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Laplace transform - Definition

Definition

Let u : [0,∞]→ R and piecewise continuous. Then the Laplace
transform of u is given by:

L(u) =

∫ ∞
0

e−st u(t) dt (1)

Comments:

L(u) is a function of the complex variable s = x + iy

L(u) =

∫ ∞
0

e−xt(cos(yt)− i sin(yt))u(t)dt

= F (x , y) + i G (x , y) (2)

→ When does the integral (1) exist?
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Existence conditions

To ensure that L(u) =
∫∞

0 e−st u(t) dt [→ (1)] exists, we impose the
following conditions:

Let u(t) be a piecewise continuous function on [0,∞)

1 Let c1, c2 ∈ R s.t. for t →∞

|u(t)| < c1ec2t (3)

2 For any finite T ∫ T

0
|u(t)| dt <∞ (4)

→ (1) converges absolutely and uniformly for Re(s) > c2, since∫ ∞
0

∣∣e−stu(t)
∣∣ dt ≤ c1

∫ ∞
0

∣∣∣e(c2−Re(s))t
∣∣∣ dt <∞ (5)
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Comparison: Fourier transform

Definition

The Fourier transform of a function is given by:

f̂ (ω) =
1√
2π

∫ ∞
−∞

f (t)e−iωtdt (6)

where f belongs to the so called Schwartz space

S (Rn) = {f ∈ C∞(Rn) | ‖f ‖α,β <∞∀α, β} (7)

where
‖f ‖α,β = sup

x∈Rn
|xαDβf (x)|

→ Laplace transform is much more powerful than Fourier transform
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Properties of Laplace transform - 1

Linearity

L(u + v) = L(u) + L(v) (8)

L(λu) = λL(u)

Uniqueness [Lerch’s Theorem]

Distinct continuous functions on [0,∞) have distinct LTs
(→ Be careful transforming functions with discontinuities)

Translation in s- and t-space

L(e−btu(t)) = F (s + b) (9)∫ ∞
1

e−stu(t − 1)dt = e−sL(u) (10)
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Properties of Laplace transform - 2

Laplace transform of integral

L
(∫ T

0
f (t)dt

)
= F (s)/s. (11)

Multiplication by t

L (t f (t)) = −dF (s)

ds
(12)

Division by t

L
(

f (t)

t

)
=

∫ s

0
F (p)dp (13)
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Some transformed functions

For basic functions, the Laplace transform has been calculated using
equation (1) and properties (5) to (13).
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Laplace transform of nth derivative

L
(

dnu

dtn

)
= snL(u)− sn−1u(0)− ...− u(n−1)(0) (14)

Proof.

n=1: Integrating by parts yields:

L
(

du

dt

)
=

∫ ∞
0

e−st
(

du

dt

)
dt

PI
= e−stu(t)

∣∣∣∣∞0 − ∫ ∞
0

(−s)e−stu(t)dt

= lim
t→∞

e−stu(t)︸ ︷︷ ︸
→0, see (5)

−u(0) + s L(u) = s L(u)− u(0)

n-1→ n: Similarly, we get:

L
(

dnu

dtn

)
= −u(n−1)(0)+s L

(
dn−1u

dtn−1

)
= snL(u)−sn−1u(0)− ...−u(n−1)(0)
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Solving ODEs

The Laplace transform turns ODEs into simple algebraic expressions.

Example (1)

ODE: du/dt = au(t) + v(t), u(0) = c1

Applying the Laplace transform on both sides gives:

L(du/dt) = L(au) + L(v) [Linearity, (5)]

s L(u)− u(0) = aL(u) + L(v) [Transf. of derivatives, (14)]

(s − a)L(u) = c1 + L(v)

⇒ L(u) =
c1

(s − a)
+
L(v)

(s − a)
(15)

→ To find solution u(t), existence of inverse LT is necessary.
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Inverse by Partial fraction expansion

Partial fraction expansion
(→ Inverse Transformations for most rational functions easy thanks
to known results)
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Bromwich Integral

Another method for inversion of the Laplace transform is provided by the
Bromwich Integral formula (Fourier–Mellin integral; Mellin’s inverse
formula).

