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CHAPTERI

Preliminaries: Euclidean Space

What we shall do in this preliminary chapter (Sections 1-5, out of a total of 25) can
be described as “deconstructing Euclidean space”. Three-dimensional Euclidean space,
denoted byE3 here, is a relatively involved mathematical structure, made of an affine
3D space (more on this below), equipped with a metric and an orientation. By taking the
Cartesian product of that with another Euclidean space, one-dimensional and meant to
represent Time, one gets the mathematical framework in which most of classical physics
is described. This framework is often taken for granted, and should not.

By this we do not mean to challenge the separation between space and (absolute)
time, which would be getting off to a late start, by a good century. Relativity is not
our concern here, because we won't deal with moving conductors, which makes it all
right to adopt a privileged reference frame (the so-called laboratory frame) and a unique
chronometry. The problem we perceive is with itself, too rich a structure in several
respects. For one thing, orientation of spacadsnecessary. (How could it be? How
could physical phenomena depend on this social convention by which we class right-
handed and left-handed helices, such as shells or staircases?) And yet, properties of the
cross product, or of the curl operator, so essential tools in electromagnetism, crucially
depend on orientation. As for metric (i.e., the existence of a dot product, from which
norms of vectors and distances between points are derived), it also seems to be involved
in the two main equation$,B + rotE= 0 (Faraday’s law) and-9,D + rotH = J (Am-
pére’s theorem), since the definition of rot depends on the metric. We shall discover that
it plays no role there, actually, because a change of metric, in the description of some
electromagnetic phenomenon, would chahgthrot andthe vector fields BB, etc., in
such a way that the equations would stay unchanged. Metric is no less essential for that,
but its intervention is limited to the expression of constitutive laws, that is, to what will
replace in our notation the standard-BuH and D= ¢E 1

Our purpose, therefore, is to separate the various layers present in the structure of
Es, in view of using exactly what is needed, and nothing more, for each subpart of
the Maxwell system of equations. That this can be done is no news: As reported by
PosT[1972], the metric-free character of the two main Maxwell equations was pointed
out by Cartan, as early as 1924, and also hyTKLER [1922] and \AN DANTZIG
[1934]. But the exploitation of this remark in the design of numerical schemes is

Iwe shall most often ignore Ohm's law here, for shortness, and therefore, treat the current density J as a
data. It would be straightforward to supplement the equations by the relatonEl + J, where only the
“source current” Jis known in advance.
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a contemporary thing, which owes much to (again, working independenthyJtT
[2001], Tonti (see ©ONTI [1996], MATTIUSSI [2000]) and Weiland (see HELING,
KLATT, KRAWCZYK, LAWINSKY, WEILAND, WIPF, STEFFEN, BARTS, BROWMAN,
CooPER DEAVEN and RODENZ[1989], WEILAND [1996]). See also 8RKIN [1975],
HYMAN and SHAsSHKOV [1997], TEIXEIRA and CHEw [1999]. Even more recent
(BossaviT and KETTUNEN [1999], MATTIUSSI [2000]) is the realization that such
attention to the underlying geometry would permit to soften the traditional distinctions
between finite-difference, finite-element, and finite-volume approaches. In particular,
it will be seen here that a common approach to error analysis applies to the three of
them, which does rely on the existence of finite elements, but not on the variational
methods that are often considered as foundational in finite element theory. These finite
elements, moreover, are not of the Lagrange (node based) flavor. They are differential
geometric objects, created long ago for other purposes, the Whitney formis (A
[1957]), whose main characteristic is the interpretation they suggest of degrees of free-
dom (DoF) as integrals over geometric elements (edges, facetsf the discretization
mesh.

As a preparation to this deconstruction process, we need to recall a few notions of
geometry and algebra which do not seem to get, in most curricula, the treatment they
deserve. First on this agenda is the distinction between vector space and affine space.

1. Affine space

A vector spaceon the reals is a set of objects calleectors which one can (1) add
together (in such a way that they form an Abelian group, the neutral element being
the null vector) and (2) multiply by real numbers. No need to recall the axioms which
harmonize these two groups of features. Our point is this: The three-dimensional vector
space (for which our notation will bs) makes an awkward model of physical space,
unless one deals with situations with a privileged point, such as for instance a center
of mass, which allows one to identify a spatial paintvith the translation vector that
sends this privileged point te. Otherwise, the idea to add points, or to multiply them
by a scalar, is ludicrous. On the other hand, taking the midpoint of two points, or more
generally, barycenters, makes sense, and is an allowed operation in affine space, as will
follow from the definition.

An affine spacés a set on which a vector space, considered as an additive group, acts
effectively, transitively and regularly. Let’s elaborate.

A group G actson a setX if for eachg € G there is a map fronX to X, that we
shall denote by, such that:; is the identity map, and,;, = aga;,. (Symbol 1 denotes

2Most definitions will be implicit, with the defined term set, on first appearanciglios style. The same
style is also used, occasionally, for emphasis.

3Taking R3, the set of triples of real numbers, with all the topological and metric properties inherited
from R, is even worse, for this implies that some bdsig d, 93} has been selected iz, thanks to which
a vectorv writes asv = ) _; v!3;, hence the identification betweenand the triple{v'} of components (or
coordinates of the point stands for). In most situations which require mathematical modelling, no such basis
imposes itself. There may exist privileged directions, as when the device to be modelled has some kind of
translational invariance, but even this does not always mandate a choice of basis.
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the neutral element, and will later double for the group made of this unique element.)
The action iseffectiveif a, = 1 impliesg = 1, that is to say, if all nontrivial group
elements “do something” t&. Theorbit of x under the action is the sgt, (x): g € G}
of transforms ofx. Belonging to the same orbit is an equivalence relation between
points. One says the action timnsitiveif all points are thus equivalent, i.e., if there
is a single orbit. Thésotropy group(or stabilizer, or little group) ok is the subgroup
Gx = {g € G: as(x) = x} of elements ofG which fix x. In the case of a transitive
action, little groups of all points are conjugate (becagiseG, = G gxy, Wheregy,
is any group element whose action take® y), and thus “the same” in some sense.
A transitive action igegular (or freg) if it has no fixed point, that is, i, = 1 for all x.
If so is the caseX and G are in one-to-one correspondence, so they look very much
alike. Yet they should not be identified, for they have quite distinctive structures. Hence
the concept ohiomogeneous spack set, X here, on which some group acts transitively
and effectively. (A standard example is given by the two-dimensional spghanader
the action of the grouQ; of rotations around its center.) If, moreover, the little group
is trivial (regular action), the only difference between the homogeneous Xpawd the
groupg lies in the existence of a distinguished elementirthe neutral one. Selecting
apoint 0 inX (the origin) and then identifying, (0) with g (and hence 0 iX with the
neutral element o&) providesX with a group structure, but the isomorphism wih
thus established is not canonical, and this group structure is most often irrelevant, just
like the vector-space structure of 3D space.

Affine space is a case in point. Intuitively, take thxelimensional vector space,,
and forget about the origin: What remainsiig, the affine space of dimensian More
rigorously, a vector spaceg, considered as an additive group, acts on itself (now con-
sidered as just a set, which we acknowledge by calling its elenpairits instead of
vectors) by the mappinfs:, = x — x + v, calledtranslations This action is transi-
tive, because for any pair of points, y}, there is a vectov such thaty = x + v, and
regular, because + v # x if v # 0, whateverc. The structure formed by as a set
equipped with this group action is called thffine spaceA associated withV. Each
vector of V has thus become a point af, but there is nothing special any longer with
the vector 0, as a point iA. Reversing the viewpoint, one can say that an affine sgace
is a homogeneous space with respect to the action of some vectoriépeoesidered
as an additive group. (Points dfwill be denotedk, y, etc., andy — x will stand, by a
natural notational abuse, for the vector that carriés y.) The most common example
is obtained by considering as equivalent, in some vector spateo vectorsu andv
such that: — v belong to some fixed vector subspa&e Each equivalence class has an
obvious affine structurel{ acts on it regularly by — v 4+ w). Such a class is called
anaffine subspacef V, parallel to W° (see Fig. 1.1) Of course, no vector in such an

4we'll find it convenient to denote a map by x — Expr(x), where Expr is the defining expression, and to
link name and definition by writing = x — Expr(x). (The arrow is a “stronger link” than the equal sign in
this expression.) In the same spitif,— Y denotes the set of all maps “of type— Y, that is, maps from
X to Y, not necessarily defined over &l Pointsx for which f is defined form itflomaindom(f) c X, and
their images form theodomaincod(f) C Y, also called theangeof f.

SNotice how the set of all affine subspaces parallefitalso constitutes an affine space under the action
of V, or more pointedly — because then the action is regular — of the quotient BpaiceA “point”, there, is
a whole affine subspace.
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FiG. 1.1. No pointin the affine subspade parallel tow, can claim the role of “origin” there.

affine subspace qualifies more than any other as origin, and calling its elements “points”
rather than “vectors” is therefore appropriate.

At this stage, we may introduce tharycenterof pointsx andy, with weightsx and
1— ), as the translate + A(y — x) of x by the vectoi.(y — x), and generalize to any
number of points. The concepts of affine independence, dimension of the affine space,
and affine subspaces follow from the similar ones about the vector Spaceentric
coordinateswith respect to: + 1 affinely independent pointay, ..., a,} in A, are the
weightsa’ (x) such that)_; A'(x) = 1 and)_; 1! (x)(x — a;) = 0, which we shall feel
free to writex = ; A (x)a;. Affine map®n A, are those that are linear with respect to
the barycentric coordinates.fis a point in affine space, vectors of the forny — x are
calledvectors atx. They form of course a vector space isomorphic to the assokiate
called thetangent space at, denotedr. (I will call freevectors the elements 6f, as
opposed to vectors “at” some point, dublmdind(or anchored)ectors. Be aware that
this usage is not universal.) The tangent space to a curve or a surface which centains
is the subspace df, formed by vectors at tangent to this curve or surfaeNote
that vector fields are maps of typOINT — BOUND VECTOR actually, subject to
the restriction that the value of at x, notatedv(x), is a vector atc. The distinction
between this and BOINT — FREE VECTORmMap, which may seem pedantic when
the point spans ordinary space, must obviously be maintained in the case of tangent
vector fields defined over a surface or a curve.

Homogeneous space is a key concept: Here is the mathematical construct by which
we can best model humankingdhysicalexperience of spatial homogeneity. Translat-
ing from a spatial location to another, we notice that similar experiments give similar
results, hence the concept of invariance of the structure of space with respect to the
group of such motions. By taking as mathematical model of space a homogeneous
space relative to the action of this group (in which we recoghigzey observing how
translations compose), we therefore acknowledge an essehisicalproperty of the
space we live in.

REMARK 1.1. In fact, translational invariance is only approximately verified, so one
should perhaps approach this basic modelling issue more cautiously: Imagine space as

SFora piecewise smooth manifold (see below), such a subspace may fail to exist at some points, which will
not be a problem.
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a seamless assembly (via smooth transition functions) of patches of affine space, each
point covered by at least one of them, which is enough to capture the ideaabf
translational invariance of physical space. This idea gets realized with the concept of
smooth manifold (see below) of dimension 3. What we shall eventually recognize as
the metric-free part of the Maxwell's system (Ampére’s and Faraday’s laws) depends
on the manifold structure only. Therefore, postulating an affine structursdalling
decision one that goes a trifle beyond what would strictly be necessary to account for
the homogeneity of space, but will make some technical discussions easier when (about
Whitney forms) barycentric coordinates will come to the fore.

There is no notion of distance in affine space, but this doesn’t mean no topology:
Taking the preimages of neighborhoodsRsf under any one-to-one affine map gives
a system of neighborhoods, hence a topology — the same for all such maps. (So we
shall talk loosely of a “ball” or a “half ball” in reference to an affine one-to-one image
of B={£ eR" Y ;(§))? <1} or of BN {&: &1 > 0}.) Continuity and differentiability
thus make sense for a functigiof type A, — A,. In particular, the derivative of atx
is the linear map ¥ (x), from V,, to V,, such that f (x +-v) — f(x) =D f (x)(W)|/|v] =
o(|v]), if such a map exists, which does not depend on which ndtros vV, andV,
are used to check the property. The same symbgkxp, will be used for theangent
mapthat sends a vectaranchored at to the vector ¥ (x)(v) anchored aff (x).

2. Piecewise smooth manifolds

We will do without a formal treatment of manifolds. Most often, we shall just use the
word as a generic term for lines, surfaces, or regions of spagel( 2, 3, respectively),
piecewise smooth (as defined in a moment), connected or not, with or without a bound-
ary. A 0-manifold is a collection of isolated points.

For the rare cases when the general concept is evoked, suffice it to sayptitht a
mensional manifold is a s&f equipped with a set of maps of typ¢ — R”, called
charts which makeM look, for all purposes, but only locally, likR? (and hence, like
p-dimensional affine spacegmoottmanifolds are those for which the so-calteahsi-
tion functionsp o ¢ 1, for any pair{g, v} of charts, are smooth, i.e., possess derivatives
of all orders. (So-called’* manifolds obtain when continuous derivatives exist up to
orderk.) Then, if some property? makes sense for functions of tyfe — X, where
X is some target spac¢, from M to X is reputed to have propert if all composite
functions f o ¢ 1, now of typeR?” — X, have it. A manifoldM with boundaryhas
points where it “looks, locally, like” a closed half-spacelof; these points form, taken
together, a (boundaryles§) — 1)-manifold 0 M, called theboundaryof M. Connect-
edness is not required: A manifold can be in several pieces, all of the same dimgnsion

In practice, our manifolds will be glued assembliezelis as follows.

First, let us define “reference cells” iR”, as illustrated on Fig. 2.1. These are
bounded convex polytopes of the form

P
K¢=JteeRE >0vi=1..,p ) aiE ng:l,...,k}, (2.1)
j=1



114 A. Bossavit CHAPTERI

g2 g’

FIG. 2.1. Some cells im 3, of dimensions 0, 1, 2.

where thex'.’s form a rectangulark(x p)-matrix with nonnegative entries, and no re-
dundant rows.

Now, ap-cellin A,, with 0< p < n, is a smooth map from somek; into A, one-
to-one, and such that the derivative®) has rankp for all £ in K¢. (These restrictions,
which qualifyc as anembeddingare meant to exclude double points, and cusps, pleats,
etc., which smoothness alone is not enough to warrant.) The same symbloserve
for the map and for the imaggK%). Theboundarydc of the cell is the image under
of the topological boundary ot ;, i.e., of pointst for which at least one equality holds
in (2.1). Remark thadc is an assembly ofp — 1)-cells, which themselves intersect, if
they do, along parts of their boundaries.

Thus, a 0-cell is just a point. A 1-cell, or “path”, is a simple parameterized curve.
The simplest 2-cell is the triangular “patch”, a smooth embedding of the triangle
(€: £1>0, 2> 0, €1 + £2 < 1}. The definition is intended to leave room for polyg-
onal patches as well, and for three-dimensional “blobs”, i.e., smooth embeddings of
convex polyhedra.

We shall have use for tr@pencell corresponding to a cell(then called alosedcell
for contrast), defined as the restrictioncdb the interior of its reference cell.

A subsetM of A, will be called apiecewise smootp-manifold if (1) there exists a
finite family C = {¢;: i =1, ..., m} of p-cells whose union i/, (2) the open cell cor-
responding ta; intersects no other cell, (3) intersectians c¢; are piecewise smooth
(p — D-manifolds (the recursive twist in this clause disentanglgs-at0), (4) the cells
are properly joined at their boundariésge., in such a way that each point &f has a
neighborhood i homeomorphic to either a-ball or half ap-ball.

Informally, therefore, piecewise smooth manifolds are glued assemblies of cells, ob-
tained by topological identification of parts of their respective boundaries. (Susfiace
Fig. 4.1, below, is typical.)

"This is regrettably technical, but it can’t be helpedyfis to be a manifold. The assemblytbfeecurves
with a common endpoint, for instance, is not a manifold. See akeUd [1994] for examples of 3D-spaces
obtained by identification of facets of some polyhedra, which fail to be manifolds. Condition (2) forbids
self-intersections, which is overly drastic and could be avoided, but will not be too restrictive in practice.
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Having introduced this category of objects — which we shall just call manifolds, from
now on —we should, as itis the rule and almost a reflex in mathematical work, deal with
maps between such objects, calladrphismsthat preserve their relevant structures.
About cells, first: A map between two images of the same reference cell which is bijec-
tive and smooth (in both directions) is calledliéeomorphismNow, about our mani-
folds: There is iecewise smooth diffeomorphigmtween two of them (and there too,
we shall usually dispense with the “piecewise smooth” qualifier) if they are homeomor-
phic and can both be chopped into sets of cells which are, two by two, diffeomorphic.

3. Orientation

To get oneself oriented, in the vernacular, consists in knowing where is South, which
way is uptown, etc. To orient a map, one makes its upper side face North. Pigeons, and
some persons, have a sense of orientation. And so fédthingof this kind is implied

by the mathematical concept of orientation — which may explain why so simple a notion
may be so puzzling to many. Not that mathematical orientation has no counterpart in
everyday'’s life, it has, but in something else: When entering a roundabout or a circle
with a car, you know whether you should turn clockwise or counterclockwikat

is orientation, as regards the ground’s surface. Notice how it depends on customs and
law. For the spatial version of it, observe what “right-handed” means, as applied to a
staircase or a corkscrew.

3.1. Oriented spaces

Now let us give the formal definition. Akamein V,, is an ordered-tuple of linearly in-
dependent vectors. Select a basis (which is thus a frame among others), and for each
frame, look at the determinant of its vectors, as expressed in this basis, hence a
FRAME — REAL function. This function is basis-dependent, but the equivalence re-
lation defined by f = f’ if and only if framesf and f’ have determinants of the same
sign” does not depend on the chosen basis, and is thus intrinsic to the structyre of
There are two equivalence classes with respect to this relation. Origitiegnsists

in designating one of them as the class of “positively oriented” frames. This amounts
to defining a function, which assigns to each frame a label, edtinect or skew two
equivalent frames getting the same label. There are two such functions, therefore two
possible orientations. Aoriented vector spads thus a paifV, Or}, whereOr is one of

the two orientation classes &f. (Equivalently, one may define an oriented vector space
as a pair{vector spacgprivileged basi$, provided it's well understood that this basis
plays no other role than specifying the orientation.) We shall find convenient to extend
the notion to a vector space of dimension O (i.e., one reduced to the single element 0),
to which also correspond, by convention, two oriented vector spaces, lakedlad—.

REMARK 3.1. Once a vector space has been oriented, there are direct anfilaskes

but there is no such thing as direct or skesectors except, one may concede, in dimen-

sion 1. A vector does not acquire new features just because the space where it belongs
has been oriented! Part of the confusion around the notion of “axial” (vs. “polar”) vec-
tors stems from this semantic difficulty (BsaviIT [1998a, p. 296]). As axial vectors
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will not be used here, the following description should be enough to deal with the issue.
Let’s agree that, iOr is one of the orientation classesdf the expressior-Or denotes

the other class. Now, form paif®, Or}, wherev is a vector andOr any orientation
class ofV, and consider two pairf@, Or} and{v’, Or’} as equivalent when' = —v and

Or’ = —Or. Axial vectorsare, by definition, the equivalence classes of such p&ota(
vectors is just a redundant name, inspired by a well-minded sense of equity, for vectors
of V.) Notice that axiabcalarscan be defined the same way: substitute a real number for
v. Hence axial vector fields and axial functions (more often called “pseudo-functions” in
physics texts). The point of defining such objects is to become able to express Maxwell’s
equations imonoriented Euclidean space, i.&3 with a dot product but no specific
orientation. See BssAvIT[1998b] or [1999] for references and a discussion.

An affine space, now, is oriented by orienting its vector associdteuad frameat x
in A,, i.e., a set oz independent vectors at is direct (respectively skew) if these
vectors form a direct (respectively skew) framep

Vector subspaces of a given vector space (or affine subspaces of an affin® space
can have their own orientation. Orienting a line, in particular, means selecting a vector
parallel to it, called airector vector for the line, which specifies the “forward” direction
along it.

Such orientations of different subspaces are a priori unrelated. Orienting 3D space by
the corkscrew rule, for instance, does not imply any orientation in a given plane. This
remark may hurt common sense, for we are used to think of the standard orientation of
space and of, say, a horizontal plane, as somehow related. And they are, indeed, but only
because we think of vertical lines as oriented, bottom up. This is the convention known
asAmpere’s rule To explain what happens there, suppose space is oriented, and some
privileged straightline is oriented too, on its own. Then, any ptaeresversdo this line
(i.e., thus placed that the intersection reduces to a single point) inherits an orientation,
as follows: To know whether a frame in the plane is direct or skew, make a list of vectors
composed of, in this order, (1) the line’s director, (2) the vectors of the planar frame;
hence an enlarged spatial frame, which is either direct or skew, which tells us about the
status of the plane frame.

More generally, there is an interplay between the orientations of complementary
subspaces and those of the encompassing space. Recall that two sulbspackd
of V arecomplementaryf their spanis all V (i.e., eactv in V can be decomposed as
v=u+w, withu in U andw in W) and if they ardransversqU N W = {0}, which
makes the decomposition unique). We shall refér s the “ambient” space, and write
V = U+ W. If both U andW have orientation, this orientg, by the following conven-
tion: the frame obtained by listing the vectors of a direct fram# ifirst, then those of
a direct frame inW, is direct. Conversely, if bott/ andV are oriented, one may orient
W as follows: to know whether a given frameW is direct or skew, list its vectors be-
hind those of a direct frame @f, and check whether the enlarged frame thus obtained
is direct or skew inV. This is a natural generalization of Ampeére’s rule.

8An affine subspace is oriented by orienting the parallel vector subspace. A point, which is an affine sub-
space parallel t¢0}, can therefore be oriented, which we shall mark by apposing a sigrtcit,—.
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FiG. 3.1. Left: Specifying a “crossing direction” through a plaieby inner-orienting a lindJ transverse
to it. Right: Outer-orientind/, i.e., giving a sense of going around it, by inner-orienti#ig

FiG. 3.2. Left: How an externally oriented line acquires inner orientation, depending on the orientation of

ambient space. (Alternative interpretation: if one knows both orientations, inner and outer, for a line, one

knows the ambient orientation.) Right: Assigning to a surface a crossing direction (here from region “

below to region %" above) will not by itself imply an inner orientation. But it does if ambient space is

oriented, as seen in (b) and (bFigs. 3.2(a) and 3.2(b) can be understood as an explanation of Ampére’s rule,
in which the ambient orientation is, by convention, the one shown here by the “right corkscrew” icon.

Now what if U is oriented, but ambient space is not's orientation of any rele-
vance to the complemefit ? Yes, as Fig. 3.1 suggests (left): For instanc#/ ihas di-
mensiom — 1, an orientation of the one-dimensional compleniéman be interpreted
as a crossing direction relative W, an obviously useful notion. (Flow of something
through a surface, for instance, presupposes a crossing direction.) Hence the concept
of external or outer orientationof subspaces o¥ : Outer orientation of a subspace is,
by definition, an orientation of ofeof its complements. Outer orientation f itself
is thus a signi+ or —. (For contrast and clarity, we shall catiner orientation what
was simply “orientation” up to this point.) The notion (which one can trace back to Ve-
blen (VEBLEN and WHITEHEAD [1932]), cf. VAN DANTZIG [1954] and £HOUTEN
[1989]) passes to affine subspaces of an affine space the obvious way.

Note thatif ambient space is oriented, outer orientation determines inner orientation
(Fig. 3.2). But otherwise, the two kinds of orientation are independent. As we shall see,
they cater for different needs in modelling.

9Nothing ambiguous in that. There is a canonical linear map between two compleitieatsd W5 of the
same subspadé, namely, the “affine projectionty; alongU, thus defined: fop in Wy, setry (v) = v +u,
whereu is the unique vector iV such tha + u € W». Usery to transfer orientation froniy to W.
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3.2. Oriented manifolds

Orientation can be defined for other figures than linear subspaces. Connected parts of
affine subspaces, such as polygonal facets, or line segments, can be oriented by ori-
enting the supporting subspace (i.e., the smallest one containing them). Smooth lines
and surfaces as a whole are oriented by attributing orientations to all their tangents or
tangent planes in a consistent way.

“Consistent”? Let’s explain what that means, in the case of a surface. First, subspaces
parallel to the tangent planes at all points in the neighborhéod of a given surface
point x have, if N (x) is taken small enough, a common complement, characterized by
a directorn(x) (not the “normal” vector, since we have no notion of orthogonality at
this stage, but the idea is the same). Théfx) is consistently oriented if all these
orientations correspond via the affine projection alatig) (cf. Note 9). But this is
only local consistency, which can always be achieved, and one wants miotzal
consistency, which holds if the surface can be covered by such neighborhoods, with
consistent orientation in each non-empty intersecfigm) N N(y). This may not be
feasible, as in the case of a Mdbius band, hence the distinction between (internally)
orientable and non-orientable manifolds.

Cells, as defined above, are inner orientable, thanks to the fact ¢hdad> not van-
ish. For instance (cf. Fig. 3.3), for a pathi.e., a smooth embedding— c(¢) from
[0, 1] to A,, the tangent vectorg c(t) determine consistent orientations of their sup-
porting lines, hence an orientation of the path. (The other orientation would be obtained
by starting from the “reverse” path,— ¢(1—¢).) Same with a patcfs, 1} — S(s,7) on
the triangleT = {{s,t}: 0<s, 0<¢, s+t < 1}: The vectors;S(s, t) anda, S(s, 1), in
this order, form a basis &(s, #) which orients the tangent plane, and these orientations
are consistent.

