Application: Volterra integral equations

Albert Altarovici*

* ETH Zurich, Zurich, Switzerland

Proseminar Convolution Quadrature - December 14, 2009
(1) Motivation

- Physical Problems
(2) Preliminaries
- Purpose of this talk
- Convolution Quadrature
(3) Fractional Linear Multistep Methods
- Target Problem
- Construction
- Practicality
(4) Convergence Analysis
- Main result
- Proof of the main result
(5) Stability Analysis
- Analytic Stability Regions
- Stability Region of a Fractional Linear Multistep Method
- Characterization of the Stability Region
- Transformation of Stability Regions
- Dahlquist Barrier for Fractional LMSMs
(6) Numerical Experiments
- $(B D F 4)^{1 / 2}$
(1) Motivation
- Physical Problems

2) Preliminaries

- Purpose of this talk
- Convolution Quadrature
(3) Fractional Linear Multistep Methods
- Target Problem
- Construction
- Practicality

4 Convergence Analysis

- Main result
- Proof of the main result
(5) Stability Analysis
- Analytic Stability Regions
- Stability Region of a Fractional Linear Multistep Method
- Characterization of the Stability Region
- Transformation of Stability Regions
- Dahlquist Barrier for Fractional LMSMs
(6) Numerical Experiments
- $(\text { BDF4 })^{1 / 2}$

First appearance

Abel's Mechanical Problem

In the (x, y)-plane find a curve C which is the graph of an increasing function $x=\varphi(y), y \in[0, H]$, along which under constant downward acceleration g a particle must be constrained to fall, in order that its falling time equals a prescribed function $t(y)$ of the initial height y.

Abel's Mechanical Problem

In the absence of friction, the problem can be reduced to solving for φ in the equation

$$
\int_{0}^{y}(y-z)^{-1 / 2} \sqrt{1+\varphi^{\prime}(z)^{2}} \mathrm{~d} z=\sqrt{2 g} t(y)
$$

Remark
The $-1 / 2$ exponent for the singular kernel often occurs for Abel Integral Equations arising from physics

Inverse scattering problem for a repelling potential

Shooting a particle at an atom nucleus

We are interested in determining the potential $V(r)$ of the repelling field of an Atom nucleus. We can do so by measuring the angle of deflection θ a particle with impact parameter $b>0$ experiences.

By impact parameter, we mean the closest distance the particle would approach the atom if it were to travel in a straight line.

Inverse scattering problem for a repelling potential

One can define a function for the angle of deflection θ by varying the impact parameter b, i.e. $\theta=\theta(b)$.

Inverse scattering problem for a repelling potential

One can define a function for the angle of deflection θ by varying the impact parameter b, i.e. $\theta=\theta(b)$.

$$
\theta(b)=\pi-2 \int_{r_{0}}^{\infty} \frac{\mathrm{dr}}{r^{2}\left(b^{-2}-r^{-2}-E^{-1} b^{-2} V(r)\right)^{1 / 2}}
$$

where r_{0} is the solution to

$$
E-b^{2} E r_{0}^{-2}-V\left(r_{0}\right)=0
$$

Inverse scattering problem for a repelling potential

A few change of variables later:

One can obtain an integral equation of the form

$$
\beta(x)=\int_{0}^{x} \frac{g(w) \mathrm{d} w}{(x-w)^{1 / 2}}, 0 \leq x \leq \frac{1}{b_{\min }^{2}}
$$

Remark: The bound on the integral arises from the fact energy has been fixed.
(1) Motivation

- Physical Problems
(2) Preliminaries
- Purpose of this talk
- Convolution Quadrature
(3) Fractional Linear Multistep Methods
- Target Problem
- Construction
- Practicality
(4) Convergence Analysis
- Main result
- Proof of the main result
(5) Stability Analysis
- Analytic Stability Regions
- Stability Region of a Fractional Linear Multistep Method
- Characterization of the Stability Region
- Transformation of Stability Regions
- Dahlquist Barrier for Fractional LMSMs
(6) Numerical Experiments
- $(B D F 4)^{1 / 2}$

Previously in the Seminar

We have previously discussed the approximation of

$$
(f \star g)(x)=\int_{0}^{x} f(s) g(x-s) \mathrm{d} s
$$

- g is given explicitly. Only "scant" information about f is given (i.e. conditions suitable for the inversion of its Laplace transform)
- Obtained convolution quadratures from an appropriate linear multistep method(LMSM)
- Error analysis performed justified the use of convolution quadratures. In particular, the case $g(t)=t^{\alpha-1}$ was discussed

Convention

Unless otherwise stated, all LMSMs satisfy

- The method is stable and consistent of order p
- The method is implicit
- All zeros of $\sigma(\zeta)$ have absolute value ≤ 1.

