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CHAPTER I

Preliminaries: Euclidean Space

What we shall do in this preliminary chapter (Sections 1–5, out of a total of 25) can
be described as “deconstructing Euclidean space”. Three-dimensional Euclidean space,
denoted byE3 here, is a relatively involved mathematical structure, made of an affine
3D space (more on this below), equipped with a metric and an orientation. By taking the
Cartesian product of that with another Euclidean space, one-dimensional and meant to
represent Time, one gets the mathematical framework in which most of classical physics
is described. This framework is often taken for granted, and should not.

By this we do not mean to challenge the separation between space and (absolute)
time, which would be getting off to a late start, by a good century. Relativity is not
our concern here, because we won’t deal with moving conductors, which makes it all
right to adopt a privileged reference frame (the so-called laboratory frame) and a unique
chronometry. The problem we perceive is withE3 itself, too rich a structure in several
respects. For one thing, orientation of space isnot necessary. (How could it be? How
could physical phenomena depend on this social convention by which we class right-
handed and left-handed helices, such as shells or staircases?) And yet, properties of the
cross product, or of the curl operator, so essential tools in electromagnetism, crucially
depend on orientation. As for metric (i.e., the existence of a dot product, from which
norms of vectors and distances between points are derived), it also seems to be involved
in the two main equations,∂tB + rot E= 0 (Faraday’s law) and−∂tD + rot H= J (Am-
père’s theorem), since the definition of rot depends on the metric. We shall discover that
it plays no role there, actually, because a change of metric, in the description of some
electromagnetic phenomenon, would changebothrot and the vector fields E,B, etc., in
such a way that the equations would stay unchanged. Metric is no less essential for that,
but its intervention is limited to the expression of constitutive laws, that is, to what will
replace in our notation the standard B= µH and D= εE.1

Our purpose, therefore, is to separate the various layers present in the structure of
E3, in view of using exactly what is needed, and nothing more, for each subpart of
the Maxwell system of equations. That this can be done is no news: As reported by
POST[1972], the metric-free character of the two main Maxwell equations was pointed
out by Cartan, as early as 1924, and also by KOTTLER [1922] and VAN DANTZIG

[1934]. But the exploitation of this remark in the design of numerical schemes is

1We shall most often ignore Ohm’s law here, for shortness, and therefore, treat the current density J as a
data. It would be straightforward to supplement the equations by the relation J= σE + Js , where only the
“source current” Js is known in advance.
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a contemporary thing, which owes much to (again, working independently) TONTI

[2001], Tonti (see TONTI [1996], MATTIUSSI [2000]) and Weiland (see EBELING,
KLATT, KRAWCZYK, LAWINSKY, WEILAND , WIPF, STEFFEN, BARTS, BROWMAN,
COOPER, DEAVEN and RODENZ [1989], WEILAND [1996]). See also SORKIN [1975],
HYMAN and SHASHKOV [1997], TEIXEIRA and CHEW [1999]. Even more recent
(BOSSAVIT and KETTUNEN [1999], MATTIUSSI [2000]) is the realization that such
attention to the underlying geometry would permit to soften the traditional distinctions
between finite-difference, finite-element, and finite-volume approaches. In particular,
it will be seen here that a common approach to error analysis applies to the three of
them, which does rely on the existence of finite elements, but not on the variational
methods that are often considered as foundational in finite element theory. These finite
elements, moreover, are not of the Lagrange (node based) flavor. They are differential
geometric objects, created long ago for other purposes, the Whitney forms (WHITNEY

[1957]), whose main characteristic is the interpretation they suggest of degrees of free-
dom (DoF) as integrals over geometric elements (edges, facets,. . . ) of the discretization
mesh.

As a preparation to this deconstruction process, we need to recall a few notions of
geometry and algebra which do not seem to get, in most curricula, the treatment they
deserve. First on this agenda is the distinction between vector space and affine space.

1. Affine space

A vector space2 on the reals is a set of objects calledvectors, which one can (1) add
together (in such a way that they form an Abelian group, the neutral element being
the null vector) and (2) multiply by real numbers. No need to recall the axioms which
harmonize these two groups of features. Our point is this: The three-dimensional vector
space (for which our notation will beV3) makes an awkward model of physical space,3

unless one deals with situations with a privileged point, such as for instance a center
of mass, which allows one to identify a spatial pointx with the translation vector that
sends this privileged point tox. Otherwise, the idea to add points, or to multiply them
by a scalar, is ludicrous. On the other hand, taking the midpoint of two points, or more
generally, barycenters, makes sense, and is an allowed operation in affine space, as will
follow from the definition.

An affine spaceis a set on which a vector space, considered as an additive group, acts
effectively, transitively and regularly. Let’s elaborate.

A group G actson a setX if for eachg ∈ G there is a map fromX to X, that we
shall denote byag , such thata1 is the identity map, andagh = agah. (Symbol 1 denotes

2Most definitions will be implicit, with the defined term set, on first appearance, initalics style. The same
style is also used, occasionally, for emphasis.

3Taking R
3, the set of triples of real numbers, with all the topological and metric properties inherited

from R, is even worse, for this implies that some basis{∂1, ∂2, ∂3} has been selected inV3, thanks to which
a vectorv writes asv = ∑

i vi∂i , hence the identification betweenv and the triple{vi } of components (or
coordinates of the pointv stands for). In most situations which require mathematical modelling, no such basis
imposes itself. There may exist privileged directions, as when the device to be modelled has some kind of
translational invariance, but even this does not always mandate a choice of basis.
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the neutral element, and will later double for the group made of this unique element.)
The action iseffectiveif ag = 1 impliesg = 1, that is to say, if all nontrivial group
elements “do something” toX. Theorbit of x under the action is the set{ag(x): g ∈ G}
of transforms ofx. Belonging to the same orbit is an equivalence relation between
points. One says the action istransitive if all points are thus equivalent, i.e., if there
is a single orbit. Theisotropy group(or stabilizer, or little group) ofx is the subgroup
Gx = {g ∈ G: ag(x) = x} of elements ofG which fix x. In the case of a transitive
action, little groups of all points are conjugate (becausegxyGy = Gxgxy , wheregxy

is any group element whose action takesx to y), and thus “the same” in some sense.
A transitive action isregular (or free) if it has no fixed point, that is, ifGx = 1 for all x.
If so is the case,X andG are in one-to-one correspondence, so they look very much
alike. Yet they should not be identified, for they have quite distinctive structures. Hence
the concept ofhomogeneous space: A set,X here, on which some group acts transitively
and effectively. (A standard example is given by the two-dimensional sphereS2 under
the action of the groupSO3 of rotations around its center.) If, moreover, the little group
is trivial (regular action), the only difference between the homogeneous spaceX and the
groupG lies in the existence of a distinguished element inG, the neutral one. Selecting
a point 0 inX (the origin) and then identifyingag(0) with g (and hence 0 inX with the
neutral element ofG) providesX with a group structure, but the isomorphism withG

thus established is not canonical, and this group structure is most often irrelevant, just
like the vector-space structure of 3D space.

Affine space is a case in point. Intuitively, take then-dimensional vector spaceVn,
and forget about the origin: What remains isAn, the affine space of dimensionn. More
rigorously, a vector spaceV , considered as an additive group, acts on itself (now con-
sidered as just a set, which we acknowledge by calling its elementspoints, instead of
vectors) by the mappings4 av = x → x + v, calledtranslations. This action is transi-
tive, because for any pair of points{x, y}, there is a vectorv such thaty = x + v, and
regular, becausex + v �= x if v �= 0, whateverx. The structure formed byV as a set
equipped with this group action is called theaffine spaceA associated withV . Each
vector ofV has thus become a point ofA, but there is nothing special any longer with
the vector 0, as a point inA. Reversing the viewpoint, one can say that an affine spaceA

is a homogeneous space with respect to the action of some vector spaceV , considered
as an additive group. (Points ofA will be denotedx, y, etc., andy − x will stand, by a
natural notational abuse, for the vector that carriesx to y.) The most common example
is obtained by considering as equivalent, in some vector spaceV , two vectorsu andv

such thatu − v belong to some fixed vector subspaceW . Each equivalence class has an
obvious affine structure (W acts on it regularly byv → v + w). Such a class is called
anaffine subspaceof V , parallel to W 5 (see Fig. 1.1) Of course, no vector in such an

4We’ll find it convenient to denote a mapf by x → Expr(x), where Expr is the defining expression, and to
link name and definition by writingf = x → Expr(x). (The arrow is a “stronger link” than the equal sign in
this expression.) In the same spirit,X → Y denotes the set of all maps “of typeX → Y ”, that is, maps from
X to Y , not necessarily defined over allX. Pointsx for whichf is defined form itsdomaindom(f ) ⊂ X, and
their images form thecodomaincod(f ) ⊂ Y , also called therangeof f .

5Notice how the set of all affine subspaces parallel toW also constitutes an affine space under the action
of V , or more pointedly – because then the action is regular – of the quotient spaceV/W . A “point”, there, is
a whole affine subspace.
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FIG. 1.1. No point in the affine subspaceA, parallel toW , can claim the role of “origin” there.

affine subspace qualifies more than any other as origin, and calling its elements “points”
rather than “vectors” is therefore appropriate.

At this stage, we may introduce thebarycenterof pointsx andy, with weightsλ and
1− λ, as the translatex + λ(y − x) of x by the vectorλ(y − x), and generalize to any
number of points. The concepts of affine independence, dimension of the affine space,
and affine subspaces follow from the similar ones about the vector space.Barycentric
coordinates, with respect ton+1 affinely independent points{a0, . . . , an} in An are the
weightsλi(x) such that

∑
i λ

i(x) = 1 and
∑

i λ
i(x)(x − ai) = 0, which we shall feel

free to writex = ∑
i λ

i(x)ai . Affine mapsonAn are those that are linear with respect to
the barycentric coordinates. Ifx is a point in affine spaceA, vectors of the formy−x are
calledvectors atx. They form of course a vector space isomorphic to the associateV ,
called thetangent space atx, denotedTx . (I will call freevectors the elements ofV , as
opposed to vectors “at” some point, dubbedbound(or anchored)vectors. Be aware that
this usage is not universal.) The tangent space to a curve or a surface which containsx

is the subspace ofTx formed by vectors atx tangent to this curve or surface.6 Note
that vector fields are maps of typePOINT → BOUND_VECTOR, actually, subject to
the restriction that the value ofv at x, notatedv(x), is a vector atx. The distinction
between this and aPOINT → FREE_VECTORmap, which may seem pedantic when
the point spans ordinary space, must obviously be maintained in the case of tangent
vector fields defined over a surface or a curve.

Homogeneous space is a key concept: Here is the mathematical construct by which
we can best model humankind’sphysicalexperience of spatial homogeneity. Translat-
ing from a spatial location to another, we notice that similar experiments give similar
results, hence the concept of invariance of the structure of space with respect to the
group of such motions. By taking as mathematical model of space a homogeneous
space relative to the action of this group (in which we recognizeV3, by observing how
translations compose), we therefore acknowledge an essentialphysicalproperty of the
space we live in.

REMARK 1.1. In fact, translational invariance is only approximately verified, so one
should perhaps approach this basic modelling issue more cautiously: Imagine space as

6For a piecewise smooth manifold (see below), such a subspace may fail to exist at some points, which will
not be a problem.
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a seamless assembly (via smooth transition functions) of patches of affine space, each
point covered by at least one of them, which is enough to capture the idea oflocal
translational invariance of physical space. This idea gets realized with the concept of
smooth manifold (see below) of dimension 3. What we shall eventually recognize as
the metric-free part of the Maxwell’s system (Ampère’s and Faraday’s laws) depends
on the manifold structure only. Therefore, postulating an affine structure is amodelling
decision, one that goes a trifle beyond what would strictly be necessary to account for
the homogeneity of space, but will make some technical discussions easier when (about
Whitney forms) barycentric coordinates will come to the fore.

There is no notion of distance in affine space, but this doesn’t mean no topology:
Taking the preimages of neighborhoods ofR

n under any one-to-one affine map gives
a system of neighborhoods, hence a topology – the same for all such maps. (So we
shall talk loosely of a “ball” or a “half ball” in reference to an affine one-to-one image
of B = {ξ ∈ R

n:
∑

i (ξ
i)2 < 1} or of B ∩ {ξ : ξ1 � 0}.) Continuity and differentiability

thus make sense for a functionf of typeAp → An. In particular, the derivative off atx
is the linear map Df (x), fromVp to Vn, such that|f (x +v)−f (x)−Df (x)(v)|/|v| =
o(|v|), if such a map exists, which does not depend on which norms| | on Vp andVn

are used to check the property. The same symbol, Df (x), will be used for thetangent
mapthat sends a vectorv anchored atx to the vector Df (x)(v) anchored atf (x).

2. Piecewise smooth manifolds

We will do without a formal treatment of manifolds. Most often, we shall just use the
word as a generic term for lines, surfaces, or regions of space (p = 1,2,3, respectively),
piecewise smooth (as defined in a moment), connected or not, with or without a bound-
ary. A 0-manifold is a collection of isolated points.

For the rare cases when the general concept is evoked, suffice it to say that ap-di-
mensional manifold is a setM equipped with a set of maps of typeM → R

p, called
charts, which makeM look, for all purposes, but only locally, likeRp (and hence, like
p-dimensional affine space).Smoothmanifolds are those for which the so-calledtransi-
tion functionsϕ ◦ψ−1, for any pair{ϕ,ψ} of charts, are smooth, i.e., possess derivatives
of all orders. (So-calledCk manifolds obtain when continuous derivatives exist up to
orderk.) Then, if some propertyP makes sense for functions of typeR

p → X, where
X is some target space,f from M to X is reputed to have propertyP if all composite
functionsf ◦ ϕ−1, now of typeR

p → X, have it. A manifoldM with boundaryhas
points where it “looks, locally, like” a closed half-space ofR

p; these points form, taken
together, a (boundaryless)(p − 1)-manifold∂M , called theboundaryof M . Connect-
edness is not required: A manifold can be in several pieces, all of the same dimensionp.

In practice, our manifolds will be glued assemblies ofcells, as follows.
First, let us define “reference cells” inRp, as illustrated on Fig. 2.1. These are

bounded convex polytopes of the form

(2.1)Kα
p =

{
ξ ∈ R

p: ξ l � 0 ∀l = 1, . . . , p,

p∑
j=1

αi
j ξ

j � 1 ∀i = 1, . . . , k

}
,
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FIG. 2.1. Some cells inA3, of dimensions 0, 1, 2.

where theαi
j ’s form a rectangular (k × p)-matrix with nonnegative entries, and no re-

dundant rows.
Now, ap-cell in An, with 0� p � n, is a smooth mapc from someKα

p into An, one-
to-one, and such that the derivative Dc(ξ) has rankp for all ξ in Kα

p . (These restrictions,
which qualifyc as anembedding, are meant to exclude double points, and cusps, pleats,
etc., which smoothness alone is not enough to warrant.) The same symbolc will serve
for the map and for the imagec(Kα

p). Theboundary∂c of the cell is the image underc
of the topological boundary ofKα

p , i.e., of pointsξ for which at least one equality holds
in (2.1). Remark that∂c is an assembly of(p − 1)-cells, which themselves intersect, if
they do, along parts of their boundaries.

Thus, a 0-cell is just a point. A 1-cell, or “path”, is a simple parameterized curve.
The simplest 2-cell is the triangular “patch”, a smooth embedding of the triangle
{ξ : ξ1 � 0, ξ2 � 0, ξ1 + ξ2 � 1}. The definition is intended to leave room for polyg-
onal patches as well, and for three-dimensional “blobs”, i.e., smooth embeddings of
convex polyhedra.

We shall have use for theopencell corresponding to a cellc (then called aclosedcell
for contrast), defined as the restriction ofc to the interior of its reference cell.

A subsetM of An will be called apiecewise smoothp-manifold if (1) there exists a
finite family C = {ci : i = 1, . . . ,m} of p-cells whose union isM , (2) the open cell cor-
responding toci intersects no other cell, (3) intersectionsci ∩ cj are piecewise smooth
(p − 1)-manifolds (the recursive twist in this clause disentangles atp = 0), (4) the cells
are properly joined at their boundaries,7 i.e., in such a way that each point ofM has a
neighborhood inM homeomorphic to either ap-ball or half ap-ball.

Informally, therefore, piecewise smooth manifolds are glued assemblies of cells, ob-
tained by topological identification of parts of their respective boundaries. (SurfaceS in
Fig. 4.1, below, is typical.)

7This is regrettably technical, but it can’t be helped, ifM is to be a manifold. The assembly ofthreecurves
with a common endpoint, for instance, is not a manifold. See also HENLE [1994] for examples of 3D-spaces
obtained by identification of facets of some polyhedra, which fail to be manifolds. Condition (2) forbids
self-intersections, which is overly drastic and could be avoided, but will not be too restrictive in practice.
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Having introduced this category of objects – which we shall just call manifolds, from
now on – we should, as it is the rule and almost a reflex in mathematical work, deal with
maps between such objects, calledmorphisms, that preserve their relevant structures.
About cells, first: A map between two images of the same reference cell which is bijec-
tive and smooth (in both directions) is called adiffeomorphism. Now, about our mani-
folds: There is apiecewise smooth diffeomorphismbetween two of them (and there too,
we shall usually dispense with the “piecewise smooth” qualifier) if they are homeomor-
phic and can both be chopped into sets of cells which are, two by two, diffeomorphic.

3. Orientation

To get oneself oriented, in the vernacular, consists in knowing where is South, which
way is uptown, etc. To orient a map, one makes its upper side face North. Pigeons, and
some persons, have a sense of orientation. And so forth.Nothingof this kind is implied
by the mathematical concept of orientation – which may explain why so simple a notion
may be so puzzling to many. Not that mathematical orientation has no counterpart in
everyday’s life, it has, but in something else: When entering a roundabout or a circle
with a car, you know whether you should turn clockwise or counterclockwise.That
is orientation, as regards the ground’s surface. Notice how it depends on customs and
law. For the spatial version of it, observe what “right-handed” means, as applied to a
staircase or a corkscrew.

3.1. Oriented spaces

Now let us give the formal definition. Aframein Vn is an orderedn-tuple of linearly in-
dependent vectors. Select a basis (which is thus a frame among others), and for each
frame, look at the determinant of itsn vectors, as expressed in this basis, hence a
FRAME→ REAL function. This function is basis-dependent, but the equivalence re-
lation defined by “f ≡ f ′ if and only if framesf andf ′ have determinants of the same
sign” does not depend on the chosen basis, and is thus intrinsic to the structure ofVn.
There are two equivalence classes with respect to this relation. OrientingVn consists
in designating one of them as the class of “positively oriented” frames. This amounts
to defining a function, which assigns to each frame a label, eitherdirect or skew, two
equivalent frames getting the same label. There are two such functions, therefore two
possible orientations. Anoriented vector spaceis thus a pair{V,Or}, whereOr is one of
the two orientation classes ofV . (Equivalently, one may define an oriented vector space
as a pair{vector space, privileged basis}, provided it’s well understood that this basis
plays no other role than specifying the orientation.) We shall find convenient to extend
the notion to a vector space of dimension 0 (i.e., one reduced to the single element 0),
to which also correspond, by convention, two oriented vector spaces, labelled+ and−.

REMARK 3.1. Once a vector space has been oriented, there are direct and skewframes,
but there is no such thing as direct or skewvectors, except, one may concede, in dimen-
sion 1. A vector does not acquire new features just because the space where it belongs
has been oriented! Part of the confusion around the notion of “axial” (vs. “polar”) vec-
tors stems from this semantic difficulty (BOSSAVIT [1998a, p. 296]). As axial vectors
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will not be used here, the following description should be enough to deal with the issue.
Let’s agree that, ifOr is one of the orientation classes ofV , the expression−Or denotes
the other class. Now, form pairs{v,Or}, wherev is a vector andOr any orientation
class ofV , and consider two pairs{v,Or} and{v′,Or′} as equivalent whenv′ = −v and
Or′ = −Or. Axial vectorsare, by definition, the equivalence classes of such pairs. (Polar
vectors is just a redundant name, inspired by a well-minded sense of equity, for vectors
of V .) Notice that axialscalarscan be defined the same way: substitute a real number for
v. Hence axial vector fields and axial functions (more often called “pseudo-functions” in
physics texts). The point of defining such objects is to become able to express Maxwell’s
equations innon-oriented Euclidean space, i.e.,V3 with a dot product but no specific
orientation. See BOSSAVIT [1998b] or [1999] for references and a discussion.

An affine space, now, is oriented by orienting its vector associate: abound frameatx
in An, i.e., a set ofn independent vectors atx, is direct (respectively skew) if thesen
vectors form a direct (respectively skew) frame inVn.

Vector subspaces of a given vector space (or affine subspaces of an affine space8)
can have their own orientation. Orienting a line, in particular, means selecting a vector
parallel to it, called adirectorvector for the line, which specifies the “forward” direction
along it.

Such orientations of different subspaces are a priori unrelated. Orienting 3D space by
the corkscrew rule, for instance, does not imply any orientation in a given plane. This
remark may hurt common sense, for we are used to think of the standard orientation of
space and of, say, a horizontal plane, as somehow related. And they are, indeed, but only
because we think of vertical lines as oriented, bottom up. This is the convention known
asAmpère’s rule. To explain what happens there, suppose space is oriented, and some
privileged straightline is oriented too, on its own. Then, any planetransverseto this line
(i.e., thus placed that the intersection reduces to a single point) inherits an orientation,
as follows: To know whether a frame in the plane is direct or skew, make a list of vectors
composed of, in this order, (1) the line’s director, (2) the vectors of the planar frame;
hence an enlarged spatial frame, which is either direct or skew, which tells us about the
status of the plane frame.

More generally, there is an interplay between the orientations of complementary
subspaces and those of the encompassing space. Recall that two subspacesU andW

of V arecomplementaryif their spanis all V (i.e., eachv in V can be decomposed as
v = u + w, with u in U andw in W ) and if they aretransverse(U ∩ W = {0}, which
makes the decomposition unique). We shall refer toV as the “ambient” space, and write
V = U +W . If bothU andW have orientation, this orientsV , by the following conven-
tion: the frame obtained by listing the vectors of a direct frame inU first, then those of
a direct frame inW , is direct. Conversely, if bothU andV are oriented, one may orient
W as follows: to know whether a given frame inW is direct or skew, list its vectors be-
hind those of a direct frame ofU , and check whether the enlarged frame thus obtained
is direct or skew inV . This is a natural generalization of Ampère’s rule.

8An affine subspace is oriented by orienting the parallel vector subspace. A point, which is an affine sub-
space parallel to{0}, can therefore be oriented, which we shall mark by apposing a sign to it,+ or −.
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FIG. 3.1. Left: Specifying a “crossing direction” through a planeW by inner-orienting a lineU transverse
to it. Right: Outer-orientingU , i.e., giving a sense of going around it, by inner-orientingW .

FIG. 3.2. Left: How an externally oriented line acquires inner orientation, depending on the orientation of
ambient space. (Alternative interpretation: if one knows both orientations, inner and outer, for a line, one
knows the ambient orientation.) Right: Assigning to a surface a crossing direction (here from region “−”
below to region “+” above) will not by itself imply an inner orientation. But it does if ambient space is
oriented, as seen in (b) and (b′). Figs. 3.2(a) and 3.2(b) can be understood as an explanation of Ampère’s rule,

in which the ambient orientation is, by convention, the one shown here by the “right corkscrew” icon.

Now what if U is oriented, but ambient space is not? IsU ’s orientation of any rele-
vance to the complementW? Yes, as Fig. 3.1 suggests (left): For instance, ifW has di-
mensionn− 1, an orientation of the one-dimensional complementU can be interpreted
as a crossing direction relative toW , an obviously useful notion. (Flow of something
through a surface, for instance, presupposes a crossing direction.) Hence the concept
of external, or outer orientationof subspaces ofV : Outer orientation of a subspace is,
by definition, an orientation of one9 of its complements. Outer orientation ofV itself
is thus a sign,+ or −. (For contrast and clarity, we shall callinner orientation what
was simply “orientation” up to this point.) The notion (which one can trace back to Ve-
blen (VEBLEN and WHITEHEAD [1932]), cf. VAN DANTZIG [1954] and SCHOUTEN

[1989]) passes to affine subspaces of an affine space the obvious way.
Note thatif ambient space is oriented, outer orientation determines inner orientation

(Fig. 3.2). But otherwise, the two kinds of orientation are independent. As we shall see,
they cater for different needs in modelling.

9Nothing ambiguous in that. There is a canonical linear map between two complementsW1 andW2 of the
same subspaceU , namely, the “affine projection”πU alongU , thus defined: forv in W1, setπU (v) = v + u,
whereu is the unique vector inU such thatv + u ∈ W2. UseπU to transfer orientation fromW1 to W2.
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3.2. Oriented manifolds

Orientation can be defined for other figures than linear subspaces. Connected parts of
affine subspaces, such as polygonal facets, or line segments, can be oriented by ori-
enting the supporting subspace (i.e., the smallest one containing them). Smooth lines
and surfaces as a whole are oriented by attributing orientations to all their tangents or
tangent planes in a consistent way.

