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CHAPTER 1

Some basics

1.1. What is a differential equation?

An ordinary differential equation (ODE) is an equation that contains one or more derivatives
of an unknown function z(t). The equation may also contain z itself and constants. We say that
an ODE is of order n if the n-th derivative of the unknown function is the highest order derivative
in the equation. The following equations are examples of ODEs:

Membrane equation as a neuron model:

PO 1 gut) = 1), (1)

where z(t) is the membrane potential, i.e., the voltage difference between the inside and
the outside of the neuron, f(t) is the current flow due to excitation, C' is the capacitance
and ¢ is the conductance (the inverse of the resistance) of the membrane.
Equation is linear ODE of order 1.
The theta model: The theta model is a simple one-dimensional model for the spiking of
a neuron. It takes the form

do(t)
dt
where f(t) are the inputs to the model. The variable 6 lies on the unit circle and ranges

between 0 and 2w. When 6 = 7 the neuron spikes, that is, it produces an action potential.
By the change of variables, z(t) = tan(6(t)/2), (1.2)) leads to the quadratic model

C

=1—cosf(t) + (1 + cosb(t)) f(t), (1.2)

dx(t
d(t) =z2(t) + f(t). (1.3)
Population growth under competition for resources:
dx(t
% = ra(t) — %:ﬁ(t), (1.4)

where r and k are positive parameters. In , z(t) is the number of cells at time instant
t, rz(t) is the growth rate and —(r/k)x2(t) is the death rate. Equations , , and
(1.4) are nonlinear ODEs of order 1.

FitzHugh-Nagumo model:

av. _ _
{ M= f(V) =W +1 5

4V = a(V —bW),

where f(V) is a polynomial of third degree, and a and b are constant parameters.
The FitzHugh-Nagumo model is a two-dimensional simplification of the Hodgkin-Huxley
model of spike generation in squid giant axons. It aims at isolating the mathematical
properties of excitation and propagation from the electrochemical properties of sodium
and potassium ion flow. In (L.5), V is the membrane potential, W is a recovery variable,
and T is the magnitude of stimulus current. Equation is a system of nonlinear ODEs
of order 1.
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Langevin equation of motion for a single particle:

PO — —aa(v) +n00), (16)

where z(t) is the position of the particle at time instant ¢, a > 0 is coefficient of fric-
tion, and 7 is a random variable that represents some uncertainties or stochastic effects
perturbing the particle. Equation represents diffusion-like motion from the proba-
bilistic perspective of a single microscopic particle moving in a fluid medium. Equation
is a linear stochastic ODE of order 1.

Vander der Pol equation:

d?x(t) o, dz(t)
2 a(l —w (0)7

where a is a positive parameter, which controls the nonlinearity and the strength of the
damping. Equation (|1.7) is used to generate waveforms corresponding to electrocardio-
gram patterns. Equation (1.7) is a nonlinear ODE of order 2.

+a(t) =0, (L.7)

1.1.1. Higher order ODEs. Here we introduce higher order ODEs. Let Q@ C R™*? and

n € N. Then an ODE of order n is an equation of the form:

dx d"z
F(t,z(t), —(t),...,—(t)) =0
(a0, D), T2 = 0,
where z is a real-valued unknown function and dz(t)/dt, ...,d"z(t)/dt™ are its derivatives. We say
that ¢ € C™(I) is a solution of the differential equation if I is an open interval,
dy d*y
t,po(t), —(),..., —(1 Q
(o), 2 1),..., S E (1) €
for all ¢t € I, and
dy d"
F(t,o(t),—(t),...,——(t)) =0
(tolt), )., 22w

for all t € I. When z is a vector valued function, i.e., z(t) € R%, then Q C R x R(*+1)4,

Next we consider the following form of n-th order ODE:

dx dn 1z

m(n)(t) = f(tamaaa"')W))

tel. (1.8)

where z(t) € R? and f : I x R* — R?. To ensure uniqueness of the solution, (1.8) has to be
augmented with the initial condition:

(J}(to), Jfl(to), .’E”(to), - ,.I'(n_l) (to))—r.

Here T denotes the transpose.

and

We can reduce the high order ODE ([1.8) into a first order ODE. Let us define

y(t) := (z(t),dz(t)/dt,. .., d" z(t)/dt"" )T € R™?

F(t7y) = (y27'"7yn7f(t7y17"'7yn))T

for y = (y1,...,yn)" € R? and y; € R¢ for 4 = 1,2,...,n. Then the n-th order ODE ((1.8) is
equivalent to the following first order ODE:

Y~ Fiu0)).

ExaMPLE 1.1. Consider the second order ODE given by

2 dz

o 0+ a(B)z() = g(b).
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Then we have

i l#]- —p<t>‘f§—j<i)x<t)+g<t> =l o] ]+ o)

The main problems concerning ordinary differential equations are:

(i) Existence of solutions;
(ii) Uniqueness of solutions with suitable initial conditions;
(iii) Regularity and stability of solutions (e.g. dependence on the initial conditions, large time
stability, higher regularity);
(iv) Computation of solutions.

The existence of solutions can be proved by fixed point theorems, by the implicit function
theorem in Banach spaces, and by functional analysis techniques. The problem of uniqueness is
typically more difficult. Only in a very few special cases is it possible to compute solutions in some
explicit form.

1.2. Some methods of resolution

In the following subsections, we present several examples of exactly solvable ODEs and then
explain how to solve them.

1.2.1. Separation of variables. Let I and J be two open intervals and let f € C°(I) and
g € C°(J) be two continuous functions. We look for solutions to the first order equation

dx

— = f(t . 1.9

= F0)g() (19)
Let tg € I and xg € J. If g(xg) = 0 for some zy € J, then the constant function z(t) = o for
t € I is a solution to ((1.9). Suppose that g(xg) # 0. Then g # 0 in a neighborhood of z¢ and we

can divide (1.9) by g(z) and hence, separate the variables. We find
d

e F(t)dt. (1.10)

| 5= [ ra+e

where the constant ¢ is uniquely determined by the initial condition.
Let F and G be the primitives of f and 1/g, respectively. The function G is strictly monotonic,
because G'(x) # 0, and thus invertible. The solution of the differential equation (1.9) is then

z(t) = GHF(t) + ¢).

This method of solving ODEs is called the method of separation of variables and (1.9) is
called a separable equation.

Integrating (1.10) gives

ExamMpLE 1.2. Consider the following ODE:

dr 142
dt — cosz(t)’
z(0) = 7.

In this case, we have g(z) = 1/ cosx and f(t) = 14+2t. Note that g is defined for x # w/2+kn, k €
Z. By separating variables, we get
coszdxr = 1 + 2tdt.

By integration, we have
sinz(t) =t* +t+C,
for some constant C € R. Then, from the initial condition £(0) = w, we see that C = (.
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One might think that we can obtain the solution by taking the arcsin. But the function z(t) =
arcsin(t?+t) is not the solution because z(0) = arcsin(0) = 0. In order to get the correct solution, we
note that arcsin is the inverse of sin on [—7 /2, /2], whereas x(t) takes the values in a neighborhood
of ™. Letting w(t) = z(t) — 7, we have w(0) = z(0) — 7 = 0. So, we have w(t) = — arcsin(t? + t).
Therefore, we get the following correct solution:

x(t) = m — arcsin(t? + t).

1.2.2. Change of variables. There are a few important first-order equations that can be
solved using some transformation.
1.2.2.1. Homogeneous equation. Consider the following ODE:

dx x(t)
— =fl— 1.11
i =H(50): 1
where f: I C R — R is a continuous function on some open interval I C R. The ODE (L.11) is

called homogeneous. By the change of variables z(t) = ty(¢) where y(¢) is the new unknown
function, the above ODE can be changed to a separable equation. Since

dx dy
=)+t = fly),
we have a separable equation for y, which reads:
dy _ @
fy) -y t
Therefore, (1.11) can be solved by the method of separation of variables.

ExaMPLE 1.3. Consider
de _ t* +a°
dt  =xt
In this case, f(s) = s+1/s with s = z/t. By letting y(t) = x(t)/t, we get ydy = dt/t. So, we have
(1/2)y*> =Int + C. Therefore, we obtain

a(t) = £t\/2(Int + O).

1.2.2.2. Bernoulli equation. A differential equation is of Bernoulli type if it is of the form

Z—f = f(t)z+g(t)z", n#0,L (1.12)

1—n

The transformation y = x gives the linear equation

% — (1= n)f(B)y + (1 —n)g(D).

1.2.2.3. Riccati equation. A differential equation is of Riccati type if it is of the form

dx .

i (t)z + g(t)z* + h(t). (1.13)
Assume that a particular solution z, of (1.13) is known. Then the transformation y = 1/(z —z,(t)
yields the linear equation

dy _

g = O +22,(0)g(1)y — g(t).
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1.2.3. Method of integrating factors. Consider
dx(t)
= f(1). 1.14
"= s (114
By integrating ((1.14), it follows that the solution z(t) is given by

z(t) = z(0) +/0 f(s)ds.

Consider

dx
5 Tr®z) =9(), (1.15)
where p and g are functions of .

If were of the form , then we could immediately write down a solution in terms of
integrals. By being of the form , we mean that the left-hand side is expressed as the
derivative of our unknown quantity. To make this happen, we can multiply by a function,
p(t), and ask whether the resulting equation can be put in the form (L.14).

Let us look for u(t) such that

B+ p(a)p(0)(1) = S (p(E) ().
Taking derivatives, we have (1/u)dp/dt = p(t) or
%ln u(t) = p(t). (1.16)

Integrating (|1.16) gives
¢
u(e) = expl | pls)ds),
0

up to a multiplicative constant. The equation ([1.15) is transformed to

L u02(0) = u(0)g(1)

This equation is precisely of the form ((1.14)), so we can immediately conclude
1 /t C

z(t) = — u(s)g(s)ds) + —,

0= 5 [, H9%) + 1

where the constant C' can be determined from the initial condition x(0) = xg. The function u(t)
is called the integrating factor.

ExAMPLE 1.4. Consider

dx 1

=(1 2 >
dt+t+1x(t) ( +t), t>0,
z(0) = 1.

In this case, p(t) =1/(t+ 1) and g(t) = (1 + t)2. Then the integrating factor u is

t
w(t) =exp( | p(s)ds) =D =¢ 41,
0

Therefore, we get

t 1)3 c-1
(s+1)3ds+tc _ )T, O

z(?) 1 1 P

T i+ 1

Then, from the initial condition z(0) = 1, we obtain C = 1.
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EXAMPLE 1.5. (Bernoulli’s equation) Consider

dzx

= TpD)z() = g()z*(1). (1.17)

Here « is a real parameter satisfying o ¢ {0,1}. Letting x = zﬁ, we get
dx 1 a dz
—_ = Zl-a —
dt 1-—a dt

Then can be reduced to the following linear equation:

dz

2 = a)p)z(t) = (1 - a)g(®),

which can be solved by the method of integrating factors.

1.3. Important examples of ODEs
1.3.1. Autonomous ODEs.

DEFINITION 1.6. The equation

R T0) (1.18)
1s called autonomous if f is independent of t.

Any ODE can be rewritten as an autonomous ODE on a higher-dimensional space. Writing
y = (t,z(t)), (1.18) is equivalent to the autonomous ODE

W~ Py,

where F(y) = (f(tjﬂ(t)))

1.3.2. Exact equations. Let @ = I x R C R? with I C R being an open interval. Let
f,g € C°(Q). We look for a solution = € C*(I) of the differential equation

ft,z(t)) + g(t,m(t))%‘: =

satisfying the initial condition z(tp) = zo for some (tg,zo) € .
Consider the differential form

0 (1.19)

w= f(t,z)dt + g(t, z)dz.
DEFINITION 1.7. The differential form is called ezact if there exists F € C*(Q) such that

OF oF
=dF = —dt + —dz.
“ at o
The function F' is called a potential of w. In this case the differential equation (1.19)) is called an

exact equation.