Purpose of this talk

We discuss a method for the numerical solution of a weakly singular Abel-Volterra integral equation

$$
y(t)=f(t)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} g(s, y(s)) \mathrm{d} s, \quad 0<\alpha<1 \text { fixed }
$$

How is this problem different?

Purpose of this talk

We discuss a method for the numerical solution of a weakly singular Abel-Volterra integral equation

$$
y(t)=f(t)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} g(s, y(s)) \mathrm{d} s, \quad 0<\alpha<1 \text { fixed }
$$

How is this problem different?

- We are approximating y ! More precisely, we are solving the (nonlinear) integral equation numerically.
- Known quantities g and f (the latter not appearing in the integral).
- No information about the Laplace transform of y is assumed. Instead, we rely on a priori regularity and asymptotic properties.

Definition

A suitable numerical scheme can be developed for a larger class of integral equations

Abel-Volterra Integral Equation of the Second Kind

$$
y(t)=f(t)+\int_{0}^{t} K(t, s, y(s)) \mathrm{d} s
$$

Remarks:

- Special case: $K(t, s, y(s))=(t-s)^{\alpha-1} g(s, y(s))$.
- If K, f are independent of t, the equation reduces to the initial value problem

$$
y^{\prime}=K(t, y), \quad y(0)=y_{0}
$$

Convolution Quadratures for the Abel-Volterra Integral Equation

We shall show a natural scheme to consider is of the form

$$
y_{n}=f\left(x_{n}\right)+h \sum_{j=-1}^{-k} w_{n j} K\left(x_{n}, x_{j}, y_{j}\right)+h \sum_{j=0}^{n} \omega_{n-j} K\left(x_{n}, x_{j}, y_{j}\right)(n \geq 0)
$$

where $w_{n j}$ and ω_{n-j} are weights of (potentially) different methods

Convolution Quadratures for the Abel-Volterra Integral Equation

We shall show a natural scheme to consider is of the form

$$
y_{n}=f\left(x_{n}\right)+h \sum_{j=-1}^{-k} w_{n j} K\left(x_{n}, x_{j}, y_{j}\right)+h \sum_{j=0}^{n} \omega_{n-j} K\left(x_{n}, x_{j}, y_{j}\right)(n \geq 0)
$$

where $w_{n j}$ and ω_{n-j} are weights of (potentially) different methods
Why is there an extra sum?!

Applying LMSM to Abel-Volterra Integral Equation

Let (ρ, σ) be a LMSM.
Rewrite the Abel-Volterra equation

$$
y(x)=J\left(x, x_{n}\right)+\int_{x_{n}}^{x} K(x, s, y(s)) \mathrm{d} s,\left(x \geq x_{n}\right)
$$

where $J\left(x, x_{n}\right)=f(x)+\int_{0}^{x_{n}} K(x, s, y(s)) d s$

Applying LMSM to Abel-Volterra Integral Equation

Let (ρ, σ) be a LMSM.
Rewrite the Abel-Volterra equation

$$
y(x)=J\left(x, x_{n}\right)+\int_{x_{n}}^{x} K(x, s, y(s)) \mathrm{d} s,\left(x \geq x_{n}\right)
$$

where $J\left(x, x_{n}\right)=f(x)+\int_{0}^{x_{n}} K(x, s, y(s)) d s$
Note: $y\left(x_{n}\right)=J\left(x_{n}, x_{n}\right)$

ODE Problem:

$$
J(x, \xi)=f(x)+\int_{0}^{\xi} K(x, s, y(s)) d s
$$

Taking a partial derivative yields

$$
\begin{equation*}
\frac{\partial}{\partial \xi} J(x, \xi)=K(x, \xi, y(\xi)) \tag{1}
\end{equation*}
$$