“Consistent”? Let’s explain what that means, in the case of a surface. First, subspaces
parallel to the tangent planes at all points in the neighborhoodN(x) of a given surface
point x have, ifN(x) is taken small enough, a common complement, characterized by
a directorn(x) (not the “normal” vector, since we have no notion of orthogonality at
this stage, but the idea is the same). ThenN(x) is consistently oriented if all these
orientations correspond via the affine projection alongn(x) (cf. Note 9). But this is
only local consistency, which can always be achieved, and one wants more:global
consistency, which holds if the surface can be covered by such neighborhoods, with
consistent orientation in each non-empty intersectionN(x) ∩ N(y). This may not be
feasible, as in the case of a Möbius band, hence the distinction between (internally)
orientable and non-orientable manifolds.

Cells, as defined above, are inner orientable, thanks to the fact that Dc does not van-
ish. For instance (cf. Fig. 3.3), for a pathc, i.e., a smooth embeddingt → c(t) from
[0,1] to An, the tangent vectors∂t c(t) determine consistent orientations of their sup-
porting lines, hence an orientation of the path. (The other orientation would be obtained
by starting from the “reverse” path,t → c(1− t).) Same with a patch{s, t} → S(s, t) on
the triangleT = {{s, t}: 0� s, 0� t, s + t � 1}: The vectors∂sS(s, t) and∂tS(s, t), in
this order, form a basis atS(s, t) which orients the tangent plane, and these orientations
are consistent.

As for piecewise smooth manifolds, finally, the problem is at pointsx where cells
join, for a tangent subspace may not exist there. But according to our conventions, there
must be a neighborhood homeomorphic to a ball or half-ball, whichis orientable, hence
a way to check whether tangent subspaces at regular points in the vicinity ofx have
consistent orientations, and therefore, to check whether the manifold as a whole is or is
not orientable.

FIG. 3.3. A path and a patch, with natural inner orientations. Observe how their boundaries are themselves
assemblies of cells:∂c = c(0) − c(1) and∂S = c1 − c2 + c3, with a notation soon to be introduced more
formally. Pathsci arec1 = s → S(s,0), c2 = t → S(0, t), andc3 = θ → S(1 − θ, θ), each with its natural

inner orientation.



SECTION 3 Preliminaries: Euclidean Space 119

Similar considerations hold for external orientation. Outer-orienting a surface con-
sists in giving a (globally consistent) crossing direction through it. For a line, it’s a way
of “turning around” it, or “gyratory sense” (Fig. 3.1, right). For a point, it’s an orienta-
tion of the space in its neighborhood. For a connected region of space, it’s just a sign,
+ or −.

3.3. Induced orientation

Surfaces which enclose a volumeV (which one may suppose connected, though the
boundary∂V itself need not be) can always be outer oriented, because the “inside out”
crossing direction is always globally consistent. Let us, by convention, take this direc-
tion as defining the canonical outer orientation of∂V . No similarly canonicalinner
orientation of the surface results, as could already be seen on Fig. 3.2, since there are,
in the neighborhood of each boundary point, two eligible orientations of ambient space.
But if V is inner oriented, this orientation can act in conjunction with the outer one of
∂V to yield a natural inner orientation ofV ’s boundary about this point. For example,
on the left of Fig. 3.4, the 2-frame{v1, v2} in the tangent plane of a boundary point
is taken as direct because, by listing its vectors behind an outward directed vectorν,
one gets the direct 3-frame{ν, v1, v2}. Consistency of these orientations stems from the
consistency of the crossing direction. HenceV ’s inner orientationinducesone on each
part of its boundary.

The same method applies to manifolds of lower dimensionp, by working inside the
affinep-subspace tangent to each boundary point. See Fig. 3.4(b) for the casep = 2.
Thep-manifold, thus, serves as ambient space with respect to its own boundary, for the
purpose of inducing orientation.

In quite a similar way (Fig. 3.5),outer orientation of a manifold induces anouter
orientation of each part of its boundary. (For a volumeV , the induced outer orientation
of ∂V is the inside-out or outside-in direction, depending on the outer orientation,+
or −, of V .)

FIG. 3.4. Left: Induced orientation of the boundary of a volume of toroidal shape (v1 andv2 are tangent to
∂V , ν points outwards). Middle: The same idea, one dimension below. The tangent to the boundary, being
a complement of (the affine subspace that supports)ν, with respect to the plane tangent to the surfaceS (in
broken lines), inherits from the latter an inner orientation. Right: Induced orientation of the endpoints of an

oriented curve.
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FIG. 3.5. Left: To outer-orient∂S is to (consistently) inner-orient complements of the tangent, one at each
boundary pointx. For this, take as direct the frame{v1, ν}, where{v1} is a direct frame in the complement of
the plane tangent toS at x, andν an outward directed vector tangent toS. That{v1} is direct is known from
the outer orientation ofS. Right: Same idea about the boundary points of linec. Notice thatν is now appended
behindthe list of frame vectors. Consistency stems from the consistency ofν, the inside-out direction with
respect toS. The icons near the endpoints are appropriate, since outer orientation of a point is inner orientation

of the space in its vicinity.

FIG. 3.6. Möbius band, not orientable. As the middle linel does not separate two regions, it cannot be
assigned any consistent crossing direction, so it has no outer orientation with respect to the “ambient” band.

3.4. Inner vs outer orientation of submanifolds

We might (but won’t, as the present baggage is enough) extend these concepts to sub-
manifolds of ambient manifolds other thatA3, including non-orientable ones. A two-
dimensional example will give the idea (Fig. 3.6): Take as ambient manifold a Möbius
bandM , and forget about the 3-dimensional space it is embedded in for the sake of the
drawing. Then it’s easy to find inM a line which (being a line) is inner orientable, but
cannot consistently be outer oriented. Note that the band by itself, i.e., considered as its
own ambient space, can be outer oriented, by giving it a sign: Indeed, outer orientation
of the tangent plane at each point ofM , being inner orientation of this point, is such
a sign, so consistent orientation means attributing the same sign to all points. (By the
same token, any manifold is outer orientable, with respect to itself as ambient space.)
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FIG. 3.7. Left: Non-orientable 3-manifold with boundary: Identify top and bottom by matching upperA

with lower A, etc. Middle: Embedded Möbius band, with a globally consistent crossing direction. Right:
Embedded ribbon.

For completeness, let us give another example (Fig. 3.7), this time of an outer-
orientable surface without inner orientation, owing to non-orientability of the ambient
manifold. The latter (whose boundary is a Klein bottle) is made by sticking together the
top and bottom sides of a vertical cube, according to the rule of Fig. 3.7(a). The ribbon
shown in (b) is topologically a Möbius band, a non-(inner)orientable surface. Yet, it
plainly has a consistent set of transverse vectors. (Follow the upper arrow as its anchor
point goes up and reenters at the bottom, and notice that the arrow keeps pointing in
the direction ofAB in the process. So it coincides with the lower arrow when this pas-
sage has been done.) Contrast with the ordinary ribbon in (c), orientable, but not outer
orientable with respect to this ambient space.

The two concepts of orientation are therefore essentially different.
In what follows, we shall use the word “twisted” (as opposed to “straight”) to connote

anything that is to do with outer (as opposed to inner) orientation.

4. Chains, boundary operator

It may be convenient at times to describe a manifoldM as an assembly of several
manifolds, even ifM is connected. Think for example of the boundary of a triangle,
as an assembly of three edges, and more generally of a piecewise smooth assembly of
cells. But it may happen – so will be the case here, later – that these various manifolds
have beenindependentlyoriented, with orientations which may or may not coincide
with the desired one forM . This routinely occurs with boundaries, in particular. The
concept of chain will be useful to deal with such situations.

A p-chain is a finite familyM = {Mi : i = 1, . . . , k} of oriented connectedp-mani-
folds,10 to which we shall loosely refer below as the “components” of the chain, each
loaded with a weightµi belonging to some ring of coefficients, such asR or Z (sayR

for definiteness, although weights will be signed integers in most of our examples). Such
a chain is conveniently denoted by the “formal” sum

∑
i µ

iMi ≡ µ1M1 + · · · + µkMk ,

10For instance, cells. But we don’t request that. EachMi may be a piecewise smooth manifold already.
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thus called because the+ signs do not mean “add” in any standard way. On the other
hand, chains themselves, as whole objects, can be added, and there the notation helps:
To get the sum

∑
i µ

iMi + ∑
j νjNj , first merge the two familiesM andN , then

attribute weights by adding the weights each component has in each chain, making use
of the convention thatµM ′ is the same chain as−µM whenM ′ is the same manifold as
M with opposite orientation. If all weights are zero, we have thenull chain, denoted 0.
All this amounts, as one sees, to handling chains according to the rules of algebra, when
they are represented via formal sums, which is the point of such a notation.Twisted
chains are defined the same way, except that all orientations are external. (Twisted and
straight chains are not to be added, or otherwise mixed.)

If M is an oriented piecewise smooth manifold, all its cellsci inherit this orientation,
but one may have had reasons to orient them on their own, independently ofM . (The
same cell may well be part of several piecewise smooth manifolds, for instance.) Then, it
is natural to associate withM the chain

∑
i ±ci , also denoted byM , with ith weight−1

when the orientations ofM andci differ. (Refer back to Fig. 3.3 for simple examples.)
Now, the boundary of an oriented piecewise smooth(p + 1)-manifold M is an as-

sembly ofp-manifolds, each of which we assume has an orientation of its own. Let us
assign each of them the weight±1, according to whether its orientation coincides with
the one inherited fromM . (We say the two orientationsmatchwhen this coincidence
occurs.) Hence a chain, also denoted∂M . By linearity, the operator∂ extends to chains:
∂(

∑
i µ

iMi) = ∑
i µ

i∂Mi . A chain with null boundary is called acycle. A chain which
is the boundary of another chain is called, appropriately, aboundary. Boundaries are
cycles, because of the fundamental property

(4.1)∂ ◦ ∂ = 0,

i.e., the boundary of a boundary is the null chain. A concrete example, as in Fig. 4.1,
will be more instructive here than a formal proof.

REMARK 4.1. Beyond its connection with assemblies of oriented cells, no too defi-
nite intuitive interpretation of the concept of chain should be looked for. Perhaps, when
p = 1, one can think of the chain

∑
i γici , with integer weights, as “running along

eachci , in turn, |γi | times, in the direction indicated byci ’s orientation, or in the re-
verse direction, depending on the sign ofγi ”. But this is a bit contrived. Chains are
better conceived as algebraic objects, based on geometric ones in a useful way – as the
example in Fig. 4.1 should suggest, and as we shall see later. However, we shall indulge
in language abuse, and say that a closed curve “is” a 1-cycle, or that a closed surface
“is” a 2-cycle, with implicit reference to the associated chain.

So boundaries are cycles, after (4.1). Whether the converse is true is an essential
question. In affine space, the answer is positive: A closed surface encloses a volume, a
closed curve (even if knotted) is the boundary of some surface (free of self-intersections,
amazing as this may appear), called a Seifert surface (SEIFERTand THRELFALL [1980],
ARMSTRONG[1979, p. 224]). But in some less simple ambient manifolds, a cycle need
not bound. In the case of a solid torus, for instance, a meridian circle is a boundary, but
a parallel circle is not, because none of the disks it bounds inA3 is entirely contained in
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FIG. 4.1. Piecewise smooth surfaceS, inner oriented (its orientation is taken to be that of the curved trian-
gle in the fore, markedA), represented as the chainA − B − C based on the oriented curved trianglesA,
B , C. (Note the minus signs:B ’s andC ’s orientations don’t match that ofS.) One has∂A = a + b + c,
∂B = e + a − d , ∂C = b + d + f , wherea, b, c, d , e, f are the boundary curves, arbitrarily oriented as
indicated. Now,∂S = ∂(A − B − C) = c − e − f : Observe how the “seams”a, b, c automatically receive
null weights in this 1-chain, whatever their orientation, because they appear twice with opposite signs. Next,
since∂c = x − z, ∂e = −y − z, and∂f = x + y, owing to the (arbitrary) orientations assigned to pointsw, x,
y, z, one has∂∂S = ∂(c − e − f ) = 0, by the same process of cancellation by pairs. The reader is invited to

work out a similar example involving twisted chains instead of straight ones.

the torus. Whether cycles are or aren’t boundaries is therefore an issue when investigat-
ing the global topological properties of a manifold. Chains being algebraic objects then
becomes an asset, for it makes possible to harness the power of algebra to the study of
topology. This is the gist ofhomology(HENLE [1994], HILTON and WYLIE [1965]),
and of algebraic topology in general.

5. Metric notions

Now, let us equipVn with a dot product:u · v is a real number, linearly depending on
vectorsu andv, with symmetry (u ·v = v ·u) and strict positive-definiteness (u ·u > 0 if
u �= 0). Come from this, first the notions of orthogonality and angle, next a norm|u| =
(u ·u)1/2 onVn, then a distanced(x, y) = |y −x|, translation-invariant by construction,
between points of the affine associateAn.

DEFINITION 5.1. Euclidean space,En, is the structure composed ofAn, plus a dot
product on its associateVn, plus an orientation.

Saying “the” structure implies that two realizations of it (with two different dot
products and/or orientations) are isomorphic in some substantial way. This is so: For
any other dot product, “·” say, there is an invertible linear transformL such that
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u ·v = Lu · Lv. Moreover,11 one may haveL “direct”, in the sense that it maps a frame
to another frame of the same orientation class, or “skew”. Therefore, two distinct Euclid-
ean structures onAn are linked by someL. In the language of group actions, the linear
groupGLn, composed of the aboveL’s, acts transitively on Euclidean structures, i.e.,
with a unique orbit, which is our justification for using the singular. (These structures
are said to beaffine equivalent,12 a concept that will recur.) The point can vividly be
made by using the language of group actions: the isotropy group of{·,Or} “cannot be
any larger”. (More precisely, it is maximal, as a subgroup, in the group of direct linear
transforms.)

In dimension 3,13 dot product and orientation conspire in spawning thecross product:
u × v is characterized by the equality

(5.1)|u × v|2 + (u · v)2 = |u|2|v|2
and the fact that vectorsu, v andu× v form, in this order, a direct frame. The 3-volume
of the parallelotope built on vectorsu, v, w, defined by vol(u, v,w) = (u × v) · w, is
equal, up to sign, to the above volumic measure, with equality if the frame is direct.14

Be well aware that× doesn’t make any sense innon-oriented three-space.
We shall have use for the related notion ofvectorial areaof an outer oriented tri-

angle T, defined as the vector
T = area(T)n, wheren is the normal unit vector that
provides the crossing direction. (If an ambient orientation exists, two vectorsu andv

can be laid along two of the three sides, in such a way that{u,v,n} is a direct frame.
Then,
T = 1

2u× v. Fig. 6.1 gives an example.) More generally, an outer oriented surface
of E3 has a vectorial area: Chop the surface into small adjacent triangular patches, add
the vectorial areas of these, and pass to the limit. (This yields 0 for a closed surface.)

For later use, we state the relations between the structures induced by{·,Or} and
{·,Or}, where Or = ±Or, the sign being that of det(L). (There is no ambiguity
about “det(L)”, understood as the determinant of the matrix representation ofL: its
value is the same in any basis.) The norm(u ·u)1/2 will be denoted by|u|. The cor-
responding cross product× (boldface) is defined by|u×v|2 + (u ·v)2 = |u|2|v|2
as in (5.1) (plus the request that{u,v,u×v} be Or-direct), and the new volume is
vol(u, v,w) = (u×v) ·w. It’s a simple exercise to show that

(5.2)|u| = |Lu|, L(u×v) = Lu × Lv, vol(u, v,w) = det(L)vol(u, v,w).

(It all comes from the equality det(Lu,Lv,Lw) = det(L)det(u, v,w), whenu, v, w,
andL are represented in some basis, a purely affine formula.) Notice that, for anyw,

11L is not unique, sinceUL, for anyunitaryU (i.e., such that|Uv| = |v| ∀v), will work as well. In particular,
one might forceL to be self-adjoint, but we won’t take advantage of that.
12Such equivalence is what sets Euclidean norms apart among all conceivable norms onVn, like for instance

|v| = ∑
i |vi |. As argued at more length in BOSSAVIT [1998a], choosing to work in a Euclidean framework

is an acknowledgment of another observed symmetry of the world we live in: itsisotropy,in addition to its
homogeneity.
13A binary operation with the properties of the cross product can exist only in dimensions 3 and 7 (SHAW

and YEADON [1989], ECKMANN [1999]).
14An n-volume could directly be defined onVn, as a map{v1, . . . , vn} → vol(v1, . . . , vn), multilinear and

null when two vectors of the list are equal. Giving ann-volume implies an orientation (direct frames are those
with positiven-volumes), but no metric (unlessn = 1).
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one hasLaL(u×v) · w = L(u×v) · Lw = det(L)(u × v) · w, whereLa denotes the
adjoint of L (defined byLu · v = u · Lav for all u, v), hence an alternative formula:

(5.3)u×v = det(L)(LaL)−1(u × v).

As for the vectorial area, denoted
T in the “bold” metric, one will see that

(5.4)
T = ∣∣det(L)
∣∣(LaL)−1
T,

with a factor|det(L)|, not det(L), because
T and 
T, both going along the crossing di-
rection, point towards the same side ofT.

We shall also need a topology on the space ofp-chains, in order to define differ-
ential forms ascontinuouslinear functionals on this space. As we shall argue later,
physical observables such as electromotive force, flux, and so forth, can be conceived
as the values of functionals of this kind, the chain operand being the idealization of
some measuring device. Such values don’t change suddenly when the measurement ap-
paratus is slightly displaced, which is the rationale for continuity. But to make precise
what “slightly displaced” means, we need a notion of “nearness” between chains – a
topology.15

First thing, nearness between manifolds. Let us define the distanced(M,N) between
two of them as the greatest lower bound (the infimum) ofdφ(M,N) = sup{x ∈ M:
|x − φ(x)|} with respect to all orientation-preserving piecewise smooth diffeomor-
phisms (OPD)φ that exist betweenM andN . There may be no such OPD, in which
case we take the distance as infinite, but otherwise there is symmetry betweenM andN

(considerφ−1 from N to M), positivity, d can’t be zero ifM �= N , and the trian-
gle inequality holds. (Proof: Take M , N , P , select OPDsφ and ψ from P to M

andN , and considerx in P . Then |φ(x) − ψ(x)| � |φ(x) − x| + |x − ψ(x)|, hence
dψ◦φ−1(M,N) � dφ(M,P )+dψ(N,P ), then minimize with respect toφ andψ .) Near-
ness of two manifolds, in this sense, does account for the intuitive notion of “slight dis-
placement” of a line, a surface, etc. The topology thus obtained does not depend on the
original dot product, althoughd does.

Next, on to chains. The notion of convergence we want to capture is clear enough: a
sequence of chains{cn = ∑

i=1,...,k µi
nMi,n: n ∈ N} should certainly converge towards

the chainc = ∑
i=1,...,k µiMi when the sequences of components{Mi,n: n ∈ N} all

converge, in the sense of the previous distance, toMi , while the weights{µi
n: n ∈ N}

converge too, towardsµi . But knowing some convergent sequences is not enough to
know the topology. (For that matter, even the knowledge ofall convergent sequences
would not suffice, see GELBAUM and OLMSTED [1964, p. 161].) On the other hand, the
finer the topology, i.e., the more open sets it has, the more difficult it is for a sequence
to converge, which tells us what to do: Define the desired topology as the finest one
which (1) is compatible with the vector space structure ofp-chains (in particular, each
neighborhood of 0 should contain a convex neighborhood) (2) makes all sequences of
the above kind converge.

15What follows is an attempt to bypass, rather than to face, this difficult problem, to which Harrison’s work
on “chainlet” spaces (nested Banach spaces which include chains and their limits with respect to various
norms, HARRISON [1998]), provides a much more satisfactory solution.
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The space of straight [respectively twisted]p-chains, as equipped with this topology,
will be denoted byCp [respectivelyC̃p]. Both spaces are purely affine constructs, inde-
pendent of the Euclidean structure, which only played a transient role in their definition.

It now makes sense to ask whether the linear map∂ is continuous fromCp to
Cp−1. The answer is by the affirmative, thanks to the linearity of∂ and the inequality
d(∂M,∂N) � d(M,N). [Proof: The restriction to∂M of an OPDφ is an OPD which
sends it to∂N , so d(∂M,∂N) � infφ sup{x ∈ ∂M: |φ(x) − x|} � infφ sup{x ∈ M:
|φ(x) − x|} = d(M,N).]



CHAPTER II

Rewriting the Maxwell Equations

Deconstruction calls for reconstruction: We now resettle the Maxwell system in the
environment just described, paying attention to what makes use of the metric structure
and what does not. In the process, differential forms will displace vector fields as basic
entities.

6. Integration: Circulation, flux, etc.

Simply said, differential forms are, among mathematical objects, those meant to be
integrated. So let us revisit Integration.

In standard integration theory (HALMOS [1950], RUDIN [1973], YOSIDA [1980]),
one has a setX equipped with a measuredx. Then, to a pair{A,f }, whereA is a part
of X andf a function, integration associates a number, denoted

∫
A

f (x)dx (or simply∫
A

f , if there is no doubt on the underlying measure), with additivity and continuity
with respect to both arguments,A andf . In what follows, we operate a slight change
of viewpoint: Instead of leaving the measuredx in background of a stage on which the
two objects of interest would beA andf , we consider the whole integrandf (x)dx

as a single object (later to be given its proper name, “differential form”), andA as
some piecewise smooth manifold ofA3. This liberates integration from its dependence
on the metric structure: The integral becomes a map of typeMANIFOLD × DIFFER-
ENTIAL_FORM → REAL (by linearity, CHAIN will eventually replaceMANIFOLD
there), which we shall see is the right approach as far as Electromagnetics is concerned.
The transition will be in two steps, one in which the Euclidean structure is used, one in
which we get rid of it.

The dot product ofEn induces measures on its submanifolds: By definition, the
Euclidean measure of the parallelotope built onp vectors{v1, . . . , vp} anchored atx,
i.e., of the set{x + ∑

i λ
ivi : 0 � λi � 1, i = 1, . . . , p}, is the square-root of the so-

called Gram determinant of thevi ’s, whose entries are the dot productsvi · vj , for all
i, j from 1 to p. One can build from this, by the methods of classical measure the-
ory (HALMOS [1950]), thep-dimensional measures, i.e., the lineal, areal, volumic, etc.,
measures of a (smooth, bounded) curve, surface, volume, etc. (what Whitney and his
followers call its “mass”, WHITNEY [1957]). Forp = 0 not to stand out as an exception
there, we attribute to an isolated point the measure 1. (This is the so-calledcounting
measure, for which the measure of a set of points is the number of its elements.)

127
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FIG. 6.1. Forming the terms of Riemann sums. Left: generic “curve segment”s, with associated sampling
pointxs and vector
s. Right: generic triangular small patchT, with sampling pointxT. Observe how, with the

ambient orientation indicated by the icon, the vectorial area ofT happens to be12u × v.

We shall consider, corresponding to the four dimensionsp = 0, . . . ,3 of manifolds
in E3, four kinds of integrals which are constantly encountered in Physics. Such inte-
grals will be defined on cells first, then extended by linearity to chains, which covers
the case of piecewise smooth manifolds.

First,p = 0, a point,x say. The integral of a smooth functionϕ is then16 ϕ(x). If the
point is inner oriented, i.e., if it bears a signε(x) = ±1, the integral is by convention
ε(x)ϕ(x).

Next (p = 1), letc be a 1-cell. At pointx = c(t), define theunit tangent vectorτ(x)

as the vector atx equal to∂t c(t)/|∂t c(t)|, which inner-orientsc. Given a smooth vector
field u, the dot productτ · u defines a real-valued function on the image ofc. We call
circulation of u, alongc thus oriented, the integral

∫
c
τ · u of this function with respect

to the Euclidean measure of lengths.

REMARK 6.1. Integrals (of smooth enough functions) are limits of Riemann sums. In
the present case, such a sum can be obtained as suggested by Fig. 6.1, left: Chop the
curve into a finite familyS of adjacent curve segmentss, pick a pointxs in each of them,
and let
s be the vector, oriented alongc, that joins the extremities ofs. The Riemann
sum associated withS is then

∑
s∈S 
s · u(xs), and converges towards

∫
c
τ · u whenS is

properly refined.

