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z-TRANSFORM DEFINITION

AND THEOREMS

The techniques of the z-transform method are not new. for they can be
actually traced back as early as 1730 when DeMoivre' introduced the
concept of the “generating function™ (which is actually identical to the
_s-transform) to probability theory. The concept of the generating function
was later extensively used in 1812 by Laplace® and others in probability
theory. In a much later article by H. L. Seal.? a historical survey of the
use of the generating function in probability theory was presented.
Recently. the development and extensive applications of the =-transform*
are much enhanced as a result of the use of digital computers in systems.
These systems are referred to as discrete, because of the discrete nature of
the signals or information flowing in them. Thus a new discipline of
system theory is being developed. to be known as discrete system theory.
The material here is devoted for the most part to discussing the various
facets of this discrete theory.

The z-transform method constitutes one of the transform methods that
can be applied to the solution of linear difference equations. Tt reduces
the solutions of such equations into those of algebraic equations. The
Laplace transform method, which is well developed for the solution of
differential equations and extensively used in the literature. can be
modified to extend its applicability to discrete systems. Such modifications
have resulted in introducing the various associated transform techniques
which are briefly discussed in the last section of this chapter.

This chapter is mainly devoted to the development of the theory of
stransform and the modified =-transform. Many useful theorems related
1o these transforms are either derived or stated. In addition. other
thearems are introduced in the problem section related to this chapter.
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1.1 Discrete time function and
2-transform definitionsit-16.24~26

In many discrete systems, the signals flowing are considered at discrete
values of ¢, usually at n7, n = 0, 1,2,..., where T is a fixed positive
number usually referred to as the sampling period. In Fig. 1.1, a con-
tinuous function of time S(t) is shown where its values at ¢ = nT are
indicated. The study of such discrete systems may be carried through by
using the z-transform method. This method will be extensively developed
in this and other chapters with its modifications, extensions, and
applications.

Definition

Let 7 be a fixed positive number (it could be taken as unity). Let f(r) be
defined for this discussion for ¢ 2 0. This case will be extended in
Chapter 4 to cover values of 7 which are also negative. The :-transform
of f(r) is the function

&2 1
Af1=F@D =3 finTx"", for ol >R =~ (1.1)
n=10 P
p = radius of
convergence of

the series

of the complex variable =. We use the symbol y to denote the z-transform
of /.

Since only the values f, = f(nT) of fat nT are used. the =-transform is
actually defined for the sequence {ful

LN =3 f= = F6 (1.2)

f©7T)

0 T 2T 3T AT 5T

FIGURE 1.1 Discrete and continuous functions.
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The series in equation (1.1) can always be considered as a formal series
to be manipulated in certain ways and not necessarily to be mcn:.:aa.

If /(¢ has a jump discontinuity at a value nT, we shall 223@.538..2
f(nT)as the limit of /(1) as 1 — nT+, and we shall assume the existence of
this limit, forn =0, 1.2, . .. for all f{r) considered.

EXAMPLE .
To obtain the z-transform of f(1) = t, we use equation (1.1) as follows:

F2)=y[f]= W ST =T 4 2T 4 37273 4 .,

n=0

1 -1 —2 Tz
=Tz {1 4+ 2270 4 3272 ]

“

forjz| > 1 (1.3)

1.2 Properties of z-transformss.14.25.28

In the following we shall show a few properties and theorems related to
the z-transform. Some theorems will be presented whose proofs oo:E
be easily obtained as an exercise in the problem section. ..:._n: use .é.:
enable us to develop the z-transform method and indicate its applications<
in the following chapters.

Linearity of the z-transform

For all constants ¢, and c,, the following property holds:

o«

Hefi + e fy) = M [e0i(nT) + ¢y fo(nTH}""

n=0

a3 AT 4 63 fun Ty

n=0 n=0
oy N + oyl fil (1.4)

Thus 7 is a finear operator on the linear space of all z-transformable
functions f(1), (r > 0).

i

Shifting theorem
If5lf1=F@),
G+ D] =2F(2) — £(01)] (1.5)
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Proof: By definition
J/+ 1)

it

2 flin+ 1Tl
n 0

i

NM\:‘_+:.:u(:::HnM\;..Du; (1.6)
" 0 PO

where k =n + 1. By adding and substracting f(0°) term under the
summation sign of equation (1.6), we can write the summation over the
range from & = 0to k = = . Thus

A+ T = WN SkT)* iboé = [ F(z) — f(0")]
(1.7)

Extending these procedures, we can readily obtain for any positive
integer m the following results:

m 1
U+ mT)) = usﬁmﬁuv -y .\:,\:ni@ {1.8)
k-0
COROLLARY: I ¥[ (1)} = F{(z), then

Flf— nTyur — nT)] = = "F(z) where u(r)

= unit step function forn=0,12,... (1.9
Proof: By definition

WG = nTwi(t — aT)] = W [ftm — myTuim — myT)

w0
=" m — T uf(m — mT]=" 2 (110)
m-0
Letting m — n = k_we obtain

A= nThu(t — nT)) = = M STk T)z*
k-« nm

x

”u;xM,\;ﬂvn »Nu,é.WAuv (1.1
k-0
The use of the shifting theorem is important in the solution of difference
equations as indicated in Chapter 2. Following a similar procedure, we
can easily oblain the =-transform of the forward difference as well as the
backward difference as follows:
k-1
FAYT] = (: ~ 1} F(z) — = (= — DYUAYOT)  (1.12)
)0
where
AfinT) = f(n + DT — f(nT) (1.13)
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Furthermore,

V(T = (1 — 7Y F(2) (1.14)
where

4\§3H>=JI\.§I nT (1.15)

Complex scale change

If the z-transform of f(r) is % (2).

