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F1G. 4. Variation of the cut-off sampling rate with Courant number in the Leap-frog and Crank— :
Nicolson schemes.

5. Conclusion

The existence of the type of damping described in Section 4 hgs been noted before -
in the application of the Leap-frog scheme to the one-dimensional advection equation
(Roache, 1972). To the author’s knowledge the effect has not been explained :
quantitatively hitherto. The analysis given herein represents such an explanation,
Damping is shown to occur in both explicit and implicit solutions of the shallow
water equations.

The analysis technique outlined in Sections 3 and 4 consists of recasting the usual
von Neumann stability analysis in terms of a dispersion relation between the
frequency and wave-number of the Fourier solution. The dispersion relation can then
be studied from two angles:

(a) Consider the wave-number to be real. This is equivalent to the von Neumann
analysis and is useful in studying how the initial conditions develop in time.
(b) Consider the frequency to be real. This determines how boundary information :
propagates spatially.

Although only the example of the one-dimensional wave equation has been
considered here, the approach can be applied equally well to finite difference
representations of other linear differential equations.

The work described in this paper has been carried out as part of the research
program of the Hydraulics Research Station, United Kingdom, and is published with
the permission of the Director of Hydraulics Research.
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Numerical inversion of almost arbitrary Laplace transforms, for any value of t, to any
prescribed accuracy up to at least three-quarters of the computer precision, is effected
by trapezoidal integration along a special contour. The required number of points
depends on ¢, the accuracy, and the transform singularity positions, and for moderate
tis typically 11 for errors of order 10™%, 18 for order 1071°, 35 for order 107 2° (with
double precision working). :

1. Introduction

THE INVERSION of Laplace transforms is a topic of fundamental importance in many
areas of applied mathematics. In the more standard applications the inversion can be
accomplished by the use of a dictionary of transforms, or in the case of rational
function transforms by partial fraction decomposition. Where these methods are of
no avail recourse may be had to the inversion integral formula, which is likely to lead
to an intractable integral, or to an infinite series, often with terms involving the roots
of some transcendental function. It is clear that in all but the simplest cases
considerable effort is needed to obtain an accurate numerical value of the inverse for a
specified value of the argument.

It is therefore natural that attention has been paid by mathematicians, engineers,
physicists and others to alternative ways of evaluating the inverse. Early methods
{e.g. Widder, 1935 ; Tricomi, 1935 ; Shohat, 1940) involved expansion of the inverse in
series of Laguerre functions. Salzer (1955) evaluated the inversion integral by
Gaussian quadrature using an appropriate system of orthogonal polynomials. Since
1955 a very large number of methods for numerical inversion have been published, see
for example the very full bibliography in Piessens (1975).

Many of the methods use either orthogonal series expansions, or weighted sums of
values of the transform at a set of points, usually complex points. In either case
considerable preliminary work must be carried out. In the second type this may be
done in advance once and for all for each selected set of points, and the points and
weights stored in the computer. However, if more points are desired for the sake of
getting increased accuracy, much further computational effort must be expended first.

In general the methods hitherto published have been intended for use with
transforms of particular types, e.g. rational functions in the transform variable s,
functions of \/E , functions representable by polynomials in 1/s, and so on. The
accuracies attainable have depended very much on the particular transform F(s) to be
inverted, as well as on the argument, ¢, of the inverse f(t). The highest accuracies so far
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98 A. TALBOT

claimed have probably been those obtained by Piessens & Branders (1971), Piessens
(1971, 1972), and Levin (1975), who in particular cases obtained errors of orders
10712 to 10715,

The method to be described in the present paper is of the second type, but is unlike
any previously published method. The number n of points to be used is one of several
arbitrary parameters. Little if any preliminary computational work is required. The
method is almost universal in its application, the only transforms to which it is not
applicable being those possessing an infinite number of singularities with
imaginary parts extending to infinity. The theoretical error is expressible in closed
form by means of contour integrals, and for a given t decreases roughly exponentially
with increase of n. Typically, for ¢ ranging up to about 10 or 20, the error, relative or
absolute depending on whether the transform has singularities in the right half-plane
or not, is of order 107 ° for n = 11, 107! for n = 20, 10~ 2° for n = 35 (with double
precision working), and so on. The actual decrease of error is of course limited
by the precisién of the computer, but the “round-off” error is usually very easily
estimated from the value of one single term. In practice the orders of error quoted are
always attainable, by proper choice of the other parameters, for all values of ¢ from
0+ upwards, though of course the required value of n usually increases with ¢,
beyond the range of t already mentioned. (This is not the case however if the
transform has only real singularities. For example the Bessel function 1,(t), whose
transform is 1/,/(s*—1), can be evaluated to 20 or more significant figures taking
n = 35 for all t up to 200 and beyond.) Further, the required value of n, for a specified
accuracy, depends considerably on the positions of the singularities of F(s), or rather
on the positions of the “dominant’ singularities, and so does the choice of the other
parameters, as will be seen below in Section 5. The computer execution time is
roughly proportional to n. Using a CDC 7600 the average time for inversion when
n = 20 (giving errors of order 10™!! or less) is about 0-8 ms.

In essence, but in a much less general form, the method is contained in an
unpublished Ph.D. thesis (J. S. Green, 1955) which was supervised by the present
author. This gave good results for “moderate” ¢ but not for small or large t. The
improvement for small or fairly large ¢ is here effected by fuller exploitation of the
parameters A and ¢ already introduced by Green, and for larger ¢ by the introduction
of a new parameter, v.

Possible applications of the method are numerous, and many have already been
tested. These include the following.

(a) The direct one-step solution, for any specified value of the independent
variable, of any linear constant-coefficient differential equation with arbitrary right-
hand side possessing a Laplace transform calculable as a function of the complex
transform variable s.

(b) The time-domain solution of any linear network or system (e.g. control system)
using either standard network or system analysis or the solution of simultaneous
algebraic linear equations.

(c) In particular, the solution of a system governed by a state-matrix A:

W uto(t)
dr - TR
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by combining the inversion process with Fadeev’s method for evaluation of
(sI—A)~™. That is to say, given any vector v(¢) and any initial conditions, the
equation can be solved for the vector u(t) for a given ¢t in one step to almost any
desired degree of accuracy.

(d) The direct one-step solution for any specified x and ¢ of the parabolic equation

*u  du

5;2‘=—a?, a<x<b, t>0

with arbitrary initial condition
u(x,0)=¢(x), a<x<b

and a variety of (or perhaps arbitrary) end-conditions on u or du/dx.