Further up (p = 2), let Σ be a 2-cell, to which a crossing direction has been as-
signed, and choose the parameterization{s, t} → Σ(s, t) in such a way that vectors
η(s, t) = ∂sΣ(s, t) × ∂tΣ(s, t) point in this direction. Then setn(x) = η(s, t)/|η(s, t)|,
at pointx = Σ(s, t), to obtain the outer-orientingunit normal field. Given a smooth
vector fieldu, we define theflux throughΣ , thus outer oriented, as the integral

∫
Σ

n · u
of the real-valued functionn · u with respect to, this time, the Euclidean measure of

16This is also its integral over the set{x}, with respect to the counting measure, in the sense of Integration
Theory. The integral over afinite set {x1, . . . , xk}, in this sense, would be

∑
i ϕ(xi ). Notice the difference

between this and what we are busy defining right now, the integral on a 0-chain, which will turn out to be a
weighted sum of the realsϕ(xi ).
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areas. (No ambiguity on this point, since the status ofΣ as a surface has been made
clear.)

REMARK 6.2. For Riemann sums, dissectΣ into a family T of small triangular
patchesT, whose vectorial areas are
T, pick a pointxT in each of them, and consider∑

T∈T 
T · u(xT).

Last, forp = 3, and a 3-cellV with outer orientation+, the integral of a functionf is
the standard

∫
V

f , integral off over the image ofV with respect to the Lebesgue mea-
sure. This is consistent with the frequent physical interpretation of

∫
V

f as the quantity,
in V , of something (mass, charge,. . .) present with densityf in V . With outer orienta-
tion−, the integral is− ∫

V
f . Thus, outer orientation helps fix bookkeeping conventions

whenf is a rate of variation, like for instance, heat production or absorption. The inner
orientation ofV is irrelevant here.

Now, let us extend the notion to chains based on oriented cells. In dimension 0,
where an oriented point is a point-cum-sign pair{x, ε}, a 0-chainm is a finite col-
lection {{xi, εi}: i = 1, . . . , k} of such pairs, each with a weightµi . The integral

∫
m

ϕ

is then defined as
∑

i µ
iεiϕ(xi).17 In dimension 1, the circulation along the 1-chainc

=
∑

i µ
ici is

∫
c
τ · u =

∑
i µ

i
∫
ci

τ · u. The flux
∫
Σ

n · u through thetwisted(beware!)

chainΣ =
∑

i µ
iΣi is defined as

∑
i µ

i
∫
Σi

n · u. As for dimension 3, a twisted chain

manifoldV is a finite collection18 {{Vi, εi}: i = 1, . . . , k} of 3D blobs-with-sign, with
weightsµi , and

∫
V

f is, by definition,
∑

i µ
iεi

∫
Vi

f .
Note that we have implicitly defined integrals on piecewise smooth manifolds there,

since these can be considered as cell-based chains with “orientation matching weights”
(1 if the cell’s orientation and the manifold’s match,−1 if they don’t).

Thus the most common ways19 to integrate things in three-space lead to the definition
of integrals overinner oriented manifolds or chains in casesp = 0 and 1 andouter
oriented ones20 in casesp = 2 and 3. An unpleasant asymmetry. But since we work
in orientedEuclidean space, where one may, as we have seen, derive outer from inner
orientation, and the other way round, this restores the balance, hence finallyeightkinds
of integrals, depending on the dimension and on the nature (internal or external) of the
orientation of the underlying chain.

Thus we have obtained a series of maps of typeCHAIN → REAL, but in a pretty
awkward way, one must admit. Could there be an underlying unifying concept that
would make it all simpler?

17One might think, there, that orientation-signs and weights do double duty. Indeed, a convention could be
made that all points are positively oriented, and this would dispose of theεis. We won’t do this, for the sake
of uniformity of treatment with respect to dimension.
18Again, one might outer-orient such elementary volumes by giving them all a+ sign, reducing the redun-

dancy, and we refrain to do so for the same reason.
19Others reduce to one of these. For instance, when using Cartesian coordinatesx–y–z,

∫
c f (x, y, z)dx is

simply the circulation alongc, in the sense we have defined above, of the field ofx-directed basis vectors
magnified by the scalar factorf .
20A tradition initiated in FIRESTONE[1933] distinguishes between so-called “across” and “through” phys-

ical quantities (KOENIG and BLACKWELL [1960], BRANIN [1961]), expressible by circulations and fluxes,
respectively. As we shall see, this classification is not totally satisfying.
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7. Differential forms, and their physical relevance

Indeed, these maps belong to a category of objects that can be defined without recourse
to the Euclidean structure, and have thus a purely affine nature:

DEFINITION 7.1. A straight [respectively twisted] differential form of degreep,
or p-form, is a real-valued mapω over the space of straight [respectively twisted]
p-chains, linear with respect to chain addition, and continuous in the sense of the above-
defined topology of chains (end of Section 5).

Differential forms, thus envisioned, are dual objects with respect to chains, which
prompts us to mobilize the corresponding machinery of functional analysis (YOSIDA

[1980]): CallFp [respectivelyF̃p] the space of straight [respectively twisted]p-forms,
as equipped with its so-called “strong” topology.21 Then Cp and Fp [respectively
C̃p and F̃p] are in duality via the bilinear bicontinuous map{c,ω} → ∫

c
ω, of type

p-CHAIN × p-FORM → REAL. A common notation for such duality products being
〈c;ω〉, we shall use that as a convenient alternative22 to

∫
c
ω. A duality product should

benon-degenerate, i.e.,〈c′;ω〉 = 0 ∀c′ impliesω = 0, and〈c;ω′〉 = 0 ∀ω′ forcesc = 0.
The former property holds true by definition, and the latter is satisfied because, ifc �= 0,
one can construct an ad hoc smooth vector field or function with nonzero integral, hence
a nonzero formω such that〈c;ω〉 �= 0.

The above eight kinds of integrals, therefore, are instances of differential forms,
which we shall denote (in their order of appearance) by0ϕ, 1u (circulation ofu), 2ũ

(flux of u), 3ϕ̃, and 0ϕ̃, 1ũ, 2u, 3ϕ. This is of course ad hoc notation, to be aban-
doned as soon as the transition from fields to forms is achieved. Note the use of the
pre-superscriptp, accompanied or not by the tilde as the case may be, as anopera-
tor, that transforms functions or vector fields into differential forms (twisted ones, if
the tilde is there). This operator, being relative to a specific Euclidean structure is as a
rule metric- and orientation-dependent. (We’ll usep, and˜, versusp, and˜, to distin-
guish23 the{·,Or} and the{·,Or} structure.) For instance, the 2 in2u means that, given
the straight 2-chainS, one uses both the inner orientation of each of its components

21Differential forms converge, in this topology, if their integrals converge uniformly on bounded sets of
chains. (AboundedsetB is one that isabsorbedby any neighborhoodV of 0, i.e., such thatλB ⊂ V for
someλ > 0.) We won’t have to invoke such technical notions in the sequel. (Again, see HARRISON [1998]
for normson (Banach) spaces of differential forms.) Note the generic use of “differential form” here: Whether
an object qualifies as differential form depends on the chosen topology on chain spaces.
22In line with the convention of Note 4, we shall denote byω the mapc → 〈c;ω〉, and feel free to write

ω = c → 〈c;ω〉. Of course, the symmetric constructc = ω → 〈c;ω〉 is just as valid. Maps of the latter kind,
from forms to reals, were calledcurrentsin DE RHAM [1960]. (SeeDE RHAM [1936, p. 220], for the physical
justification of the term.) There are, a priori, much more currents than chains (or even chainlets, HARRISON

[1998]), and one should not be fooled by the expression “in duality” into thinking that the dual ofFp , i.e.,
the bidual ofCp , is Cp itself.
23This play on styles is only a temporary device, not to be used beyond the present Chapter. Later we shall

revert to the received “musical” notation, which assumes a single, definite metric structure in background,
and cares little about ambiguity:�u denotes the vector proxy of formu, and�U is the form represented by the
vector field U.
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and the ambient orientation to define a crossing direction, then the metric in order to
build a normal vector fieldn in this direction, over each component of the chain. Then,
〈S; 2u〉 = ∫

S
n · u defines2u, a straight 2-form indeed. (Notice that〈S; 2u〉 doesnot

depend on the ambient orientation.)

REMARK 7.1. In the foregoing example, it would be improper to describe〈S; 2u〉 as
the flux of u “through” S, since the components ofS, a straight chain, didn’t come
equipped with crossing directions. These were derived from the ambient orientation,
part of the Euclidean structure, instead of being given as an attribute ofS ’s components.
To acknowledge this difference, we shall refer to

∫
S
n · u as the flux “embraced by”S.

This is not mere fussiness, as will be apparent when we discuss magnetic flux.

One may wonder, at this point, whether substituting the single concept of differential
form for those of point-value, circulation, flux, etc., has gained us any real generality,
besides the obvious advantage of conceptual uniformity. Let us examine this point care-
fully, because it’s an essential part of the deconstruction of Euclidean space we have
undertaken.

On the one hand, the condition that differential forms should be continuous with re-
spect to deformations of the underlying manifolds doesn’t leave room, in dimension 3,
for other kinds of differential forms than the above eight. First, it eliminates many ob-
vious linear functionals from consideration. (For instance,γ being an outer-oriented
curve, theintersection number, defined as the number of timesγ crossesS, counted
algebraically (i.e., with sign – if orientations do not match), provides a linear map
S → S ∧ γ , which is not considered as a bona fide differential form. Indeed, it lacks
continuity.) Second, it allows one, by using the Riesz representation theorem, to build
vector fields or functions that reduce the given form to one of the eight types: For in-
stance, given a 1-formω, there is24 a vector fieldΩ such that〈c;ω〉 = ∫

c
τ ·Ω , which is

our first example of what will later be referred to as a “proxy” field: A scalar or vector
field that stands for a differential form. For other degrees, forms in 3D are representable
by vector fields (p = 1 and 2) or by functions (p = 0 and 3).

However, the continuity condition requires less regularity from the proxy fields than
the smoothness we have assumed up to now. Not to the point of allowing them to be
only piecewise smooth: What is required lies in between, and should be clear from
Fig. 7.1, which revisits a well known topic from the present viewpoint. As one sees,
the contrived “transmission conditions”, about tangential continuity of this or normal
continuity of that, are implied by the very definition of forms as continuous maps.

Last, the generalization is genuine in spatial dimensions higher than 3: A two-form
in 4-space, for instance, has no vector proxy, as a rule.

So, although differential forms do extend a little the scope of integration, this is but a
marginal improvement, at least in the 3D context. The real point lies elsewhere, and will

24The proof is involved. From a vector fieldv, build a 1-chain
∑

i µisi , akin to the graphic representation
of v by arrows, i.e.,si is an oriented segment that approximatesv in a region of volumeµi . Apply ω to this
chain, go to the limit. The real-valued linear map thus generated is then shown, thanks to the continuity ofω,
to be continuous with respect to theL2 norm on vector fields. Hence a Riesz vector fieldΩ , which turns out
to be a proxy forω.



132 A. Bossavit CHAPTER II

FIG. 7.1. The interfaceS, equipped with the unit normal fieldν, separates two regions where the vector
field u is supposed to be smooth, except for a possible discontinuity acrossS. SupposeΣ or c, initially
belowS, is moved up a little, thus passing into region 2. Under such conditions, the flux ofu throughΣ (left)
and circulation ofu alongc (right) can yet bestable, i.e., vary continuously with deformations ofc andΣ ,
providedu has some partial regularity: As is well known, and easily proven thanks to the Stokes theorem,
normal continuity (zero jump[ν · u] of the normal component across the interface) ensures continuity of
the flux

∫
Σ n · u with respect toΣ (left), while tangentialcontinuity ofu (zero jump[uS ] of the tangential

component across the interface) is required for continuity of the circulation
∫
c τ · u (right) with respect toc.

Forms0ϕ and 0ϕ̃ require a continuousϕ. Piecewise continuity of the proxy functionϕ is enough for3ϕ

and3ϕ̃.

now be argued: Which differential form is built from a given (scalar or vector) field de-
pends on the Euclidean structure,but the physical entity one purports to model via this
field does not, as a rule. Therefore, the entity of physical significance is the form, con-
ceived as an affine object, and not the field. Two examples will suffice to settle this point.

Consider an electric charge,Q coulombs strong, which is made to move along an
oriented smooth curvec, in the direction indicated by the tangent vector fieldτ . We
mean atest charge, withQ small enough to leave the ambient electromagnetic field
{E,B} undisturbed, and avirtual motion, which allows us to consider the field as frozen
at its present value. The work involved in this motion isQ times the quantity

∫
c
τ · E,

called theelectromotive force(e.m.f.)along c, and expressed in volts (i.e., joules per
coulomb). No unit of length is invoked in this description.

Then why is E expressed in voltsper meter(or whatever unit one adopts)? Only
because a vectorv such that|v| = 1 is one meter long, which makes E· v, and the in-
tegral

∫
c
τ · E as well, a definite amount ofvolts, indeed. This physical data, of course,

only depends on the field and the curve, not on the metric structure. Yet, change the
dot product, from· to · (recall thatu ·v = Lu · Lv), which entails a change in the mea-
sure of lengths (hence a rescaling of the unitary vector, nowτ instead ofτ ), and the
circulation of E is now25

∫
c
τ ·E = ∫

c
τ · LaLE, a different (and physically meaning-

less) number. On the other hand, thereis a fieldE such that
∫

c
τ ·E = ∫

c
τ · E, namely

E = (LaL)−1E. Conclusion:Which vector field encodes the physical data(here, e.m.f.’s
along all curves)depends on the chosen metric, although the data themselves do not.
This metric-dependence of E is the reason to call it a vectorproxy: It merelystandsfor

25On the left of the equal sign, the integral and the symbols· and τ are boldface. (One should see the
difference, unless something is amiss in the visualization chain.) So the circulation of E is with respect to
the “bold” measure of lengths on the left. The easiest way to verify this equality (and others like it to come)
is to work on the above Riemann sums

∑
s vs ·E(xs) of the “bold” circulation of E: One has, for each term

(omitting the subscript),v ·E = Lv · LE= v · LaLE, hence the result.
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the real thing, which is the mappingc → 〈e.m.f. alongc〉, i.e., a differential form of
degree 1, which we shall from now on denote bye.

Thus, summoning all the equivalent notations introduced so far,

(7.1)e = 1E= 1E = c → 〈c; e〉, where〈c; e〉 ≡
∫

c

e =
∫

c

τ · E =
∫

c

τ ·E.

This (straight) 1-form is the right mathematical object by which to represent the electric
field, for it tells all about it: Electromotive forces along curves are, one may argue
(TONTI [1996]), all that can be observed as regards the electric field.26 To the point that
one can get rid of all the vector-field-and-metric scaffolding, and introducee directly,
by reasoning as follows: The1-CHAIN → REALmap we call e.m.f. depends linearly
and continuously,as can experimentally be established, on the chain over which it is
measured. But this is the very definition of a 1-form. Hencee is the minimal, necessary
and sufficient, mathematical description of the (empirical) electric field.

REMARK 7.2. The chain/form duality, thus, takes on a neat physical meaning: While
the forme models the field, chains are abstractions of theprobes, of more or less com-
plex structure, that one may place here and there in order to measure it.

The electric field is not the whole electromagnetic field: it only accounts for forces
(and their virtual work) exerted on non-moving electric charges. We shall deal later
with the magnetic field, which gives the motion-dependent part of the Lorentz force,
and recognize it as a 2-form. But right now, an example involving atwisted2-form will
be more instructive.

So consider current density, classically a vector field J, whose purpose is to account
for the quantity of electric charge,

∫
Σ

n · J, that traverses, per unit of time, a surfaceΣ

in the direction of the unit normal fieldn that outer-orients it. (Note again this quantity
is in ampères, whereas the dimension of the proxy field J isA/m2.) This map,Σ →
〈intensity throughΣ〉, a twisted 2-form (namely,2J̃), is what we can measure and know
about the electric current, and the metric plays no role there. Yet, change· to ·, which
affects the measure of areas, and the flux of J becomes27

∫
Σ

n ·J= |det(L)| ∫
Σ

n · J.

The “bold” vector proxy, therefore, should beJ = |det(L)|−1J, and then2J̃ = 2J̃. Again,
different vector proxies, but the same twisted 2-form, which thus appears as the invariant
and physically meaningful object. It will be denoted byj .

This notational scheme will be systematized: Below, we shall calle,h, d, b, j, a, etc.,
the differential forms that the traditional vector fields E, H, D, B, J, A, etc., represent.

26Pointwise values cannot directly be measured, which is why they are somewhat downplayed here, but of
course they do make sense, at points of regularity of the field: Taking forc the segment[x, x + v], wherev

is a vector atx that one lets go to 0, generates at the limit a linear mapv → ωx(v). This map, an element of
the dual ofTx , is called acovectorat x. A 1-form, therefore, can be conceived as a (smooth enough) field of
covectors. In coordinates, covectors such asv → vi , wherevi is the ith component ofv at pointx, form a
basis for covectors atx. (They are what is usually denoted by dxi ; but di makes better notation, that should
be used instead, on a par with∂i for basis vectors.)
27Same trick, with Riemann sums of the form

∑
T


T ·J(xT). After (5.2) and (5.4),
T ·J = L
T · LJ =
LaL
T · J= |det(L)|
T · J. Hence

∫
Σ n ·J= |det(L)| ∫Σ n · J.
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8. The Stokes theorem

The Stokes “theorem” hardly deserves such a status in the present approach, for it re-
duces to a mere

DEFINITION 8.1. The exterior derivative dω of the (p − 1)-form ω is the p-form
c → ∫

∂c
ω.

In plain words: To integrate dω over thep-chainc, integrateω over its boundary∂c.
(This applies to straight or twisted chains and forms equally. Note that d is well defined,
thanks to the continuity of∂ from Cp−1 to Cp.) In symbols:

∫
∂c

ω = ∫
c
dω, which is the

common form of the theorem, or equivalently,

(8.1)〈∂c;ω〉 = 〈c;dω〉 ∀c ∈ Cp andω ∈Fp−1

(put tildes overC andF for twisted chains and forms), which better reveals what is
going on: d is thedualof ∂ (YOSIDA [1980]). As a corollary of (4.1), one has

(8.2)d◦ d= 0.

A form ω is closedif dω = 0, andexactif ω = dα for some formα. (Synonyms, perhaps
more mnemonic, arecocycleandcoboundary. The integral of a cocycle over a boundary,
or of a coboundary over a cycle, vanishes.)

REMARK 8.1. InAn, all closed forms are exact: this is known as thePoincaré Lemma
(see, e.g., SCHUTZ [1980, p. 140]). But closed forms need not be exact in general man-
ifolds: this is the dual aspect of the “not all cycles bound” issue we discussed earlier.
Studying forms, consequently, is another way, dual to homology, to investigate topol-
ogy. The corresponding theory is calledcohomology(JÄNICH [2001], MADSEN and
TORNEHAVE [1997]).

In three dimensions, the d is the affine version of the classical differential operators,
grad, rot, and div, which belong to the Euclidean structure. Let’s review this.

First, the gradient: Given a smooth functionϕ, we define gradϕ as the vector field
such that, for any 1-cellc with unit tangent fieldτ ,

(8.3)
∫

c

τ · (gradϕ) =
∫

∂c

ϕ,

the latter quantity being of courseϕ(c(1)) − ϕ(c(0)). By linearity, this extends to any
1-chain. One recognizes (8.1) there. The relation between gradient and d, therefore, is
1(gradϕ) = d0ϕ ≡ dϕ, the third term being what is called thedifferential of ϕ. (The
zero superscript can be dropped, because there is only one way to turn a function into a
0-form, whatever the metric.) The vector field gradϕ is a proxy for the 1-form dϕ.

Thus defined, gradϕ depends on the metric. If the dot product is changed from “·” to
“ ·”, the vector field whose circulation equals the right-hand side of (8.3) is a different
proxy, gradϕ, which relates to the first one, as one will see using (5.2), by gradϕ =
LaLgradϕ.



SECTION 8 Rewriting the Maxwell Equations 135

Up in degree, rot and div are defined in similar fashion. Thus, all in all,

(8.4)1(gradϕ) = d0ϕ, 2(rotu) = d1u, 3(divv) = d2v.

Be well aware that all forms here arestraight. Yet their proxies may behave in confusing
ways with respect to orientation, as we shall presently see.

About curl, (8.4) says that the curl of a smooth fieldu, denoted rotu, is the vector
field such that, for any inner oriented surfaceS,

(8.5)
∫

S

n · rotu =
∫

∂S

τ · u.

Here,τ corresponds to the induced orientation of∂S, andn is obtained by the Ampère
rule. So the ambient orientation is explicitly used. Changing it reverses the sign of rotu.
The curl behaves like the cross product in this respect. If, moreover, the dot product is
changed, the bold curl and the meager one relate as follows:

PROPOSITION8.1. Withu ·v = Lu · Lv andOr = sign(det(L))Or, one has

(8.6)rotu = (
det(L)

)−1 rot(LaLu).

PROOF. Because of the hybrid character of (8.5), with integration over an outer ori-
ented surface on the left, and over an inner oriented line on the right, the compu-
tation is error prone, so let’s be careful. On the one hand (Note 25),

∫
∂S

τ ·u =∫
∂S

τ · LaLu = ∫
S
n · rot(LaLu). On the other hand (Note 27), settingJ = rotu, we

know that
∫

S
n ·J = |det(L)| ∫

S
n · J, hence. . . but wait! In Note 27, we had both

normalsn and n on the same side of the surface, but here (see Fig. 3.2, left), they
may point to opposite directions ifOr �= Or. The correct formula is thus

∫
S

n ·rotu =
det(L)

∫
S
n · rotu ≡ ∫

S
n · rot(LaLu), hence (8.6). �

As for the divergence, (8.4) defines divv as the function such that, for any volumeV

with outgoing normaln on ∂V ,

(8.7)
∫

V

divv =
∫

∂V

n · v.

No vagaries due to orientation this time, because both integrals represent the same kind
of form (twisted). Moreover,divv = divv, because the same factor|det(L)| pops up
on both sides of

∫
V

divv = ∫
∂V

n ·v. (These integrals, as indicated by the boldface
summation sign, are with respect to the “bold” measure. For the one on the left, it’s the
3D measure|vol|, andvol = det(L)vol after (5.2).)

REMARK 8.2. The invariance of div is consistent with its physical interpretation: ifv

is the vector field of a fluid mass, its divergence is the rate of change of the volume
occupied by this mass, and though volumes depend on the metric, volumeratiosdo not,
again after (5.2).
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FIG. 8.1. Vertical arrows show how to relate vector or scalar proxies that correspond to thesamestraight
form, of degree 0 to 3, in two different Euclidean structures. Fortwistedforms, use the same diagram, but

with |det(L)| substituted for det(L).

For reference, Fig. 8.1 gathers and displays the previous results. This is a commuta-
tive diagram, from which transformation formulas about the differential operators can
be read off.28

As an illustration of how such a diagram can be used, let us prove something the
reader has probably anticipated: the invariance of Faraday’s law with respect to a change
of metric and orientation. Let two vector fields E and B be such that∂tB + rot E= 0,
and setB = B/det(L), E = (LaL)−1E, which represent the same differential forms
(call themb ande) in the{·,Or} framework, as B and E in the{·,Or} one. Then∂tB +
rot E = 0. We now turn to the significance of the single physical law underlying these
two relations.

9. The magnetic field, as a 2-form

Electromagnetic forces on moving charges, i.e., currents, will now motivate the intro-
duction of the magnetic field. Consider a current loop,I ampères strong, which is made
to move – virtual move, again – so as to span a surfaceS (Fig. 9.1). The virtual work
involved is thenI times

∫
S
n ·B (“cut flux” rule), as explained in the caption. Experience

establishes the linearity and continuity of the factor
∫
S
n · B, called theinduction flux,

as a function ofS. Hence a 2-form, again the minimal description of the (empirical)
magnetic field, which we denote byb and callmagnetic induction.

In spite of the presence ofn in the formula,b is not a twisted but a straight 2-form,
as it should, since ambient orientation cannot influence the sign of the virtual work in
any way. Indeed, what is relevant is the direction of the current along the loop, which
inner-orientsc, and the inner orientation ofS is the one that matches the orientation
of the chainc′ − c (“final position minus initial position” in the virtual move). The
intervention of a normal field, therefore, appears as the result of the will to representb

with help of a vector, the traditional B such thatb = 2B. No surprise, then, if this vector

28It should be clear thatL might depend on the spatial positionx, so this diagram is more general than what
we contracted for. It gives the correspondence between differential operators relative to different Riemannian
structures on the same 3D manifold.
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FIG. 9.1. Conventions for the virtual work due to B on a current loop, in a virtual move from positionc to
positionc′. The normaln is the one associated, by Ampère’s rule, with the inner orientation ofS, a surface

such that∂S = c′ − c. The virtual work of the J× B force, with J= Iτ , is thenI times the flux
∫
S n · B.

