}(g) & =\left(\int_{0}^{\infty} e^{-s \tau} f(\tau) d \tau\right)\left(\int_{0}^{\infty} e^{-s u} g(u) d u\right) \\
& =\int_{0}^{\infty}\left(\int_{0}^{\infty} e^{-s(\tau+u)} f(\tau) g(u) d u\right) d \tau
\end{aligned}
$$

Substituting $t=\tau+u$ we get: $(\tau$ is fixed in the inner integral and $g(t)=0$ for $t<0$ implies $g(t-\tau)=0$ for $t<\tau)$

$$
\mathcal{L}(f) \mathcal{L}(g)=\int_{0}^{\infty}\left(\int_{0}^{\infty} e^{-s t} f(\tau) g(t-\tau) d t\right) d \tau
$$

Since the Laplace integrals of f and g converge abolutely we are allowed to reverse the order of integration, so that

$$
\begin{aligned}
\mathcal{L}(f) \mathcal{L}(g) & =\int_{0}^{\infty}\left(\int_{0}^{\infty} e^{-s t} f(\tau) g(t-\tau) d \tau\right) d t \\
& =\int_{0}^{\infty} e^{-s t}\left(\int_{0}^{t} f(\tau) g(t-\tau) d \tau\right) d t=\mathcal{L}[(f * g)(t)]
\end{aligned}
$$

Example (3)

ODE:

$$
\mathrm{du} / \mathrm{dt}=\mathrm{au}(\mathrm{t})+\mathrm{v}(\mathrm{t}), \quad \mathrm{u}(0)=\mathrm{c}_{1}
$$

As we derived in (20) and (21):

$$
\Rightarrow u(t)=c_{1} e^{a t}+\mathcal{L}^{-1}\left\{\frac{\mathcal{L}(v)}{(s-a)}\right\}
$$

Using the Convolution Theorem (22) we get:

$$
\mathcal{L}^{-1}\left\{\frac{\mathcal{L}(v)}{(s-a)}\right\}=\mathcal{L}^{-1}\{\mathcal{L}(v)\} * \mathcal{L}^{-1}\left\{\frac{1}{(s-a)}\right\}=\underline{\underline{\int_{0}^{t}} v(\tau) e^{a(t-\tau)} d \tau}
$$

\rightarrow Solution of ODE:

$$
\mathrm{u}(\mathrm{t})=\mathrm{c}_{1} e^{a t}+\int_{0}^{t} v(\tau) e^{a(t-\tau)} d \tau
$$

Stability of LT

Let $\mathrm{v}(\mathrm{t})$ be a function such that

$$
\begin{equation*}
\int_{0}^{\infty}|v(t)| e^{-k t} d t<\epsilon \tag{24}
\end{equation*}
$$

Then, for $\operatorname{Re}(s) \geq k$

$$
|\mathcal{L}(u+v)-\mathcal{L}(u)|=\left|\int_{0}^{\infty} v(t) e^{-s t} d t\right|<\int_{0}^{\infty}|v(t)| e^{-R e(s) t} d t<\epsilon
$$

So, a small change in $u(t)$ produces an equally small change in $L(u)$.
$\rightarrow \mathrm{L}(\mathrm{u})$ is stable under perturbations of type (24)

Instability of Inverse LT - 1

The inverse Laplace transform is not stable under reasonable perturbations.

Example

Take as an example the transformation:

$$
\mathcal{L}(\sin (a t))=\frac{a}{\left(s^{2}+a^{2}\right)}
$$

As a increases...

- ... $\sin (a t)$ oscillates more and more rapidly, but remains of constant amplitude.
- ... The LT is uniformly bounded by $1 / a$ for $s \geq 0$, thus approaches 0 uniformly.

Consequence:

Discrete Laplace transform (z-Transform)

In many discrete systems, the signals flowing are considered at discrete values of \mathbf{t}, e.g. at $n T, n=0,1,2, \ldots$, where T is called the sampling period.

So we are looking at a sequence of values f_{n}.
$\underline{\text { Here: }} f_{n}=f(n T)$

Definition

Let $T>0$ be fixed, $\mathrm{f}(\mathrm{t})$ be defined for $t \geq 0$. The z -Transformation of $\mathrm{f}(\mathrm{t})$ is the function

$$
\begin{equation*}
\mathcal{Z}[f]=\mathcal{F}(z)=\sum_{n=0}^{\infty} f(n T) z^{-n} \tag{25}
\end{equation*}
$$

of the complex variable z, for $|z|>R=\frac{1}{\rho}$ where ρ denotes the radius of convergence of the series.