THEOREM 1.8 (Implicit function theorem). Suppose that F(t,x) is continuously differentiable
in a neighborhood of (tg, xo) € RxR? and F(ty,z¢) = 0. Suppose that det OF/0x(ty,x¢) # 0. Then
there exist 6 > 0 and € > 0 such that for each t satisfying |t —to| < 0, there exists a unique T such
that |x — xo| < € for which F(t,xz) = 0. This correspondence defines a function x(t) continuously
differentiable on {|t — to| < 6} such that

F(t,z) =0 &z = xz(t).
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THEOREM 1.9. Suppose that w is an exact form with potential F' such that
oF
det 7(t0, .170) ;é 0.

or

Then the equation F(t,z) = F(to, o) implicitly defines a function x € C*(I) for some open interval
I containing to, which solves (1.19) with the initial condition x(tg) = xo. This solution is unique
on I.

PROOF. Suppose without loss of generality that F'(tg,xz) = 0. By the implicit function
theorem, there exist §,7 > 0 and = € C! (¢, — d,ty + &) such that
{(t,z) € Q: |t —to| <6, |z — 0| <, F(t,x) =0} ={(t,z(t)) € Q: |t —to| < I}
By differentiating the identity F'(t,z(t)) = 0, we get
d OF oF dx dz
= —F(t,z(t)) = —(t,z(t —(t,z(t) — = f(t,z2(2 t,x(t))—
0= SF(,2()) = T 2(0) + O (4a(0) S = 7(t,2(0) + 9(t,2(0) S,

and hence z(t) is a solution of the differential equation. Moreover, x(ty) = xo.
On the other hand, if z € C!(I) is a solution to (1.19) such that 2(ty) = =g, then

%F(t, 2() = 0 = F(t,2(t)) = F(to, 2(tg)) = 0 = 2(t) = z(t).
O

DEFINITION 1.10. Let f,g € C*(2). The differential form w = fdt + gdz is closed in Q if
of _ 0y

or ~ Ot
for all (t,z) € Q.

PROPOSITION 1.11. An ezact differential form w = fdt + gdz with a potential F € C* is closed
since by Schwarz’s theorem
O*F _ 9*F
otdr  Oxdt
for all (t,x) € Q. The converse is also true if Q is simply connected: If w is closed then w is exact
and is associated to a potential F € C2.

Closed forms always have a potential (at least locally).
ExAMPLE 1.12. Consider the equation

dr _

te? + 2 —t =
dt

0. (1.20)
Here, f(t,r) = tx® + x and g(t,x) = —t. Since

of _ 99 _

equation (@ 18 not ezxact.

ExAmPLE 1.13. The equation

‘4 1 t dz 0
r  x2dt
is exact with the potential function F given by
2t
F(t,x) =§+;+C, C eR.

The equation F(t,z) = 0 implicitly defines the solutions (locally for t # 0 and x # 0 such that
OF [0z(t,x) #£0).
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ExAMPLE 1.14. Consider the equation
dz

—2t2+2m—m?+w¢(1—gz:)a =0. (1.21)
Here, f(t,z) = —2t> + 2z — 2? and g(t,z) = t(1 — x). Since
of 9y
= =2-2 a5 =1-
oz "7 o -
equation m 18 not exact. However, multiplying by t gives
d
=263 + 2zt — ta® + t*(1 — x)d—f =0.
We see from this that f(t,x) = —2t3 + 2tz — tx? and g(t,z) = t*(1 — z). This leads to
of 09
= =2t—2t — =2t(1 -
aw xa at ( Z’),
. . .. Of Og . .
which satisfies the condition 9% = ot Thus, there must exist a function F(t,z) such that
oF oF
i flt,x) and e g(t, ). (1.22)

Integrating equations with respect to t and x and comparing the obtained formulas yields

1 . 1.
F(t,z) = 5t‘l —tPr+ §t2x2 +C,
for some constant C. Therefore, the differential equation has the general solution F'(t,x) =0
(locally for t #0 and x # 1).

1.3.3. Hamiltonian systems.

DEFINITION 1.15. Let M be a subset of R and let H : R? x M — R be a C* function.
The Hamiltonian system with Hamiltonian H is given by the first-order system of ODFEs

dp OH

a:—afq(p&), (1 23)
dg OH '
dat = 6710(13; Q)-

EXAMPLE 1.16. An important basic example of a Hamiltonian system is the simple harmonic
oscillator with Hamiltonian

1p2 1. .

where m and k are positive constants. Given a potential V, Hamiltonian systems of the form

1 _
H(p,q) = §pTM 'p+V(9g),

where M is symmetric positive definite matriz and T denotes the transpose, are widely used in
molecular and biological dynamsics.

We now introduce the notion of an invariant (also called first integral) for a system of ODEs.

DEFINITION 1.17. Let Q =1 x D, where I C R and D C R?. Consider
dz
— = f(t,z(¢t 1.24
Y f(t,a(0), (120
where f: Q — R We call F : D — R an invariant of (1.24) if F(z(t)) = Constant. A point
(t,z) € I x D is called a stationary point if f(t,z) = 0.
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ExaMPLE 1.18. Consider the system of Lotka-Volterra’s ODEs given by

dﬂ = U(U - 2)5
d¢ (1.25)
do _ (1—w)
at ¢ '

The system of ODEs is used to describe the dynamics of biological systems in which two
species interact, one as a predator and the other as prey.
Define

F(u,v) :=lnu—u+2lnv —w.
F(u,v) is an invariant of (1.25). In fact, by differentiating with respect to time, we have
d _1ldu du | 2dv  dv

gl =T G @ Tow @

du
—v—2—a+2(1—u)—a

=w-2)—ulv—-2)+21—u)+v(l—u)
=w-2)1-uw)+2-v)(1—-u)
=0.

For the system (1.25), (u,v) = (1,2) and (u,v) = (0,0) are two stationary points.

LEMMA 1.19. The Hamiltonian H is an invariant of the associated Hamiltonian system .

dv

ProOOF. We have

SHEO.a0) = 5L 00,000 F + G 00, a(0)
= = S5 0,000 G, (0. 4(0) + G (0(0), () 5 (00, a(0) =0,
Hence, H(p,q) is an invariant of the system of equations . |

ExaMPLE 1.20. Consider the system of equations

d—p——sin
a q,
dg _
a P

Here, H(p,q) = %p2 — cos q is the Hamiltonian of the above system, because

There is another equivalent expression for Hamiltonian systems. Let x = (p,q)" (note that

p,q € RY), and let
J= (-01 é) (1.26)

where I denotes the d x d identity matrix. Note that
J =t
We can rewrite the Hamiltonian system (1.23)) in the form
dz

T J 'VH(z). (1.27)
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BH)T_(

Here, we use the notation VH (z) := (%5

611""’8m2d

OH T For a vector function f : R?¢ —

R4 f(x) = (fi(z),..., f2a(z)), we define the Jacobian matrix f' of f by

of1

8%1
f(z) = :
0f24
8131

o0f1
0x2q

0f2d
Ox2q

DEFINITION 1.21 (Symplectic linear mapping). A matriz A € R?? x R?? (which is also a linear
mapping from R?? to R??) is called symplectic if AT JA = J.

DEFINITION 1.22 (Symplectic mapping). A differentiable map g : U — R?? is called symplec-
tic if the Jacobian matriz ¢'(p,q) is everywhere symplectic, i.e., if
9'0a0)"Ig'(p.q) = J.
Taking the transpose of both sides of the above equation, we also have
g wa)" T g (pg) =TT,
or equivalently,
ga)' T g (pg) =T "
THEOREM 1.23. If g is a symplectic mapping, then it preserves the Hamiltonian form of the
equation.
PROOF. Let z = (p,q)", y = g(p,q) " and let G(y) := H(x). By using the chain rule, we have
0 0
—H(z) = —G
SH(r) = ~-G(y)
0 0
= 2o <=
By ) 5 -y(2)
= 2 Gwe v, 0).
Ay ’
Then,

ox
=¢'"Jg'V,G(y)
= J_lvyG(y);

=g (p.g)J " <8H(w>> '

and therefore,
dy 4
=7 VGl)
O

DEFINITION 1.24 (Flow). We define the flow by ¢+(po, q0) = (p(t,po,0), q(t,p0, %)), ¢t : U —
R??¢ U c R?*?, and py and qo are the initial data at t = 0.

THEOREM 1.25 (Poincaré’s theorem). Suppose that H is twice differentiable. Then the flow
¢¢ is a symplectic transformation whenever it is defined.

Proor. Let yo = (po, ¢o)- Note that

d o
&(TZ);) = J 'V?H(¢¢(yo))

9%
Yo '
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() ()

dt \ \ 9yo Yo
_ % i % % T % !
_<6y0> J(8y0>+<8y0> J(&Uo)
= <a¢t>T VZHJ TJ (8@> + (%)T JJ'V?H <a¢t>

Yo Oyo Yo o
=0,

Then we have

where V2H is the Hessian matrix of H(p, ) (and is symmetric). Moreover, since d¢;/0yo at t = 0
is the identity map, the identity
(20) ' (%)=
9Yo 9Yo

is satisfied for all ¢ and all (po,qo) as long as the solution remains in the domain of definition of
H. O

The following result shows that the symplecticity of the flow is a characteristic property of the
Hamiltonian system.

THEOREM 1.26. Let f : U — R?? be continuously differentiable. Then ((IT‘;’;’ = f(x) is locally

Hamiltonian if and only if ¢.(x) is symplectic for all x € U and for all sufficiently small t.

PRroOOF. The necessity follows from Theorem [[.25] We therefore suppose that ¢, is symplectic,
and we have to prove the local existence of a Hamiltonian H such that f(z) = J !V H(s). Using
the fact that g%é is a solution of

d
= = (@),
we obtain
() /(8) - () e ()
— =] J|= == J+J — ) =0.
° (( o) (52)) = (52) eI+ (5
Putting ¢ = 0, it follows from J = —J' that Jf'(yy) is a symmetric matrix for all yo. The

integrability lemma below shows that Jf(y) can be written as the gradient of a function H. O

LEMMA 1.27 (Integrability lemma). Let D C R?? be an open set and let g : D — R?? be of
class Ct. Suppose that the Jacobian g'(y) is symmetric for all y € D. Then, for every yo € D,
there ezists a neighborhood of yo and a function H(y) such that

9(y) = VH(y)
on this neighborhood.

PRrROOF. Suppose that yo = 0, and consider a ball around gy, which is contained in D. On this
ball we define

1
H(y) = / y'g(ty)dt.
0
Differentiating with respect to y;, and using the symmetry assumption

09i _ gy,
Oy Oy;
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yields
OH ! )
2%;=A<%uw+yT&%uwww
La
=/ g(tgk(ty))dtzgk(y),
0

which proves that

VH =g.
O
1.3.4. Gradient systems. Finally, consider the gradient systems.
DEFINITION 1.28. Gradient systems are differential equations that have the form
dzx
— =-VV 1.28
= (@), (1.25)

with V' (called the potential function) being a real-valued function.

In order to guarantee that the right-hand side of (|1.28) is a continuously differentiable function
of z, one requires that V is twice-continuously differentiable.
On solutions to ([1.28) one has

d dz 9
SV @(t) = VV(a(t) - S = - IVV (@)
A differential equation
dz
5 = f@ = (A1), fa(2)) (1.29)
is a gradient system if and only if there exists a scalar-valued function V(z) so that
ov ov

~(Fi@)s-o Jal@)) = (G-@), s 5 @)
In dimension d = 1, one can always choose an antiderivative V' of — f so that
av
%(a:) = —f(=).
Equation (|1.29) is always a gradient system in dimension one.