(e} The evaluation of some difficult integrals to great accuracy, by inversion of
their transforms taken with respect to a pre-existing or artificially introduced
parameter.

{f) The direct evaluation of transcendental functions, by inversion of their
transforms, to many more decimal places than are available at present, provided a
computer of sufficient precision in its arithmetic and in its exponential and sine-cosine
subroutines is at hand. For example with a CDC 7600 in double precision J (¢} can be
found to 20 or more decimal places for t < 200 (and probably for unlimited t), using
values of n ranging from 35 for t = 1 to 170 for ¢ = 200. Triple precision would raise
the number of places to about 34, and so on.

2. A General Formula for Numerical Inversion

Let f(¢), defined for ¢ > 0, have the Laplace transform
F(s) = J e f(t) dt 1)

0
with abscissa of convergence y,, so that the integral converges in the half-plane
Re s > vy, but diverges in Re s < y,. Our starting point for numerical inversion of F(s)
is the standard inversion formula

flty= L7 'F(s) = i%z J e“F(s)ds, t>0 (2)
B

where B is the “Bromwich contour” from y—ico to y+ico, where y > y,, so that Bis
to the right of all singularities of F(s). Direct numerical integration along B is
impractical on account of the oscillations of e* as Im s — + oo. The difficulties were to
some extent overcome by Filon (1929) and others since, and probably Levin (1975)
has gone as far as anybody in this direction by use of his remarkable convergence-
acceleration algorithms. But his method would require considerably more effort to
improve on the orders of error 107!? to 107 !° which he has been able to achieve for
some functions F(s) and some values of t.

Here we overcome the difficulty by avoiding it. We replace B by an equivalent
contour L starting and ending in the left half-plane, so that Re s -+ — oo at each end.
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This replacement is permissible, i.e. L is equivalent to B, if Q(+2ni) = 0. We note further that condition (c) depends on F as well as S, and
cannot always be satisfied if F(s) has an infinite number of singularities with
imaginary parts extending to infinity. Such transforms constitute the only
and § inadmissible class for the method of this paper, and we shall assume henceforth that F
does not belong to this class. A trapezoidal approximation to f(z) in (7) is now

(1) L encloses all singularities of F(s), (3)

(i1) [F(s)] = 0 uniformly in Re s < vy, as |s| = 0. 4)

Condition (ii) holds for almost all functions likely to be encountered, and we shall:
assume it satisfied by all F(s) considered here. Condition (i) may well not be satisfied

with a particular L by a given F(s), but can generally be made to hold for the modified § ] ) ) ) ]
function F(As+ o) by suitable choice of the scaling parameter A and shift parameter ¢, § 118 13 the general inversion formula considered in this paper. .
§ Now let M, be any path from —2ni to + 27i in the half-strip H to the right of M,

for if F(s) has a singularity s,, F(As+a) has the corresponding singularity ] ) ‘ .
g and M, a path from —2nito + 2ni to the left of M and close enough to it to exclude
5§ = (so—0)/A. (5)§from the region between them any singularities of F(1S(z)+0¢) and hence of Q(z).

Then by the Residue Theorem
1 z)dz
fit) ML o )_M, (10)

2 n-1
fty==3" ReQ(z;), 2z, = 2kmi/n. 9)
=0

Then (2) may be replaced by

ot

‘e
2mi

fit) = J e F(As+a)ds, t>0. (6)4 =
I E i v, -m, 1—e
the integrand being regular at + 27i.
By assumptions (c) and (d), M in (7) may be replaced by the equivalent path M, . If

then we combine (7) and (10) we obtain
E(t) = Ey(t)+ E,(1), (11)

where E(1) is the theoretical error (which depends of course on S, 4, o and n as well as
on t) given by

In his thesis, Green (1955) used a standard contour L which was a steepest-descent}
contour for the integral (2) in the special case where F(s) = 1/s and t = 1, and then]}
used trapezoidal quadrature, based on a parametric description of the curve, to}
evaluate the integral. It is not difficult to see intuitively that this is likely to give good]
results for any F(s) (some details are given in Talbot, 1976), but since the present}
paper uses a generalized contour L whose scope is far wider than that of Green’s:
contour (for example it enables much greater values of ¢ to be dealt with) but which is

in general definitely not a steepest-descent contour for any F(s), we shall introduce Sy _

this contour in quite a different way. ' 1 and E(1) = ) fu0), (12)
The method to be described was suggested by the error analysis in Green (1955), | 0d

but is much more general. The treatment is modelled closely on that of Green, except} E(t) L (13)

for the rotation of an auxiliary complex plane through a right angle for greater; 2ni Juy €%~ 1

convenience. ?
Let z = x+iy be a complex variable, M the imaginary interval from z = —2ni to}
+27i, and s = S(z) a real uniform analytic function of z which ‘

1 Qdz

" 2nmi M, 1—e

2 (14)

—nz"®

(2) has simple poles at + 27i, and residues there with imaginary parts respectivel 4 Since Re z > 0 on M it is obvious intuitively that E, — 0 as n —co. A formal proof of

positive and negative, this is given in Appendix 1, where it is shown that for large enough »n the integrand in
(b) has no singularities in the strip |y| < 2n, 113 ) has a bound of order
(c) maps M1—1 onto a contour L traversed upwards in the s-plane, which
encloses all singularities of F(4s+¢) for some 4 and o, 1
(d) maps the half-strip H : x > 0, |y| < 2x into the exterior of L.

O(n? exp (ht — b /tn +at)), 15)
,; where h and b are constants and

Then (6) holds and may be re-written T =i,

1 1 (= ‘ in a region U consisting of the union of a conjugate pair of triangles with vertices at
Jy= 3 ), Q(z)dz = |, Q(iy) dy, (7Y +2mi. It is clear therefore that if M, is taken to lie inside U, E,(t) — 0 as n —cc.
¥ Since Rez < 0 on M,, it is again intuitively obvious that E,(t) >0 as n —»c0. A
, g similar formal proof applies, though the region U is now restricted by having to be to
= 1 ePS*MF (IS +6)S'(2). ). I prool applies, thoug g y having
Q) € (A5 +0)8'(2) ( 4 the right of all singularities of F(AS + o), which may have the effect of increasing h and

We note that by assumptions (a) and (c), Re s > —o0c on L as z— +27ni on M, an; reducing b in (15) and hence increasing E,, if F(As+ o) has singularities near to L.

where
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Thus for fixed ¢, 4 and o,
E—-0 asn-oo. (16)