Fle (0] = F(eT2). (1.16)
Proof: From the definition of the z-transform we have
AT D) = T e f(nT)"" = 3 f(nT)(e™ T2y (1:17)
n=0 n=0
= .w.eqamaﬂwv

Finite summation'$.2528
To obtain the z-transform of

3 M,::Q (1.18)
first we define

_Mo\;j 2 gl(nT)), or gl(n — N N”M“\Arj (119

We can write a relation between successive values of the sum by noting
this definition and equation (1.19).

g(nT) = gln — DTu(n — HT + f(nT) (1.20)
Applying the :-transform to this equation, we have
G(z) = 2 1%(z) + F(2) (1.21)
Solving for %(z), we finally obtain
%(z) uwﬁwx;i == CFE). forfzd > 1 (1.22)
k=0 FaR

Initial and final ralues!*-**

From the definition of the =-transform,

i 1T 2T
:ﬂxuMs\QJu; u\83+>N v+>NN L. {1.23)
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We readily notice that the initial value is obtained as:

J(0) = lim F(z) (1.24)
If f(0) = 0, we can obtain f(T) as the lim 2% (z).
For the final value, let us write P

n

U+ T) = f(0) = lim F[f(k + DT - fkTE*  (1.25)

n-a k=0

The transform of the left-hand side is obtained from equation (1.4) and (1.5)
thus

2#(2) ~ f(0T) ~ F() = lim S [f(k + DT — ST
(1.26)

We now let z — | for both sides of equation (1.26), assuming the order of
taking the limits may be interchanged.

lim (z — F() — f0T) = lim 3 [f(k + DT - f(kT))

z—1 n-a k=0

= lim {[f(1T) — f(OT)]

n@

+ [/(2T) — f(1T)]
+ ..+ [f(nT) — f(n — DT)
+ [f(n + DT — f(n T}

= lim [—f(0T) + f(n + )T}

n-w

= —f(0T) + f(c) (1.27)
so that we finally obtain

lim f(nT) = lim (z — 1)&(2) (1.28)

if the limit exists.

Complex multiplication (real convolution)

If £, and f, have the z-transform F(2) and F (2), then

FF 0 =3 Ak - or) (1.29)
Proof- By definition

FADF ) = 3 (KT 0) (1.30)
but from equation (1.11)

SAF\(5) = 1l ~ kD)) (1.31)

iff,(n—k)T=0forn<k
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Hence

FUF z) = (kT3 fult — kT
k0

&

/i
= w .\.—AF\NJV Ma\.npl — )vﬂ;_n:
ko n.

-3 "w\_;ﬂS? - ::“u;

but f,(n ~ k) T = 0, for n < k and therefore

FUNF 2) = J M\_A»ﬂv.\.ﬁﬁz - »:@

Complex differentiation or multiplication by 1
If #(z) is the z-transform of f, then

d
Jfl = I\NHMM\TV

Proof: By definition

S = ST D" = = T2 3 fnT—n1)

n=0 n=0

The term in the brackets is a derivative of z~ " with respect to z.

sl = 1?M.\?3MN; = 1?%%.\?3”;
= T L 5
dz

Similarly, we can write

d _
Hl= —Tz: —F
btaid! s 1(2)
where

Fzy = 30", k>0 andinteger
As a corollary to this theorem we can deduce

—k &w“?v
&ANIFVW

where the function n'® is given by

Hn®f ()] = =

o =nn—NDn—~2)...n—-k+1

(1.32)

(1.33

(1.34)

(1.35)

(1.36)

(1.37)

(1.38)

(1.39)

(1.40)
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As special cases of the preceding,

k

A= ®f(n — & + :_ukw& (1.41)
and

intn + Dn+2) . (4 k — Df(n)] = Al:mwm@

dz
1.4

Special summation theorem s
If#() =3 f(nT)". then

n .0

FE = 3 [V(nT) . (1.43)

where
[n/ 'k}

ATy =3 fimT). Vi(nT) = fnT) ~ fin — DT (1.49)

™m0

and [n/k] denotes the largest integer in n/jk.
Froof:  From the definition of the z-transform we can write

{nik) 4 X {n/k} x  {n/k}
uhwobsﬂL =273 f(mTy =3 S o f(mT)  (1.45)

neg m=0 n=0 m=90

Since n varies in integer values from zero to infinity and m also varies
In integer values, we can write for the right-hand side of this equation,

{n/k) e - = -
www 2 \Txﬂg =2 I fimT)" = Mc\Aiﬂv DI

e §

m 0 neomi me noomk

Therefore equation (1.46) can be written
T?.W,_ ) L z
% NEE& ST 2 D e S F Gy (g
e 2=~ 1 moo -1
From equation (1.14), we have for k =]

z—1 _

F(2) (1.48)

sIVf(nT)) =

Using this equation in (1.47) we finally obtain

FE) = 5[VAGT)) (1.49)
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This theorem is very important in obtaining the inverse z-transform of
special functions of # (z) containing essential singularities. These functions
are discussed in detail in the next section.