In dimension two, a system
diI,'l

— = fi(z1, 32),
dt (1.30)
02 a(ar. )
dt — J2\+L1,42),
is a gradient system if and only if there is a potential V (z1,x2) so that
ov oV
~Z — _ = — . 1.31
axl fl ) 6.’,1]'2 fz ( )
A necessary and sufficient condition for solvability of (1.31) is the equality of mixed partials,
of _ of:
sz Bwl '

In the general case, the necessary and sufficient condition is again equality of mixed partials
expressed as
ofi _ 0f;
633]' B 61:,
LEmMA 1.29. The Hamiltonian system is a gradient system if and only if the function
H is harmonic.

forall 1<i<j<d.
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PRrROOF. Suppose that H is harmonic, i.e.,
0°H 0°H
op? * 0¢?
Then the Jacobian of J 'V H given by

_9*H _8%H

-1 1 Opdq Oq2

(J\VH) = | g T ow
Op? Opdq

=0.

is symmetric. The integrability lemma shows that there exists V such that J 'VH = VV and
therefore, the Hamiltonian system is a gradient system.
Suppose that the Hamiltonian system is a gradient system. Then, there exists V' such that

ov_on . ov_ on
dp  Oq dq¢  Op’
Therefore,
0*’H O°H
AH = = (.
dp? + g2 0

EXAMPLE 1.30. The Hamiltonian system with H(p,q) = p*> — ¢° is a gradient system.

1.3.5. Hamilton-Jacobi equation. The Hamilton-Jacobi equation is used to generate
particular symplectic transformations that simplify Hamiltonian systems.
Let d =1 and let 1
H(p,q) = 5p° + V(9)-
Consider the Hamiltonian-Jacobi equation
Ju Ju

4 H(=,9)=0, geR,¢t>0,
o T (6q q) q

A smooth function u(P,q,t) satisfying (1.32) can be used to map the variables (p,q) to a set of
variables (P, Q) that are constants over time. Let p = %, and define Q = g—}é. Then, (p,q) —
q

(P, Q) is symplectic. Moreover, in the new coordinates (P, (), the Hamiltonian system (|1.23))
reduces to

(1.32)

P
Q . (1.33)
de

and becomes trivial to solve.

1.4. Problems

ProBLEM 1.31 (Exact equations). Consider the equation F(t,z) = 0, where F € C*(R?,R).
Suppose z(t) solves this equation.

(i) Show that x(t) satisfies

ot,) % + £(t,2) =0, (1.349)
where OF(t,z) OF (1, z)
t,x _ t,x
g(t,iL‘) - T and f(t,l‘) - ot .
(ii) Show that we have
dg(t,x) _ Of(t,x)
o~ oz

and deduce that is exact.
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(iii) Conwversely, show that if a first-order equation as is exact, then there is a corre-
sponding function F as above. Find an explicit formula for F in terms of f and g. Is F
uniquely determined by f and g ¢

(iv) Show that

d
(2tm+3t+5)d—f+3t2+t+xz+3m:0

is exact. Find F and find the solution.

PrOBLEM 1.32 (Method of integrating factor). Consider

g(t,;zr)ili—ij + f(t,z) = 0.

(i) Prove that u(t,x) is an integrating factor if
dz

u(t, )g(t, z) 7 +u(t,z)f(t,z) =0

18 exact.

(ii) Consider
dz dz

t—+3t—2—=0
dt * dt

and look for an integrating factor p depending only on t. Solve the equation.

ProBLEM 1.33. (i) Prove that a smooth differential map g : R? — R? is symplectic if

and only if det ¢' = 1.
(ii) Find a counterezample to the statement in (i) in R*? for d > 1.

PROBLEM 1.34. Consider the system of linear equations

dX

— = AX

= AX(1),
X(0) = Xo,

where X, Xo, and A are d x d real matrices.
(i) Prove that if A is a skew-symmetric matriz then X T X is an invariant of the system.
(ii) Prowve that if X is orthogonal then the solution X (t) is orthogonal for all t > 0.

PrOBLEM 1.35 (Transport theorem). Let ¢; denote the flow of the system dz/dt = f(z),
z € R, and let Q be a bounded domain in R?. Define

V(t) = / dz; ...dzg,
¢:(2)

and recall that the divergence of a vector field f = (fi,...,fs)" is

d
ofi
V-f= .
=1
(i) Use Liouville’s theorem and the change of variables formula for multiple integrals to prove
that iV
- = (V- fdz, ...dzy,.
dt s

(ii) Prove that the flow of a vector field whose divergence is everywhere negative contracts

volume.
(iii) Suppose that g: R x R? — R is continuously differentiable. Prove the transport theorem

d 0
—/ g(t,a:)da:l...dmd:/ {g+v-(gf)} dzy ...dzg.



CHAPTER 2

Existence, uniqueness, and regularity in the Lipschitz case

2.1. Banach fixed point theorem

DEFINITION 2.1 (Contraction). Let (X,d) be a metric space. A mapping F : X — X is a
contraction if there exists 0 < A < 1 such that

d(F(z),F(y)) < Md(z,y)
forall xz,y € X.

THEOREM 2.2 (Banach fixed point theorem). Let (X,d) be a complete metric space (i.e.,
every Cauchy sequence of elements of X is convergent) and let F : X — X be a contraction. Then
there exists a unique © € X such that

F(z) = .

2.2. Gronwall’s lemma

LEMMA 2.3 (Gronwall’s lemma). Let I = [0,T] and let ¢ € CO°(I). If there ewist two
constants a, B € R, B > 0, such that

o) <a+ ,B/Ot ¢(s)ds forallt eI, (2.1)

then
o(t) < aePt foralltel.

PROOF. Let ¢ : I — R be the function
o) =a+5 [ ofe)as.
Since ¢ € C°, we conclude that ¢ € C', and
i—f = Bo(t) forallt € I.

By using (2.1)), it follows that

Let 9(t) := exp(—pt)(t) for t € I. Then

dyp _a,—Bt —5td§0
a e ey
_ do
=e P —Bo(t)+ == ) <0.
e < Be(t) + dt) <0

Since 1(0) = ¢(0) = a, we have ¢(t) < a for ¢ € I, and hence
p(t) < ae,
which implies that ¢(t) < ¢(t) < ae’t for all t € I. O

19
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2.3. Cauchy-Lipschitz theorem
Let I = [0, 77, let d be a positive integer, and let f : I x R? — R?. Suppose that f € C°(I xR9).

DEFINITION 2.4 (Lipschitz condition). If there exists a constant Cy > 0 such that, for any
z1,79 € RY and any t € I, the following inequality holds:

|[f(t,z1) — f(t,22)| < Cplwy — 22, (2.2)

then we say that f satisfies a Lipschitz condition on I. The constant C¢ is called the Lipschitz
constant for f.

THEOREM 2.5 (Cauchy-Lipschitz theorem). Consider the initial value problem

dz
4 = [to), telT), (2.3)
(0) =w, w0 € R,

If f € C°(I xR?) satisfies the Lipschitz condition on [0, T, then there exists a unique solution
z € CH(I) to ([2.3) on [0,T].
Proor. By (2.3), we have
t
z(t) =z +/ f(s,z(s))ds, Vte[0,T].
0

Define the functional F : C°([0, T]; R?) — C°([0,T]; RY) by
t
F) =+ [ f(s.y()ds
0

For y € C°([0, T]; RY), defined the norm of y by

llyll := sup {ly(t)]e= "}, (2.4)
t€[0,T

where Cy is the Lipschitz constant for f. It is easy to prove that (2.4) is equivalent to the usual

norm sup |y(t)| and hence, C°([0,T]; R?) equipped with lj is complete.
t€[0,T]

With (2.4), we compute

1F] = Flyalll = sup 1Fln)(r) = Flya)(0)le

< sup Ot / F(5,91(5)) — (5, 2(s))]ds

te[0,T)

< sup e 0 [ |yi(s) — y2(s)|ds
0
t

< sup e-Cric, / eC19e=C15 |y (5) — ya(s)|ds
0

t
< sup {eCrtC; / eCrds} |y — yal
0

< (=" )llyr — el

By Banach fixed point theorem in a complete metric space (Theorem , there exists a unique
y € CO([0, T); RY) such that F(y) =y. The Picard iteration

y ) = Fly™]

is a Cauchy sequence and converges to the unique fixed point y. Therefore, there exists a unique
solution to (2.3]). O
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REMARK 2.6. Theorem holds true if R? is replaced with a Banach space (a complete
normed vector space). The proof is the same.

If f is continuous, there is no guarantee that the initial value problem (2.3]) possesses a unique
solution.

EXAMPLE 2.7. Consider
dj
dt

Then there are two solutions to given by x1(t) = % and z3(t) = 0.

=23, z(0)=0. (2.5)

THEOREM 2.8 (Cauchy-Peano existence theorem). If f is continuous, then (2.3) admits a
solution x(t) that is, at least, defined for small t.

This theorem can be proved by using the Arzela-Ascoli theorem.

DEFINITION 2.9 (Equicontinuity). A family of functions F is said to be equicontinuous on
[a, b] if for any given € > 0, there exists 6 > 0 such that

|f(t) = f(s)| <e
whenever |t — s| < & for every function f € F and t,s € [a,b).

DEFINITION 2.10 (Uniform boundedness). A family of continuous functions F on [a,b] is
uniformly bounded if there exists a positive number M such that |f(t)| < M for every function
fE€F andt € [a,b].

THEOREM 2.11 (Arzela-Ascoli). Suppose that the sequence of functions {f,(t)}nen on [a,b]
is uniformly bounded and equicontinuous, then there exists a subsequence {fyn, (t)}ren that is uni-
formly convergent on [a,b].

ExXAMPLE 2.12. Consider

dx
T =2%, z(0) =zy #0.
By separation of variables, we obtain
dz
ol dt.
Thus,
1 d
T x
and hence,
oL
- t+C
Since x(0) = xg,
Zo
t) = .
Jf( ) 1-— Z’[)t

If kg > 0, z(t) blows up when t — ﬁ from below. If xg < 0, the singularity is in the
past(t < 0). The only solution defined for all positive and negative t is the constant solution
z(t) = 0, corresponding to xo = 0.

REMARK 2.13 (Local existence and uniqueness theorem). If f(t,x) satisfies a Lipschitz
condition in a bounded domain, then a unique solution exists in a limited region.

THEOREM 2.14. Let xq € R. Assume that f is continuous and satisfies the Lipschitz condition
in the closed domain K := {|x — zo| < k} and t € [0,T],

|f(t,$1) - f(t,$2)| S Cf|$1 _:I:2|7 fOT all T,y € Kat € [O)T])
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then the equation

i—f = f(t,xz), te€]0,T],
z(0) = xo,

has a unique solution in t € [0, min{T, £ }], where

M:=  sup |f(t2)].
z€K,te[0,T)

EXAMPLE 2.15. The initial value problem

dz

— =1+2% t 1
i +2°, tel0,1],
z(0) =0,

in the region {(z,t) : |z| < 1,0 <t <1} has a unique solution for 0 <t <1/2.
Now we turn to the continuity of the solution of ([2.3)).

