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First appearance

Abel’s Mechanical Problem

In the (x,y)-plane find a curve C which is the graph of an increasing function
x = ϕ(y), y ∈ [0,H], along which under constant downward acceleration g a particle
must be constrained to fall, in order that its falling time equals a prescribed function t(y)
of the initial height y.
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Abel’s Mechanical Problem

In the absence of friction, the problem can be reduced to solving for ϕ in the equation∫ y

0

(y − z)−1/2
√

1 + ϕ′(z)2 dz =
√

2gt(y).

Remark

The −1/2 exponent for the singular kernel often occurs for Abel Integral Equations
arising from physics
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Inverse scattering problem for a repelling potential

Shooting a particle at an atom nucleus

We are interested in determining the potential V (r) of the repelling field of an Atom
nucleus. We can do so by measuring the angle of deflection θ a particle with impact
parameter b > 0 experiences.

By impact parameter, we mean the closest distance the particle would approach the atom
if it were to travel in a straight line.
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Inverse scattering problem for a repelling potential

One can define a function for the angle of deflection θ by varying the impact parameter
b, i.e. θ = θ(b).

θ(b) = π − 2

∫ ∞
r0

dr

r 2(b−2 − r−2 − E−1b−2V (r))1/2

where r0 is the solution to
E − b2Er−2

0 − V (r0) = 0
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Inverse scattering problem for a repelling potential

A few change of variables later:

One can obtain an integral equation of the form

β(x) =

∫ x

0

g(w) dw

(x − w)1/2
, 0 ≤ x ≤ 1

b2

min
.

Remark: The bound on the integral arises from the fact energy has been fixed.
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Previously in the Seminar

We have previously discussed the approximation of

(f ? g)(x) =

∫ x

0

f (s)g(x − s) ds

g is given explicitly. Only ”scant” information about f is given (i.e. conditions
suitable for the inversion of its Laplace transform)

Obtained convolution quadratures from an appropriate linear multistep
method(LMSM)

Error analysis performed justified the use of convolution quadratures. In particular,
the case g(t) = tα−1 was discussed

Convention

Unless otherwise stated, all LMSMs satisfy

The method is stable and consistent of order p

The method is implicit

All zeros of σ(ζ) have absolute value ≤ 1.
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Purpose of this talk

We discuss a method for the numerical solution of a weakly singular Abel-Volterra
integral equation

y(t) = f (t) +
1

Γ(α)

∫ t

0

(t − s)α−1g(s, y(s)) ds, 0 < α < 1 fixed

How is this problem different?

We are approximating y ! More precisely, we are solving the (nonlinear) integral
equation numerically.

Known quantities g and f (the latter not appearing in the integral).

No information about the Laplace transform of y is assumed. Instead, we rely on a
priori regularity and asymptotic properties.
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Definition

A suitable numerical scheme can be developed for a larger class of integral equations

Abel-Volterra Integral Equation of the Second Kind

y(t) = f (t) +

∫ t

0

K(t, s, y(s)) ds

Remarks:

Special case: K(t, s, y(s)) = (t − s)α−1g(s, y(s)).

If K , f are independent of t, the equation reduces to the initial value problem

y ′ = K(t, y), y(0) = y0.
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Convolution Quadratures for the Abel-Volterra Integral Equation

We shall show a natural scheme to consider is of the form

yn = f (xn) + h
−k∑

j=−1

wnjK(xn, xj , yj) + h
n∑

j=0

ωn−jK(xn, xj , yj) (n ≥ 0)

where wnj and ωn−j are weights of (potentially) different methods

Why is there an extra sum?!

Albert Altarovici ( ETH Zurich, Zurich, Switzerland ) Application: Volterra integral equations Proseminar 13 / 41



Convolution Quadratures for the Abel-Volterra Integral Equation

We shall show a natural scheme to consider is of the form

yn = f (xn) + h
−k∑

j=−1

wnjK(xn, xj , yj) + h
n∑

j=0

ωn−jK(xn, xj , yj) (n ≥ 0)

where wnj and ωn−j are weights of (potentially) different methods

Why is there an extra sum?!