As for piecewise smooth manifolds, finally, the problem is at paintshere cells
join, for a tangent subspace may not exist there. But according to our conventions, there
must be a neighborhood homeomaorphic to a ball or half-ball, wisiohientable, hence
a way to check whether tangent subspaces at regular points in the vicinithafe
consistent orientations, and therefore, to check whether the manifold as a whole is or is
not orientable.

a0 2 500, 1)

c(0) ) Y (35— a5)(1-8,8)
o(1)

S(1, 0)

FIG. 3.3. A path and a patch, with natural inner orientations. Observe how their boundaries are themselves
assemblies of cellsic = ¢(0) — ¢(1) anddS = ¢1 — ¢2 + ¢3, with a notation soon to be introduced more
formally. Pathsc; arecy =s — S(s,0), co =1 — S(0,7), andcz =0 — S(1 — 0, 0), each with its natural

inner orientation.
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Similar considerations hold for external orientation. Outer-orienting a surface con-
sists in giving a (globally consistent) crossing direction through it. For a line, it's a way
of “turning around” it, or “gyratory sense” (Fig. 3.1, right). For a point, it's an orienta-
tion of the space in its neighborhood. For a connected region of space, it's just a sign,
+ or —.

3.3. Induced orientation

Surfaces which enclose a volunte (which one may suppose connected, though the
boundarydV itself need not be) can always be outer oriented, because the “inside out”
crossing direction is always globally consistent. Let us, by convention, take this direc-
tion as defining the canonical outer orientationddf. No similarly canonicainner
orientation of the surface results, as could already be seen on Fig. 3.2, since there are,
in the neighborhood of each boundary point, two eligible orientations of ambient space.
But if V is inner oriented, this orientation can act in conjunction with the outer one of
dV to yield a natural inner orientation df’s boundary about this point. For example,
on the left of Fig. 3.4, the 2-framfv1, v2} in the tangent plane of a boundary point
is taken as direct because, by listing its vectors behind an outward directed wector
one gets the direct 3-franfe, v1, v2}. Consistency of these orientations stems from the
consistency of the crossing direction. Heri¢s inner orientatiorinducesone on each
part of its boundary.

The same method applies to manifolds of lower dimengiphy working inside the
affine p-subspace tangent to each boundary point. See Fig. 3.4(b) for thepcage
The p-manifold, thus, serves as ambient space with respect to its own boundary, for the
purpose of inducing orientation.

In quite a similar way (Fig. 3.5)uter orientation of a manifold induces auter
orientation of each part of its boundary. (For a voluthethe induced outer orientation
of aV is the inside-out or outside-in direction, depending on the outer orientation,
or—,of V.)

(a) (b) (c)

FIG. 3.4. Left: Induced orientation of the boundary of a volume of toroidal sheperfdvo are tangent to

aV, v points outwards). Middle: The same idea, one dimension below. The tangent to the boundary, being

a complement of (the affine subspace that supperts)ith respect to the plane tangent to the surfadin

broken lines), inherits from the latter an inner orientation. Right: Induced orientation of the endpoints of an
oriented curve.
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FiG. 3.5. Left: To outer-oriend S is to (consistently) inner-orient complements of the tangent, one at each

boundary point. For this, take as direct the franfe;, v}, where{v1} is a direct frame in the complement of

the plane tangent t§ atx, andv an outward directed vector tangent$oThat{v4} is direct is known from

the outer orientation of. Right: Same idea about the boundary points of tinldotice thatv is now appended

behindthe list of frame vectors. Consistency stems from the consisteney tbe inside-out direction with

respect tas. The icons near the endpoints are appropriate, since outer orientation of a point is inner orientation
of the space in its vicinity.

FIG. 3.6. Mobius band, not orientable. As the middle lindoes not separate two regions, it cannot be
assigned any consistent crossing direction, so it has no outer orientation with respect to the “ambient” band.

3.4. Inner vs outer orientation of submanifolds

We might (but won't, as the present baggage is enough) extend these concepts to sub-
manifolds of ambient manifolds other thag, including non-orientable ones. A two-
dimensional example will give the idea (Fig. 3.6): Take as ambient manifold a M&bius
bandM, and forget about the 3-dimensional space it is embedded in for the sake of the
drawing. Then it's easy to find i a line which (being a line) is inner orientable, but
cannot consistently be outer oriented. Note that the band by itself, i.e., considered as its
own ambient space, can be outer oriented, by giving it a sign: Indeed, outer orientation
of the tangent plane at each point Mf, being inner orientation of this point, is such

a sign, so consistent orientation means attributing the same sign to all points. (By the
same token, any manifold is outer orientable, with respect to itself as ambient space.)
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D D D

(a) (b)

FIG. 3.7. Left: Non-orientable 3-manifold with boundary: Identify top and bottom by matching upper
with lower A, etc. Middle: Embedded Mdébius band, with a globally consistent crossing direction. Right:
Embedded ribbon.

For completeness, let us give another example (Fig. 3.7), this time of an outer-
orientable surface without inner orientation, owing to non-orientability of the ambient
manifold. The latter (whose boundary is a Klein bottle) is made by sticking together the
top and bottom sides of a vertical cube, according to the rule of Fig. 3.7(a). The ribbon
shown in (b) is topologically a Mébius band, a non-(inner)orientable surface. Yet, it
plainly has a consistent set of transverse vectors. (Follow the upper arrow as its anchor
point goes up and reenters at the bottom, and notice that the arrow keeps pointing in
the direction ofA B in the process. So it coincides with the lower arrow when this pas-
sage has been done.) Contrast with the ordinary ribbon in (c), orientable, but not outer
orientable with respect to this ambient space.

The two concepts of orientation are therefore essentially different.

In what follows, we shall use the word “twisted” (as opposed to “straight”) to connote
anything that is to do with outer (as opposed to inner) orientation.

4. Chains, boundary operator

It may be convenient at times to describe a maniféfdas an assembly of several
manifolds, even ifM is connected. Think for example of the boundary of a triangle,
as an assembly of three edges, and more generally of a piecewise smooth assembly of
cells. But it may happen — so will be the case here, later — that these various manifolds
have beerindependentlyoriented, with orientations which may or may not coincide
with the desired one foM. This routinely occurs with boundaries, in particular. The
concept of chain will be useful to deal with such situations.

A p-chainis a finite family M = {M;: i =1, ..., k} of oriented connecteg-mani-
folds 19 to which we shall loosely refer below as the “components” of the chain, each
loaded with a weight:’ belonging to some ring of coefficients, suchRasr Z (sayR
for definiteness, although weights will be signed integers in most of our examples). Such
a chain is conveniently denoted by the “formal” sjn) WM =utMy+ -+ pk My,

10For instance, cells. But we don't request that. EAf;hmay be a piecewise smooth manifold already.
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thus called because the signs do not mean “add” in any standard way. On the other
hand, chains themselves, as whole objects, can be added, and there the notation helps:
To get the sumd_; ' M; + ) ; v/ N}, first merge the two families\{ and V, then
attribute weights by adding the weights each component has in each chain, making use
of the convention that M’ is the same chain asu M whenM’ is the same manifold as
M with opposite orientation. If all weights are zero, we haverthk chain denoted 0.
All this amounts, as one sees, to handling chains according to the rules of algebra, when
they are represented via formal sums, which is the point of such a notatidsted
chains are defined the same way, except that all orientations are external. (Twisted and
straight chains are not to be added, or otherwise mixed.)
If M is an oriented piecewise smooth manifold, all its cellsherit this orientation,
but one may have had reasons to orient them on their own, independeily (@he
same cell may well be part of several piecewise smooth manifolds, for instance.) Then, it
is natural to associate withf the chain)_; +¢;, also denoted b/, with ith weight—1
when the orientations o¥f andc; differ. (Refer back to Fig. 3.3 for simple examples.)
Now, the boundary of an oriented piecewise smagtht 1)-manifold M is an as-
sembly of p-manifolds, each of which we assume has an orientation of its own. Let us
assign each of them the weightl, according to whether its orientation coincides with
the one inherited frond. (We say the two orientatiomaatchwhen this coincidence
occurs.) Hence a chain, also denodéd. By linearity, the operatod extends to chains:
X W M) =3, n*aM;. A chain with null boundary is called@ycle A chain which
is the boundary of another chain is called, appropriatelypandary Boundaries are
cycles, because of the fundamental property

300 =0, (4.1)

i.e., the boundary of a boundary is the null chain. A concrete example, as in Fig. 4.1,
will be more instructive here than a formal proof.

REMARK 4.1. Beyond its connection with assemblies of oriented cells, no too defi-
nite intuitive interpretation of the concept of chain should be looked for. Perhaps, when

p =1, one can think of the chaid_; y;¢;, with integer weights, as “running along
eachg;, in turn, |y;| times, in the direction indicated ky’s orientation, or in the re-

verse direction, depending on the signjef. But this is a bit contrived. Chains are
better conceived as algebraic objects, based on geometric ones in a useful way — as the
example in Fig. 4.1 should suggest, and as we shall see later. However, we shall indulge
in language abuse, and say that a closed curve “is” a 1-cycle, or that a closed surface
“is” a 2-cycle, with implicit reference to the associated chain.

So boundaries are cycles, after (4.1). Whether the converse is true is an essential
guestion. In affine space, the answer is positive: A closed surface encloses a volume, a
closed curve (even if knotted) is the boundary of some surface (free of self-intersections,
amagzing as this may appear), called a Seifert surfager€®RTand THRELFALL [1980],
ARMSTRONG[1979, p. 224]). But in some less simple ambient manifolds, a cycle need
not bound. In the case of a solid torus, for instance, a meridian circle is a boundary, but
a parallel circle is not, because none of the disks it boundsiis entirely contained in
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FiG. 4.1. Piecewise smooth surfasginner oriented (its orientation is taken to be that of the curved trian-

gle in the fore, markedt), represented as the chain— B — C based on the oriented curved triangles

B, C. (Note the minus signsB’s and C’s orientations don’t match that of.) One hasdA =a + b + ¢,

dB=e+a—d,dC=b+d+ f,wherea, b, ¢, d, e, f are the boundary curves, arbitrarily oriented as

indicated. Now,0S =9(A — B — C) =c — e — f: Observe how the “seamg, b, ¢ automatically receive

null weights in this 1-chain, whatever their orientation, because they appear twice with opposite signs. Next,

sincedc =x —z, de = —y —z, anddf = x + y, owing to the (arbitrary) orientations assigned to points,

¥, z,0ne ha9dS = d(c —e — f) =0, by the same process of cancellation by pairs. The reader is invited to
work out a similar example involving twisted chains instead of straight ones.

the torus. Whether cycles are or aren't boundaries is therefore an issue when investigat-
ing the global topological properties of a manifold. Chains being algebraic objects then
becomes an asset, for it makes possible to harness the power of algebra to the study of
topology. This is the gist ohomology(HENLE [1994], HILTON and WYLIE [1965]),

and of algebraic topology in general.

5. Metric notions

Now, let us equipV,, with a dot productu - v is a real number, linearly depending on
vectorsu andv, with symmetry - v = v - u) and strict positive-definiteness (u > 0 if

u # 0). Come from this, first the notions of orthogonality and angle, next a mofea
(u-u)?2 onV,, then a distancé(x, y) = |y — x|, translation-invariant by construction,
between points of the affine associdtg.

DEeFINITION 5.1. Euclidean spacdy,, is the structure composed df,, plus a dot
product on its associafé,, plus an orientation.

Saying “the” structure implies that two realizations of it (with two different dot
products and/or orientations) are isomorphic in some substantial way. This is so: For
any other dot product,-* say, there is an invertible linear transforin such that
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u-v = Lu - Lv. Moreover! one may havd “direct”, in the sense that it maps a frame
to another frame of the same orientation class, or “skew”. Therefore, two distinct Euclid-
ean structures oA, are linked by somé.. In the language of group actions, the linear
groupGL,, composed of the abowe’s, acts transitively on Euclidean structures, i.e.,
with a unique orbit, which is our justification for using the singular. (These structures
are said to baffine equivalent? a concept that will recur.) The point can vividly be
made by using the language of group actions: the isotropy grogp ©f} “cannot be
any larger”. (More precisely, it is maximal, as a subgroup, in the group of direct linear
transforms.)

In dimension 32 dot product and orientation conspire in spawningdfuss product
u x v is characterized by the equality

lu x 0|2+ (u - v)% = ul?v|? (5.1)

and the fact that vectors v andu x v form, in this order, a direct frame. Thev&ume

of the parallelotope built on vectors v, w, defined by valu, v, w) = (1 x v) - w, IS
equal, up to sign, to the above volumic measure, with equality if the frame is dfrect.
Be well aware thaik doesn’t make any sensermon-oriented three-space.

We shall have use for the related notionwefctorial areaof an outer oriented tri-
angleT, defined as the vectdr = aredT)n, wheren is the normal unit vector that
provides the crossing direction. (If an ambient orientation exists, two vegtarsl v
can be laid along two of the three sides, in such a way fhhat, n} is a direct frame.
Then,T = %u x v. Fig. 6.1 gives an example.) More generally, an outer oriented surface
of E3 has a vectorial area: Chop the surface into small adjacent triangular patches, add
the vectorial areas of these, and pass to the limit. (This yields 0 for a closed surface.)

For later use, we state the relations between the structures induceddyy and
{.,Or}, where Or = £0r, the sign being that of det). (There is no ambiguity
about “detL)”, understood as the determinant of the matrix representatiab: dts
value is the same in any basis.) The nomm«)Y/? will be denoted byju|. The cor-
responding cross product (boldface) is defined byu x v|% + (4 -v)2 = |u|?|v|?
as in (5.1) (plus the request thét, v, u x v} be Or-direct), and the new volume is
vol(u, v, w) = (u x v) -w. It's a simple exercise to show that

lul =|Lu|, L@uxv)=Lux Lv, vol(u,v,w)=det(L)vol(u,v,w). (5.2)

(It all comes from the equality detu, Lv, Lw) = det(L) def(u, v, w), whenu, v, w,
and L are represented in some basis, a purely affine formula.) Notice that, fapany

117 is not unique, sinc& L, for anyunitary U (i.e., such thatUv| = [v| ¥v), will work as well. In particular,
one might forcel to be self-adjoint, but we won't take advantage of that.

12such equivalence is what sets Euclidean norms apart among all conceivable ndrfmdikafor instance
vl=23; |vf|. As argued at more length ind&saviIT [1998a], choosing to work in a Euclidean framework
is an acknowledgment of another observed symmetry of the world we live iisoit®py,in addition to its
homogeneity.

13p binary operation with the properties of the cross product can exist only in dimensions 3 ardw (S
and YEADON [1989], ECKMANN [1999]).

14An n-volume could directly be defined o¥,, as a madvy, ..., vn} = vol(vq, . .., vy), multilinear and
null when two vectors of the list are equal. Givingrawolume implies an orientation (direct frames are those
with positiven-volumes), but no metric (unlegs= 1).
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one hasL’L(uxv)-w=L(u xv) - Lw=det(L)(u x v) - w, whereL? denotes the
adjointof L (defined byLu - v=u - L%v for all u, v), hence an alternative formula:

uxv=det(L)(L°L) Y (u x v). (5.3)
As for the vectorial area, denoté&dn the “bold” metric, one will see that
7 = |detL)|(LL) T, (5.4)

with a factor|det(L)|, not detL), becaus& andT, both going along the crossing di-
rection, point towards the same sideTof

We shall also need a topology on the spacepafhains, in order to define differ-
ential forms ascontinuouslinear functionals on this space. As we shall argue later,
physical observables such as electromotive force, flux, and so forth, can be conceived
as the values of functionals of this kind, the chain operand being the idealization of
some measuring device. Such values don’t change suddenly when the measurement ap-
paratus is slightly displaced, which is the rationale for continuity. But to make precise
what “slightly displaced” means, we need a notion of “nearness” between chains — a
topology?®

First thing, nearness between manifolds. Let us define the distdnteN) between
two of them as the greatest lower bound (the infimumygfM, N) = supx € M:
lx — ¢ (x)|} with respect to all orientation-preserving piecewise smooth diffeomor-
phisms (OPD)p that exist betwee/ and N. There may be no such OPD, in which
case we take the distance as infinite, but otherwise there is symmetry betihaethN
(considerg¢~! from N to M), positivity, d can't be zero ifM # N, and the trian-
gle inequality holds. Rroof: Take M, N, P, select OPDsp and y» from P to M
and N, and consider in P. Then|¢(x) — ¥ (x)| < |¢p(x) — x| + |x — ¥ (x)|, hence
dyop-1(M, N) <dyp(M, P)+dy (N, P), then minimize with respect ip andy.) Near-
ness of two manifolds, in this sense, does account for the intuitive notion of “slight dis-
placement” of a line, a surface, etc. The topology thus obtained does not depend on the
original dot product, althougt does.

Next, on to chains. The notion of convergence we want to capture is clear enough: a
sequence of chaing, =Y ;_; _; u,M;,: n € N} should certainly converge towards

.....

converge, in the sense of the previous distancé/towhile the weightgu/: n € N}
converge too, towardg’. But knowing some convergent sequences is not enough to
know the topology. (For that matter, even the knowledgalbtonvergent sequences
would not suffice, see & BAUM and Q.MSTED [1964, p. 161].) On the other hand, the
finer the topology, i.e., the more open sets it has, the more difficult it is for a sequence
to converge, which tells us what to do: Define the desired topology as the finest one
which (1) is compatible with the vector space structurgafhains (in particular, each
neighborhood of 0 should contain a convex neighborhood) (2) makes all sequences of
the above kind converge.

15what follows is an attempt to bypass, rather than to face, this difficult problem, to which Harrison’s work
on “chainlet” spaces (nested Banach spaces which include chains and their limits with respect to various
norms, HARRISON [1998]), provides a much more satisfactory solution.
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The space of straight [respectively twistedEhains, as equipped with this topology,
will be denoted byC, [respectivelyép]. Both spaces are purely affine constructs, inde-
pendent of the Euclidean structure, which only played a transient role in their definition.

It now makes sense to ask whether the linear riais continuous fromC, to
Cp—1. The answer is by the affirmative, thanks to the linearity) @ind the inequality
d(0M,dN) <d(M, N). [Proof: The restriction tdM of an OPD¢ is an OPD which
sends it todN, sod(0M,dN) < infgsupx € IM: |p(x) — x|} < infySupx € M:
lp(x) — x|} =d(M,N) ]



CHAPTERII

Rewriting the Maxwell Equations

Deconstruction calls for reconstruction: We now resettle the Maxwell system in the
environment just described, paying attention to what makes use of the metric structure
and what does not. In the process, differential forms will displace vector fields as basic
entities.

6. Integration: Circulation, flux, etc.

Simply said, differential forms are, among mathematical objects, those meant to be
integrated. So let us revisit Integration.

In standard integration theory @imos [1950], RUDIN [1973], YOSIDA [1980]),
one has a seX equipped with a measurk. Then, to a paifA, f}, whereA is a part
of X and f a function, integration associates a number, dengtet(x) dx (or simply
J4 f, if there is no doubt on the underlying measure), with additivity and continuity
with respect to both argumentd,and f. In what follows, we operate a slight change
of viewpoint: Instead of leaving the measute in background of a stage on which the
two objects of interest would bg and f, we consider the whole integrantix) dx
as a single object (later to be given its proper name, “differential form”), Arab
some piecewise smooth manifold 4%. This liberates integration from its dependence
on the metric structure: The integral becomes a map of WA&IIFOLD x DIFFER-
ENTIAL FORM — REAL (by linearity, CHAIN will eventually replaceMANIFOLD
there), which we shall see is the right approach as far as Electromagnetics is concerned.
The transition will be in two steps, one in which the Euclidean structure is used, one in
which we get rid of it.

The dot product ofE, induces measures on its submanifolds: By definition, the
Euclidean measure of the parallelotope builtnectors{vs, ..., v,} anchored at,
i.e., of the seffx + > ;Alv;: 0K A <1, i=1,...,p}, is the square-root of the so-
called Gram determinant of the’s, whose entries are the dot produets v;, for all
i, j from 1 to p. One can build from this, by the methods of classical measure the-
ory (HALMOS [1950]), thep-dimensional measures, i.e., the lineal, areal, volumic, etc.,
measures of a (smooth, bounded) curve, surface, volume, etc. (what Whitney and his
followers call its “mass”, WAITNEY [1957]). Forp = 0 not to stand out as an exception
there, we attribute to an isolated point the measure 1. (This is the so-calleting
measurefor which the measure of a set of points is the number of its elements.)

127
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a

FiG. 6.1. Forming the terms of Riemann sums. Left: generic “curve segmentith associated sampling
point xg and vectok. Right: generic triangular small patehwith sampling pointer. Observe how, with the
ambient orientation indicated by the icon, the vectorial arenlwppens to bn%u X V.

We shall consider, corresponding to the four dimensiprsO0, ..., 3 of manifolds
in E3, four kinds of integrals which are constantly encountered in Physics. Such inte-
grals will be defined on cells first, then extended by linearity to chains, which covers
the case of piecewise smooth manifolds.

First, p = 0, a point,x say. The integral of a smooth functignis ther}® ¢ (x). If the
point is inner oriented, i.e., if it bears a sigix) = +1, the integral is by convention
e(x)@(x).

Next (p = 1), letc be a 1-cell. At pointx = ¢(¢), define theunit tangent vectot (x)
as the vector at equal tod,c(z)/|9;c(t)|, which inner-orientg. Given a smooth vector
field u, the dot product - u defines a real-valued function on the image: ofVWe call
circulation of u, alongc thus oriented, the integrd) = - u of this function with respect
to the Euclidean measure of lengths.

REMARK 6.1. Integrals (of smooth enough functions) are limits of Riemann sums. In
the present case, such a sum can be obtained as suggested by Fig. 6.1, left: Chop the
curve into a finite familyS of adjacent curve segmentspick a pointx; in each of them,

and lets be the vector, oriented along that joins the extremities of. The Riemann

sum associated with is then) " 5 - u(x,), and converges towardst - u whens is

properly refined.

Further up p = 2), let X be a 2-cell, to which a crossing direction has been as-
signed, and choose the parameterization} — X (s, t) in such a way that vectors
n(s,t) =9; X (s, 1) x 9; X (s, t) point in this direction. Then sei(x) = n(s,1)/In(s, 1)|,
at pointx = X (s, t), to obtain the outer-orientingnit normal field Given a smooth
vector fieldu, we define thdlux through’, thus outer oriented, as the integfgln ‘u
of the real-valued function - u with respect to, this time, the Euclidean measure of

16This is also its integral over the sgt}, with respect to the counting measure, in the sense of Integration
Theory. The integral over finite set{xq, ..., x}, in this sense, would b&"; ¢ (x;). Notice the difference
between this and what we are busy defining right now, the integral on a 0-chain, which will turn out to be a
weighted sum of the reals(x;).
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areas (No ambiguity on this point, since the statusXfas a surface has been made
clear.)

REMARK 6.2. For Riemann sums, dissegt into a family 7 of small triangular
patchesrt, whose vectorial areas afe pick a pointx; in each of them, and consider

ZTET T u(xr).

Last, forp = 3, and a 3-celV with outer orientationt, the integral of a functiory is
the standard, f, integral of f over the image o¥ with respect to the Lebesgue mea-
sure. This is consistent with the frequent physical interpretaticﬁ@cﬁ as the quantity,
in V, of something (mass, charge,) present with density in V. With outer orienta-
tion —, the integral is- [,, f. Thus, outer orientation helps fix bookkeeping conventions
when f is a rate of variation, like for instance, heat production or absorption. The inner
orientation ofV is irrelevant here.

Now, let us extend the notion to chains based on oriented cells. In dimension 0,
where an oriented point is a point-cum-sign pfgir e}, a 0-chainm is a finite col-
lection {{x;,&;}: i =1,...,k} of such pairs, each with a weigpt. The integralfm 10
is then defined a3, ,uisi(p(x,-).ﬂ In dimension 1, the circulation along the 1-chain
=Y weiis [it-u=3u [ v-u. The flux [5 n - u through thetwisted (beware!)
chain¥ =Y, 1’ %; is defined ag~; ' [y, n - u. As for dimension 3, a twisted chain
manifold V is a finite collectiod® {{V;,&;}: i = 1, ..., k} of 3D blobs-with-sign, with
weightsy, and [y, f is, by definition,y"; u'e; [, f.

Note that we have implicitly defined integrais on piecewise smooth manifolds there,
since these can be considered as cell-based chains with “orientation matching weights”
(1 if the cell’s orientation and the manifold’s matchl if they don't).

Thus the most common wal’to integrate things in three-space lead to the definition
of integrals ovelinner oriented manifolds or chains in casps= 0 and 1 andcouter
oriented one® in casesp = 2 and 3. An unpleasant asymmetry. But since we work
in orientedEuclidean space, where one may, as we have seen, derive outer from inner
orientation, and the other way round, this restores the balance, hencedigallikinds
of integrals, depending on the dimension and on the nature (internal or external) of the
orientation of the underlying chain.

Thus we have obtained a series of maps of t@beAIN — REAL but in a pretty
awkward way, one must admit. Could there be an underlying unifying concept that
would make it all simpler?

170ne might think, there, that orientation-signs and weights do double duty. Indeed, a convention could be
made that all points are positively oriented, and this would dispose af théVe won't do this, for the sake

of uniformity of treatment with respect to dimension.

18again, one might outer-orient such elementary volumes by giving them-alsign, reducing the redun-
dancy, and we refrain to do so for the same reason.

190thers reduce to one of these. For instance, when using Cartesian coordimates /. f(x,y,z)dx is
simply the circulation along, in the sense we have defined above, of the field-dfrected basis vectors
magnified by the scalar factgf.