It will be clear from (15) that both the rate of convergence and the magnitude of E
depend heavily on 7. We shall discuss this dependence later.
In Green (1955) and Talbot (1976), in which the mapping function used, namely

z
1—e™

satisfies not only the conditions (a) to (d) above, but also the additional condition (e),
S(z) maps a region R bounded on the right by M1-1 onto the interior of L, the error
component E was split into two parts by replacing M, in (14) by another path M,
which together with M encloses some or all of the poles (if any) of F(AS+ o) but no
non-polar singularities. We may then write, as is easy 1o see,

(17)

s=8(z) =

E, = Ey+Ej, (18)
where
e res F(s))

Ej=Y — = 19
o=X e (19)

(or a more complicated expression if the poles are multiple),

1 Qdz

E), = -— 20
2 27i J\M'z e_"z—l’ ( )

and in (19) summation is over the poles s, of F(s) whose “transforms”
st = (s;—0)/4

under shift ¢ and scaling 4 (see (5)) are enclosed by M and M,, and z} is the inverse
image of s¥ in the region R. However the more general maps used in this paper (see
Section 4) may not satisfy condition (e), and a detailed study of the Riemann surface
corresponding to the inverse function z = S '(s) would be required in order to
decompose E; as in (18). In the computational strategy to be presented here we shall
use this decomposition only in cases where the simpler mapping function (17) is used.
(Detailed examples of its use are given in Talbot (1976) where, however, the notations
E;, M,, L, and E, M5, L, are interchanged). We shall denote the unique inverse
function in such cases by z = Z(s).

In addition to the theoretical error (11) we must of course consider the
computational round-off error. Now it is clear from (8) and (9) that because of the
exponential factor in Q, the first term in (9), viz.

T, = % exp ((48(0)+0)t)F(A5(0)+0)S'(0), (21)

is normally the largest or near-largest.t Moreover, it is always found that because of
heavy cancellations in the summation, |f| < |T;|. Thus if the computer evaluates T,
and its neighbours correct to ¢ significant figures, the rounding error E, in fis roughly

t An exceptional case is discussed in Section 6(d).
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given by
E, = 0(107°T;), (22)

all other round-off errors in the evaluation of f being negligible by comparison.
Finally the actual error in f is

E=E,+E,+E, (23)

and by (17) E = O(107°T;) for sufficiently large n. This gives an asymptotic order of
magnitude of error which cannot be improved on, given a particular choice of 4 and &
and of contour L. The strategy to be described in Section 5 involves finding a near-
optimum choice of L from the family of contours discussed in the next section, and
corresponding values of A and .

3. A Special Family of Contours
The conditions (a) to (d) on the mapping S(z) are not very restrictive, and allow of
many possible mapping functions. The simplest are of the form

S(iz)=az— ———5
(z) = az PR +c,

and indeed such functions can give good results, though their potentialities have not
yet been explored. What we shall consider here is the family of mappings

+az, (24)

-z

s=S,)=2 (coth z +v) =

2 2 1—e

where v is an arbitrary positive parameter and a = (v—1)/2.
The singularities of S,(z) are simple poles, at +(2,4, 6, .. )ni, and those at +2ni
have residues +2mi. S,(z) maps the interval M(—2xi, 27i) onto a contour

Li:s=s,0)=a+vif, —n<0<m, (25)
where we have taken z = 2i0 on M, and
a = a(f) = 6 cot 6. (26)

In the special case v = 1 (a = 0) we obtain the curve L which was used both by
Green (1955) and Talbot (1976), and was derived by Green as a steepest-descent
curve when F = 1/s. When v # 1, I’ consists of L expanded “vertically” by a factor v
(see Fig. 1), and can be shown not to be a steepest-descent curve for any F. For most
normal purposes the use of L provides any desired accuracy (subject to the computer
precision) with moderate values of n. In certain circumstances, however, namely when
F(s) has complex singularities and, in relation to their position, ¢ is “large” (this will
be clarified below), it is found that by using L’ with v > 1 one can escape from the
limitation on accuracy imposed by E,.

Itis clear that S,(z) satisfies the conditions (a) to (c) assumed for S(z) in Section 2,
and it is easy to verify that (d) is also satisfied. When v =1 or v~ 1, the extra
condition (e) also holds, but (e) ceases to hold as v increases above 1.



104 A. TALBOT

e
Fi1G. 1. Contours L and L' (v = 2-5).

Now on I’ we have

§.2) = s(0)/2i = (v+iB)/2,
where
B = B(O) = —dua/dd = B+ a(a—1)/6. 27

Thus for a given F(s) and ¢, and choice of the parameters 4, o, v and n, the
approximation (9) to the inverse f(t) becomes

Aea! n—1

f(iy= - Y Re[(v+iB) e F(As,+ o)l (28)
k=0
where
8, =kn/m, k=0,1,...,n—1,
and
T = At. (29)
If
F(is,+0)= G+iH, (30)
where G and H are real, (28) takes the real form
A. 43 n—,l
fie) = :’1 Y [e{(+vG — BH) cos vt — (vH + BG) sin vt} Ty_. (31)
k=0

Before discussing the choice of parameters it is necessary to analyse the error
components E,, E,, E, and E, in further detail, and this we do in the next section.

4. Error Analysis
We consider the error components in turn.

(i) E,. When § = §,, (21) gives

VA
Ty =—

(A+ o')tF 2
o e (A+0). (32)
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Thus by (22), using the symbol ~ for convenience to denote order of magnitude,

E ~e A =10"% (33

where
A, = 23c¢ —(t1+at), d,= A,/23, (34
¢ = c+log,, 2n/vAF(A+a)). (35

The difference ¢’ — ¢ can vary considerably in different cases, and may occasionaily be
abnormally high if F(s) tends rapidly to zero as s =4 oo and ¢ is small, leading tc
large A for a selected .

(ii) E,. As already stated, we shall consider E, only when v = 1. As we shall see
this choice of v is made for all t when the singularities of F(s) are all real, and for smal
or “moderate” t in other cases. Then by (19) we may write

Eyg~e A0o=10"% (36
where
Ay = min (nuf —pt), do = Ag/2°3, (37
uf = —~Rezf >0, pr= Res, (38
and
zF = Z(s}).