Approximation of $J_{n}=J\left(\cdot, x_{n}\right)$

Applying a LMSM to the ODE problem

Recall: k-step LMSMs require k initial values to "take-off"
Starting values y_{-k}, \ldots, y_{-1} are given. We assume the starting functions $\tilde{J}_{-k}, \ldots, \tilde{J}_{-1}$ are given by some quadrature (not necessarily related to (ρ, σ))

$$
\tilde{J}_{n}(x)=f(x)+h \sum_{j=-1}^{-k} w_{n j} K\left(x, x_{j}, y_{j}\right) n \in\{-k, \ldots,-1\}
$$

Approximation of $J_{n}=J\left(\cdot, x_{n}\right)$

Applying a LMSM to the ODE problem

Recall: k-step LMSMs require k initial values to "take-off"
Starting values y_{-k}, \ldots, y_{-1} are given. We assume the starting functions $\tilde{J}_{-k}, \ldots, \tilde{J}_{-1}$ are given by some quadrature (not necessarily related to (ρ, σ))

$$
\tilde{J}_{n}(x)=f(x)+h \sum_{j=-1}^{-k} w_{n j} K\left(x, x_{j}, y_{j}\right) n \in\{-k, \ldots,-1\}
$$

Apply (ρ, σ) to (1) and obtain an approximation \tilde{J}_{n} of J_{n}

$$
\begin{equation*}
\sum_{j=0}^{k} \alpha_{j} \tilde{\jmath}_{n+j-k}(x)=h \sum_{j=0}^{k} \beta_{j} K\left(x, x_{n+j-k}, y_{n+j-k}\right) \tag{2}
\end{equation*}
$$

Set $y_{n}=\tilde{J}_{n}\left(x_{n}\right)$.
y_{n} is an approximation of $y\left(x_{n}\right)$

Convolution Quadrature

Lemma

The LMSM (2) with starting functions(as above) can be rewritten as a quadrature method

$$
y_{n}=f\left(x_{n}\right)+h \sum_{j=-1}^{-k} w_{n j} K\left(x_{n}, x_{j}, y_{j}\right)+h \sum_{j=0}^{n} \omega_{n-j} K\left(x_{n}, x_{j}, y_{j}\right)(n \geq 0)
$$

where the weights ω_{n} and $w_{n j}$ are bounded. The weights ω_{n} are the coefficients of the power series

$$
\omega(\zeta)=\frac{\sigma\left(\zeta^{-1}\right)}{\rho\left(\zeta^{-1}\right)} .
$$

Converse: If $\omega(\zeta)$ is a rational function, one can recover the LMSM
(1) Motivation

- Physical Problems
(2) Preliminaries
- Purpose of this talk
- Convolution Quadrature
(3) Fractional Linear Multistep Methods
- Target Problem
- Construction
- Practicality
(4) Convergence Analysis
- Main result
- Proof of the main result
(5) Stability Analysis
- Analytic Stability Regions
- Stability Region of a Fractional Linear Multistep Method
- Characterization of the Stability Region
- Transformation of Stability Regions
- Dahlquist Barrier for Fractional LMSMs
(6) Numerical Experiments
- $(B D F 4)^{1 / 2}$

Adapted Numerical Method for Convolution Type Kernels

We wish to apply a convolution quadrature to approximate
Abel-Volterra Integral Equation of the 2nd kind with a Convolution Kernel

$$
y(t)=f(t)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} g(s, y(s)) d s
$$

for $t \in[0, T]$ and $0<\alpha<1$ fixed.

Can we furnish a method adapted to this particular type of Abel-Volterra Integral Equation?

Idea: Consider fractional step-sizes and weights!

