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Some basics

• What is a differential equation ?

• Some methods of resolution:

• Separation of variables;
• Change of variables;
• Method of integrating factors.

• Important examples of ODEs:

• Autonomous ODEs;
• Exact equations;
• Hamiltonian systems.
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Some basics

• Ordinary differential equation (ODE): equation that contains one or more
derivatives of an unknown function x(t).

• Equation may also contain x itself and constants.

• ODE of order n if the n-th derivative of the unknown function is the
highest order derivative in the equation.
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Some basics

• Examples of ODEs:

• Membrane equation as a neuron model:

C
dx(t)

dt
+ gx(t) = f (t),

x(t): membrane potential, i.e., the voltage difference between
the inside and the outside of the neuron; f (t): current flow
due to excitation; C : capacitance; g : conductance (the inverse
of the resistance) of the membrane.

• Linear ODE of order 1.
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Some basics

• Theta model: one-dimensional model for the spiking of a neuron.

dθ(t)

dt
= 1− cos θ(t) + (1 + cos θ(t))f (t);

f (t): inputs to the model.

• θ ∈ [0, 2π]; θ = π the neuron spikes → produces an action potential.

• Change of variables, x(t) = tan(θ(t)/2), → quadratic model

(∗) dx(t)

dt
= x2(t) + f (t).

• Population growth under competition for resources:

(∗∗) dx(t)

dt
= rx(t)− r

k
x2(t);

r and k: positive parameters; x(t): number of cells at time instant t,
rx(t): growth rate and −(r/k)x2(t): death rate.

• (∗) and (∗∗): Nonlinear ODEs of order 1.
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Some basics

• FitzHugh-Nagumo model:
dV

dt
= f (V )−W + I ,

dW

dt
= a(V − bW );

• V : membrane potential, W : recovery variable, and I : magnitude of
stimulus current.

• f (V ): polynomial of third degree, and a and b: constant parameters.

• FitzHugh-Nagumo model: two-dimensional simplification of the
Hodgkin-Huxley model of spike generation in squid giant axons.

• Mathematical properties of excitation and propagation from the
electrochemical properties of sodium and potassium ion flow.

• System of nonlinear ODEs of order 1.
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Some basics

• Langevin equation of motion for a single particle:

dx(t)

dt
= −ax(t) + η(t);

• x(t): position of the particle at time instant t, a > 0: coefficient of
friction, and η: random variable that represents some uncertainties or
stochastic effects perturbing the particle.

• Diffusion-like motion from the probabilistic perspective of a single
microscopic particle moving in a fluid medium.

• Linear stochastic ODE of order 1.
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Some basics

• Vander der Pol equation:

d2x(t)

dt2
− a(1− x2(t))

dx(t)

dt
+ x(t) = 0;

• a: positive parameter, which controls the nonlinearity and the strength of
the damping.

• Generate waveforms corresponding to electrocardiogram patterns.

• Nonlinear ODE of order 2.
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Some basics

• Higher order ODEs: Ω ⊂ Rn+2 and n ∈ N.

• ODE of order n:

F (t, x(t),
dx

dt
(t), ...,

dnx

dtn
(t)) = 0;

• x : real-valued unknown function and dx(t)/dt, ..., dnx(t)/dtn: its
derivatives.

• ϕ ∈ Cn(I ): solution of the differential equation if I : open interval, for all
t ∈ I ,

(t, ϕ(t),
∂ϕ

∂t
(t), ...,

∂nϕ

∂tn
(t)) ∈ Ω

and

F (t, ϕ(t),
∂ϕ

∂t
(t), ...,

∂nϕ

∂tn
(t)) = 0.

• x : vector valued function, x(t) ∈ Rd , → Ω ⊂ R× R(n+1)d .
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Some basics

• n-th order ODE:

(∗ ∗ ∗) x (n)(t) = f (t, x ,
dx

dt
, ...,

dn−1x

dtn−1
), t ∈ I .

• x(t) ∈ Rd and f : I × Rnd → Rd .

• Initial condition:

(x(t0), x ′(t0), x ′′(t0), ..., x (n−1)(t0))>.