FIG. 9.2. Nature of the proxies innon-oriented 3D space with dot product.

proxy “changes sign” with ambient orientation! Actually, it cannot do its job, that is,
representb, without an ambient orientation.

If one insists on a proxy that can act to this effect in autonomy, this object has to carry
on its back, so to speak, an orientation of ambient space, i.e., it must be a field ofaxial
vectors. Even so, the dependence on metric is still there, so the benefit of using such
objects is tiny. Yet, why not, if one is aware that (polar) vector field and axial vector
field are just mathematicaltools,29 which may be more or less appropriate, depending
on the background structures, to represent a given physical entity. In this respect, it may
be useful to have a synoptic guide (Fig. 9.2).

We can fully appreciate, now, the difference betweenj andb, between current flow
and magnetic flux. Current density, the twisted 2-formj , is meant to be integrated over
surfacesΣ with crossing direction: its proxy J is independent of the ambient orienta-
tion. Magnetic induction, the straight 2-formb, is meant to be integrated over surfacesS

with inner orientation: its proxy B changes sign if ambient orientation is changed. Cur-
rent, clearly, flows through a surface, so intensity is one of these “through variables” of

29Thus axiality or polarity is by no means a property of the physical objects. But the way physicists write
about it doesn’t help clarify this. For instance (BAEZ and MUNIAIN [1994, p. 61]): “In physics, the electric
field E is called a vector, while the magnetic field B is called an axial vector, because E changes sign under
parity transformation, while B does not”. Or else (ROSEN [1973]): “It is well known that under the space
inversion transformation,P : (x, y, z) → (−x,−y,−z), the electric field transforms as a polar vector, while
the magnetic field transforms as an axial vector,P : {E → −E,B → B}”. This may foster confusion, as some
passages in BALDOMIR and HAMMOND [1996] demonstrate.
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Note 20. But thinking of the magnetic flux as goingthroughS is misleading. Hence the
expression used here, fluxembraced bya surface.30

10. Faraday and Ampère

We are now ready to address Faraday’s famous experiment: variations of the flux em-
braced by a conducting loop create an electromotive force. A mathematical statement
meant to express this law with maximal economy will therefore establish a link between
the integral ofb over a fixed surfaceS and the integral ofe over its boundary∂S. Here
it is: one has

(10.1)∂t

∫
S

b +
∫

∂S

e = 0 ∀S ∈ C2,

i.e., for any straight 2-chain, and in particular, any inner oriented surfaceS. Numbers in
(10.1) have dimension: webers for the first integral, and volts (i.e., Wb/s) for the second
one. Inner orientation of∂S (and hence, ofS itself) makes lots of physical sense: it
corresponds to selecting one of the two ways a galvanometer can be inserted in the
circuit idealized by∂S. Applying the Stokes theorem – or should we say, the definition
of d – we find the local, infinitesimal version of the global, integral law (10.1), as this:

(10.2)∂tb + de = 0,

the metric- and orientation-free version of∂tB + rot E= 0.
As for Ampère’s theorem, the expression is similar, except that twisted forms are now

involved:

(10.3)−∂t

∫
Σ

d +
∫

∂Σ

h =
∫

Σ

j ∀Σ ∈ C̃2,

i.e., for any twisted 2-chain, and in particular, any outer oriented surfaceΣ . Its infini-
tesimal form is

(10.4)−∂td + dh = j,

again the purely affine version of−∂tD + rot H = J. Sincej is a twisted form,
d must be one, andh as well,31 which suggests that its proxy H will not behave
like E under a change of the background Euclidean structure. Indeed, one hasH =
sign(det(L))(LaL)−1H in the now familiar notation. In non-oriented space with metric,
the proxy H would be an axial vector field, on a par with B. Vector proxies D and J
would be polar, like E.

At this stage, we may announce the strategy that will lead to a discretized form of
(10.1) and (10.3): Instead of requesting their validity forall chainsS or Σ , we shall be

30This exposes the relative inadequacy of the “across vs. through” concept, notions which roughly match
those of straight 1-form and twisted 2-form (BRANIN [1961]). Actually, between lines and surfaces on the
one hand, and inner or outer orientation on the other hand, it’sfour different “vectorial” entities one may have
to deal with, and the vocabulary may not be rich enough to cope.
31A magnetomotive force(m.m.f.), therefore, is a real value (in ampères) attached to anouteroriented line

γ , namely the integral
∫
γ h.
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content with enforcing them for afinite family of chains, those generated by the 2-cells
of an appropriate finite element mesh, hence a system of differential equations. But first,
we must deal with the constitutive laws linkingb andd to h ande.

11. The Hodge operator

For it seems a serious difficulty exists there: Sinceb and h, or d and e, are objects
of different types, simple proportionality relations between them, such asb = µh and
d = εe, won’t make sense ifµ andε are mere scalar factors. To save this way of writing,
as it is of course desirable, we must properly redefineµ andε asoperators, of type 1-
FORM→ 2-FORM, one of the forms twisted, the other one straight.

So let’s try to see what it takes to go frome to d . It consists in being able to determine∫
Σ

d over any given outer oriented surfaceΣ , knowing two things: the forme on the
one hand, i.e., the value

∫
c
e for any inner oriented curvec, and the relation D= εE

between the proxies, on the other hand. (Note thatε can depend on position. We shall
assume it’s piecewise smooth.) How can that be done?

The answer is almost obvious ifΣ is a small32 piece of plane. Build, then, a small
segmentc meetingΣ orthogonally at a pointx whereε is smooth. Associate withc the
vector
c of same length that points along the crossing direction throughΣ , and let this
vector also serve to inner-orientc. Let 
Σ stand for the vectorial area ofΣ , and take note
that 
Σ/area(Σ) = 
c/length(c). Now dot-multiply this equality by D on the left,εE on
the right. The result is

(11.1)
∫

Σ

d = ε(x)
area(Σ)

length(c)

∫
c

e,

which does answer the question.
How to lift the restrictive hypothesis thatΣ be small? Riemann sums, again, are the

key. DivideΣ into small patchesT, as above (Fig. 6.1, right), equip each of them with a
small orthogonal segmentcT, meeting it atxT, and such that
cT = 
T. Next, define

∫
Σ

d

as the limit of the Riemann sums33 ∑
T ε(xT)

∫
cT

e. One may then define theoperatorε,

with reuse of the symbol, as the mape → d just constructed, fromF1 to F̃2. A similar
definition holds forµ, of type F̃1 → F2, and for the operatorsε−1 andµ−1 going in
the other direction. (Later, we shall substituteν for µ−1.)

REMARK 11.1. We leave aside the anisotropic case, with a (symmetric) tensorεij in-
stead of the scalarε. In short: Among the variant “bold” metrics, there is one in which
εij reduces to unity. Then apply what precedes, with “orthogonality”, “length”, and
“area” understood in the sense of this modified metric. (The latter may depend on po-
sition, however, so this stands a bit outside our present framework. Details are given in
BOSSAVIT [2001b].)

32To make up for the lack of rigor which this word betrays, one should treatc andΣ as “p-vectors” (p = 1
and 2 respectively), which are the infinitesimal avatars ofp-chains. See BOSSAVIT [1998b] for this approach.
33Singular points ofε, at whichε(xT) is not well defined, can always be avoided in such a process, unless

Σ coincides with a surface of singularities, like a material interface. But then, moveΣ a little, and extendd
to such surfaces by continuity.
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REMARK 11.2. When the scalarε or µ equals 1, what has just been defined is the
classicalHodge operatorof differential geometry (BURKE [1985], SCHUTZ [1980]),
usually denoted by∗, which mapsp-forms, straight or twisted, to(n − p)-forms of the
other kind, with∗∗ = ±1, depending onn andp. In dimensionn = 3, it’s a simple
exercise to show that the above construction then reduces to∗ 1u = 2ũ, which prompts
the following definition:∗ 0ϕ = 3ϕ̃, ∗ 1u = 2ũ, ∗ 2u =1 ũ, 3ϕ = ∗ 0ϕ̃. Note that∗∗ = 1
for all p in 3D.

The metric structure has played an essential role in this definition: areas, lengths, and
orthogonality depend on it. So we now distinguish, in the Maxwell equations, the two
metric-free main ones,

(10.2)∂tb + de = 0,

(10.4)−∂td + dh = j,

and the metric-dependent constitutive laws

(11.2)b = µh,

(11.3)d = εe,

whereµ and ε are operators of the kind just described. To the extent that no metric
element is present in these equations, except for the operatorsµ and ε, from which
one can show the metric can be inferred (BOSSAVIT [2001b]), one may even adopt the
radical point of view (DI CARLO and TIERO [1991]) thatµ andε encodethe metric
information.

12. The Maxwell equations: Discussion

With initial conditions one andh at timet = 0, and conditions about the “energy” of
the fields to which we soon return, the above system makes a well-posed problem. Yet
a few loose ends must be tied.

First, recall thatj is supposed to be known. But reintroducing Ohm’s law at this stage
would be no problem: replacej in (10.4) byj s +σe, wherej s is a given twisted 2-form
(the source current), andσ a third Hodge-like operator on the model ofε andµ.

12.1. Boundary conditions, transmission conditions

Second, boundary conditions, if any. Leaving aside artificial “absorbing” boundary con-
ditions (MITTRA, RAMAHI , KHEBIR, GORDON and KOUKI [1989]), not addressed
here, there are essentially four basic ones, as follows.

Let’s begin with “electric walls”, i.e., boundaries of perfect conductors, inside which
E = 0, hence the standardn × E = 0 on the boundary. In terms of the forme, it means
that

∫
c
e = 0 for all curvesc contained in such a surface. This motivates the following

definition, stated in dimensionn for generality:S being an(n−1)-manifold, callCp(S)

the space ofp-chains whose components are all supported inS; then,
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DEFINITION 12.1. The trace tSω of thep-form ω is the restriction ofω to Cp(S), i.e.,
the mapc → ∫

c
ω restricted top-chains based on components which are contained inS.

Of course this requiresp < n. So the boundary condition at an electric wallSe is
tSee = 0, which we shall rather write, for the sake of clarity, as “te = 0 onSe”. Sym-
metrically, the condition th = 0 onSh corresponds to a magnetic wallSh.

The Stokes theorem shows that d, and t, commute: dtω = tdω for any ω of degree
not higher thann − 2. Therefore te = 0 implies tde = 0, hence∂t (tb) = 0 by (10.2),
that is, tb = 0 if one starts from null fields at time 0. For the physical interpretation of
this, observe that tb = 0 onSb means

∫
S
b = 0 for any surface pieceS belonging toSb,

or else, in terms of the vector proxy,
∫
S
n · B = 0, which impliesn · B = 0 on all Sb:

a “no-flux” surface, called a “magnetic barrier” by some. We just proved anew, in the
present language, that electric walls are impervious to magnetic flux. One will see in the
same manner that tj = 0 corresponds to “insulating boundaries” (n ·J= 0) and td = 0 to
“dielectric barriers” (n · D = 0). If j is given with tj = 0 at the boundary of the domain
of interest (which is most often the case) then th = 0 on Sh implies td = 0 there. (In
eddy current problems, whered is neglected, butj is only partially given, th = 0 onSh

implies tj = 0, i.e., no current through the surface.)
Conditions tb = 0 or td = 0 being thus weaker than te = 0 or th = 0, one may well

want to enforce them independently. Many combinations are thereby possible. As a
rule (but there are exceptions in non-trivial topologies, see BOSSAVIT [2000]), well-
posedness in a domainD bounded by surfaceS obtains ifS can be subdivided asS =
Se ∪ Sh ∪ Seh, with te = 0 onSe (electric wall), th = 0 onSh (magnetic wall), andboth
conditions tde = 0 and tdh = 0 onSeh, which corresponds to tb = 0 and td = 0 taken
together (boundary which is both a magnetic and a dielectric barrier, or, in the case of
eddy-current problems, an insulating interface).

REMARK 12.1. It may come as a surprise that the standard Dirichlet/Neumann oppo-
sition is not relevant here. It’s because a Neumann condition is just a Dirichlet condi-
tion composed with the Hodge and the trace operators (BOSSAVIT [2001c]): Take for
instance the standardn×µ−1 rot E= 0, which holds on magnetic walls in the E formu-
lation. This is (up to an integration with respect to time) the proxy form of th = 0, i.e.,
of the Dirichlet conditionn × H = 0. In short, Neumann conditions one are Dirich-
let conditions onh, and the other way round. They only become relevant when one
eliminates eithere or h in order to formulate the problem in terms of the other field ex-
clusively, thus breaking the symmetry inherent in Maxwell’s equations (which we have
no intention to do unless forced to!).

Third point, what about the apparently missing equations, div D= Q and divB= 0
in their classical form (Q is the density of electric charge)? These are not equations,
actually, but relations implied by the Maxwell equations, or at best, constraints that
initial conditions should satisfy, as we now show.

Let’s first defineq, the electric charge, of which the above Q is the proxy scalar field.
Sincej accounts for its flow, charge conservation impliesdt

∫
V

q + ∫
∂V

j = 0 for all
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volumesV , an integral law the infinitesimal form of which is

(12.1)∂tq + dj = 0.

Suppose bothq andj were null before timet = 0. Later, then,q(t) = − ∫ t

0(dj)(s) ds.
Note thatq, like dj , is a twisted3-form, as should be the case for something that ac-
counts for the density of a substance. (Twisted forms are often called “densities”, by the
way, as in BURKE [1985].)

Now, if one accepts the physical premise that no electromagnetic field exists until
its sources (charges and their flow, i.e.,q and j ) depart from zero, all fields are null
at t = 0, and in particular, after (10.4),d(t) = d(0) + ∫ t

0 [(dh)(s) − j (s)]ds, hence,
by using (8.2), dd(t) = − ∫ t

0(dj)(s) ds ≡ q(t), at all times, hence the derived relation
dd = q. As for b, the same computation shows that db = 0.

So-called “transmission conditions”, classically[n × E] = 0, [n · B] = 0, etc., at ma-
terial interfaces, can be evoked at this juncture, for these too are not equations, in the
sense of additional constraints that the unknownse, b, etc., would have to satisfy. They
are satisfied from the outset, being a consequence of the very definition of differential
forms (cf. Fig. 7.1).

12.2. Wedge product, energy

Fourth point, the notion of energy. The physical significance of such integrals as
∫

B · H
or

∫
J· E is well known, and it’s easy to show, using the relations displayed on Fig. 8.1,

that both are metric-independent. So they should be expressible in non-metric terms.
This is so, thanks to the notion ofwedge product, an operation which creates a (p + q)-
form ω ∧ η (straight when both factors are of the same kind, twisted otherwise) out of
ap-form ω and aq-form η. We shall only describe this in detail in the case of a 2-form
b and a 1-formh, respectively straight and twisted.

The result, a twisted 3-formb ∧ h, is known if integrals
∫
V

b ∧ h are known for all
volumesV . In quite the same way as with the Hodge map, the thing is easy whenV

is a small parallelepiped, as shown in Fig. 12.1. Observe that, ifb = 2B andh = 1H̃,
then

∫
V

b ∧ h = B · H vol(V ), if one follows the recipe of Fig. 12.1, confirming the
soundness of the latter. The extension to finite-size volumes is made by constructing
Riemann sums, as usual.

REMARK 12.2. Starting from the equality
∫

b ∧ h′ = ∫
B · H′, settingb = µh yields∫

µh ∧ h′ = ∫
µH · H′ = ∫

µH′ · H = ∫
µh′ ∧ h, a symmetryproperty of the Hodge

operator to which we didn’t pay attention till now. Note also that
∫

µh∧h = ∫
µ|H|2 >

0, unlessh = 0. Integrals such as
∫

µh∧h′, or
∫

νb∧b′, etc., can thus be understood as
scalar productson spaces of forms, which can thereby be turned (after due completion)
into Hilbert spaces. The corresponding norms, i.e., the square roots of

∫
µh ∧ h, of∫

νb ∧ b, and other similar constructs one or d , will be denoted by|h|µ, |b|ν , etc.

Other possible wedge products are0ϕ ∧ ω = 0(ϕω) (whatever the degree ofω),
1u ∧ 1v = 2(u × v), 2u ∧ 1v = 3(u · v). (If none or both factors are straight forms,
the product is straight.) It’s an instructive exercise to work out the exterior derivative of
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FIG. 12.1. There are three ways, as shown, to see volumeV , built onu, v, w, as the extrusion of a surfaceS
along a line segmentγ . A natural definition of the integral ofb ∧ h is then

∫
V b ∧ h = (

∫
S(u,v) b)(

∫
γ (w) h) +

(
∫
S(v,w) b)(

∫
γ (u) h) + (

∫
S(u,w) b)(

∫
γ (v) h). Note the simultaneous inner and outer orientations ofS andγ ,

which should match (if the outer orientation ofV is +, as assumed), but are otherwise arbitrary.

such products, using the Stokes theorem, and to look for the equivalents of the standard
integration by parts formulas, such as∫

Ω

(H · rot E− E · rot H) =
∫

∂Ω

n · (E× H),∫
Ω

(D · gradΨ + Ψ divD) =
∫

∂Ω

Ψ n · D.

They are, respectively,

(12.2)
∫

Ω

(de ∧ h − e ∧ dh) =
∫

∂Ω

e ∧ h,

(12.3)
∫

Ω

(dψ ∧ d + ψ dd) =
∫

∂Ω

ψ d.

Now, let us consider a physically admissible field, that is, a quartet of formsb,h, e, d ,
which may or may not satisfy Maxwell’s equations when taken together, but are each of
the right degree and kind in this respect.

DEFINITION 12.2. The following quantities:

(12.4)
1

2

∫
µ−1b ∧ b,

1

2

∫
µh ∧ h,

1

2

∫
εe ∧ e,

1

2

∫
ε−1d ∧ d,

are called, respectively,magnetic energy, magnetic coenergy, electric energy, andelec-
tric coenergyof the field. The integral

∫
j ∧ e is thepowerreleased by the field.

The latter definition, easily derived from the expression of the Lorentz force, is a
statement about field–matter energy exchanges from which the use of the word “energy”
could rigorously be justified, although we shall not attempt that here (cf. BOSSAVIT

[1990a]). The definition entails the following relations:

1

2

∫
µ−1b ∧ b + 1

2

∫
µh ∧ h �

∫
b ∧ h,

1

2

∫
ε−1d ∧ d + 1

2

∫
ε e ∧ e �

∫
d ∧ e,
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with equality if and only ifb = µh andd = εe. One may use this as a way to set up the
constitutive laws.

REMARK 12.3. The well-posedness evoked earlier holds if one restricts the search
to fields with finite energy. Otherwise, of course, nonzero solutions to (10.2), (10.4),
(11.2), (11.3) withj = 0 do exist (such as, for instance, plane waves).

The integrals in (12.4) concern the whole space, or at least, the whole region of ex-
istence of the field. One may wish to integrate on some domainΩ only, and to account
for the energy balance. This is again an easy exercise:

PROPOSITION 12.1 (Poynting’s theorem).If the field {b,h, e, d} does satisfy the
Maxwell equations(10.2), (10.4), (11.2), (11.3), one has

dt

[
1

2

∫
Ω

µ−1b ∧ b + 1

2

∫
Ω

εe ∧ e

]
+

∫
∂Ω

e ∧ h = −
∫

Ω

j ∧ e

for any fixed domainΩ .

PROOF. “Wedge multiply” (10.2) and (10.4), from the right, bye and−h, add, use
(12.2) and Stokes. �

As one sees, all equalities and inequalities on which a variational approach to
Maxwell’s theory can be based do have their counterparts with differential forms. We
shall not follow this thread any further, since what comes ahead is not essentially based
on variational methods. Let’s rather close this section with a quick review of various
differential forms in Maxwell’s theory and how they relate.

12.3. The “Maxwell house”

To the field quartet and the source pair{q, j}, one may add theelectric potentialψ
and thevector potentiala, a straight 0-form and 1-form respectively, such thatb = da

ande = −∂ta + dψ . Also, themagnetic potentialϕ (twisted 0-form) and the twisted
1-form τ such thath = τ + dϕ, whose proxy is the T of Carpenter’s “T–Ω” method
(CARPENTER[1977]). None of them is as fundamental as those in (10.2), (10.4), but
each can be a useful auxiliary at times. Themagnetic currentk andmagnetic chargem
can be added to the list for the sake of symmetry (Fig. 12.2), although they don’t seem
to represent any real thing (GOLDHABER and TROWER[1990]).

For easier reference, Fig. 12.2 displays all these entities as an organized whole, each
one “lodged” according to its degree and nature as a differential form. Since primitives
in time may have to be considered, we can group the differential forms of electromag-
netism in four similar categories, shown as vertical pillars on the figure. Each pillar
symbolizes the structure made by spaces of forms of all degrees, linked together by the
d operator. Straight forms are on the left and twisted forms on the right. Differentiation
or integration with respect to time links each pair of pillars (the front one and the rear
one) forming the sides of the structure. Horizontal beams symbolize constitutive laws.
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FIG. 12.2. Structures underlying the Maxwell system of equations. For more emphasis on their symmetry,
Faraday’s law is here taken to be∂t b + de = −k, with k = 0. (The straight 2-formk would stand for the
flow of magnetic charge, if such a thing existed. Then, one would have db = m, where the straight 3-formm

represents magnetic charge, linked with its current by the conservation law∂tm + dk = 0.)

As one can see, each object has its own room in the building:b, a 2-form, at level
2 of the “straight” side, the 1-forma such thatb = da just above it, etc. Occasional
asymmetries (e.g., the necessity to time-integrateτ before lodging it, the bizarre lay-
out of Ohm’s law . . . ) point to weaknesses which are less those of the diagram than
those of the received nomenclature or (more ominously) to some hitch about Ohm’s
law (BOSSAVIT [1996]). Relations mentioned up to now can be directly read off from
the diagram, up to sporadic sign inversions. An equation such as∂tb + de = −k, for
instance, is obtained by gathering at the location ofk the contributions of all adjacent
niches, includingk’s, in the direction of the arrows. Note how the rules of Fig. 9.2, about
which scalar- or vector-proxies must be twisted or straight, are in force.

But the most important thing is probably the neat separation, in the diagram, between
“vertical” relations, of purely affine nature, and “horizontal” ones, which depend on
metric. If this was not drawing too much on the metaphor, one could say that a change of
metric, as encoded inε andµ (due for instance to a change in their local values, because
of a temperature modification or whatever) would shake the building horizontally but
leave the vertical panels unscathed.

This suggests a method fordiscretizingthe Maxwell equations: The orderly structure
of Fig. 12.1 should be preserved, if at all possible, in numerical simulations. Hence in
particular the search for finite elementswhich fit differential forms, which will be among
our concerns in the sequel.





CHAPTER III

Discretizing

It’s a good thing to keep in mind a representative of the family of problems one wishes
to model. Here, we shall have wave-propagation problems in view, but heuristic consid-
erations will be based on the much simpler case of static fields. The following example
can illustrate both things, depending on whether the exciting current, source of the field,
is transient or permanent, and lends itself to other useful variations.

13. A model problem

In a closed cavity with metallic walls (Fig. 13.1), which has been free from any elec-
tromagnetic activity till timet = 0, suppose a flow of electric charge is created in an
enclosed antenna after this instant, by some unspecified agency. An electromagnetic
field then develops, propagating at the speed of light towards the walls which, as soon
as they are reached by the wavefront, begin to act as secondary antennas. Dielectric or
magnetizable bodies inside the cavity, too, may scatter waves. Hence a complex evolu-
tion, which one may imagine simulating by numerical means. (How else?)

For the sake of generality, let’s assume a symmetry plane, and a symmetrically dis-
tributed current. (In that case, the plane acts as a magnetic wall.) The computation will
thus be restricted to a spatial domainD coinciding with one half of the cavity, on the
left of the symmetry plane, say. CallingSe andΣh, as Fig. 13.1 shows, the two parts

FIG. 13.1. Situation and notation (dimension 3). RegionD is the left half of the cavity. Its boundaryS has
a partSe in the conductive wall and a partΣh in the symmetry plane. RegionA, the left “antenna”, is the
support of the given current density J (mirrored on the right), for which some generator, not represented and

not included in the modelling, is responsible.

147
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of its surface, an electric wall and a magnetic wall respectively, we write the relevant
equations inD as

∂tb + de = 0, −∂td + dh = j,

(13.1)d = εe, b = µh,

te = 0 onSe, th = 0 onΣh.

The coefficientsε andµ which generate their Hodge namesakes are real, constant in
time, but not necessarily equal to their vacuum valuesε0 andµ0, and may therefore
depend onx. (They could even be tensors, as observed earlier.) The current densityj

is given, and assumed to satisfyj (t) = 0 for t � 0. All fields, besidesj , are supposed
to be null beforet = 0, hence initial conditionse(0) = 0 andh(0) = 0. Notice that
dj = 0 is not assumed: some electric charge may accumulate at places in the antenna,
in accordance with the charge-conservation equation (12.1).