We introduce the following additional theorems whose proofs are left
as an exercise to the reader.

Differentiation with respect to
second independent variable

? 2
,%mla \?L =5 Fea (1.50)

Second independent variable limit value

N_H:B flt, n@ = lim #(z, a) (1.51)

a-ag a-ag

Integration with respect to
second independent variable

w:‘f\? a) &L HA‘.E F(z,a) da (1.52)

if the integral is finite.

1.3 Inverse z-transform and branch points!*.#”

The discrete function f(¢) at t = nT or f(nT) can be obtained from F(z)
by a process called the inverse z-transform. This process is symbolically
denoted as
J(nT) = 371 [F(2)] (1.53)
where & (2) is the z-transform of f(t)t or f(nT).
In the following, we discuss the several methods from which we can
obtain f(nT) from #(2) or the inverse z-transform.

The power series method

When #(2) is given as a function analytic for {z| > R (and at z = o0),
the value of f(nT) can be readily obtained as the coefficient of z-* in the
power series expansion (Taylor’s series) of F#(z) as a function of z-1.

1 It may also be written as f.
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From equation (1.1) it is observed that
F@) =f0T) + (T + .. fhT* + . | ST 4.
(1.54)
Thus it is noticed that f(nT) can be read off as the coefficient of 2" and
so can values of f at other instants of time.

If #(2) is given as a ratio of two polynomials in z-%, the coefficients
JOT), ..., f(nT) are obtained as follows:

—1 —3 —n
Fly =Pt et B+ 252
Go+ 427 + 42" + .. 4gq,2

= f(0T) + f(1T)? + 2Tz + ... (1.55)
where

Po = f(0T)q,
Py = [(1T)g, + f(0T)q,

. . (1.56)

Pn=f(nD)gy + fin — DTq, + f(n — DTqy + ... + f(0T)q,
It is also observed that f(nT) can be obtained by a synthetic division of
the numerator by the denominator.
Partial fraction expansion

If #(2) is a rational function of z, analytic at o, it can be expressed by
a partial fraction expansion,

F@) =F i) + Fol2) + Fol) + ... (1.57)

The inverse of this equation f(nT) can be obtained as the sum of the
individual inverses obtained from the expansion, that is,

f(nT) = 37\ F @) = 3 F )] + 3 [ F o)) + . .. (1.58)

We can easily identify the inverse of a typical F,(z), from tablest or
power series and thus obtain f(nT).}

t See Appendix, Table 1.
3 A determinant method for obtaining f(nT) from equation {1.55) is in the Appendix of
this chapter.
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Complex integral formula

We can also represent the coefficient S(nT) as a complex integral.
Since F(z) can be regarded as a Laurent series, we can multiply .%#(z) in
cquation (1.54) by z"~' and integrate around a circle I' on which jz] =
R,, R, > R, or any simple closed path on or outside of which Fz)is
analytic. This integral yields 2« j times the residue of the integrand, which
is, in this case, f(nT), the coefficient of z~'. Hence

%.@w?vuxi_ dz = f(nT) - 2nj (1.59)
r
or
\.?.\.vuﬂ_n.%uw.?vnalpmm. (n=0,1,2,...) {1.60)
27 Jr

The contour I' encloses all singularities of #(z) as shown in Fig. 1.2.
The contour integral in equation (1.60) can be evaluated when F1(z) has
only isolated singularities by using Cauchy’s integral formula,

f(nT) = s F(2)2"" dz = sum of the residues of F(z)z"}
2mj Jr
(1.61)
The following cases are discussed for the inversion formula.
THE POLES OF % (z) ARE SIMPLE. Assume that
#F) = 20 (1.62)
%(z)

When ¥(z) has simple zeros only, the residue at a simple singularity a is
given by

. 1 - . HAz)

lim ulav%N%HH:Bﬁuln 2" _H* 1.63
ZA (2) fim ( VQE (1.63)
imaginary

2-plane
r
Poles of X x

F(z) Aﬂ Real

FIGURE 1.2 Contour integration in the z-plane.
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POLFS OF .#(2) ARE NOT GIVEN IN A FACTORED FORM, BUT ARF SIMPLE.
The residue at the singularity a,, is

K 2 ; (1.64)
.\N«?Auv ST
where
-
gz = 478 (1.65)
dz

F(2) HAS MULTIPLE POLES. The residue at a kth-order pole of .#(2) is
given by the following expression: residue at kth-order pole at a.

by s e S [F) — Ef,_: (1.66)

F (=Y has essential singularities®?

In some cases when #(z) has an essential singularity at s other than
infinity. we can utilize the preceding theorems of the =-transform to
obtain the inverse without power series expansion. This is best illustrated
by the following examples.

If Z(:) is given as

.VA&HQ.E:;SN (1.67)
to obtain its inverse, that is, f(nT) = w;%w.?:,
Welet @(z) = e 72 and #(:) = 7125 then by using the real convo-
tution theorem on p. 6,

SnT) = 5y F(H ()] =3 hkTglin — k)T (1.68)
k-0
The inverse of e /* can be readily obtained from the series expansion
g(nT)y = y ' [%(2)] = Plt%: (1.69)
n'
Furthermore. from the theorem on p. 8, we have for k = 2,
2 Tﬁﬁﬂ.’.~v§
FUT ¥ ) = hnT) =V 3 L (1.70)

m=0 2"m!