THEOREM 2.16 (Continuity with respect to the initial data). Suppose that f satisfies
the Lipschitz condition (2.4). Let x1(t) and z2(t) be the solutions of (2.3) corresponding to the
initial data x1(0) and x5(0), respectively. Then we have

|21 (t) — 22()] < €721 (0) — 22(0)|  for all t € [0,T). (2.6)

PROOF. Since

%Iﬂfl(t) —23()]” = 2(f(t,21(t)) — f(t,22(1))) (21 () — z2(2))

< 2C¢l@i(t) — 22 (), te[0,T],

we have

d

(im0 = st <o (.1

Integrating from 0 to ¢ gives
21 () — 2o (1) e < J21(0) — 22(0)
or equivalently,
j21(t) = 22(t)] < [21(0) — 22(0)|e",

which yields the desired inequality. |

Next we discuss the differentiability of the solution of (2.3) with respect to the initial data.
Formally, taking the derivative of the solution z of (2.3) with respect to the initial data, we
obtain that d0z(t)/0zg is the solution of the linear equation

d oxz(t) Of 0x(t)

at dre %(tam(t)) Bz’ 08
Ox(t) _; '
6$0 '

THEOREM 2.17. Suppose that f is of class C*. Then zq — z(t) is differentiable and dxz(t)/dx
is the unique solution of the linear equation (@
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PrOOF. Let Ax(t,z9,h) := z(t,zo + h) — x(t,z0) be the difference quotient. By using the
mean-value theorem, we have

t
Bt 0,) = bt [ (F(s.a(s, 20+ 1) = (5,2(s,0)))ds
0
t
=h +/ (f(s,x(s,m0) + Ax(s, o, h)) — f(s,z(s,20)))ds
0
taf
=h+ / —(s,z(s,x0) + TAz)Azds,
o Oz
where 7 = 7(s,2z9,h) € [0,1]. Since there exists a positive constant M such that |%| < M, it
holds that
t
1Az < |h|+M/ Az (s, 2o, h)|ds,
0
By Gronwall’s lemma (Lemma[2.3)),
|Aa(t, @0, h)] < [HleMT.
Let v(t) be the unique solution of (2.8). We compute

A'T(t,hQ?o,h) —’U(t) :/0 (f(S,.’E(S,Q?O +h)})L_ f(s,:c(s,mo)) _ gi(S,fE(S,mo))U(S)> ds

t
= [ AR 100 ot )+ 720,10 2 3,000,200

# [ st (B2 o) s

By using the uniform continuity of %, we have that for any e > 0 there exists hg > 0 such that,
for any |h| < hg, the first term on the right-hand side is of order O(e). Then, again by Gronwall’s
lemma, there exists a positive constant M’ such that

|A:U(t,ac0,h) o < MeeMT,
h
for |h| small enough, which proves that zo — z(¢) is differentiable and its derivative is given by
Oz
ory
where v is the solution of (2.8). O

2.4, Stability
THEOREM 2.18 (Strong continuity theorem). Let

dz dy
3 = ) and o =g(t,y)

be two ODEs on [0,T]. If f satisfies the Lipschitz condition on [0,T] and there exists € > 0
such that, for any x € R%, t € [0, T,

|f(t,$) - g(t7$)| S €,
then the following inequality holds:

j2(t) — y(t)| < |2(0) — y(0)[e“r* + Cif<ecft ~1), telo,T].

REMARK 2.19. The function g may not satisfy a Lipschitz condition.
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PRrRoOOF. Since

o ‘
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|
<
—
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1)) = fty@)] 2(t) —y @) + 2| f (@) — gt y(@)] [2(2) — y(B)]

<20 |z (t) — y()° + 2€la(t) — y(t)]
< 207 | (t) — y(B)* + 2e/]a(t) — y(t)]>.
If we denote by h(t) := |z(t) — y(t)|?, then
% < 2C0¢h + 2¢v/h.

Consider the following initial value problem:

{ ((:}T,Ltt = 20fu+26\/a,
u

(0) = 2(0) — y(0)|*.

Since Cy > 0, u(0) > 0, it follows that % is always non-negative when ¢t > 0, and hence u is

increasing.
Let z(t) := +/u(t) and suppose that h(0) > 0. Then (2.9) is equivalent to

(2.9)

{‘;j—ofz:e, te 0,7,

This gives the solution of (2.4)):
u(t) = 2(t) = Vu(0)eCrt + —(efrt — 1).
Cy

Moreover,

%(h(t) —u(t)) < 2C¢(h(t) = u(t)) + 2¢(Vh(t) = Vu(t))

h(t) — u(t)
=2C¢(h(t) —u(t)) + 2e —F———.
r(h(t) —u(t)) i) + al)
Suppose that there exists ¢; such that h(t1) > u(t1). Let to :=sup{t: 0 <t <t#1,h(t) <u(t)}. By
the continuity of h and u, we must have h(tg) = u(to). Since u(tg) > 0, we obtain for to < ¢ < ¢,
that

%(h(t) —u(t)) < 205 (h(t) —u(t)) + 26%
= (2C; + ie(o))(h(t) — u(t)-
Hence,
d

" ((h(t) — u(t) exp(~(2C; + ff(o))t)> <o.

Integrating from to to t gives h(t) < u(t) for to < ¢ < t1, which is a contradiction to h(t1) > u(t1).
Therefore, it follows that for all ¢ € [0, 77,

d 2¢
T ((h(t) —u(t)) exp(—(2Cy + m)t)) <0.
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By integrating now the last inequality from 0 to ¢, we obtain
2¢
(h(t) — u(t)) exp(—(2Cy + m)t) < 7(0) — u(0).

Since u(0) = h(0), we have h(t) < u(t) for ¢t € [0,T], and hence

[2(t) — y(O)] < Vu()
= \/meOft + L(ecft —
Cy
= h(O)eOft + i(eCft _ 1)
Cy
Therefore, the desired estimate
lz(t) —y(t)| < [=(0) — y(0)|ecft + Ci(eCft ~1)

f

holds.
If h(0) = 0, then, instead of (2.9)), we consider the following equation:

dditn =2Csun + 26y/u,, te€[0,T],
1 (2.10)
un(0) = ’
which, analogously to , has the explicit solution
() = | ——eCrt 4 S (eCrt _ 1) ’
" v Cr
We only need to prove that for each n € N,

h(t) < up(t) (2.11)

holds for ¢ € [0,7]. Then by letting n — +00, u,, = u, where u is the solution to , and hence
h(t) < u(t).

Inequality can be proved by contradiction. Suppose that there exists ¢; > 0 such that
h(t1) > un(t1). Let tg be the largest ¢ in the interval 0 < ¢ < #; such that h(ty) < u,(tg). By the
continuity of h(t) and u,(t), we assert that

h(to) = un(to) > 0,

and h(t) > un(t) on (to, to + €), a small right-neighborhood of ¢y. But this is impossible according
to the discussion in the case where h(0) > 0 by replacing 0 by t,. The proof of the theorem is now
complete. O

2.5. Regularity
THEOREM 2.20. If f € C™ for n > 0, then the solution z of (2.3)) is of class C™*L.

PrOOF. The proof is by induction, the case n = 0 being clear. If f € C™ then z is at least of
class C™, by the inductive assumption. Then the function t — f(t,z(t)) = dz(t)/dt is also of class
C". The function z(t) is then of class C"*!. O

REMARK 2.21. If f is a real analytic function, then it can be proved that x is also real analytic.
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2.6. Problems
PROBLEM 2.22 (Generalized Gronwall’s inequality). Suppose ¢(t) satisfies

/ B(s)p(s)ds for allt € [0,T],

with a(t) € R and B(t) >
(i) Prove that

/ ef B(r)dr g,

(ii) Prove that, if in addition a( ) < a(t) for s <t, then

o(t) < a(t)efo s for all t € [0,T).

PROBLEM 2.23. Let d = 1 and let f(t,z) be a continuous function satisfying the Lipschitz
condition . Let M := sup,cp sefo,) | (8, 2)|. Let x be the solution to and let £(™ be the
nth term in its Picard’s approrimation. Prove that

MC?
z(t) — 2™ (¢ f_yn+l ort € [0,T].
(1) O] < Gttt forte 0.7]

PROBLEM 2.24. State and prove a uniqueness theorem for the differential equation
d’z dz
= f(t -
az =TT )

dx
z(0) = zo, 5

t [0, 7],

(0) = x5, o,z € R.
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Linear systems

3.1. Expomnential of a matrix
Let My(C) be the vector space of d x d matrices with entries in C. Let GL4(C) C My4(C) be
the group of invertible matrices.
DEFINITION 3.1 (Matrix norm). The matriz norm of A € My(C) is
[[4]] = max [Ay].
lyl=1

LEMMA 3.2. The matrix norm has the following properties:
(i) Ayl < |Allly| for all y € C%;

(i) |4+ Bl < [|All +||B| for all A, B € M4(C);

(iii) [|AB[| < [|A|l[|B]] for all A, B € Mg(C).

LeMMA 3.3 (Jordan-Chevalley decomposition). Let A € My(C). Then there ezists C €
GL4(C) such that A has a unique decomposition

C~'AC =D+ N,
where D is diagonal, N is nilpotent (i.e., N®=0), and ND = DN.
We now define the exponential of a matrix.
DEFINITION 3.4. For a matriz A € M4(C), we define
A Ar
=2
n>0
We list some properties of the exponential of a matrix.

LEMMA 3.5. The exponential of a matriz has the following properties:
(i) (exponential of the sum) Let A, B € My(C). If AB = BA, then eAT8 = e4eB;
(ii) (conjugation and exponentiation) Let A, B € M4(C) and C € GL4(C) be such that A =
C 'BC. Then we have

et =0 teBC.
In fact,
n —1 n —1pn
P N
n>0 n>0 n>0
(iii) (exzponential of a diagonalizable matriz) If A is a diagonalizable matriz of the form
AL 0
A=C! C,
0 Ad
where A1,..., g € C and C € GL4(C), then
e 0
A=t C:
0 et
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iv) (exponential of a block matriz) Let A; € My, (C) for j =1,...,p. Let A be a block matriz
J J

of the form
Ay 0
A=
0 A,
Then
e 0
et = ;
0 edr
(v) (derivative) Let A € My(C). We have
d

—ett = At = et A
dt

In addition, to the matrix exponential we will also need its inverse. That is, given a matrix A
we want to find a matrix B such that
A=eb.
In this case, we will call B = log A a matrix logarithm of A. Note that B is not unique.

LEMMA 3.6. A matriz A has a logarithm if and only if det A # 0. Moreover, if A is real and
all real eigenvalues are positive, then there is a real logarithm.