Proving this problem well-posed34 is not our concern. Let’s just recall that it is so,
under reasonable conditions onj , when all fieldse andh are constrained to have finite
energy.

Two further examples will be useful. Supposej has reached a steady value for so
long that all fields are now time-independent. The magnetic part of the field, i.e., the
pair {b,h}, can then be obtained by solving, in domainD,

db = 0, dh = j,

(13.2)b = µh,

tb = 0 onSe, th = 0 onΣh.

This is also a well-posed problem (magnetostatics), provided dj = 0. As for the electric
part of the field, which has no reason to be zero since the asymptotic charge density
q = q(∞) = − ∫ ∞

0 dj (t) dt does not vanish, as a rule, one will find it by solving

dd = q, de = 0,

(13.3)d = εe,

te = 0 onSe, td = 0 onΣh

(electrostatics). The easy task of justifying the boundary conditions in (13.2) and (13.3)
is left to the reader. One should recognize in (13.3), thinly veiled behind the present
notation, the most canonical example there is of elliptic boundary-value problem.35

Finally, let’s give an example of eddy-current problem in harmonic regime, assuming
a conductivityσ � 0 in D andσ = 0 in A. This time, all fields are of the formu(t, x) =
34Its physical relevance has been challenged (by SMYTH and SMYTH [1977]), on the grounds that assuming

a given current density (which is routinely done in such problems) neglects the reaction of the antenna to
its own radiated field. This is of course true – and there are other simplifications that one might discuss –
but misses the point of whatmodellingis about. See UMAN [1977] and BOSSAVIT [1998b, p. 153], for a
discussion of this issue.
35Mere changes of symbols would yield the stationary heat equation, the equation of steady flow in porous

media, etc. Notice in particular how the steady current equation, with Ohm’s law, can be written as dj = 0,
j = σe, de = 0, plus boundary conditions (non-homogeneous, to include source terms).
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Re[exp(iωt) U(x)], with U complex-valued (SMALL CAPITALS will denote such fields).
The given current inA, now denotedJs (s for “source”), is solenoidal, displacement
currents are neglected, and Ohm’s lawJ = σ E + Js is in force, whereσ is of course
understood as a Hodge-like operator, but positive semi-definite only. The problem is
then, with the same boundary conditions as above,

dH = σ E + Js , H = νB, dE = −iωB,

andB andH can be eliminated, hence a second-order equation in terms ofE:

(13.4)iωσ E + dν dE = −iωJs ,

with boundary conditions tE = 0 onSe and tν dE = 0 onΣh.
Nothing forbidsσ andµ there to be complex-valued too. (Let’s however request them

to have Hermitian symmetry.) A complexµ can sometimes serve as a crude but effective
way to model ferromagnetic hysteresis. And since the realσ can be replaced byσ + iωε,
we are not committed to drop out displacement currents, after all. Hence, (13.4) can
well be construed as the general version of the Maxwell equations in harmonic regime,
at angular frequencyω, with dissipative materials possibly present. In particular, (13.4)
can serve as a model for the “microwave oven” problem. Note that what we have here is
a Fredholm equation: Omitting the excitation termJs and replacingσ by iωε gives the
“resonant cavity problem” inD, namely, to find frequenciesω at which dν dE = ω2εE

has a nonzero solutionE.

14. Primal mesh

Let’s define what we shall call a “cellular paving”. This is hardly different from a finite-
element mesh, just a bit more general, but we need to be more fussy than is usual about
some details. We pretend to work inn-dimensional Euclidean spaceEn, but of course
n = 3 is the case in point. The cells we use here are those introduced earlier36 (Fig. 2.1),
with the important caveat that they are all “open” cells, in the sense of Section 2, i.e., do
not include their boundaries. (The only exception is forp = 0, nodes, which are both
open and closed.) The corresponding closed cell will be denoted with an overbar (also
used for the topological closure).

This being said, acellular pavingof some regionR of space is a finite set of open
p-cells such that (1) two distinct cells never intersect, (2) the union of all cells isR,
(3) if the closures of two cellsc andc′ meet, their intersection is the closure of some
(unique) cellc′′. It may well happen thatc′′ is c, or c′. In such a case, e.g., ifc ∩ c′ = c,
we say thatc is a face ofc′. For instance, on Fig. 14.1, left,c3 is a face ofc4. If c is a
face ofc′ which itself is a face ofc′′, thenc is a face ofc′′. Cells in ambient dimension
3 or lower will be callednodes, edges, facets, andvolumes, with symbolsn, e, f , v to
match.

We’ll say we have aclosedpaving if R is closed. (Fig. 14.1, left, gives a two-
dimensional example, whereR = D.) But it need not be so. Closed pavings are not

36Topologically simplesmoothcells, therefore. But the latter condition is not strict and we shall relax it to
piecewisesmooth, in the sequel, without special warning.
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FIG. 14.1. Left: A fewp-cells, contributing to a closed cellular paving ofD. (This should be imagined
in dimension 3.) Right: A culled paving, now “closed relative to”Se . This is done in anticipation of the
modelling we have in mind, in which cells ofSe would carry null degrees of freedom, so they won’t be

missed.

necessarily what is needed in practice, as one may rather wish to discard some cells in
order to deal with boundary conditions. Hence the relevance of the following notion of
“relative closedness”:C being a closed part ofR, we shall say that a paving ofR is
closed moduloC if it can be obtained by removing, from some closed paving, all the
cells which map intoC. The case we shall actually need, of a paving ofR = D − Se

which is closed moduloSe, is displayed on the right of Fig. 14.1. Informally said, “pave
D first, then remove all cells from the electric boundary”.

Each cell has its own inner orientation. These orientations are arbitrary and indepen-
dent. In three dimensions, we shall denote byN , E , F , V , the sets of orientedp-cells
of the paving, and byN , E, F , V the number of cells in each of these sets. (The general
notation, rarely required, will beSp for the set ofp-cells andSp for the number of such
cells.)

Two cellsσ andc, of respective dimensionsp andp + 1, are assigned anincidence
number, equal to±1 if σ is a face ofc, and to 0 otherwise. As for the sign, recall
that each cell orients its own boundary (Section 4), so this orientation may or may not
coincide with the one attributed toσ . If orientations match, the sign is+, else it’s−.
Fig. 14.2 illustrates this point. (Also refer back to Fig. 4.1.)

Collecting these numbers in arrays, we obtain rectangular matricesG, R, D, called
incidence matricesof the tessellation. For instance (Fig. 14.2), the incidence number
for edgee and facetf is denotedRe

f , and makes one entry in matrixR, whose rows and
columns are indexed over facets and edges, respectively. The entryGn

e of G is −1 in the
case displayed, becausen, positively oriented, is at the start of edgee (cf. Fig. 3.4(c)).
And so on. SymbolsG, R, D are of course intentionally reminiscent of grad, rot, div,
but we still have a long way to go to fully understand the connection. Yet, one thing
should be conspicuous already: contrary to grad, rot, div, the incidence matrices are
metric-independententities, so the analogy cannot be complete. MatricesG, R, D are
more akin to the (metric-independent) operator d from this viewpoint, and the generic
symbold, indexed by the dimensionp if needed, will make cleaner notation in spatial
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FIG. 14.2. Sides: Individual oriented cells. Middle: The same, plus a 3-cell, as part of a paving, showing
respective orientations. Those ofv and f match, those off and e, or of e and n, don’t. SoGn

e = −1,

Re
f

= −1, andDf
v = 1.

FIG. 14.3. RelationDR = 0, and how it doesn’t depend on the cells’ individual orientations: In both cases,

one hasDf
v Re

f
+ Dg

vRe
g = 0.

dimensions higher than 3, withd0 = G, d1 = R, d2 = D. The mnemonic value ofG, R,
D, however, justifies keeping them in use.

Just as rot◦grad= 0 and div◦ rot = 0, one hasRG = 0 andDR = 0. Indeed, for an
edgee and a volumev, the{v, e}-entry ofDR is

∑
f ∈F Df

v Re
f . Nonzero terms occur,

in this sum over facets, only for those which both containe and are a face ofv, which
happens only ife belongs tov. In that case, there are exactly two facetsf andg of
v meeting alonge (Fig. 14.3), and hence two nonzero terms. As Fig. 14.3 shows, they
have opposite signs, whatever the orientations of the individual cells, hence the result,
DR = 0. By a similar argument,RG = 0, and more generally,dp+1dp = 0.

REMARK 14.1. The answer to the natural question, “then, is the kernel ofR equal to
the range ofG?”, is “yes” here, becauseD − Se has simple topology. (See the remark
at the end of Section 4 about homology. This time, going further would lead us into
cohomology.) For the same reason, ker(D) = cod(R). This will be important below.

It is no accident if this proof ofd ◦ d = 0 evokes the one about∂ ◦ ∂ = 0 in Section 4,
and the caption of Fig. 4.1. The same basic observation, “the boundary of a boundary is
zero” (TAYLOR and WHEELER [1992], KHEYFETS and WHEELER [1986]), underlies
all proofs of this kind. In fact, the above incidence matrices can be used to find the
boundaries, chainwise, of each cell. For instance,f being understood as the 2-chain
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based on facetf with weight 1, one has∂f = ∑
e∈E Re

f e. So if S is the straight 2-chain∑
f wf f with weightswf (which we shall call aprimal 2-chain, or “m-surface”, using

m as a mnemonic for the underlying mesh), its boundary37 is the 1-chain

∂S =
∑
e∈E

∑
f ∈F

Re
f wf e.

More generally, let’s write∂p, boldface,38 for the transpose of the above matrixdp−1.
Then, if c = ∑

σ∈Sp
wσ σ is a p-chain, its boundary is∂c =

∑{s ∈ Sp−1: (∂pw)ss},
wherew stands for the vector of weights. Thus,∂ is to ∂ whatd is to d. Moreover, the
duality between d and∂ is matched by a similar duality between their finite-dimensional
counterpartsd and∂ .

15. Dual mesh

A dualmesh, with respect tom, is also a cellular paving, though not of the same region
exactly, and withouterorientation of cells. Let’s explain.

To eachp-cell c of the primal mesh, we assign an(n−p)-cell, called thedualof c and
denotedc̃, which meetsc at a single pointxc. (Ways to buildc̃ will soon be indicated.)
Hence a one-to-one correspondence between cells of complementary dimensions. Thus,
for instance, facetf is pierced by the dual edgẽf (a line), noden is inside the dual
volumeñ, and so forth. Since the tangent spaces atxc to c andc̃ are complementary, the
inner orientation ofc provides an outer orientation forc̃ (Fig. 15.1). Incidence matrices
G̃, R̃, D̃ can then be defined, as above, the sign of each nonzero entry depending on
whether outer orientations match or not.

Moreover, it is required that, whenc is a face ofc′, the dualc̃′ be a face of̃c, and
the other way round. This has two consequences. First, we don’t really need new names
for the dual incidence matrices. Indeed, consider for instance edgee and facetf , and
supposeRe

f = 1, i.e.,e is a face off and their orientations match: Then the dual edge

f̃ is a face of the dual facet̃e, whose outer orientations match, too. So what we would

otherwise denotẽRf̃

ẽ
is equal toRe

f . Same equality ifRe
f = −1, and same reasoning for

FIG. 15.1. Inner orientations of edgee and facetf , respectively, give crossing direction throughẽ and
gyratory sense around̃f .

37More accurately, its boundaryrelative toΣh.
38Boldface, from now on, connotes mesh-related things, such as DoF arrays, etc.
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FIG. 15.2. A dual paving, overlaid on the primal one.

other kinds of cells, from which we conclude that the would-be dual incidence matrices
G̃, R̃, D̃ are just the transposesDt , Rt , Gt of the primal ones.

Second consequence, there is no gap between dual cells, which thus form a cellular
paving of a connected regioñR, the interiorD̃ of which is nearlyD, but not quite
(Fig. 15.2). A part of its boundary is paved by dual cells: We name itS̃e, owing to its
kinship withSe (not so obvious on our coarse drawing! but the finer the mesh, the closer
S̃e andSe will get). The other part is denoted̃Σh. So the cellular paving we now have
is closed modulõΣh, whereas the primal one was closed moduloSe.

Given the meshm, all its conceivable duals have the samecombinatorialstructure
(the same incidence matrices), but can differ as regardsmetric, which leaves much lee-
way to construct dual meshes. Two approaches are noteworthy, which lead to the “bary-
centric dual” and the “Voronoi–Delaunay dual”. We shall present them as special cases
of two slightly more general procedures, the “star construction” and the “orthogonal
construction” of meshes in duality. For this we shall consider onlypolyhedralmeshes
(those with polyhedral 3-cells), which is not overly restrictive in practice.

The orthogonal construction consists in having each dual cell orthogonal to its pri-
mal partner. (Cf. Figs. 15.3 and 15.5, left.) A particular case is the Voronoi–Delaunay
tessellation (DIRICHLET [1850]), under the condition that dual nodes should be inside
primal volumes. Alas, as Fig. 15.4 shows, orthogonality can be impossible to enforce,
if the primal mesh is imposed. If one starts from a simplicial primal for which all cir-
cumscribed spheres have their center inside the tetrahedron, and all facets are acute
triangles, all goes well. (One then takes these circumcenters as dual nodes.) But this
property, desirable on many accounts, is not so easily obtained, and certainly not war-
ranted by common mesh generators.

Hence the usefulness of the star construction, more general, because it applies to any
primal mesh with star-shaped cells. A partA of An is star-shapedif it contains a point
a, that we shall call acenter, such that the whole segment [a, x] belongs toA whenx

belongs toA. Now, pick such a center in each primal cell (the center of a primal node
is itself), and join it to centers of all faces of the cell. This way,simplicial subcells
are obtained (tetrahedra and their faces, in 3D). One gets the dual mesh by rearranging
them, as follows: for each primal cellc, build its dual by putting together allk-subcells,
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FIG. 15.3. Left: Orthogonal dual mesh. (Same graphic conventions as in Fig. 15.2, slightly simplified.) Right:
Star construction of a dual mesh (close enough, here, to a barycentric mesh, but not quite the same). Notice

the isolated dual edge, and the arbitrariness in shaping dual cells beyondΣh.

FIG. 15.4. Left: How hopeless the orthogonal construction can become, even with a fairly regular primal
mesh. Right: Likely the simplest example of a 2D mesh without any orthogonal dual.

FIG. 15.5. Left: A facetf and its dual edgẽf in the orthogonal construction (ṽ andṽ′ are the dual nodes
which lie inside the volumesv andv′ just above and just belowf ). From ṽ, all boundary facets ofv can
directly be seen at right angle, but we don’t require more:ṽ is neitherv’s barycenter nor the center of its
circumscribed sphere, if there is such a sphere. Right: A dual facet and a dual edge, in the case of a simplicial

primal mesh and of its barycentric dual. Observe the orientations.

k � n − p, which have one of their vertices atc’s center, and other vertices at centers
of cells incident onc. Figs. 15.3 and 15.5, right, give the idea. If all primal cells are
simplices to start with, taking the barycenters of their faces as centers will give the
barycentricdual mesh evoked a bit earlier.
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REMARK 15.1. The recipe is imprecise about cells dual to those ofΣh, whose shape
outsideD can be as one fancies (provided the requirements about duality are satisfied).
Nothing there to worry about: Such choices are just as arbitrary as the selection of
the centers of cells. It’s all part of the unavoidable approximation error, which can be
reduced at will by refinement.39

REMARK 15.2. If, as suggested above (“paveD first . . . ”), the primal mesh hasbeen
obtained by culling from a closed one, subcells built from the latter form a refinement
of both the primal mesh and the dual mesh. The existence of this common “underlying
simplicial complex” will be an asset when designing finite elements.

16. A discretization kit

We are ready, now, to apply the afore-mentioned strategy: Satisfy the balance equations
(10.1) and (10.3) for a selectedfinite family of surfaces.

Let’s first adopt a finite, approximate representation of the fields. Considerb, for
instance. As a 2-form, it is meant to be integrated over inner oriented surfaces. So one
may consider the integrals

∫
f

b, denotedbf , for all facetsf , as a kind of “sampling”
of b, and take the array of such “degrees of freedom” (DoF),{b = bf : f ∈F}, indexed
over primal facets, as a finite representation ofb. This does not tell us about thevalue
of the field at any given point, of course. But is that the objective? Indeed, all we know
about a field is what we can measure, and we don’t measure point values. These are
abstractions. What we do measure is, indirectly, theflux of b, embraced by the loop of
a small enough magnetic probe, by reading off the induced e.m.f. The above sampling
thus consists in having each facet of the mesh play the role of such a probe, and the
smaller the facets, the better we know the field. Conceivably, the mesh may be made so
fine that thebf ’s aresufficient informationabout the field, in practice. (Anyway, we’ll
soon see how to compute an approximation of the flux for any surface, knowing the
bf ’s, hence an approximation ofb.) So one may be content with a method that would
yield the four meaningful arrays of degrees of freedom, listing

• the edge e.m.f.’s,e = {ee: e ∈ E},
• the facet fluxes,b = {bf : f ∈ F},
• the dual-edge m.m.f.’s,h = {hf : f ∈F},
• and the dual-facet displacement currents,d = {de: e ∈ E},

all that from a similar sampling, across dual facets, of the given currentj , encoded in
the DoF arrayj = {je: e ∈ E}.

In this respect, considering the integral form (10.1) and (10.3) of the basic equations
will prove much easier than dealing with so-called “weak forms” of the infinitesimal
equations (10.2) and (10.4). In fact, this simple shift of emphasis (which is the gist of
Weiland’s “finite integration theory”, WEILAND [1992], and of Tonti’s “cell method”,
TONTI [2001], MATTIUSSI [2000]) will so to speakforce on usthe right and unique
discretization, as follows.

39A refinementof a paving is another paving of the same region, which restricts to a proper cellular paving
of each original cell.
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16.1. Network equations, discrete Hodge operator

Suppose the chainS in (10.1) is the simplest possible in the present context, that is, a
singleprimal facet,f . The integral ofe along∂f is the sum of its integrals along edges
that make∂f , with proper signs, which are precisely the signs of the incidence numbers,
by their very definition. Therefore, Eq. (10.1) applied tof yields

∂tbf +
∑
e∈E

Re
f ee = 0.

There is one equation like this for each facet of the primal mesh, that is – thanks for hav-
ing discarded facets inSe, for which the flux is known to be 0 – one for each genuinely
unknown facet-flux ofb. Taken together, in matrix form,

(16.1a)∂tb + Re = 0,

they form the first group of ournetworkdifferentialequations.
The same reasoning about each dual facetẽ (the simplest possible outer-oriented

surface thatΣ in (10.3) can be) yields

−∂tde +
∑
f ∈F

Re
f hf = je,

for all e in E , i.e., in matrix form,

(16.1b)−∂td + Rth = j,

the second group of network equations.
To complete this system, we need discrete counterparts tob = µh andd = εe, i.e.,

network constitutive laws, of the form

(16.2)b = µh, d = εe,

whereε andµ are appropriate square symmetric matrices. Understanding how such ma-
trices can be built is our next task. It should be clear that nocanonicalconstruction can
exist – for sure, nothing comparable to the straightforward passage from (10.1), (10.3)
to (16.1a), (16.1b) – because the metric of both meshes must intervene (Eq. (11.1) gives
a clue in this respect). Indeed, the exact equivalent of (16.1), up to notational details, can
be found in most published algorithms (including those based on the Galerkin method,
see, e.g., LEE and SACKS [1995]), whereas a large variety of proposals exist as regards
ε andµ. These “discrete Hodge operators” are the real issue. Constructing “good” ones,
in a sense we still have to discover, is the central problem.

Our approach will be as follows: First – just not to leave the matter dangling too long
– we shall giveonesolution, especially simple, to this problem, which makesε and
µ diagonal, a feature the advantages of which we shall appreciate by working out a
few examples. Later (in Section 20), a generic error analysis method will be sketched,
from which acriterion as to what makes a goodε–µ pair will emerge. Finite elements
will enter the stage during this process, and help find other solutions to the problem,
conforming to the criterion.
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FIG. 16.1. The case of a discontinuous permeability (µ1 andµ2 in primal volumesT1 and T2, separated

by facetf ). We denote by
f the vectorial area off and by
�
f1,

�
f2, the vectors along both parts of̃f . Let

u and v be arbitrary vectors, respectively normal and tangent tof , and letH1 = u + v in T1. Transmis-
sion conditions acrossf determine a unique uniform field B2 = µ1u + µ2v in T2. Thenbf = µ1 
f · u and

µ2hf = µ2
�
f1 ·u + µ1

�
f2 ·u. As 
f ,

�
f1, and

�
f2 are collinear,u disappears from the quotientbf /hf , yield-

ing (16.4).

The simple solution is available if one has been successful in building a dual mesh by
the orthogonal construction (Figs. 15.3 and 15.5, left). Then, in the case whenε andµ

are uniform,40 one setsεee′ = 0 if e �= e′, µff ′ = 0 if f �= f ′, and (cf. (11.1))

(16.3)εee = ε
area(ẽ)

length(e)
, µff = µ

area(f )

length(f̃ )
,

which does provide diagonal matricesε andµ. (The inverse ofµ will be denoted by
ν.) The heuristic justification (TONTI [2001]) is thatif the various fields happened to
be piecewise constant (relative to the primal mesh), formulas (16.3) would exactly cor-
respond to the very definition (11.1) of the Hodge operator. (Section 20 will present a
stronger argument.) In the case of non-uniform coefficients, formulas such as

(16.4)µff = µ1µ2 area(f )

µ2 length(f̃1) + µ1 length(f̃2)
,

wheref̃1 andf̃2 are the parts off̃ belonging to the two volumes adjacent tof , apply
instead (Fig. 16.1). Observe the obvious intervention of metric elements (lengths, areas,
angles) in these constructions.

REMARK 16.1. Later, when edge elementswe and facet elementswf will enrich the
toolkit, we shall consider another solution, that consists in settingεee′ = ∫

D
εwe ∧ we′

andνff ′ = ∫
D

µ−1wf ∧ wf ′
. For reference, let’s call this the “Galerkin approach” to

the problem. We shall use loose expressions such as “the Galerkinε”, or “the diagonal
hodge”, to refer to various brands of discrete Hodge operators.

16.2. The toolkit

At this stage, we have obtained discrete counterparts (Fig. 16.2) to most features of the
“Maxwell building” of Fig. 12.2, but time differentiation and wedge product still miss

40I’ll use “uniform” and “steady” for “constant in space” and “constant in time”, respectively.
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FIG. 16.2. A “discretization toolkit” for Maxwell’s equations.

theirs. Some thought about how the previous ideas would apply in four dimensions
should quickly suggest the way to deal with time derivatives:δt being the time step,
call bk , hk , the values ofb, h at timekδt , for k = 0,1, . . . , call jk+1/2, dk+1/2, ek+1/2

those ofj, d, e at time (k + 1/2)δt , and approximate∂tb, at time (k + 1/2)δt , by
(bk+1 − bk)/δt , and similarly,∂td, now at timekδt , by (dk+1/2 − dk−1/2)/δt .

As for the wedge product, to
∫
D

b ∧ h corresponds the sum
∑

f ∈F bf hf , which
we shall denote by(b,h), with bold parentheses. Similarly,

∫
D

d ∧ e corresponds to∑
e∈E deee, also denoted(d, e). Hence we may define “discrete energy” quadratic

forms, 1/2(νb,b), 1/2(µh,h), 1/2(εe, e), and 1/2(ε−1d,d), all quantities with, in-
deed, the physical dimension of energy (but be aware that(j, e) is a power instead, like∫
D

j ∧ e). Some notational shortcuts: Square roots such as(νb,b)1/2, or (εe, e)1/2, etc.,
will be denoted by|b|ν , or |e|ε, in analogy with the above|b|ν , or |e|ε , and serve as
various, physically meaningfulnormson the vector spaces of DoF arrays. We’ll say the
“ν-norm”, the “ε-norm”, etc., for brevity.

PROPOSITION16.1. If Eqs.(16.1)–(16.2)are satisfied, one has

(16.5)dt

[
1

2
(νb,b) + 1

2
(εe, e)

]
= −(j, e).

PROOF. Take the bold scalar product of (16.1a) and (16.1b) byh and−e, add, and use
the equality(Re,h) = (e,Rth). �

REMARK 16.2. The analogue of
∫
S
h ∧ e, whenS is somem-surface, is∑

f ∈F(S), e∈E
Re

f hf ee,

whereF(S) stands for the subset of facets which composeS. (Note how this sum van-
ishes ifS is the domain’s boundary.) By exploiting this, the reader will easily modify
(16.5) in analogy with the Poynting theorem. In spite of such formal correspondences,
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energy and discrete energy have, a priori, no relation. To establish one, we shall need
“interpolants”, such as finite elements, enabling us to pass from degrees of freedoms to
fields. For instance, facet elements will generate a mappingb → b, with b = ∑

f bf wf .
If ν is the Galerkin hodge, then

∫
D

νb ∧ b = (νb,b). Such built-in equality between
energy and discrete energy is an exception, a distinctive feature of the Ritz–Galerkin
approach. With other discrete hodges, evenconvergenceof discrete energy, as the mesh
is refined, towards the true one, should not be expected.