204 tradition initiated in FRESTONE[1933] distinguishes between so-called “across” and “through” phys-
ical quantities (KOENIG and BLACKWELL [1960], BRANIN [1961]), expressible by circulations and fluxes,
respectively. As we shall see, this classification is not totally satisfying.
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7. Differential forms, and their physical relevance

Indeed, these maps belong to a category of objects that can be defined without recourse
to the Euclidean structure, and have thus a purely affine nature:

DEFINITION 7.1. A straight [respectively twisted] differential form of degrpe

or p-form, is a real-valued map over the space of straight [respectively twisted]
p-chains, linear with respect to chain addition, and continuous in the sense of the above-
defined topology of chains (end of Section 5).

Differential forms, thus envisioned, are dual objects with respect to chains, which
prompts us to mobilize the corresponding machinery of functional analysisiGA
[1980]): Call 77 [respectivelyF ] the space of straight [respectively twistgdforms,
as equipped with its so-called “strong” topolotfyThen C, and F? [respectively
C, and F7] are in duality via the bilinear bicontinuous mafe, w} — [, o, of type
p-CHAIN x p-FORM — REAL A common notation for such duality products being
(c; w), we shall use that as a convenient altern&tite /. @. A duality product should
benon-degeneratg.e., (¢’; w) = 0 V¢’ impliesw = 0, and(c; ') = 0 Vo' forcesc = 0.

The former property holds true by definition, and the latter is satisfied becausé Of
one can construct an ad hoc smooth vector field or function with nonzero integral, hence
a nonzero formw such that{c; w) £ 0.

The above eight kinds of integrals, therefore, are instances of differential forms,
which we shall denote (in their order of appearancefpyu (circulation ofu), %

(flux of u), 3@, and %@, i, 2u, 3¢. This is of course ad hoc notation, to be aban-
doned as soon as the transition from fields to forms is achieved. Note the use of the
pre-superscripp, accompanied or not by the tilde as the case may be, apam-

tor, that transforms functions or vector fields into differential forms (twisted ones, if
the tilde is there). This operator, being relative to a specific Euclidean structure is as a
rule metric- and orientation-dependent. (We'll lseand”, versus?, and”, to distin-
guist?3 the{-, Or} and the{-, Or} structure.) For instance, the 24n means that, given

the straight 2-chair§, one uses both the inner orientation of each of its components

21pjfferential forms converge, in this topology, if their integrals converge uniformly on bounded sets of
chains. (Aboundedset B is one that isabsorbedby any neighborhood of 0, i.e., such that B c V for

somei > 0.) We won't have to invoke such technical notions in the sequel. (Again, s@&RI3SON [1998]

for normson (Banach) spaces of differential forms.) Note the generic use of “differential form” here: Whether
an object qualifies as differential form depends on the chosen topology on chain spaces.

227 line with the convention of Note 4, we shall denote dythe mape — (c; w), and feel free to write

w=c — {c; w). Of course, the symmetric construct w — (c; w) is just as valid. Maps of the latter kind,

from forms to reals, were calledlirrentsin DE RHAM [1960]. (SeeDE RHAM [1936, p. 220], for the physical
justification of the term.) There are, a priori, much more currents than chains (or even chainkSHN
[1998]), and one should not be fooled by the expression “in duality” into thinking that the du@f pf.e.,

the bidual ofC,, is C, itself.

23This play on styles is only a temporary device, not to be used beyond the present Chapter. Later we shall
revert to the received “musical” notation, which assumes a single, definite metric structure in background,
and cares little about ambiguityz denotes the vector proxy of formy andbU is the form represented by the
vector field U.
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and the ambient orientation to define a crossing direction, then the metric in order to
build a normal vector field in this direction, over each component of the chain. Then,
(S; 2u) = [¢n - u defines?u, a straight 2-form indeed. (Notice th&s; 2u) doesnot
depend on the ambient orientation.)

REMARK 7.1. In the foregoing example, it would be improper to desctii€’u) as

the flux of u “through” S, since the components ¢f, a straight chain, didn’t come
equipped with crossing directions. These were derived from the ambient orientation,
part of the Euclidean structure, instead of being given as an attribi§te cbmponents.

To acknowledge this difference, we shall referfgm -u as the flux “embraced bysS.

This is not mere fussiness, as will be apparent when we discuss magnetic flux.

One may wonder, at this point, whether substituting the single concept of differential
form for those of point-value, circulation, flux, etc., has gained us any real generality,
besides the obvious advantage of conceptual uniformity. Let us examine this point care-
fully, because it's an essential part of the deconstruction of Euclidean space we have
undertaken.

On the one hand, the condition that differential forms should be continuous with re-
spect to deformations of the underlying manifolds doesn't leave room, in dimension 3,
for other kinds of differential forms than the above eight. First, it eliminates many ob-
vious linear functionals from consideration. (For instanegeheing an outer-oriented
curve, theintersection numberdefined as the number of timgscrossesS, counted
algebraically (i.e., with sign — if orientations do not match), provides a linear map
S — S Ay, which is not considered as a bona fide differential form. Indeed, it lacks
continuity.) Second, it allows one, by using the Riesz representation theorem, to build
vector fields or functions that reduce the given form to one of the eight types: For in-
stance, given a 1-forma, there i$* a vector field2 such thatc; w) = [.7-$2,whichis
our first example of what will later be referred to as a “proxy” field: A scalar or vector
field that stands for a differential form. For other degrees, forms in 3D are representable
by vector fields p = 1 and 2) or by functions{= 0 and 3).

However, the continuity condition requires less regularity from the proxy fields than
the smoothness we have assumed up to now. Not to the point of allowing them to be
only piecewise smooth: What is required lies in between, and should be clear from
Fig. 7.1, which revisits a well known topic from the present viewpoint. As one sees,
the contrived “transmission conditions”, about tangential continuity of this or normal
continuity of that, are implied by the very definition of forms as continuous maps.

Last, the generalization is genuine in spatial dimensions higher than 3: A two-form
in 4-space, for instance, has no vector proxy, as a rule.

So, although differential forms do extend a little the scope of integration, this is but a
marginal improvement, at least in the 3D context. The real point lies elsewhere, and will

24The proof is involved. From a vector field build a 1-chain; u;s;, akin to the graphic representation
of v by arrows, i.e.s; is an oriented segment that approximates a region of volumeu; . Apply » to this
chain, go to the limit. The real-valued linear map thus generated is then shown, thanks to the continpity of
to be continuous with respect to tié norm on vector fields. Hence a Riesz vector figldwhich turns out

to be a proxy fomw.
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FiG. 7.1. The interfaces, equipped with the unit normal field, separates two regions where the vector
field u is supposed to be smooth, except for a possible discontinuity astoSapposeX’ or ¢, initially
below S, is moved up a little, thus passing into region 2. Under such conditions, the fluthobughX (left)
and circulation ofx alongc (right) can yet bestable i.e., vary continuously with deformations ofand X,
providedu has some partial regularity: As is well known, and easily proven thanks to the Stokes theorem,
normal continuity (zero jump[v - u] of the normal component across the interface) ensures continuity of
the flux [ n - u with respect toX (left), while tangentialcontinuity of u (zero jump[u] of the tangential
component across the interface) is required for continuity of the circulgfion « (right) with respect ta:.
Forms% and % require a continuous. Piecewise3 continuity of the proxy functian is enough fordg
and°g.

now be argued: Which differential form is built from a given (scalar or vector) field de-
pends on the Euclidean structubeit the physical entity one purports to model via this
field does nqtas a rule. Therefore, the entity of physical significance is the form, con-
ceived as an affine object, and not the field. Two examples will suffice to settle this point.

Consider an electric charg® coulombs strong, which is made to move along an
oriented smooth curve, in the direction indicated by the tangent vector fieldwe
mean atestcharge, withQ small enough to leave the ambient electromagnetic field
{E, B} undisturbed, andartual motion, which allows us to consider the field as frozen
at its present value. The work involved in this motiondstimes the quantit)fc T - E,
called theelectromotive forcde.m.f.)along ¢, and expressed in volts (i.e., joules per
coulomb). No unit of length is invoked in this description.

Then why is E expressed in volser meter(or whatever unit one adopts)? Only
because a vectar such thatv| = 1 is one meter long, which makes k, and the in-
tegralfc 7 - E as well, a definite amount eblts indeed. This physical data, of course,
only depends on the field and the curve, not on the metric structure. Yet, change the
dot product, from to - (recall thatu -v = Lu - Lv), which entails a change in the mea-
sure of lengths (hence a rescaling of the unitary vector, aanstead ofr), and the
circulation of E is now® f . 7-E= [ v - L°LE, a different (and physically meaning-
less) number. On the other hand, thiere field E such thatf, 7 -E = [, 7 - E, namely
E = (L“L)~LE. ConclusionWhich vector field encodes the physical détere, e.m.f.s
along all curvesygepends on the chosen metric, although the data themselves.do not
This metric-dependence of E is the reason to call it a vagmimxy. It merely standsfor

250n the left of the equal sign, the integral and the symbasd z are boldface. (One should see the
difference, unless something is amiss in the visualization chain.) So the circulation of E is with respect to
the “bold” measure of lengths on the left. The easiest way to verify this equality (and others like it to come)
is to work on the above Riemann suig, vs - E(xs) of the “bold” circulation of E: One has, for each term
(omitting the subscriptyy-E= Lv- LE=v - LY LE, hence the result.
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the real thing, which is the mapping— (e.m.f. alongc), i.e., a differential form of
degree 1, which we shall from now on denotecby
Thus, summoning all the equivalent notations introduced so far,

e=1E=1E=c— (c;e), Where(c;e)z/ezft-Ezfr-E. (7.2)

This (straight) 1-form is the right mathematical object by which to represent the electric
field, for it tells all about it: Electromotive forces along curves are, one may argue
(ToNTI [1996]), all that can be observed as regards the electric3%eld.the point that

one can get rid of all the vector-field-and-metric scaffolding, and introdutieectly,

by reasoning as follows: The-CHAIN — REALmap we call e.m.f. depends linearly
and continuouslyas can experimentally be establishea the chain over which it is
measured. But this is the very definition of a 1-form. Head®the minimal, necessary
and sufficient, mathematical description of the (empirical) electric field.

REMARK 7.2. The chain/form duality, thus, takes on a neat physical meaning: While
the forme models the field, chains are abstractions ofgtabes of more or less com-
plex structure, that one may place here and there in order to measure it.

The electric field is not the whole electromagnetic field: it only accounts for forces
(and their virtual work) exerted on non-moving electric charges. We shall deal later
with the magnetic field, which gives the motion-dependent part of the Lorentz force,
and recognize it as a 2-form. But right now, an example involvihgisted2-form will
be more instructive.

So consider current density, classically a vector field J, whose purpose is to account
for the quantity of electric chargg,. n - J, that traverses, per unit of time, a surfate
in the direction of the unit normal field that outer-orients it. (Note again this quantity
is in ampéres, whereas the dimension of the proxy field4/i&2.) This map,~ —
(intensity throughy), a twisted 2-form (namely.J), is what we can measure and know
about the electric current, and the metric plays no role there. Yet, changewhich
affects the measure of areas, and the flux of J bec@n@n -J=|detL)| [pn-J.

The “bold” vector proxy, therefore, should Be= |det(L)|~1J, and thed = 2J. Again,
different vector proxies, but the same twisted 2-form, which thus appears as the invariant
and physically meaningful object. It will be denoted py

This notational scheme will be systematized: Below, we shalkcalld, b, j, a, etc.,
the differential forms that the traditional vector fields E, H, D, B, J, A, etc., represent.

26pointwise values cannot directly be measured, which is why they are somewhat downplayed here, but of
course they do make sense, at points of regularity of the field: Takingtfoe segmentx, x + v], wherev

is a vector afr that one lets go to 0, generates at the limit a linear map w, (v). This map, an element of

the dual ofTy, is called acovectorat x. A 1-form, therefore, can be conceived as a (smooth enough) field of
covectors. In coordinates, covectors suchias v, wherev is theith component ob at pointx, form a

basis for covectors at. (They are what is usually denoted by’cdbut d makes better notation, that should

be used instead, on a par withfor basis vectors.)

27same trick, with Riemann sums of the forET'T'-J(xT). After (5.2) and (5.4),‘T’-J =LT LI=

LOLT -J=|dei(L)|T - J. Hencefy. n-J=|del(L)| [5.n - J.
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8. The Stokestheorem

The Stokes “theorem” hardly deserves such a status in the present approach, for it re-
duces to a mere

DEFINITION 8.1. The exterior derivativea of the (p — 1)-form w is the p-form
c— [y 0.

In plain words: To integrate«l over thep-chainc, integratew over its boundaryc.
(This applies to straight or twisted chains and forms equally. Note that d is well defined,
thanks to the continuity of from C,_1 t0 C,.) In symbols:[, o = [ dw, which is the
common form of the theorem, or equivalently,

(dc; w) = (c;dw) Ve eCpandw e FPL (8.1)

(put tildes overC and F for twisted chains and forms), which better reveals what is
going on: d is thedual of 8 (YOSIDA[1980]). As a corollary of (4.1), one has

dod=0. (8.2)

Aform w is closedif dw = 0, andexactif w = do for some formx. (Synonyms, perhaps
more mnemonic, areocycleandcoboundaryThe integral of a cocycle over a boundary,
or of a coboundary over a cycle, vanishes.)

REMARK 8.1. InA,, all closed forms are exact: this is known as Boéncaré Lemma
(see, e.g., BHUTZ [1980, p. 140]). But closed forms need not be exact in general man-
ifolds: this is the dual aspect of the “not all cycles bound” issue we discussed earlier.
Studying forms, consequently, is another way, dual to homology, to investigate topol-
ogy. The corresponding theory is calledhomology(JANICH [2001], MADSEN and
TORNEHAVE [1997]).

In three dimensions, the d is the affine version of the classical differential operators,
grad, rot, and div, which belong to the Euclidean structure. Let’s review this.

First, the gradient: Given a smooth functipnwe define gra¢ as the vector field
such that, for any 1-cell with unit tangent fieldr,

fc - (grady) = /3 » (83)

the latter quantity being of courggc(1)) — ¢(c(0)). By linearity, this extends to any
1-chain. One recognizes (8.1) there. The relation between gradient and d, therefore, is
L(grady) = d% = dy, the third term being what is called thfferential of ¢. (The
zero superscript can be dropped, because there is only one way to turn a function into a
0-form, whatever the metric.) The vector field grat a proxy for the 1-form d.

Thus defined, grag depends on the metric. If the dot product is changed frdro*
“.", the vector field whose circulation equals the right-hand side of (8.3) is a different
proxy, grad ¢, which relates to the first one, as one will see using (5.2), by gead
LeLgradg.
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Up in degree, rot and div are defined in similar fashion. Thus, all in all,

Ygradp) =d%, ?(rotu) =du, S3(divv)=d?. (8.4)

Be well aware that all forms here astraight Yet their proxies may behave in confusing
ways with respect to orientation, as we shall presently see.

About curl, (8.4) says that the curl of a smooth fielddenoted roi, is the vector
field such that, for any inner oriented surfage

/n-rotu:/ T-U. (8.5)
S BN

Here,z corresponds to the induced orientatiordsf, andn is obtained by the Ampere
rule. So the ambient orientation is explicitly used. Changing it reverses the sign:of rot
The curl behaves like the cross product in this respect. If, moreover, the dot product is
changed, the bold curl and the meager one relate as follows:

PROPOSITION8.1. Withu -v = Lu - Lv andOr = sign(det(L))Or, one has
rotu = (det(L))_lrot(L”Lu). (8.6)

PROOF Because of the hybrid character of (8.5), with integration over an outer ori-
ented surface on the left, and over an inner oriented line on the right, the compu-
tation is error prone, so let's be careful. On the one hand (Note PR)r -u =

J35T - L*Lu = [¢n - rot(L*Lu). On the other hand (Note 27), settidg= rotu, we

know that f¢n-J = |det(L)| [¢n - J, hence... but wait! In Note 27, we had both
normalsrn andn on the same side of the surface, but here (see Fig. 3.2, left), they
may point to opposite directions @r s Or. The correct formula is thug,n-rotu =

det(L) [gn-rotu= [¢n-rot(L*Lu), hence (8.6).

As for the divergence, (8.4) defines diwas the function such that, for any volurite
with outgoing normak onaV,

/Vdinzfavwv. (8.7)

No vagaries due to orientation this time, because both integrals represent the same kind
of form (twisted). Moreoverdivv = divv, because the same factaletL)| pops up

on both sides off|, divu = f,,, n-v. (These integrals, as indicated by the boldface
summation sign, are with respect to the “bold” measure. For the one on the left, it's the
3D measurgvol|, andvol = det(L) vol after (5.2).)

REMARK 8.2. The invariance of div is consistent with its physical interpretation: if

is the vector field of a fluid mass, its divergence is the rate of change of the volume
occupied by this mass, and though volumes depend on the metric, vatiosedo not,
again after (5.2).
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0 1 2 3
., Or o — grad—>» o — rot—>» o —— div—> o
t t 1 t
)i LL det(L) det(L)
| | | |
o ,Or o grad—> . — rot—>» . — div—> &

FIG. 8.1. Vertical arrows show how to relate vector or scalar proxies that correspond darttestraight
form, of degree 0 to 3, in two different Euclidean structures. thgstedforms, use the same diagram, but
with |det(L)| substituted for d&t.).

For reference, Fig. 8.1 gathers and displays the previous results. This is a commuta-
tive diagram, from which transformation formulas about the differential operators can
be read off®

As an illustration of how such a diagram can be used, let us prove something the
reader has probably anticipated: the invariance of Faraday’s law with respect to a change
of metric and orientation. Let two vector fields E and B be such d/Bt- rotE= 0,
and setB = B/det(L), E = (L“L)1E, which represent the same differential forms
(call themb ande) in the {-, Or} framework, as B and E in thig, Or} one. Thery;B +
rot E = 0. We now turn to the significance of the single physical law underlying these
two relations.

9. Themagneticfield, asa 2-form

Electromagnetic forces on moving charges, i.e., currents, will now motivate the intro-
duction of the magnetic field. Consider a current lobpmpéres strong, which is made
to move — virtual move, again — so as to span a surfa@ieig. 9.1). The virtual work
involved is ther? times [ n - B (“cut flux” rule), as explained in the caption. Experience
establishes the linearity and continuity of the facfor. - B, called theinduction flux
as a function ofS. Hence a 2-form, again the minimal description of the (empirical)
magnetic field, which we denote lByand callmagnetic induction

In spite of the presence afin the formula,b is not a twisted but a straight 2-form,
as it should, since ambient orientation cannot influence the sign of the virtual work in
any way. Indeed, what is relevant is the direction of the current along the loop, which
inner-orientsc, and the inner orientation df is the one that matches the orientation
of the chainc’ — ¢ (“final position minus initial position” in the virtual move). The
intervention of a normal field, therefore, appears as the result of the will to repiesent
with help of a vector, the traditional B such that= 2B. No surprise, then, if this vector

28t should be clear that might depend on the spatial positionso this diagram is more general than what
we contracted for. It gives the correspondence between differential operators relative to different Riemannian
structures on the same 3D manifold.
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FIG. 9.1. Conventions for the virtual work due to B on a current loop, in a virtual move from position
positionc’. The normal: is the one associated, by Ampére’s rule, with the inner orientatich afsurface
such thaB$ = ¢’ — c. The virtual work of the X B force, with J= I, is then! times the flux/gn - B.

Nature of the proxy fora  straight or twisted DF ofdegree
function polar axial 0
vector field polar axial 1
vector field axial polar 2
function axial polar 3

FiG. 9.2. Nature of the proxies imon-oriented 3D space with dot product.

proxy “changes sign” with ambient orientation! Actually, it cannot do its job, that is,
represenb, without an ambient orientation.

If one insists on a proxy that can act to this effect in autonomy, this object has to carry
on its back, so to speak, an orientation of ambient space, i.e., it must be a faidlof
vectors. Even so, the dependence on metric is still there, so the benefit of using such
objects is tiny. Yet, why not, if one is aware that (polar) vector field and axial vector
field are just mathematicabols2® which may be more or less appropriate, depending
on the background structures, to represent a given physical entity. In this respect, it may
be useful to have a synoptic guide (Fig. 9.2).

We can fully appreciate, now, the difference betwgeandb, between current flow
and magnetic flux. Current density, the twisted 2-fgrnis meant to be integrated over
surfacesX with crossing direction: its proxy J is independent of the ambient orienta-
tion. Magnetic induction, the straight 2-forbnis meant to be integrated over surfaes
with inner orientation: its proxy B changes sign if ambient orientation is changed. Cur-
rent, clearly, flows through a surface, so intensity is one of these “through variables” of

29Thus axiality or polarity is by no means a property of the physical objects. But the way physicists write
about it doesn'’t help clarify this. For instanceA® and MUNIAIN [1994, p. 61]): “In physics, the electric

field E is called a vector, while the magnetic field B is called an axial vector, because E changes sign under
parity transformation, while B does not”. Or elsed&N [1973]): “It is well known that under the space
inversion transformation? : (x, y, z) — (—x, —y, —z), the electric field transforms as a polar vector, while

the magnetic field transforms as an axial vector{ E — —E, B — B}". This may foster confusion, as some
passages in B.DOMIR and HAMMOND [1996] demonstrate.
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Note 20. But thinking of the magnetic flux as goitigough S is misleading. Hence the
expression used here, flexmbraced by surface’®

10. Faraday and Ampere

We are now ready to address Faraday’s famous experiment: variations of the flux em-
braced by a conducting loop create an electromotive force. A mathematical statement
meant to express this law with maximal economy will therefore establish a link between
the integral ofb over a fixed surfacd and the integral oé over its boundargysS. Here

it is: one has

8t/b+/ e=0 VYSely, (10.1)
S as

i.e., for any straight 2-chain, and in particular, any inner oriented susfaksembers in

(10.1) have dimension: webers for the first integral, and volts (i.e., Wh/s) for the second
one.Inner orientation ofdS (and hence, of itself) makes lots of physical sense: it
corresponds to selecting one of the two ways a galvanometer can be inserted in the
circuit idealized byd S. Applying the Stokes theorem — or should we say, the definition

of d — we find the local, infinitesimal version of the global, integral law (10.1), as this:

b +de=0, (10.2)

the metric- and orientation-free version®B + rotE= 0.
As for Ampere’s theorem, the expression is similar, except that twisted forms are now
involved:

—a[/d+/ h:/j VX eCo, (10.3)
X X X

i.e., for any twisted 2-chain, and in particular, any outer oriented suadés infini-
tesimal form is

—dd+dh =], (10.4)

again the purely affine version of9,D + rotH = J. Since; is a twisted form,
d must be one, and as well>! which suggests that its proxy H will not behave
like E under a change of the background Euclidean structure. Indeed, ort¢ has
sign(det(L))(L4L)~H in the now familiar notation. In non-oriented space with metric,
the proxy H would be an axial vector field, on a par with B. Vector proxies D and J
would be polar, like E.

At this stage, we may announce the strategy that will lead to a discretized form of
(10.1) and (10.3): Instead of requesting their validitydtirchainsS or X', we shall be

30This exposes the relative inadequacy of the “across vs. through” concept, notions which roughly match
those of straight 1-form and twisted 2-formKBNIN [1961]). Actually, between lines and surfaces on the
one hand, and inner or outer orientation on the other handoitisdifferent “vectorial” entities one may have

to deal with, and the vocabulary may not be rich enough to cope.

31A magnetomotive forcen.m.f.), therefore, is a real value (in ampéres) attached twuger oriented line

y, namely the integrafy h.
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content with enforcing them forfnite family of chains, those generated by the 2-cells
of an appropriate finite element mesh, hence a system of differential equations. But first,
we must deal with the constitutive laws linkildgandd to i ande.

11. The Hodge operator

For it seems a serious difficulty exists there: Sicandi, or d ande, are objects
of different types, simple proportionality relations between them, suéh=ag.z and

d = ge, won't make sense jf ande are mere scalar factors. To save this way of writing,
as it is of course desirable, we must properly redefirende asoperators of type 1-
FORM — 2-FORM, one of the forms twisted, the other one straight.

So let’s try to see what it takes to go franto d. It consists in being able to determine
/5 d over any given outer oriented surfagg knowing two things: the fornz on the
one hand, i.e., the valuﬁce for any inner oriented curve, and the relation D= ¢E
between the proxies, on the other hand. (Note ¢hzan depend on position. We shall
assume it's piecewise smooth.) How can that be done?

The answer is almost obvious ¥ is a smalt? piece of plane. Build, then, a small
segment meetingX orthogonally at a point whereg is smooth. Associate withthe
vector¢ of same length that points along the crossing direction thratighnd let this
vector also serve to inner-orientLet X stand for the vectorial area &f, and take note
thatf/ aredY) = ¢/lengthc). Now dot-multiply this equality by D on the leftE on
the right. The resultis

_aredy)
/Ed_g(x)ilengtf(c) Ce, (11.1)

which does answer the question.

How to lift the restrictive hypothesis thal be small? Riemann sums, again, are the
key. Divide X into small patches, as above (Fig. 6.1, right), equip each of them with a
small orthogonal segment, meeting it atvr, and such thafr = T. Next, definefz d
as the limit of the Riemann suﬁ?sZT e(xt) ch e. One may then define thaperatore,

with reuse of the symbol, as the map- d just constructed, fronF! to F2. A similar
definition holds foru, of type 71 — F2, and for the operators 1 and .~ going in
the other direction. (Later, we shall substitutéor ;. —1.)

REMARK 11.1. We leave aside the anisotropic case, with a (symmetric) tefisior

stead of the scalar. In short: Among the variant “bold” metrics, there is one in which

¢ reduces to unity. Then apply what precedes, with “orthogonality”, “length”, and
“area” understood in the sense of this modified metric. (The latter may depend on po-
sition, however, so this stands a bit outside our present framework. Details are given in
BossavIT[2001b].)