Fractional Linear Multistep Method

We seek to construct

Fractional Linear Multistep Method

$$
y_{n}=f\left(t_{n}\right)+h^{\alpha} \sum_{j=0}^{m} w_{n j} g\left(t_{j}, y_{j}\right)+h^{\alpha} \sum_{j=0}^{n} \omega_{n-j}^{(\alpha)} g\left(t_{j}, y_{j}\right)
$$

- $h>0$ denotes step-size
- $t_{n}=n h$
- starting quadrature weights $w_{n j}$ (independent of h), $j=0, \ldots, m$, with m fixed
- convolution quadrature weights $\omega_{n}^{(\alpha)}$

Fractional Linear Multistep Method

We seek to construct

Fractional Linear Multistep Method

$$
y_{n}=f\left(t_{n}\right)+h^{\alpha} \sum_{j=0}^{m} w_{n j} g\left(t_{j}, y_{j}\right)+h^{\alpha} \sum_{j=0}^{n} \omega_{n-j}^{(\alpha)} g\left(t_{j}, y_{j}\right)
$$

- $h>0$ denotes step-size
- $t_{n}=n h$
- starting quadrature weights $w_{n j}$ (independent of h), $j=0, \ldots, m$, with m fixed
- convolution quadrature weights $\omega_{n}^{(\alpha)}$

Given (ρ, σ), convolution quadrature weights $\omega_{n}^{(\alpha)}$ are obtained from the coefficients of the power series

$$
\omega^{(\alpha)}(\zeta)=\left(\frac{\sigma\left(\zeta^{-1}\right)}{\rho\left(\zeta^{-1}\right)}\right)^{\alpha}
$$

As a (non-trivial) consequence of our convention, $\omega_{n}^{(\alpha)}=O\left(n^{\alpha-1}\right)$.

Why Fractional Linear Multistep Methods?

Pros:

- Efficient implementation
- Capture the nature of the equation

Why Fractional Linear Multistep Methods?

Pros:

- Efficient implementation
- Capture the nature of the equation

But is this the right way to construct convolution quadratures?

Why Fractional Linear Multistep Methods?

Pros:

- Efficient implementation
- Capture the nature of the equation

But is this the right way to construct convolution quadratures?

The Driving Question

Given a LMSM $\omega=(\rho, \sigma)$, can we construct a Convolution Quadrature satisfying

- same convergence properties as (ρ, σ)
- same stability properties as (ρ, σ)

Why Fractional Linear Multistep Methods?

Pros:

- Efficient implementation
- Capture the nature of the equation

But is this the right way to construct convolution quadratures?

The Driving Question

Given a LMSM $\omega=(\rho, \sigma)$, can we construct a Convolution Quadrature satisfying

- same convergence properties as (ρ, σ)
- same stability properties as (ρ, σ)

The answer is yes!
(1) Motivation

- Physical Problems
(2) Preliminaries
- Purpose of this talk
- Convolution Quadrature
(3) Fractional Linear Multistep Methods
- Target Problem
- Construction
- Practicality
(4) Convergence Analysis
- Main result
- Proof of the main result
(5) Stability Analysis
- Analytic Stability Regions
- Stability Region of a Fractional Linear Multistep Method
- Characterization of the Stability Region
- Transformation of Stability Regions
- Dahlquist Barrier for Fractional LMSMs
(6) Numerical Experiments
- $(B D F 4)^{1 / 2}$

Convergence analysis setup

Consider

$$
y(t)=f(t)+\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} g(s, y(s)) \mathrm{d} s
$$

Assume: g, f are sufficiently smooth
These conditions guarantee

- Uniqueness of solution $y(t)$
- Sufficient regularity of $y(t)$
- Our assertions are true

Convergence result

Theorem

Given a LMSM $\omega=(\rho, \sigma)$, there exists a starting quadrature $w_{n j}=O\left(n^{\alpha-1}\right)$ so that the error of the computed solution satisfies

$$
\left|y_{n}-y(t)\right| \leq C \cdot t^{\beta-1} \cdot h^{p} \quad(t=n h \leq T)
$$

for all h sufficiently small.

Remarks:

- C independent of n and h
- $\beta>\alpha$

Proof: Choosing the starting quadrature weights

For any sufficiently smooth function $\varphi(t)$, there exists a starting quadrature $w_{n j}=O\left(n^{\alpha-1}\right)$ satisfying

$$
h^{\alpha} \sum_{j=0}^{n} \omega_{n-j}^{(\alpha)} \varphi(j h)+h^{\alpha} \sum_{j=0}^{m} w_{n j} \varphi(j h)=\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} \varphi(s) \mathrm{d} s+O\left(t^{\beta-1} \cdot h^{p}\right)
$$

for some $\beta>\alpha$. In particular,

$$
\begin{aligned}
h^{\alpha} \sum_{j=0}^{n} \omega_{n-j}^{(\alpha)} g\left(t_{j}, y\left(t_{j}\right)\right) & +h^{\alpha} \sum_{j=0}^{m} w_{n j} g\left(t_{j}, y\left(t_{j}\right)\right) \\
& =\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} g(s, y(s)) \mathrm{d} s+O\left(t^{\beta-1} \cdot h^{p}\right)
\end{aligned}
$$