Using equations {1.69) and (1.70) in equation (1.68), we obtain (replacing
k by )

0 n 2 ¢ _ fym . n—s
SnTy= 5 e F 2% V2] = pIRAY 2 (=D" Atll.li (L.71)

0 m=0-2"m! l(n — s)!
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The expression in the bracketed term of equation (1.71) is different from
zero only for 5 even. and then it is equal to

(=n:

2y

(1.72)

Putting s = 24 in equation (1.71) and using (1.72). we finally obtain for
the inverse =-transform

. 2.2 LA FER r H (r)
nTy= 3y e "% V¥ ) = ———a REOARA N

/ o7 _ »N; kKt (m— 24yt 2x n!
(1.73)

where /7, is the Hermite polynomial of degree .

F ) ds drrational function of Y

The inverse z-transform can be obtained either by power serics expansion
or the integral formula. 1f we use the latter form, we must be specially
careful in the integration because of branch points in the integrand. As
in the previous case, we shall illustrate the procedure by using the following
example

Let . #(2) be given as

FE) = Al|+|J (174

where x can be any real value and assumed to be noninteger.

To obtain f(nT) we use the two procedures of contour integration and
power series expansion. To simphfy the integration process we introduce
a change of variable to normalize the constant b to be unity.

Let

T = hy (1.75)
Then .#(:) becomes
- Iy
Fihy) = AFV (1.76)
N

The function . #(hy) has a branch cut in the y-plane that extends from
7€r0 to minus unity as shown in Fig. 1.3, By using equation (1.60), the
inverse is given

. B [y + 1y
finT) =y J,&.::\Z“ ‘ AFT\: Yy (177
i irt oy

where the closed contour I'is as shown in Fig. 1.3,
We cun castly show that at the limit y->0 the integral around the

small circle BCD is zero. Furthermore, the integral along £4 is also sero.
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Imaginary
x= e/ y-plane
EJ Real
o T
x=emir

FIGURE 1.3 Contour integration enclosing branch point of F(by).

Therefore f(nT) can be obtained by integrating around the barrier.

n 0 /-7
.\A:ﬂ.v - l’ﬁA‘, AHQ + _.vnﬂa(pﬁlu,u: dzx
1

2mj xe "
L/, in @
+.‘, Aaw + ~v&=im:= &H“ﬁ
0 ze'”

This equation can also be written as

b 1
"ﬁ.“ N.:I»lu: — H.vnm.:;ln_&&.
2milte

f(nT) =

1
ll.‘. &:I»!nﬁ— — th&l».l:l». &H“_
[}

sin (n — a)wr

1
= h" .‘, ) 1) e
0

”
By utilizing the following identity,
C(m)[(k)
I'(im + k)

1
B(m, k) = N.‘. ™Y1 — 24z
°

we obtain for f(nT)
f(nT) = b" sin(n — ) I'(n — )(a + 1)

g I'n+ 1)
By using the identity
P(mU( = m) = —Z
sin mm
we finally obtain
n T + 1) Apv
nT)y=5 = b"
JnT) Fn + Dl —~n 4+ 1) n

and for « negative integer

Rﬂﬂ?lnv la
() P + D= "

(1.78)

(1.79)

(1.80)

(1.81)

(1.82)

(1.83)

(1.84)
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We can also obtain f(nT) from the Taylor’s series expansion of #(2)
as follows:

F(2) = Aﬁ/vaﬂ (1 + bty

4 z {

il I—IQ=A~ + @NlJn

= 27" 1.85
n=on' (dz"h)" = - ( v
Equation (1.85) yields
%'EMMP‘%I_,VGIB.::xxiéxui (1.86)
n=0 N

We know that
_JA&+_VHRAHI:QIE...?!:.*:.:q.lx.f:

(1.87)
and
I'in + 1) = n! (1.88)

By using equations (1.87) and (1.88) in equation (1.86).

\I \N+@;q, :n+:v= -
F(2) = = S
( A v :M;o:=+::ﬂl:+:

=3 ART:N-: {1.89)

w0 \M

From the definition of the z-transform we readily ascertain
f(nT) = ﬁvv (1.90)

The entries of Table I in the Appendix readily yield the inverse -
transforms of f(nT). They have been obtained by using the theorems and
properties of the z-transforms discussed in the preceding sections.

It should be noted from the inverse theorem that f(nT) can be obtained
from the power series expansion without having to evaluate the poles of
F(2). This feature offers a decisive advantage over the continuous case
using the Laplace transform. Thus the =-transform is used for approxi-
mating a continuous function, which will be discussed in Chapter 7.

1.4 The modified z-transform?4.28,31,32

In many applications of discrete systems and particularly in the use of
digital computers in control systems, the output between the sampling
instants is very important. In studying hybrid systems (mixed digital and
analog systems) the output is a continuous function of time. and thus the
z-transform method is not quite adequate for a critical study of such
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(o

fle— AT) H{]

0}
AT - e

FIGURE 1.4 A fictitiously delaved output 1o scan values of f(z) other than at t = T

systems. However, the =-transform can be easily modified to cover the
system behavior at all instants of time: The extension of this method is
called the modified z-transform method.