17. Playing with the kit: Full Maxwell

Now we have enough to discretize any model connected with Maxwell’s equations.
Replacing, in (13.1), rot byR or Rt , ε andµ by ε andµ, and∂t by the integral or
half-integral differential quotient, depending on the straight or twisted nature of the
differential form in consideration, we obtain this:

(17.1)
bk+1 − bk

δt
+ Rek+1/2 = 0, −ε

ek+1/2 − ek−1/2

δt
+ Rtνbk = jk

(wherejk is the array of intensities through dual facets, at time41 kδt), with initial con-
ditions

(17.2)b0 = 0, e−1/2 = 0.

In the simplest case where the primal and dual mesh are plain rectangular staggered
grids, (17.1) and (17.2) is the well known Yee scheme (YEE [1966]). So what we have
here is the closest thing to Yee’s scheme in the case ofcellular meshes.

A similar numerical behavior can therefore be expected. Indeed,

PROPOSITION17.1. The scheme(17.1)and (17.2) is stable forδt small enough, pro-
vided bothε andν are symmetric positive definite.

PROOF. For such a proof, one may assumej = 0 and nonzero initial values in (17.2),
satisfyingDb0 = 0. Eliminatinge from (17.1), one finds that

(17.3)bk+1 − 2bk + bk−1 + (δt)2Rε−1Rtνbk = 0.

Since DR = 0, the “loop invariant”Dbk = 0 holds, so one may work in the cor-
responding subspace, ker(D). Let’s introduce the (generalized) eigenvectorsvi such
that Rε−1Rtvi = λiµvi , which satisfy(µvi ,vj ) = 1 if i = j , 0 if i �= j . In this “µ-
orthogonal” basis,bk = µΣiη

k
i vi , and (17.3) becomes

ηk+1
i − (

2− λi(δt)
2)ηk

i + ηk−1
i = 0

for all i. Theηk
i s, and hence thebks, stay bounded if the characteristic equation of each

of these recurrences has imaginary roots, which happens (Fig. 17.1) if 0< λjδt < 2 for
all j . �
41For easier handling of Ohm’s law,j(kδt) may be replaced by(jk+1/2 + jk−1/2)/2.
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FIG. 17.1. The white spot lies at the sum of roots of the characteristic equationr2 − (2− λi(δt)
2)r + 1= 0.

Stability is lost if it leaves the interval[−2,2].

In the case of the original Yee scheme, eigenvalues could explicitly be found, hence
the well-known relation (YEE [1966]) between the maximum possible value ofδt and
the lengths of the cell sides. For general grids, we have no explicit formulas, but the
thumbrule is the same:δt should be small enough for a signal travelling at the speed of
light (in the medium under study) not to cross more than one cell during this lapse of
time.

This stringent stability condition makes the scheme unattractive if not fully explicit,
or nearly so:ε should bediagonal, or at the very least, block-diagonal with most blocks
of size 1 and a few small-size ones, andν should be sparse. If so is the case, each time
step will only consist in a few matrix–vector products plus, perhaps, the resolution of
a few small linear systems, which makes up for the large number of time steps. Both
conditions are trivially satisfied with the orthogonal construction (cf. (16.3), (16.4)),
but we have already noticed the problems this raises. Hence the sustained interest for
so-called “mass-lumping” procedures, which aim at replacing the Galerkinε by a di-
agonal matrix without compromising convergence: see COHEN, JOLY and TORDJMAN

[1993], ELMKIES and JOLY [1997], HAUGAZEAU and LACOSTE[1993] (a coordinate-
free reinterpretation of which can be found in BOSSAVIT and KETTUNEN [1999]).

REMARK 17.1. Obviously, there is another version of the scheme, inh and d, for
which what is relevant is sparsity ofε−1 and diagonality ofµ, i.e., ofν. Unfortunately,
the diagonal lumping procedure that worked for edge elements fails when applied to
the Galerkinν, i.e., to the mass-matrix of facet elements (BOSSAVIT and KETTUNEN

[1999]).

There are of course other issues than stability to consider, but we shall not dwell
on them right now. Forconvergence(to be treated in detail later, but only in statics),
cf. MONK and SÜLI [1994], NICOLAIDES and WANG [1998], BOSSAVIT and KET-
TUNEN [1999]. On dispersionproperties, little can be said unless the meshes have
some translational symmetry, at least locally, and this is beyond our scope. As for
conservationof some quantities, it would be nice to be able to say, in the case when
j = 0, that “total discrete energy is conserved”, but this is only almost true. Con-
served quantities, as one will easily verify, are1

2(µhk+1,hk) + 1
2(εek+1/2, ek+1/2) and
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1
2(µhk,hk) + 1

2(εek−1/2, ek+1/2), both independent ofk. So their half-sum, which can
suggestively be written as

Wk = 1
2(µhk+1/2,hk) + 1

2(εek, ek+1/2),

if one agrees onhk+1/2 andek as shorthands for[hk +hk+1]/2 and[ek−1/2 +ek+1/2]/2,
is conserved:Not the discrete energy, definitely, however close.

18. Playing with the kit: Statics

Various discrete models can be derived from (17.1) by the usual maneuvers (neglect the
displacement current termεe, omit time-derivatives in static situations), but it may be
more instructive to obtain them from scratch. Take the magnetostatic model (13.2), for
instance: Replace formsb andh by the DoF arraysb andh, the d by the appropriate
matrix, as read off from Fig. 16.2, and obtain

(18.1)Db = 0, h = νb, Rth = j,

which automatically includes the boundary conditions, thanks for having discarded42

“passive” boundary cells. Observe thatGt j = 0 must hold for a solution to exist: But
this is the discrete counterpart, as Fig. 16.2 shows, of dj = 0, i.e., of divJ= 0 in vector
notation.

In the next section, we shall study the convergence of (18.1). When it holds, all
schemes equivalent to (18.1) that can be obtained by algebraic manipulations are
thereby equally valid – and there are lots of them. First, lethj be one of the facet-
based arrays43 such thatRthj = j. Thenh in (18.1) must be of the formh = hj + Dtϕ.
Hence (18.1) becomes

(18.2)DµDtϕ = −Dµhj.

This, which corresponds to−div(µ(gradΦ + Hj )) = 0, the scalar potential formula-
tion of magnetostatics, is not interesting unlessν is diagonal, or nearly so, sinceµ is full
otherwise. So it requires the orthogonal construction, and is not an option in the case of
the Galerkinν. It’s a well-studied scheme (cf. BANK and ROSE[1987], COURBET and
CROISILLE [1998], GALLOUET and VILA [1991], HEINRICH [1987], HUANG and XI

[1998], SÜLI [1991]), called “block-centered” in other sectors of numerical engineering
(KAASSCHIETERand HUIJBEN [1992], WEISER and WHEELER [1988]), because de-
grees of freedom, assigned to thedualnodes, appear as lying inside the primal volumes,

42Alternatively (and this is how non-homogeneous boundary conditions can be handled), one may work
with enlarged incidence matricesR andD and enlarged DoF arrays, taking all cells into account, then assign
boundary values to passive cells, and keep only active DoFs on the left-hand side.
43There are such arrays, owing toGt j = 0, because ker(Gt ) = cod(Rt ), by transposition of cod(G) =

ker(R), in the simple situation we consider. Finding one is an easy task, which does not require solving a lin-
ear system. Also by transposition of cod(R) = ker(D), one has ker(Rt ) = cod(Dt ), and henceRt (h − hj) = 0
impliesh = hj + Dtϕ.
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or “blocks”. Uniqueness ofϕ is easily proved,44 which implies the uniqueness – not so
obvious, a priori – ofh andb in (18.1).

Symmetrically, there is a scheme corresponding to the vector potential formulation
(i.e., rot(ν rot A) = J):

(18.3)RtνRa = j,

obtained by settingb = Ra, where the DoF arraya is indexed over (active) edges. (Ifν

is the Galerkin hodge, (18.3) is what one obtains when using edge elements to represent
the vector potential.) Existence in (18.3) stems fromGt j = 0. No uniqueness this time,
because ker(R) does not reduce to 0, but all solutionsa give the sameb, and hence the
sameh = νb.

REMARK 18.1. Whether to “gauge”a in this method, that is, to impose a condition
that would select a unique solution, such asGtεa = 0 for instance, remains to these
days a contentious issue. It depends on which method is used to solve (18.3), and on
how well the necessary conditionGt j = 0 is implemented. With iterative methods such
as the conjugate gradient and its variants, and if one takes care to useRthj instead ofj
in (18.3), then it’s betternot to gauge (REN [1996]).

This is not all. If we refrain to eliminateh in the reduction from (18.1) to (18.3), but
still setb = Ra, we get an intermediate two-equation system,

(18.4)

(−µ R
Rt 0

)(
h
a

)
=

(
0
j

)
,

often called amixedalgebraic system (ARNOLD and BREZZI [1985]). (Again, little
interest ifµ is full, i.e., unlessν was diagonal from the outset.) The same manipulation
in the other direction (eliminatingh by h = hj + Dtϕ, but keepingb) gives

(18.5)

(−ν Dt

D 0

)(
b
ϕ

)
=

(−hj

0

)
.

We are not yet through. There is an interesting variation on (18.5), known as the
mixed-hybrid approach. It’s a kind of “maximal domain decomposition”, in the sense
that all volumes are made independent by “doubling” the degrees of freedom ofb andh
(two distinct values on sides of each facet not inΣh). Let’s redefine the enlarged arrays
and matrices accordingly, and call themb, h, ν, D, R. Constraints onb (equality of up-
and downstream fluxes) can be expressed asNb = 0, whereN has very simple structure
(one 1× 2 block, with entries 1 and−1, for each facet). Now, introduce an arrayλ

of facet-based Lagrange multipliers, and add(λ,Nb) to the underlying Lagrangian of
(18.5). This gives a new discrete formulation (still equivalent to (18.1), if one derivesb

44It stems from ker(Dt ) = 0. Indeed,Dtψ = 0 means thatΣvDf
v ψv = 0 for all primal facetsf . For some

facets (those inΣh), there is butonevolumev such thatDf
v �= 0, which forcesψv = 0 for thisv. Remove all

such volumesv, and repeat the reasoning and the process, thus spreading the value 0 to allψvs.
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andh from b andh the obvious way):−ν D
t

Nt

D 0 0
N 0 0

( b
ϕ

λ

)
=

−h
j

0
0

 .

Remark that the enlargedν is block-diagonal (as well as its inverseµ ), hence easy
elimination ofb. What then remains is a symmetric system inϕ andλ:(

DµD
t

DµNt

NµD
t

NµNt

)(
ϕ

λ

)
= −

(
Dµh

j

Nµh
j

)
.

The point of this manipulation is thatDµD
t

is diagonal, equal toK, say. So we may
again eliminateϕ, which leads to a system in terms of onlyλ:

(18.6)N[µ − µD
t
K−1Dµ]Ntλ = N[µD

t
K−1Dµ − µ]hj

.

Contrived as it may look, (18.6) is a quite manageable system, with a sparse symmetric
matrix. (The bracketed term on the left is block-diagonal, likeµ.)

REMARK 18.2. In(λ,Nb), eachλf multiplies a term(Nb)f which is akin to a mag-
netic charge. Hence theλf s should be interpreted as facet-DoFs of a magnetic potential,
which assumes the values necessary to reestablish the equality between fluxes that has
been provisionally abandoned when passing fromb to the enlarged (double size) flux
vectorb. This suggests a way to “complementarity” (obtaining bilateral estimates of
some quantities) which is explored in BOSSAVIT [2003].

There is a dual mixed-hybrid approach, starting from (18.4), wheredualvolumes are
made independent, hence (in the case of a simplicial primal mesh) three DoFs per facet,
for bothb andh, and two Lagrange multipliers to enforce their equality. This leads to
a system similar to (18.6) – but with twice as many unknowns, which doesn’t make it
attractive.

Systems (18.2), (18.3), (18.4), (18.5) and (18.6) all give the same solution pair{b,h}
– the solution of (18.1). Which one effectively to solve, therefore, is uniquely a mat-
ter of algorithmics, in which size, sparsity, and effective conditioning should be con-
sidered. The serious contenders are the one-matrix semi-definite systems, i.e., (18.2),
(18.3), and (18.6). An enumeration of the number of off-diagonal terms (which is a
fair figure of merit when using conjugate gradient methods on such matrices), shows
that (18.6) rates better than (18.3), as a rule. The block-centered scheme (18.2) out-
performs both (18.3) and (18.6), but is not available45 with the Galerkin hodge. Hence
the enduring interest (CHAVENT and ROBERTS[1991], KAASSCHIETERand HUIJBEN

[1992], MOSÉ, SIEGEL, ACKERER and CHAVENT [1994], HAMOUDA , BANDELIER

and RIOUX-DAMIDAU [2001]) for the “mixed-hybrid” method (18.6).
Each of the above schemes could be presented as the independent discretization of

a specific mixed or mixed-hybrid variational formulation, and the literature is replete

45Unless one messes up with the computation of the terms of the mass-matrix, by using ad-hoc approximate
integration formulas. This is precisely one of the devices used in mass-lumping.
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with sophisticated analyses of this kind. Let’s reemphasize that all these schemes are
algebraically equivalent, as regardsb and h. Therefore, an error analysis of one of
them applies to all: For instance, ifν is the Galerkin hodge, the standard variational
convergence proof for (18.3), or ifµ is the diagonal hodge of (16.4), the error analysis
we shall perform next section, on the symmetrical system (18.1).

19. Playing with the kit: Miscellanies

The advantage of working at the discrete level from the outset is confirmed by most
examples one may tackle. For instance, the discrete version of the eddy-current problem
(13.4) is, without much ado, found to be

(19.1)iωσ E + RtνRE = −iωJs .

As a rule,σ vanishes outside of a closed regionC = D − ∆ of the domain,C for
“conductor”. (Assume, then, thatA, which is supp(Js), is contained in∆.) The system
matrix then has a non-trivial null space, ker(σ ) ∩ ker(R), and uniqueness ofE is lost. It
can be restored by enforcing the constraintGtε∆E = 0, whereε∆ is derived fromε by
setting to zero all rows and columns which correspond to edges borne byC. Physically,
this amounts to assume a zero electric charge density outside the conductive region
C = supp(σ ). (Beware, the electric field obtained this way can be seriously wrong about
A, where this assumption is not warranted, in general. However, the electric field inC is
correct.) Mathematically, the effect is to limit the span of the unknownE to a subspace
over whichiωσ + RtνR is regular.

In some applications, however, the conductivity is nonzero in allD, but may as-
sume values of highly different magnitudes, and the above matrix, though regular, is
ill-conditioned. One then will find in the kit the right tools to “regularize” such a “stiff”
problem. See CLEMENS and WEILAND [1999] for an example of the procedure, some
aspects of which are studied in BOSSAVIT [2001a]. Briefly, it consists in adding to the
left-hand side of (19.1) a term, function ofE, that vanishes whenE is one of the so-
lutions of (19.1), which supplements theRtνR matrix by, so to speak, what it takes to
make it regular (and hence, to make the whole system matrix well conditioned, however
smallσ can be at places). The modified system is

(19.2)iωσ E + RtνRE + σGδGtσ E = −iωJs ,

where δ is a Hodge-like matrix, node based, diagonal, whose entries areδnn =∫
ñ

1/µσ 2. A rationale for this can be found in BOSSAVIT [2001a]: In a nutshell, the
idea is to “load the null space” ofRtνR, and dimensional considerations motivate the
above choice ofδ. Our sole purpose here is to insist that all this can be done at the
discrete level.

REMARK 19.1. Onemightmotivate this procedure by starting from the following equa-
tion, here derived from (19.2) by simply using the toolkit in the other direction (“dis-
crete” to “continuous”):

(19.3)iωσE+ rot(ν rot E) − σ grad

(
1

µσ 2
div(σE)

)
= −iωJs ,
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but which can be seen as a natural regularization of (13.4). (We revert to vector proxies
here to call attention on the use of a variant of the−∆ = rot◦ rot−grad◦div formula,
which is relevant when bothµ andσ are uniform in (19.3).) This is a time-honored
idea (LEIS [1968]). Part of its present popularity may stem from its allowing standard
discretization vianode-basedvector-valued elements (the discrete form is then of course
quite different46 from (19.2)), because E in (19.3) has more a priori regularity thanE

in (13.4). Even if one has reasons to prefer using such elements, the advantage is only
apparent, because the discrete solution may converge towards something else than the
solution of (13.4) in some cases (e.g., reentrant corners, cf. COSTABEL and DAUGE

[1997]), where the solution of (19.3) hastoo muchregularity to satisfy (13.4). This
should make one wary of this approach.

Many consider the nullspace ofRtνR as a matter of concern, too, as regards the
eigenmode problem,

(19.4)RtνRE = ω2εE,

becauseω = 0 is an eigenvalue of multiplicityN (the number of active nodes). Whether
the concern is justified is debatable, but again, there are tools in the kit to address it.
First, regularization, as above:

(19.5)[RtνR + εGδGtε]E = ω2εE,

with δnn = ∫
ñ

1/µε2 this time. Zero is not an eigenvalue any longer, but new eigen-
modes appear, those ofεGδGtεE = ω2εE under the restrictionE = Gψ . As re-
marked by WHITE and KONING [2000], we have here (again, assuming uniform co-
efficients) a phenomenon of “spectral complementarity” between the operators rot◦ rot
and−grad◦div. The new modes, or “ghost modes” as they are called in WEILAND

[1985], have to be sifted out, which is in principle easy47 (evaluate the norm|GtεE|δ),
or “swept to the right” by inserting an appropriate scalar factor in front of the regulariz-
ing term. Second solution (TRAPP, MUNTEANU, SCHUHMANN, WEILAND and IOAN

[2002]): Restrict the search ofE to a complement of ker(RtνR), which one can do by
so-called “tree-cotree” techniques (ALBANESE and RUBINACCI [1988], MUNTEANU

[2002]). This verges on the issue ofdiscrete Helmholtz decompositions, another im-
portant tool in the kit, which cannot be given adequate treatment here (see RAPETTI,
DUBOIS and BOSSAVIT [2002]).

46Whenσ andν are the Galerkin hodges, (19.2) corresponds to the edge-element discretization of (19.3).
47These ghost modes arenot the (in)famous “spurious modes” which were such a nuisance before the advent

of edge elements (cf. BOSSAVIT [1990b]). Spurious modes occur when one solves the eigenmode problem
rot(ν rot E) = ω2εE by usingnodal vectorialelements. Then (barring exceptional boundary conditions) the
rot(ν rot) matrix is regular (because the approximation space does not contain gradients, contrary to what
happens with edge elements), but also – and for the same reason, as explained in BOSSAVIT [1998a] – poorly
conditioned, which is the root of the evil. It would be wisenot to take “ghost modes” and “spurious modes”
as synonyms, in order to avoid confusion on this tricky point.





CHAPTER IV

Finite Elements

We now tackle the convergence analysis of the discrete version of problem (13.2), mag-
netostatics:

(18.1)Db = 0, h = νb, Rth = j.

A preliminary comment on what that means is in order.
A few notational points before: The mesh is denotedm, the dual mesh is̃m, and we

shall subscript bym, when necessary, all mesh-related entities. For instance, the largest
diameter of allp-cells,p � 1, primal and dual, will be denotedγm (with a mild abuse,
since it also depends on the metric of the dual mesh), and called the “grain” of the pair
of meshes. The computed solution{b,h} will be {bm,hm} when we wish to stress its
dependence on the mesh-pair. And so on.

A first statement of our purpose is “study{bm,hm} whenγm tends to 0”. Alas, this
lacks definiteness, because how theshapesof the cells change in the process does matter
a lot. In the case of triangular 2D meshes, for instance, there are well-known counter-
examples (BABUŠKA and AZIZ [1976]) showing that, if one tolerates too much “flat-
tening” of the triangles as the grain tends to 0, convergence may fail to occur. Hence the
following definition: A family M of (pairs of interlocked) meshes isuniform if there
is afinite catalogue of “model cells” such that any cell in anym or m̃ of the family is
the transform by similarity of one of them. The notation “m → 0” will then refer to a
sequence of meshes, all belonging to some definite uniform family, and such that their
γms tend to zero. Now we redefine our objective: Show that the error incurred by taking
{bm,hm} as a substitute for the real field{b,h} tends to zero whenm → 0.

The practical implications of achieving this are well known. If, for a givenm, the
computed solution{bm,hm} is not deemed satisfactory, one mustrefine the mesh and
redo the computation, again and again. If the refinement rule guarantees that all meshes
such a process can generate belong to some definite uniform family, then the conver-
gence result means “you may get as good an approximation as you wish by refining this
way”, a state of affairs we are more or less happy to live with.

Fortunately, such refinement rules do exist (this is an active area of research: BÄNSCH

[1991], BEY [1995], DE COUGNY and SHEPHARD [1999], MAUBACH [1995]). Given
a pair of coarse meshes to start with, there are ways to subdivide the cells so as to keep
bounded the number of different cell-shapes that appear in the process, hence a potential
infinity of refined meshes, which do constitute a uniform family. (A refinement process
for tetrahedra is illustrated by Fig. 20.1. As one can see, at most five different shapes

167
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FIG. 20.1. Subdivision rule for a tetrahedronT = {k, l,m,n}. (Mid-edges are denotedkl, lm, etc., ando
is the barycenter.) A first halving of edges generates four small tetrahedra and a core octahedron, which
itself can be divided into eight “octants” such asO = {o, kl, lm,mk}, of at most four different shapes. Now,
octants likeO should be subdivided as follows: divide the facet in front ofo into four triangles, and join too,
hence a tetrahedron similar toT, and three peripheral tetrahedra. These, in turn, are halved, as shown for
the one hanging from edge{o, lm}. Its two parts are similar toO and to the neighbor octant{o, kn, kl,mk}

respectively.

can occur, for each tetrahedral shape present in the original coarse mesh. In practice,
not all volumes get refined simultaneously, so junction dissection schemes are needed,
which enlarges the catalogue of shapes, but the latter is bounded nonetheless.)

For these reasons, we shall feel authorized to assume uniformity in this sense. We
shall also posit that the hodge entries, whichever way they are built, only depend (up
to a multiplicative factor) on theshapesof the cells contributing to them. Although
stronger than necessary, these assumptions will make some proofs easier, and thus help
focus on the main ideas.

20. Consistency

Back to the comparison between{bm,hm} and{b,h}, a natural idea is to compare the
computed DoF arrays,bm and hm, with arrays of the same kind,rmb = {∫

f
b: f ∈

F} andrmh = {∫
f̃

h: f ∈ F}, composed of the fluxes and m.m.f.’s of the (unknown)
solution{b,h} of the original problem (13.2). This implicitly defines two operators with
the same name,rm: one that acts on 2-forms, giving an array of facet-fluxes, one that
acts on twisted 1-forms, giving an array of dual-edge m.m.f.’s. (No risk of confusion,
since the name of the operand,b or h, reveals its nature.)

Since db = 0, the flux ofb embraced by the boundary of any primal 3-cellv must
vanish, therefore the sum of facet fluxes

∑
f Df

v

∫
f

b must vanish for allv. Similarly,

dh = j yields the relation
∑

f Re
f

∫
f̃

h = ∫
ẽ
j , by integration over a dual 2-cell. In ma-

trix form, all this becomes

(20.1)Drmb = 0, Rt rmh = j,
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since the entries ofj are precisely the intensities across dual facets. Comparing with
(18.1), we obtain

(20.2)D(bm − rmb) = 0, Rt (hm − rmh) = 0,

and

(20.3)(hm − rmh) − ν(bm − rmb) = (νrm − rmν)b ≡ ν(rmµ − µrm)h.

Let us compute theµ-norm of both sides of (20.3). (For this piece of algebra, we shall
use the notation announced in last chapter:(b,h) for a sum such as

∑
f ∈F bf hf , and

|h|µ for (µh,h)1/2, theµ-norm ofh, and other similar constructs.)
As this is done, “square” and “rectangle” terms appear. The rectangle term for the

left-hand side is−2(bm − rmb,hm − rmh), but sinceD(bm − rmb) = 0 implies the
existence of somea such thatbm − rmb = Ra, we have

(bm − rmb,hm − rmh) = (Ra,hm − rmh) = (
a,Rt (hm − rmh)

) = 0,

after (20.2). Only square terms remain, and we get

|hm − rmh|2µ + |bm − rmb|2ν
(20.4)= ∣∣(νrm − rmν)b

∣∣2
µ

≡ ∣∣(µrm − rmµ)h
∣∣2
ν
≡ (νrmb − rmh, rmb − µrmh).