3270 make up for the lack of rigor which this word betrays, one should treaid > as “p-vectors” (p =1
and 2 respectively), which are the infinitesimal avatarg-chains. See BssavIT[1998b] for this approach.
33Singular points ok, at whiche(xt) is not well defined, can always be avoided in such a process, unless
X coincides with a surface of singularities, like a material interface. But then, rhoadittle, and extend/
to such surfaces by continuity.
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REMARK 11.2. When the scalar or u equals 1, what has just been defined is the
classicalHodge operatorof differential geometry (BRKE [1985], SCHUTZ [1980]),
usually denoted by, which mapsp-forms, straight or twisted, t¢: — p)-forms of the
other kind, withxx = +1, depending om and p. In dimensionn = 3, it's a simple
exercise to show that the above construction then reducelite- 2, which prompts
the following definition:x % = 3¢, «1u = 2, x2u =1 i1, 3p = %9@. Note thatks = 1
forall p in 3D.

The metric structure has played an essential role in this definition: areas, lengths, and
orthogonality depend on it. So we now distinguish, in the Maxwell equations, the two
metric-free main ones,

0;b+de =0, (10.2)
—9,d +dh = j, (10.4)

and the metric-dependent constitutive laws

b= ph, (11.2)
d = ee, (11.3)

where . ande are operators of the kind just described. To the extent that no metric
element is present in these equations, except for the openatarsl ¢, from which

one can show the metric can be inferred@AvIT[2001b]), one may even adopt the
radical point of view (D CARLO and TiERO [1991]) thatu ande encodethe metric
information.

12. The Maxwell equations: Discussion

With initial conditions one and# at timet = 0, and conditions about the “energy” of
the fields to which we soon return, the above system makes a well-posed problem. Yet
a few loose ends must be tied.

First, recall thatj is supposed to be known. But reintroducing Ohm'’s law at this stage
would be no problem: replagein (10.4) by j* + e, wherej* is a given twisted 2-form
(the source current), anda third Hodge-like operator on the modeloénd .

12.1. Boundary conditions, transmission conditions

Second, boundary conditions, if any. Leaving aside artificial “absorbing” boundary con-
ditions (MITTRA, RAMAHI, KHEBIR, GORDON and Kouki [1989]), not addressed
here, there are essentially four basic ones, as follows.

Let’s begin with “electric walls”, i.e., boundaries of perfect conductors, inside which
E =0, hence the standardx E = 0 on the boundary. In terms of the foremit means
that [ e = 0 for all curvesc contained in such a surface. This motivates the following
definition, stated in dimensionfor generality:S being an(n — 1)-manifold, callC, (S)
the space op-chains whose components are all supportes; ithen,



SECTION 12 Rewriting the Maxwell Equations 141

DEFINITION 12.1. The tracest of the p-form w is the restriction ofv to C, (5), i.e.,
the mapr — | w restricted top-chains based on components which are containéd in

Of course this requirep < n. So the boundary condition at an electric wéil is
tsee = 0, which we shall rather write, for the sake of clarity, as=<t0 on §¢”. Sym-
metrically, the condition/t = 0 on S” corresponds to a magnetic walt.

The Stokes theorem shows that d, and t, commute =dtdw for any w of degree
not higher tham — 2. Therefored = 0 implies t& = 0, henced, (tb) = 0 by (10.2),
that is, b = 0 if one starts from null fields at time 0. For the physical interpretation of
this, observe thabt= 0 on §” means/ b = 0 for any surface piecé belonging tos?,
or else, in terms of the vector proxy,» - B = 0, which impliesn - B =0 on all §%:
a “no-flux” surface, called a “magnetic barrier” by some. We just proved anew, in the
present language, that electric walls are impervious to magnetic flux. One will see in the
same manner thaf = 0 corresponds to “insulating boundaries” = 0) and # = 0to
“dielectric barriers” - D = 0). If j is given with tj = 0 at the boundary of the domain
of interest (which is most often the case) thén=t0 on " implies t/ = 0 there. (In
eddy current problems, wheikis neglected, buj is only partially given, & =0 on S
implies tj =0, i.e., no current through the surface.)

Conditions b = 0 or & = 0 being thus weaker thaa + 0 or t = 0, one may well
want to enforce them independently. Many combinations are thereby possible. As a
rule (but there are exceptions in non-trivial topologies, ses®avIT [2000]), well-
posedness in a domaid bounded by surfac# obtains if S can be subdivided a$ =
S€U ShU St with te = 0 on §¢ (electric wall), : = 0 on S* (magnetic wall), andoth
conditions t¢ = 0 and tck = 0 on $¢*, which corresponds tdt= 0 and # = 0 taken
together (boundary which is both a magnetic and a dielectric barrier, or, in the case of
eddy-current problems, an insulating interface).

REMARK 12.1. It may come as a surprise that the standard Dirichlet/Neumann oppo-
sition is not relevant here. It's because a Neumann condition is just a Dirichlet condi-
tion composed with the Hodge and the trace operatocs@wvIT [2001c]): Take for
instance the standardx ;. ~1rot E = 0, which holds on magnetic walls in the E formu-
lation. This is (up to an integration with respect to time) the proxy fornhet 0, i.e.,

of the Dirichlet conditionn x H = 0. In short, Neumann conditions enare Dirich-

let conditions oz, and the other way round. They only become relevant when one
eliminates eithee or i in order to formulate the problem in terms of the other field ex-
clusively, thus breaking the symmetry inherent in Maxwell's equations (which we have
no intention to do unless forced to!).

Third point, what about the apparently missing equations, divQ and divB=0
in their classical form (Q is the density of electric charge)? These are not equations,
actually, but relations implied by the Maxwell equations, or at best, constraints that
initial conditions should satisfy, as we now show.

Let’s first defingg, the electric charge, of which the above Q is the proxy scalar field.
Since j accounts for its flow, charge conservation impligg,, g + favj =0 for all
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volumesV, an integral law the infinitesimal form of which is
dq +dj =0. (12.1)

Suppose botly and j were null before time = 0. Later, theng(¢) = —fé(dj)(s)ds.
Note thatg, like dj, is atwisted3-form, as should be the case for something that ac-
counts for the density of a substance. (Twisted forms are often called “densities”, by the
way, as in BJRKE [1985].)

Now, if one accepts the physical premise that no electromagnetic field exists until
its sources (charges and their flow, ig.and j) depart from zero, all fields are null
atr =0, and in particular, after (10.4)(t) = d(0) + fé[(dh)(s) — j(s)]lds, hence,
by using (8.2), di(r) = —fé(dj)(s)ds = ¢ (1), at all times, hence the derived relation
dd = gq. As for b, the same computation shows that=d 0.

So-called “transmission conditions”, classicgllyx E] =0, [n - B] = 0, etc., at ma-
terial interfaces, can be evoked at this juncture, for these too are not equations, in the
sense of additional constraints that the unknowis etc., would have to satisfy. They
are satisfied from the outset, being a consequence of the very definition of differential
forms (cf. Fig. 7.1).

12.2. Wedge product, energy

Fourth point, the notion of energy. The physical significance of such integrgi8 asl
or [ J-E is well known, and it's easy to show, using the relations displayed on Fig. 8.1,
that both are metric-independent. So they should be expressible in non-metric terms.
This is so, thanks to the notion wfedge produgtan operation which creates p+ ¢)-
form w A n (straight when both factors are of the same kind, twisted otherwise) out of
a p-form w and ag-form n. We shall only describe this in detail in the case of a 2-form
b and a 1-formi, respectively straight and twisted.

The result, a twisted 3-forrh A £, is known if integralsf;, b A h are known for all
volumesV. In quite the same way as with the Hodge map, the thing is easy When
is a small parallelepiped, as shown in Fig. 12.1. Observe that=if?B and/ = H,
then [, b A h = B - Hvol(V), if one follows the recipe of Fig. 12.1, confirming the
soundness of the latter. The extension to finite-size volumes is made by constructing
Riemann sums, as usual.

REMARK 12.2. Starting from the equalitfyb A »' = [ B - H', settingb = uh yields

Juh Al =[uH-H = [puH -H= [uh’ A h, asymmetryproperty of the Hodge
operator to which we didn’t pay attention till now. Note also tfiath Ah = [ wlH2 >

0, unless: = 0. Integrals such af uh Ah’, or [ vb Ab/, etc., can thus be understood as
scalar product®on spaces of forms, which can thereby be turned (after due completion)
into Hilbert spaces. The corresponding norms, i.e., the square rogtgbfA h, of

J vb A b, and other similar constructs eror d, will be denoted bya|,,, 5], etc.

Other possible wedge products dke A w = %(pw) (whatever the degree @é),
u A Tv=2u xv), 2u A v =3u-v). (If none or both factors are straight forms,
the product is straight.) It's an instructive exercise to work out the exterior derivative of

1
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w 1 (w)

@b - @ = Y(0)
V)\_\ ) S(u, v) 9 @

g i) Sv, w) S(u, w)

]

FiG. 12.1. There are three ways, as shown, to see volni®iilt onu, v, w, as the extrusion of a surfade
along a line segment. A natural definition of the integral df A h isthenfy, b Ah = (fS(u.U) b)(fy(w) h) +

(fs(v w) b)([y(u) h) + (fs(u w) b)(fy(v) h). Note the simultaneous inner and outer orientation$§ ahdy,
which should match (if the outer orientation @fis +, as assumed), but are otherwise arbitrary.

such products, using the Stokes theorem, and to look for the equivalents of the standard
integration by parts formulas, such as

/(H-rotE—ErotH):/ n-(ExH),
2

902
/ (D~gradl1/+l1/divD)=/ Yn-D.
2 30
They are, respectively,

/(de/\h—e/\dh):/ enh, (12.2)
2 082

/(dederdd): vd. (12.3)
2

a2

Now, let us consider a physically admissible field, that is, a quartet of forins, d,
which may or may not satisfy Maxwell's equations when taken together, but are each of
the right degree and kind in this respect.

DEFINITION 12.2. The following quantities:

1 1 1 1
E/,u_lb/\b, E/uh/\h, 5/86/\6’ E/a_ld/\d, (12.4)

are called, respectivelynagnetic energymagnetic coenerglectric energyandelec-
tric coenergyof the field. The integral j A e is thepowerreleased by the field.

The latter definition, easily derived from the expression of the Lorentz force, is a
statement about field—matter energy exchanges from which the use of the word “energy
could rigorously be justified, although we shall not attempt that here ©@ERBvIT
[1990a]). The definition entails the following relations:

1 1
—/u‘leb+—/uhAh>/bAh,
2 2

1 _ld/\d+1 ne> | dna
5 € 5 cene>= e,
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with equality if and only ifb = uh andd = ee. One may use this as a way to set up the
constitutive laws.

REMARK 12.3. The well-posedness evoked earlier holds if one restricts the search
to fields with finite energy. Otherwise, of course, nonzero solutions to (10.2), (10.4),
(11.2), (11.3) withj = 0 do exist (such as, for instance, plane waves).

The integrals in (12.4) concern the whole space, or at least, the whole region of ex-
istence of the field. One may wish to integrate on some dow2agmly, and to account
for the energy balance. This is again an easy exercise:

PrROPOSITION 12.1 (Poynting’s theorem).If the field {b, i, e,d} does satisfy the
Maxwell equation$10.2), (10.4), (11.2), (11.3bne has

1 1
d,[—/u_lb/\b—}——/ee/\e]—i—/ e/\h:—/j/\e
2J)o 2/)q 202 2

for any fixed domai2.

PrROOF “Wedge multiply” (10.2) and (10.4), from the right, kyand —#k, add, use
(12.2) and Stokes. U

As one sees, all equalities and inequalities on which a variational approach to
Maxwell’s theory can be based do have their counterparts with differential forms. We
shall not follow this thread any further, since what comes ahead is not essentially based
on variational methods. Let's rather close this section with a quick review of various
differential forms in Maxwell’'s theory and how they relate.

12.3. The “Maxwell house”

To the field quartet and the source péjr, j}, one may add thelectric potentialyr

and thevector potentiak, a straight 0-form and 1-form respectively, such that da

ande = —d;a + dyr. Also, themagnetic potentiap (twisted 0-form) and the twisted
1-form r such thath = t + dp, whose proxy is the T of Carpenter’s “T2* method
(CARPENTER[1977]). None of them is as fundamental as those in (10.2), (10.4), but
each can be a useful auxiliary at times. Thagnetic currenk andmagnetic chargen

can be added to the list for the sake of symmetry (Fig. 12.2), although they don't seem
to represent any real thing (EDHABER and TROWER[1990]).

For easier reference, Fig. 12.2 displays all these entities as an organized whole, each
one “lodged” according to its degree and nature as a differential form. Since primitives
in time may have to be considered, we can group the differential forms of electromag-
netism in four similar categories, shown as vertical pillars on the figure. Each pillar
symbolizes the structure made by spaces of forms of all degrees, linked together by the
d operator. Straight forms are on the left and twisted forms on the right. Differentiation
or integration with respect to time links each pair of pillars (the front one and the rear
one) forming the sides of the structure. Horizontal beams symbolize constitutive laws.
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FIG. 12.2. Structures underlying the Maxwell system of equations. For more emphasis on their symmetry,

Faraday’s law is here taken to 3gh + de = —k, with k = 0. (The straight 2-formk would stand for the

flow of magnetic charge, if such a thing existed. Then, one would haved, where the straight 3-form
represents magnetic charge, linked with its current by the conservatiohtaw dk = 0.)

As one can see, each object has its own room in the building:2-form, at level
2 of the “straight” side, the 1-forma such thath = da just above it, etc. Occasional
asymmetries (e.g., the necessity to time-integtabefore lodging it, the bizarre lay-
out of Ohm’s law ...) point to waknesses which are less those of the diagram than
those of the received nomenclature or (more ominously) to some hitch about Ohm’s
law (BossaviT [1996]). Relations mentioned up to now can be directly read off from
the diagram, up to sporadic sign inversions. An equation suchbas de = —k, for
instance, is obtained by gathering at the locatioi ttie contributions of all adjacent
niches, including’s, in the direction of the arrows. Note how the rules of Fig. 9.2, about
which scalar- or vector-proxies must be twisted or straight, are in force.

But the most important thing is probably the neat separation, in the diagram, between
“vertical” relations, of purely affine nature, and “horizontal” ones, which depend on
metric. If this was not drawing too much on the metaphor, one could say that a change of
metric, as encoded andu (due for instance to a change in their local values, because
of a temperature modification or whatever) would shake the building horizontally but
leave the vertical panels unscathed.

This suggests a method fdiscretizingthe Maxwell equations: The orderly structure
of Fig. 12.1 should be preserved, if at all possible, in numerical simulations. Hence in
particular the search for finite elememtkich fit differential formswhich will be among
our concerns in the sequel.
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Discretizing

It's a good thing to keep in mind a representative of the family of problems one wishes
to model. Here, we shall have wave-propagation problems in view, but heuristic consid-
erations will be based on the much simpler case of static fields. The following example
can illustrate both things, depending on whether the exciting current, source of the field,
is transient or permanent, and lends itself to other useful variations.

13. A model problem

In a closed cavity with metallic walls (Fig. 13.1), which has been free from any elec-
tromagnetic activity till timer = 0, suppose a flow of electric charge is created in an
enclosed antenna after this instant, by some unspecified agency. An electromagnetic
field then develops, propagating at the speed of light towards the walls which, as soon
as they are reached by the wavefront, begin to act as secondary antennas. Dielectric or
magnetizable bodies inside the cavity, too, may scatter waves. Hence a complex evolu-
tion, which one may imagine simulating by numerical means. (How else?)

For the sake of generality, let's assume a symmetry plane, and a symmetrically dis-
tributed current. (In that case, the plane acts as a magnetic wall.) The computation will
thus be restricted to a spatial domdincoinciding with one half of the cavity, on the
left of the symmetry plane, say. Callinf and X", as Fig. 13.1 shows, the two parts

Se

Zh

A\xfﬂ
p N& )N

FiG. 13.1. Situation and notation (dimension 3). Regioris the left half of the cavity. Its boundary has

a partS¢ in the conductive wall and a paﬂh in the symmetry plane. Regia, the left “antenna”, is the

support of the given current density J (mirrored on the right), for which some generator, not represented and
not included in the modelling, is responsible.

147
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of its surface, an electric wall and a magnetic wall respectively, we write the relevant
equations inD as

alb—l—de:O, _8td+dh=]a
d=zce, b= ph, (13.1)
te=0 ons®, th=0 onXx".

The coefficients and i which generate their Hodge namesakes are real, constant in
time, but not necessarily equal to their vacuum valggeand o, and may therefore
depend orx. (They could even be tensors, as observed earlier.) The current dgnsity

is given, and assumed to satisfyr) = 0 for r < 0. All fields, besideg, are supposed

to be null beforer = 0, hence initial conditiong(0) = 0 and%(0) = 0. Notice that

d;j = 0 isnot assumed: some electric charge may accumulate at places in the antenna,
in accordance with the charge-conservation equation (12.1).

Proving this problem well-poséfiis not our concern. Let’s just recall that it is so,
under reasonable conditions gnwhen all fieldse and/ are constrained to have finite
energy.

Two further examples will be useful. Suppogéias reached a steady value for so
long that all fields are now time-independent. The magnetic part of the field, i.e., the
pair {b, h}, can then be obtained by solving, in doman

db =0, dh = j,
b= uh, (13.2)
th=0 onSe, th=0 onx".

This is also a well-posed problem (magnetostatics), proviged @. As for the electric
part of the field, which has no reason to be zero since the asymptotic charge density
q=¢q(c0)=— f0°° dj (r) dr does not vanish, as a rule, one will find it by solving

dd =q, de = 0,
d=ce, (13.3)
te=0 onS’, ti=0 onXx”"

(electrostatics). The easy task of justifying the boundary conditions in (13.2) and (13.3)
is left to the reader. One should recognize in (13.3), thinly veiled behind the present
notation, the most canonical example there is of elliptic boundary-value préBlem.

Finally, let’s give an example of eddy-current problem in harmonic regime, assuming
a conductivitys > 0in D ando =0 in A. This time, all fields are of the forma(z, x) =

3its physical relevance has been challenged (lay 84 and SuyTH [1977]), on the grounds that assuming

a given current density (which is routinely done in such problems) neglects the reaction of the antenna to
its own radiated field. This is of course true — and there are other simplifications that one might discuss —
but misses the point of whamodellingis about. See MAN [1977] and BdssAvIT [1998b, p. 153], for a
discussion of this issue.

3SMere changes of symbols would yield the stationary heat equation, the equation of steady flow in porous
media, etc. Notice in particular how the steady current equation, with Ohm’s law, can be writtgn=23, d

j =oe, de =0, plus boundary conditions (non-homogeneous, to include source terms).
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Reexp(iwt) U(x)], with u complex-valuedgMALL CAPITALS will denote such fields).

The given current inA, now denoted?® (s for “source”), is solenoidal, displacement
currents are neglected, and Ohm’s law: ¢ E + J° is in force, wheres is of course
understood as a Hodge-like operator, but positive semi-definite only. The problem is
then, with the same boundary conditions as above,

dH=0cE+ 7, H =B, dE = —iwB,
andB andH can be eliminated, hence a second-order equation in termms of

iwoE+dvdE=—iwl, (13.4)

with boundary conditionset= 0 on $¢ and v de = 0 on X",

Nothing forbidso andu there to be complex-valued too. (Let’s however request them
to have Hermitian symmetry.) A complexcan sometimes serve as a crude but effective
way to model ferromagnetic hysteresis. And since theaezn be replaced by + i we,
we are not committed to drop out displacement currents, after all. Hence, (13.4) can
well be construed as the general version of the Maxwell equations in harmonic regime,
at angular frequency, with dissipative materials possibly present. In particular, (13.4)
can serve as a model for the “microwave oven” problem. Note that what we have here is
a Fredholm equation: Omitting the excitation tesfrand replacings by iws gives the
“resonant cavity problem” irD, namely, to find frequencies at which d de = w?cE
has a nonzero solution

14. Primal mesh

Let’s define what we shall call a “cellular paving”. This is hardly different from a finite-
element mesh, just a bit more general, but we need to be more fussy than is usual about
some details. We pretend to worksindimensional Euclidean spadg,, but of course
n = 3is the case in point. The cells we use here are those introduced &(ha. 2.1),
with the important caveat that they are all “open” cells, in the sense of Section 2, i.e., do
not include their boundaries. (The only exception is foe 0, nodes, which are both
open and closed.) The corresponding closed cell will be denoted with an overbar (also
used for the topological closure).

This being said, &ellular pavingof some regionR of space is a finite set of open
p-cells such that (1) two distinct cells never intersect, (2) the union of all cells is
(3) if the closures of two cells andc¢’ meet, their intersection is the closure of some
(unique) celle”. It may well happen that” is ¢, or ¢’. In such a case, e.g.,dfN ¢ =¢,
we say that is a face of¢’. For instance, on Fig. 14.1, leftz is a face ofc4. If c is a
face ofc’ which itself is a face ot”, thenc is a face ofc”. Cells in ambient dimension
3 or lower will be calledhodes, edges, face@mndvolumeswith symbolsn, e, f, v to
match.

We'll say we have eclosedpaving if R is closed. (Fig. 14.1, left, gives a two-
dimensional example, wher® = D.) But it need not be so. Closed pavings are not

36Topologically simplesmootheells, therefore. But the latter condition is not strict and we shall relax it to
piecewisesmooth, in the sequel, without special warning.
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FIG. 14.1. Left: A few p-cells, contributing to a closed cellular paving bf. (This should be imagined

in dimension 3.) Right: A culled paving, now “closed relative t§. This is done in anticipation of the

modelling we have in mind, in which cells & would carry null degrees of freedom, so they won't be
missed.

[9%)

necessarily what is needed in practice, as one may rather wish to discard some cells in
order to deal with boundary conditions. Hence the relevance of the following notion of
“relative closedness”C being a closed part ok, we shall say that a paving @t is

closed modulaC if it can be obtained by removing, from some closed paving, all the
cells which map intaC. The case we shall actually need, of a pavingRo& D — §¢

which is closed modul§®, is displayed on the right of Fig. 14.1. Informally said, “pave

D first, then remove all cells from the electric boundary”.

Each cell has its own inner orientation. These orientations are arbitrary and indepen-
dent. In three dimensions, we shall denoteMy&, F, V, the sets of orienteg-cells
of the paving, and by, E, F, V the number of cells in each of these sets. (The general
notation, rarely required, will b&,, for the set ofp-cells andS,, for the number of such
cells.)

Two cellso andc, of respective dimensiors and p + 1, are assigned ancidence
number equal to+1 if o is a face ofc, and to 0 otherwise. As for the sign, recall
that each cell orients its own boundary (Section 4), so this orientation may or may not
coincide with the one attributed to. If orientations match, the sign is, else it's—.

Fig. 14.2 illustrates this point. (Also refer back to Fig. 4.1.)

Collecting these numbers in arrays, we obtain rectangular matacés D, called
incidence matrice®f the tessellation. For instance (Fig. 14.2), the incidence number
for edgee and facetf is denoted?ef, and makes one entry in matii¥ whose rows and
columns are indexed over facets and edges, respectively. The@hafyG is —1 in the
case displayed, becausepositively oriented, is at the start of edgécf. Fig. 3.4(c)).

And so on. Symbol$s, R, D are of course intentionally reminiscent of grad, rot, div,
but we still have a long way to go to fully understand the connection. Yet, one thing
should be conspicuous already: contrary to grad, rot, div, the incidence matrices are
metric-independengntities, so the analogy cannot be complete. Matrg@eR, D are

more akin to the (metric-independent) operator d from this viewpoint, and the generic
symbold, indexed by the dimensiop if needed, will make cleaner notation in spatial
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FIG. 14.2. Sides: Individual oriented cells. Middle: The same, plus a 3-cell, as part of a paving, showing
respective orientations. Those ofand f match, those off ande, or of ¢ andn, don't. SoG? = —1,

RS =-1, andD] =1.

DY{ =_D1)g v 0 Df :Dg
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FIG. 14.3. RelatiorDR = 0, and how it doesn’t depend on the cells’ individual orientations: In both cases,

one hasD{R‘}- + DR =0.

dimensions higher than 3, withhy = G, d1 = R, d2 = D. The mnemonic value d&, R,
D, however, justifies keeping them in use.

Just as rot grad= 0 and divo rot = 0, one haskG = 0 andDR = 0. Indeed, for an
edgee and a volumey, the {v, e}-entry of DR is Zfef D{R" . Nonzero terms occur,
in this sum over facets, only for those which both contaand are a face aof, which
happens only i belongs tov. In that case, there are exactly two facg¢tand g of
v meeting along (Fig. 14.3), and hence two nonzero terms. As Fig. 14.3 shows, they
have opposite signs, whatever the orientations of the individual cells, hence the result,
DR = 0. By a similar argumenfG = 0, and more generallg,1d, = 0.

REMARK 14.1. The answer to the natural question, “then, is the kernkBl @fual to

the range of5?”, is “yes” here, becausb — S¢ has simple topology. (See the remark
at the end of Section 4 about homology. This time, going further would lead us into
cohomology.) For the same reason, @y = cod(R). This will be important below.

Itis no accident if this proof ofl o d = 0 evokes the one abobib 9 = 0 in Section 4,
and the caption of Fig. 4.1. The same basic observation, “the boundary of a boundary is
zero” (TAYLOR and WHEELER [1992], KHEYFETSand WHEELER [1986]), underlies
all proofs of this kind. In fact, the above incidence matrices can be used to find the
boundaries, chainwise, of each cell. For instantdyeing understood as the 2-chain
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based on facef with weight 1, one ha8f =), ¢ R‘}e. Soif § is the straight 2-chain
> w/ f with weightsw/ (which we shall call grimal 2-chain or “m-surface”, using
m as a mnemonic for the underlying mesh), its bountfaig/the 1-chain

as:Z Z RS w/

e feF

More generally, let's writé,,, boldface3® for the transpose of the above matdy_1.
Then, ifc =3, s w’c is ap-chain, its boundary isc = 3 {s € Sp-1: (3,W)’s},
wherew stands for the vector of weights. Thusis to 8 whatd is to d. Moreover, the
duality between d andlis matched by a similar duality between their finite-dimensional
counterpartsl anda.

