Application of Algebraic Multigrid

Charlotte Gils, ETH Zurich, January 2004

Contents

- Application of Matlab Software AMGToolbox
- Algorithmic Components
- Data structures
- Focus on Setup
- Demonstration

AMG Part 1: Setup (AMGSetup)

- Choice of coarse variables
- Determination of interpolation matrix P (\Longrightarrow restriction and coarse-grid matrix)
- Determination of smoothing matrix M
- Input: matrix A, options
- Output: structures L (results) and times (timing information)

AMG Part 2: V-Cycle (AMGVcycle)

- Multigrid algorithm
- Pre-Smoothing
- Coarse grid correction
- recursive call of V-Cycle algorithm on next level
- Restriction back to fine level
- Post-Smoothing

Data structures

- Store data in structures
- Initialize: structname.fieldname=.. ,

Access: structname.fieldname

- Advantage: easier data management
- Options on parameters and algorithms used in a matlab structure (see AMGDefaultOptions)
- Structure $L\{l\}$ contains entire data of AMG processes, with l being the level number, so that there exists a structure $\mathrm{L}\{1\}$ for each level

Choice of coarse variables (AMGSelectCoarseGrid)

- Starting point: matrix A whose elements $a_{i j} \neq 0$ represent the existence and strength of a coupling between variables i and j
- Splitting of all variables in Ω according to strength of coupling
- Definition:

A variable i is strongly n-coupled to another variable, $j \neq i$, if

$$
\begin{equation*}
-a_{i j} \geq \theta \max _{a_{i k}<0}\left|a_{i k}\right| \quad \text { with fixed } 0<\theta<1 \tag{1}
\end{equation*}
$$

(Note that all positive connections are weak).

- Create a matrix $A^{s t r}$ containing only those $a_{i j}$ with i being strongly n-coupled to j, all other elements of A are set to 0
- The set of all strongly negatively couplings of variable i is denoted as S_{i} :

$$
\begin{equation*}
S_{i}=\{j \in \Omega: i \text { strongly negatively coupled to } j\} \tag{2}
\end{equation*}
$$

whereas

$$
\begin{equation*}
S_{i}^{T}=\left\{j \in \Omega: i \in S_{j}\right\} \tag{3}
\end{equation*}
$$

consists of all variables j which are strongly n-coupled to i.

- C/F splitting in principle: choose $\mathrm{i} \in \mathrm{C}$, all $\mathrm{j} \in S_{i}^{T}$ become F-variables, define new $\mathrm{k} \in \mathrm{C}, \ldots$
- But: Try to avoid randomly distributed C/F -patches
- Define a measure of importance, λ_{i}, of any undecided variable i to become the next C-variable,

$$
\begin{equation*}
\lambda_{i}=\left|S_{i}^{T} \cap U\right|+2\left|S_{i}^{T} \cap F\right| \quad(i \in U) \tag{4}
\end{equation*}
$$

i.e. the more strong n-couplings in U or F a variable i has, and the more of them have already been assigned to F , the bigger λ_{i} is.

The C/F splitting algorithm

- C/F Splitting
\{

$$
\mathrm{C}=\emptyset ; \mathrm{F}=\emptyset ; \mathrm{U}=\Omega
$$

$$
\text { while }(U \neq \emptyset)
$$

\{
get $\mathrm{i} \in \mathrm{U}$ with maximum λ_{i};
$\mathrm{C}=\mathrm{C} \cup\{i\} ; \mathrm{U}=\mathrm{U} \backslash\{i\} ;$
for ($\mathrm{j} \in S_{i}^{T} \cap U$)
\{

$$
\mathrm{F}=\mathrm{F} \cup\{j\} ; \mathrm{U}=\mathrm{U} \backslash\{j\} ;
$$

$$
\text { for }\left(\mathrm{k} \in S_{j} \cap U\right) \quad \lambda_{k}=\lambda_{k}+1 ;
$$

\}
for $\left(\mathrm{j} \in S_{i} \cap U\right) \quad \lambda_{j}=\lambda_{j}-1 ;$
\}
\}

Modification of the λ_{i} within the algorithm

- Initialize all λ_{i} in a vector of length n (number of elements in Ω, i.e. length of A) by setting all $a_{j i} \neq 0$ in $A^{\text {str }}$, setting all other elements to 1 and summing up over all those $a_{k i}$ in a column i
- Direct modification of the λ_{i} in a vector: too much time needed for search of maximum λ_{i}, what to do with already assigned variables...?
- Linked List: easy to remove elements
- Clever modification of two matrices, so that finding maximum λ needs less time

Coarsening algorithm, continuation

- Initialize a vector of length n with all entries set to U (undecided)
- C / F splitting changes all elements of this vector to either C or F
- The set of equations can now be permuted and written in block form:

$$
A u=\left(\begin{array}{cc}
A_{C C} & A_{C F} \tag{5}\\
A_{F C} & A_{F F}
\end{array}\right)\binom{u_{C}}{u_{F}}=\binom{f_{F}}{f_{C}}=f .
$$

Considerations on efficiency

- Overall efficiency determined by
a) the speed of convergence
- depends from approximation of algebraically smooth error by interpolation
- the stronger the F-to-C connectivity, the better the interpolation is (\Longleftrightarrow uniform C/F-splittings)
- strong F-to-C connectivity also via strongly coupled neighboring F-variables (\longrightarrow Aggressive coarsening)
b) the amount of work needed per cycle
- directly related to the total memory requirement
- better with fewer C-variables
- Goal is to fulfil both of these requirements