In order to use this we must be able to calculate Re Z(s) for any s. This can be don
for example by applying Newton’s method to the equation

w(z)=s(1—e ?)—z=0. (39
If z is any trial solution, the Newton correction is

w

Py S —— 40
T (
For a given s = (p, q) = re” a suitable starting value is z = (—u, y), where
13
P A— 41
Y A S S =045 e (
and
—n 24 @

= sin (y—0)

(41) was derived empirically from inspection of curves y = constant, (42) is satisfie
by any solution z = (—u, y) of (39). With these starting values convergence is foun:
to be rapid or fairly rapid for any s = s} that will be encountered. However, th
following alternative method which both avoids complex arithmetic and seems mor
efficient may be preferred. For any z = (—u,y) let w(z) = g+ih. If u and y ar
connected as in (42), h = 0, while g = g(u, y) = §(y), say. Thus to solve w(z) = 0 for
we need only solve g(y) = 0 for y, and this can be done by using a real Newto
process. On carrying out the differentiations involved one finds that the Newto
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correction to y is

Sy = (4—y)g
1 —2re* cos (y—0)+rie®*

(43)

A suitable starting value for y is again given by (41).

. (iti) E 1- Except near the end-points of M, the order of magnitude of the integrand
in (13) is determined by its dominant factor

exp (1S, —nz+at) = exp (1S, —n'z+oat), (44)
where S, is S, with v =1 (a = 0), and
n = n—ar. (45)

Sinc; by (25) S| ~ z when Re z > 3, say, and M, may be deformed arbitrarily far to
the right, a necessary condition for E, to be small is seen at once to be

p<l, (46)
where

p =1/ (47)

In Talbot (1976) the special case a =0, n’' = n was investigated by obtaining
saddle-point estimates of E,, and it was found empirically after examining a large
number of results that, neglecting a factor involving the value of F(s) at the saddle-
point and other minor factors, we can write

E ~e M1=10"%, (48)
Ay =nb,—ot, d,=A,/23, (49)

where b, is practically a function of p = 1/n alone. Since the only difference between
£44) agd the earlier case is in having n’ instead of n, (48) and (49) still hold but with »’
or n, i.e.,

Ay = n'by(p)—oat, (50)
with p given by (47).

If we examine the derivation of (A.15) in Appendix 1, we see that in the case
§ =8, +az which we are now considering it would be possible, just as in (44), to
account for the term az in § by replacing n by n'. If this is done we may expect from
(A.15) that A4, is of the form 4, = b/t —ht—ot. (51)

Comparing (50) with (51) gives

by by/p—hp, (52)

which .is indeed a function of p only, if h and b are constant. Actual values of b.(p)
were given in Tablg 2in Talbot (1976), and it is interesting, as largely confirming the
analysis in Appendix 1, that (52) agrees with those values in two important respects,
namely:

(1) b, is approximately proportional to \/; for small p;
(2) b, rises from zero at p = 0 to a peak between 0 and 1 and returns to zero or
below for p > 1.

LAPLACE TRANSFORMS 107

In the sequel we shall need an explicit formula for b(p), and the following, based or
(52), provides a very close fit, with maximum error about 0-004 in the range

0<p<08:

bi(p) = 346./p — 1-8p(p+0-8)+0-03. (53
We note that (50) may be written alternatively
A] = 1¢; — 0l (54
where
¢, = ¢i(p) = by(p)p. (55

Here ¢, is a monotonic decreasing function of p.

For the strategy of Section 5 it will be necessary to invert the relationship in (55)
i.e. to find p for a given c,. This is readily done using Newton’s method, but it &
convenient to have explicit approximate formulae for the purpose. Writing

=c;+1, (56
we have (with relative error ranges indicated in brackets)
(248 —25¢)/(16 +43e), 16 <e<44 (—089 to +04%),
p = < (129/e —4)/(50+ 3e), 44 <e <10  (—08% to +0:4%), (57
(256/e+0-4)/(44+19¢), 10 <e <20 {(—02% to —0-7%).
Although (53) and hence (55) gives increasing errors as p increases beyond 08, i.e. a

e decreases below 2:0, nevertheless in the application we shall make of (57) its firs
formula may be safely used for all e < 44, and its third formula for all e > 10.

(iv) E,. The estimation of E, (or of E;, = E, — E,) is much more difficult than tha
of E,, because of the presence of the “transformed” singularities s} = (s;—0)/4 in th
interior of I'. In Talbot (1976) it was found that, with v = 1, if the non-polar s¥, i
any, are far enough away from L, then E) < E,, and thus E’ can be neglected. Ii
many cases however this does not hold, even when v = 1, and indeed E, becomes th
dominant error component, apart from E,, as ¢ increases. The way in which E; i
taken account of will be explained in Section 5.

5. A Universal Strategy

The strategy to be described is based on an intensive study of a large number ¢
experimental results using many different types of function F(s). It is in two parts:

(I) choice of the ““geometrical”” parameters A, o, v for given F(s), t, and compute
precision ¢ (as defined for (22));
(IT) choice of n for prescribed accuracy.

We consider these parts in order.

(I) Our strategy for A, ¢, v depends heavily on the geometry of the singularities ¢
F(s), and especially on the position of what we shall call the “dominant” singularity
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Before defining this however we must note the following:

(1) if F(s) has no singularities in the half-plane Re s > 0, then the inverse f(t) as
given by (2) may be expected to be of order about O(1), since B may be taken as
the imagihary axis, indented if necessary, and |F(s)| — 0 at both ends of B, by
(4);

(2) if F(s) has singularities in the half-plane Re s > 0, and their maximum real-part
is p, then f(t) = e” ¥ 'F(s+p), where F(s+p) is of the type of transform
discussed in (1) so that f(r) is of exponential order O(e?), p > 0.

It is clear that for functions of type (1) absolute and relative error are similar in
magnitude and it is sensible to speak of either, while for functions of type (2) it is only
sensible to speak of relative error or equivalently significant figures, and that
moreover the number of correct significant figures in an approximation f(t) to f{t} is
roughly equal to the decimal position of the absolute error in the corresponding
approximation to ¥ ~!F(s+ p).

Now the formulae for the error components E,, E,, E,, E, given in Sections 2 and 4
all refer to absolute, not relative, error. This is unavoidable because it is impossible to
relate values of the E’s to values of f, which are given by the summation formula (28)
in which there is always heavy cancellation. In view of the remarks above we can give
a unified strategy for functions F(s) of types (1) and (2) in the following way.