The modified z-transform is also important in the study of linear
systems for periodic inputs, in sampled-data systems with pure delay, in
limit cycle analysis of discrete systems, in the ‘solution of difference
equations whose coefficients are periodic functions (with period equal to
unity), in the solution of mixed difference-differential equations, in
approximation techniques for continuous systems, and in summing up of
infinite convergent series. The introduction of the modified z-transform
as well as its applications will be discussed both in the remainder of this
chapter and in the following chapters.

Modified z-transform definitiont4-28

To obtain the values of f{1) other than at r = nT, (n = 0.1, 2, .. ) we
can delay the function f(1) by a fictitious negative delay AT as shown in
Fig. 1.4, By letting & vary between zero and unity we obtain all the
points of f{t)fort =(n ~ AYT,n=20,1,2....and 0 <AL Aswill
be shown in Section 1.5 in order to avoid any convergence problem in the
integral evaluation of the modified z-transform from the Laplace transform
of f(r), and also in order to utilize the existing extensive tables of the
modified =-transform, we make the following change of variable:

A=lw=m 0<m<I
With this change of variable, t becomes

t={(n—14mT, n=012 ..., 0<m<1 (19D
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We can also scan the values of the continuous function between the

sampling instants by fictitiously advancing the function f(1) by the amount
nT. such that

t=An + )T, 0< <, ne=1012 .. (1.92)

The preceding description of the time is utihzed in some other works,
thus avoiding any convergence difficulties in the integration process as
will be explained in Section 1.5,

The modified =-transform of fis defined as follows:

F(zom) = Yl )= M_\A: =1+ mT)
-

DL m <t (193

This definition also relates to the modified z-transform of the function
S~ 1+ m7T).

Bv using equation (1.9). the preceding equation can be written as
Flo,m) == _Mo_\g +mTE " 0<m< {1.94)
From this equation by letting m = 0. we readily deduce
F(zom)l, oHM.c\iju "= F () (1.95)

Therefore the z-transform is obtained as a special case from the modified
stransform. Furthermore, if f(1) has no discontinuity at the sampling
mstants (or jumps), the =-transformation can also be obtarned as follows:

Dy = Az i, ; (1.96)

When f(1) has a discontinuity at the sampling instants. the time function
refuted to this equation yields the value at the left side of the discontinuity,
thatuscat r=n7 _forn= 1.2 . and the value sero at no= 0. This
can be readily ascertained by noting equation (1.7).

Similar to the =-transform we can derive several propertuies of the
modified -transform. These properties and important theorems only are
stated in the following discussions and the proofs can be casily derived
by the reader. The steps for the derivation follows exactly as for the

transtorm.
Theorems related 1o the modified z-transform' *
INCHIAL VALUE THROREM

m fin + )T = lim = 7 (2, m) (1.97)
et e
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Special case, the response over the first interval, n = 0,0 = m < |, is

him f{n 4+ m)T = lim 2F(z, m) (1.98)
odm21 0dmet
FINAL VALUE
lim f(n, m)T = lim (z — DF(z, m) {1.99)
n-e o 2-+1

if the limit exists,

REAL TRANSLATION

Fulf(t = kD)) = 27%F (2, m), k=0,12,... (1.100)
IS = AD)=21F,m+ 1 -4, 0<m<aA
= F(z,m — 4], A<m<! (r.101)
where
0 < A <1, and zero initial conditions of f.
LINEARITY
ol hd where a, are constants
ws_HM, P\_QL = ‘Moavﬁxﬂ m), independent of ¢
(1.102)
COMPLEX SCALE CHANGE
Inle??Tf ()] = e T(m-1 (1ot bT m) (1.103)
DIFFERENTIATION WITH RESPECT TO m
waﬁw!\?. ::L = lmu.%.?. m) (1.104)
om om
MULTIPLICATION BY *
a
Il (D] = .ﬁTS — DFz,m) -z MJW._?, Svu_ (1.105)
where
Fz, m) = 5, [ (1)) (1.106)
and k integer larger than zero.
DIVISION BY ¢
® t
5[ L) = Lot [ my e 4 tim O
1 ‘N; x t—~0 1

0<m<1 (1.107)
INTEGRATION WITH RESPECT TO t

ws:.\s L =- m, : %%«? m)dm + ﬂ‘ﬁa,ﬁp m)dm
° o (1.108)

K|
A

|
|

— e
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SUMMATION OF SERIES

W\? + m)T = lim 2%z, m),

n=0 =1

if the sum exists.

0<m< (1.109)

INVERSE  MODIFIED z-TRANSFORM. The continuous time function
\.3_7;;I::ﬂ can be obtained from the modified z-transform by a
process called inverse modified z-transformation, that is,

SOletreramr = fln, mT = 3. [F(:, m)] (1.110)

Methods similar to those for the inverse z-transform exist for the inverse
modified z-transform, namely the integral formula and the power series.
The integral formula yields the time function in a closed form,

1
SOl trsmr = — P F (e, myem? dz,

0<mgt
2mj Jr

t={(n—~14+mT7T (1111
where the closed contour I’ encloses in a counterclockwise direction the
poles of .F(z, m).