15. Dual mesh

A dual mesh, with respect ta, is also a cellular paving, though not of the same region
exactly, and withouterorientation of cells. Let's explain.

To eachp-cell ¢ of the primal mesh, we assign én— p)-cell, called thedual of ¢ and
denoted:, which meets: at a single poink.. (Ways to build¢c will soon be indicated.)
Hence a one-to-one correspondence between cells of complementary dimensions. Thus,
for instance, facef is pierced by the dual edgg (a line), nodex is inside the dual
volumerz, and so forth. Since the tangent spaces. @b ¢ and¢ are complementary, the
inner orientation ot provides an outer orientation fér(Fig. 15.1). Incidence matrices
G, R, D can then be defined, as above, the sign of each nonzero entry depending on
whether outer orientations match or not.

Moreover, it is required that, wheanis a face ofc’, the dual¢’ be a face of, and
the other way round. This has two consequences. First, we don't really need new names
for the dual incidence matrices. Indeed, consider for instance €dgd facetf, and
supposeR‘}. =1, i.e.,eis aface off and their orientations match: Then the dual edge

f is a face of the dual facet whose outer orientations match, too. So what we would
otherwise denoté-éf is equal thjc. Same equality iR% = —1, and same reasoning for

f

Fic. 15.1. Inner orientations of edgeand facetf, respecti\fely, give crossing direction throughand
gyratory sense aroungl.

37More accurately, its boundarglative to X"
38Boldface, from now on, connotes mesh-related things, such as DoF arrays, etc.
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FIG. 15.2. A dual paving, overlaid on the primal one.

other kinds of cells, from which we conclude that the would-be dual incidence matrices
G, R, D are just the transpos&¥, R?, G’ of the primal ones.

Second consequence, there is no gap between dual cells, which thus form a cellular
paving of a connected regioﬁ, the interior D of which is nearlyD, but not quite
(Fig. 15.2). A part of its boundary is paved by dual cells: We nan$&,ibwing to its
kinship with ¢ (not so obvious on our coarse drawing! but the finer the mesh, the closer
S¢ and S¢ will get). The other part is denotel”. So the cellular paving we now have
is closed modulcE", whereas the primal one was closed modsflo

Given the meshw, all its conceivable duals have the saomnbinatorialstructure
(the same incidence matrices), but can differ as regatsic, which leaves much lee-
way to construct dual meshes. Two approaches are noteworthy, which lead to the “bary-
centric dual” and the “Voronoi—Delaunay dual”. We shall present them as special cases
of two slightly more general procedures, the “star construction” and the “orthogonal
construction” of meshes in duality. For this we shall consider gallyhedralmeshes
(those with polyhedral 3-cells), which is not overly restrictive in practice.

The orthogonal construction consists in having each dual cell orthogonal to its pri-
mal partner. (Cf. Figs. 15.3 and 15.5, left.) A particular case is the Voronoi—Delaunay
tessellation (DRICHLET [1850]), under the condition that dual nodes should be inside
primal volumes. Alas, as Fig. 15.4 shows, orthogonality can be impossible to enforce,
if the primal mesh is imposed. If one starts from a simplicial primal for which all cir-
cumscribed spheres have their center inside the tetrahedron, and all facets are acute
triangles, all goes well. (One then takes these circumcenters as dual nodes.) But this
property, desirable on many accounts, is not so easily obtained, and certainly not war-
ranted by common mesh generators.

Hence the usefulness of the star construction, more general, because it applies to any
primal mesh with star-shaped cells. A parbf A, is star-shapedf it contains a point
a, that we shall call @enter such that the whole segmeiat, [c] belongs toA whenx
belongs toA. Now, pick such a center in each primal cell (the center of a primal node
is itself), and join it to centers of all faces of the cell. This waiynplicial subcells
are obtained (tetrahedra and their faces, in 3D). One gets the dual mesh by rearranging
them, as follows: for each primal cel] build its dual by putting together allsubcells,
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FIG. 15.3. Left: Orthogonal dual mesh. (Same graphic conventions as in Fig. 15.2, slightly simplified.) Right:
Star construction of a dual mesh (close enough, here, to a barycentric mesh, but not quite the same). Notice
the isolated dual edge, and the arbitrariness in shaping dual cells b&fbnd

FIG. 15.4. Left: How hopeless the orthogonal construction can become, even with a fairly regular primal
mesh. Right: Likely the simplest example of a 2D mesh without any orthogonal dual.

= é

FiG. 15.5. Left: A facet f and its dual edg¢ in the orthogonal constructior @nd?’ are the dual nodes

which lie inside the volumes andv’ just above and just belov). From ¢, all boundary facets of can

directly be seen at right angle, but we don't require marés neitherv’s barycenter nor the center of its

circumscribed sphere, if there is such a sphere. Right: A dual facet and a dual edge, in the case of a simplicial
primal mesh and of its barycentric dual. Observe the orientations.

k < n — p, which have one of their vertices a center, and other vertices at centers
of cells incident orc. Figs. 15.3 and 15.5, right, give the idea. If all primal cells are
simplices to start with, taking the barycenters of their faces as centers will give the
barycentricdual mesh evoked a bit earlier.
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REMARK 15.1. The recipe is imprecise about cells dual to thosE’bfwhose shape
outsideD can be as one fancies (provided the requirements about duality are satisfied).
Nothing there to worry about: Such choices are just as arbitrary as the selection of
the centers of cells. It’s all part of the unavoidable approximation error, which can be
reduced at will by refinemeri®

REMARK 15.2. If, as suggested above (“palefirst ..."), the primal mesh haseen
obtained by culling from a closed one, subcells built from the latter form a refinement
of boththe primal mesh and the dual mesh. The existence of this common “underlying
simplicial complex” will be an asset when designing finite elements.

16. A discretization kit

We are ready, now, to apply the afore-mentioned strategy: Satisfy the balance equations
(10.1) and (10.3) for a selectéidite family of surfaces.

Let's first adopt a finite, approximate representation of the fields. Consider
instance. As a 2-form, it is meant to be integrated over inner oriented surfaces. So one
may consider the integralﬁf b, denotedby, for all facetsf, as a kind of “sampling”
of b, and take the array of such “degrees of freedom” (D@F)= b¢: f € F}, indexed
over primal facets, as a finite representatiorb o his does not tell us about tivalue
of the field at any given point, of course. But is that the objective? Indeed, all we know
about a field is what we can measure, and we don’'t measure point values. These are
abstractions. What we do measure is, indirectly,flineof 5, embraced by the loop of
a small enough magnetic probe, by reading off the induced e.m.f. The above sampling
thus consists in having each facet of the mesh play the role of such a probe, and the
smaller the facets, the better we know the field. Conceivably, the mesh may be made so
fine that theb ¢’s aresufficient informatiorabout the field, in practice. (Anyway, we'll
soon see how to compute an approximation of the flux for any surface, knowing the
bs’s, hence an approximation &f) So one may be content with a method that would
yield the four meaningful arrays of degrees of freedom, listing

e theedge em.f'={e,: ec &},

o the facet fluxesh = {bs: f e F},

¢ the dual-edge m.m.f'$y = {h;: f € F},

¢ and the dual-facet displacement curredts; {d.: ¢ € £},
all that from a similar sampling, across dual facets, of the given cufrescoded in
the DoF array = {j.: e € £}.

In this respect, considering the integral form (10.1) and (10.3) of the basic equations
will prove much easier than dealing with so-called “weak forms” of the infinitesimal
equations (10.2) and (10.4). In fact, this simple shift of emphasis (which is the gist of
Weiland’s “finite integration theory”, WILAND [1992], and of Tonti's “cell method”,
ToNTI [2001], MATTIUSSI [2000]) will so to speakorce on usthe right and unique
discretization, as follows.

39A refinemenbf a paving is another paving of the same region, which restricts to a proper cellular paving
of each original cell.
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16.1. Network equations, discrete Hodge operator

Suppose the chaifi in (10.1) is the simplest possible in the present context, that is, a
singleprimal facet,f. The integral of alongdf is the sum of its integrals along edges
that maked f, with proper signs, which are precisely the signs of the incidence numbers,
by their very definition. Therefore, Eq. (10.1) appliedftyields

abs+) R%e =0.
ec€
There is one equation like this for each facet of the primal mesh, that is — thanks for hav-
ing discarded facets i, for which the flux is known to be 0 — one for each genuinely
unknown facet-flux ob. Taken together, in matrix form,

3:b + Re=0, (16.1a)

they form the first group of ounetworkdifferentialequations
The same reasoning about each dual facéhe simplest possible outer-oriented
surface that” in (10.3) can be) yields

_atde + Z R{}“hf Zje,
feF

forall ein &, i.e., in matrix form,
-3, d+Rh=j, (16.1b)

the second group of network equations.
To complete this system, we need discrete counterpadisti andd = ee, i.e.,
network constitutive law®f the form

b=uh, d=-ece, (16.2)

wheree andu are appropriate square symmetric matrices. Understanding how such ma-
trices can be built is our next task. It should be clear thatarwnicalconstruction can
exist — for sure, nothing comparable to the straightforward passage from (10.1), (10.3)
to (16.1a), (16.1b) — because the metric of both meshes must intervene (Eqg. (11.1) gives
a clue in this respect). Indeed, the exact equivalent of (16.1), up to notational details, can
be found in most published algorithms (including those based on the Galerkin method,
see, e.g., EEand S\ncks [1995]), whereas a large variety of proposals exist as regards
e andu. These “discrete Hodge operators” are the real issue. Constructing “good” ones,
in a sense we still have to discover, is the central problem.

Our approach will be as follows: First — just not to leave the matter dangling too long
— we shall giveone solution, especially simple, to this problem, which makeand
i diagonal a feature the advantages of which we shall appreciate by working out a
few examples. Later (in Section 20), a generic error analysis method will be sketched,
from which acriterion as to what makes a goed-u pair will emerge. Finite elements
will enter the stage during this process, and help find other solutions to the problem,
conforming to the criterion.
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FIG. 16.1. The case of a discontinuous permeability &nd 5 in primal volumest, and 1o, separated

by facet /). We denote byf the vectorial area of and by f;, f>, the vectors along both parts gt Let
u andv be arbitrary vectors, respectively normal and tangent t@nd letH1 = u 4+ v in T1. Transmis-
sion conditions acrosg determine a unique uniform fieldB= j.1u + ppv in T2. Thenb s = py f - u and

ughy = o ?1 u+ g ?2 . As f, ;:1 and ?2 are collinearu disappears from the quotieht; /h ¢, yield-
ing (16.4).

The simple solution is available if one has been successful in building a dual mesh by
the orthogonal construction (Figs. 15.3 and 15.5, left). Then, in the case sndmahu
are uniform?® one setg® =0if e £ ¢/, u//" = 0if £ f/, and (cf. (11.1))

ce areé(é) ff areaf)
= 871 = I’L7~1
length(e) length( f)

which does provide diagonal matricesand i. (The inverse ofu will be denoted by
v.) The heuristic justification (ONTI [2001]) is thatif the various fields happened to
be piecewise constant (relative to the primal mesh), formulas (16.3) would exactly cor-
respond to the very definition (11.1) of the Hodge operator. (Section 20 will present a
stronger argument.) In the case of non-uniform coefficients, formulas such as

ff— pnipz ared f)
pzlength( f1) + palength(f2)”

where f1 and f> are the parts of belonging to the two volumes adjacent to apply
instead (Fig. 16.1). Observe the obvious intervention of metric elements (lengths, areas,
angles) in these constructions.

(16.3)

(16.4)

REMARK 16.1. Later, when edge element$ and facet elements/ will enrich the
toolkit, we shall consider another solution, that consists in sefifig= [, cw® A w*

andv//" = [, u=tw/ A w/". For reference, lets call this the “Galerkin approach” to
the problem. We shall use loose expressions such as “the Gaéérkin“the diagonal
hodge”, to refer to various brands of discrete Hodge operators.

16.2. The toolkit

At this stage, we have obtained discrete counterparts (Fig. 16.2) to most features of the
“Maxwell building” of Fig. 12.2, but time differentiation and wedge product still miss

40y'|| yse “uniform” and “steady” for “constant in space” and “constant in time”, respectively.
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FIG. 16.2. A “discretization toolkit” for Maxwell's equations.

theirs. Some thought about how the previous ideas would apply in four dimensions
should quickly suggest the way to deal with time derivativzsbeing the time step,
call b¥, h¥, the values ob, h at timekst, for k =0, 1, ..., call jk+1/2, dk+1/2 gk+1/2
those ofj, d, e at time (k + 1/2)éz, and approximate;b, at time (k + 1/2)8¢, by
(b*¥*+1 — b*) /s8¢, and similarly,d,;d, now at timekst, by (d¥T1/2 — dk=1/2) /51,

As for the wedge product, tg,, b A h corresponds the suf_ ;. zbshy, which
we shall denote byb, h), with bold parentheses. Similarly,,d A e corresponds to
Y .cc o€, also denotedd, e). Hence we may define “discrete energy” quadratic
forms, 1/2(vb, b), 1/2(uh, h), 1/2(ee, €), and ¥2(e~1d, d), all quantities with, in-
deed, the physical dimension of energy (but be aware(thet is a power instead, like
[5 j Ae). Some notational shortcuts: Square roots sudrlasb)*/2, or (ee, ©)*/2, etc.,
will be denoted bybl,, or |el¢, in analogy with the abové|,, or |e|., and serve as
various, physically meaningfulormson the vector spaces of DoF arrays. We'll say the
“v-norm”, the “e-norm”, etc., for brevity.

ProPOSITION16.1. If Egs.(16.1)—(16.2)are satisfied, one has
1 1 .
dt[é("bv b)+ E(eea e)] :_(Jve)' (16.5)

PrROOF Take the bold scalar product of (16.1a) and (16.1blland —e, add, and use
the equality(Re, h) = (e, R"h). O

REMARK 16.2. The analogue of 2 A ¢, whenS is somemn-surface, is
2. Rjhre.
fEF(S), ecE

whereF(S) stands for the subset of facets which comp&séNote how this sum van-
ishes if S is the domain’s boundary.) By exploiting this, the reader will easily modify
(16.5) in analogy with the Poynting theorem. In spite of such formal correspondences,
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energy and discrete energy have, a priori, no relation. To establish one, we shall need
“interpolants”, such as finite elements, enabling us to pass from degrees of freedoms to
fields. For instance, facet elements will generate a magpigb, with b = Zf bfwf.

If v is the Galerkin hodge, thefi, vb A b = (vb, b). Such built-in equality between
energy and discrete energy is an exception, a distinctive feature of the Ritz—Galerkin
approach. With other discrete hodges, ewenvergencef discrete energy, as the mesh

is refined, towards the true one, should not be expected.

17. Playing with thekit: Full Maxwell

Now we have enough to discretize any model connected with Maxwell’s equations.
Replacing, in (13.1), rot bR or R’, ¢ and by € and u, andd, by the integral or
half-integral differential quotient, depending on the straight or twisted nature of the
differential form in consideration, we obtain this:

bk+1 — bk ek-‘rl/Z _ ek—l/2
—5 TRETS=0 e

(wherej is the array of intensities through dual facets, at fitiesr), with initial con-
ditions

+ Rybk = j* (17.1)

=0, e¥2=o. (17.2)

In the simplest case where the primal and dual mesh are plain rectangular staggered
grids, (17.1) and (17.2) is the well known Yee scheme#Y1966]). So what we have
here is the closest thing to Yee’s scheme in the caselbflar meshes.

A similar numerical behavior can therefore be expected. Indeed,

PROPOSITION17.1. The schemél7.1)and (17.2)is stable forsr small enough, pro-
vided bothe andv are symmetric positive definite.

PrROOF For such a proof, one may assuime 0 and nonzero initial values in (17.2),
satisfyingDb® = 0. Eliminatinge from (17.1), one finds that

b*+1 — 2b% 4 b*1 4 (81)°Re IR/ wb* = 0. (17.3)

Since DR = 0, the “loop invariant’Db* = 0 holds, so one may work in the cor-
responding subspace, kBY. Let’s introduce the (generalized) eigenvecterssuch
thatRe IR’v; = A; uv;, which satisfy(uv;,v;) =1 if i = j, 0if i # j. In this “u-
orthogonal” basish* = usz.‘vi, and (17.3) becomes

Nt — (2= 1 @0Hnf +0f =0
foralli. Thenfs, and hence thiets, stay bounded if the characteristic equation of each
of these recurrences has imaginary roots, which happens (Fig. 17.&)Aif;6r < 2 for
all ;. |

41For easier handling of Ohm's lay(ks¢) may be replaced b t1/2 4 jk=1/2 /2.
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FIG. 17.1. The white spot lies at the sum of roots of the characteristic equ&tiemz —Aj (St)z)r +1=0.
Stability is lost if it leaves the intervdl-2, 2].

In the case of the original Yee scheme, eigenvalues could explicitly be found, hence
the well-known relation (e [1966]) between the maximum possible valuesotind
the lengths of the cell sides. For general grids, we have no explicit formulas, but the
thumbrule is the samér should be small enough for a signal travelling at the speed of
light (in the medium under study) not to cross more than one cell during this lapse of
time.

This stringent stability condition makes the scheme unattractive if not fully explicit,
or nearly soe should bediagonal or at the very least, block-diagonal with most blocks
of size 1 and a few small-size ones, andhould be sparse. If so is the case, each time
step will only consist in a few matrix—vector products plus, perhaps, the resolution of
a few small linear systems, which makes up for the large number of time steps. Both
conditions are trivially satisfied with the orthogonal construction (cf. (16.3), (16.4)),
but we have already noticed the problems this raises. Hence the sustained interest for
so-called “mass-lumping” procedures, which aim at replacing the Galerkina di-
agonal matrix without compromising convergence: segieN, JoLY and TORDIMAN
[1993], ELMKIES and DLy [1997], HAuGAZEAU and LACOSTE[1993] (a coordinate-
free reinterpretation of which can be found imBsaviIT and KETTUNEN [1999]).

REMARK 17.1. Obviously, there is another version of the schemdy and d, for
which what is relevant is sparsity ef * and diagonality ofe, i.e., ofv. Unfortunately,

the diagonal lumping procedure that worked for edge elements fails when applied to
the Galerkinw, i.e., to the mass-matrix of facet elementoo@AvIT and KETTUNEN
[1999)).

There are of course other issues than stability to consider, but we shall not dwell
on them right now. Forconvergencéto be treated in detail later, but only in statics),
cf. MONK and LI [1994], NICOLAIDES and WANG [1998], BossAvIT and KET-
TUNEN [1999]. Ondispersionproperties, little can be said unless the meshes have
some translational symmetry, at least locally, and this is beyond our scope. As for
conservatiorof some quantities, it would be nice to be able to say, in the case when
j = 0, that “total discrete energy is conserved”, but this is only almost true. Con-
served quantities, as one will easily verify, drgeh*1, h¥) + 3 (eef+1/2, &+1/2) and
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$(pht, hky + 2(eef=1/2, &+1/2) poth independent of. So their half-sum, which can
suggestively be written as

W= B2 1) 1 Jedk &2,

if one agrees oh**t1/2 ande* as shorthands fgh* + h¥t1)/2 and[ef—1/2 + &+1/2) /2,
is conservedNot the discrete energy, definitely, however close.

18. Playing with thekit: Statics

Various discrete models can be derived from (17.1) by the usual maneuvers (neglect the
displacement current terge, omit time-derivatives in static situations), but it may be
more instructive to obtain them from scratch. Take the magnetostatic model (13.2), for
instance: Replace formisandh by the DoF array® andh, the d by the appropriate
matrix, as read off from Fig. 16.2, and obtain

Db=0, h=vb, Rh=j, (18.1)

which automatically includes the boundary conditions, thanks for having dis¢&rded
“passive” boundary cells. Observe thatj = 0 must hold for a solution to exist: But
this is the discrete counterpart, as Fig. 16.2 shows,jet@, i.e., of divJ= 0 in vector
notation.

In the next section, we shall study the convergence of (18.1). When it holds, all
schemes equivalent to (18.1) that can be obtained by algebraic manipulations are
thereby equally valid — and there are lots of them. Firsthiebe one of the facet-
based arrays such thaR’hl =j. Thenh in (18.1) must be of the forrh = hi + D’¢.

Hence (18.1) becomes

DuD'¢ = —Dpuhl. (18.2)

This, which corresponds te div(u(grad® + H/)) = 0, the scalar potential formula-

tion of magnetostatics, is not interesting unless diagonal, or nearly so, singeis full
otherwise. So it requires the orthogonal construction, and is not an option in the case of
the Galerkinw. It's a well-studied scheme (cf.Bik and RosE[1987], COURBETand
CROISILLE [1998], GALLOUET and MiLA [1991], HEINRICH [1987], HUANG and Xi

[1998], SLI [1991]), called “block-centered” in other sectors of numerical engineering
(KAaAsscHIETERanNd HUlJBEN [1992], WEISERand WHEELER[1988]), because de-
grees of freedom, assigned to thealnodes, appear as lying inside the primal volumes,

42pternatively (and this is how non-homogeneous boundary conditions can be handled), one may work
with enlarged incidence matric&andD and enlarged DoF arrays, taking all cells into account, then assign
boundary values to passive cells, and keep only active DoFs on the left-hand side.

43There are such arrays, owing @ = 0, because ké&’) = codR’), by transposition of ca@) =

ker(R), in the simple situation we consider. Finding one is an easy task, which does not require solving a lin-
ear system. Also by transposition of ¢&) = ker(D), one has ke&R’) = codD’), and henc®’(h—h!) =0
impliesh=h 4 D’ g.
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or “blocks”. Uniqueness a is easily proved? which implies the uniqueness — not so
obvious, a priori — oh andb in (18.1).

Symmetrically, there is a scheme corresponding to the vector potential formulation
(i.e., rotvrotA) = J):

R'vRa=j, (18.3)

obtained by settinh = Ra, where the DoF arrag is indexed over (active) edges. (f

is the Galerkin hodge, (18.3) is what one obtains when using edge elements to represent
the vector potential.) Existence in (18.3) stems fréfj = 0. No uniqueness this time,
because k&R) does not reduce to 0, but all solutiocagive the samé, and hence the
sameh = vb.

REMARK 18.1. Whether to “gaugel in this method, that is, to impose a condition
that would select a unique solution, such@sa = 0 for instance, remains to these
days a contentious issue. It depends on which method is used to solve (18.3), and on
how well the necessary conditidsfj = 0 is implemented. With iterative methods such

as the conjugate gradient and its variants, and if one takes care RShis@stead of]

in (18.3), then it's bettenotto gauge (RN [1996]).

This is not all. If we refrain to eliminath in the reduction from (18.1) to (18.3), but
still setb = Ra, we get an intermediate two-equation system,

@ 5-0)

often called amixedalgebraic system (ANOLD and BrREzzI [1985]). (Again, little
interest ifu is full, i.e., unless was diagonal from the outset.) The same manipulation
in the other direction (eliminating by h =h + D¢, but keeping) gives

<_Dv %[>(Z>:<_(?j>' (18.5)

We are not yet through. There is an interesting variation on (18.5), known as the
mixed-hybrid approach. It's a kind of “maximal domain decomposition”, in the sense
that all volumes are made independent by “doubling” the degrees of freedomnoth
(two distinct values on sides of each facet nogify). Let’s redefine the enlarged arrays
and matrices accordingly, and call théayh, v, D, R. Constraints om (equality of up-
and downstream fluxes) can be expressedias: 0, whereN has very simple structure
(one 1x 2 block, with entries 1 and-1, for each facet). Now, introduce an array
of facet-based Lagrange multipliers, and &idNb) to the underlying Lagrangian of
(18.5). This gives a new discrete formulation (still equivalent to (18.1), if one ddrives

441t stems from kefD!) = 0. Indeed D’y = 0 means that, D{w//v = 0 for all primal facetsf. For some

facets (those irE"), there is bubnevolumev such thaD{f # 0, which forces),, = 0 for thisv. Remove all
such volumes, and repeat the reasoning and the process, thus spreading the valuew, all
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andh from b andh the obvious way):

5 D N\ /by [-F
D 0 O (<p>= 0
N O O A 0

Remark that the enlarged is block-diagonal (as well as its inverge), hence easy
elimination ofb. What then remains is a symmetric systenpiandA:

DD DEN'\(¢)__ (DER

NzD' NzN/J\A)~ \Nmh /)
The point of this manipulation is th@gD' is diagonal equal toK , say. So we may
again eliminatep, which leads to a system in terms of oily

N[ — D' K 'DEIN'A = N[ED'K Dz — @b’ (18.6)

Contrived as it may look, (18.6) is a quite manageable system, with a sparse symmetric
matrix. (The bracketed term on the left is block-diagonal, Jikg

REMARK 18.2. In(A, Nb), eachx ; multiplies a term(Nb) s which is akin to a mag-

netic charge. Hence thers should be interpreted as facet-DoFs of a magnetic potential,
which assumes the values necessary to reestablish the equality between fluxes that has
been provisionally abandoned when passing fiomo the enlarged (double size) flux
vectorb. This suggests a way to “complementarity” (obtaining bilateral estimates of
some quantities) which is explored iroBsaviIT [2003].

There is a dual mixed-hybrid approach, starting from (18.4), wteatvolumes are
made independent, hence (in the case of a simplicial primal mesh) three DoFs per facet,
for bothb andh, and two Lagrange multipliers to enforce their equality. This leads to
a system similar to (18.6) — but with twice as many unknowns, which doesn’t make it
attractive.