• Reduce the high order ODE (∗ ∗ ∗) into a first order ODE:

y(t) := (x(t), dx(t)/dt, ..., dn−1x(t)/dtn−1)> ∈ Rnd

and
F (t, y) := (y2, ..., yn, f (t, y1, ..., yn))>

for y = (y1, ..., yn)> ∈ Rnd and yi ∈ Rd for i = 1, 2, ..., n.
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Some basics

• (∗ ∗ ∗) equivalent to the following first order ODE:

dy

dt
= F (t, y(t)).
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Some basics

• EXAMPLE:

• Consider the second order ODE:

d2x

dt2
+ p(t)

dx

dt
+ q(t)x(t) = g(t).

• ⇒

d

dt

[
x
dx

dt

]
=

 dx

dt

−p(t)
dx

dt
− q(t)x(t) + g(t)


=

[
0 1

−q(t) −p(t)

][ x
dx

dt

]
+

[
0

g(t)

]
.

Numerical methods for ODEs Habib Ammari



Some basics

• ODEs:

• Existence of solutions;
• Uniqueness of solutions with suitable initial conditions;
• Regularity and stability of solutions (e.g. dependence on the

initial conditions, large time stability, higher regularity);
• Computation of solutions.

• Existence of solutions: fixed point theorems; implicit function theorem in
Banach spaces.

• Uniqueness: more difficult.

• Explicit solutions: only in a very few special cases.

• Numerical solutions.
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Some basics

• Some methods of resolution:

• Separation of variables;
• Change of variables;
• Method of integrating factors.
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Some basics
• Separation of variables:

• I and J: open intervals;
• f ∈ C0(I ) and g ∈ C0(J): continuous functions.
• Solutions to the first order equation

(∗ ∗ ∗∗) dx

dt
= f (t)g(x).

• t0 ∈ I and x0 ∈ J; initial condition: x(t0) = x0.
• g(x0) = 0 for some x0 ∈ J → x(t) = x0 for t ∈ I : solution to

(∗ ∗ ∗∗).
• Suppose g(x0) 6= 0 → g 6= 0 in a neighborhood of x0 ⇒

dx

g(x)
= f (t)dt.

• Integration ⇒ ∫
dx

g(x)
=

∫
f (t)dt + c ;

c : constant uniquely determined by the initial condition.
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Some basics

• F and G : primitives of f and 1/g .

• G ′(x) 6= 0 ⇒ G : strictly monotonic → invertible.

• Solution:
x(t) = G−1(F (t) + c).

• Method of separation of variables.

• (∗ ∗ ∗∗): separable equation.
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Some basics

• EXAMPLE:

• Consider the following ODE:
dx

dt
=

1 + 2t

cos x(t)
,

x(0) = π.

• g(x) = 1/ cos x and f (t) = 1 + 2t.
• g : defined for x 6= π/2 + kπ, k ∈ Z.
• Separation of variables,

cos xdx = (1 + 2t) dt.

• Integration,
sin x(t) = t2 + t + C ,

for some constant C ∈ R.
• Initial condition x(0) = π ⇒ C = 0.
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Some basics

• Taking the arcsin ⇒ x(t) = arcsin(t2 + t): not the solution because
x(0) = arcsin(0) = 0.

• arcsin: inverse of sin on [−π/2, π/2]; x(t): takes the values in a
neighborhood of π.

• w(t) = x(t)− π → w(0) = x(0)− π = 0 ⇒ w(t) = − arcsin(t2 + t).

• Correct solution:
x(t) = π − arcsin(t2 + t).
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Some basics

• Change of variables:

• Consider the following ODE:

dx

dt
= f
(x(t)

t

)
;

f : I ⊂ R→ R: continuous function on some open interval
I ⊂ R.

• change of variable x(t) = ty(t); y(t): new unknown function,

dx

dt
= y(t) + t

dy

dt
= f (y(t)),

• Separable equation for y :

dy

f (y)− y
=

dt

t
.

• Solution by the method of separation of variables.