The power series method yields the continuous function in a piecewise
form,

2F (2, m) = folm) + fi(m)z1 + fa(m)2-? 4
FLmE >R 0<m< ] (1.112)+
where fy(m) with 0 < m < 1 represent the continuous time function in
the first sampling interval, J10m) represents the same function in the

second interval, and so forth. Actually, the time function is related to
f.(m) as follows:

S = fn + mT = f,(m) (1.113)

It should be noted that since m can be considered as a constant in the
contour integration of equation (1.111), the same tabies for the inverse
=-transform are readily applicable to the inverse modified z-transform,

MAXIMUM OR MINIMUM POINTS OF f(t) = f,(m). To obtain the maxima
or minima points we can differentiate the modified z-transform with
respect to m to obtain, using the power series form,
02 (z, m) _
om

Solm) + fi(m)"" 4 fi(m)z?
+oH L (1114)

t The mnﬂma_ form of f.{m) is obtained using the determinant form discussed in the
Appendix to this chapter.
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If we let
Solm) =0, film)=0,.. ., fi(m)=0 (1.115)

the solution of this equation for 0 < m < | yields the maxima or minima
points. The sign of the second derivative determines which points are
maxima and which are minima. The preceding theorem is very important
in determining the quality of response in discrete systems.

MODIFIED 2-TRANSFORM OF A kth DERIVATIVE

Sl (0] = = A . F(z,m),  provided that (1.116)
T om lim £(1) = 0 for
t—~0
0<n<k—1
and
: 1
~ ;V~.+ }q4 —
Il )] o

x Y 2 F (2, m) — WLbEx-& (1.117)
=0

where 4 is a positive integer and hm f"(1) = 0 for 0 < n <k —~1.
%)

1.5 Relationship between Laplace
and z-transforms?4.29,34

The one-sided Laplace transform of a function “f"" is defined as follows:
Fs) £ (1] u\ S d,  Re[s]> q, (1.118)
[

where o, is the abscissa of absolute convergence associated with f(r).
The inverse Laplace transform is represented by the following Bromwitch
integral, that is,
t+jw
\Su*_iguz_;5%&.35

MqC. e—jeo
fort>0 (1.119)

We can obtain both F(z, m) and F(2) directly from F(s) by an integral
transformation symbolically denoted as follows -

Fleom) & 2 [F(5)] (1.120)
and
F@) 2 Ay (1.121)
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The purpose of this section is to show the preceding relationship and
develop the required transformation 1o enable us to obtain the z-transform
directly from the Laplace trunsform.

The function SnT) shown in Fig. 1.1 can be considered as a sum of
rectangular pulses of arca Af(nT). where £ 15 the width of the rectungle
{or pulse). Such a sum approximates ¥ WnTY Mt — nT). since M7 — nT)
should be considered as the limit of a pulse of umit area. Thus to convert
f(nT) into a train of pulses

JOYMO. LTy S — Ty f2Ty otr — 27T, . FnTyot — nT)

a scale factor 1/h is needed for such a converston.  Therefore we can
replace the sampled function f(nT) by the impulse function 7%(1) provided
the scale factor (or pulse width) is accounted for. The definition of such
an impulse function is given (assuming a full impulse oceurring at £ = 0°),

SHO =3 80— nT) =3 f(nT) b1 — nT) (1.123)
E | 9

v

Taking the Laplace transform of this equation and notng that

b
M) = 0, t# 0, and ‘R:EH_

fora <0< h (1.124)

and

X5 — kT Hkia: — kTYe " dt = ¢ ©7 (1.129)
we Obtuin '

FH(s) & Pf*1)] = M\?jwé (1.126)

This equation is readily recognized as the :-transform of f.if we replace
¢™ by =. Hence we establish

F(z) = F*s)

s T Hne (1127

If we denote M Mt~ nT) = dr(t). we readily establish the connection

{using Eqs. 1.123 M:a 1.127) between the =-transform and the Laplace
transform

3 = Fr5) 2 LMD = LA s p(0) (1.128)




22 THEORY AND APPLICATION OF THE 2-TRANSFORM

By using the convolution theorem for the Laplace transform and
assuming that f(t) contains no impulses and is initially zero, we obtain

1 et jor 1

F*s) = F (D) Lo = T oo F(p) 7= s dp (1129)
where

F(p) = F(5) |,np = LU, (1.130)

1 _é.n_+mé.+a|5+.:ml.?+.:

il 4
= P[0, forfe ™| <1 (1.131)

and

O, €< 0 =0y, max (0, , 0, 0, + 0,) <0 (1.131a)t

For the case F(s) has only one degree higher denominator than numer-
ator, Eq. 1.129 should be modified,**

~ e+fx {

=) F® L dp + 1£(0)
(1.132)

The addition of } f{0*) is required in view of our definition that a full
impulse occurs at 1 = 0.

Both equations (1.129) and (1.132) yield a retationship between F (2)
and F(s), hence we define the following transformation:*

F*(s) = .F(2)

1 —e

Fiz) = J(Fs))
_ c+joC _

by F( dp + }f(0°
2mj Jewix mv_lm;ﬂ:vs p+ 4f007) "

a1

it

(1.133)

Evaluation of JIF(s)]

To evaluate F(z), we assume first that F(s) has two degrees in s higher
denominator than numerator; thus we can use equation (1.129). The
path of integration in equation (1.129) should lie in an analytic strip which
does not enclose or pass through the poles of the integrand. This is
assured in view of the restriction imposed on c.