Let the singularities of F(s) be at s; = p;+ig;, and as above let

p = max p;. (58)

J
Now write

ao = max (0, p), (59)
and apply an initial shift 5, to F(s). Then the resulting function

Fy(s) = F(s+0,) (60)

is always of type (1), and our strategy will aim at producing an absolute error in f(t)
of order 1072, where D is specified (or in other words D — 1 correct decimal places in
fo(2)), and accordingly a similar error in f(¢) if F is of type (1), or D correct significant
figures in f(z) if F is of type (2). We note that the singularities of F(s) are at

§j=8;=00 = pi+ig;,  pj=p;—0,<0. (61)

The strategy as applied to F(s) will involve a further shift, say ¢’ (which may be zero),
making a total shift ¢, so that

o = 0—0,, (62)

and it is important to notice that in the formulae (34) and (50) for 4, and 4, we must
replace o by o', and in the formula (37) for 4, we must replace p, by p;.

After applying the initial shift o, the next step is to find the “‘dominant” singularity
of F(s), provided there are some complex singularities. If s; is one of these, with
g; > 0, then the radius from the origin to the corresponding s; meets L at a point
where the ordinate is 6; = arg s}. Thus s is situated (¢;/0;) times as far out as that
point, and we define as the most significant or dominant singularity s, that for which
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this ratio is greatest, i.e. s, = p;+iq, is such that

qa q;
~= = max =7, (63)
Od q;>0 01‘

where
;= args;. (64)

If on the other hand the singularities are all real, they do not affect our choice of
i, 0,v, and there is no need to find a dominant singularity for this purpose. It is
however convenient to write g, = 0 and 6, = = in this case.

Now referring to (34), with ¢ for ¢ as explained above, it is clear that the round-off
error is controlled by the quantity

= (A+a')t, (65)

and experimental results have shown that the correct choice of w is vital for an
efficient strategy. They have also shown that if we write

v = qgt, (66)
the optimum strategy depends on the value of v. In fact there are two distinct cases to
consider.

Case 1. v < 0wy /1-8. 67)

We then use only the initial shift o, and a scaling factor 4, and do not expand L: we
take

A= oft (t = o),
g = ady (¢’ =0), (68)
v=1 (a=0),
and note that with this choice (65) is satisfied. Case 1 always occurs if the singularities
of F(s) are all real.
Case 2. v > wh,/1-8. (69)

In this case we use the expanded contour L, as shown in Fig. 1. It is clear that with
¢ defined as in Fig. 1,

pd—-o=%5cot¢). (70)

Now if 4, is the value of 4 which would bring s,— ¢ just onto L,
Ay = qa/ve. (71)

We now define k as the ratio 4/4,, which is a measure of the extent to which s¥ is
inside L, i.e. away from the contour and approaching the origin. Then

K = vAd/qq. (72)

Finally, if we regard w, ¢, k as three new parameters we can solve (65), (70) and (72)



110 A. TALBOT

for A, o, v and obtain

¢

These can be made to give good results, but even better results are obtained if we
replace p, by p (thus ensuring that ¢’ > 0). If then we write

u= (ff- +ao—ﬁ>/<g —cot ¢), (73)

our formulae in Case 2 becomes

A= Kq/vo, O'ZPd—%{COtd’, V=Qd<E“C0t¢>/<$+Uo_Pd>-

A= Ku/d,
6= p—pcote, (74)
V= gg/p.

We still need to fix the values of w (in Cases 1 and 2) and of k and ¢ in Case 2. Tests
with numerous functions F(s) and values of t have shown that for optimum results
w, k and ¢ should be taken as functions of v = g,t. The precise values are not critical
and the optimum choice will vary with F and ¢, but for x and ¢ the following choices
have been found to be very satisfactory in all cases tried:

K = 164 12/(v+25),
¢ = 1:05+ 1050/max (553,800 — v).

For w the choice must depend on the precision of the computer. For the CDC 7600,
for which ¢ is normally about 14 in single-precision (S.P.), 27 in double-precision
(D.P), the following have been used successfully:

¢=14: = min (6+v/2,10)
¢=27: w=min(11+v/2,19).

(75)

(76)

We may assume that as a general formula, suitable for any value of ¢, we may take
o =min (0-4(c+1)+v/2, 2(c+1)/3) (77)

Summarizing, the choice of the parameters 4, o, v for a given F(s) and ¢ is made as
follows: with p, g4, 5, = p;+iqa, 0,5, v and w defined as in (58), (59), (63), (64), (66),
and (77) we test for Case 1 by (67). If this is satisfied, 4, ¢ and v are given by (68). If
(67) is not satisfied, we find k and ¢ by (75) and hence A, u, v by (74).

(II) It remains now to determine a suitable value of n, to achieve a desired D .

significant figures (if p > 0), or error in Dth decimal place (if p < 0). We proceed as

follows, in general terms. We shall find an n, such that the error E,, with ¢ replaced

by o', is small enough, and similarly an n; and n,. Then we take
n = max (ng, 1y, ny). (78)

We discuss ng, ny, n, in turn.
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(i) ne. Both for ny and n, we use a slightly modified value of D to take account of
multiple poles. To be quite general, for any singularity s; and any desired value of D
we define

D;= D+min (2m;—2,2)+[m;/4], (79)

where m; = 0 if 5; is non-polar, and otherwise m; is the multiplicity of s;.

For n, there are several possibilities to consider.

(a) If we have Case 2, we take ng, = 0, since n, is always found to be less than n,
and n,.

(b) In Case 1, if the dominant (complex) singularity s, is not a pole, we again take
ne = 0.

O(c) If, however, in Case 1, s; is a pole, we apply the algorithm (41)-(43) to
s = s¥ = (s,—0,)/A. This rapidly gives the value of u} = —Re Z(s}). (Note: for the
purpose in hand, n, need only be known to within about 19;. Thus the algorithm can
be stopped when |§y| < 107, say.) Then by (37), with d, replaced by D,,

Mo 2 Nog = (23D + pyt)/uf (80)

where p) = p;—0,. Strictly speaking one should also find similar values ng,
corresponding to other poles, s, and take n, = max [nq,]+ 1, but with our choice of s,
it is very unlikely that this will be necessary. Thus we take

ne = [noa} + 1. (81)

(d) A special problem arises if the singularities of F(s) are all real, for no dominant
singularity has been defined in this case. Clearly we can take n, = 0 if there are no
poles, and otherwise

ne = max [ng]+1. (82)

In fact however this need rarely be calculated, i.e. we can normally take n, = 0. For
we may write

23D+ pit
oy = = = R, (83)
1
where
h+ pft 23D
Pi=p—oo=Apf <O, Ri=gh b= uf=—ReZ(t),
1

and (since we necessarily have Case 1) 1 = o.
Now a study of R, as a function of p} shows that, for fixed h;, R, is a maximum
when p¥ ~ —0-43h,, i.e. p, ~ —Dy/t, and then R, ~ R(h,), where