On the left-hand side, which has the dimension of an energy, we spot two plausible esti-
mators for the error incurred by taking{bm,hm} as a substitute for the real field{b,h}:
the “error in (discrete) energy” [respectively coenergy], as regardsbm − rmb [respec-
tively hm − rmh]. Components ofbm − rmb are what can be called the “residual fluxes”
bf − ∫

f
b, i.e., the difference between the computed flux embraced by facetf and the

genuine (but unknown) flux
∫
f

b. Parallel considerations apply toh, with m.m.f.’s along

f̃ instead of fluxes. It makes sense to try andboundthese error terms by some func-
tion of γm. So let us focus on the right-hand side of (20.4), for instance on its second
expression, the one in terms ofh.

By definition of rm, the f -component ofrm(µh) is the flux of b = µh embraced
by f . On the other hand, the flux arrayµrmh is the result of applying the discrete
Hodge operator to the m.m.f. arrayrmh, so the compound operatorsrmµ andµrm will
not be equal: they give different fluxes when applied to a generich. This contrasts with
the equalities(Drm − rmd)b = 0 and(Rt rm − rmd)h = 0, which stem from the Stokes
theorem. The mathematical word to express such equalities is “conjugacy”:D and d are
conjugate viarm, and so areRt and d, too. Thus,µ andµ arenot conjugate viarm –
and this is, of course, the reason why discretizing entails some error.

Yet, it may happen thatrmµ andµrm docoincide forsomehs. This is so, for instance,
with piecewise constant fields, whenµ is the diagonal hodge of (16.3) and (16.4): in
fact, these formulas were motivated by the desire to achieve this coincidence for such
fields. Also, as we shall prove later,rmν andνrm coincide on facet-element approxima-
tions ofb, i.e., on divergence-free fields of the form

∑
f ∈F bf wf (which are meshwise

constant), whenν is the Galerkin hodge. Since all piecewise smooth fields differ from
such special fields by some small residual, and the finer the mesh the smaller, we may
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FIG. 20.2. As in Fig. 16.1,
f denotes the vectorial area of facetf : the vector of magnitude area(f ), normal

to f , that points away fromf in the direction derived fromf ’s inner orientation by Ampère’s rule. By
�
f we

denote the vector that joins the end points of the associated dual edgef̃ . (An ambient orientation is assumed

here. One could do without it by treating both
f and
�
f as axial vectors.) In caseν is not the same on both

sides off , understandν
�
f asν2

�
f2 + ν1

�
f1, where

�
f2 and

�
f1 are as suggested. RegionDf is the volume

enclosed by the “tent” determined by the extremities off̃ and the boundary off . Note that 
f andν
�
f always

crossf in the same direction, but only in the orthogonal construction are they parallel (cf. Fig. 16.1): In that
case, (20.6) can be satisfied by adiagonalhodge – cf. (16.3) and (16.4).

in such cases expect “asymptotic conjugacy”, in the sense that the right-hand side of
(20.4) will tend to 0 withm, for a piecewise smoothb or h. This property, which we
rewrite informally but suggestively as

(20.5)νrm − rmν → 0 whenm → 0, µrm − rmµ → 0 whenm → 0

(two equivalent statements), is calledconsistencyof the approximation ofµ andν by µ

andν. Consistency, thus, implies asymptotic vanishing of the error in (discrete) energy,
after (20.4).

Let’s now take a heuristic step. (We revert to vector proxies for this. Fig. 20.2 explains

about 
f and
�
f , andn andτ are normal and tangent unit vector fields, as earlier. The

norm of an ordinary vector is| |.) Remark that the right-hand side of (20.4) is, according
to its rightmost avatar, a sum of terms, one for eachf , of the form[∑

f ′
νff ′

∫
f ′

n · B −
∫

f̃

ντ · B

][∫
f

µn · H −
∑
f ′′

µff ′′
∫

f̃ ′′
τ · H

]
,

which we’ll abbreviate as[B, f ][H, f ]. Each should be made as small as possible for
the sum to tend to 0. Supposeν is uniform, and that boundary conditions are such that

B and H are uniform. Then[B, f ] = B · (∑f ′ νff ′ 
f ′ − ν
�
f ). This term vanishes if

(20.6)
∑
f ′∈F

νff ′ 
f ′ = ν
�
f .

(This implies
∑

f ′∈F µff ′
ν

�
f ′ = 
f , and hence, cancellation of[H, f ], too.) We there-

fore adopt this geometric compatibility condition as acriterion aboutν. Clearly, the
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diagonal hodge of (16.4) passes this test. But on the other hand, no diagonalν can

satisfy (20.6) unless
f andν
�
f are collinear.

PROPOSITION20.1. If ν is diagonal, withνff 
f = ν
�
f , as required by the criterion,

there is consistency.

PROOF. (All C ’s, from now on, denote constants, not necessarily the same each time,
possibly depending on the solution, but not on the mesh.) This time, the solution proxy
B is only piecewise smooth, and possibly discontinuous ifν is not uniform, but its
component parallel to
f , sayB, satisfies|B(x) − B(y)| � C|x − y| in the regionDf

of Fig. 20.2. One has48
∫
f

n · B = area(f )B(xf ) and
∫
f̃

ντ · B = length(ν
�
f )B(x

f̃
),

for some averaging pointsxf andx
f̃

, the distance of which doesn’t exceedγm, hence

[B, f ] � Cγmνff area(f ), by factoring outνff area(f ) ≡ length(ν
�
f ), and similarly,

[H, f ] � Cγmµff length(ν
�
f ). Noticing that area(f ) length(ν

�
f ) = 3

∫
Df

ν, and sum-
ming up with respect tof , one finds that

(20.7)|hm − rmh|2µ + |bm − rmb|2ν � Cγ 2
m,

the consistency result. �

Going back to (20.4), we conclude that both theν-norm of the residual flux array and
theµ-norm of the residual m.m.f. array tend to 0 as fast asγm, or faster,49 a result we
shall exploit next.

One may wonder whether the proof can be carried out in the case of a non-diagonal
hodge, assuming (20.6). The author has not been able to do so on the basis of (20.6)
only. The result is true under stronger hypotheses (stronger than necessary, perhaps):
When the construction ofν is a local one, i.e.,νff ′ = 0 unless facetsf andf ′ belong
to a common volume, and when theinfimumδm of all cell diameters verifiesδm � βγm,
with β independent ofm. Thenν has a band structure, and its terms behave inγ −1

m ,
which makes it easy to prove that[B, f ] is in O(γ 2

m). Handling[H, f ] is more difficult,
becauseµ is full, and the key argument about averaging points not being farther apart
than γm breaks down. On the other hand, owing to the band structure ofν, and its
positive-definite character,µff ′

is small for distantf andf ′, which allows one to also
bound[H, f ] by Cγ 2

m. The number of faces being inγ −3
m , consistency ensues.

There is some way to go to turn such an argument into a proof, but this is enough
to confirm (20.6) in its status of criterion as regardsν, a criterion which is satisfied,
by construction (Fig. 16.1), in FIT (WEILAND [1996]) and in the cell method (TONTI

48In caseν is not the same on both sides off , understand length(ν
�
f ) asν1 length(

�
f1)+ ν2 length(

�
f2). The

underlying measure of lengths is not the Euclidean one, but the one associated with the metric induced by the
Hodge operatorν.
49Convergence inγ 2

m is in fact often observed when the meshes have some regularity, such as crystal-like
symmetries, which may cancel out some terms in the Taylor expansions implicit in the above proof. For
instance, the distance between pointsxf andx

f̃
may well be inγ 2

m rather thanγm. This kind of phenomenon

is commonplace in Numerical Analysis (SCHATZ, SLOAN and WAHLBIN [1996]).
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[2001]), but allows a much larger choice. We’ll see in a moment how and why it is
satisfied in the Galerkin approach.

21. Stability

So, the left-hand side of (20.4) tends to 0. Although this is considered by many as
sufficient in practice, one cannot be satisfied with such “discrete energy” estimates.
Fields should be compared with fields. To really prove convergence, one should build
from the DoF arraysbm andhm an approximation{bm,hm} of the pair of differential
forms {b,h}, and show that the discrepanciesbm − b andhm − h tend to 0 withm in
some definite sense. So we are after some map, that we shall denote bypm, that would
transform a flux arrayb into a 2-formpmb and an m.m.f. arrayh into a twisted 1-form
pmh. The map should behave naturally with respect torm, i.e.,

(21.1)rmpmb = b, rmpmh = h,

as well as

(21.2)|pmrmb − b|ν → 0 and |pmrmh − h|µ → 0 whenm → 0

(asymptotic vanishing of the “truncation error”pmrm − 1). A satisfactory result, then,
would be that both|b − pmbm|ν and|h − pmhm|µ tend to 0 withm (convergence “in
energy”). As will now be proved, this is warranted by the following inequalities:

(21.3)α|pmb|ν � |b|ν, α|pmh|µ � |h|µ
for all b andh, where the constantα > 0 does not depend onm. Since|b|ν and|h|µ
depend on the discrete hodge, (21.3) is a property of the approximation scheme, called
stability.

PROPOSITION21.1. Consistency(20.5)being assumed,(21.2)and (21.3)entail con-
vergence.

PROOF. By consistency, the right-hand side of (20.4) tends to 0, whence|bm−rmb|ν →
0, and|pmbm − pmrmb|ν → 0 by (21.3). Thereforepmbm → b, “in energy”, thanks to
(21.2). Same argument abouth. �

This is Lax’s celebrated folk theorem (LAX and RICHTMYER [1956]):consistency+
stability= convergence.

Below, we shall find a systematic way to constructpm, the so-calledWhitney map.
But if we don’t insist right now on generality, there is an easy way to find a suitable
such map in the case of a simplicial primal mesh and of DoF arraysb that satisfy
Db = 0 (luckily, only these do matter in magnetostatics). The idea is to find a vector
proxy B uniform inside each tetrahedron with facet fluxesB · 
f equal tobf . (Then,
divB = 0 all overD.) This, which would not be possible with cells of arbitrary shapes,
can be done with tetrahedra, for there are, for each tetrahedral volumev, three unknowns
(the components ofB) to be determined from four fluxes linked by one linear relation,∑

f Df
v bf = 0, so the problem has a solution, which we take aspmb.



SECTION 22 Finite Elements 173

Then,50 pmrmb → b. As for the stability condition (21.3), one has|pmb|2ν =∫
D

ν|B|2, a quadratic form with respect to the facet fluxes, which we may therefore
denote by(b,Nb), with N some positive definite matrix. Now, suppose first asingle
tetrahedron in the meshm, and consider the Rayleigh-like quotient(b,νb)/(b,Nb). Its
lower bound, strictly positive, depends only on theshapeof the tetrahedron, not on its
size. Then, uniformity of the family of meshes, and of the construction ofν, allows us
to take forα in (21.3) the smallest of these lower bounds, which is strictly positive and
independent ofm. We may thereby conclude thatpmbm converges towardsb in energy.

No similar construction on the side ofh is available, but this is not such a handicap:
if pmbm → b, thenνpmbm → h. This amounts to settingpm on the dual side equal to
νpmµ. The problem with that is,pmh fails to have the continuity properties we expect
from a magnetic field: its vector proxy H is not tangentially continuous across facets,
so one cannot take its curl. But never mind, since this “non-conformal” approximation
converges in energy.

Yet, we need a more encompassingpm map, if only becauseDb = 0 was just a
happy accident. Before turning to that, which will be laborious, let’s briefly discuss
convergence in the full Maxwell case.

22. The time-dependent case

Here is a sketch of the convergence proof for the generalized Yee scheme (17.1) and
(17.2) of last chapter.

First, linear interpolation in time between the values of the DoF arrays, as output
by the scheme, provides DoF-array-valued functions of time which converge, whenδt

tends to zero, towards the solution of the “spatially discretized” equations (16.1) and
(16.2). This is not difficult.

Next, linearity of the equations allows one to pass from the time domain to the fre-
quency domain, via a Laplace transformation. Instead of studying (16.1) and (16.2),
therefore, one may examine the behavior of the solution of

(22.1)−pD + Rt H = J, pB + RE = 0,

(22.2)D = εE, B = µH,

whenm → 0. Here,p = ξ + iω, with ξ > 0, and small capitals denote Laplace trans-
forms, which are arrays ofcomplex-valued DoFs. If one can prove uniform convergence
with respect toω (which the requirementξ > 0 makes possible), convergence of the so-
lution of (16.1) and (16.2) will ensue, by inverse Laplace transformation. The main
problem, therefore, is to compareE, B, H, D, as given by (22.1) and (22.2), withrmE,
rmB, rmH, rmD, where small capitals, again, denote Laplace transforms, but of differen-
tial forms this time.
50This is an exercise, for which the following hints should suffice. Start fromb, piecewise smooth, such that

db = 0, setb = rmb, getB as above, and aim at finding an upper bound for|B − B|, where B is the proxy of
b, over a tetrahedronT. For this, evaluate∇λ · ∫T(B − B), whereλ is an affine function such that|∇λ| = 1.
Integrate by parts, remark that

∫
f λn · B = λ(xf )bf , wherexf is the barycenter off . Taylor-expandn · B

aboutxf , hence a bound inCγ 4
m for

∫
∂T λn · (B−B), from which stems| ∫T(B−B)| � Cγ 4

m. Use uniformity
to conclude that|B − B| � Cγm.
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The approach is similar to what we did in statics. First establish that

(22.3)pµ(H − rmH) + R(E − rmE) = p(rmµ − µrm)H,

(22.4)−pε(E − rmE) + Rt (H − rmH) = −p(rmε − εrm)E.

Then, right-multiply (22.3) (in the sense of( , )) by (H − rmH)∗ and the complex con-
jugate of (22.4) by−(E − rmE), add. The middle terms (inR andRt ) cancel out, and
energy estimates follow. The similarity between the right-hand sides of (20.3), on the
one hand, and (22.3), (22.4), on the other hand, shows that no further consistency re-
quirements emerge. Stability, thanks toξ > 0, holds there if it held in statics. What is
a good discrete hodge in statics, therefore, is a good one in transient situations. Let’s
tentatively promote this remark to the rank of heuristic principle:

As regards discrete constitutive laws,what makes a convergent scheme forstatic
problems will, as a rule, make one for the Maxwell evolution equations.

At this stage, we may feel more confident about the quality of the toolkit: If the
discrete hodges and the meshes are compatible in the sense of (20.6), so that consistency
can be achieved, if there is a way to pass from DoFs to fields which binds energy and
discrete energy tightly enough for stability (21.3) to hold, then convergence will ensue.
So we need thepm operator. We would need it, anyway, to determine fluxes, e.m.f.’s,
etc., at a finer scale than what the mesh provides – motivation enough to search for
interpolants, but not the most compelling reason to do so: Field reconstruction from
the DoFs is needed, basically,to assess stability, in the above sense, and thereby, the
validity of the method. Whitney forms, which will now enter the scene, provide this
mechanism.

23. Whitney forms

Let’s summarize the requirements about the generic mappm. It should map each kind
of DoF array to a differential form of the appropriate kind:pme, starting from an edge-
based DoF arraye, should be a 1-form;pmb, obtained from a facet-basedb, should be
a 2-form, and so forth. Properties (21.1) and (21.2) should hold for all kinds, too, so in
short,

(23.1)rmpm = 1, pmrm → 1 whenm → 0.

The stability property (21.3) will automatically be satisfied in the case of a uniform
family of meshes. Moreover, we expect db = 0 whenDb = 0, de = 0 whenRe = 0, etc.
More generally,Ra = b should entail da = b, and so forth. These are desirable features
of the toolkit. The neatest way to secure them is to enforce the structural property

(23.2)dpm = pmd,

at all levels (Fig. 23.1): d andd should be conjugate, viapm, or said differently, Fig. 23.1
should be acommutative diagram. Remarkably, these prescriptions will prove sufficient
to generate interpolants in an essentially unique way. Such interpolants are known as
Whitney forms(WHITNEY [1957]), and we shall refer to the structure they constitute as
theWhitney complex.
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FIG. 23.1. Diagrammatic rendering of (23.2), with part of Fig. 8.1 added. Flat and sharp symbols represent
the isomorphism between differential forms and their scalar or vector proxies.

23.1. Whitney forms as a device to approximate manifolds

We address the question by taking a detour, to see things from a viewpoint consistent
with our earlier definition of differential forms as maps from manifolds to numbers.
A differential form, say, for definiteness,b, maps ap-manifoldS to the number

∫
S
b,

with p = 2 here. Suppose we are able to approximateS by ap-chain, i.e., here, a chain
based on facets,pt

mS = ∑
f ∈F cf f . Then a natural approximation to

∫
S
b is

∫
pt

mS
b.

But this number we know, by linearity: since
∫
f

rmb = bf , it equals the sum
∑

f cf bf ,
that we shall denote〈c;b〉 (with boldface brackets). Hence an approximate knowledge
of the fieldb, i.e., of all its measurable attributes – the fluxes – from the DoF arrayb.
In particular, fluxes embraced bysmallsurfaces (small with respect to the grain of the
mesh) will be computable fromb, which meets our expectations about interpolating to
local values ofb. The question has thus become “how best to representS by a 2-chain?”.
Fig. 23.2 (wherep = 1, so a curvec replacesS) gives the idea.

Once we know about the manifold-to-chain mappt
m, we know about Whitney forms:

For instance, the one associated with facetf is, like the fieldb itself, a map from
surfaces to numbers, namely the mapS → cf that assigns toS its weight with respect
to f . We denote this map bywf and its value atS by

∫
S
wf or by 〈S;wf 〉 as we

have done earlier. (The notational redundancy will prove useful.) Note that〈pt
mS;b〉 =∫

S

∑
f bf wf = ∫

S
pmb ≡ 〈S;pmb〉, which justifies the “pt

m” notation: A transposition
is indeed involved.

23.2. A generating formula

Now, let’s enter the hard core of it. A simplicial primal mesh will be assumed until
further notice. (We shall see later how to lift this restriction.) Results will hold for any
spatial dimensionn and all simplicial dimensionsp � n, but will be stated as ifn was 3
andp = 1 or 2 (edge and facet elements). So we shall also write proofs, even recursive
ones that are supposed to move fromp to p +1 (see, e.g., Proposition 23.1), as ifp had
a specific value (1 or 2), and thereby preferR,D, or Rt , Dt , to d or ∂ . That the proof
has general validity notwithstanding should be obvious each time.
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FIG. 23.2. Representing curvec by a weighted sum of mesh-edges, i.e., by a 1-chain. Graded thicknesses
of the edges are meant to suggest the respective weights assigned to them. Edges such ase, whose “control
domain” (shaded) doesn’t intersectc, have zero weight. (A weight can be negative, if the edge is oriented
backwards with respect toc.) Which weights thus to assign is the central issue in our approach to Whitney

forms.

We useλn(x) for the barycentric weight of pointx with respect to noden, whenx

belongs to one of the tetrahedra which share noden (otherwise,λn(x) = 0). We’ll soon
see thatwn = λn is the natural choice for nodal 0-forms, and again this dual notation
will make some formulas more readable. We defineλe = λm + λn, when edgee =
{m,n}, as well asλf = λl + λm + λn for facetf = {l,m,n}, etc. Whene = {m,n}
andf = {l,m,n}, we denote nodel by f − e. Thusλf −e refers to (in that case)λl , and
equalsλf −λe. The oriented segment from pointx to pointy is xy, the oriented triangle
formed by pointsx, y, z, in this order, isxyz. And although noden and its locationxn

should not be confused, we shall indulge in writing, for instance,ijx for the triangle
based on pointsxi , xj , andx, wheni andj are node labels.

The weights in the case of a “small manifold”, such as a point, a segment, etc.,51

will now be constructed, and what to use for non-small ones, i.e., the mapswe, wf ,
etc., from lines, surfaces, etc., to reals, will follow by linearity. The principle of this
construction is to enforce the following commutative diagram property:

(23.3)∂pt
m = pt

m∂,

which implies, by transposition, dpm = pmd, the required structural property (23.2).52

We shall not endeavor to prove, step by step, that our construction does satisfy (23.3),
although that would be an option. Rather, we shall let (23.3) inspire the definition that
follows, and then, directly establish that dpm = pmd. This in turn will give (23.3) by
transposition.

DEFINITION 23.1. Starting fromwn = λn, the simplicial Whitney forms are

(23.4)

we =
∑
n∈N

Gn
eλ

e−n dwn, wf =
∑
e∈E

Re
f λf −e dwe, wv =

∑
f ∈F

Df
v λv−f dwf

(and so on, recursively, to higher dimensions).

51The proper underlying concept, not used here, is that ofmultivectorat pointx.
52If moreover ker(∂p) = cod(∂p+1), i.e., in the case of a trivial topology, then ker(dp) = cod(dp−1), just

as, by transposition, ker(dp) = cod(dp−1). One says the Whitney spaces of forms, as linked by the dp , form
anexact sequence.
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FIG. 23.3. Left: With edgee = {m,n} and facets{m,n, k} and{m,n, l} oriented as shown, the 2-chain to
associate with the “join”x ∨e, aliasmnx, can only beλk(x)mnk +λl(x)mnl. This is what (23.5) says. Right:

Same relation between the joinx ∨ n and the 1-chainλk(x)nk + λl(x)nl + λm(x)nm.

Let us justify this statement, by showing how compliance with (23.3) suggests these
formulas. The starting point comes from finite element interpolation theory, which
in our present stand consists in expressing a pointx as a weighted sum of nodes,
the weightswn(x) being the barycentric ones,λn(x). (Note how the standardpm for
nodal DoFs,pmϕ = ∑

n ϕnw
n, comes frompt

mx = ∑
n wn(x)n by transposition.) Re-

cursively, suppose we know the proper weights for a segmentyz, i.e., the bracketed
terms in the sumpt

myz = ∑
e〈yz;we〉e, and let us try to findpt

mxyz. By linearity,
pt

mxyz = ∑
e〈yz;we〉pt

m(x ∨ e), where the “join”x ∨ e is the triangle displayed in
Fig. 23.3, left. So the question is: which 2-chain best representsx ∨ e? As suggested by
Fig. 23.3, the only answer consistent with (23.3) is

(23.5)pt
m(x ∨ e) =

∑
f ∈F

Re
f λf −e(x)f.

Indeed, this formula expressesx ∨ e as the average ofmnk andmnl (the only two facets
f for which Re

f �= 0), with weights that depend on the relative proximity ofx to them.

Sopt
mxyz =

∑
e,f Re

f λf −e(x)〈yz;we〉f ≡ ∑
f 〈xyz;wf 〉f , hence

(23.6)〈xyz;wf 〉 =
∑

e

Re
f λf −e(x)〈yz;we〉.

On the other hand, since a degenerate triangle such asxzx should get zero weights, we
expect 0= 〈xzx;wf 〉 = ∑

e Re
f λf −e(x)〈zx;we〉, and the same for〈xxy;wf 〉. From

this (which will come out true after Proposition 23.1 below), we get

〈xyz;wf 〉 =
∑

e

Re
f λf −e(x)〈yz + zx + xy;we〉

=
∑

e

Re
f λf −e(x)

〈
∂(xyz);we

〉 = ∑
e

Re
f λf −e(x)〈xyz;dwe〉

for any small trianglexyz, by Stokes, and hencewf = ∑
e Re

f λf −e dwe.
Thus, formulas (23.4) – which one should conceive as the unfolding of a unique

formula – are forced on us, as soon as we accept (23.5) as the right way, amply suggested
by Fig. 23.3, to pass from the weights for a simplexs to those for the joinx ∨ s. The



178 A. Bossavit CHAPTER IV

reader will easily check that (23.4) describes the Whitney forms as they are more widely
known, that is, on a tetrahedron{k, l,m,n},

wn = λn

for noden,

we = λm dλn − λn dλm

for edgee = {m,n},
wf = 2(λl dλm ∧ dλn + λm dλn ∧ dλl + λn dλl ∧ dλm)

for facetf = {l,m,n}, and

wv = 6(λk dλl ∧ dλm ∧ dλn + λl dλm ∧ dλn ∧ dλk + λm dλn ∧ dλk ∧ dλl

+ λn dλk ∧ dλl ∧ dλm)

for volumev = {k, l,m,n}. In higher dimensions (WHITNEY [1957]), the Whitney form
of a p-simplexs = {n0, n1, . . . , np}, with inner orientation implied by the order of the
nodes, is

ws = p!
∑

i=0,...,p

(−1)iwni dwn0 ∧ · · · 〈i〉 · · · ∧ dwnp,

where the〈i〉 means “omit the term dwni ”.
From now on, we denote byWp the finite-dimensional subspaces ofFp generated

by these basic forms.