Numerical methods for ODEs Habib Ammari



Some basics

• EXAMPLE:

• Consider
dx

dt
=

t2 + x2

xt
.

• f (s) = s + 1/s with s = x/t.
• Change of variable: y(t) = x(t)/t ⇒ ydy = dt/t
• ⇒

(1/2)y2 = ln t + C .

• ⇒
x(t) = ±t

√
2(ln t + C ).
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Some basics

• Method of integrating factors

• Consider
dx(t)

dt
= f (t).

• Integration

x(t) = x(0) +

∫ t

0

f (s) ds.

• Consider
dx

dt
+ p(t)x(t) = g(t);

p and g : functions of t.
• Left-hand side: expressed as the derivative of the unknown

quantity ← Multiply by µ(t).
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Some basics
• µ(t) s.t.

µ(t)
dx

dt
+ µ(t)p(t)x(t) =

d

dt
(µ(t)x(t)).

• Taking derivatives ⇒

(1/µ)dµ/dt = p(t) or
d

dt
lnµ(t) = p(t).

• Integration ⇒

µ(t) = exp(

∫ t

0

p(s)ds),

up to a multiplicative constant.

• Transformed equation:

d

dt
(µ(t)x(t)) = µ(t)g(t).

• ⇒
x(t) =

1

µ(t)

(∫ t

0

µ(s)g(s)ds
)

+
C

µ(t)
;

C : determined from the initial condition x(0) = x0.

• µ(t): integrating factor.
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Some basics

• EXAMPLE:

• Consider 
dx

dt
+

1

t + 1
x(t) = (1 + t)2, t ≥ 0,

x(0) = 1.

• p(t) = 1/(t + 1) and g(t) = (1 + t)2.
• Integrating factor:

µ(t) = exp(

∫ t

0

p(s)ds) = e ln(t+1) = t + 1.

• ⇒

x(t) =
1

t + 1

∫ t

0

(s + 1)3ds +
C

t + 1
=

(t + 1)3

4
+

C − 1
4

t + 1
.

• Initial condition x(0) = 1 ⇒ C = 1.
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Some basics

• EXAMPLE: (Bernoulli’s equation)

• Consider
dx

dt
+ p(t)x(t) = g(t)xα(t).

• α /∈ {0, 1}.
• Change of variable: x = z

1
1−α ,

dx

dt
=

1

1− α
z

α
1−α

dz

dt
.

• Linear equation:

dz

dt
+ (1− α)p(t)z(t) = (1− α)g(t).

• Solved by the method of integrating factors.
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Some basics

• Important examples of ODEs:

• Autonomous ODEs;
• Exact equations;
• Hamiltonian systems.
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Some basics

• Autonomous ODEs:

• DEFINITION:
dx(t)

dt
= f (t, x(t)): autonomous if f :

independent of t.
• Any ODE can be rewritten as an autonomous ODE on a

higher-dimensional space.
• y = (t, x(t)) → autonomous ODE

dy(t)

dt
= F (y(t));

•

F (y) =

(
1

f (t, x(t))

)
.
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Some basics
• Exact equations:

• Ω = I × R ⊂ R2 with I ⊂ R: open interval.
• f , g ∈ C0(Ω).
• Solution x ∈ C1(I ) of the ODE:

f (t, x(t)) + g(t, x(t))
dx

dt
= 0

satisfying the initial condition x(t0) = x0 for some (t0, x0) ∈ Ω.
• Differential form:

ω = f (t, x)dt + g(t, x)dx .

• DEFINITION: Differential form: exact if there exists
F ∈ C1(Ω) s.t.

ω = dF =
∂F

∂t
dt +

∂F

∂x
dx .

• F : potential of ω.
• Differential equation: exact equation.
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Some basics

• THEOREM: Implicit function theorem

• Suppose that F (t, x): continuously differentiable in a
neighborhood of (t0, x0) ∈ R× Rd and F (t0, x0) = 0.

• Suppose that ∂F/∂x(t0, x0) 6= 0.
• Then there exists a δ > 0 and ε > 0 s.t. for each t satisfying
|t − t0| < δ, there exists a unique x s.t. |x − x0| < ε for which
F (t, x) = 0.