R(h) = 009 +-0-11h+0-085h% + 0-005h>. (84)

Using this it is readily shown that when ¢ = 14 or 27 and correspondingly @ = 6 or
11,1y, < ny if D, < ¢ ~2, which presumably holds for any c. Thus in calculating n, by
(82) we need only consider poles p, for which D, > ¢—1, and usually there will be
none such. We note also that poles for which p; = 0 can always be ignored, since they
give uf =o0.
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(ii) ny. By (50), with ¢ replaced by o', we must make
1cy = n\)b, = 23D+ 0't, (85)
where n'| = n, —at. Then
e=c;+1=(23D+w). (86)
The solution p is given by (57), and we now take
ny = [tla+1/p)]+1. (87)

(iii) n,. As already stated, E,, unlike E, and E,, cannot be estimated readily by
formulae applying in all cases, and our value of n, is based entirely on a careful and
extensive examination of empirical results. Writing

y = d'/A, (88)
and
D’ = max D; if all singularities s; are real,
D' = D, otherwise,
we take

n, = 23D +w)/B+4y+e )] +1, (89)

where 7 is a factor < 2. It is safe to take n = 2, but for large ¢, when n, is the largest of
no, 1y, By, computational economy requires 7 to be reduced as much as possible, and
we take

7 = (109 — 092y + 0:8y?) min (1-78, 1-236 4 0-0064(1-78)") (90)
where
y = 10"3p.

(Note: if the s; are all real, n, is independent of t.)

We conclude this section by remarking that on the basis of a great deal of
computational experience it is believed that with ng, n,, n, calculated as explained, n
as given by (78) is not far from minimal in nearly all cases.

6. General Remarks and Practical Considerations

{(a) Since ¢’ in (35) varies only slightly with n, when 4, ¢, v have been found in Part 1
of the strategy, d, can be closely estimated from (34), with ¢’ for ¢, by assuming a
rough value of n. There is then clearly no point in aiming for a desired accuracy D
which exceeds d, or perhaps even d,— 1 (although frequently the value of D achieved
in practice is approximately equal to d,, and sometimes exceeds it).

(b) The factors cos vft and sin vt in (31) can be an appreciable source of error, In
Case 2 the angle vfr = xfv/¢p, and for large ¢, i.e. large v, k/¢ ~ 0-6. Then vt may
easily be of order 10, and thus subject to absolute computational error of order
1072, leading to similar orders of error in the cosine and sine, quite apart from the
subroutine errors which are again of similar order due to the large angle. Thus the
effective value of ¢ may be reduced by one or two units on this account. Such
reduction may be avoided by the following procedure.
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The basic formula (28) may be written

at n-1

2" Re'S ay ¥, 1)
0

foy="
where

a, = [ (v+iB)F(4s, +06)]goq, ¥ = tVvR/N. 92)
Now the factors €*¥ in (91) satisfy the same recurrence relation as the Chebyshev
polynomials T, (cos i/):

e+ D 1 ok = 9 cos . o4, (93)

It follows that the sum Y can be evaluated by an algorithm almost identical to
Clenshaw’s for Chebyshev sums, viz.:

bn+1 =b,= 0,
by=a,+uby,—by,, (u=2cosy), k=n—-1,..,1,
' = Hao+uby)—b,+ib, sin . 94)

Moreover, since the only trigonometrical evaluations required are cos ¥ and sin
(where ¥ is about 1 or 2 radians), it is clear that, compared with (31), (91) offers a
considerable saving in execution time, in addition to the increase in accuracy. In fact
the total execution time is reduced by about 20%.

(c) Another possible source of error would seem to be in the calculation of § in (27)
for small 0, for then 1 —a is small and in fact of order 62. Two alternative remedies
based on series expansions are available: one using the expansion of «(6), with
Bernoulli numbers as coefficients, the other simpler, though involving more
operations, and obtained by expressing (1 —a)/6* as a ratio of two series. Both have
been tried, up to # = 0:35 and 6 = 0-6 respectively, retaining appropriate numbers of
terms in the series, but no appreciable improvement in performance has been
discerned, so no further details are given here.

(d) f F(s) = e“'"/\/g , with an essential singularity at s = 0, we have Case 1, with
iA=o/t,t=w,6=0,v=1,and w = 6 or 11. Thus A is small when ¢ is large, and
F(4s) is subject to the abnormal behaviour of an analytic function near an essential
singularity. Detailed analysis in this case shows that when a > 0 and at > t%/2, T,
ceases to be the largest term in (9), and as t increases the largest term increases rapidly
(almost exponentially). Thus, for large ¢, E, is much larger than is indicated in (22),
and so thwarts our general strategy by considerably reducing d,.

The remedy is simple: one must set a lower bound to A. With w = 5+at/30
(A = 5/t+a/30) in single-precision, or w = 10+at/30 (A = 10/t+4/30) in double-
precision, normal results are obtained, and are to be expected likewise for other
transforms having e~ ** as a factor.

If a < 0 the problem does not arise, and the normal choice of w may be made.

(¢) In Case 1, if ¢ is small, A = w/t is large and s} is near the origin. The algorithm
(41)-(43) used in finding n,, may then fail through the argument of the logarithm in
(42) becoming negative. One should then abandon the algorithm and simply take
nog = 0, for with s¥ near to zero, u} will be large and ny, small, and certainly smaller
than n,.
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(f) In the strategy of Section 5 an essential part is played by the dominant
singularity s,, but it should be noted that the position of s; need not be known
accurately: there is nothing critical in the choice of 4,0, v. Now the larger the
imaginary part ¢,, the larger does v = g,t become for a given ¢, and the larger will be
the value of n required to achieve a given D. If however the position of s, is known
exactly, and s, is some distance above all other singularities more precisely (see (63))
q4/04 > other q;/0;, then the required value of n can be significantly reduced by setting
aside s,, using the next dominant singularity s, in finding 4, o, v and n, and taking
account of s, by simply adding the residue term

e*" res F(s,) (95)

to f(¢). This assumes however that with the chosen parameters, s¥ is outside L, the
condition for which is (cf. (72) and Fig. 1)

-1 qd qd
< .
vpy—a) Av

tan (96)
{g) Suppose condition (ii), in (4), is not satisfied by F(s) but is satisfied by
G(s) = ¢*F(s), a > 0. Since

e F(s) = e 79G(s),

we may continue to use F in (28) to obtain a good approximation f(t) to f{t) in (2),
provided t > a, and provided we replace ¢ by t—a in the strategy of Section 5 (though
not in the formula (28)). For t < a however the method would give values of f(t) quite
different from the correct value of f(t), namely zero.