Interpolation (AMGMakeInterpolation)

- Interpolation

$$
e_{i}^{l}=\left(P e^{l+1}\right)_{i}= \begin{cases}e_{i}^{l+1} & i \in C^{l} \tag{6}\\ \sum_{k \in P_{i}} w_{i k} e_{k} & i \in F^{l}\end{cases}
$$

with the interpolatory points $\mathrm{k} \in P_{i}=C \cap S_{i}$

- Ruge-Stueben interpolation characterized by the approximation

$$
\begin{equation*}
e_{i} a_{i i} \approx-\sum_{j \in N_{i}} a_{i j} e_{j} \tag{7}
\end{equation*}
$$

where $N_{i}=\left\{j \in \Omega: j \neq i, a_{i j} \neq 0\right\}$ indicate all couplings of a variable $\mathrm{i} \in \Omega$.

- $N_{i}=S_{i} \cup W_{i}$, where W_{i} are the variables j which are weakly connected to i
- $a_{i j}$ with $\mathrm{j} \in S_{i}$ contribute most to e_{j}
- \Longrightarrow Lumping:

$$
\begin{equation*}
\sum_{j \in W_{i}} a_{i j} e_{j} \approx\left(\sum_{j \in W_{i}} a_{i j}\right) e_{i} \tag{8}
\end{equation*}
$$

Eq. (7) now is

$$
\begin{equation*}
\left(a_{i i}+\sum_{j \in W_{i}} a_{i j}\right) e_{i}=-\sum_{j \in S_{i}} a_{i j} e_{j} \tag{9}
\end{equation*}
$$

- Lumping (left side in (10)) implemented as

$$
\begin{align*}
& \sum_{j \in W_{i}} a_{i j}:=\left(D_{F F}\right)_{i i} \\
& =\sum_{m, n=1}^{n_{F}, n_{C}}\left[\left(A_{F F}\right)_{i m}+\left(A_{F C}\right)_{i n}\right]-\sum_{m, n=1}^{n_{F}, n_{C}}\left[\left(A_{F F}^{s t r}\right)_{i m}+\left(A_{F C}^{s t r}\right)_{i n}\right] \tag{10}
\end{align*}
$$

- Include strong F-F connections into interpolation, i.e. eliminate all e_{j} where $\mathrm{j} \in F_{i}^{S}\left(F_{i}^{S}=F \cap S_{i}\right)$
- \Longrightarrow replace e_{j} (where $\mathrm{j} \in S_{i}$) with weighted average of those coarse grid errors, which are strongly n-coupled to both e_{i} and e_{j} :

$$
\begin{equation*}
e_{j}=\frac{\sum_{k \in C_{i} \cap C_{j}} a_{j k} e_{k}}{\sum_{i k} a_{i k}} \quad \text { for } j \in F_{i} \tag{11}
\end{equation*}
$$

- The resulting interpolation formula is:

$$
\begin{align*}
& \left(a_{i i}+\sum_{j \in W_{i}} a_{i j}\right) e_{i}=-\sum_{k \in S_{i} \cap C} a_{i k} e_{k}-\sum_{j \in S_{i} \cap F} a_{i j} \frac{\sum_{k \in C_{i} \cap C_{j}} a_{j k} e_{k}}{\sum_{k \in C_{i} \cap C_{j}} a_{j k}} \tag{12}\\
& \left(C_{i}=\mathrm{C} \cap S_{i}\right)
\end{align*}
$$

- Can also be written as:

$$
\begin{equation*}
\left(D_{F F}\right)_{i i} e_{i}=-\left(A_{F C}^{s t r}\right)_{i k} e_{k}-\frac{\sum_{j \in S_{i} \cap F}\left(A_{F F}^{s t r}\right)_{i j}\left(A_{F C}^{s t r}\right)_{j k}}{\sum_{k \in C_{i} \cap C_{j}}\left(A_{F C}^{s t r}\right)_{i k}} e_{k} \tag{13}
\end{equation*}
$$

- \Longrightarrow Prolongation operator:

$$
\begin{equation*}
P=-\frac{\hat{A}_{F C}^{s t r}}{D_{F F}} \tag{14}
\end{equation*}
$$

where $\hat{A}_{F C}^{s t r}$ is the modified $A_{F C}$ according to eq. 14 .

- Note that $D_{F F}$ is easy to invert
- Restriction $\mathrm{R}=P^{T}$, if A is an M-matrix
- Coarse grid matrix now equals to

$$
\begin{equation*}
A^{l+1}=R^{l} A^{l} P^{l} \tag{15}
\end{equation*}
$$

- Setup done for all levels 1 , until a minimum number of coarse variables or a maximum level is reached
- Call of V-Cycle

References

- Matlab Software "AMGToolbox", M. Verbeek, J. Cullum, W. Joubert, University of California at Los Alamos Laboratory, Office of Science, Mathematical, Information, and Computational Sciences, 1999.
- Appendix A, K. Stueben, in "Algebraic Multigrid", U. Trottenberg, K. Oosterlee, A. Schueller, Academic Press, 1999.
- "A Review of Algebraic Multigrid", K. Stueben, GMD Report, Sankt Augustion, 1999.