3.2. Linear systems with constant coefficients

Let A € My(C)) be independent of t. Let f € C°([0,T]). Consider the following linear ODE
with constant coefficients:

dx
o = Az(t) + (1), t€[0,T), (3.1)
z(0) = 29 € R4,

Since
|A(z —y)| <||All|lz —y| for all z,y € C7,
by the Cauchy-Lipschitz theorem there exists a unique solution z to (3.1). If f = 0, then the
system of equations is an autonomous system.
Ifd=1 (i.e., A=a € C), then by the method of integrating factors,

z(t) = ez + / t e®t=%) f(s)ds. (3.2)
0

In the general case (d > 1), if f =0, then, from Lemma[3.5] (v), it follows that the solution
of (3.1) is (t) = et4uy.
For an arbitrary f, we have
d
Lo tha) = e A7),
and hence the solution z(t) of (3.1)) is given by

t
x(t) = e +/ e Af(s)ds. (3.3)

0
Observe that the solution of (3.1) has been reduced in ((3.3)) to matrix calculations and integration.

EXAMPLE 3.7. An important class of linear system with constant coefficients are those that
can be converted into diagonal form. Suppose that we are given a system dz/dt = Az such that
the eigenvalues \; of A are distinct. Then we can find an invertible matriz C such that C~*AC
is diagonal. If we choose a set of coordinates y = C 'z, then in the new coordinates the equation
becomes

dy

T C~'ACy = Dy, y(0) = yo. (3.4)
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By construction, D in s diagonal and

y(t) = Yo-
0 et

ExampLE 3.8. Consider with d = 2, A = <g (1)> Then since A? = 0 and hence

etd = <1 t>, the solution x(t) is given by

0 1
mn:@ D%+Axét;ﬁﬂ@@

EXAMPLE 3.9. Consider withd =2, A= <_Ow (6)> for some w € R, w# 0. Then

1A coswt  sinwt
et = . .
—sinwt coswt

This expression for et can be verified by differentiation:

d —wsinwt t t in wt
@ e _ ( w sinw W COs W > _ < 0 w) ( cosw sin w > — AetA

dt —wcoswt —wsinwt —w 0 —sinwt coswt

The solution x(t) to is then given by
. t .
o(t) = ( cos wt smwt> 20 +/ ( cosw(t —s) sinw(t — s)> F(s) ds.
0

—sinwt coswt —sinw(t —s) cosw(t—s)
3.3. Linear system with non-constant real coefficients

3.3.1. The homogeneous case. Let M;(R) be the vector space of d x d matrices with entries
in R.

PRrOPOSITION 3.10. Let A :[0,T] — M4(R) be continuous. The set S of solutions of dx/dt =

A(t)x defined by
S = {x € CH([0,T);RY) : z satisfies ((% = A(t)a:} (3.5)

is a linear subspace of C*([0,T]; RY) of dimension d.

PROOF. If z,y € S, then, for any , € R, ax + By € C'([0,7]; R?) is also a solution. Then
S is a linear subspace of C'([0,T]; R?). We show that the dimension of S is d. Let the mapping
F : S — R? be defined by
Flz] = z(to) (3.6)
for some to € [0,T]. Then F is linear: Flaz + By] = az(ty) + By(to) = aF[z] + pF[y]. F
is injective, i.e., Flz] = 0 implies that z = 0. In fact, = solves 4¢ = A(t)z(t) with the initial
condition z(tg) = 0. The solution to this problem is unique (by the Cauchy-Lipschitz theorem)
and 0 is a solution. Then x = 0. Finally, F is surjective because for any zy € R? the equation

dx
$(t0) = Zo,
has a solution x € C*([0,T]; RY).
O

PROPOSITION 3.11. Let S be defined by andlet x1,...,xq € S. The following statements
are equivalent:
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(i) {z1,...,xq} is a basis of S;
(i) det[zi(t),...,zq(t)] #0 for allt €[0,T].
(iii) det[z1(tg),-.-,za(to)] # O for some tq € [0,T].
Here, det denotes the determinant of a matriz and [zq,...,x4] is the d X d matriz with columns
z1,...,xq € R

Proor. It is clear that (i) is equivalent to (ii). To see that (i) implies (iii), let {z1,...,24} be
a basis of S. Then {F[z1],..., F[z4]} forms a basis of R?, where the isomorphism F relative to tg
is defined by (3.6). Next let us check that (iii) implies (i). Let to be such that (iii) holds and let
F : S — R? be the isomorphism relative to t, defined by (3.6). Then the inverse F~!: R? — S is
also an isomorphism. It follows that o1 = F~1[x1(ty)],...,xq = F~'[z4(to)] is a basis of S. O

DEFINITION 3.12 (Fundamental matrix). If one of the three equivalent conditions of Propo-
sition [3.11] holds, then the functions 1, ..., x4 are called a fundamental system of solutions of
the differential equation % = A(t)z. The matriz X = [x1,...,24] is then called a fundamental
matriz of the equation.

We now introduce the Wronskian determinant.

DEFINITION 3.13 (Wronskian determinant). Let z1,...,zq4 € S. The Wronskian determi-
nant w € CL([0,T];R) of x1,...,xq is defined by

U)(t) = det[ml (t), A ,LL'd(t)]
THEOREM 3.14. Let zy,...,24 € S and let w € C1([0,T); R) be the Wronskian determinant of

Z1,...,Zq4. Then w solves the differential equation
d
di: = (trA(t))w fort € [0,T]. (3.8)

Here, tr denotes the trace of a matriz.

Proovr. If z1,...,z4 are linearly dependent, then w = 0 and trivially holds. Suppose
that z1,...,z4 are linearly independent, i.e., w(t) # 0 for all ¢ € [0,T7].

Let X : [0,T] = Mg4(R) be the fundamental matrix having as columns the solutions z, ..., x4,
i.e.,

X(t) = (mij(t))i,j:1w~7d7 te [OaT]a

where z; = (z1,...,24) " for j=1,...,d.

Let z; be the solution of

de

== Atz (1),
== A1)
zj(to) = €;,
where {e;};—1, ¢ is the standard unit orthonormal basis in R,
Then {z1,...,24} is a basis of the space of solutions to dz/dt = Az. Moreover, there exists

C € GL4(R?) such that
X(@t)=2Z@t)C, te]l0,T],
where Z = [z1, ..., z4)- Since a fundamental matrix is uniquely determined by an initial condition,
C = Z(to) " X(to).
Let v(t) := det Z(t). Then v solves

dv
E(to) = t’f‘A(to).

In fact, by the definition of the determinant of a matrix, we have

dvt—d 1Sgn"d t) = 1Sgn"dd t t
a( )= it Z(— ) gzia(i)( ) = Z(— ) ;%Zju(j)( )Hzia(i)( )s

o€Sy oESy iZ£j
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where S is the set of all permutations of the d elements {1,2,...,d} and sgno is the signature of
the permutation o. Note that

H Zig(s)(to) =0  unless o = identity,

i#j
and
dZ“
(1) = (A(to)2(t0));
t
= Zajh to Zhj to Zajh to 5}” t(]
= ajj(to)-
Therefore,

dv d
) = D osi) = raC),

Now the general result follows from the differentiation of the following identity:
w=det X = det(ZC) = (det C) det Z = (det C)v.

In fact, we have

dw dv
E(to) = (det C)E(to) = (det C)trA(to).
Therefore,
d
= (to) = trA(to)w(to),
since v(tg) = 1. O

REMARK 3.15. Let to € [0,T]. From (3.§), it follows that
w(t) = w(ty)elo OB for t € [0, 7). (3.9)

This is known as Abel’s identity or Liouville’s formula. Identity (@ shows that it suffices
to check that the determinant of the fundamental matriz is nonzero for one ty € [0,T].

3.3.2. The inhomogeneous case. Consider the inhomogeneous linear differential equation
of the form

dx
{dt Aty + £(8), (3.10)
where A(t) € C°([0,T); M4(R)) and f € C°([0,T]; RY).

Let X be a fundamental matrix for the homogeneous equation dz(t)/dt = A(t)x(t), i.e.,

dX
e AX and detX #0 foralltel0,T].
Then, any solution x to the homogeneous equation is of the form

z(t) = X(t)e, te[0,T], (3.11)

for some (column) vector ¢ € RY.
By using the method of integrating factors, we look for a solution to (3.10)) of the form (3.11])
with ¢ € C1([0,T]; RY). In this case, we have

dx dX dc dc dc
— = +X— =AXc X— =Ar+ X —
dt dt dt + dt + dt’
which implies X % = f(t). Since X is invertible, we obtain
de
XH(@).

dt
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Therefore, we find
t
o) = ot [ X(s) (o),
0
for some ¢y € RY.

THEOREM 3.16. Let X be a fundamental matriz for the homogeneous equation dz/dt = Azx.
Then, for all ¢y € R?, the function

t
z(t) = X(t)(co + / X(s)7" f(s)ds) (3.12)
0
is a solution to . Moreover, any solution to is of the form for some co € R%.

PROOF. The first statement is already proved. To prove the second statement, let zs be a

solution to (3.10)). Since

d
a(l’z —z(t)) = A(z2 — ),

where z is given by (3.12), we get x5 — x = X¢; for some ¢; € R? and the claim follows. O
Formula (3.12)) is called Duhamel’s formula.

3.4. Second order linear equations
Let d = 1 and consider the following second order ODE:

Pz dz
22— . —
dt2 f( 7m7 dt)’

for a given scalar function f. The above ODE is linear if f is linear in z and dz/dt, namely,

dx dzr

f(taxa E) = g(t) _p(t)a - q(t)l‘,

where g, p, g are (scalar) functions of ¢ but do not depend on z. Then the ODE becomes

d’z dx
— t)— t)x = g(t). 3.13
() S+ a)e = g() (3.13)
The initial value problem consists of (3.13) together with a pair of initial conditions

dx

z(to) = o, E(to) =z, To,zH € R. (3.14)

The second order ODE ([3.13) is called homogeneous if ¢ = 0 and inhomogeneous otherwise.
If p(t) and q(t) are constant, then (3.13) is called linear ODE with constant coefficients.
Suppose that

p,q € C°([0,T]). (3.15)

If the condition (3.15]) fails, then the points at which either p or ¢ fail to be continuous are called
singular points. The following are important examples:

1
Bessel’s equation: p(t) = e q(t) =1- t%’ (at t = 0);

2t n(n +1)
t) = ———=
T =

THEOREM 3.17. Suppose that p,q,g € C°([0,T],RY). Then there exists a unique solution z(t)

on [0,T] to with the initial conditions .

Legendre’s equation: p(t) = neN (att==xl1).
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3.4.1. Structure of the general solution. Here we discuss the structure of the general
solution to the second order ODE (|3.13]).

First we consider the homogeneous case. We need the following results regarding the Wronskian
determinant.

DEFINITION 3.18. Two functions x; and x5 on [0,T] are called linearly independent if
neither of them is a multiple of the other. Otherwise, they are called linearly dependent.

PROPOSITION 3.19. Let w be the Wronskian determinant given by

d d T @
w(t) == ml(t)%(t)—@(t)%(t) = det <dx1 m).
dt dt

If w(t) is not zero at some to € [0,T], then 1 and x2 are linearly independent.

PrOOF. Let us prove that if z; and x5 are linearly dependent, then w(t) = 0 for all ¢ € [0, T.
Suppose that z; and zo are linearly dependent. Then, with respect to (aj,as), the following
system:

1T + Qs = 0,
dxy dxs 0 for all ¢t € [0, T,
“a g =
has a non-trivial solution. Therefore,

I T2
w(t) =det | dzy dzy | =0, foralltel0,T].
dt dt
This completes the proof. |

ProOPOSITION 3.20. If 21 and x5 solve on [0,T] then w(t) is either identically zero or
not equal to zero at any point of [0,T].

Proor. We have
dzxg dzl‘l
will) =@ — T

We also have, by the assumption that z1, 25 solve (3.13), that
dz.fL‘Z' d:L’Z

= —p(t
a =~ PO

—q(t)z;, i=1,2.

So we get

dw drs dxy _
o P(t)(mlﬂ EQQ) = —p(t)w(t).

Therefore w(t) = w(tg)e Jio® (s)ds, which is either identically zero or never vanishes depending on

Now we discuss the structure of the general solution to the homogeneous system.

THEOREM 3.21. Suppose that x1 and xo solve the equation with g = 0. Suppose also
that x1 and x5 are linearly independent. Then the general solution is of the form cix1 + coxs,
where ¢; and cy are constant coefficients.

PROOF. Let & be an arbitrary solution with the initial condition Z(to) = Zo, dZ/dt(ty) = Zj,.
Consider the system of equations for (1, ¢2)

Cl.l'l(to) + Cgmg(to) = .i’(],
Cl%(to) + ngdif(to) = CZ‘6
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Since a:lddif — 1’2% # 0 at t = tg, there exists a unique nontrivial solution (cq,c2) = (é1,é) to
the above system. Then, by the existence and uniqueness theorem for the initial value problem of
the second order ODE, we conclude that é z1 + a2y = Z. O

3.4.2. Linear n-th order ODE with constant coefficients. Here we discuss the approach
to solving a linear n-th order ODE with constant coefficients. Consider

dx
W+...+ala+agm:0, (3.16)
where a; € R for ¢ =0,...,n— 1.