7. Results

The method and strategy described in previous sections have been applied to a
large number of miscellaneous transforms, collectively exhibiting most if not all of the
features likely to be encountered in practice. The results to be quoted were obtained
partly on the CDC 7600 of the University of London Computing Centre, partly on
the CDC 6600 of the Center for Numerical Analysis at Austin, Texas.

Twenty transforms were selected for special attention. For each the absolute error
J(t)—f(1), or relative error (f(t)— f(¢))/f(t), as appropriate, was computed for a range
of values of t up to 200 or 500, and of D up to 12 for S.P. (¢ = 14), 24 for D.P.
(c=27).

In discussing the results we divide the transforms into two groups: those with all
their singularities real, and those with some complex singularities. The functions in
the first group are shown in Table 1. Since Case 1 occurs for all ¢, the strategy leads to
the same A, o’'(=0), and v(=1) for all ¢ (except in the case of Fy: see Section 6(d)), and
to n depending slightly on t and on the multiplicities m; but mainly on D. The
approximate relationship is set out below in Table 2. In every case the desired D was
attained. It should be noted that since execution time in D.P. is about three times that
in S.P., S.P. should be used for D < 12, for transforms with all their singularities real.

The second group of transforms is shown in Table 3. For those there is a
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TasLe 1

Transforms with all singularities real

i Fys) Si@t)

1 /(s =1) Ioft)

2 exp (—s/\/(s+1))s —

3 exp (—/s) exp (— 1/4t)/2t,/(nt)

4 s +1)° *e~'/24

5 999/(s + 1)(s + 1000) e ! — 1000

6 —(y+Ins)/s Int

T 2Ys+s+1) (1—e Yty (n)

8 ERINE cos 2./t/\/(rt)
TaBLE 2

Values of n for F—Fg4

HS

12 16 20 22

D 8 10 11 12 24

n (S.P.) 11 14 18 20 22

n (D.P.) 22 28 35 39 43
TasLE 3

Transforms with complex singularities

i Fi(s) S0
9 tan~! (1/s) sin t/t
10 152 +1) Tolt)
11 (s+/(s* + 1)1? sin t/t,/(2nt)
12 (82 +1) . (s+ /(s> + D)2 sin t//(nt/2)
13 12+ 1) . (s+/(s* +1))*? (sin t—t cos t)/t/(nt/2)
14 exp (s— /(s + D)2 +1) . (s (s + DIVE J(2/n(t+2)).sin  (t(t+2))
15 s/(s*+1)/(s+1) —
16 s3/(s*+4) cos t cosh ¢
17 1/(s*=1) (sinh t —sin t)/2
18 1/(s*+ 1) (sin t—t cos t)/2
19 s2/(s*+8) (e”*—2cos /3t.€)/3
20 In ((s*+ 1)/(s* +4)) 2(cos 2t —cos t)/t
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transition from Case 1 to Case 2 at a value £, of t which depends on the position of the
dominant singularity s,, and is found by solving the equation

w = 1-8v/6, 97)
(see (67)) for v. For the functions Fg-F ¢ and F 4,9, = 1,60, = n/2,and ¢, = 87 (S.P.)

or 16:6 (D.P.). For F, these values are 1,3n/4, 13 or 249 ; for F 4, \/3, /2,50r96;
for F,,, 2, /2, 44 or 83,

In general the required values of n for prescribed D differ only slightly from those
shown in Table 2 when ¢ < t,, but rise rather rapidly with t when ¢ > t;. In Tables
4(a)-4(e) we show these values for the functions Fq—F,, for t = 5, 10, 20, 50, 100, 200.

TasLE 4(a)
Values of n for Fo—F ,,

t D=6 8 10 11 12 12 16 20 22 24

5 12 15 18 19 21 23 28 34 38 42+
10 17 2 27 29 32 25 30 35 38  41*
20 21 26 31 34 37 34 44 55 61 67+
50 32 38 52 56 60 47 5T 69 T7*  84*

100 50 62 91 99 106 71 87 102 110* 118*
200 8 100 147 159 170 114 139 164 177* 190*
TabLe 4(b)
Values of n for F{sF,,
t D=6 8§ 10 11 12 [ 12 16 20 22 24
5 13 15 18 19 21 23 28 34 38 42
7 2 27 2% 3R
10
{ (14 (16 (19 @n @4 H 06 I aF
20 20 26 31 34 37 4 34 4 55 61 67
(28) (32) (37) (44%) (50%)
50 35 52 60 64 69 47 ST 69  T7*  84*
100 62 91 106 113 121 79 94 110 118  125*
200 100 147 170 182 194t 127 152 177 189  202*

Bracketed entries refer to F,,.

TabLE 4(c)
Values of n for F 4

t D=6 8 10 11 12 12 16 20 22 24

5 14 17 20 22 24 24 28 34 38 42
10 17 22 27 29 32 27 34 41 4 48
20 23 27 31 34 37 34 44 55 61 67*
50 52 60 69 73 77 51 60 69 77 84*

100 9 106 121 1281 135¢% 91 106 122 129  137*
200 147 170 1941 2061 218t 146 170 195 208* 220*
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TasLe 4(d)
Values of n for Fq
t D=6 8 10 11 12 12 16 20 22 24
5 17 22 28 30 33* 25 29 35 38 41*
10 20 25 30 33t 36t 33 42 53 59 66*
20 27 38 44 47 50 40 50 62 69 76*
50 55 82 95 101 108 71 84 98  105* 112*
100 92 135 157 167 178 116 139 162 174t 185*
200 146 216 251 268t 286t 187 224 267 291 316*
TaBLE 4(e)
Values of n for Fyq
t D=6 8 10 i1 12 12 16 20 22 24
5 17 22 27 29 32 25 30 35 38 41*
10 21 26 31 34 37 34 44 55 61 67*
20 29 34 43 46 50 43 53 65 1% 79*
50 50 62 91 99 106 71 87 102 110*  118*
100 86 100 147 159 170 114 139 164 177*  190*
200 156 174 244 263 283 202 239 282 306* 331*

The values of n shown are for S.P. working for D < 12, D.P. for D > 12, and ar
the values as calculated by the strategy of Section 5.

The desired values of D were attained almost everywhere for D < 10 (S.P.),D < 2!
(D.P.), the only exception being at t = 200, D = 10 for F,4, which could in fact hav
been avoided by a slight modification of (79), leading to a slight increase in n in case
of double poles, such as F5. For larger D an asterisk * against a value of n denote
that D was not attained for some or all of the transforms involved because c
rounding error (i.e. because d, < D), while a dagger t denotes failure for some othe
reason, not yet fully diagnosed.