Let F(s) be a function which satisfies the following conditions:

(a) F(s) is analytic for Re(s) > σ0 (16)

(b) F (s) =
ci
s

+ O

(
1

|s|2

)
as |s| → ∞ along s = b + it, b > σ0 (17)

Let σ0 be greater than the real part of all Singularities of F(s).
Then the inverse Laplace transformation is given by the line integral

L−1 {F (s)} = f (t) =
1

2πi
lim

T→∞

∫ σ0+iT

σ0−iT
est F (s) ds (18)
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Calculation of Inverse LT

Complex Analysis - Calculus of Residues
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Recall: Residue theorem

Theorem

Let D ⊂ C be a domain and s1, ..., sn ∈ D be finite many (pairwise
disjoint) points. Further let f : D \ {s1, ..., sn} → C be an analytic
function and Γ : [a, b] → D \ {s1, ..., sn} be a closed contour. Then

∫
Γ

f (ζ) dζ = 2πi
n∑

j=1

Ressj (f )χsj (Γ) (19)

where Ressj (f ) denotes the Residue of f at point sj .
χsj (Γ) is called winding number.
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Some Facts about Residues

Basically, there are three types of Singularities in Complex Analysis:

1 removable singularities

e.g. f (z) =
sin(z)

z

2 poles

e.g. f (z) =
z

(z − a)5

3 essential singularities

e.g. f (z) = e
1
z =

∞∑
k=0

1

zk k!
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Calculating Residues

Let D = { z | 0 < |z − c | < R} a punctured disc in the complex plane.
f is a holomorphic function defined at least on D.

The residue Resc(f ) of f at singularity c is the coefficient a−1 in the

Laurent Series expansion of f

(
i.e. f (z) =

∞∑
n=−∞

an(z − c)n
)

Example

1 removable singularities

Resc(f ) = a−1 = 0

2 poles of nth order

Resc(f ) =
1

(n − 1)!
lim
z→c

dn−1

dzn−1
((z − c)nf (z))
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Remember: Bromwich Integral 1
2πi lim

T→∞

∫ σ0+iT
σ0−iT est F (s) ds

Residue theorem can be used to calculate the integral along ΓR ∪ CR :

1

2πi

∫
ΓR∪CR

est F (s) ds =
∑

s1,...,sn

Ressi (est F (s))

Depending on f we (hopefully!) can choose ΓR s.t.
∫

ΓR
est F (s) ds → 0 as R →∞
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Example (2)

ODE: du/dt = au(t) + v(t), u(0) = c1

As we derived in (15), we get the following algebraic expression:

⇒ L(u) =
c1

(s − a)
+
L(v)

(s − a)

⇒ u(t) = L−1

{
c1

(s − a)

}
+ L−1

{
L(v)

(s − a)

}
(20)

Using prior results, (e.g. compare basic Laplace transform table), we know:

L−1

{
c1

(s − a)

}
= c1 eat (21)

→ We still cannot handle the 2nd part. What is L−1(f · g)?
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Convolution Theorem

Theorem (Convolution Theorem)

Let f and g be piecewise continuous on [0,∞] and of exponential order α
(cf. (3)), then

L [(f ∗ g)(t)] = L(f (t)) · L(g(t)), (Re(s) > α) (22)

where f ∗ g denotes the convolution of f and g which is given by

(f ∗ g)(t) =

∫ t

0
f (τ) g(t − τ) dτ (23)
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Proof.