Proof: Consistency Error

Define the consistency error at $t=n h$ by

$$
\begin{aligned}
d_{n}=\mid h^{\alpha} \sum_{j=0}^{n} \omega_{n-j}^{(\alpha)} g\left(t_{j}, y\left(t_{j}\right)\right) & +h^{\alpha} \sum_{j=0}^{m} \omega_{n j} g\left(t_{j}, y\left(t_{j}\right)\right) \\
& \left.-\frac{1}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} g(s, y(s)) \mathrm{d} s \right\rvert\,
\end{aligned}
$$

It follows

$$
d_{n} \leq C \cdot n^{\beta-1} \cdot h^{p+\beta-1}
$$

Proof: Error Propagation

The global error at $t=n h$ is defined as

$$
e_{n}=\left|y_{n}-y(t)\right|
$$

Claim:

Bound on global error

$$
e_{n} \leq C \cdot h^{p} \cdot t^{\beta-1}
$$

Simplifying Assumption: g is Lipschitz continuous in the second argument.
The triangle inequality yields

$$
e_{n} \leq d_{n}+h^{\alpha} L\left(\sum_{j=0}^{n}\left|\omega_{n-j}^{(\alpha)}\right| e_{j}+\sum_{j=0}^{m}\left|w_{n j}\right| e_{j}\right)
$$

Recall, the weights are $O\left(n^{\alpha-1}\right)$

Fact:

$$
n^{\alpha-1} \leq(-1)^{n}\binom{-\alpha}{n}
$$

where $(-1)^{n}\binom{-\alpha}{n}$ is the n-th coefficient of power series expansion of $(1-\zeta)^{-\alpha}$.

Proof: Error Propagation

Therefore, we can bound

$$
e_{n} \leq C \cdot h^{p+\beta-1} \cdot(-1)^{n}\binom{-\beta}{n}+h^{\alpha} C \sum_{j=0}^{n}(-1)^{n-j}\binom{-\alpha}{n-j} e_{j},
$$

for some generic constant $C>0$.
Hint: Try finding a power series $u(\zeta)=\sum_{j=0}^{\infty} u_{n} \zeta^{n}$ such that

$$
e_{n} \leq C \cdot h^{p} \cdot u_{n}
$$

with (hopefully) $u_{n}=O\left(t^{\beta-1}\right)$.

Proof: Error Propagation

Therefore, we can bound

$$
e_{n} \leq C \cdot h^{p+\beta-1} \cdot(-1)^{n}\binom{-\beta}{n}+h^{\alpha} C \sum_{j=0}^{n}(-1)^{n-j}\binom{-\alpha}{n-j} e_{j}
$$

for some generic constant $C>0$.
Hint: Try finding a power series $u(\zeta)=\sum_{j=0}^{\infty} u_{n} \zeta^{n}$ such that

$$
e_{n} \leq C \cdot h^{p} \cdot u_{n}
$$

with (hopefully) $u_{n}=O\left(t^{\beta-1}\right)$.
Fortunately, such a power series exists!
$u(\zeta)=\frac{1}{h} V\left(\frac{1-\zeta}{h}\right)$, where $V(z)$ is the Laplace transform of

$$
v(t)=\frac{t^{\beta-1}}{\Gamma(\beta)}+C \int_{0}^{t} \frac{(t-s)^{\alpha-1}}{\Gamma(\alpha)} v(s) d s .
$$

works. This completes the proof.