• This correspondence defines a function x(t) continuously
differentiable on {|t − t0| < δ} s.t.

F (t, x) = 0⇔ x = x(t).
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Some basics

• THEOREM:

• Suppose that ω: exact form with potential F s.t.

∂F

∂x
(t0, x0) 6= 0.

• F (t, x) = F (t0, x0) implicitly defines a function x ∈ C1(I ) for
some open interval I containing t0, which solves

f (t, x(t)) + g(t, x(t))
dx

dt
= 0

with the initial condition x(t0) = x0.
• Solution: unique on I .
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Some basics
• PROOF:

• Suppose without loss of generality that F (t0, x0) = 0.
• Implicit function theorem ⇒ there exists δ, η > 0 and

x ∈ C1(t0 − δ, t0 + δ) s.t.
{(t, x) ∈ Ω : |t − t0| < δ, |x − x0| < η,

F (t, x) = 0} = {(t, x(t)) ∈ Ω : |t − t0| < δ}.

• By differentiating the identity F (t, x(t)) = 0,

0 = d
dtF (t, x(t)) = ∂F

∂t (t, x(t)) + ∂F
∂x (t, x(t))dx

dt

= f (t, x(t)) + g(t, x(t))dx
dt .

• ⇒ x(t): solution of the differential equation.
• x(t0) = x0.
• If z ∈ C1(I ): solution s.t. z(t0) = x0, then

d

dt
F (t, z(t)) = 0 =⇒ F (t, z(t)) = F (t0, z(t0)) = 0 =⇒ z(t) = x(t).
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Some basics

• DEFINITION:

• f , g ∈ C1(Ω).
• Differential form ω = f dt + gdx : closed in Ω if

∂f

∂x
=
∂g

∂t

for all (t, x) ∈ Ω.

• PROPOSITION:

• Exact differential form ω = f dt + gdx with a potential
F ∈ C2: closed since

∂2F

∂t∂x
=

∂2F

∂x∂t

for all (t, x) ∈ Ω.
• Converse: also true if Ω: simply connected.

• Closed forms always have a potential (at least locally).
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Some basics
• EXAMPLE:

• Consider

tx2 + x − t
dx

dt
= 0.

• f (t, x) = tx2 + x and g(t, x) = −t.
• Not exact:

∂f

∂x
= 2xt + 1 6= ∂g

∂t
= −1.

• EXAMPLE:

• Consider

t +
1

x
− t

x2
dx

dt
= 0

• Exact equation with the potential function F :

F (t, x) =
t2

2
+

t

x
+ C , C ∈ R.

• F (t, x) = 0 implicitly defines the solutions (locally for t 6= 0
and x 6= 0 s.t. ∂F/∂x(t, x) 6= 0).
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Some basics

• Hamiltonian systems:

• DEFINITION:
• M: subset of Rd and H : Rd ×M → R: C1 function.
• Hamiltonian system with Hamiltonian H: first-order system of

ODEs 
dp

dt
= −∂H

∂q
(p, q),

dq

dt
=
∂H

∂p
(p, q).

• EXAMPLE:
• Harmonic oscillator with Hamiltonian

H(p, q) =
1

2

p2

m
+

1

2
kq2;

m and k: positive constants.
• Given a potential V , widely used Hamiltonian systems in

molecular dynamics: H(p, q) = 1
2
p>M−1p + V (q);

M: symmetric positive definite matrix and >: transpose.
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Some basics

• Invariant for a system of ODEs:

• DEFINITION:
• Ω = I × D; I ⊂ R and D ⊂ Rd .
• Consider

dx

dt
= f (t, x(t));

• f : Ω→ Rd .
• F : D → R: invariant if F (x(t)) = Constant.
• (t, x) ∈ I × D: stationary point if f (t, x) = 0.
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Some basics

• Example:

• Lotka-Volterra’s ODEs:
du

dt
= u(v − 2),

dv

dt
= v(1− u).

• Dynamics of biological systems in which two species interact:
one as a predator and the other as prey.