The general solution has the form

z(t) =z + ... + cup,

where {z;}", is the set of linearly independent solutions (a fundamental set of solutions) and ¢;
are constant coefficients.
Let w(t) be the Wronskian determinant of the set {z1,...,2z,}, i.e.,

I Io . Ty
day
dt
w(t) = det .
n—1 dn—l n—‘l
=1Ll gm-tL2 .. gm-1dn
If w(ty) # 0 for some tg, then (z1,...,x,) forms a fundamental set of solution.

We solve the equation through the characteristic equation
/\”+an,1)\"_1 +...+G1A+CLO =0. (317)

This equation is derived by guessing a solution z(t) has the form e* with A € C.

The characteristic equation (3.17) has n complex roots \; counted with their multiplicities ;.
In other words, equation (3.17) can be rewritten in the form

with Z;nzl l; = n. In fact, the general solution z(t) is a linear combination of thedit for 0 < k < l;

and j = 1,...,m. In particular, if m = n, then z(t) is a linear combination of erit

THEOREM 3.22. Let j\j, 1 < j < m, be the zeros of the characteristic polynomial asso-
ciated with and let I; be the corresponding multiplicities. Then the functions

zip(t) =thedt 0<k<l;, 1<j<m, (3.18)

are n linearly independent solutions of . In particular, any other solution can be written as
a linear combination of these solutions.

REMARK 3.23. Lety = (v,dz/dt,...,d* tx/dt" 1)T. Then can be rewritten as
0 1 0 0

YAy withdA=| 0 0 o 0
dt 0 0 0 1
—Qp —ap —An-—1

The characteristic polynomial of A, P()\) := det(A — AI), is given by P(\) = H;nzl()\ - ;\j)li.
The algebraic multiplicity of the eigenvalue :\j of A isl;. If A has a basis of eigenvectors, there
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will only be in y(t) terms of the form e*it. In general, let J be the Jordan bloc form of A. Then
et = C et C for some invertible matriz C, where

etJ1 0
o — ’
0 etJx
and L
el = A THND — i (T4 (N 4. + (ltl 1)'fol).
7 H

Therefore, as stated in Theorem [3-23, in general the solution with be the sum of terms of the form
tkexjt,k < lj.

3.4.3. Reduction of order. Here we discuss a method for finding a second solution to the
homogeneous second order ODE when a first solution is known by reducing the order.
Suppose that z; a solution of (3.13). Let

z(t) = v(t)x(t).

Then
dﬁ(t) _ b + dzy
at '\ T @t T
and ) ) )
d°x d“v dv dxq d°zy
o) = 42— — .
iz D=t 2 e
So, we get
d*v (dxy /dt)  dv
— 2———)— =0. 3.19
TR R e — (3.19)
By letting u = dv/dt, the equation above can be rewritten as a first order ODE
du (dzq /dt)
= 2 = 0.
dt + (p + I )U
Therefore,
_ o Jtpr2lde ey ¢ — [t p(s)ds
U(t) = ce p 1 ’ = We f p(s) . (320)
Since v = ft u(s)ds, we get
t
z(t) = azl(t)/ u(s)ds. (3.21)

In conclusion, if one solution to (3.13) is known, then a second solution can be found and it is
expressed by (3.21)), where u is given by (3.20]).

EXAMPLE 3.24. Consider the differential equation

d’z dz

— —2t— -2z =0 3.22

dt? ar T (3.22)
and observe that 1 (t) = e’ is a solution. Hence we can set z(t) = etQU(t). Then from , it
follows that

d*v dv
— +2t— =0. 2
FTE + tdt 0 (3.23)
The solution of is given by
dv_
at ~

implying that

u(t) = /0 e~ ds = gerf(t),



36 3. LINEAR SYSTEMS

where erf is the Gauss error function. Hence a second solution to s given by
xa(t) = et erf(t).

3.5. Linearization and stability for autonomous systems

3.5.1. Linear systems. Let A € M4(R) be independent of ¢. Consider the following linear
system of ODEs:
dx

>4
= Au(t), te 0,400l

.CIZ(O) =Ty € Re.
By Lemma there exists C € GL4(C) such that
C'AC =D+ N,

where D is diagonal, N is nilpotent, and ND = DN. Let \;,j = 1,...,J be the (distinct)
eigenvalues of A. Let [; be the (algebraic) multiplicity of A\; and denote by E; = ker(4—\;I)% the
characteristic subspace associated with ); (called also generalized eigenspace). We have & E; = CZ.
Moreover, each E; is invariant under A.

The system is said to be stable if there exists a positive constant Cy such that

|z(t)] < Colzg| for all ¢ € [0, +oo]. (3.25)

LEMMA 3.25. The system is stable if and only if RX; <0 or RA; = 0 and N|g; =0 for
j=1,...,J.

Proo¥. Let z(t) = C'z(t) and 29 = C1zg. By Lemma

(3.24)

Z(t) = PNy, t e 0,400l (3.26)
Since DN = ND, (3.26) yields
d—1 ;
- tN) ~
z(t) = ( ( _') )e'PTg, t€[0, 400l (3.27)
— il
If '%0 S EJ', then
d—1 ;
~ _ (tN)*, -
I(t) = et (Z . )Zo, t€[0,+00[. (3.28)
i=0
Therefore, z(t) satisfies (3.25) for some positive constant Cjy if and only if RA; < 0 or ®A; = 0 and
N|g, =0, O

3.5.2. Nonlinear systems. Consider the autonomous system

dx
PrmEA (3.29)
ZL”(O) =g € Rd,

where f is C'. Suppose that z* is an equilibrium point for (3.29), i.e., f(z*) = 0.

THEOREM 3.26 (Local stability). Suppose that all the eigenvalues X of the Jacobian of f at
x*, f'(x*), are with negative real parts. Then, there exists § > 0 such that if |xg — x*| <, then
|z(t) — 2*| = 0 as t — 4o0.

ProoF. Let A = f'(z*) and consider the linearized system

dy(t)
——= = Ay(t t>
It y( )7 >0,

y(0) = o — z*,

(3.30)
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which, in view of (3.3)), has the explicit solution y(t) = e*4(zo —2*) for ¢ > 0. Suppose that R\ < 0
for any eigenvalue A of f'(z*). From (3.27), it follows that there exists 7 > 0 such that

let42] < Coe "|z| for all z € RY,

where the constant Cy depends only on f.
Now, rewrite (3.29)) as a small perturbation of the linearized system

dz
> Az — 2t
W = A2+ (o), o)
z(0) = z*,
where
g(x) = |z — z*|e(z), witheeC® ande(z™)=0. (3.32)
Observe that there exists dp > 0 such that for all § €]0, dy],
y 76
supflg(o)] : o — 2| <8} < - (3.33)
To conclude it suffices to prove that if |zo — 2*| < min(d,/Cp), then
|z(t) —2*| <¢§ forall t > 0.
From (33.31)), it follows that
t
z(t) —a* = e wo — a*) + / =4 g(x(s)) ds,
0
and hence, (3.32) yields
¢
lz(t) —2*| < e "'Colzo — x| +/ e "7 Colg(x(s))| ds
0
C
< et C0olmo — ¥+ (1 — e =2 sup{|g(z(s)] : 0 < s < t}.
T
Thus, for all ¢ > 0,
C
|z(t) — 2*| < max <C’0|x0 -z, 70 sup{|g(z(s)]: 0 < s < t})
Introduce
T :=inf{t >0:|z(t) —z*| > d}.
If we assume that 7' is finite, we would obtain
|z(t) —2*| <6 forallte[0,T], |z(T)—2a*|=0.
In view of (3.32)), we arrive at a contradiction by using (3.33). O
DEFINITION 3.27. A function V € C*(R%,R) is said to be a Lyapunov function for if
V(z*) < V(x) for any x # z*, (3.34)
and
f(z)-V'(z) <0 for any x € RY. (3.35)
EXAMPLE 3.28. (i) Consider the system
d.’L’l
T = T2,
& (3.36)
7 1~ T2

Then xz* = (0,0) is an equilibrium point and
1
V(o) = a3 + 103
is a Lyapunov function for .
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(ii) For the gradient systems introduced in Subsection|1.5.4} there is a natural candidate for
a Lyapunov function. Suppose that f(x) = —V®(z). Suppose that the potential ® is
smooth and there exists x* such that ®(x*) < ®(x) for any x # 2*. ThenV = ® is a

Lyapunov function for .
THEOREM 3.29. Suppose that there exists a Lyapunov function V. Then, for any e > 0, there
exists § > 0, such that

sup |z(t) — z*| < e,
t>0

provided that |xg — z*| < 4.

ProoF. Condition (3.34) on V implies that for fixed € > 0, there exists v > 0 (sufficiently
small) such that

{o:|z— 2% <2, V(z) <V(@*) +7} C{z: |z — 2% <€}
Choose ¢ (0 < J§ < €) such that

{z: ]z —2*| <6} C{a:|r—2* <2, V(z) <V (z*) + 7}
By using the fundamental property of a Lyapunov function V'

%V(w(t)) = f(z() - V'(x(t)) <0, t>0, (3.37)

we obtain that
V(a(t) < V(ao) V() +7  if [ng—a| <6.
In fact, we have
|z(s) — "] <2e for all s >0,

since otherwise, there would exist ¢ > 0 such that |z(¢) — 2*| = 2e. From V(x(¢)) < V(z*) + v we
would arrive at a contradiction. O

THEOREM 3.30 (Global stability). Suppose that there exists V € C*(R%,R) satisfying
such that
f(x)-V'(z) <0  for any x # z*, (3.38)

and the set {x : V(z) < V(x9)} is bounded. Then the solution x(t) of converges to * as
t — +o0.

PROOF. As in the proof of Theorem [3.29] we have V(z(t)) < V(zo) and thus {z(t) : t > 0} is
bounded. More precisely, (3.37)) yields

+oo +oo
/0 |f(x(t) - V'(2(t)| dt = / —f(@(t)) - V'(x(t)) dt < V(wo) = V™,

0
where V* :=limy_, 4o V(2(t)). Note that V* > —oo since (2(t));>0 is bounded.

Therefore, we can choose (t,)pen such that z(¢,,) — T and f(z(t,))-V'(z(t,)) — 0asn — +oo.
Hence,

which, by (3.38), gives T = z*. O

ExampLE 3.31. Consider the equation dz/dt = f(z) with the initial condition x(0) = xo,
where f(0) = 0 and z7 - f(z) < 0 if x # 0. Then z* = 0 is the unique equilibrium point. Let
V(z) := |z|>. We have V(z) > V(0) for x # 0 and dV/dt = 227 - (dz/dt) = 2zT - f(z) < 0.
Moreover, {z : V(z) < V(z)} is bounded since V(x) — +oc if |x| = +o0o. Therefore, it follows
from Theorem that lim;_, 4 o z(t) = 0.
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3.6. Periodic linear systems

In this section, we consider the equation
dx(t)

dt
in the special case where the matrix A(¢) is periodic,

At +T) = A(t), T >0.

This periodicity condition implies that z(¢ + T') is again a solution if z(¢) is. A first naive guess
would be that (¢t + T) = z(t). However, this is too much to hope for since it already fails with
A(t) a constant matrix (see Example [3.36). Nevertheless, as it will be shown later, z(t) exhibits
an exponential behavior if we move on by one period. If we factor out this exponential term, the
remainder is periodic.