Existence of z-Transform

If $f(t)$ has a jump discontinuity at some $n T$, we interpret $f(n T)$ as the limit of $f(t)$ as $t \rightarrow n T^{+}$. To ensure existence of the z-Transform, assume existence of this limit for $n=0,1,2, \ldots$ for all $f(t)$ considered.

Properties of z-Transform - 1

- Linearity

$$
\begin{equation*}
\mathcal{Z}(a f+b g)=a \mathcal{Z}(f)+b \mathcal{Z}(g) \tag{26}
\end{equation*}
$$

- Shifting theorem

$$
\begin{equation*}
\mathcal{Z}(f(t+m T))=z^{m}\left[\mathcal{F}(z)-\sum_{k=0}^{m-1} f(k T) z^{-k}\right] \tag{27}
\end{equation*}
$$

- Corollary of Shifting theorem

$$
\begin{equation*}
\mathcal{Z}(f(t-n T) u(t-n T))=z^{-n} \mathcal{F}(z) \tag{28}
\end{equation*}
$$

where $u(t)$ denotes the unit step function.

Properties of z-Transform - 2

- Complex scale change

$$
\begin{equation*}
\mathcal{Z}\left(e^{-a t} f(t)\right)=\mathcal{F}\left(e^{a T} z\right) \tag{29}
\end{equation*}
$$

- Complex differentiation or multiplication by t

$$
\begin{equation*}
\mathcal{Z}(t f)=-T z \frac{d}{d z} \mathcal{F}(z) \tag{30}
\end{equation*}
$$

Convolution

Definition

The convolution of two sequences $\left\{f_{n}\right\}$ and $\left\{g_{n}\right\}$ is given by the sequence $\left\{h_{n}\right\}$, where its $n^{\text {th }}$ element is given by:

$$
\begin{equation*}
h_{n}=\sum_{k=0}^{n} f_{k} g_{n-k} \tag{31}
\end{equation*}
$$

Algorithmic calculation of the discrete convolution

Let f_{n} and g_{n} be the following two sequences:

First step: Change order of one sequence

Second step: Multiply elements below each other and add them together.
Third step: Move sequence by one position and start again at second step.

1	2	1	2	1	2
1	2	3			

Example: Discrete Convolution

The convolution (MATLAB: conv (f, g)) of the two sequences $f_{n}=(1,2,3)$ and $g_{n}=(2,1,2,1,2,1)$ is given by:

Convolution theorem for z-Transform

Theorem

If there exist the transform $\mathcal{Z}\left(f_{1}\right)=\mathcal{F}_{1}(z)$ for $|z|>1 / R_{1}$ and $\mathcal{Z}\left(f_{2}\right)=\mathcal{F}_{2}(z)$ for $|z|>1 / R_{2}$, then the transform $\mathcal{Z}\left(f_{1} * f_{2}\right)$ also exists and we have for $|z|>\max \left(1 / R_{1}, 1 / R_{2}\right)$,

$$
\begin{equation*}
\mathcal{Z}\left(f_{1} * f_{2}\right)=\mathcal{Z}\left[\sum_{k=0}^{n} f_{1}(k T) f_{2}((n-k) T)\right]=\mathcal{F}_{1}(z) \mathcal{F}_{2}(z) \tag{32}
\end{equation*}
$$

Proof.

First remark, that (28) implies, that:

$$
z^{-k} \mathcal{F}_{2}(z)=\mathcal{Z}\left[f_{2}(t-k T)\right], \text { if } f_{2}((n-k) T)=0 \text { for } n<k
$$

Hence,

$$
\begin{aligned}
\mathcal{F}_{1}(z) \mathcal{F}_{2}(z) & =\sum_{k=0}^{\infty} f_{1}(k T) z^{-k} \mathcal{F}_{2}(z)=\sum_{k=0}^{\infty} f_{1}(k T) \mathcal{Z}\left[f_{2}(t-k T)\right] \\
& =\sum_{k=0}^{\infty} f_{1}(k T) \sum_{n=0}^{\infty} f_{2}[(n-k) T] z^{-n} \\
& =\sum_{n=0}^{\infty}\left\{\sum_{k=0}^{\infty} f_{1}(k T) f_{2}[(n-k) T]\right\} z^{-n}
\end{aligned}
$$

but $f_{2}((n-k) T)=0$ for $n<k$. Therefore we get:

$$
\mathcal{F}_{1}(z) \mathcal{F}_{2}(z)=\mathcal{Z}\left(f_{1} * f_{2}\right)=\mathcal{Z}\left[\sum_{k=0}^{n} f_{1}(k T) f_{2}((n-k) T)\right]
$$

Inverse z-Transform

We are interested in retrieving the values $f(n T)$ from a given transform $\mathcal{F}(z)$, so symbolically we write:

$$
f(n T)=\mathcal{Z}^{-1}[\mathcal{F}(z)]
$$

There are three typical methods:

- Partial fraction expansion
- Power series method
- Solving complex integrals

Power series method

Let $\mathcal{F}(z)$ be given as a function analytic for $|z|>R$ and at $z=\infty$, then the value of $\mathbf{f}(\mathbf{n T})$ can be obtained as the coefficient of \mathbf{z}^{-n} in the power series expansion of $\mathcal{F}(z)$ as a function of z^{-1}.