Albert Altarovici ( ETH Zurich, Zurich, Switzerland ) Application: Volterra integral equations Proseminar 13 / 41



Applying LMSM to Abel-Volterra Integral Equation

Let (ρ, σ) be a LMSM.

Rewrite the Abel-Volterra equation

y(x) = J(x , xn) +

∫ x

xn

K(x , s, y(s)) ds, (x ≥ xn)

where J(x , xn) = f (x) +
∫ xn

0
K(x , s, y(s)) ds

Note: y(xn) = J(xn, xn)

ODE Problem:

J(x , ξ) = f (x) +

∫ ξ

0

K(x , s, y(s)) ds

Taking a partial derivative yields

∂

∂ξ
J(x , ξ) = K(x , ξ, y(ξ)) (1)

Albert Altarovici ( ETH Zurich, Zurich, Switzerland ) Application: Volterra integral equations Proseminar 14 / 41



Applying LMSM to Abel-Volterra Integral Equation

Let (ρ, σ) be a LMSM.

Rewrite the Abel-Volterra equation

y(x) = J(x , xn) +

∫ x

xn

K(x , s, y(s)) ds, (x ≥ xn)

where J(x , xn) = f (x) +
∫ xn

0
K(x , s, y(s)) ds

Note: y(xn) = J(xn, xn)

ODE Problem:

J(x , ξ) = f (x) +

∫ ξ

0

K(x , s, y(s)) ds

Taking a partial derivative yields

∂

∂ξ
J(x , ξ) = K(x , ξ, y(ξ)) (1)

Albert Altarovici ( ETH Zurich, Zurich, Switzerland ) Application: Volterra integral equations Proseminar 14 / 41



Approximation of Jn = J(·, xn)

Applying a LMSM to the ODE problem

Recall: k-step LMSMs require k initial values to ”take-off”

Starting values y−k , . . . , y−1 are given. We assume the starting functions J̃−k , . . . , J̃−1

are given by some quadrature (not necessarily related to (ρ, σ))

J̃n(x) = f (x) + h
−k∑

j=−1

wnjK(x , xj , yj) n ∈ {−k, . . . ,−1}

Apply (ρ, σ) to (1) and obtain an approximation J̃n of Jn

k∑
j=0

αj J̃n+j−k(x) = h
k∑

j=0

βjK(x , xn+j−k , yn+j−k) (2)

Set yn = J̃n(xn).

yn is an approximation of y(xn)
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Convolution Quadrature

Lemma

The LMSM (2) with starting functions(as above) can be rewritten as a quadrature
method

yn = f (xn) + h
−k∑

j=−1

wnjK(xn, xj , yj) + h
n∑

j=0

ωn−jK(xn, xj , yj) (n ≥ 0)

where the weights ωn and wnj are bounded. The weights ωn are the coefficients of the
power series

ω(ζ) =
σ(ζ−1)

ρ(ζ−1)
.

Converse: If ω(ζ) is a rational function, one can recover the LMSM
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Adapted Numerical Method for Convolution Type Kernels

We wish to apply a convolution quadrature to approximate

Abel-Volterra Integral Equation of the 2nd kind with a Convolution Kernel

y(t) = f (t) +
1

Γ(α)

∫ t

0

(t − s)α−1g(s, y(s)) ds,

for t ∈ [0,T ] and 0 < α < 1 fixed.

Can we furnish a method adapted to this particular type of Abel-Volterra Integral
Equation?

Idea: Consider fractional step-sizes and weights!
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Fractional Linear Multistep Method

We seek to construct

Fractional Linear Multistep Method

yn = f (tn) + hα
m∑

j=0

wnjg(tj , yj) + hα
n∑

j=0

ω
(α)
n−jg(tj , yj)

h > 0 denotes step-size

tn = nh

starting quadrature weights wnj (independent of h), j = 0, . . . ,m, with m fixed

convolution quadrature weights ω
(α)
n

Given (ρ, σ), convolution quadrature weights ω
(α)
n are obtained from the coefficients of

the power series

ω(α)(ζ) =

(
σ(ζ−1)

ρ(ζ−1)

)α
As a (non-trivial) consequence of our convention, ω

(α)
n = O(nα−1).
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Why Fractional Linear Multistep Methods?

Pros:

Efficient implementation

Capture the nature of the equation

But is this the right way to construct convolution quadratures?

