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Chapter 1
THE LAPLACE TRANSFORM

1.1 Introduction

The Laplace Transform is a very neat mathematical method
for solving problems which arise in several areas of mathematical
analysis. Of particular importance is its ability to solve
differential equations, partial differential equations and
di€ferential-difference equations which continually arise in
engineering problems.

In this chapter we will review the formal mathematical
definition of the Laplace Transform and derive some of its funda-
mental properties. Our interest in the Laplace Transform is quite
practical. We wish to solve problems and our experience has shown
us that the Laplace Transform is a valuable tool in doing so. We
wish to point out also that the use of the Laplace Transform
increases in power when it is used in somewhat unconventional ways.

With the availability of modern large scale computers, its
applications have become increasingly important as a tool in the
numerical solution of mathematical problems. With this clear under-
standing the analyst and engineer must, in dealing with today's
broad spectrum of technical problems, consider both analytical and
numerical properties of the Laplace Transform.

Because of our interest in examining unconventional



applications of the Laplace Transform, we shall consider further
the concept of the Stieltjes integral which allows us to extend
the ideas of the transform to problems involving discontinuities.
To begin, let wu(t) be a continuous real function defined for all
t>0. The function L(u), given by the expression,

1) L) = | et uredt - F(s)

is defined as the Laplace Transform of u. Traditionally the
function is written either as L(u), to show its dependence on
the function u(t), or as F(s), indicating that (1.1.1) is a
function of the complex variable s= (x+iy).

Before we examine some of the properties of the Laplace
Transform of u(t), we must pay careful attention to convincing
ourselves that the integral (1.1.1) does, in fact, exist. To do
this, we shall construct a rather general form of the integral,
the Stieltjes integral, and show that it includes, as a subcase,
the conventional definition of the Laplace Transform.

1.2 Functions of a Bounded Variation

The function F(s) exists whenever the integral,
T oost -
(1.2.1) J e St u(t)dt = F(s)
0

exist over a range of the complex parameter s. Clearly this puts
some restrictions on the behavior of wu(t), particularly as t
gets very large.

To broaden our vision as much as possible, let us consider
some of the generalizations which can be made under which (1.2.1)
exists. To this end we introduce the concept of a function of a
bounded variation. Such a function f(t) {is said to be of a
bounded variation in the interval (a, b) 1if it can be expressed
in the form g{t)-h{t) where both functions g{t) and h(t) are

nendecreasing bounded functions.

1.3 The Stieltjes Integral

The integral defined in (1.1.1) is the usual Riemann
integral used for the conventional definition of the Laplace Trans-
form. Yet to make sure we will be working in a mathematical frame
which is broad enough to include a large variety of applications,
we shall introduce the Stieltjes integral as a generalization of
the more widely used Riemann integral. Our aim in constructing
this integral is to demonstrate the general conditions under which
the Laplace Transform exists.

To construct the Stieltjes integral, let «(x) and f{(x)

ke real bounded functions of a real variable x for a<xcb.
Define a subdivision A of the interval (a, b) by the points,

a = xg “ X <X Xy T b
let & be the largest \X1+1 = %l i =0,1,...,n-1.
If
n;l
11m L f(‘L/‘) (Q(X.H_l) - J(y1))
§+0 i=0
X395 K

exists independently of the manner of the subdivision and the choice
of Iy, then the limit is called the Stieltjes integral of f(x)
with respect to a{x) and is denoted,

fb
(1.3.1) j Flt) dalt)

a

Using the definitions we have just introduced, it can be shown to
be true that if f(x) s continuous and a(x) 1is of bounded
variation in the interval (a, b), then the Stieltjes integral of

fix) with respect to ={x} space from a to b exists.



A further characterization of the existence of the
Stieltjes integral is given by the following result. If f(x)
and «(x) are real bounded functions in a<x<b and in addition
a(x) is nondecreasing, then the necessary and sufficient condition
that,

b
J f(x) da(x)

a

exists, is that

1im (Sy-s,) =0 s
5+ 0 A TA

independent of the manner of subdivision, where

n-1
507 1 Ml () = o ()
n-1
SA = kZO mk(@k+1(x) - @k(x))
M, = 1.u.b. f(x)
m, = g.1.b. f{x)

XS X s

By using these results, we have a means of establishing the
existence of the Stieltjes integral when the need arises.