Systems (18.2), (18.3), (18.4), (18.5) and (18.6) all give the same solutiofbphjr
— the solution of (18.1). Which one effectively to solve, therefore, is uniquely a mat-
ter of algorithmics, in which size, sparsity, and effective conditioning should be con-
sidered. The serious contenders are the one-matrix semi-definite systems, i.e., (18.2),
(18.3), and (18.6). An enumeration of the number of off-diagonal terms (which is a
fair figure of merit when using conjugate gradient methods on such matrices), shows
that (18.6) rates better than (18.3), as a rule. The block-centered scheme (18.2) out-
performs both (18.3) and (18.6), but is not avail4bMith the Galerkin hodge. Hence
the enduring interest (@avENT and ROBERTS[1991], KAASSCHIETERand HUIJBEN
[1992], MOSE, SIEGEL, ACKERER and CHAVENT [1994], HAMOUDA, BANDELIER
and Roux-DAaMIDAU [2001]) for the “mixed-hybrid” method (18.6).

Each of the above schemes could be presented as the independent discretization of
a specific mixed or mixed-hybrid variational formulation, and the literature is replete

45Unless one messes up with the computation of the terms of the mass-matrix, by using ad-hoc approximate
integration formulas. This is precisely one of the devices used in mass-lumping.
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with sophisticated analyses of this kind. Let’'s reemphasize that all these schemes are
algebraically equivalent, as regards and h. Therefore, an error analysis of one of
them applies to all: For instance,#fis the Galerkin hodge, the standard variational
convergence proof for (18.3), or jf is the diagonal hodge of (16.4), the error analysis

we shall perform next section, on the symmetrical system (18.1).

19. Playing with thekit: Miscellanies

The advantage of working at the discrete level from the outset is confirmed by most
examples one may tackle. For instance, the discrete version of the eddy-current problem
(13.4) is, without much ado, found to be

iwoE +R'WRE = —iwd’. (19.1)

As a rule,o vanishes outside of a closed regich= D — A of the domain,C for
“conductor”. (Assume, then, that, which is supF), is contained inA.) The system
matrix then has a non-trivial null space, key N ker(R), and uniqueness & is lost. It

can be restored by enforcing the constr&hé oE = 0, wheree 4 is derived frome by

setting to zero all rows and columns which correspond to edges borfiePlyysically,

this amounts to assume a zero electric charge density outside the conductive region
C =suppfo). (Beware, the electric field obtained this way can be seriously wrong about
A, where this assumption is not warranted, in general. However, the electric fi€lin
correct.) Mathematically, the effect is to limit the span of the unknewa a subspace

over whichiws + R'wR is regular.

In some applications, however, the conductivity is nonzero inDgllbut may as-
sume values of highly different magnitudes, and the above matrix, though regular, is
ill-conditioned. One then will find in the kit the right tools to “regularize” such a “stiff”
problem. See CEMENS and WEILAND [1999] for an example of the procedure, some
aspects of which are studied iroBsaviT [2001a]. Briefly, it consists in adding to the
left-hand side of (19.1) a term, function af that vanishes when is one of the so-
lutions of (19.1), which supplements tRévR matrix by, so to speak, what it takes to
make it regular (and hence, to make the whole system matrix well conditioned, however
smallo can be at places). The modified system is

iwoE +R'WRE +0GSG'0E = —iwl®, (19.2)

where § is a Hodge-like matrix, node based, diagonal, whose entries§’gre=

P 1/p02. A rationale for this can be found indgssaviT [2001a]: In a nutshell, the
idea is to “load the null space” d®’vR, and dimensional considerations motivate the
above choice of. Our sole purpose here is to insist that all this can be done at the
discrete level.

REMARK 19.1. Onenightmotivate this procedure by starting from the following equa-
tion, here derived from (19.2) by simply using the toolkit in the other direction (“dis-
crete” to “continuous”):

1
iwcE+rot(vrotE) — o grac(—2 div(oE)> =—iny, (19.3)
no
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but which can be seen as a natural regularization of (13.4). (We revert to vector proxies
here to call attention on the use of a variant of tha = roto rot— grado div formula,

which is relevant when botp ando are uniform in (19.3).) This is a time-honored

idea (LEIS [1968]). Part of its present popularity may stem from its allowing standard
discretization vimode-basedector-valued elements (the discrete form is then of course
quite different® from (19.2)), because E in (19.3) has more a priori regularity than

in (13.4). Even if one has reasons to prefer using such elements, the advantage is only
apparent, because the discrete solution may converge towards something else than the
solution of (13.4) in some cases (e.g., reentrant corners, @&TEBEL and DAUGE
[1997]), where the solution of (19.3) haso muchregularity to satisfy (13.4). This
should make one wary of this approach.

Many consider the nullspace & vR as a matter of concern, too, as regards the
eigenmode problem,

R'vRE = w’¢E, (19.4)

becausa = 0 is an eigenvalue of multiplicityy (the number of active nodes). Whether
the concern is justified is debatable, but again, there are tools in the kit to address it.
First, regularization, as above:

[R'WR + eG8G' e |E = w?eE, (19.5)

with §"" = fﬁ 1/ue? this time. Zero is not an eigenvalue any longer, but new eigen-
modes appear, those @iG§G'eE = w’¢E under the restrictiore = Gyr. As re-
marked by WHITE and KONING [2000], we have here (again, assuming uniform co-
efficients) a phenomenon of “spectral complementarity” between the operaterstrot
and — grado div. The new modes, or “ghost modes” as they are called E1IDNAND
[1985], have to be sifted out, which is in principle e¥sgevaluate the noriG’eE|s),

or “swept to the right” by inserting an appropriate scalar factor in front of the regulariz-
ing term. Second solution @APR, MUNTEANU, SCHUHMANN, WEILAND and I0AN
[2002]): Restrict the search & to a complement of kéR’vR), which one can do by
so-called “tree-cotree” techniques (BANESE and RUBINACCI [1988], MUNTEANU
[2002]). This verges on the issue discrete Helmholtz decompositigrenother im-
portant tool in the kit, which cannot be given adequate treatment here (seeTR,
DuBols and BossaviIT [2002]).

46\Wheng andv are the Galerkin hodges, (19.2) corresponds to the edge-element discretization of (19.3).
4TThese ghost modes ametthe (in)famous “spurious modes” which were such a nuisance before the advent
of edge elements (cf. 8ssAvIT [1990b]). Spurious modes occur when one solves the eigenmode problem
rot(v rotE) = w?eE by usingnodal vectorialelements. Then (barring exceptional boundary conditions) the
rot(v rot) matrix is regular (because the approximation space does not contain gradients, contrary to what
happens with edge elements), but also — and for the same reason, as explaiosdaviB [1998a] — poorly
conditioned, which is the root of the evil. It would be wiset to take “ghost modes” and “spurious modes”

as synonyms, in order to avoid confusion on this tricky point.






CHAPTERIV

Finite Elements

We now tackle the convergence analysis of the discrete version of problem (13.2), mag-
netostatics:

Db=0, h=vb, R'h=j. (18.1)

A preliminary comment on what that means is in order.

A few notational points before: The mesh is denoigahe dual mesh isz, and we
shall subscript byn, when necessary, all mesh-related entities. For instance, the largest
diameter of allp-cells, p > 1, primal and dual, will be denoteg, (with a mild abuse,
since it also depends on the metric of the dual mesh), and called the “grain” of the pair
of meshes. The computed solutifim h} will be {b,,, h,,} when we wish to stress its
dependence on the mesh-pair. And so on.

A first statement of our purpose is “study,,, h,,} wheny,, tends to 0”. Alas, this
lacks definiteness, because howshape®f the cells change in the process does matter
a lot. In the case of triangular 2D meshes, for instance, there are well-known counter-
examples (BBUSKA and Aziz [1976]) showing that, if one tolerates too much “flat-
tening” of the triangles as the grain tends to 0, convergence may fail to occur. Hence the
following definition: A family M of (pairs of interlocked) meshes imiform if there
is afinite catalogue of “model cells” such that any cell in anyor m of the family is
the transform by similarity of one of them. The notation > 0” will then refer to a
sequence of meshes, all belonging to some definite uniform family, and such that their
vmS tend to zero. Now we redefine our objective: Show that the error incurred by taking
{b,,, h,,} as a substitute for the real fie{dl, 1} tends to zero whem — 0.

The practical implications of achieving this are well known. If, for a giventhe
computed solutiorib,,, h,,} is not deemed satisfactory, one musfinethe mesh and
redo the computation, again and again. If the refinement rule guarantees that all meshes
such a process can generate belong to some definite uniform family, then the conver-
gence result means “you may get as good an approximation as you wish by refining this
way”, a state of affairs we are more or less happy to live with.

Fortunately, such refinement rules do exist (this is an active area of researcbcB
[1991], BEY [1995], DE COUGNY and SHEPHARD[1999], MAUBACH [1995]). Given
a pair of coarse meshes to start with, there are ways to subdivide the cells so as to keep
bounded the number of different cell-shapes that appear in the process, hence a potential
infinity of refined meshes, which do constitute a uniform family. (A refinement process
for tetrahedra is illustrated by Fig. 20.1. As one can see, at most five different shapes

167
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FIG. 20.1. Subdivision rule for a tetrahedron= {k, [, m, n}. (Mid-edges are denoted, /m, etc., ando

is the barycenter.) A first halving of edges generates four small tetrahedra and a core octahedron, which

itself can be divided into eight “octants” such @s= {o, ki, Im, mk}, of at most four different shapes. Now,

octants likeo should be subdivided as follows: divide the facet in fronb dfito four triangles, and join te,

hence a tetrahedron similar 1 and three peripheral tetrahedra. These, in turn, are halved, as shown for

the one hanging from edde, /m}. Its two parts are similar to and to the neighbor octat, kn, kI, mk}
respectively.

can occur, for each tetrahedral shape present in the original coarse mesh. In practice,
not all volumes get refined simultaneously, so junction dissection schemes are needed,
which enlarges the catalogue of shapes, but the latter is bounded nonetheless.)

For these reasons, we shall feel authorized to assume uniformity in this sense. We
shall also posit that the hodge entries, whichever way they are built, only depend (up
to a multiplicative factor) on thehapesof the cells contributing to them. Although
stronger than necessary, these assumptions will make some proofs easier, and thus help
focus on the main ideas.

20. Consistency

Back to the comparison betweén,,, h,,} and{b, h}, a natural idea is to compare the
computed DoF arraydy,, andh,,, with arrays of the same kind,,b = {ffb: f e
FYyandry,h ={[;h: f e F}, composed of the fluxes and m.m.fs of the (unknown)
solution{b, i} of the original problem (13.2). This implicitly defines two operators with
the same name,,: one that acts on 2-forms, giving an array of facet-fluxes, one that
acts on twisted 1-forms, giving an array of dual-edge m.m.f.'s. (No risk of confusion,
since the name of the operarddor %, reveals its nature.)

Since @ = 0, the flux ofb embraced by the boundary of any primal 3-aelnust
vanish, therefore the sum of facet qung D{ ffb must vanish for alb. Similarly,
dh = j yields the relatior)_ , R f;h = [ j, by integration over a dual 2-cell. In ma-
trix form, all this becomes ‘

Drmb=0, R'rnh=j, (20.1)
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since the entries gf are precisely the intensities across dual facets. Comparing with
(18.1), we obtain

D(bm —rpb) =0, Rt(hm —ruh) =0, (20-2)
and
(hy, — rph) —v(by, — rb) = vy — rV)b = v (e — wrm)h. (20.3)

Let us compute the-norm of both sides of (20.3). (For this piece of algebra, we shall
use the notation announced in last chapterh) for a sum such ay_ ;. ~bshy, and

Ih, for (uh, h)Y/2, the u-norm ofh, and other similar constructs.)

As this is done, “square” and “rectangle” terms appear. The rectangle term for the
left-hand side is—2(b,, — r,,b, h,, — rph), but sinceD(b,, — r,,b) = 0 implies the
existence of soma such thab,, — r,,b = Ra, we have

by — rmb, hy —ryh) = (Ra, hy, — rph) = (a» Rl(hm - th)) =0,
after (20.2). Only square terms remain, and we get
|hm - rmhli + |bm - rmblg
= |(vrm - rmv)b|i = |(;er - rmu)hli = (wrpmb — ryh, rpb — wryh). (20.4)

On the left-hand side, which has the dimension of an energy, we spot two plausible esti-
mators for the error incurred by takifb,,, h,,} as a substitute for the real fie{d, }:

the “error in (discrete) energy” [respectively coenergy], as regbyds r,,b [respec-

tively h,, — r,,h]. Components db,, — r,,,b are what can be called the “residual fluxes”

by — ff b, i.e., the difference between the computed flux embraced by faeed the

genuine (but unknown) fluxf b. Parallel considerations apply &g with m.m.f.'s along

f instead of fluxes. It makes sense to try dmdindthese error terms by some func-
tion of y,,. So let us focus on the right-hand side of (20.4), for instance on its second
expression, the one in terms /of

By definition of r,,,, the f-component of-,, (uh) is the flux of b = uh embraced
by f. On the other hand, the flux arrawr, i is the result of applying the discrete
Hodge operator to the m.m.f. arrayh, so the compound operatotsu and ur, will
not be equal: they give different fluxes when applied to a gereridhis contrasts with
the equalitiegDr,, — r,,d)b = 0 and(R’r,, — r,,d)h = 0, which stem from the Stokes
theorem. The mathematical word to express such equalities is “conjudaeyid d are
conjugate viar,,;, and so ardR’ and d, too. Thusy and . arenot conjugate viar,, —
and this is, of course, the reason why discretizing entails some error.

Yet, it may happen that, u andur,, docoincide forsomeis. This is so, for instance,
with piecewise constant fields, whenis the diagonal hodge of (16.3) and (16.4): in
fact, these formulas were motivated by the desire to achieve this coincidence for such
fields. Also, as we shall prove latey, v andvr,, coincide on facet-element approxima-
tions ofb, i.e., on divergence-free fields of the fodm . ~ b w/ (which are meshwise
constant), whem is the Galerkin hodge. Since all piecewise smooth fields differ from
such special fields by some small residual, and the finer the mesh the smaller, we may
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FIG. 20.2. Asin Fig. 16.1f denotes the vectorial area of fagétthe vector of magnitude aref), normal

to f, that points away frony in the direction derived frony’s inner orientation by Ampére’s rule. By we
denote the vector that joins the end points of the associated dualfedge ambient orientation is assumed

here. One could do without it by treating bofhand f as axial vectors.) In caseis not the same on both
sides of f, understand f asvy f + v1 f1, where f> and f; are as suggested. Regidry is the volume

enclosed by the “tent” determined by the extremitieg @nd the boundary of . Note thatf andv ? always
crossf in the same direction, but only in the orthogonal construction are they parallel (cf. Fig. 16.1): In that
case, (20.6) can be satisfied bgiagonalhodge — cf. (16.3) and (16.4).

in such cases expect “asymptotic conjugacy”, in the sense that the right-hand side of
(20.4) will tend to O withm, for a piecewise smooth or 4. This property, which we
rewrite informally but suggestively as

v, —rmv— 0 whenm — 0, wry —rmu— 0 whenm — 0 (20.5)

(two equivalent statements), is calleohsistencyf the approximation oft andv by u
andv. Consistency, thus, implies asymptotic vanishing of the error in (discrete) energy,
after (20.4).

Let’'s now take a heuristic step. (We revert to vector proxies for this. Fig. 20.2 explains

aboutf and f andn andt are normal and tangent unit vector fields, as earlier. The
norm of an ordinary vector ig.) Remark that the right-hand side of (20.4) is, according
to its rightmost avatar, a sum of terms, one for egthof the form

50 - e o] -5 4]

.f/ f’//
which we’ll abbreviate a$B, f][H, f]. Each should be made as small as possible for
the sum to tend to 0. Supposés uniform, and that boundary conditions are such that

B and H are uniform. ThefB, f1=B- (3, v/ — v £). This term vanishes if

Y v f=vry. (20.6)
fleF

(This implies)” /. » w/T'vf = F, and hence, cancellation i, £1, t00.) We there-
fore adopt this geometric compatibility condition ariterion aboutv. Clearly, the
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diagonal hodge of (16.4) passes this test. But on the other hand, no diagoaal
satisfy (20.6) unles§ andv f are collinear.

PrRoOPOSITION20.1. If v is diagonal, withvfffz v};, as required by the criterion,
there is consistency.

ProoFE (All C’s, from now on, denote constants, not necessarily the same each time,
possibly depending on the solution, but not on the mesh.) This time, the solution proxy
B is only piecewise smooth, and possibly discontinuous i not uniform, but its
component parallel tg, say B, satisfieg5(x) — B(y)| < C|x — y| in the regioan

of Fig. 20.2. One hd4$ [;n-B=areaf)B(xy) and [;vt - B = lengthv f)B(x ),
for some averaging pombsf andx the distance of WhICh doesnt excegd, hence

[B, f1< Cynv/7 ared (), by factorlng outv// ared f) = length(v 1), and similarly,

H, 1< Cynpn'/ length(v f) Noticing that are@f) length(v f) = 3fD v, and sum-
ming up with respect tg’, one finds that

10w — b5 + 10w — rmbl3 < Cyf, (20.7)

the consistency result. O

Going back to (20.4), we conclude that both theorm of the residual flux array and
the u-norm of the residual m.m.f. array tend to 0 as faspasor faster!? a result we
shall exploit next.

One may wonder whether the proof can be carried out in the case of a non-diagonal
hodge, assuming (20.6). The author has not been able to do so on the basis of (20.6)
only. The result is true under stronger hypotheses (stronger than necessary, perhaps):
When the construction of is a local one, i.e.y//" = 0 unless facetg and f’ belong
to a common volume, and when tiifimumg,,, of all cell diameters verifies,, > By,
with 8 independent ofz. Thenv has a band structure, and its terms behave,ih,
which makes it easy to prove th@@, f]is in O(yn%). Handling[H, f1 is more difficult,
becauseu is full, and the key argument about averaging points not being farther apart
thany,, breaks down. On the other hand, owing to the band structune ahd its
positive-definite character,// is small for distantf and #/, which allows one to also
bound[H, f] by Cy,,%. The number of faces being m;?’, consistency ensues.

There is some way to go to turn such an argument into a proof, but this is enough
to confirm (20.6) in its status of criterion as regasdsa criterion which is satisfied,
by construction (Fig. 16.1), in FIT (WiLAND [1996]) and in the cell method @NTI

48| casev is not the same on both sides pfunderstand length f) asvy Iengtf(?l) +volength( f2). The
underlying measure of lengths is not the Euclidean one, but the one associated with the metric induced by the
Hodge operator.

49Convergence ir’y,,z1 is in fact often observed when the meshes have some regularity, such as crystal-like
symmetries, which may cancel out some terms in the Taylor expansions implicit in the above proof. For
instance, the distance between pointsandx ; may well be iny,f, rather thany,, . This kind of phenomenon

is commonplace in Numerical Analysis¢8ATz, SLOAN and WAHLBIN [1996]).
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[2001]), but allows a much larger choice. We'll see in a moment how and why it is
satisfied in the Galerkin approach.

21. Stability

So, the left-hand side of (20.4) tends to 0. Although this is considered by many as
sufficient in practice, one cannot be satisfied with such “discrete energy” estimates.
Fields should be compared with fields. To really prove convergence, one should build
from the DoF array®,, andh,, an approximatiorb,,, h,,} of the pair of differential
forms {b, h}, and show that the discrepancigs — b andh,, — h tend to 0 withm in

some definite sense. So we are after some map, that we shall dengte thyat would
transform a flux arrayp into a 2-formp,,b and an m.m.f. arrah into a twisted 1-form

pmh. The map should behave naturally with respeattoi.e.,

Vumb=b, rmpmh=h7 (211)
as well as
|pmtmb —bl, — 0 and |purph —h|, — 0 whenm — 0 (21.2)

(asymptotic vanishing of the “truncation errop;,r,, — 1). A satisfactory result, then,
would be that bothb — p,,b,,|, and|h — p,h, |, tend to O withm (convergence “in
energy”). As will now be proved, this is warranted by the following inequalities:

05|pmb|v < Ibly, a|th|M < Ihlu (213)

for all b andh, where the constant > 0 does not depend on. Since|b|, and|h]|,
depend on the discrete hodge, (21.3) is a property of the approximation scheme, called
stability.

PrRoOPOSITION21.1. Consistency20.5)being assumed?21.2)and (21.3) entail con-
vergence.

PROOF By consistency, the right-hand side of (20.4) tends to 0, whignge r,,,b|, —
0, and|p,,b,, — pmrmbly — 0 by (21.3). Thereforg,,b,, — b, “in energy”, thanks to
(21.2). Same argument abadut O

This is Lax’s celebrated folk theorem A and RCHTMYER [1956]): consistency-
stability = convergence

Below, we shall find a systematic way to constrpgt, the so-calledVhitney map
But if we don't insist right now on generality, there is an easy way to find a suitable
such map in the case of a simplicial primal mesh and of DoF arpatfsat satisfy
Db = 0 (luckily, only these do matter in magnetostatics). The idea is to find a vector
proxy B uniform inside each tetrahedron with facet flu@s f equal tobs. (Then,
divB =0 all overD.) This, which would not be possible with cells of arbitrary shapes,
can be done with tetrahedra, for there are, for each tetrahedral veluhree unknowns
(the components d8) to be determined from four fluxes linked by one linear relation,

Zf D{fbf =0, so the problem has a solution, which we takgab.
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Then® p,r,b — b. As for the stability condition (21.3), one hdg,b|? =
/ D v|BJ?, a quadratic form with respect to the facet fluxes, which we may therefore
denote by(b, Nb), with N some positive definite matrix. Now, suppose firdiagle
tetrahedron in the mesh, and consider the Rayleigh-like quotight vb)/(b, Nb). Its
lower bound, strictly positive, depends only on 8tepeof the tetrahedron, not on its
size. Then, uniformity of the family of meshes, and of the construction aflows us
to take fore in (21.3) the smallest of these lower bounds, which is strictly positive and
independent of:. We may thereby conclude tha, b, converges towards in energy.

No similar construction on the side #fis available, but this is not such a handicap:
if pmby — b, thenvp,b,, — h. This amounts to setting,, on the dual side equal to
vpm . The problem with that isp,, h fails to have the continuity properties we expect
from a magnetic field: its vector proxy H is not tangentially continuous across facets,
S0 one cannot take its curl. But never mind, since this “non-conformal” approximation
converges in energy.

Yet, we need a more encompassipg map, if only becaus®b = 0 was just a
happy accident. Before turning to that, which will be laborious, let’s briefly discuss
convergence in the full Maxwell case.

22. Thetime-dependent case

Here is a sketch of the convergence proof for the generalized Yee scheme (17.1) and
(17.2) of last chapter.

First, linear interpolation in time between the values of the DoF arrays, as output
by the scheme, provides DoF-array-valued functions of time which converge,dvhen
tends to zero, towards the solution of the “spatially discretized” equations (16.1) and
(16.2). This is not difficult.

Next, linearity of the equations allows one to pass from the time domain to the fre-
guency domain, via a Laplace transformation. Instead of studying (16.1) and (16.2),
therefore, one may examine the behavior of the solution of

—pD+R'H =7, pB+RE=0, (22.1)
D = &E, B=puH, (22.2)

whenm — 0. Here,p = £ + iw, with & > 0, and small capitals denote Laplace trans-
forms, which are arrays @omplexvalued DoFs. If one can prove uniform convergence
with respect taw (which the requiremerit > 0 makes possible), convergence of the so-
lution of (16.1) and (16.2) will ensue, by inverse Laplace transformation. The main
problem, therefore, is to compakee B, H, D, as given by (22.1) and (22.2), wiih,E,

rmB, rmH, r,, D, where small capitals, again, denote Laplace transforms, but of differen-
tial forms this time.

50This is an exercise, for which the following hints should suffice. Start fbopiecewise smooth, such that
dbh =0, setb = r,, b, getB as above, and aim at finding an upper bound Bor- B|, where B is the proxy of
b, over a tetrahedrom. For this, evaluat&/x - fT(B — B), wherex is an affine function such tha¥i| = 1.
Integrate by parts, remark thﬁ}r an-B= A(x p)b s, wherex s is the barycenter of . Taylor-expand: - B
aboutx 7, hence a bound i@y, for [, An- (B —B), from which stems [ (B —B)| < Cy;s. Use uniformity
to conclude thatB — B| < Cyj.
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The approach is similar to what we did in statics. First establish that

pi(H — 1y H) +R(E = rnE) = p(rmit — prm)H, (22.3)
—pe(E —rpE) + R'(H — ryH) = — p(rue — ery)E. (22.4)

Then, right-multiply (22.3) (in the sense 6f )) by (H — r,,H)* and the complex con-
jugate of (22.4) by—(E — r,,E), add. The middle terms (iR andR’) cancel out, and
energy estimates follow. The similarity between the right-hand sides of (20.3), on the
one hand, and (22.3), (22.4), on the other hand, shows that no further consistency re-
guirements emerge. Stability, thanks&to- 0, holds there if it held in statics. What is
a good discrete hodge in statics, therefore, is a good one in transient situations. Let's
tentatively promote this remark to the rank of heuristic principle:

As regards discrete constitutive lawshat makes a convergent scheme $tatic
problems will, as a rule, make one for the Maxwell evolution equations

At this stage, we may feel more confident about the quality of the toolkit: If the
discrete hodges and the meshes are compatible in the sense of (20.6), so that consistency
can be achieved, if there is a way to pass from DoFs to fields which binds energy and
discrete energy tightly enough for stability (21.3) to hold, then convergence will ensue.
So we need the,, operator. We would need it, anyway, to determine fluxes, e.m.f.'s,
etc., at a finer scale than what the mesh provides — motivation enough to search for
interpolants, but not the most compelling reason to do so: Field reconstruction from
the DoFs is needed, basicaltg, assess stabilifyin the above sense, and thereby, the
validity of the method. Whitney forms, which will now enter the scene, provide this
mechanism.