In effecting the line integral, we can readily enclose in a negative sense
(clockwise direction) the poles of 1/1 — -7 in the right half of the
p-plane, or alternatively we may enclose in a positive sense the left half of

1

+ Where @ = Re {s], 7, = abscissa of absolute convergence of fin, a,, = abscissa
of absolute convergence of & (). Here g, = 0, c = Re|pl
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the plane. Because of the assumed form of F{(s) the integrals on both the
infinite semicircles are zero.
If we integrate along the left half p-plane as shown in Fig. 1.5 cquation
(1.129) becomes
F _N \ﬂ.||l..,|_| \.‘.‘Aﬁv_ |

R

— (1.134)
If £(s) has only simple poles. the integral using Cauchy’s formula yields
the sum of the residue of the function in the closed path, that s,

Fig= 3 residueof A8 __ L (1.135)
¢ Wﬂﬁva _ &~rms~@, L
where
, A
F(p) = F3),., = ) (1.136)
B(p)

When B(s)|,. , = 0 has simple roots only, this equation becomes

_ I Alsy) 1
Fe) = " (1.137)
:.MF Bis)yt — el2?
where 5,. S, 53, . . . . §, are the simple roots of B(s) = 0. and
B'(s,) = dB (1.138)
ds

Where F(s) has branch points in addition to regular singularitics, the
z-transform can also be obtained using equation {1.129); however, here

_Emm:..m«;
4 g0
\.\.A‘ i U
\\ « p-plane
\\ Poles of «
F
/ \>, 1 y .
Poles of mmm——m-
roly v
| >
\ Real
X x
/ x
x
x
x>
[P

FIGURE 1.5 Path of integration in the left half of the p-plane.
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tmaginary C+ jeo
S
~
| X
Poles of - - L L 1 o
1 —e=TVe=p) pe
X %
Foles of 9
Fip) % Rt x
o 3
- LY Reat
2r
&3
x g
x
»
-~
L 3«7
¢ - joo

FIGURE 1.6 Path of integration in the right half of the p-plane.

special care is required to evaluate the line integral. An example will be
presented later.

The integrat in cquation (1.129) can also be evaluated by the contour
integration which encloses only the poles of 1'1 — e 7% in the right
half of the p-plane as shown in Fig. 1.6.

Thus equation (1.129) can be represented by

r::n%_\::_Hl_IAVIE_Tfr dp (1.139)

Nu: p _ mvzﬂ,?,,;i

The integral of cquation (1.139) is equivalent to the negative sum of
the residue according to Cauchy’s theorem.

F*(s) = —{sum of the residue of the
integrand at the poles enclosed)  (1.140)

By cviluating the ressdues at the mfinite poles of 111 — ¢ 75 ™ we
finaliv obtain
_ K o
F¥sy= - ¥ Fls + jko,) (.14
T:7,
where
e (1.142)

If we replace in this cquation eT* =z we readilv obtain the =-transform
FUy = JIFs] The two forms of (1135 and 1.141) are cquivalent can

be readily veriied for specific examples of Fis).

e
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For F(s) has one degree in s higher denominator than numerator, the
integral along the infinite semicircle in the left-halfl plane is no longer
zero, whereas in the right-half plane it is still zero. There equation (1,132)
should be used, which yields on the left-half plane the same as cquation
(1.135). whereas for integration in the right-half plane we obtain'*

i k- o

Fro) == 2 Fis+ jko) + Lf(0Y) (1.143)
ksamm
It should be noted that here the infinite summation is not absolutely
convergent. However, if the sum is evaluated by taking pairs of terms
corresponding to equal positive and negative values of the index 4. the
sum converges to a definite value.

EXAMPLE
Given F(s) = I'(1 — B)s" 'e®, 2 > 0. 8 > 0, and noninteger, we obtain
F(:) 2 Z[F(s)] as follows:
.Cw:,_m the contour integration of equation (1.129), we can write for
T =1

. 1 e+ijx ap B-1 -
F(2) = ZF(s)] = — £r :,__ B 4p (1.144)
Nﬂ.\ i I —z27le?

The integrand has a branch cut (for B not integer) in the left half of
the plane. Using Cauchy’s formula the integral of equation (1.144) is
equivalent to integration around the branch cut as shown in Fig. 1.7
Hence

_ _ra—-p e*Tpf1

Fz) = d 1.145
27j Pyl 1 — z7%” 4 ¢ )

Imaginary
C+ )

\A/ p-plane

Real

~LJ
C - joo

FIGURE 1.7 Path of integration around a branch cut.
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Setting p = xe/" on F,,and p = xe /" op I',, and noting that the integral
around I' ) vanishes, we have

~ - 0 ~ax_ p-1_ifx © ,—az, p-1 _—ify
Fy= - 3:{ 2 %ﬁ‘mim QL
E 0

2nj x 1 — 27t I — 272
ot S €€ -ax A1
H:_!Ew_:ua.‘ et e
ks o 1 — 27"
x —ax f-1
= nwz% S — (1.146)
P(p) o | = igs

We note from integral tables that

£ az g1
% % M = dr =T 8,4), £>0,a>0 (1.147)
0 ~ 2 e

This equation is also defined for B integer. Therefore
F(2) = B B, ), fora > 0 and 8>0

(and also integer) (1.148)
It is known that the definition of Oz 1, 3, 2) s

B 1

O:T B a) = (1.149
\& :MOAB + Qvu v
which is the definition of the z-transform of f(1) = 1/t + 2)?, for # > 0,
a > 0,and T = 1. This result is expected because

S = L NF(5)] = £ra - ISP = 1(t + )P
for all s different from 1,2, 3, . .