1.4 Improper Stieltjes Integral

1f we recall that the Laplace Transform L{u) defined in
(1.1.1) has a range of integration from 0 to infinity, we inquire
what the counterpart in the framework of the Stieltjes integral
would be. The improper Stieltjes integral can be defined as a
limiting process in the following way. If f(x) 1is continuous
in a< x<R, for every R, then

© R
(1.4.1) J ) dax) = Tin Ja flx) dalx)
a > 00

when the limit exists. If the integral does, in fact, exist, the
improper integral (1.4.1) is said to converge. Furthermore, we say

(1.4.1) converges absolutely if and only if,
(1.4.2) J [F(x) | dV(x) <«
a

where V(x) is associated with the bounded variation property of

a(x) and is defined as,
(1.4.3) v(x) = g{x) - h(x)

where both g(x) and h(x) are nondecreasing bounded functions.

1.5 The Laplace Transform

To demonstrate the conditions under which the Laplace
Transform exists, we shall consider the results we have found for
the Stieltjes integral. Recall from the last section, that if
f(x) is continuous and «fx) is of bounded variation, and,

o0

(1.5.1) JO F0)] dV(x) < =

then the integral

R
(1.5.2) fo f(x) da(x)

exists and in the 1limit as R-o converges absolutely.

Now, if afx) 1ds a continuous function of a nondecreasing
parameter t, then we can write a(x)=1t so that da(x)=dt, and
(1.5.3)  f(x) = f(t) = e St u(t)

where s is a complex parameter.
Then, the Stieltjes integral (1.4.1) becomes the Laplace Transform,



{”’ -st
]

Now if we impose the bounded condition on the function wu(t),

(1.5.4)

(1.5.5) |u(t)| < aebt y

for some constants a and b as t-«, and that

(1.5.6) | lu(t)de < e

Jo
for any finite T, then the conditions are satisfied to insure
that the integral will converge absolutely and uniformly for
Re(s) ~ b, since

I‘ ol

J }e_St ult)dt < af }e(b“s)t{dt < v
0 0

for Re(s)>b.

Therefore, depending on the bounded behavior of u(t) for
Targe t, a convergent Laplace Transform exists only for those

complex parameters s whose real parts are greater than b.

1.6 Existence and Convergence

The explicit results of the last section may be restated
in the following way. If wu(t) is continuous and satisfies a
bound of the form,

11.6.1) ity < oae”
for some constants a and b as t»r« and if

-
I

et
[t
~3

jultyldt - =
0

“or every finite T, then the combination of these two reasonable
assumptions permits us to conclude that the integral,

(1.6.3) J e %t () dt
0

exists and converges absolutely and uniformly for Re(s)=>b.

1.7 properties of the Laplace Transform

some of the elementary properties of the Laplace Transform
are of particular interest to us as we proceed through the book.
We shall begin with the most important of the elementary attributes
of the Laplace Transform, namely the relative invariance under

translations in both the t- and s-spaces.

We first observe that from its definition, the Laplace

Transform can be written,

(1.7.1) (7St Pt eyt = JgJe'<5+b)t u(t)dt
o 0

Or in other words,
(1.7.2)  LePt(t)) = Fls+b)
Also we have, using the same technique of examination,

(1.7.3) CoeStu(t-1)at

I
= e_S(t+1) u(t)dt = e L{u)
0
Another property of the Laplace Transform can be illustrated by

considering,

f e e
(1.7.4) L(du/dt) = | e S (quydt)dt
0
By .o
et | - st upar
0 0

by integrating by parts.
Frem the convergence requirements of the Laplace Transform, we



assume that,

(1.7.5) Tim et u(t) = 0

Using these results we obtain the property that,
(1.7.6) L{du/dt) = sL(u) - u(0)
Similariy,
(1.7.7) L(du/dt?) = sL{du/dt) - u'(0)
2 |
= s"L(u) - su(0) - u'(0) s
and inductively,
(1.7.8)  Lla"w/at") = ML) - ") - L - u( gy
where,
00 = dMuyad”

This is a remarkable property of the Laplace Transform for it

transforms derivatives into simple algebraic expressions together

with the inclusion of initial conditions in a very natural way.