- Purpose of this talk
- Convolution Quadrature
(3) Fractional Linear Multistep Methods
- Target Problem
- Construction
- Practicality
(4) Convergence Analysis
- Main result
- Proof of the main result
(5) Stability Analysis
- Analytic Stability Regions
- Stability Region of a Fractional Linear Multistep Method
- Characterization of the Stability Region
- Transformation of Stability Regions
- Dahlquist Barrier for Fractional LMSMs
(6) Numerical Experiments
- (BDF4) $)^{1 / 2}$

Analytic stability region of the Abel-Volterra Integral Equation

For this discussion, we consider a linearized Abel-Volterra integral equation

$$
y(t)=f(t)+\frac{\lambda}{\Gamma(\alpha)} \int_{0}^{t}(t-s)^{\alpha-1} y(s) \mathrm{d} s, \quad t \geq 0,0<\alpha<1
$$

Stability Theorem

If $|\arg \lambda-\pi|<(1-\alpha / 2) \pi$, the solution $y(t)$ satisfies

- $y(t) \rightarrow 0$ as $t \rightarrow \infty$ whenever $f(t)$ converges to a finite limit
- $y(t)$ is bounded whenever $f(t)$ is bounded.

Stability region of a Fractional LMSM

Apply fractional LMSM

$$
y_{n}=f_{n}+h^{\alpha} \lambda \sum_{j=0}^{n} \omega_{n-j}^{(\alpha)} y_{j}
$$

where $f_{n}=f\left(t_{n}\right)+h^{\alpha} \lambda \sum_{j=0}^{m} w_{n j} y_{j}$

Stability Region of a Fractional LMSM

$$
S=\left\{\lambda \in \mathbb{C}: f_{n} \rightarrow L \text { implies } y_{n} \rightarrow 0\right\}
$$

Stability Preservation

Since $w_{n j}=O\left(n^{\alpha-1}\right)$, it follows that $\lim _{n \rightarrow \infty} f_{n}=L$ whenever $\lim _{t \rightarrow \infty} f(t)=L$. If $f_{n} \rightarrow L$ implies $y_{n} \rightarrow 0$, then the stability region should at least contain the analytic stability region

- If $\{z \in \mathbb{C}:|\arg z-\lambda|<(1-\alpha / 2) \pi\} \subset S$ the method is \mathbf{A}-stable
- If $\{z \in \mathbb{C}:|\arg z-\pi|<\varphi\} \subset S$, the method is $A(\varphi)$-stable.

Example 1: Stability region of an A-stable Fractional LMSM

 Contains the red wedge

Characterization of the Stability Region

Recall: Stability region for a LMSM is given by

$$
S=\mathbb{C} \backslash\{\rho(\zeta) / \sigma(\zeta):|\zeta| \geq 1\}=\mathbb{C} \backslash\{1 / \omega(\zeta):|\zeta| \leq 1\}
$$

A similar characterization for Fractional LMSMs exists

Theorem

The stability region of a fractional LMSM is given by

$$
S=\mathbb{C} \backslash\left\{1 / \omega^{(\alpha)}(\zeta):|\zeta| \leq 1\right\} .
$$

Transformation of Stability Regions

Corollary

Let $\omega=(\rho, \sigma)$ and ω^{α} its corresponding fractional LMSM. Letting $S_{\omega}, S_{\omega^{\alpha}}$ denote their respective stability regions, we have:
(a) $\left(\mathbb{C} \backslash S_{\omega^{\alpha}}\right)=\left(\mathbb{C} \backslash S_{\omega}\right)^{\alpha}$
(b) ω^{α} is A-stable if and only if ω is A -stable
(c) With $\pi-\varphi=\alpha(\pi-\psi), \omega^{\alpha}$ is $A(\varphi)$-stable if and only if ω is $A(\psi)$-stable

Example 2: Stability region of an $A(\psi)$-stable FLMSM

Suppose $\omega=(\rho, \sigma)$ is $A(\varphi)$-stable, i.e. its stability region contains the red wedge

Example 2: Stability region of an $A(\psi)$-stable FLMSM

For $0<\alpha \ll 1, \omega^{\alpha}$ is $A(\psi)$-stable, so its stability region contains the red wedge

Example 2: Stability region of an $A(\psi)$-stable FLMSM

Or $0 \ll \alpha<1 \omega^{\alpha}$ is $A(\psi)$-stable, so its stability region contains the red wedge

Consistency

Fractional LMSMs consistent of order patisfy

$$
h^{\alpha} \omega^{\alpha}\left(e^{-h}\right)=1+\alpha c^{*} h^{p}+O\left(h^{p+1}\right)
$$

c^{*} is referred to as the error constant

Theorem

The order of an A-stable fractional linear multistep method cannot exceed 2.
Example: Fractional Trapezoidal Rule The fractional trapezoidal rule, defined by

$$
\omega^{\alpha}(\zeta)=\left(\frac{1+\zeta}{2-2 \zeta}\right)^{\alpha}
$$

is A-stable and has order 2. In particular, it achieves the smallest error constant, $c^{*}=1 / 12$.