L(f )L(g) =

(∫ ∞
0

e−sτ f (τ) dτ

)(∫ ∞
0

e−s u g(u) du

)
=

∫ ∞
0

(∫ ∞
0

e−s(τ+u) f (τ) g(u) du

)
dτ

Substituting t = τ + u we get: (τ is fixed in the inner integral and g(t) = 0 for
t < 0 implies g(t − τ) = 0 for t < τ)

L(f )L(g) =

∫ ∞
0

(∫ ∞
0

e−st f (τ) g(t − τ) dt

)
dτ

Since the Laplace integrals of f and g converge abolutely we are allowed to
reverse the order of integration, so that

L(f )L(g) =

∫ ∞
0

(∫ ∞
0

e−st f (τ) g(t − τ) dτ

)
dt

=

∫ ∞
0

e−st
(∫ t

0

f (τ) g(t − τ) dτ

)
dt = L [(f ∗ g)(t)]
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Example (3)

ODE: du/dt = au(t) + v(t), u(0) = c1

As we derived in (20) and (21):

⇒ u(t) = c1 eat + L−1

{
L(v)

(s − a)

}
Using the Convolution Theorem (22) we get:

L−1

{
L(v)

(s − a)

}
= L−1 {L(v)} ∗ L−1

{
1

(s − a)

}
=

∫ t

0
v(τ) ea(t−τ) dτ

→ Solution of ODE:

u(t) = c1 eat +
∫ t

0 v(τ) ea(t−τ) dτ
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Stability of LT

Let v(t) be a function such that∫ ∞
0
|v(t)| e−ktdt < ε (24)

Then, for Re(s) ≥ k

|L(u + v)− L(u)| =

∣∣∣∣∫ ∞
0

v(t) e−st dt

∣∣∣∣ < ∫ ∞
0
|v(t)| e−Re(s) t dt < ε

So, a small change in u(t) produces an equally small change in L(u).

→ L(u) is stable under perturbations of type (24)
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Instability of Inverse LT - 1

The inverse Laplace transform is not stable under reasonable
perturbations.

Example

Take as an example the transformation:

L(sin(at)) =
a

(s2 + a2)

As a increases...

... sin(at) oscillates more and more rapidly, but remains of constant
amplitude.

... The LT is uniformly bounded by 1/a for s ≥ 0, thus approaches 0
uniformly.
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Consequence:
Impossibility of usable universal algorithms for Inverse LT!
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Discrete Laplace transform (z-Transform)

In many discrete systems, the signals flowing are considered at discrete
values of t, e.g. at nT , n = 0, 1, 2, ..., where T is called the sampling
period.

So we are looking at a sequence of values fn.

Here: fn = f (nT )

Definition

Let T > 0 be fixed, f(t) be defined for t ≥ 0. The z-Transformation of f(t)
is the function

Z [f ] = F(z) =
∞∑
n=0

f (nT ) z−n (25)

of the complex variable z, for |z | > R = 1
ρ where ρ denotes the radius of

convergence of the series.
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Existence of z-Transform

If f(t) has a jump discontinuity at some nT , we interpret f (nT ) as the
limit of f (t) as t → nT +. To ensure existence of the z-Transform, assume
existence of this limit for n = 0, 1, 2, ... for all f (t) considered.
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Properties of z-Transform - 1

Linearity
Z(af + bg) = aZ(f ) + bZ(g) (26)

Shifting theorem

Z(f (t + mT )) = zm

[
F(z)−

m−1∑
k=0

f (kT ) z−k

]
(27)

Corollary of Shifting theorem

Z(f (t − nT ) u(t − nT )) = z−n F(z) (28)

where u(t) denotes the unit step function.
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Properties of z-Transform - 2

Complex scale change

Z(e−at f (t)) = F(eaT z) (29)

Complex differentiation or multiplication by t

Z(t f ) = −T z
d

dz
F(z) (30)
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Convolution

Definition

The convolution of two sequences {fn} and {gn} is given by the
sequence {hn}, where its nth element is given by:

hn =
n∑

k=0

fk gn−k (31)
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Algorithmic calculation of the discrete convolution

Let fn and gn be the following two sequences:

First step: Change order of one sequence

Second step: Multiply elements below each other and add them together.

Third step: Move sequence by one position and start again at second
step.
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Example: Discrete Convolution

The convolution (MATLAB: conv(f,g)) of the two sequences
fn = (1, 2, 3) and gn = (2, 1, 2, 1, 2, 1) is given by:
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Convolution theorem for z-Transform

Theorem

If there exist the transform Z(f1) = F1(z) for |z | > 1/R1 and
Z(f2) = F2(z) for |z | > 1/R2, then the transform Z(f1 ∗ f2) also exists
and we have for |z | > max (1/R1, 1/R2),

Z(f1 ∗ f2) = Z

[
n∑

k=0

f1(kT ) f2((n − k)T )

]
= F1(z)F2(z) (32)
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Proof.