• Define
F (u, v) := ln u − u + 2 ln v − v .

• F (u, v): invariant.
• (u, v) = (1, 2) and (u, v) = (0, 0): stationary points.
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Some basics

• Differentiation with respect to time,

d

dt
F (u, v) =

1

u

du

dt
− du

dt
+

2

v

dv

dt
− dv

dt

= v − 2− du

dt
+ 2(1− u)− dv

dt

= (v − 2)− u(v − 2) + 2(1− u) + v(1− u)

= (v − 2)(1− u) + (2− v)(1− u)

= 0.
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Some basics

• LEMMA:

• Hamiltonian H: invariant of the associated Hamiltonian
system.

• PROOF:

•
d

dt
H(p(t), q(t))

=
∂H

∂p
(p(t), q(t))

dp

dt
+
∂H

∂q
(p(t), q(t))

dq

dt

= −∂H
∂p

(p(t), q(t))
∂H

∂q
(p(t), q(t)) +

∂H

∂q
(p(t), q(t))

∂H

∂p
(p(t), q(t))

= 0.

• H(p, q): invariant of the associated system of equations.
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Some basics

• EXAMPLE:

• Consider 
dp

dt
= − sin q,

dq

dt
= p.

• H(p, q) = 1
2p

2 − cos q:
∂H

∂q
= sin q = −dp

dt
,

∂H

∂p
= p =

dq

dt
.
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Some basics

• Equivalent expression for Hamiltonian systems:

• x = (p, q)> (p, q ∈ Rd);

J =

(
0 I
−I 0

)
;

I : d × d identity matrix.
• J−1 = J>.
• Rewrite the Hamiltonian system in the form

dx

dt
= J−1∇H(x).
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Some basics

• Notation ∇H(x) := ( ∂H
∂x

)> = ( ∂H
∂x1
, . . . , ∂H

∂x2d
)>.

• For a vector function f : R2d → R2d , f (x) = (f1(x), . . . , f2d(x)), we define
the Jacobian matrix f ′ of f by

f ′(x) :=


∂f1
∂x1

. . . ∂f1
∂x2d

... . . .
...

∂f2d
∂x1

. . . ∂f2d
∂x2d

 .
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Some basics

• DEFINITION Symplectic linear mapping

• Matrix A ∈ R2d × R2d (linear mapping from R2d to R2d):
symplectic if A>JA = J.
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Some basics

• DEFINITION Symplectic mapping

• Differentiable map g : U → R2d : symplectic if the Jacobian
matrix g ′(p, q): everywhere symplectic, i.e., if

g ′(p, q)>Jg ′(p, q) = J.

• Taking the transpose of both sides of the above equation,

g ′(p, q)>J>g ′(p, q) = J>;

• Or equivalently,

g ′(p, q)>J−1g ′(p, q) = J−1.
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Some basics

• THEOREM:

• If g : symplectic mapping, then it preserves the Hamiltonian
form of the equation.
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Some basics

• PROOF:

• x = (p, q)>, y = g(p, q)>; G (y) := H(x).
• Chain rule ⇒

∂

∂x
H(x) =

∂

∂x
G (y) =

∂

∂y
G (y)

∂y

∂x
(x)

= (∇yG (y))>g ′>(p, q).
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Some basics

• ⇒
dy

dt
= g ′>(p, q)

dx

dt

= g ′>(p, q)J−1

(
∂H(x)

∂x

)>
= g ′>J−1g ′∇yG(y)

= J−1∇yG(y).

• ⇒
dy

dt
= J−1∇yG(y).
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Some basics

• DEFINITION:

• Flow:

φt(p0, q0) = x(t, p0, q0) = (p(t, p0, q0), q(t, p0, q0))>;

• φt : U → R2d , U ⊂ R2d ;
• p0 and q0: initial data at t = 0.