For tg € R, let the matrix Y (¢,%5) be the unique solution of

= A(t)z(t)

% = A@)Y (t,to), t > to, (3.39)
Y (to, to) = I.
LEMMA 3.32. Suppose that A(t) is periodic with period T. Then Y (t,tq) satisfies
Y(t+T,to+T) =Y(t,to).
Proor. By
dY(t + Zl;’ ot1) _ At+T)Y(t+T,to +T) = AB)Y (t + Tyt +T)
and Y (tg + T, to + T) = I, we see that Y (¢t + T, to + T) solves (3.39). Thus it is equal to Y (¢, to)
by uniqueness. |
Let Z(to) = Y (to + T, to). By Lemma[3.32] Z is periodic,
Z(to+T) = Z(to).
LEMMA 3.33. For alll € N, we have
Y (to + 1T, t0) = Z(to)".
Proor. We have
Y(to+1T,tg) = Y(to+1T,to+ (I —1)T)Y (to + (I —1)T,t0)
Z(to+ (I —1)T)Y (to + (I — 1)T, o)
= Z(to)Y(to + (I = 1)T,t0)
= Z(to)!Y (to,to) = Z(to)"-
|

From Liouville’s formula (3.9)), it follows that
det Z(to) = ST e (Als) ds _ [T br(A(s)) ds

)

which is independent of ¢, and positive.
Therefore, by Lemma, we can find a matrix Q(to) such that

Z(to) = T Q(to +T) = Q(to).

Note that Q(to) is not unique. Note also that Q(t¢) is complex even if A(t) is real unless all real
eigenvalues of Z(ty) are positive.
Now, writing
Y(ta tO) = P(t, tO)e(titO)Q(tO)a
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a straightforward computation shows that
P(t+T,ty) = Y(t+T,te)M(ty) Le {{t)Qlto)
= Y(t+T,to+T)e -t
= Y(t,tg)e” 10Ut = p(¢, ).
In summary, we have proven Floquet’s theorem.
THEOREM 3.34. Suppose that A(t) is periodic. Then Y (t,to) defined by has the form
Y(t, tg) = P(t,tg)eltt0)Qto)
where P(-,tg) has the same period as A(-) and P(to,to) = 1I.
As a consequence of Floquet’s theorem we obtain the following result.

COROLLARY 3.35. The transformation y(t) = P(t,to)~'x(t) renders the system dx/dt = A(t)x
into one with constant coefficients,

dy(t)
——= =Z(t t).
P = 20}t
EXAMPLE 3.36. Consider the one-dimensional case
d
)z, alt+T) = a(t).
dt
Then )
Y(t,t()) — efto a(s)ds
and
fo+T d T 17
Z(to) = efto a(s) L e <ll>7 <a>= —/ a(s) dS.
T Jo
Moreover,

P(t,to) = eftio(a(S)—<a>)ds’ Qlte) =< a>.

The eigenvalues p; of Z(ty) are known as Floquet multipliers and the eigenvalues 7; of Q(to)
are known as Floquet exponents. p; and v, are related via p; = e, Since the periodic part
P(t,to) is bounded, we obtain the following result as another consequence of Floquet’s theorem.

THEOREM 3.37. A periodic linear system is stable if all Floquet multipliers satisfy |p;] < 1
(respectively all Floquet exponents satisfy ®y; < 0) and for all Floquet multipliers with |p;| = 1
(respectively all Floquet exponents with Ry; = 0) the algebraic and geometric multiplicities are
equal.

ExAMPLE 3.38. Consider Hill’s equation
d*z(t)

dt?
In this case, the associated system is with

A(t) = (_;( ) é) .

Let ©1 and zo be the solutions of (@) corresponding to the initial conditions

+a®a(t) =0, qt+T) = q(t). (3.40)

dx dx
l’l(to,to) = ]., T;(to,to) =0 and Z'Q(to,to) = 0, TE(to,to) =1.

Y(t’to) _ (.’I,'l(t,to) Jfg(t,to)) .

%(tatO) %(tatO)

Then
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Liowville’s formula @) shows that det Y (t,t9) = 1 and hence the characteristic equation for

Zlty) = (d-T;l((t; + T, o) 3;22(750 +T,to) )
GEto+T,to) G2 (to+ T, to)
is given by
A —2AN+1=0, A::@.

Therefore, by Theorem Hill’s equation (3.40)) is stable if |A| < 1 and unstable if |A| > 1.

3.7. Problems
PrROBLEM 3.39 (Laplace transform). (1) Prove that if A € My(R), then

t
et — T = / Ae*A ds.
0
(ii) Prove that if all eigenvalues of A have negative real parts, then

+oco
—Al = / e*A ds.
0

(iii) Prove that if s € R is sufficiently large, then
+oo
(sA—I)"' = / es A=t g,
0

that is, the Laplace transform of et4 is (sI — A)~'.
PROBLEM 3.40. Let A € M,(R).
(i) Apply the Jacobi formula
% det B(t) = (det B(t)) tr(B(t)"! %(t)) (3.41)
for B(t) = €' to prove that

dete? = ',

(ii) Prove that a vector u is an eigenvector of A corresponding to the eigenvalue « if and only
if u is an eigenvector of e corresponding to the eigenvalue e®.
(iii) Prove that if det A(t) # 0, then
d

ZATH(H) = -4 ()

dA
—(HAT(®).
na
(iv) Prove that

det(I + eA+ o(e)) =1+ etrA + o(e),

where o(€) (Landau symbol) collects terms which vanish faster than € as ¢ — 0.

PrOBLEM 3.41 (Reduction of order). Use reduction of order to find the general solution of
the following equations:

d’z dx .
tﬁ_Q(t-f‘l)E-f'(t-i-?)Z’:O, z1(t) = €.

tzdﬁ g

— _ 42
e E+4x—0, () =1t°.
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PROBLEM 3.42. (i) Verify that the second-order equation
d*x 5
can be factorized as
d d
— —t)(—=+¢t)z=0. 4
(& =% +1)z =0 (3.4

(ii) By solving two first-order problems, find the solution of .

PROBLEM 3.43. Let A € My(R) be independent of t. Consider the linear system of ODEs
13.24)).

(i) Assume that there exist two positive definite matrices P and Q) such that

ATP+ PA=-Q. (3.44)
Prove that V(z) := x " Px is a Lyapunov function for (M}
(ii) Define
7 1= min v Qx
" a0 T Px’

Prove that V(x(t)) < e™ "V (xq), where x(t) is the solution of .
(iii) Assume that every eigenvalue of A has a negative real part. Prove that given @, the

solution P to can be written as

+o0 T
P:/ etd Qel4 dt.
0

PROBLEM 3.44 (Convergence of the gradient algorithm for finding a local minimum
of a function). Let f : RY — R and assume that =* is a local minimum, i.e., f(x*) < f(x) for z
close enough but not equal to x*. Assume that f is continuously differentiable and let x(t) be the

solution to
dz
E = —Vf(l'), te [0,+OO[,
z(0) = 7o € RL.
(i) Prove that if xo is close to x* then limy_ 4o x(t) = z*.
(ii) Let f(z) = %xTQm, where @ is symmetric, positive definite. Show directly that x(t)
converges to zero (= x*).

PROBLEM 3.45. Consider J
t
“;'li) = a(t)Az(t),
where a(t) is a scalar periodic function with period T and A is a constant 2 X 2 matriz. Compute
the Floquet exponent, and find P(t,to) and Q(to) in this case.




CHAPTER 4

Numerical solution of ordinary differential equations

4.1. Introduction

This chapter is concerned with the numerical solution of initial value problems for systems of
ordinary differential equations. Since there is no hope of solving the vast majority of differential
equations in explicit and analytic form, the design of suitable numerical schemes for accurately
approximating solutions is essential. Explicit solutions, when they are known, can also be used as
test cases for tracking the reliability and accuracy of a chosen numerical scheme. In this chapter,
we survey the most basic numerical methods for solving initial value problems. It goes without
saying that some equations are more difficult to accurately approximate than others, and a variety
of more specialized techniques are employed when confronted with a recalcitrant system. However,
all of the more advanced developments build on the basic schemes and ideas laid out in this chapter.

4.2. The general explicit one-step method

4.2.1. Counsistency, stability and convergence. Consider the initial value problem

dx
E:f(t’w)a te [OaT]a

z(0) =zg, z0€R,

where f € C°([0,T] x R) satisfies the Lipschitz condition (2.2)).
Starting at the initial time ¢ = 0, we introduce successive discretization points

(4.1)

t0:0<t1<t2<...,

continuing on until we reach the final time 7". To keep the analysis as simple as possible, we use a
uniform step size, and so
At =ty —tg >0, (42)
does not depend on k and is assumed to be relatively small, with ¢, = kAt. We also suppose that
K =T/(At) is an integer.
A general explicit one-step method may be written in the form:

oF T = ah 1 At ®(ty, 2F, At), (4.3)

for some continuous function ®(¢,z,h). In , taking in succession k£ = 0,1,...,K — 1, one-
step at a time, the approximate values z* of z at #; can be easily obtained. Scheme (4.3) is called
explicit since zF1! is obtained from z*. z¥T! appears only on the left-hand side of (4.3)

We define the truncation error of the numerical scheme by

z(tp+1) — z(tr)
At

Ty (At) = — B(ty, (), At). (4.4)

As At = 0,k — +o00, kAt = t,
d
Te(Al) — d% — ®(t,z,0).
DEFINITION 4.1 (Consistency). The numerical scheme is consistent with if

O(t,2,0) = f(t,z) for allt € [0,T] and z € R.

43
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DEFINITION 4.2 (Stability). The numerical scheme for solving is stable if ® is
Lipschitz continuous in x, i.e., there exist positive constants Cg and hg such that

|(I)(t7$:h)_q>(tayah)| SC¢|m_y|a te [OaT]ahE [O,ho],x,yER. (45)
Define the global error of the numerical scheme (4.3)) by
er = =¥ — z(ty). (4.6)

DEFINITION 4.3 (Convergence). The numerical scheme for solving is convergent
if
lex| = 0 as At — 0,k — 400, kAt =t € [0,T].

THEOREM 4.4 (Dahlquist-Lax equivalence theorem). The numerical scheme s convergent
if and only if it is consistent and stable.

PRrOOF. From (4.1), it follows that

E(tier) — 2(ty) = / " (s, a(s) ds,

tr
which gives

2(tess) — o(t) = (A0 (b, 2(t)) + / (s, 2(s)) — Fltnx(t))] ds.

tr

Therefore,

/ (s, () — Fltea(t)] ds| < (A wn(AD), (47)

ty

eltin) — (ts) - (At)f(tk,wk))‘ -

where
wi (At) == sup {|f(t, z(t)) — f(s,2(s))],0 < s,t <T, |t — s| < At}. (4.8)
Note that w; (At) — 0 as At — 0. Moreover, if f is Lipschitz in ¢, then wy (At) = O(At).
From and
erp1 —ex = o' — ¥ — (2(ter) — z(tr)),
we obtain
€r+1 — € = At‘I’(tk,l‘k, At) — (m(tkH) — m(tk)),
or equivalently,

epe1 — er = At [@(ty, 2", At) — f(te,z(tr)] — [2(trr1) — z(te) — At f(tr, 2(ts))].
Write

eri1—en = At[®(ty, 2", At) — B(ty, z(tr), At) + B(ty, (t1), At) (4.9)
—f (e, (tr)] = [2(tre1) — x(tr) — At f(tr, z(tr))]- -
Let
wa(At) :=sup {|®(t,z,h) — f(t,2)|,t € [0,T),z € R,0 < h < (At)}. (4.10)
Since the numerical scheme is consistent,

O (ty, x(ty), At) — f(tk,x(tk))‘ < wy(At) = 0 as At — 0. (4.11)

On the other hand, from the stability condition (4.5), it follows that
®(ty, z*, At) — @(tk,x(tk),At)‘ < Cslerl- (4.12)

Combining (4.7)), (4.9), (4.11), and (4.12) yields
lekt1] < (1+ CoAt)|er| + Atws(At), 0<k <K -1, (4.13)
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where K = T'/(At) and ws(At) := wy (At) +wa(At) — 0 as At — 0. By induction, we deduce from
(4.13) that

k—1
lens1] < (1+ Calt)¥leo| + (Af) wy(AH) > (14 CaAt), 0<k < K. (4.14)
=0

Estimate (4.14) together with

k—1

;(1 + Canty = LF C;ﬁtt)k -1
and

(14 CeAt)E < (1 + Cq)%)K < (Cal
yields

CsT

-1
lex] < =T leo] + s (A1), (4.15)

Therefore, if eg = 0, then as At — 0,k — +oo such that kAt =t € [0, T

lim |ex| =0,
k——+oco

which shows that the scheme is in fact convergent. O

DEFINITION 4.5. An explicit one-step method is said to be of order p if there exist positive
constants hg and C such that

Tk (At)| < C(At)P, 0< At < hy,k=0,...,K -1,
where the truncation error Tj,(At) is defined by ({.4).