The Driving Question

Given a LMSM ω = (ρ, σ), can we construct a Convolution Quadrature satisfying

same convergence properties as (ρ, σ)

same stability properties as (ρ, σ)

The answer is yes!
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Convergence analysis setup

Consider

y(t) = f (t) +
1

Γ(α)

∫ t

0

(t − s)α−1g(s, y(s)) ds

Assume: g , f are sufficiently smooth

These conditions guarantee

Uniqueness of solution y(t)

Sufficient regularity of y(t)

Our assertions are true

Albert Altarovici ( ETH Zurich, Zurich, Switzerland ) Application: Volterra integral equations Proseminar 22 / 41



Convergence result

Theorem

Given a LMSM ω = (ρ, σ), there exists a starting quadrature wnj = O(nα−1) so that the
error of the computed solution satisfies

|yn − y(t)| ≤ C · tβ−1 · hp (t = nh ≤ T ),

for all h sufficiently small.

Remarks:

C independent of n and h

β > α
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Proof: Choosing the starting quadrature weights

For any sufficiently smooth function ϕ(t), there exists a starting quadrature
wnj = O(nα−1) satisfying

hα
n∑

j=0

ω
(α)
n−jϕ(jh) + hα

m∑
j=0

wnjϕ(jh) =
1

Γ(α)

∫ t

0

(t − s)α−1ϕ(s) ds + O(tβ−1 · hp),

for some β > α. In particular,

hα
n∑

j=0

ω
(α)
n−jg(tj , y(tj)) + hα

m∑
j=0

wnjg(tj , y(tj))

=
1

Γ(α)

∫ t

0

(t − s)α−1g(s, y(s)) ds + O(tβ−1 · hp).
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Proof: Consistency Error

Define the consistency error at t = nh by

dn =

∣∣∣∣∣hα
n∑

j=0

ω
(α)
n−jg(tj , y(tj)) + hα

m∑
j=0

ωnjg(tj , y(tj))

− 1

Γ(α)

∫ t

0

(t − s)α−1g(s, y(s)) ds

∣∣∣∣
It follows

dn ≤ C · nβ−1 · hp+β−1
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Proof: Error Propagation
The global error at t = nh is defined as

en = |yn − y(t)|

Claim:

Bound on global error

en ≤ C · hp · tβ−1

Simplifying Assumption: g is Lipschitz continuous in the second argument.
The triangle inequality yields

en ≤ dn + hαL

(
n∑

j=0

|ω(α)
n−j |ej +

m∑
j=0

|wnj |ej

)

Recall, the weights are O(nα−1)

Fact:

nα−1 ≤ (−1)n

(
−α
n

)
,

where (−1)n
(−α

n

)
is the n-th coefficient of power series expansion of (1− ζ)−α.
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Proof: Error Propagation

Therefore, we can bound

en ≤ C · hp+β−1 · (−1)n

(
−β
n

)
+ hαC

n∑
j=0

(−1)n−j

(
−α

n − j

)
ej ,

for some generic constant C > 0.

Hint: Try finding a power series u(ζ) =
∑∞

j=0 unζ
n such that

en ≤ C · hp · un

with (hopefully) un = O(tβ−1).

Fortunately, such a power series exists!

u(ζ) = 1
h
V ( 1−ζ

h
), where V (z) is the Laplace transform of

v(t) =
tβ−1

Γ(β)
+ C

∫ t

0

(t − s)α−1

Γ(α)
v(s) ds.

works. This completes the proof.
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Analytic stability region of the Abel-Volterra Integral Equation

For this discussion, we consider a linearized Abel-Volterra integral equation

y(t) = f (t) +
λ

Γ(α)

∫ t

0

(t − s)α−1y(s) ds, t ≥ 0, 0 < α < 1

Stability Theorem

If |argλ− π| < (1− α/2)π, the solution y(t) satisfies

y(t)→ 0 as t →∞ whenever f (t) converges to a finite limit

y(t) is bounded whenever f (t) is bounded.
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Stability region of a Fractional LMSM