The Laplace Transform has several other far reaching proper-
ties. For example, if f(t) is Laplace Transformabie, that is, its

Laplace Transform exists, then we can show that

t N
(1.7.9) L (jo f(t)dt) = F(s)/s

Hence, we follow the formal definition of the Laplace Transform,

,’t r
(1.7.10) L (} f(t)dt) =] e
0 JO

-st (t

|
J

f(p)dpdt

Integrating the right side of (1.7.10) by parts, we have,

t st [t 17 -t
(1.7.11) L(Jof(t)dt): - éAe st J f(p)dp | + E}; e ® f(t)dt

= F(s)/s.
sing the same technigue, we can obtain two interesting similar

resuits.

(1.7.02) Lt A0 = | ettt

T ds

We also take note of the following fact,

(1.7.13)  L(f(t)/ t) = {;ﬁe‘St F(t)/t dt

w .5
) J J e P £(t)dpdt
00

= JS Joje_pt f(t)dtdp

0’0
1S

= | Flp)dp
-0

Finally, we wish to examine the Laplace Transform as it defines a
complex function over a complex domain. By definition, it oul(t)
is continuous for t> 0, then we have defined,

[T st

(1.7.14)  L{u) = Jo © u(t)dt

where now we wish to emphasize that s is a complex number, i.e.,

(1.7.15) s = X+ iy

where the symbol i is the imaginary number i=/-T .
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Recalling that,

-st _ e—(x*—iy)t -xt

(1.7.16) e = e (cos(yt) - i sin{yt)) ,

we see that the transform (1.7.14) can be written,
(1.7.17)  L(u) - J et (cos(yt) - i sin(yt)) u(t)dt
0

By inspection we can write,

(1.7.18) L{u) = F(x,y) + 16G(x,y) ,

demonstrating clearly that L{u) {is a complex function of a complex

variable. Quite often problems are encountered in which the unit
step function plays a prominent part. This function is usually
denoted as U(t) and its definition is

0 t<0
(1.7.19) U(t) =
1 tz0

We now have the following results, sometimes called the shifting
theorem. The theorem states that if

then
L{F(t-T) U(t-T)) = e F(s)

we demonstrate the proof of this result by noting that,

-st

(1.7.20)  L(F(t=T) U(t-T)) = j F(1-T) U(t-T) 5% gt
0
b of(teT) 3t at
1
by letting p=1t-T,
- | ogp) e SPT
Yo

"

The Inversion of the Laplace Transform

The Laplace Transform of a function wu(t} is of little
value to the analyst if there is no assurance that the inverse
c.ists and is unique. Therefore we shall be concerned in this
section with demonstrating that such an inverse exists uniquely
and in so doing we will determine the conditions under which the

inversion can be successfully performed.

Since we are not interested in the most general case, but
onls in the class of functions which arise naturally in the course
of our investigations, we shall restrict ourselves to proving the
following: If F(s) satisfies the following conditions,

1. F(s) 1is analytic for Re(s)>a

F{s}) = — + 0(—>—=) as ls!~» along s=b+it

[Nl

then
(1.9.1) f((t) = -

where (c¢) s a contour in the region of analyticity, exists and
RIS Fls) = L{f)
o demonstrate the result is true, let us write the Lapiace Trans-

fovm of a function f(ti, £:0, as follows,

1 -nt
SN LiF) = Tim | flt) e Phar
Te= -0

where pois a complex parameter.
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Using (1.8.1) we have

(1.8.4)  L(f) = Tin f; [i;[(c) F(S)eStdsJe’ptdt

Because of the absolute convergence of the double integral, the
order of integration can be reversed, and we have

(1.8.5) L(f) = lim -LJ F(s)J
(c)

T+ 2Tl

e(s-p)t dtds
0

If Re(p) > Re(s), the inner integral exists in the limit as
T-o and may be explicitly evaluated.
Therefore,

(1.8.6) L(F) = lim _I—J F(s){
{(c)

T oo 271

or in the limit as T-w

=L F(s) ds _
(Len) i -2 J(C) (Lds - £(p)

because F(s) 1is analytic for Re(s)>a.