Remark 1. For the functions F,, i = 1,2, 10, 15 the inverses fi(f) cannot be readil
found from explicit formulae involving standard computer subroutines. In these case
the values of fi(t) needed for finding the errors f(t)-f(t) at the various values of t wer
obtained to at least 24 figures or places by choosing 4, o, v so that d, > 24 and the
increasing n until successive values of f agreed to 24 figures or places.

Remark 2. Even where explicit formula for f(t) involving elementary subroutines ar
available, there may be a loss of accuracy in evaluating fi(t) for particular values of
which may contribute appreciably to the error fi(t)— fi(t). This certainly occurs fe
example for f,5(t) when t = 10, and |tan \/§t| ~ 25, for then an error ¢ in th
computer evaluation of \/5 produces a relative error of 250¢ in cos \/gt. Whether thi
accounts fully for the failures  for t = 10 in Table 4(d) has not yet been investigatec
Similarly there is an error in the evaluation of f; 4(¢) for large t which may account fe
the failures T in Table 4(c).
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8. Conclusions

A method has been presented for inverting all Laplace transforms except those with
an infinite number of singularities whose imaginary parts extend to infinity. The
method yields absolute or relative errors less than 10! ~P, and usually of this order, for
any prescribed values of D up to about three-quarters of the computer precision c,
and in many cases up to five-sixths of ¢. For inversion of a transform at a particular ¢
the method requires the evaluation of the transform at complex points, the number
and positions of which are determined by ¢, D, and the position (or approximate
position) of the “‘dominant” singularity of the transform.

Applications are numerous, and it is suggested that transform inversion be
considered as a possible method of solving any mathematical problem of which the
solution can be regarded as a value or set of values of a function f(t) whose transform
F(s) can be found as a calculable analytic function of s.
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Appendix

The object here is to prove that E, () — 0 as n —o0. Let S(z) satisfy the conditions
{a)-(d) of Section 2. Let the residue at the pole —2ni be k. Then

3
argk=—2’1+5, |5g<g. (A.1)

Take angles « and f between |5} and 7/2, so that

0<{51<a<ﬂ<g, (A.2)
and define T as the triangle bounded by rays issuing from z = — 2ri with inclinations
o and f, and the real axis Re z = 0, as shown in Fig. 2.

Taking
&= z42mi = re®, (A.3)
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2w

-2/

FiG. 2.
where
a<O< B inT, (A4
we may write
k ,
S(z) = E + A +iA"+ EB(E), (A5

where A’ and A” are real constants and by condition (b) B(¢) is regular and boundec
in T, say |B(¢)] < L in T. Similarly

ww4§+aa A6

where C(&) = B(&)+ EB(€) is regular and bounded in T, say [C(S) < M in T. Ther
for zin T we have

Re S(z) < — llrj sin (0—0)+A"+rL, (A7
SEr< S oM (AS

Next we obtain lower bounds for the denominator ¢ —1 in (13). Now if g is fixed ir
the range 0 < g < 1, and nr < g,

e — 1] = e~ 1| > nr(1 —g/2=¢%/6 . .)

>cnr, ¢=21-g)/(2-g) (A9
Again, if nr > g and 6 < B,
le"? — 1} > e % —1 > de™ 40 d=1—e 9 (A.10
Now let P = §'(z) /(" — 1), and take z € T. Then
(i) if O <nr<g, [P < f(r)/n,
where
fir) = ;1; ('%' +M> exp t(— k| sin (0 —8)/r+ A" +rL) (A.11

-0 as r—-0,
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and |P} < e/n if r <ryle),
1/1k
() ifmr>g, |Pl< E(';z‘! +M> x

exp {t(— k| sin (0 —8)/r+ A"+ rL)—nr cos 0}

2
< h(n) = % (ig‘.’ +M> exp (ht—b'\/tn, (A.12)
g
where
h=A"+2nL/sin o, (A.13)
and

b'? = 4|kj sin (9 — ) cos 6
> b? = 4/k| min (sin (x— &) cos a, sin (f—3) cos f) > 0. (A.14)

Thus h(n) —» 0 as n — o0, and |P] < ¢ if n > ny(e).

Take n > ny(e) = max (1 +[g/ro], no). Then we either have case (i) above, with
r < ry, or case (ii) with n > nq, and in either case |P| < ¢. The same obviously holds if
z € T, the triangle conjugate to T. Thus |P| - 0 as n —co, uniformly in the union
U = TuT. Since the integrand in (13) is Ae”"PF(AS+ o), and F is bounded in U, it
follows that E;(t) >0 as n — o0 if M, lies in U.

Further, since (A.12) holds except for points close to +2rmi for which
Iz F 2ni| < g/n, where g < 1, it is clear we can write

|E,(t)] < AC €”"||F|[n* exp (ht —b./tn), (A.15)

where ||F|| = max [F(AS(z)+ o), taken over U, and C, h and b depend only on the
mapping function S$(z) and the angles « and .
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In a recent paper Longuet-Higgins (1978) discovered some new relations between
Stokes’ coefficients in the theory of periodic gravity waves. These were shown to give
rise to a set of integral relations. In this paper we show that this set is complete in the
sense that it is equivalent to Bernoulli’s equation. We also show that a suitably
redefined set exists in the theory of the solitary wave.

1. Integral Relations for Waves of Infinite Depth

By BERNOULLI'S THEOREM, the condition that the pressure is constant on the free
surface may be written

gy +1q* = constant (1.1)

where g denotes gravity, ¢ is the particle speed and the y-coordinate is taken to be
vertically upwards. By a unique choice of origin of y, the constant on the right-hand
side may be made to vanish. If also for convenience we take units so that

g =1, A=2m, (1.2)
where A denotes the wavelength, we have
2y+q* =0. (1.3)

Now we consider a wave progressing to-the left with velocity ¢ > 0. In the moving
frame of reference in which the wave is stationary, the flow tends to a uniform flow to
the right as y — — o0.
Therefore
x = ¢/
4
y = e+ 4H, (4

where H is a constant, determined by our choice of Bernoulli constant in (1.3).
We now consider the following sequence of conformal mappings

Z(=x+iy) = l=p+iy) > =e ",

as illustrated in Fig. 1.
The fluid region occupying one wavelength in the z-plane transforms to the unit
circle [{] < 1 in the {-plane. (1.4) then implies that the transformation z({) has a
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