23. Whitney forms

Let's summarize the requirements about the generic magdt should map each kind

of DoF array to a differential form of the appropriate king,e, starting from an edge-
based DoF arrag, should be a 1-formp,,b, obtained from a facet-baséd should be

a 2-form, and so forth. Properties (21.1) and (21.2) should hold for all kinds, too, so in
short,

rmPm =1, pmrm — 1 whenm — 0. (23.1)

The stability property (21.3) will automatically be satisfied in the case of a uniform
family of meshes. Moreover, we expeét ¢ 0 whenDb =0, de = 0 whenRe =0, etc.
More generallyRa = b should entail d = b, and so forth. These are desirable features
of the toolkit. The neatest way to secure them is to enforce the structural property

dpm = pmd, (23.2)

atall levels (Fig. 23.1): d andishould be conjugate, via,,, or said differently, Fig. 23.1
should be @ommutative diagramRemarkably, these prescriptions will prove sufficient

to generate interpolants in an essentially unique way. Such interpolants are known as
Whitney formgWHITNEY [1957]), and we shall refer to the structure they constitute as
the Whitney complex
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0 1 2 3
Proxies - grad—™> - — rot—> - —— div—> -
# # # #

b 13 L b
Forms ° d > o — d > o — d —=>» o
Primal DoF arrays . G—> o — R—> oo — D—> o

FiG. 23.1. Diagrammatic rendering of (23.2), with part of Fig. 8.1 added. Flat and sharp symbols represent
the isomorphism between differential forms and their scalar or vector proxies.

23.1. Whitney forms as a device to approximate manifolds

We address the question by taking a detour, to see things from a viewpoint consistent
with our earlier definition of differential forms as maps from manifolds to numbers.

A differential form, say, for definiteness, maps ap-manifold S to the number/; b,

with p =2 here. Suppose we are able to approxin$aby a p-chain, i.e., here, a chain
based on facety)!,S = Zfef ¢/ f. Then a natural approximation g@b is fpﬁ,,Sb'

But this number we know, by linearity: singe r,,b = b, it equals the sun}_ c/by,
that we shall denotéc; b) (with boldface brackets). Hence an approximate knowledge
of the fieldb, i.e., of all its measurable attributes — the fluxes — from the DoF drray
In particular, fluxes embraced tsynall surfaces (small with respect to the grain of the
mesh) will be computable fror, which meets our expectations about interpolating to
local values ob. The question has thus become “how best to represbyta 2-chain?”.
Fig. 23.2 (wherep = 1, so a curve replacesS) gives the idea.

Once we know about the manifold-to-chain map, we know about Whitney forms:
For instance, the one associated with fageis, like the fields itself, a map from
surfaces to numbers, namely the msap> ¢/ that assigns t¢ its weight with respect
to f. We denote this map by/ and its value atS by [;w/ or by (S; w/) as we
have done earlier. (The notational redundancy will prove useful.) Notd ta; b) =
[s X sbyw! = [ pub = (S; pub), which justifies the j,"” notation: A transposition
is indeed involved.

23.2. A generating formula

Now, let's enter the hard core of it. A simplicial primal mesh will be assumed until
further notice. (We shall see later how to lift this restriction.) Results will hold for any
spatial dimension and all simplicial dimensiong < n, but will be stated as it was 3

andp =1 or 2 (edge and facet elements). So we shall also write proofs, even recursive
ones that are supposed to move frprto p + 1 (see, e.g., Proposition 23.1), agihad

a specific value (1 or 2), and thereby preferD, or R?, D, tod or 3. That the proof

has general validity notwithstanding should be obvious each time.
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IVAV2VAV

FIG. 23.2. Representing curveby a weighted sum of mesh-edges, i.e., by a 1-chain. Graded thicknesses

of the edges are meant to suggest the respective weights assigned to them. Edges,swboses “control

domain” (shaded) doesn't intersagthave zero weight. (A weight can be negative, if the edge is oriented

backwards with respect t@) Which weights thus to assign is the central issue in our approach to Whitney
forms.

We useAr” (x) for the barycentric weight of point with respect to node, whenx
belongs to one of the tetrahedra which share nof®herwise " (x) = 0). We’ll soon
see thatw” = A" is the natural choice for nodal 0-forms, and again this dual notation
will make some formulas more readable. We defife= A™ + A", when edgez =
{m,n}, as well asrf = Al + 1™ + A" for facet f = {I, m, n}, etc. Whene = {m, n}
andf = {I, m, n}, we denote nodeby f — e. Thusr/~ refers to (in that casey, and
equals./ — A¢. The oriented segment from pointo pointy is xy, the oriented triangle
formed by pointsx, y, z, in this order, iscyz. And although node and its location,
should not be confused, we shall indulge in writing, for instarige,for the triangle
based on points;, x;, andx, wheni and; are node labels.

The weights in the case of a “small manifold”, such as a point, a segment} etc.,
will now be constructed, and what to use for non-small ones, i.e., the méaps/,
etc., from lines, surfaces, etc., to reals, will follow by linearity. The principle of this
construction is to enforce the following commutative diagram property:

3Py = Py, (23.3)
which implies, by transposition g, = p,.d, the required structural property (23%).
We shall not endeavor to prove, step by step, that our construction does satisfy (23.3),
although that would be an option. Rather, we shall let (23.3) inspire the definition that

follows, and then, directly establish thap,g = p,,d. This in turn will give (23.3) by
transposition.

DEFINITION 23.1. Starting fromw” = A", the simplicial Whitney forms are

wé = Z Gore™" dw", w! = Z R?)Lffe dw?, w'= Z D{f)»"if dw’
neN ec€ feF (23.4)

(and so on, recursively, to higher dimensions).

51The proper underlying concept, not used here, is thatufivectorat pointx.

52If moreover ke(dp) = cod(d, 1), i.e., in the case of a trivial topology, then ke§) = cod(d,, 1), just
as, by transposition, két,) = cod(d,_1). One says the Whitney spaces of forms, as linked by théatm
anexact sequence
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! l

e n

FIG. 23.3. Left: With edgee = {m, n} and facetdm, n, k} and{m, n,} oriented as shown, the 2-chain to
associate with the “joink Vv e, aliasmnx, can only be\* (x)mnk + 2! (x)mnl. This is what (23.5) says. Right:
Same relation between the joinv n and the 1-chain® (x)nk + A (x)nl + A" (x)nm.

Let us justify this statement, by showing how compliance with (23.3) suggests these
formulas. The starting point comes from finite element interpolation theory, which
in our present stand consists in expressing a poidis a weighted sum of nodes,
the weightsw” (x) being the barycentric ones) (x). (Note how the standarg,, for
nodal DoFsp,¢ =), ¢,w", comes fromp!, x = > w"(x)n by transposition.) Re-
cursively, suppose we know the proper weights for a segmente., the bracketed
terms in the sunp!, yz = >, (yz; w)e, and let us try to findp/,xyz. By linearity,
phxyz =73 (yz;w)pl (x v e), where the “join"x Vv e is the triangle displayed in
Fig. 23.3, left. So the question is: which 2-chain best represents? As suggested by
Fig. 23.3, the only answer consistent with (23.3) is

phx Ve = Z R‘}Aff"(x)f. (23.5)
feF

Indeed, this formula expresses e as the average afnk andmnl (the only two facets
f for which Ref # 0), with weights that depend on the relative proximityxatio them.

Sop,xyz=3_, s R?Af_e(x)(yz; w) f=3pxyz; wf) f, hence
(ryz;wl) =Y RGA @) (vz; we). (23.6)

On the other hand, since a degenerate triangle suehxashould get zero weights, we
expect 0= (xzx; w/) =3, RS A€ (x) (zx; we), and the same fofxxy; w'). From
this (which will come out true after Proposition 23.1 below), we get

(ryz; wl) = Z RGAS ¢ () (yz + 2x +xy; w)
—ZRe A e(x) 8(xyz) w® ZR A ) (xyz; dw®)

for any small triangleryz, by Stokes, and henee/ =Y, R;Af‘e dw®.

Thus, formulas (23.4) — which one should conceive as the unfolding of a unique
formula — are forced on us, as soon as we accept (23.5) as the right way, amply suggested
by Fig. 23.3, to pass from the weights for a simpieto those for the joirnx v s. The
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reader will easily check that (23.4) describes the Whitney forms as they are more widely
known, that is, on a tetrahedrdh, [, m, n},

w' = A"
for noden,
wé = A" dA" — A" dA”
for edgee = {m, n},
w! =200 dA A dA 4+ A dA A dA + AT dAL A U™
for facet f = {l, m, n}, and
w® = 6K dAL A dA A A + AL A dA A ALK 4 A A A dAF A dA!
+ A dAE A dAE A dA™)

for volumev = {k, [, m, n}. In higher dimensions (WITNEY [1957]), the Whitney form
of a p-simplexs = {ng, n1, ..., np}, with inner orientation implied by the order of the
nodes, is

w® = p! Z (=D w" dw™ A -+ (i) - A dw"?,
i=0,...,p

where the(i) means “omit the termwd™:”.
From now on, we denote by ? the finite-dimensional subspaces®f generated
by these basic forms.

REMARK 23.1. Tofind the vector proxies af* andw/, substitutev andx to d anda.
The scalar proxy ofv? is simply the function equal to/ol(v) onv, 0 elsewhere. The
reader is invited to establish the following formulas:

W™ (x) = (kI x kx)/6vol(kimn), — w™*(x) = x1/3vol(v),

very useful when it comes to actual coding. (Other handy formulas, at this stage, are
rot(x — v x ox) = 2v and diMx — ox) = 3, whereo is some origin point and a fixed
vector. As an exercise, one may use this to check on Proposition 23.3 below.)

REMARK 23.2. One may recognize in (23.6) the development of thdleterminant
of the array of barycentric coordinates of pointsy, z, with respect to nodels m, n,
hence the geometrical interpretation of the weights displayed in Fig. 23.4.

23.3. Properties of Whitney forms
Thus in possession of a rationale for (23.4), we now derive from it a few formulas, for

their own sake and as a preparation for the proof of the all importapte p,,d result,
Proposition 23.3 below.
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FIG. 23.4. Just as the barycentric weight of paintvith respect to node: is vol(kimx), if one takes
vol(klmn) as unit, the weight of the segment with respect to edgém, n} is vol(kixy), and the weight
of the trianglexyz with respect to facefl, m, n} is vol(kxyz).

PrROPOSITION23.1. For eachp-simplex, there is one linear relation between Whitney
forms associated wittp — 1)-faces of this simplex. For instance, for eagh

SRt =0,

eeE

PROOF. By (23.4), 3, R4/~ w? =3, , A/ ~°A“7"R%G}w" =0, thanks to the re-
lation RG = 0, because.” ~¢A¢~", which is the same for alt in 3f, can be factored
out. (]

As a corollary, and by using(@w) = dA A w + A dw, we have

f_ _ e f—e e
w/ ==Y "RGdA/ ¢ Aws,
eef
and other similar alternatives to (23.4).

PrROPOSITION23.2. For eachp-simplexs, one has
i) Adw'=(p+Dd’Aw’, (i) d’ Adw®=0. (23.7)
PROOF This is true forp = 0. Assume it forp = 1. Then

dw/ => RS ¢ Adw =D RE A Adw =diS ARG dw’
e e e

by (i), hence d/ A dw/ = 0. Next,

A dw! =S <Z R daf A dw"> =drf A (Z R‘}Af dwé’)
e e

=dx/ A <wf+ZRef)fdwe>,
e

which thanks to (i) equals

dr/ A (wf—l—ZZR?d)»eAwe) =d)\f/\wf—2d?»fAZR§cd)\f’e/\w"
¢ e

=3/ Aw/,
which proves (i) forp = 2. Hence (i) forp = 2 by taking the d. |
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Next, yet another variant of (23.4), but without summation this time. For any €dge
such thach # 0, one has

Réw/ =1/ ~¢dw — 2dh/ ¢ A w*. (23.8)

This is proved by recursion, usingg,wf/ =2¢ " dw" — dA¢"w", wheren = e N ¢,
and the identityG’, G} = —RYR%. We may now conclude with the main result about
structural properties (cf. Fig. 23.1):

PROPOSITION23.3. One has
_ f
dw® = Z R?u) ,
feF

and hence, by linearitgp,, = p,d.

PrROOF Since both sides vanish out of the “star” @fi.e., the union s¢) of vol-
umes containing it, one may do as if&st were the whole meshed region. Note that
s Rj,xf =1—1¢onsie). Then,

ZR;wf = Z[Af_e dw® — 2/ ¢ A w] = (1 — A% dw’ — 2d(1 — A°) A w®
7 f

=(1—- 19 dw® + 1° A dw’ =dw®,

by using (). Now, dp,a) = d(¥,aw) =¥, ;Réaw’ =Y  (Ra);w! =
pm(da)- O

As a corollary, @?~1 c WP, and if kexd,) = codd,_1), then ketd; W») =
dw?~1, theexact sequengeroperty of Whitney spaces in case of trivial topology.

23.4. “Partition of unity”

For what comes now, we revert to the standard vector analysis framework, where
denotes the proxy vector field (i.e(32VA™ x VA" + --.)) of the Whitney formw .

Recall that barycentric functions sum to 1, thus forming a “partition of unity”:
> nen w" = 1. We shall drop the ugly arrows in what follows, and use symigatot
only as a label, but also for the vectorial aregdfFig. 20.2). Same dual use ¢t Same
convention forxyz, to be understood as a triangle or as its vectorial area, according to
the context.

ProPOSITION23.4. At all pointsx, for all vectorsv,

> (w/ @) v)f=v. (23.9)

fer
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FiG. 23.5. WhyfT w¢ = ¢ in the barycentric construction of the dual mesh. First, the length of the

altitude fromn is 1/|Vw"|, therefore [, Vw" = klm/3. Next, the average of” or w™ is 1/4. So

fT wé = fT[w'”Vw” —w"Vw™] is a vector equal t@kim/3 + kin/3)/4. As the figure shows (all twelve
triangles on the right have the same area), this is precisely the vectorial aea of

This is a case of something true of all simplices, and a consequence of the above
construction in which the weightsyz; w (x)) were assigned in order to havez =
Zf(xyz; w/ (x)) f. Replacing therev/ by its proxy, andvyz and f by their vectorial
areas, we do find (23.9). As a corollary (replatdy g, v by vw/ (x), and integrate
in x), the entries/¢ of the Galerkin facet elements mass matrix satisfy

vaggzvf,

geF

wherev f is as explained on Fig. 20.2, but with the important specification that here,
we are dealing with théarycentricdual mesh. Thaff vw/ = f is an exercise in
elementary geometry, and a similar formula holds for all Whitney forms (Fig. 23.5).
Now, compare this with (20.6), the compatibility condition that was brought to light by
the convergence analysis: We have proved, at last, that the Galerkin hodges do satisfy it.

24. Higher-degreeforms

Let's sum up: Whitney forms were built in such a way that the partition of unity property
(23.9) ensues. This property makes the mass matok facet elements satisfy, with
respect to the mesh and its barycentric dual, a compatibility criterion, (20.6), which we
earlier recognized as a requisite for consistency. Therefore, we may assgvtitrady
forms of higher polynomial degre®mo, should satisfy23.9), and take this as heuristic
guide in the derivation of such forms.

Being a priori more numerous, higher-degree forms will make a finer partition. But
we have a way to refine the partition (23.9): Multiply it by thes, which themselves
form a partition of unity. This results in

Z (k"wf(x) . v)f =,
feF.neN

hence the recipe: Attach to edges, facets, etc., the prodtiets A" w/, etc., wheren
spansN. Instead of the usual Whitney spac#d’, with forms of polynomial degree
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FiG. 24.1. Left: “Small” edges, in one-to-one correspondence with the farhas’, and how they are la-
belled. Right: A variant where some small edges, suctkas, are broken lines. These three crooked small
edges, with proper signs, add up to the null chain, hence the compatibility condition of Note 53 is built in.

1 at most, we thus obtain larger spad¥§, with forms of polynomial degree 2 at
most. (For consistency¥” may now be denoterp.) As we shall prove in a moment
(under the assumption of trivial topology, but this is no serious restriction), the complex
they constitute enjoys the exact sequence property: If for instb\ﬁs{n!f bnfk"w«f'
satisfies @ = 0 (which means it has a divergence-free proxy) then there are BQFs
suchthab =d(}_, , a.A"we). (Howto defineW,f’, for polynomial degrees=3, ...,
should now be obvious.)

Note however that, because of Proposition 23.1, these new forms are not linearly
independent. For instance, the span of tH@°s, over a tetrahedron, has dimension
20 instead of the apparent 24, because Proposition 23.1 imposes one linear relation
per facet. Over the whole mesh, witt nodes,E edges,F facets, the two products
Amwe and A"w® for each edger = {m, n}, and the three products’ —¢w® for each
facet f, make a total of Z + 3F generators f0|W21. But with one relation per facet,
the dimension oW3 is only 2E + F). (The spans of the"w"s, ther"w/s, and the
A"w's, have respective dimensions+ E, 3(F + V), and 4. The general formula
is dim(Wz”) =(p+1)(Sp + Sp+1), whereS,, is the number ofp-simplices. Note that
Zp(—l)l’ dim(WZ”) = Zp(—l)"Sp = x, the Euler—Poincaré constant of the meshed
domain.)

Owing to this redundancy, the main problem with these forms is, how to interpret
the DoFs. With standard edge elements, the BgHs the integral of the 1-forna =
> . a.w’ over edge’’. In different words, the square matrix of the circulatide’s w*)
is the identity matrix: edges and edge elementdrackiality in this precise sense (just
like the basis vectors and covect@sand d of Note 26). Here, we cannot expect to
find a family of 1-chains in such duality with the w¢s. The most likely candidates in
this respect, the “small edges” denofade}, etc., on Fig. 24.1, left, don't pass, because
the matrix of the{{n’, ¢'}; A"w¢) is not the identity matrix. If at least this matrix was
regular, finding chains in duality with the basis forms, or the other way round, would be
straightforward. But regular it is not, because of the relations of Proposition 23.1. We
might just omit one small edge out of three on each facet, but this is an ugly solution.
Better to reason in terms dflocksof DoF of various dimensions, and to be content
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with a rearrangement of chains that makes the matrix block-diagonal: Blocks of size 1
for small edges which are part of the “large” ones, blocks of size three for small edges
inside the facets. Each of these 3-blocks corresponds to a subspace of dintension
owing to Proposition 23.1, be it the subspace of forms or of chains. The triple of degrees
of freedom, therefore, is up to an additive constant. Yet, the circul@faitsdetermine
theform, if not the DoF, uniquely (“unisolvence” property).

The reader will easily guess about “small facets” (16 of them on a single tetrahedron,
for a space of dimension(8 + T) = 3(4 + 1) = 15) and “small volumes” (four), in
both variants.

Which leaves us with the task of proving the exact sequence property, that is to say,
the validity of Poincaré’s Lemma in the complex of tW{: Show that @ =0 forb €

sz implies the existence, locally at least,m€& Wé’_l such thab = da. We'll treat the

very case this notation suggests, ife= 2, and assume trivial topology (“contractible”
meshed domain), which does no harm since only a local result is aimed at. We use rot
and div rather than d for more clarity. First, two technical points:

LEMMA 24.1.If >, s Bu) (x) = o for all x, where thegs are real numbers, then
Bn = Bo for all nodesn e V.

ProoF Clear, sincé)_, A" = 1 is the only relation linking the.” (x)s. O
LEMMA 24.2. If a € W1, then2rot(A"a) — 31" rota € W2.

PROOF If a = w® andn = f — e, this results from (23.8). I is one of the end points
of e, e.g.,e = {m, n}, a direct computation, inelegant as it may be, will doA2d
(T dA" — A A = —207 dA" A dA = A dwe. O

Now,

PrRoOPOSITION24.1. If the Wf sequence is exact, th@z” sequence is exact.

PROOF (at levelp = 2). Suppos® = b+ Y., s A"by, With b and all theb,, in W2,

and divb = 0. Taking the divergence of the sum and applying Lemma 24.1 in each
volume, one sees that diy is the same field for alt. So there is some commanin

W2 such that diyb, — b) = 0 for all n, and since thé¥? complex is exact, there is an

a, in Wt such thab, = b +rota,. Hencep = bg+ b+ )", A" rota,. By Lemma 24.2,
there is therefore soniein W2 such thaw = b + 3 rot(3", »"a,). Since divb = 0, the
solenoidab in Wz2 we started from is indeed the curl of some elemerwéf a

Very little is needed to phrase the proof in such a way that the contractibility assump-
tion becomes moot. Actually, the complestf and Wf havethe same cohomology

53since the matrix has no maximal rank, small-edge circulations must satisfy compatibility conditions for
the form to exist. (Indeed, one will easily check that any eIememY%)has a null circulation along the chain
made by the boundary of a facet minus four times the boundary of the small facet inside it.) This raises a
minor problem with the,, map, whose images need not satisfy this condition. The problem is avoided with

a slightly different definition of the small edgesAKEARI [1999]), as suggested on the right of Fig. 24.1.
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FiG. 25.1. The system of projections, in dimension 2.

whatever the topology of the domain and the culling of passive simplices (i.e., those
bearing a null DoF) implied by the boundary conditions.

25. Whitney formsfor other shapesthan simplices

This simple ideaapproximatep-manifolds byp-chains based op-cells of the mesh
is highly productive, as we presently see.

25.1. Hexahedra

First example, the well-known isoparametric elemenkR¢BTOUDIS, IRONS and
ZIENKIEWICZ [1968]) on hexahedra can thus be understood. A 2D explanation
(Fig. 25.1) will suffice, the generalization being easy. Let us take a convex quad-
rangle based on pointsgg, x10, X01, X11, and wonder about which weights” (x)
should be assigned to them (labeldesignates the generic node) in order to have
X =3 00101011 W" (*)x, in asensible way. The weights are obvious Ifes on the
boundary. For instance,if= (1—&)xo0+&x10, @ point we shall denote by o, weights
are{1—£&,£,0,0}. Were itx = xg1 = (1 — £)xo1 + §x11, we would take0,0, 1 — £, §}.

Now, eachx is part of some segmefitzoxz1]1, for auniquevalueé(x) of the weight

&, in which casex = (1 — n)xeo0 + nxe1, for somen = n(x), hence it seems natural to
distribute the previous weights in the same proportion:

x=(1-n))(1—&@))xo0+ (L — n(x))&(x)x10
+ () (1= &(x))x01+ 7€) x11, (25.1)

and we are staring at the basis functions. They form, obviously, a partition of unity.
Looking at what we have done, and generalizing to dimension 3 or higher, we notice a
system of projectiongssociated with a triline&f chart, x — {£(x), n(x), ¢ (x)}, from

54Thus called becausg 7, and¢, though cubic polynomials in terms of the Cartesian coordinates afe
affine functions of each of them, taken separately.
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FIG. 25.2. Weightw*® (xy) is the&n¢-volume of the “hinder region” of y with respect to edge.

a hexahedron to the unit cube §n¢-space. The successive projections (which can be
performed in any order) map a point= xg,, to its imagescg,; andxy,; on opposite
facet§® £ = 0 and¢ = 1, then, recursively, send these images to points on opposite
edges, etc., until eventually a nodés reached. In the process, the weightw™) of x

is recursively determined by formulas such as (assuming for the sake of the example
thatn belongs to the facet = 0)

(xgnes w") = (1= &) (xope; w").
The final weight ofc with respect ta: is thus the product of factors, such as h@re &),
collected during the projection process. (They measure the relative proximity of each
projection to the face towards which next projection will be done.) The last factor in
this product is 1, obtained when the projection reaché3bserve the fact, essential of
course, that whatever the sequence of projections, the partial weights encountered along
the way are the same, only differently ordered, and hence the weighivih respect
to noden is a well-defined quantity.

The viewpoint thus adopted makes the next move obvious. Now, instead of arpoint
we deal with a vectoo atx, small enough for the segment (wherey = x + v) to be
contained in a single hexahedron. The above projectionssand y to facets, edges,
etc. Ending the downward recursion one step higher than previously, at the level of
edges, we get projectionsy, of xy onto all edges. The weight(xy; w¢) is the product
of weights ofx collected along the way, but the last factor is now the algebraic ratio
x.ve/e (Which makes obvious sense) instead of 1. Hence the analytical expression of the
corresponding Whitney form, for instance, in the case of Fig. 26°2 n¢ d¢. (Notice
the built-in “partition of unity” propertyxy = X, (xy; w¢)e.) The proxiesw® = n¢ V&
in this example, were proposed as edge elements for hexahedranoW¥L1J [1985].

55Be aware thaip-faces need not be “flat”, i.e., lie within an affinesubspace fop > 1, in dimension

higher than 2. To avoid problems this would raise, we assume here a mesh generation which enforces this
extra requirement.
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n

" k
FiG. 25.3. There too, weight®(xy) is the relative volume of the hinder region.

One may wonder whether weights such(ag; w¢) have a geometric interpretation
there too. They dotxy; w®) is the relative volume, in theeference hexahedr8h H =
{€,n,¢}: 0<E<1,0<n<1,0<¢ <1, of the “hinder region” of Fig. 25.2, made
of points “behind”xy with respect to edge. This may seem fairly different from the
situation in Fig. 23.4, middle, but a suitable reinterpretation of the system of projections
in the tetrahedron (Fig. 25.3) shows the analogy.

A similar reasoning gives facet elements: the last weight, for a small trianglds
xryrzr/f, which again makes sense: Take the ratio of the areas (an affine notion) of the
images of these surfaces in the reference cube, with-sigrorientations ofx ¢y z ¢
and f match,— otherwise. Whitney forms such as’ = & dnd¢ (when f is the facet
& = 1) result. The proxy of that particular one&¥n x V¢.