Alternatively by direct manipulation, we can show the
existence of the inverse Laplace Transform by the following
analysis. If f(t) 1is defined for t>0 and the correspond
transform,

(1.8.8) F(s) = {: Ft) e St gt

is absolutely convergent for Re(s)>a, as in Fig. 1.1.

Then for x>a, we can write,
F(x+iy) =J fe) e XTIVt g
0

where the integral is absolutely convergent.

iy

S = x+ iy

Fig. 1.1

the Laplace Transform

Now, if we multiply both sides of (1.8.8) by

u being a real parameter, and integrate between

along the imaginary y-axis, we see,

(1.8.9)

T .
[ U B ty)dy
-T

= JT eu(x*—iy) faye-(X+'1y)t f(t)dtdy
-T 0

-T

Region of absolute convergence for

eu(x%—iy)

and T,

b

13

But because the double integral converges absolutely, the order of

integration can be interchanged,

T .
(1.8.10) J OV et dyydy
T

= W J:f(t)e'xt [T

We can now note that

(1.8.11)

e

and therefore

(1.8.12)

(T

JeT

i(u-t)

[

i{u-t)

Y 4y

-T

e(iuy- 1'yt)dydt

Y = cos(u-t)y + i sin{u-t)y

_2sin T(u~t)

(u-t)

)
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Substituting (1.8.12) into (1.8.10), we see

ulx+iy) ~

(1.2.13) ! e F(x+iyjdy

oeW T () et ST TR gy
‘0 {u-t)

To investigate the behavior of the right-hand integral for u -0,

we can break the interval (0, =) into (0, u-d), (u-d, utd),
{utd, =), so (1.8.13) can be written as,
e . fT u(x+1y) o, .
(1.8.14) | e " Fix+ iy)dy

4=

oy [rlumd) (lu+d) o
= Ze {; {.)dt + } {(.)dt + J { )dt]
0 S {u~-d) {u+d)

Each integral of (1.8.14) is of the form,

b i S]l"(tT)
dt

Ja cos(tT)

where g{t) 1is continuous over the intervals defined on the first

and third terms. If we assume that g(t) has a derivative, then

integqrating by parts gives, for example,

b
L q(t) sin(tT)dt
.‘a
v . b b
ty ¢
= fgﬂJA995<tTi»; L g'(t) cos (tT)dt
T i T g
and we have the result,
b sin{tT)
vim o |oglty o dt = 0
T—> -a b ocos(tT)
therefore in the Timit as  T-»., the first and third intearals of

11,814y vanish,

o

15

Therefore, at this point we can say, in the Timit,

11.8.15) ; QNX+1W Fix+ iy)dy

JoT

L lutd)
T | f(t)e SR t
Su-d) (u-t)

cince d s small, we assume f(t) 1is sufficiently smooth in the

neighborhood of u  that,

-xt -Xu
e

f(t) = f(u)e + hiu, t){t-t) s

where |[h(u, t)] < k, (u-d) <t < (utd).
Therefore, we can immediately write,

(1.5.16) [ U WYY E ity )dy
T
- 2f(u)f(u+d> sin Tu-t) g
(u-d)  (u-t)
) +d
+ 2e™ J(u ) Alu, t) sin T(u-t)dt
(u-d)

Since |sin T(u-d)| < 1 and |h(u, t)| < k, the second integral

is 0(d). Now set v=T(u-t), dv=-Tdt, we have then,

T .
(1.2.17) { U)oy

ST

M siny gy o)
\%

“we let T+» and d:0 such that Td—c, then we have
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T U+ iy)
Yim ( U rie gy)dy = -2nf(u) + 0(d) ,
T e JoT

11.8.18)

and therefore,

(1.8.19)  flu) = Tim - ZLJT U Y) p s iy)ay
Tow 2T
-T

Since F(s) 1is analytic for Re(s)>a, the integral (1.8.19)
exists in the right half plane, Re(s)>a. Since s = x+iy, we
can choose a path ¢ in the complex plane parallel to the
imaginary axis so that ds = -idy. The limits of integration of
(1.8.19) become a=iT.