First remark, that (28) implies, that:

z−kF2(z) = Z [f2(t − kT )] , if f2((n − k)T ) = 0 for n < k

Hence,

F1(z)F2(z) =
∞∑
k=0

f1(kT ) z−k F2(z) =
∞∑
k=0

f1(kT )Z [f2(t − kT )]

=
∞∑
k=0

f1(kT )
∞∑
n=0

f2 [(n − k)T ] z−n

=
∞∑
n=0

{ ∞∑
k=0

f1(kT ) f2 [(n − k)T ]

}
z−n

but f2((n − k)T ) = 0 for n < k . Therefore we get:

F1(z)F2(z) = Z(f1 ∗ f2) = Z

[
n∑

k=0

f1(kT ) f2((n − k)T )

]
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Inverse z-Transform

We are interested in retrieving the values f(nT) from a given transform
F(z), so symbolically we write:

f (nT ) = Z−1 [F(z)]

There are three typical methods:

Partial fraction expansion

Power series method

Solving complex integrals
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Power series method

Let F(z) be given as a function analytic for |z | > R and at z =∞, then
the value of f(nT) can be obtained as the coefficient of z−n in the power
series expansion of F(z) as a function of z−1.

Assume that F(z) is given as a rational function in z−1:

F(z) =
p0 + p1 z−1 + ...+ pn z−n

q0 + q1 z−1 + ...+ qn z−n
= f (0T ) + f (1T ) z−1 + ... (33)

where by comparison of coefficients:

p0 = f (0T ) q0

p1 = f (1T ) q0 + f (0T ) q1

...

pn = f (nT ) q0 + f [(n − 1)T ] q1 + f [(n − 2)T ] q2 + ...+ f (0T ) qn
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Complex integral formula

The coefficient f(nT) can also be expressed as a complex integral.

We need the following result:∫
|z|=r

zn dz =

{
2πi , n = −1

0, n 6= −1

By multiplying F(z) by zn−1 and integrating, we get:∮
Γ
F(z) zn−1 dz = f (nT ) · 2πi (34)

So, using again the Residue theorem (19) we get

f (nT ) =
1

2πi

∮
Γ
F(z) zn−1 dz =

∑
(Residues of F(z) zn−1) (35)

Of course choose Γ s.t. all residues lie inside the contour
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Problem: Branch points

If we use the complex integral formula we have to be careful because of
branch points in the integrand.

Example

1 complex logarithm

Log(z) = ln|z |+ iArg z (36)

2 roots
Let F(z) be given as:

F(z) = zx , x ∈ R\N

We can rewrite this as

F(z) = eLog(z) x
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As we meet such branch cuts, we have to be careful choosing our contour
Γ:
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Comparison between Laplace and z-Transform

Goal:
Develop a transformation to switch between z-Transform and Laplace
Transform.

Recall:

Laplace transform (1)

L(u) =

∫ ∞
0

e−st u(t) dt

z-transform (25)

Z [f ] = F(z) =
∞∑
n=0

f (nT ) z−n
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Define the impulse function:

f ∗(t) =
∞∑
n=0

f (nT )δ(t − nT ) (37)

Using that L(δ(t)) = 1 and (10) we get

L(δ(t − kT )) = e−kTs (38)

We obtain:

F ∗(s) = L [f ∗(t)] = L

( ∞∑
n=0

f (nT )δ(t − nT )

)

=
∞∑
n=0

f (nT )L(δ(t − nT )) =
∞∑
n=0

f (nT ) e−nTs

which actually is the z-Transform with z = eTs
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Relationship between z-Transform and Laplace Transform

Using the prior results we can deduct the following relationship:

Z(f ) = L(f∗(t)), evaluated at: s = T−1ln(z) (39)
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