Apply fractional LMSM

yn = fn + hαλ
n∑

j=0

ω
(α)
n−jyj ,

where fn = f (tn) + hαλ
∑m

j=0 wnjyj

Stability Region of a Fractional LMSM

S = {λ ∈ C : fn → L implies yn → 0}

Stability Preservation

Since wnj = O(nα−1), it follows that limn→∞ fn = L whenever limt→∞ f (t) = L. If fn → L
implies yn → 0, then the stability region should at least contain the analytic stability
region

If {z ∈ C : |argz − λ| < (1− α/2)π} ⊂ S the method is A-stable

If {z ∈ C : |arg z − π| < ϕ} ⊂ S , the method is A(ϕ)-stable.
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Example 1: Stability region of an A-stable Fractional LMSM
Contains the red wedge
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Characterization of the Stability Region

Recall: Stability region for a LMSM is given by

S = C\{ρ(ζ)/σ(ζ) : |ζ| ≥ 1} = C\{1/ω(ζ) : |ζ| ≤ 1}

A similar characterization for Fractional LMSMs exists

Theorem

The stability region of a fractional LMSM is given by

S = C\{1/ω(α)(ζ) : |ζ| ≤ 1}.
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Transformation of Stability Regions

Corollary

Let ω = (ρ, σ) and ωα its corresponding fractional LMSM. Letting Sω, Sωα denote their
respective stability regions, we have:

(a) (C\Sωα) = (C\Sω)α

(b) ωα is A-stable if and only if ω is A-stable

(c) With π − ϕ = α(π − ψ), ωα is A(ϕ)-stable if and only if ω is A(ψ)-stable
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Example 2: Stability region of an A(ψ)-stable FLMSM
Suppose ω = (ρ, σ) is A(ϕ)-stable, i.e. its stability region contains the red wedge
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Example 2: Stability region of an A(ψ)-stable FLMSM
For 0 < α� 1, ωα is A(ψ)-stable, so its stability region contains the red wedge
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Example 2: Stability region of an A(ψ)-stable FLMSM
Or 0� α < 1 ωα is A(ψ)-stable, so its stability region contains the red wedge
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Consistency

Fractional LMSMs consistent of order p satisfy

hαωα(e−h) = 1 + αc∗hp + O(hp+1)

c∗ is referred to as the error constant

Theorem

The order of an A-stable fractional linear multistep method cannot exceed 2.

Example: Fractional Trapezoidal Rule The fractional trapezoidal rule, defined by

ωα(ζ) =

(
1 + ζ

2− 2ζ

)α
is A-stable and has order 2. In particular, it achieves the smallest error constant,
c∗ = 1/12.
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A Proof from First Principles
An A-stable fractional method satisfies

|argωα(ζ)| ≤ α

2
π, |ζ| ≤ 1, ζ 6= 1.

Complexify hαωα(e−h)− 1 i.e. consider the function zαωα(e−z)− 1.

Observe:
For z ∈ (0, iπ], Im[zαωα(e−z)] ≥ 0
For both z ∈ R+ and z ∈ iπ + R+, Im[zαωα(e−z)] ≥ 0

ωα(e−z) = ωα(0) + O(e−Rez), for sufficiently large Rez . and ωα(0) > 0
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A Proof from First Principles

Therefore
Im[zαωα(e−z)] ≥ 0 ∀z on the boundary of the rectangle

Maximum Principle implies

Im[zαωα(e−z)] ≥ 0 ∀z in the interior of the rectangle

Consistency of order p gives

0 ≤ Im[zαωα(e−z)− 1] = αc∗Imzp + O(zp)

which holds for z → 0 and 0 ≤ argz ≤ π/2.

This can only happen if p ≤ 2.
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(BDF4)1/2

Consider the integral equation

y(t) = − 1√
π

∫ t

0

(t − s)−1/2(y(s)− sin s)3 ds.

Convolution quadrature weights generated by

ω1/2(ζ) =

(
25

12
− 4ζ + 4ζ2 − 4

3
ζ3 +

1

4
ζ4

)− 1
2

Exact solution y(8) = 0.3236412904 is known.

h numerical solution error error/h4

0.1 0.3236520328 1.07× 10−5 0.107
0.05 0.3236421096 8.19× 10−7 0.1314

0.025 0.3236413206 3.02× 10−8 0.0773
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