The final expression can then be written,

(1.8.20)  f(u) = Tim - eYS F(s)ds \

a+iT
T ZTT'i J

a-iT

which is the expression for the inverse Laplace Transform.

1.9 The Convolution Theorem

A fundamental property of the Laplace Transform is
associated with the expression

(1.9.1) h(t) = J f(r) g(t-r)dr
0

This mathematical operation creates a function h(t) as a compo-
site of two functions f(t) and g(t) and plays important roles
in analysis in mathematical physics and probability theory. The
notation,

(1.9.2) h=fxqg

is frequently used to symbolize (1.9.1) and the integral itself is
the convolution of f and g. If we consider the Laplace Trans-

form of h{(t) as a limiting process, we can write,

T t
(1.9.3) ( hit) e 5% dt = { St ¢

J (r)y g{t-r) drdt
10 -0 ’0

Toron

)
s

Now consider the repeated integral as a double integral

over a region S in Fig. 1.Z,

t
7
Fig. 1.2
Inverting the order of integration, we have,
(1.9.4) (1 o5t £ty g(t-t;)dt,dt
e 1 17701
T T ]
- | f(tl)[! et (t-t)dt|dt)
0 o tl
T -st T-t
= [ e 1 f(tl> { ( - g(u)dqut1
Io Lo
ns T, we obtain formally L(f*g) = L{f)L{g). To put this

heuristic result on a rigorous foundation, we shall prove the
following theorem.
Tt

() | e

17
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o -(a+it)t

(b) e
I
then

0

for s = s+1ib, and

To begin the proof, we have, referring to (1.9.4),

(1.9.5)

and (R, T). Since, by assumption the integrals J e”SU g{u)du
0

and jcne"at[f(t)ldt
0

Jg hit)e™

1
g(t,)dt,

rh(t)e‘St dt = {[Z e~st f(t)dt] [Joae'St g(t)dt}

generally for Re(s)>a.

0 0

0

T —st1 o
= J e f(tl)[J e”®
0 0

-st
e ! f(t

Y o
- f; 1)[fT-t1 e SY g(u)du}dt

The second integral in (1.9.5) can be shown to be bounded.
We break up the range of t

converge, then for any e>0, there is an

R, depending on ¢ for which,
(a) [ e™sY g(u)du' <e
R(e)
(b) f ™St f(t)dt[ < ec,
R(e)
(c) [ e st g(udu| < ¢;
0

Therefore for R(e)

selected to satisfy (a), we can say

converges for

T st T-t
st dt==J e 1 f(tl)[j Lgmsu g(u)dt}dt

u)du}dt1

1 integration into two parts,

< e,

The remaining integral has the bound,

(1.9.7) }JT(E) ()

By letting T

, the second integral in (1.9.5) goes to

zero and we are left with the result,

dt = J e st £(t)dt ( e~Su g{u)du
0 ‘0

(1.9.8) Ja)h(t) e st
0
1.€.,
(1.9.9) L{f+g) = L(f)L{g)

Result {1.9.9) informs us that rather than constructing the

Laplace Transform for a complicated convolution involving both

f(t) and g(t), we need only construct the transform of each

separately and multiply.
renewal equation.

This device will be used later with the

1.10 Instability of the Inverse of the Laplace Transform

Let v(t) be a function for which

19
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(1.10.1) jkxiv(t)[ ekt gt
0
Then, for Re(s):k,
(1.10.2) PL{utv) - L{u)! = ‘{u’v(t) e-St dti
JO i

(r 4v(t)le_Re(S)t
101

In other words, a "small" change in u produces an equally small
change in  L(u). In mathematical terms, L(u) 1is stable under
perturbations of this type.