25.2. Prisms

So, Cartesian coordinates and barycentric coordinates provide two systems of projec-
tions which make obvious the weight allocation. These systems can be mixed: one of
them in use forp < n dimensions, the other one for the- p remaining dimensions.

In dimension 3, this gives only one new possibility, the prism (Fig. 25.4).

Such a variety of shapes makes the mesh generation more flexibles(D HoDY,
NICOLET, GENON and LEGROS[1994]). Yet, do the elements of a given degree, edge
elements say, fit together properly when one mixes tetrahedra, hexahedra, and prisms?
Yes, because of the recursivity of the weight allocation: If a segmelies entirely in
the facet common to two volumes of different kind, say a tetrahedron and a prism, the
weights(xy; w¢) for edges belonging to this facet only depend on what happens in the
facet, i.e., they are the same as evaluated with both formulas“othe one valid in
the tetrahedron, the one valid in the prism. This is enough to guarantéanipential
continuityof such composite edge elements.

S6Recall that all tetrahedra are affine equivalent, which is why we had no need for a reference one. The
situation is different with hexahedra, which form several orbits under the action of the affine group.
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FIG. 25.5. Projective systems for the same triangle, in the barycentric coordinates on the left, and by degen-
eracy of the quadrilateral system on the right.

25.3. “Degeneracies”

Yet one may yearn for even more flexibility, and edge elementgyfamidshave been
proposed (©ULOMB, ZGAINSKI and MARECHAL [1997], GRADINARU and HPT-
MAIR [1999]). A systematic way to proceed, in this respect, is to recourse to “degener-
ate” versions of the hexahedron or the prism, obtained by fusion of one or more pair of
nodes and or edges.

To grasp the idea, let's begin with the case of the degenerated quadrilateral, in two
dimensions (Fig. 25.5). With the notations of the figure, wH&re:, v} are the barycen-
tric coordinates in the left triangle, the mép, v} — {n, &€}, wheren =v/(u + v) and
& = u + v, sends the interior of the triangle to the interior of the right quadrilateral.
When, by deformation of the latter;g merges withxgg, the projective system of the
guadrilateral generates a new projective system on the triangle.
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FIG. 25.6. Projective systems in four degenerations of the hexahedron. Thick lines indicate the merged edges.

The weights assigned to the nodes, and hence the nodal elements, are the same in
both systems, foén = v for point C (cf. (25.1)),&£(1 — n) = n for B, and the sum
QL—-&@A—n)+ (1 - &)n, attributed toA by adding the loads afpg and xp1, does
equali. But the edge elements differ: FaC, nds = —(1 — 1)~ dx on the right
instead of. dv — vdx on the left,— (1 — )1 dx for AB, and d + (1 — 1)~ 1v dx for
BC. (The singularity of shape functions at poinis never a problem, because integrals
where they appear always converge.)

In dimension 3, the principle is the same: When two edges merge, by degeneration of
a hexahedron or of a prism, the Whitney form of the merger is the sum of the Whitney
forms of the two contributors, which one may wish to rewrite in a coordinate system
adapted to the degenerate solid. Figs. 25.6 and 25.7 show seven degeneracies, all those
that one can obtain from a hexahedron or a prism with plane facets under the constraint
of not creating curved facets in the process. As one sees, the only novel shape is the
pyramid, while the prism is retrieved once and the tetrahedron four times.

But, as was predictible from the 2-dimensional casenga\Whitney forms, on these
solids, that are produced by the merging, because the projection systems are different. In
particular, we have noive distinct projective systems on the tetrahedron (and two on
the pyramid and the prism), and the equality of traces is not automatic any longer. One
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//’\

FIG. 25.7. Projective systems in three degenerations of the prism. Note how the pyramid has two ways to
degenerate towards the tetrahedron.

d
A
o \ Tu
C o >
/
- z A udg €
<~ 0] =
(1-9) 725 dn
(1-9n

FiG. 25.8. Nodal and edge elements for the projective system of Fig. 25.5. One passes from the previous co-
ordinate systenf¢, n, ¢} to the prism-adapteft, A, u, v} system by the formulas=p +v, n=v/(x+v),
withi +p+v=1.

must therefore care about correct assembly, in order to get the same projection system
on each facet.

The advantage of having the pyramid available is thus marred by the necessity of an
extended shape-functions catalogue (on at least two triangular facets of a pyramid, the
projection system cannot match the tetrahedron’s one), and by the existence of cum-
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(1-%v

FIG. 25.9. Degeneration of the prism of Fig. 25.8. Two edges disappear, and a new edge element,
w(@—1)~1dx is created by the merging. The coordinate system is the same here as in Fig. 25,8,.90

should not be confused with barycentric coordinates of this tetranedron. Denoting the laifei b, v},

and using the formulas= 7 + & and¢ =9/(b +k),onehags =i+ v +k=1— A, n={ +&)/(1—1).

Thus, for instance, the shape functiel — A)*l dx rewrites agi(1 — X)*l dx in barycentric coordinates.

bersome assembly rules. Yet, finding the new shape-functions is not too difficult, as
exemplified by Figs. 25.8 and 25.9.

25.4. Star-shaped cells, dual cells

Let's end all this by an indication on how to build Whitney forms on any star-shaped
polyhedron.

Suppose eacp-cell of the meshn, for all p, has been provided with a “center”, in
the precise sense of Section 15, i.e., a point with respect to which the cell is star-shaped.
Then, join the centers in order to obtain a simplicial refinemargay, where the new
sets of p-simplices aregp, the old sets of cells bein§,. In similar style, letu and
U stand for DoF arrays indexed ovéy, and 3,, respectively, with the compatibility
relationu; = Xy Ty for all s in S, the sum running over all small simplices in the
refinement of celk, and the signs taking care of relative orientations. To defipe,
knowing whatp,; U is, we just take themallestin the energy norm, of thg;U’s, with
respect to alli's compatible withu.

The family of interpolants thus obtained is to the cellular mesh, for all purposes, what
Whitney forms were to a simplicial mesh. Whether they deserve to be called “Whit-
ney forms” is debatable, however, because they are metric-dependent, unlike the stan-
dard Whitney forms. The same construction on the dual side provides similar pseudo-
Whitney forms on the dual mesh. (More precisely, there is, as we have observed at the
end of Section 15, a common simplicial refinement of batandn. The process just
defined constructs forms on both, but it's easy to check that the pseudo-Whitneys on the
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primal mesh are just the Whitney forms.) This fills a drawer in the toolkit, the emptiness
of which we took some pain to hide until now, although it was conspicuous at places,
on Fig. 23.1, for instance.






References

ALBANESE, R., RUBINACCI, G. (1988). Integral formulations for 3-D eddy-currents computation using
edge-elementsEE Proc. A135, 457-462.

ARMSTRONG M.A. (1979).Basic Topology{McGraw-Hill, London).

ARNOLD, D.N., BREzzI, F. (1985). Mixed and non-conforming finite element methods: implementation,
postprocessing and error estimaté&AN 19, 7-32.

BABUSKA, |., Aziz, A.K. (1976). On the angle condition in the finite element metf®iAM J. Numer.
Anal. 13, 214-226.

BAEZ, J., MUNIAIN, J.P. (1994)Gauge Fields, Knots and GravifWorld Scientific, Singapore).

BALDOMIR, D., HAMMOND, P. (1996)Geometry of Electromagnetic Systef@xford Univ. Press, Oxford).

BANK, R.E., ROSE D.J. (1987). Some error estimates for the box metisddM J. Numer. Anak4, 777—
787.

BANSCH, E. (1991). Local mesh refinement in 2 and 3 dimensitmpact Comput. Sci. Engrg, 181-191.

BEY, J. (1995). Tetrahedral grid refineme@omputings5, 355-378.

BossaviT, A. (1990a). Eddy-currents and forces in deformable conductors. In: Hsieh, R.K.TMedbhan-
ical Modellings of New Electromagnetic Materials: Proc. IUTAM Symp., Stockholm, April (E396vier,
Amsterdam), pp. 235-242.

BossaAvIT, A. (1990b). Solving Maxwell’'s equations in a closed cavity, and the question of spurious modes.
IEEE Trans. Magn26, 702—705.

BossaviT, A. (1996). A puzzleICS NewsletteB (2), 7;3 (3), 14;4 (1) (1997) 17-18.

BossaviT, A. (1998a).Computational ElectromagnetisfAcademic Press, Boston).

BossaviT, A. (1998b). Computational electromagnetism and geométryapan Soc. Appl. Electromagn.
Mech.6, 17-28, 114-123, 233-240, 318-32§1999) 150-159, 249-301, 401-4@3(2000) 102-109,
203-209, 372-377.

BossavIT, A. (1999). On axial and polar vectol€S Newslette6, 12—-14.

BossaviT, A. (2000). Most general ‘non-local’ boundary conditions for the Maxwell equations in a bounded
region.COMPEL19, 239-245.

BossaviT, A. (2001a). ‘Stiff’ problems in eddy-current theory and the regularization of Maxwell's equa-
tions.|IEEE Trans. Magn37, 3542—-3545.

BossaAvIT, A. (2001b). On the notion of anisotropy of constitutive laws: some implications of the ‘Hodge
implies metric’ result COMPEL20, 233-239.

BossaviT, A. (2001c). On the representation of differential forms by potentials in dimension 3. In:
van Rienen, U., Gunther, M., Hecht, D. (edSgientific Computing in Electrical Engineerii§pringer-
Verlag, Berlin), pp. 97-104.

BossaviT, A. (2003). Mixed-hybrid methods in magnetostatics: complementarity in one stEfkE.Trans.
Magn. 39, 1099-1102.

BossavIT, A., KETTUNEN, L. (1999). Yee-like schemes on a tetrahedral mesh, with diagonal lumping.

J. Numer. Modellindl2, 129-142.

BRANIN JRr., F.H. (1961). An abstract mathematical basis for network analogies and its significance in
physics and engineerinylatrix and Tensor Quarterljt2, 31-49.

BURKE, W.L. (1985).Applied Differential GeometrgCambridge Univ. Press, Cambridge).

D1 CARLO, A., TIERO, A. (1991). The geometry of linear heat conduction. In: Schneider, W., Troger, H.,
Ziegler, F. (eds.)Trends in Applications of Mathematics to Mechar{icangman, Harlow), pp. 281-287.

193



194 A. Bossavit

CARPENTER C.J. (1977). Comparison of alternative formulations of 3-dimensional magnetic-field and eddy-
current problems at power frequenciPsoc. IEE 124, 1026—-1034.

CHAVENT, G., ROBERTS J.E. (1991). A unified presentation of mixed, mixed-hybrid finite elements and
standard finite difference approximations for the determination of velocities in waterflow protfems.
Water Resource#4, 329-348.

CLEMENS, M., WEILAND, T. (1999). Transient eddy-current calculation with the FI-methB&E Trans.
Magn.35, 1163-1166.

COHEN, G., Ly, P., TORDJMAN, N. (1993). Construction and analysis of higher order elements with
mass-lumping for the wave equation. Mathematical Aspects of Wave Propagation Phenont&ivaM,
Philadelphia), pp. 152-160.

COSTABEL, M., DAUGE, M. (1997). Singularités des équations de Maxwell dans un poly&rR. Acad.

Sci. Paris 1324, 1005-1010.

DE COUGNY, H.L., SHEPHARD, M.S. (1999). Parallel refinement and coarsening of tetrahedral méshes.
J. Numer. Meth. Engngi6, 1101-1125.

CouLowmB, J.L., ZGAINsKI, F.X., MARECHAL, Y. (1997). A pyramidal element to link hexahedral, pris-
matic and tetrahedral edge finite elemefE&E Trans. Magn33, 1362-1365.

COURBET, B., CROISILLE, J.P. (1998). Finite volume box schemes on triangular mesiéd.N 32, 631—

649.

VAN DANTZIG, D. (1934). The fundamental equations of electromagnetism, independent of metrical geom-
etry. Proc. Cambridge Phil. So®&0, 421-427.

VAN DANTZIG, D. (1954). On the geometrical representation of elementary physical objects and the relations
between geometry and physidsieuw. Archief vor Wiskundg 73-89.

DIRICHLET, G.L. (1850). Uber die Reduktion der positiven quadratischen Formen mit drei unbestimmten
ganzen Zahlenl. Reine Angew. Mat40, 209.

DULAR, P., HODY, J.-Y., NICOLET, A., GENON, A., LEGROS W. (1994). Mixed finite elements associated
with a collection of tetrahedra, hexahedra and pridEBEE Trans. Magn30, 2980—2983.

EBELING, F., KLATT, R., KRAWCZYK, F., LAWINSKY, E., WEILAND, T., WIPF, S.G., SEFFEN, B.,
BARTS, T., BROWMAN, M.J., COOPER R.K., DEAVEN, H., RODENZ, G. (1989). The 3-D MAFIA
group of electromagnetic coddEEE Trans. Magn25, 2962-2964.

ECKMANN, B. (1999). Topology, algebra, analysis — relations and missing IM&sces AMSI6, 520-527.

ELMKIES, A., JoLv, P. (1997). Eléments finis d’aréte et condensation de masse pour les équations de
Maxwell: le cas de dimension &. R. Acad. Sci. Paris Sér325, 1217-1222.

ERGATOUDIS, J.G., RONS, B.M., ZIENKIEWICZ, O.C. (1968). Curved, isoparametric, ‘quadrilateral’ ele-
ments for finite element analysisit. J. Solids Struct4, 31-42.

FIRESTONE F.A. (1933). A new analogy between mechanical and electrical sysfemsoust. Soc. And,
249-267.

GALLOUET, T., VILA, J.P. (1991). Finite volume element scheme for conservation laws of mixeyxd.

J. Numer. Anal28, 1548-1573.

GELBAUM, B.R., O.MSTED, J.M.H. (1964) Counterexamples in Analygislolden-Day, San Francisco).

GOLDHABER, A.S., TROWER, W.P. (1990). Resource letter MM-1: Magnetic monopokgs.. J. Phys58,
429-439.

GRADINARU, V., HIPTMAIR, R. (1999). Whitney elements on pyrami&SNAS, 154-168.

HALmOS, P.R. (1950)Measure TheoryVan Nostrand, Princeton).

HAMOUDA, L., BANDELIER, B., Rioux-DAMIDAU, F. (2001). Mixed formulation for magnetostatics. In:
Proc. Compumagpaper PE4-11).

HARRISON, J. (1998). Continuity of the integral as a function of the domaiGeometric Anald, 769-795.

HAUGAZEAU, Y., LACOSTE, P. (1993). Condensation de la matrice masse pour les éléments finis mixtes de
H (rot). C. R. Acad. Sci. Paris 316, 509-512.

HEINRICH, B. (1987).Finite Difference Methods on Irregular Networi&kademie-Verlag, Berlin).

HENLE, A. (1994).A Combinatorial Introduction to Topologover, New York).

HiLToN, P.J., WrLIE, S. (1965).Homology Theory, An Introduction to Algebraic Topolo@ambridge
Univ. Press, Cambridge).

HUANG, J., Xi, S. (1998). On the finite volume element method for general self-adjoint elliptic problems.
SIAM J. Numer. AnaB5, 1762-1774.



References 195

HYMAN, J.M., SHAsHKOV, M. (1997). Natural discretizations for the divergence, gradient, and curl on
logically rectangular gridsComput. Math. Appi33, 81-104.

JANICH, K. (2001).Vector AnalysigSpringer, New York).

KAASSCHIETER E.F., HIIJBEN, A.J.M. (1992). Mixed-hybrid finite elements and streamline computation
for the potential flow problenNumer. Meth. PDEB, 221-266.

KAMEARI, A. (1999). Symmetric second order edge elements for triangles and tetraledEaTrans.
Magn.35, 1394-1397.

KHEYFETS, A., WHEELER, J.A. (1986). Boundary of a boundary and geometric structure of field theories.
Int. J. Theor. Phys25, 573-580.

KOENIG, H.E., BLACKWELL, W.A. (1960). Linear graph theory: a fundamental engineering discigiRte.
Trans. Edu3, 42—49.

KOTTLER, F. (1922). Maxwell'sche Gleichungen und Metr&itzungber. Akad. Wien 11E1, 119-146.

Lax, P.D., RCHTMYER, R.D. (1956). Survey of the stability of linear finite difference equati@snm.
Pure Appl. Math9, 267-293.

LEE, J.-F., 3\CKs, Z. (1995). Whitney elements time domain (WETD) methd&EE Trans. Magn31,
1325-1329.

LEIS, R. (1968). Zur Theorie elektromagnetischer Schwingungen in anisotropen inhomogenen Metten.
Z.106, 213-224.

MADSEN, |., TORNEHAVE, J. (1997)From Calculus to Cohomologfambridge Univ. Press, Cambridge).

MAaTTIUSSI, C. (2000). The finite volume, finite element, and finite difference methods as numerical methods
for physical field problemsAdv. Imag. Electron Phy413, 1-146.

MAUBACH, J.M. (1995). Local bisection refinement frsimplicial grids generated by reflecticgBIAM J.

Sci. Stat16, 210-227.

MITTRA, R., RAMAHI, O., KHEBIR, A., GORDON, R., KOukl, A. (1989). A review of absorbing boundary
conditions for two and three-dimensional electromagnetic scattering problEfEE. Trans. Magn25,
3034-3038.

MONK, P., SiLI, E. (1994). A convergence analysis of Yee's scheme on nonuniform &id#1 J. Numer.
Anal.31, 393-412.

MOSE R., SEGEL, P., ACKERER, P., CHAVENT, G. (1994). Application of the mixed hybrid finite element
approximation in a groundwater flow model: Luxury or necessliy&ter Resources Re20, 3001-3012.

MUNTEANU, I. (2002). Tree-cotree condensation properti€s Newsletted, 10-14.

NICOLAIDES, R., WANG, D.-Q. (1998). Convergence analysis of a covolume scheme for Maxwell's equa-
tions in three dimension#lath. Comp67, 947-963.

PosT, E.J. (1972). The constitutive map and some of its ramificatidna. Phys71, 497-518.

RAPETTI, F., DuBOIS, F., BossaviT, A. (2002). Integer matrix factorization for mesh defect detectidrir.
Acad. Sci. Pari834, 717-720.

REN, Z. (1996). Autogauging of vector potential by iterative solver — numerical evidencad Imt. Work-
shop on Electric and Magnetic Fields, A.l.M. (31 Rue St-Gilles, Ligue)119-124.

DE RHAM, G. (1936). Relations entre la topologie et la théorie des intégrales multiplesseignement
Math. 35, 213-228.

DE RHAM, G. (1960).Variétés différentiableéHermann, Paris).

ROSEN, J. (1973). Transformation properties of electromagnetic quantities under space inversion, time rever-
sal, and charge conjugatioAm. J. Phys41, 586-588.

RUDIN, W. (1973).Functional AnalysigMcGraw-Hill, New York).

SCHATZ, A.H., SLOAN, |.H., WAHLBIN, L.B. (1996). Superconvergence in finite element methods and
meshes that are locally symmetric with respect to a p&#M J. Numer. AnaB3, 505-521.

SCHOUTEN, J.A. (1989).Tensor Analysis for Physicis(®over, New York).

SCHUTZ, B. (1980).Geometrical Methods of Mathematical Phys{€ambridge Univ. Press, Cambridge).

SEIFERT, H., THRELFALL, W. (1980).A Textbook of TopologjAcademic Press, Orlando) (first German ed.,
1934).

SHAW, R., YEADON, F.J. (1989). Orja x b) x c. Am. Math. Monthl\86, 623—-629.

SMYTH, J.B., SuyTH, D.C. (1977). Critique of the paper ‘The electromagnetic radiation from a finite an-
tenna’.Am. J. Phys45, 581-582.

SORKIN, R. (1975). The electromagnetic field on a simplicial deMath. Phys16, 2432—2440.



196 A. Bossavit

SuLr, E. (1991). Convergence of finite volume schemes for Poisson’s equation on nonuniform rSéahes.
J. Numer. Anal28, 1419-1430.

TAYLOR, E.F., WHEELER, J.A. (1992) Spacetime Physi¢sreeman, New York).

TEIXEIRA, F.L., CHEW, W.C. (1999). Lattice electromagnetic theory from a topological viewpdirklath.
Phys.40, 169-187.

ToNTI, E. (1996). On the geometrical structure of electromagnetism. In: Ferrarese, G Qexitation,
Electromagnetism and Geometrical Structuf@gagora, Bologna), pp. 281-308.

ToNTI, E. (2001). A direct formulation of field laws: the cell meth@MES2, 237-258.

TRAPP, B., MUNTEANU, |., SCHUHMANN, R., WEILAND, T., I0AN, D. (2002). Eigenvalue computation
by means of a tree—cotree filtering technigigEE Trans. Magn38, 445-448.

UMAN, M.A. (1977). Reply to Smyth and SmytAm. J. Phys45, 582.

VEBLEN, O., WHITEHEAD, J.H.C. (1932). The Foundations of Differential Geometf€ambridge Univ.
Press, Cambridge).

WEILAND, T. (1992). Maxwell’'s grid equations. Iferoc. URSI Int. Symp. Electromagnetic Theory, Sydney
pp. 37-39.

WEILAND, T. (1996). Time domain electromagnetic field computation with finite difference methad3.
Numer. Modellingd, 295-319.

WEILAND, T. (1985). Three dimensional resonator mode computation by finite difference metB&ds.
Trans. Magn21, 2340-2343.

WEISER, A., WHEELER, M.F. (1988). On convergence of block-centered finite differences for elliptic prob-
lems.SIAM J. Numer. AnaR5, 351-375.

VAN WELIJ, J.S. (1985). Calculation of eddy currents in termg#obn hexahedrdEEE Trans. Magn21,
2239-2241.

WHITE, D.A., KONING, J.M. (2000). A novel approach for computing solenoidal eigenmodes of the vector
Helmholtz equation. CEFC’00 (p. 328 of the “digest of abstracts”).

WHITNEY, H. (1957).Geometric Integration Theor{Princeton Univ. Press, Princeton).

YEE, K.S. (1966). Numerical solution of initial boundary value problems involving Maxwell’s equations in
isotropic medialEEE Trans. AP14, 302-307.

YOSIDA, K. (1980).Functional AnalysigSpringer-Verlag, Berlin) (first ed., 1965).

Further reading

Dobziuk, J. (1976). Finite-difference approach to the Hodge theory of harmonic fémmer. J. Math98,
79-104.

FRANKEL, T. (1997).The Geometry of Physics, An Introducti@ambridge Univ. Press, Cambridge).

HIPTMAIR, R. (2001). Discrete Hodge operatoPsogress in Electromagnetics Resea82h 122—-150.

KOTIUGA, P.R. (1984). Hodge decompositions and computational electromagnetics. Thesis (Department of
Electrical Engng., McGill University, Montréal).

MAXWELL, J.C. (1864). On reciprocal figures and diagrams of foread. Mag. Ser4, 250-261.

VON MISES, R. (1952). On network methods in conformal mapping and in related problems. In: Appl. Math.
Seriesl8 (US Department of Commerce, NBS), pp. 1-6.

MULLER, W. (1978). Analytic torsion an&-torsion of Riemannian manifoldédv. Math.28, 233-305.

NEDELEC, J.C. (1980). Mixed finite elements R&3. Numer. Math35, 315-341.

PosT, E.J. (1979). Kottler—Cartan—van Dantzig (KCD) and noninertial systeasid. Phys9, 619-640.

PosT, E.J. (1984). The metric dependence of four-dimensional formulations of electromagrietidath.
Phys.25, 612—613.

REN, Z., IDA, N. (2002). High-order elements of complete and incomplete bases in electromagnetic field
computationlEE Proc. Science, Measurement and Technolbtgy 147-151.

SILVESTER, P., HARI, M.V.K. (1970). Finite element solution of saturable magnetic field probléBsE
Trans. PASB9, 1642-1651.

TAFLOVE, A. (1995).Computational Electromagnetics: The Finite-Difference Time-Domain Methddch
House, Boston).



References 197

XIANG, YOU-QING, ZHOU, KE-DING, LI, LANG-RU (1989). A new network-field model for numerical
analysis of electromagnetic field. In: Shunnian, Ding (elgctromagnetic Fields in Electrical Engineer-
ing: Proc. BISEF'88, October 19-21, Beijir(@ergamon Press, Oxford), pp. 391-398.

YiouLTsis, T.V., TsiBoukis, T.D. (1997). Development and implementation of second and third order
vector finite elementdEEE Trans. Magn33, 1812—-1815.



	Discretization of Electromagnetic Problems: The ``Generalized Finite Differences'' Approach
	Chapter I
	Affine space
	Piecewise smooth manifolds
	Orientation
	Oriented spaces
	Oriented manifolds
	Induced orientation
	Inner vs outer orientation of submanifolds

	Chains, boundary operator
	Metric notions

	Chapter II
	Integration: Circulation, flux, etc.
	Differential forms, and their physical relevance
	The Stokes theorem
	The magnetic field, as a 2-form
	Faraday and Ampère
	The Hodge operator
	The Maxwell equations: Discussion
	Boundary conditions, transmission conditions
	Wedge product, energy
	The ``Maxwell house''


	Chapter III
	A model problem
	Primal mesh
	Dual mesh
	A discretization kit
	Network equations, discrete Hodge operator
	The toolkit

	Playing with the kit: Full Maxwell
	Playing with the kit: Statics
	Playing with the kit: Miscellanies

	Chapter IV
	Consistency
	Stability
	The time-dependent case
	Whitney forms
	Whitney forms as a device to approximate manifolds
	A generating formula
	Properties of Whitney forms
	``Partition of unity''

	Higher-degree forms
	Whitney forms for other shapes than simplices
	Hexahedra
	Prisms
	``Degeneracies''
	Star-shaped cells, dual cells


	References
	Further reading