REMARK 23.1. To find the vector proxies ofwe andwf , substitute∇ and× to d and∧.
The scalar proxy ofwv is simply the function equal to 1/vol(v) onv, 0 elsewhere. The
reader is invited to establish the following formulas:

wmn(x) = (kl × kx)/6 vol(klmn), wmnk(x) = xl/3 vol(v),

very useful when it comes to actual coding. (Other handy formulas, at this stage, are
rot(x → v × ox) = 2v and div(x → ox) = 3, whereo is some origin point andv a fixed
vector. As an exercise, one may use this to check on Proposition 23.3 below.)

REMARK 23.2. One may recognize in (23.6) the development of the 3×3 determinant
of the array of barycentric coordinates of pointsx, y, z, with respect to nodesl, m, n,
hence the geometrical interpretation of the weights displayed in Fig. 23.4.

23.3. Properties of Whitney forms

Thus in possession of a rationale for (23.4), we now derive from it a few formulas, for
their own sake and as a preparation for the proof of the all important dpm = pmd result,
Proposition 23.3 below.
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FIG. 23.4. Just as the barycentric weight of pointx with respect to noden is vol(klmx), if one takes
vol(klmn) as unit, the weight of the segmentxy with respect to edge{m,n} is vol(klxy), and the weight

of the trianglexyz with respect to facet{l,m,n} is vol(kxyz).

PROPOSITION23.1. For eachp-simplex, there is one linear relation between Whitney
forms associated with(p − 1)-faces of this simplex. For instance, for eachf ,∑

e∈E
Re

f λf −ewe = 0.

PROOF. By (23.4),
∑

e Re
f λf −ewe = ∑

e,n λf −eλe−nRe
f Gn

ew
n = 0, thanks to the re-

lation RG = 0, becauseλf −eλe−n, which is the same for alle in ∂f , can be factored
out. �

As a corollary, and by using d(λω) = dλ ∧ ω + λdω, we have

wf = −
∑
e∈E

Re
f dλf −e ∧ we,

and other similar alternatives to (23.4).

PROPOSITION23.2. For eachp-simplexs, one has

(23.7)(i) λs dws = (p + 1)dλs ∧ ws, (ii ) dλs ∧ dws = 0.

PROOF. This is true forp = 0. Assume it forp = 1. Then

dwf =
∑

e

Re
f dλf −e ∧ dwe =

∑
e

Re
f dλf ∧ dwe ≡ dλf ∧

∑
e

Re
f dwe

by (ii), hence dλf ∧ dwf = 0. Next,

λf dwf = λf

(∑
e

Re
f dλf ∧ dwe

)
= dλf ∧

(∑
e

Re
f λf dwe

)
= dλf ∧

(
wf +

∑
e

Re
f λe dwe

)
,

which thanks to (i) equals

dλf ∧
(

wf + 2
∑

e

Re
f dλe ∧ we

)
= dλf ∧ wf − 2dλf ∧

∑
e

Re
f dλf −e ∧ we

= 3dλf ∧ wf ,

which proves (i) forp = 2. Hence (ii) forp = 2 by taking the d. �
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Next, yet another variant of (23.4), but without summation this time. For any edgee

such thatRe
f �= 0, one has

(23.8)Re
f wf = λf −e dwe − 2 dλf −e ∧ we.

This is proved by recursion, usingGn
e′we′ = λe′−n dwn − dλe′−nwn, wheren = e ∩ e′,

and the identityGn
e′Gn

e = −Re′
f Re

f . We may now conclude with the main result about
structural properties (cf. Fig. 23.1):

PROPOSITION23.3. One has

dwe =
∑
f ∈F

Re
f wf ,

and hence, by linearity,dpm = pmd.

PROOF. Since both sides vanish out of the “star” ofe, i.e., the union st(e) of vol-
umes containing it, one may do as if st(e) were the whole meshed region. Note that∑

f Re
f λf = 1− λe on st(e). Then,∑
f

Re
f wf =

∑
f

[λf −e dwe − 2 dλf −e ∧ we] = (1− λe)dwe − 2 d(1− λe) ∧ we

= (1− λe)dwe + λe ∧ dwe ≡ dwe,

by using (i). Now, d(pma) = d(
∑

e aew
e) = ∑

e,f Re
f aew

f = ∑
f (Ra)f wf =

pm(da). �

As a corollary, dWp−1 ⊂ Wp, and if ker(dp) = cod(dp−1), then ker(d;Wp) =
dWp−1, theexact sequenceproperty of Whitney spaces in case of trivial topology.

23.4. “Partition of unity”

For what comes now, we revert to the standard vector analysis framework, wherewf

denotes the proxy vector field (i.e., 2(λl∇λm × ∇λn + · · ·)) of the Whitney formwf .
Recall that barycentric functions sum to 1, thus forming a “partition of unity”:∑
n∈N wn = 1. We shall drop the ugly arrows in what follows, and use symbolf not

only as a label, but also for the vectorial area off (Fig. 20.2). Same dual use of̃f . Same
convention forxyz, to be understood as a triangle or as its vectorial area, according to
the context.

PROPOSITION23.4. At all pointsx, for all vectorsv,

(23.9)
∑
f ∈F

(
wf (x) · v)

f = v.
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FIG. 23.5. Why
∫

T we = ẽ in the barycentric construction of the dual mesh. First, the length of the
altitude from n is 1/|∇wn|, therefore

∫
T ∇wn = klm/3. Next, the average ofwn or wm is 1/4. So∫

T we ≡ ∫
T[wm∇wn − wn∇wm] is a vector equal to(klm/3 + kln/3)/4. As the figure shows (all twelve

triangles on the right have the same area), this is precisely the vectorial area ofẽ.

This is a case of something true of all simplices, and a consequence of the above
construction in which the weights〈xyz;wf (x)〉 were assigned in order to havexyz =∑

f 〈xyz;wf (x)〉f . Replacing therewf by its proxy, andxyz and f by their vectorial

areas, we do find (23.9). As a corollary (replacef by g, v by νwf (x), and integrate
in x), the entriesνfg of the Galerkin facet elements mass matrix satisfy∑

g∈F
νfgg = νf̃ ,

whereνf̃ is as explained on Fig. 20.2, but with the important specification that here,
we are dealing with thebarycentricdual mesh. That

∫
νwf = νf̃ is an exercise in

elementary geometry, and a similar formula holds for all Whitney forms (Fig. 23.5).
Now, compare this with (20.6), the compatibility condition that was brought to light by
the convergence analysis: We have proved, at last, that the Galerkin hodges do satisfy it.

24. Higher-degree forms

Let’s sum up: Whitney forms were built in such a way that the partition of unity property
(23.9) ensues. This property makes the mass matrixν of facet elements satisfy, with
respect to the mesh and its barycentric dual, a compatibility criterion, (20.6), which we
earlier recognized as a requisite for consistency. Therefore, we may assert thatWhitney
forms of higher polynomial degree, too,should satisfy(23.9), and take this as heuristic
guide in the derivation of such forms.

Being a priori more numerous, higher-degree forms will make a finer partition. But
we have a way to refine the partition (23.9): Multiply it by theλns, which themselves
form a partition of unity. This results in∑

f ∈F ,n∈N

(
λnwf (x) · v)

f = v,

hence the recipe: Attach to edges, facets, etc., the productsλnwe, λnwf , etc., wheren
spansN . Instead of the usual Whitney spacesWp, with forms of polynomial degree
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FIG. 24.1. Left: “Small” edges, in one-to-one correspondence with the formsλnwe , and how they are la-
belled. Right: A variant where some small edges, such as{k, e}, are broken lines. These three crooked small

edges, with proper signs, add up to the null chain, hence the compatibility condition of Note 53 is built in.

1 at most, we thus obtain larger spacesW
p

2 , with forms of polynomial degree 2 at
most. (For consistency,Wp may now be denotedWp

1 .) As we shall prove in a moment
(under the assumption of trivial topology, but this is no serious restriction), the complex
they constitute enjoys the exact sequence property: If for instanceb = ∑

n,f bnf λnwf

satisfies db = 0 (which means it has a divergence-free proxy) then there are DoFsane

such thatb = d(
∑

n,e aneλ
nwe). (How to defineWp

k , for polynomial degreesk = 3, . . . ,
should now be obvious.)

Note however that, because of Proposition 23.1, these new forms are not linearly
independent. For instance, the span of theλnwes, over a tetrahedron, has dimension
20 instead of the apparent 24, because Proposition 23.1 imposes one linear relation
per facet. Over the whole mesh, withN nodes,E edges,F facets, the two products
λmwe and λnwe for each edgee = {m,n}, and the three productsλf −ewe for each
facetf , make a total of 2E + 3F generators forW1

2 . But with one relation per facet,
the dimension ofW1

2 is only 2(E + F). (The spans of theλnwns, theλnwf s, and the
λnwvs, have respective dimensionsN + E, 3(F + V ), and 4V . The general formula
is dim(Wp

2 ) = (p + 1)(Sp + Sp+1), whereSp is the number ofp-simplices. Note that∑
p(−1)p dim(W

p

2 ) = ∑
p(−1)pSp ≡ χ , the Euler–Poincaré constant of the meshed

domain.)
Owing to this redundancy, the main problem with these forms is, how to interpret

the DoFs. With standard edge elements, the DoFae′ is the integral of the 1-forma =∑
e aew

e over edgee′. In different words, the square matrix of the circulations〈e′;we〉
is the identity matrix: edges and edge elements arein duality in this precise sense (just
like the basis vectors and covectors∂i and dj of Note 26). Here, we cannot expect to
find a family of 1-chains in such duality with theλnwes. The most likely candidates in
this respect, the “small edges” denoted{n, e}, etc., on Fig. 24.1, left, don’t pass, because
the matrix of the〈{n′, e′};λnwe〉 is not the identity matrix. If at least this matrix was
regular, finding chains in duality with the basis forms, or the other way round, would be
straightforward. But regular it is not, because of the relations of Proposition 23.1. We
might just omit one small edge out of three on each facet, but this is an ugly solution.
Better to reason in terms ofblocksof DoF of various dimensions, and to be content
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with a rearrangement of chains that makes the matrix block-diagonal: Blocks of size 1
for small edges which are part of the “large” ones, blocks of size three for small edges
inside the facets. Each of these 3-blocks corresponds to a subspace of dimensiontwo,
owing to Proposition 23.1, be it the subspace of forms or of chains. The triple of degrees
of freedom, therefore, is up to an additive constant. Yet, the circulations53 do determine
theform, if not the DoF, uniquely (“unisolvence” property).

The reader will easily guess about “small facets” (16 of them on a single tetrahedron,
for a space of dimension 3(F + T ) = 3(4 + 1) = 15) and “small volumes” (four), in
both variants.

Which leaves us with the task of proving the exact sequence property, that is to say,
the validity of Poincaré’s Lemma in the complex of theW

p

2 : Show that db = 0 for b ∈
W

p

2 implies the existence, locally at least, ofa ∈ W
p−1
2 such thatb = da. We’ll treat the

very case this notation suggests, i.e.,p = 2, and assume trivial topology (“contractible”
meshed domain), which does no harm since only a local result is aimed at. We use rot
and div rather than d for more clarity. First, two technical points:

LEMMA 24.1. If
∑

n∈N βnλ
n(x) = β0 for all x, where theβs are real numbers, then

βn = β0 for all nodesn ∈ N .

PROOF. Clear, since
∑

n λn = 1 is the only relation linking theλn(x)s. �

LEMMA 24.2. If a ∈ W1, then2 rot(λna) − 3λn rota ∈ W2.

PROOF. If a = we andn = f − e, this results from (23.8). Ifn is one of the end points
of e, e.g.,e = {m,n}, a direct computation, inelegant as it may be, will do: 2 dλn ∧
(λm dλn − λn dλm) = −2λn dλn ∧ dλm = λn dwe. �

Now,

PROPOSITION24.1. If theW
p

1 sequence is exact, theWp

2 sequence is exact.

PROOF(at levelp = 2). Supposeb = b0 + ∑
n∈N λnbn, with b0 and all thebn in W2,

and divb = 0. Taking the divergence of the sum and applying Lemma 24.1 in each
volume, one sees that divbn is the same field for alln. So there is some common̄b in
W2 such that div(bn − b̄) = 0 for all n, and since theWp complex is exact, there is an
an in W1 such thatbn = b̄ + rotan. Hence,b = b0 + b̄ +∑

n λn rotan. By Lemma 24.2,
there is therefore somêb in W2 such thatb = b̂ + 2

3 rot(
∑

n λnan). Since divb̂ = 0, the
solenoidalb in W2

2 we started from is indeed the curl of some element ofW1
2 . �

Very little is needed to phrase the proof in such a way that the contractibility assump-
tion becomes moot. Actually, the complexesW

p

1 andW
p

2 havethe same cohomology,

53Since the matrix has no maximal rank, small-edge circulations must satisfy compatibility conditions for
the form to exist. (Indeed, one will easily check that any element ofW1

2 has a null circulation along the chain
made by the boundary of a facet minus four times the boundary of the small facet inside it.) This raises a
minor problem with therm map, whose images need not satisfy this condition. The problem is avoided with
a slightly different definition of the small edges (KAMEARI [1999]), as suggested on the right of Fig. 24.1.
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FIG. 25.1. The system of projections, in dimension 2.

whatever the topology of the domain and the culling of passive simplices (i.e., those
bearing a null DoF) implied by the boundary conditions.

25. Whitney forms for other shapes than simplices

This simple idea,approximatep-manifolds byp-chains based onp-cells of the mesh,
is highly productive, as we presently see.

25.1. Hexahedra

First example, the well-known isoparametric element (ERGATOUDIS, IRONS and
ZIENKIEWICZ [1968]) on hexahedra can thus be understood. A 2D explanation
(Fig. 25.1) will suffice, the generalization being easy. Let us take a convex quad-
rangle based on pointsx00, x10, x01, x11, and wonder about which weightswn(x)

should be assigned to them (labeln designates the generic node) in order to have
x = ∑

n∈{00,10,10,11} wn(x)xn in a sensible way. The weights are obvious ifx lies on the
boundary. For instance, ifx = (1−ξ)x00+ξx10, a point we shall denote byxξ0, weights
are{1− ξ, ξ,0,0}. Were itx ≡ xξ1 = (1− ξ)x01+ ξx11, we would take{0,0,1− ξ, ξ}.
Now, eachx is part of some segment[xξ0xξ1], for a uniquevalueξ(x) of the weight
ξ , in which casex = (1 − η)xξ0 + ηxξ1, for someη = η(x), hence it seems natural to
distribute the previous weights in the same proportion:

x = (
1− η(x)

)(
1− ξ(x)

)
x00 + (

1− η(x)
)
ξ(x)x10

(25.1)+ η(x)
(
1− ξ(x)

)
x01 + η(x)ξ(x) x11,

and we are staring at the basis functions. They form, obviously, a partition of unity.
Looking at what we have done, and generalizing to dimension 3 or higher, we notice a

system of projections, associated with a trilinear54 chart, x → {ξ(x), η(x), ζ(x)}, from

54Thus called becauseξ , η, andζ , though cubic polynomials in terms of the Cartesian coordinates ofx, are
affine functions of each of them, taken separately.
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FIG. 25.2. Weightwe(xy) is theξηζ -volume of the “hinder region” ofxy with respect to edgee.

a hexahedron to the unit cube inξηζ -space. The successive projections (which can be
performed in any order) map a pointx ≡ xξηζ to its imagesx0ηζ andx1ηζ on opposite
facets55 ξ = 0 andξ = 1, then, recursively, send these images to points on opposite
edges, etc., until eventually a noden is reached. In the process, the weight〈x;wn〉 of x

is recursively determined by formulas such as (assuming for the sake of the example
thatn belongs to the facetξ = 0)

〈xξηζ ;wn〉 = (1− ξ)〈x0ηζ ;wn〉.
The final weight ofx with respect ton is thus the product of factors, such as here(1−ξ),
collected during the projection process. (They measure the relative proximity of each
projection to the face towards which next projection will be done.) The last factor in
this product is 1, obtained when the projection reachesn. Observe the fact, essential of
course, that whatever the sequence of projections, the partial weights encountered along
the way are the same, only differently ordered, and hence the weight ofx with respect
to noden is a well-defined quantity.

The viewpoint thus adopted makes the next move obvious. Now, instead of a pointx,
we deal with a vectorv at x, small enough for the segmentxy (wherey = x + v) to be
contained in a single hexahedron. The above projections sendx andy to facets, edges,
etc. Ending the downward recursion one step higher than previously, at the level of
edges, we get projectionsxeye of xy onto all edgese. The weight〈xy;we〉 is the product
of weights ofx collected along the way, but the last factor is now the algebraic ratio
xeye/e (which makes obvious sense) instead of 1. Hence the analytical expression of the
corresponding Whitney form, for instance, in the case of Fig. 25.2,we = ηζ dξ . (Notice
the built-in “partition of unity” property:xy = Σe〈xy;we〉e.) The proxies,we = ηζ∇ξ

in this example, were proposed as edge elements for hexahedra by VAN WELIJ [1985].

55Be aware thatp-faces need not be “flat”, i.e., lie within an affinep-subspace forp > 1, in dimension
higher than 2. To avoid problems this would raise, we assume here a mesh generation which enforces this
extra requirement.
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FIG. 25.3. There too, weightwe(xy) is the relative volume of the hinder region.

One may wonder whether weights such as〈xy;we〉 have a geometric interpretation
there too. They do:〈xy;we〉 is the relative volume, in thereference hexahedron56 H =
{ξ, η, ζ }: 0 � ξ � 1, 0� η � 1, 0� ζ � 1, of the “hinder region” of Fig. 25.2, made
of points “behind”xy with respect to edgee. This may seem fairly different from the
situation in Fig. 23.4, middle, but a suitable reinterpretation of the system of projections
in the tetrahedron (Fig. 25.3) shows the analogy.

A similar reasoning gives facet elements: the last weight, for a small trianglexyz, is
xf yf zf /f , which again makes sense: Take the ratio of the areas (an affine notion) of the
images of these surfaces in the reference cube, with sign+ if orientations ofxf yf zf

andf match,− otherwise. Whitney forms such aswf = ξ dη dζ (whenf is the facet
ξ = 1) result. The proxy of that particular one isξ∇η × ∇ζ .

25.2. Prisms

So, Cartesian coordinates and barycentric coordinates provide two systems of projec-
tions which make obvious the weight allocation. These systems can be mixed: one of
them in use forp < n dimensions, the other one for then − p remaining dimensions.
In dimension 3, this gives only one new possibility, the prism (Fig. 25.4).

Such a variety of shapes makes the mesh generation more flexible (DULAR, HODY,
NICOLET, GENON and LEGROS[1994]). Yet, do the elements of a given degree, edge
elements say, fit together properly when one mixes tetrahedra, hexahedra, and prisms?
Yes, because of the recursivity of the weight allocation: If a segmentxy lies entirely in
the facet common to two volumes of different kind, say a tetrahedron and a prism, the
weights〈xy;we〉 for edges belonging to this facet only depend on what happens in the
facet, i.e., they are the same as evaluated with both formulas forwe, the one valid in
the tetrahedron, the one valid in the prism. This is enough to guarantee thetangential
continuityof such composite edge elements.

56Recall that all tetrahedra are affine equivalent, which is why we had no need for a reference one. The
situation is different with hexahedra, which form several orbits under the action of the affine group.
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FIG. 25.4. Projective system and edge elements for a prism. Observe the commutativity of the projections.

FIG. 25.5. Projective systems for the same triangle, in the barycentric coordinates on the left, and by degen-
eracy of the quadrilateral system on the right.

25.3. “Degeneracies”

Yet one may yearn for even more flexibility, and edge elements forpyramidshave been
proposed (COULOMB, ZGAINSKI and MARÉCHAL [1997], GRADINARU and HIPT-
MAIR [1999]). A systematic way to proceed, in this respect, is to recourse to “degener-
ate” versions of the hexahedron or the prism, obtained by fusion of one or more pair of
nodes and or edges.

To grasp the idea, let’s begin with the case of the degenerated quadrilateral, in two
dimensions (Fig. 25.5). With the notations of the figure, where{λ,µ, ν} are the barycen-
tric coordinates in the left triangle, the map{µ,ν} → {η, ξ}, whereη = ν/(µ + ν) and
ξ = µ + ν, sends the interior of the triangle to the interior of the right quadrilateral.
When, by deformation of the latter,x10 merges withx00, the projective system of the
quadrilateral generates a new projective system on the triangle.
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FIG. 25.6. Projective systems in four degenerations of the hexahedron. Thick lines indicate the merged edges.

The weights assigned to the nodes, and hence the nodal elements, are the same in
both systems, forξη = ν for point C (cf. (25.1)),ξ(1 − η) = µ for B, and the sum
(1 − ξ)(1 − η) + (1 − ξ)η, attributed toA by adding the loads ofx00 andx01, does
equalλ. But the edge elements differ: ForAC, η dξ ≡ −(1 − λ)−1µdλ on the right
instead ofλdν − ν dλ on the left,−(1− λ)−1µdλ for AB, and dν + (1− λ)−1ν dλ for
BC. (The singularity of shape functions at pointA is never a problem, because integrals
where they appear always converge.)

In dimension 3, the principle is the same: When two edges merge, by degeneration of
a hexahedron or of a prism, the Whitney form of the merger is the sum of the Whitney
forms of the two contributors, which one may wish to rewrite in a coordinate system
adapted to the degenerate solid. Figs. 25.6 and 25.7 show seven degeneracies, all those
that one can obtain from a hexahedron or a prism with plane facets under the constraint
of not creating curved facets in the process. As one sees, the only novel shape is the
pyramid, while the prism is retrieved once and the tetrahedron four times.

But, as was predictible from the 2-dimensional case, it’snewWhitney forms, on these
solids, that are produced by the merging, because the projection systems are different. In
particular, we have nowfivedistinct projective systems on the tetrahedron (and two on
the pyramid and the prism), and the equality of traces is not automatic any longer. One
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FIG. 25.7. Projective systems in three degenerations of the prism. Note how the pyramid has two ways to
degenerate towards the tetrahedron.

FIG. 25.8. Nodal and edge elements for the projective system of Fig. 25.5. One passes from the previous co-
ordinate system{ξ, η, ζ } to the prism-adapted{ζ,λ,µ, ν} system by the formulasξ = µ + ν, η = ν/(µ + ν),

with λ + µ + ν = 1.

must therefore care about correct assembly, in order to get the same projection system
on each facet.

The advantage of having the pyramid available is thus marred by the necessity of an
extended shape-functions catalogue (on at least two triangular facets of a pyramid, the
projection system cannot match the tetrahedron’s one), and by the existence of cum-
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FIG. 25.9. Degeneration of the prism of Fig. 25.8. Two edges disappear, and a new edge element,
µ(1− λ)−1 dλ is created by the merging. The coordinate system is the same here as in Fig. 25.8, so{λ,µ, ν}
should not be confused with barycentric coordinates of this tetrahedron. Denoting the latter by{κ̄, λ̄, µ̄, ν̄},
and using the formulasν = ν̄ + κ̄ andζ = ν̄/(ν̄ + κ̄), one hasξ = µ̄ + ν̄ + κ̄ = 1− λ̄, η = (ν̄ + κ̄)/(1− λ̄).
Thus, for instance, the shape functionµ(1− λ)−1 dλ rewrites asµ̄(1− λ̄)−1 dλ̄ in barycentric coordinates.

bersome assembly rules. Yet, finding the new shape-functions is not too difficult, as
exemplified by Figs. 25.8 and 25.9.

25.4. Star-shaped cells, dual cells

Let’s end all this by an indication on how to build Whitney forms on any star-shaped
polyhedron.

Suppose eachp-cell of the meshm, for all p, has been provided with a “center”, in
the precise sense of Section 15, i.e., a point with respect to which the cell is star-shaped.
Then, join the centers in order to obtain a simplicial refinement,m say, where the new
sets ofp-simplices areSp, the old sets of cells beingSp. In similar style, letu and
u stand for DoF arrays indexed overSp andSp respectively, with the compatibility
relationus = Σs′ ± us′ for all s in Sp, the sum running over all small simplices in the
refinement of cells, and the signs taking care of relative orientations. To definepmu,
knowing whatpm̄u is, we just take thesmallest, in the energy norm, of thepm̄u’s, with
respect to allu’s compatible withu.

The family of interpolants thus obtained is to the cellular mesh, for all purposes, what
Whitney forms were to a simplicial mesh. Whether they deserve to be called “Whit-
ney forms” is debatable, however, because they are metric-dependent, unlike the stan-
dard Whitney forms. The same construction on the dual side provides similar pseudo-
Whitney forms on the dual mesh. (More precisely, there is, as we have observed at the
end of Section 15, a common simplicial refinement of bothm andm̃. The process just
defined constructs forms on both, but it’s easy to check that the pseudo-Whitneys on the
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primal mesh are just the Whitney forms.) This fills a drawer in the toolkit, the emptiness
of which we took some pain to hide until now, although it was conspicuous at places,
on Fig. 23.1, for instance.
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