The impossibility of usable universal algorithms for
inverting the Laplace Transform is a consequence of the fact that
the inverse of the Laplace Transform is not stable under reasonable
perturbations. Two simple examples illustrate this. Consider
first the well-known formula,

(1.10.3) L{sin at) = a/(s2 + az)

As a increases, the function sin at osciltlates more and more
rapidly, but remains of corstant amplitude. The Laplace Transform,
however, is uniformly beounded by 1/a for sz 0 and thus
approaches 0 uniformly as a- »,

As a second example we consider the formula,
2 \
e—a /4t

(110.4) L) - L2 ,__',“W<) oS
o 1302

Bs a>0, the function e 'S

remains uniformly bounded by 1 for
s> 0. Observe how u(t) behaves as a function of t. At t= a2/4,
we see that it has the value cl/a2 where o) is a positive
constant. MNonetheless, at t=0, for all a>0, u(t) assumes

the value 0. Hence wul{t) has a "spike" form (see Fiq. 1.3}, one

HN
which is sharper and sharper as a=~0. We see then that wu(t) s

21

- e T t
Fig. 1.3

is highly localized in the vicinity of t=0 for a small, and
thus that u(t) 1is an excellent approximation to the delta

function &(t).

These examples make evident some of the difficulties we

face in finding u(t) given F(s). Let F(s) be calculated to

10

an accuracy of 1 in 1077, say to ten significant figures, then

if uO(t) is the function giving rise to F(s) via F(s)= L(uo),

we see that )
_al
_ a,e / 4{t-s,)
(1.10.5) g + sin 10°%(t-t,) + 10 AUl 1
a w;‘<t«sl>3/2

will have, to ten significant figures, the same Laplace Transform
for any a5, 51> 0.

We cannot therefore "filter out" extremely rapid oscilla-
tions or spike behavior of u(t) on the basis of numerical values
of F(s) alone. What we can do to escape from this simultaneous
nightmare and guagmire of pathological behavior is to agree to
restrict our attention frem the beginning to functions wu(t)
which are essentially smooth. 1In other words, we can use knowledge
of the structural behavior of wu(t) to obtain numerical values.

In many cases, as we shall show, the inverse transform must be

accomplished by numerical means and we shall be continually keeping
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the analytical end numerical behavior of each problem clearly in

mind.

111 The Laplace Transform and Differential Equations

An impertent eppliceticn of Laplace Transform occur in the
sclution of ordinary differential equations which are cast in the
form of initial value problems. Properties of the Laplace Trans-
form make the transform very appealing as a means of finding

sclutions provided the inverse transform can be easily found.

Let us now turn to the solution of linear equations with
constant coefficients by means of the Laplace Transform. To begin
with, censider the first-order scalar equation,

(1.11.1) du/dt = au + v , u(t) = ¢

Taking the Laplace Transform of both sides, we have

1.2y e (durdtyat = a e St alt)dt + 1 e St u(t)at

G ‘0 20

Herice by integrating by parts,

e . -st S st

{1.11.3) 0 i+t s.oe St udt = af e S udt + ( e St vdt
0 -0 ) 0

Writing,

, . S By (5=

{1.11.4; Liuj = ' e St udt Llv) = o5t ydt R
20 10

we have, by solving (1.11.3) for L(u]

(1.11.5) L) = =5 4 L)

’ -3 S~ a
The inverse of the first term is known to be ceat. Yo obtain the

inverse of the second term, we apply the convoiution theorem. The

resuit is

23
Turning to the vector-matrix case,
11173 dx/dt = Ax + y , x(0) = ¢,
we have
. R _1 __1
71.11.8) L(x) = (sI-A) " ¢+ (sI-A) " L{y)
Cince the inverse transform of (sI- A)‘1 is eAt, we obtain the

expression,

$1.11.9; x =e ¢+ e v{s}ds

1.12 Transient Solutions

A byproduct of the Laplace Transform technique when it is
applied to differential equations is the fact that one may be able
to get explicit expressions for the transient solutions which
reflect the initial conditions. Referring to the last section, we
cee that the differential equation itself (1.11.1) carries the
initial condition, u(0)=c, as an auxilary condition. The form
of the solution given by the Laplace Transform (1.11.5) shows that
the initial condition, ¢, is incorporated in the explicit

analytic expression.