• y0 = (p0, q0)>; f = J−1∇H:

dφt(y0)

dt
= f (φt(y0))⇒ d

dt

∂φt(y0)

∂y0
= f ′(φt(y0))

∂φt(y0)

∂y0
;

f ′ = J−1∇2H,

• ∇2H: Hessian matrix of H
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Some basics

• THEOREM: Poincaré’s theorem

• H: twice differentiable.
• Flow φt : symplectic transformation.
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Some basics

• PROOF:

• y0 = (p0, q0)>.
•

d

dt

((
∂φt
∂y0

)>
J

(
∂φt
∂y0

))

=

(
∂φt
∂y0

)′>
J

(
∂φt
∂y0

)
+

(
∂φt
∂y0

)>
J

(
∂φt
∂y0

)′
=

(
∂φt
∂y0

)>
∇2HJ−>J

(
∂φt
∂y0

)
+

(
∂φt
∂y0

)>
JJ−1∇2H

(
∂φt
∂y0

)
=0;

• Hessian matrix ∇2H of H(p, q): symmetric.

Numerical methods for ODEs Habib Ammari



Some basics

• ∂φt/∂y0 at t = 0: identity map ⇒
• (

∂φt

∂y0

)>
J

(
∂φt

∂y0

)
= J

for all t and all (p0, q0).
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Some basics

• Symplecticity of the flow: characteristic property of the Hamiltonian
system.

• THEOREM:

• f : U → R2d : continuously differentiable.
• dx

dt = f (x): locally Hamiltonian iff φt(x): symplectic for all
x ∈ U and for all sufficiently small t.
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Some basics

• PROOF:

• Necessity ⇐ Poincaré’s Theorem.
• Suppose that φt : symplectic; prove local existence of a

Hamiltonian H s.t. f (x) = J−1∇H(x).
• ∂φt

∂y0
: solution of

dy

dt
= f ′(φt(y0))y ;

• ⇒

d

dt

((
∂φt
∂y0

)>
J

(
∂φt
∂y0

))
=

(
∂φt
∂y0

)>
[f ′(φt(y0))>J + Jf ′]

(
∂φt
∂y0

)
= 0.

• Putting t = 0; J = −J> ⇒ Jf ′(y0): symmetric matrix for all
y0.

• Integrability lemma ⇒ Jf (y): can be written as the gradient
of a function H.
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Some basics

• LEMMA: Integrability lemma

• D ⊂ R2d : open set; g : D → R2d ∈ C1.
• Suppose that the Jacobian g ′(y): symmetric for all y ∈ D.
• For every y0 ∈ D, there exists a neighborhood of y0 and a

function H(y) s.t.
g(y) = ∇H(y)

on this neighborhood.
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Some basics
• PROOF:

• Suppose that y0 = 0, and consider a ball around y0: contained
in D.

• Define

H(y) =

∫ 1

0

y>g(ty)dt.

• Differentiation with respect to yk , and symmetry assumption:

∂gi
∂yk

=
∂gk
∂yi

• ⇒
∂H

∂yk
=

∫ 1

0

(gk(ty) + y>
∂g

∂yk
(ty)t)dt

=

∫ 1

0

d

dt
(tgk(ty))dt = gk(y)

• ⇒
∇H = g .
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Some basics

• Gradient system:

•
dx

dt
= −∇F (x);

• F : potential function.

• LEMMA:

• Hamiltonian system: gradient system iff H: harmonic.
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Some basics

• PROOF:

• Suppose that H: harmonic, i.e.,

∂2H

∂p2
+
∂2H

∂q2
= 0.

• Jacobian of J−1∇H: symmetric

(J−1∇H)′ =

(
− ∂2H
∂p∂q −∂

2H
∂q2

∂2H
∂p2

∂2H
∂p∂q

)

• Integrability lemma ⇒ there exists V s.t. J−1∇H = ∇V ⇒
Hamiltonian system: gradient system.
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Some basics

• Suppose that Hamiltonian system: gradient system.

• There exists V s.t.

∂V

∂p
=
∂H

∂q
and

∂V

∂q
= −∂H

∂p
.

• ⇒
∆H :=

∂2H

∂p2
+
∂2H

∂q2
= 0.
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Some basics

• EXAMPLE:

• Hamiltonian system with H(p, q) = p2 − q2: gradient system.
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