A Proof from First Principles

An A-stable fractional method satisfies

$$
\left|\arg \omega^{\alpha}(\zeta)\right| \leq \frac{\alpha}{2} \pi,|\zeta| \leq 1, \zeta \neq 1 .
$$

Complexify $h^{\alpha} \omega^{\alpha}\left(e^{-h}\right)-1$ i.e. consider the function $z^{\alpha} \omega^{\alpha}\left(e^{-z}\right)-1$.

A Proof from First Principles

An A-stable fractional method satisfies

$$
\left|\arg \omega^{\alpha}(\zeta)\right| \leq \frac{\alpha}{2} \pi, \quad|\zeta| \leq 1, \zeta \neq 1
$$

Complexify $h^{\alpha} \omega^{\alpha}\left(e^{-h}\right)-1$ i.e. consider the function $z^{\alpha} \omega^{\alpha}\left(e^{-z}\right)-1$.

Observe:

- For $z \in(0, i \pi], \operatorname{Im}\left[z^{\alpha} \omega^{\alpha}\left(e^{-z}\right)\right] \geq 0$
- For both $z \in \mathbb{R}^{+}$and $z \in i \pi+\mathbb{R}^{+}, \operatorname{lm}\left[z^{\alpha} \omega^{\alpha}\left(e^{-z}\right)\right] \geq 0$
- $\omega^{\alpha}\left(e^{-z}\right)=\omega^{\alpha}(0)+O\left(e^{-\operatorname{Re} z}\right)$, for sufficiently large Rez. and $\omega^{\alpha}(0)>0$

A Proof from First Principles

Therefore

$$
\operatorname{Im}\left[z^{\alpha} \omega^{\alpha}\left(e^{-z}\right)\right] \geq 0 \forall z \text { on the boundary of the rectangle }
$$

Maximum Principle implies

$$
\operatorname{Im}\left[z^{\alpha} \omega^{\alpha}\left(e^{-z}\right)\right] \geq 0 \forall z \text { in the interior of the rectangle }
$$

Consistency of order p gives

$$
0 \leq \operatorname{lm}\left[z^{\alpha} \omega^{\alpha}\left(e^{-z}\right)-1\right]=\alpha c^{*} \operatorname{Im} z^{p}+O\left(z^{p}\right)
$$

which holds for $z \rightarrow 0$ and $0 \leq \arg z \leq \pi / 2$.
This can only happen if $p \leq 2$.
(1) Motivation

- Physical Problems
(2) Preliminaries
- Purpose of this talk
- Convolution Quadrature
(3) Fractional Linear Multistep Methods
- Target Problem
- Construction
- Practicality

4 Convergence Analysis

- Main result
- Proof of the main result
(5) Stability Analysis
- Analytic Stability Regions
- Stability Region of a Fractional Linear Multistep Method
- Characterization of the Stability Region
- Transformation of Stability Regions
- Dahlquist Barrier for Fractional LMSMs
(6) Numerical Experiments
- $(\mathrm{BDF} 4)^{1 / 2}$

$(B D F 4)^{1 / 2}$

Consider the integral equation

$$
y(t)=-\frac{1}{\sqrt{\pi}} \int_{0}^{t}(t-s)^{-1 / 2}(y(s)-\sin s)^{3} \mathrm{~d} s
$$

Convolution quadrature weights generated by

$$
\omega^{1 / 2}(\zeta)=\left(\frac{25}{12}-4 \zeta+4 \zeta^{2}-\frac{4}{3} \zeta^{3}+\frac{1}{4} \zeta^{4}\right)^{-\frac{1}{2}}
$$

Exact solution $y(8)=0.3236412904$ is known.

h	numerical solution	error	error $/ h^{4}$
0.1	0.3236520328	1.07×10^{-5}	0.107
0.05	0.3236421096	8.19×10^{-7}	0.1314
0.025	0.3236413206	3.02×10^{-8}	0.0773