1f the transform can be inverted analytically, then the
results shows explicitly how the initial conditions are propagated
in time. If the transform must be inverted numerically, then one
cannot tell for sure how the initial conditions propagate and the
numerical solution has to be constructed very carefully.

1.13 Generating Functions

The generating function is an exampie of a transform on
Functions of a discrete variable, or index, and is formally quite

similar to the Laplace Transform.

b}

if {unj n=1,2,... 1is a sequence, the generating func-
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tion associated with set {un} is defined as,

n
Uz

(1.13.1) G(z) = o Un

n

HoDeg &

where z s a complex number. Several examples come immediately
to mind,

(@) u =1, nz0 6(z) = 7 2" ,
n=0

0] O<n<m <

(b) u, = G(z) = V 2"
1 nem n=m
0 Osngm )

(c) = Gz) = 7 u 2"
Ul onzm n=m "

The inversion of the transform defined by (1.13.1) can
quickly be obtained by two different methods. Noting that G(z)
is analytic in z, we obtain by differentiation,

n
(1.13.2) = 1/nt & G(z)
dzn

z=0

Relating to the analyticity of G(z) we multiply both
sides of (1.13.1) by z_m'l, for a given m. Then

(1.13.3) 2™l gz = 7 y -l

[f we integrate (1.13.3) by a contour integral about a
simple closed contour including the origin and with the region of
analyticity,

bl

(1.13.4) j z~m-1 G(z)dz = ZWium
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or,

(1.13.5) ==t | 2™ giz)az
m VA J¢
The convolution of two sequences can be defined in a way
analogous to the convolution for the Laplace Transform. Let {un}
and {vn} he two sequences and defined a third sequence {wn} =
i . i
A usvp . We then write {wn} = {un} *{vn} and say that {wn}
‘s the convolution of {un} and {vn}. Under these definitions
it is easy to see that the generating function of the convolution
of the two sequences is the product of the generating functions of

the two sequences.

Problems
1. The Laplace Transform is defined as,
Fis) = | e f(t)dt
10

If s s a complex number (s=x+1y):

(a) Show that F(s) is a complex function of a complex
variable.

(b)y If f(t) is bounded on 0« t<e, determine the region
of convergence of F(s)} in the complex plane. Show

F(s) s analytic in this region.

Z. Find the Lapiace Transforms for the following functions.
{a) f(t) =1
{(b) f(t) =t
(c) f(t) = t"
(d) f(t) = sin at
{e) f(t) = cosh at
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(F) f(t) = et
{g) f(t) = t sin at 0
1 for t>0
(h)y f(t) = U(t) where U(t) = .
0 for tgO
-at

Show that the Laplace Transform of f(t) = e
2
)

(a) Where in the complex plane is F(s) analytic?
(b) If a>0, is f(t) stable, (i.e., is it bounded at
infinity?) and where are the poles of F(s)?

sin bt is

F(s) = b/((s+a)% + b

(¢) If a<0, f(t) 1is unstable. How are the poles of
F(s) shifted?
(d) Given F(s), find f(t) by the inversion formulae.

What is the Laplace Transform of f'(t)?

Under what conditions on f(t) does this transform exist?

What must be specified to make the transform unique?

Does the transform have a zero or pole in the complex plane
and if so where are they located?

Repeat (4) for f"(t).

t
Repeat (4) for j f(s)ds.
0

If F(s)=F(s-a), then what can be said for the function
f(t)?

State in words how a Tinear transformation in the transform
will effect the function f(t).

What happens if a is complex?

Given a function of two variables f(x, y), the Laplace
Transform is defined to be,

Fu, v) = J J eV £(x, y)dxdy
0’0

Under what conditions does F{u, v) exist?

show L(f(t) + g(t)) = L{f(t)) + L{g(t)).

Using (9) and (10), explain why L(f)
Why is this an important observation?

is a linear operator.
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