Assume that $\mathcal{F}(z)$ is given as a rational function in z^{-1} :

$$
\begin{equation*}
\mathcal{F}(z)=\frac{p_{0}+p_{1} z^{-1}+\ldots+p_{n} z^{-n}}{q_{0}+q_{1} z^{-1}+\ldots+q_{n} z^{-n}}=f(0 T)+f(1 T) z^{-1}+\ldots \tag{33}
\end{equation*}
$$

where by comparison of coefficients:

$$
\begin{aligned}
p_{0} & =f(0 T) q_{0} \\
p_{1} & =f(1 T) q_{0}+f(0 T) q_{1} \\
& \ldots \\
p_{n} & =f(n T) q_{0}+f[(n-1) T] q_{1}+f[(n-2) T] q_{2}+\ldots+f(0 T) q_{n}
\end{aligned}
$$

Complex integral formula

The coefficient $\mathrm{f}(\mathrm{nT})$ can also be expressed as a complex integral.
We need the following result:

$$
\int_{|z|=r} z^{n} d z=\left\{\begin{array}{cc}
2 \pi i, & n=-1 \\
0, & n \neq-1
\end{array}\right.
$$

By multiplying $\mathcal{F}(z)$ by z^{n-1} and integrating, we get:

$$
\begin{equation*}
\oint_{\Gamma} \mathcal{F}(z) z^{n-1} d z=f(n T) \cdot 2 \pi i \tag{34}
\end{equation*}
$$

So, using again the Residue theorem (19) we get

$$
\begin{equation*}
f(n T)=\frac{1}{2 \pi i} \oint_{\Gamma} \mathcal{F}(z) z^{n-1} d z=\sum\left(\text { Residues of } \mathcal{F}(z) z^{n-1}\right) \tag{35}
\end{equation*}
$$

Of course choose「 s.t. all residues lie inside the contour

Problem: Branch points

If we use the complex integral formula we have to be careful because of branch points in the integrand.

Example
(1) complex logarithm

$$
\begin{equation*}
\log (z)=\operatorname{In}|z|+i \operatorname{Arg} z \tag{36}
\end{equation*}
$$

(2) roots

Let $F(z)$ be given as:

$$
\mathcal{F}(z)=z^{x}, \quad x \in \mathbb{R} \backslash \mathbb{N}
$$

We can rewrite this as

$$
\mathcal{F}(z)=e^{\log (z) x}
$$

As we meet such branch cuts, we have to be careful choosing our contour「:

Comparison between Laplace and z-Transform

Goal:
Develop a transformation to switch between z-Transform and Laplace Transform.

Recall:

- Laplace transform (1)

$$
\mathcal{L}(u)=\int_{0}^{\infty} e^{-s t} u(t) d t
$$

- z-transform (25)

$$
\mathcal{Z}[f]=\mathcal{F}(z)=\sum_{n=0}^{\infty} f(n T) z^{-n}
$$

Define the impulse function:

$$
\begin{equation*}
f^{*}(t)=\sum_{n=0}^{\infty} f(n T) \delta(t-n T) \tag{37}
\end{equation*}
$$

Using that $\mathcal{L}(\delta(t))=1$ and (10) we get

$$
\begin{equation*}
\mathcal{L}(\delta(t-k T))=e^{-k T s} \tag{38}
\end{equation*}
$$

We obtain:

$$
\begin{aligned}
F^{*}(s) & =\mathcal{L}\left[f^{*}(t)\right]=\mathcal{L}\left(\sum_{n=0}^{\infty} f(n T) \delta(t-n T)\right) \\
& =\sum_{n=0}^{\infty} f(n T) \mathcal{L}(\delta(t-n T))=\sum_{n=0}^{\infty} f(n T) e^{-n T s}
\end{aligned}
$$

which actually is the z-Transform with $z=e^{T s}$

Relationship between z-Transform and Laplace Transform

Using the prior results we can deduct the following relationship:

$$
\begin{equation*}
\mathcal{Z}(f)=\mathcal{L}\left(f^{*}(t)\right), \quad \text { evaluated at: } s=T^{-1} \ln (z) \tag{39}
\end{equation*}
$$