Although ¢(z°' g, a) can be represented only in a summation form,
however, if = ¥ = I the function Gl B 2) = {(B. %) is tabulated for
certain x and . This function is referred to as generalized Riemann-zeta
function. Therefore the =-transform does not exist in a closed form;

N
however, the infinite summation 2 Hn + 2)" can be calculated numer-
ically for certain #’s and /1. s

Evaluation of F(z,m) & 2 (F(5)]

The relationship bhetween the Laplace transform and the modified z-
transform cun be readily obtained similarly to the relationship of the
z-transtform. From equations {1.93) and (1.123), we can write

FEm e FYsom) = P(f (1 m)

LU =T+ mD o)), 0<m< i

i

(1.150)
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This equation can also be written as

it

Flm, o= LU~ T+ mT) bt — T)]

eV Ff(t+ mD & (D], 0sm< (L.1s1)

[}

From the convolution theorem of Laplace transform this equation is
equivalent to

-

Fz, 5: s =

z-€

4+
% Fiperot — L __

. _ — m.lﬂZéL

0<m<t (115

)
3

J

It is noticed from the preceding that to evaluate this integral we require
the change of variable parameter from m through A = | — m, 50 as to
get the term e™”7 such that the integral vanishes on the left half infinite
semi-circle. Furthermore, equation (1, 152) constitutes the relationship between
F(z, m) and F(s); thus we define

1

bl A t+in , ~
.“«‘AN. 3v = m F ,wv E= ]Nl—‘» Fi v&iuw d ]
O = | et Ly,

0<m< 1 (1.15Y

Integrating in the left-half plane and assuming F(s) has regular singular-
ities. equation (1.153) becomes

mpT
Flzm) =13 residue of Fiple —, 0<m<]
poley of 1 — P71 -
Fip)
(1.154)

When F(s) = A(5)/B(s) has simple poles, equation (1.154) can be
expressed as

N magT
%«u,Sv“anHM EI{M!}IQ 0<meli
w1t B(s, ) [ — ¢~ Tls-a) emeTr

(1.155)

1B
where s, 5,, ... .5 are the simple roots of B(s) = 0, and B'(s,) = Wl
L YRR

Table Il of the Appendix lists extensive forms of the modified =
transform for various forms of G(s) or F(s). This table can also be used
to obtain %(:) = <IG(s)] using the relationship in equation (1.157).

Equations (1.154) and (1.155) are also valid for m =1, provided F{s)
has two degrees in s higher denominator than numerator. However, if
F(5) has only one degree in s higher denominator than numerator,
equations (1.134) and (1.155) yield for their inverses, if discontinuities
exist, the values at the left side of the discontinuities. The value at ¢ = n
should be taken as at 1 = 07, that is, zero.
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Evaluating the mtegral of equation (1.152) in the right half of the
p-plance we twath due care for convergence) obtain similar to equation
(1.141) the ifinite series form

Froom) = 2 f* 1 m)]

= H »/w ﬁAm + jk va,?:::.\j_:,s;.
T, T

O<m< It (1.156)

W Fs) s of two degrees higher denominator than numerator, this
equiution can be extended for m = 1.

The z-transform can be obtained as a special case from the preceding
by noting

Fizy=zFizm), , (1.157)
and for f(0° ) =0

F(2) = F(om)]

(1.158)

i1

The conditions for obtaining Fis) knowing either #(z, m) or .#(2), that
1 .

1s. ., .~ Lare descussed in Chapter 4.

1.6 Application to sampled-data systems!4-15.20

One of the hasic engincering applications of the =-transform theory is in
the ficld of sampled-data or digital control systems. Such systems are
used more and more often in modern technology. We shall briefly obtain
the z-transforms of certain systems configurations.

I Letthe sampled data systems be presented as shown in Fig. 1.8, The
stransform of the output is readily obtained by applying the =-transform
to Cis) as follows:

sy = L*()0(s) (1.159)

~
G

Cis). €z, m)

FIGURE 18 A sampled-data system.

1t should be noted thut if we let m = | inside the summation and before summimng,
this equation should be modified as
»or

?
3 M \,T f,\, ﬂv i,\a;.

%) =
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—5 — ()

7

> CUs) ® (. m)

FIGURE 19 A sampled-data feedback conirol svstem
Or
iy 2 JCE] = L)%, where £(z) = £*s)h 0,
(1160

The modified -transtorm of cquation (1.159) s

iy = .7 ()] = A% m) (1.161)

o

the sampled-data feedback system be presented as shown in
The -transtorm of the output transform (1) s given as

)2 T[] = JIEHSG6)] = £ (1.162)

) = JE)) = JIR(s) — ClshH(s)]
X G(s)HIs)]

It

TRy — EX(s)
)~ ST H

I

(rled)
Substituting the preceding in equation (1.162), we obtain
7
i) = ‘ﬁui‘}:uwl (1.164)
| + # %)
Simitarly, for the moditied :-transform of the output we obtain
\\y ~
Fizomy = 7 [C)] = ‘ﬁuvflﬁf;,,‘,,ei - (1 165)
1+ # %

We can also obtain the system transfer function of any conhguration
of sampled-dita or digital control system. In later chapters some of these
systems will be studied in more detail.

1.7 Mean square value theorem 4373

The folowing theorem with its extensions is very useful in the study of
discrete systems. In particular, the mean square value of the continuous
crror in sampled-data control svstems can be readhly obtained,