If the explicit one-step method is stable, then the global error is bounded by the truncation
error.

ProprosITION 4.6. Consider the explicit one-step scheme , where ® satisfies the stability
condition . Suppose that eg = 0. Then
CaT _

Co
where the truncation error T; and the global error e; are defined by and @), respectively.

) _
|ek+1| < Orgla‘SXk|T‘l(At)| fOTk - 07"'7K_ ]-1 (416)

Proor. From (4.9), we have
ers1 — ex = —(A)TR(AL) + (At) |®(tr, 2%, AL) — @ (tr, 2(tk), At) |,

so we get
(14 Ca(At))lex| + (AD)|Ti(At)]
(14 Ca(A)lex] + () max |T(A)]

leks1] <
<

In exactly the same manner as in the proof of Theorem [4.4] we obtain estimate (4.16)). O
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4.2.2. Explicit Euler’s method. Let ®(¢,z,h) = f(t,z). The numerical method
reduces to
aH T =2k (A f(t, 7). (4.17)
The numerical method is called the explicit Euler scheme.

THEOREM 4.7. Consider the initial value problem . Suppose that f satisfies the Lipschitz
condition and f is Lipschitz with respect to t. Then the explicit Euler scheme i
convergent and the global error ey, is of order At. If f € Ct, then is of order one.

PROOF. Since f satisfies the Lipschitz condition then the numerical scheme with ® (¢, z, h) =
f(t,z) is stable. Moreover, it is consistent since ®(t,z,0) = f(¢,z) for all t € [0,T] and = € R.
Therefore, by Theorem ([@.17) is convergent. Furthermore, since f is Lipschitz in ¢, wy(At) =
O(At), where wy is defined by (4.8). On the other hand, ws(At) = 0, and hence ws(At) = O(At),
where w» is defined by and w3 = wy + ws. Then, from , we have |egy| = O(At) for
1<k < K. Now if f € CT, then from Theorem [2.20]z € C*. By using the mean-value theorem, we
have

1
T80 = o (eltwe) —2(0) - Flow (o)
1 dx (At)? dx
= (s + @0+ R0 —aw) - e (419
At d*x
= 2
for some T € [tg, ty11], which shows that (4.17) is of first order. O

REMARK 4.8 (Round off error effects). Theorem 15 true provided the arithmetic in
calculating the numerical approximation is perfect, that is, when performing the operations required
by no errors occur. However computers always round off real numbers. In numerical methods
rounding errors become important when the step size At is comparable with the precision of the
computations. Thus, when running Euler’s method , the best we can do is to compute the
solution of the perturbed scheme:

P = T Atf (g, ) + (A + o,

where p* and p* represent the errors in f and in the assembling, respectively. Assume that |pu*| < p
and |p*| < p for all k and f € C'. Defining e* = x(ty) — 7%, we have

[EF) < (14 CrAD)er + (At)u + p,

and hence
T 12 CyT
d*z e“f T
~k CyT |50 CyT CyT
[e¥] < e e’ + (At)e™/ /0 |ﬁ (S)dS-F,U(At)Tf +PE€ ,
where C'y is the Lipschitz constant for f.

Introduce

T
pe=s Tpe
At) = At
p(At) o M T
One can see that ¢ attains its minimum at \/pCyT/p and diverges for At — 0. From a practical
point of view, it is better to take time steps that are larger than \/pC¢T /.

REMARK 4.9 (Control of the time step). In the time step is uniform and is chosen
such that the global error |ey| is smaller than a given tolerance. In view of this supposes a
good knowledge of the exact solution. An alternative method consists in computing the numerical
solution for an arbitrary At and then for 2At. If the discrepancy between the two numerical
solutions is smaller than the tolerance, we keep At. If not, we restart the calculations with a
smaller step size, say At/2, until we reach the target.
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4.2.3. High-order methods. In general, the order of a numerical solution method governs
both the accuracy of its approximations and the speed at which they converge to the true solution
as the step size At — 0. Although the explicit Euler method is simple and easy to implement, it
is only a first order scheme as shown in Theorem [£.7] and therefore of limited use. So, the goal is
to devise simple numerical methods that enjoy a higher order of accuracy. The higher its order,
the more accurate the numerical scheme, and hence the larger the step size that can be used to
produce the solution to a desired accuracy. However, this should be balanced with the fact that
higher order methods inevitably require more computational effort at each step.

4.2.3.1. Taylor methods. The explicit Euler scheme is based on a first order Taylor approxi-
mation to the solution. The Taylor expansion of the solution z(t) at the discretization points ¢
has the form

B B dzr (At)? d*x (At)® d¥x
x(tpg1) = z(ty + At) = z(ty,) + (At)a(tk) + 5 W( k) 5 ﬁ(tk) +.... (4.19)
We can evaluate the first derivative term by using the differential equation
dx
— = f(t,z). 4.2
= f(t,) (4.20)

The second derivative can be found by differentiating the equation with respect to t. Invoking the

chain rule,
d’z d of of dz

Substituting (4.20)) and (4.21)) into (4.19) and truncating at order (At)? leads to the second order
Taylor method

Bk (A k
z ¥+ (AL f(tg,z") + 5t D

in which we have replaced the solution value z(t;) by its computed approximation z*. The resulting
method is of second order.

PROPOSITION 4.10. Suppose that f € C2. Then is of second order.

PROOF. If f is of class C2, then by Theorem x € C3. Therefore, by using the Taylor
expansion (4.19), we obtain that the truncation error T}, is given by

(A;)z (af(tk,l'k) + af(tkal'k)f(tk:l'k)>7 (4.22)

(At)? d3x
Ty (AL) = —
ean = SR80,
for some 7 € [tg,tx41] and so, (4.22)) is of second order. O

Higher order Taylor methods are obtained by including further terms in the expansion (£.19).
Whereas higher order Taylor methods are easy to motivate, they are rarely used in practice. There
are two principal difficulties:

(i) Owing to their dependence upon the partial derivatives of f, f needs to be smooth;
(ii) Efficient evaluation of the terms in the Taylor approximation and avoidance of round off
errors are significant concerns.

4.2.3.2. Integral equation method. In order to design high-order numerical schemes that avoid
the complications inherent in a direct Taylor expansion, we replace the differential equation by
an equivalent integral equation. The solution z(t) of coincides with the solution to the
integral equation

z(t) = 3 +/0 f(s,z(s))ds, te€10,T]. (4.23)

Starting at the discretization point ¢ instead of 0, and integrating until time ¢ = #3411 gives an
expression

o(tpar) :x(tk)+/ " s, 2(s)) ds, (4.24)

tr
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that implicitly computes the value of the solution at the subsequent discretization point. Compar-
ing formula (4.24)) with the explicit Euler method

o=k 4 (A f(t, 2"),

where At is defined by (4.2) and assuming for the moment that z* = z(#;) is exact, we see that
we are merely approximating the integral by

/“Vmﬂ$m“wmvwww» (4.25)

tr
which is the left endpoint rule for numerical integration—that approximates the integral of
f(t,z(t)) between t < t < tgy1 by the area of the rectangle whose height f(¢,x(¢)) is pre-
scribed by the left endpoint of the curve ¢t — f(t,z(t)). Approximation is not an especially
accurate method of numerical integration. Better methods include the Trapezoid rule, which
approximates the integral of the function f(¢,z(t)) between t <t < 11 by the area of the trape-
zoid obtained by connecting the points f(tx, z(tx)) and f(txr1,z(trr1)) of the curve t — f(t, z(t))
by a straight line.
We recall the following basic numerical integration formulas for continuous functions.

(i) Trapezoidal rule:

bt At
/ g(s)ds = 5 (g(tk_H) + g(tk)>; (4.26)
tr
(ii) Simpson’s rule:
P At ty +t
/ 9(s)ds = - (g(tk+1) +4g(Fg ) + g(tk)>; (4.27)
tr

(iii) The Trapezoidal rule is exact for polynomials of order one, while the Simpson’s rule is
exact for polynomials of second order.

Replacing (4.25)) by the more accurate Trapezoidal approximation

b (At)
[ tsaton ds m S o0 + w10, (1.28)
ty
and substituting (4.28]) into the integral equation (4.24) leads to the Trapezoidal scheme
. (At 1
pRl = gk 4 % [f(tk,:nk) + f(tk+1,a:’”+1)]. (4.29)

The Trapezoidal scheme is an implicit numerical method, since the updated value z**! appears
on both sides of the equation, and hence is only defined implicitly. Only for very simple functions
f(t,z) can one expect to solve (4.29) explicitly for zF*+1 given t;, z*, and tj;.
PROPOSITION 4.11. Suppose that f € C? and
At)C
% <1, (4.30)
where C is the Lipschitz constant for f in x defined by . Then the Trapezoidal scheme
is convergent and is of second order.

PROOF. Let @ be defined implicitly by

O(t,z, At) := % f(t,x) + f(t+ Atz + (At)®(t, z, At))|.

The scheme (4.29) is clearly consistent. In order to show that it converges, according to Theorem
we must establish the stability condition (4.5). We have

At
|®(t, 2, At) — ®(t,y, At)| < Cylz —y| + 7Cf|<I>(t,a:, At) — ®(t,y,At)|.
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Hence
(1- %) |®(t, 2, At) — B(t,y, At)| < Cylz — ),

and therefore, (4.5) holds with

Cy

AT,
- ==

provided that At satisfies (4.30). Now we prove that (4.29) is of second order.
By the mean-value theorem,

nian = ZTW o 0) 4 fi, o)

1 yd3
_E( ) ﬁ(T)a

Co =

(4.31)

for some 7 € [ty, tx11], and therefore (4.29) is of second order, provided that f € C? (and conse-
quently z € C3?). O

An alternative is to replace in (4.29) z**! by z* + (At) f(t, 2*). This yields the improved
Euler scheme

SR gk @ Flto ™) + F(trr1, X5 + (Ab)F(be, x%))] (4.32)

PROPOSITION 4.12. The numerical scheme is convergent and is of second order.

The improved Euler scheme performs comparably to the Trapezoidal scheme (4.29)), and
significantly better than the Euler scheme (4.17)). The improved Euler scheme (4.32) is the simplest
of a large family of so-called predictor-corrector algorithims. In general, one begins by using
a relatively crude method—in this case the explicit Euler method—to predict a first approximation
%+ to the desired solution value z(tg;1). One then employs a more sophisticated, typically
implicit, method to correct the original prediction, by replacing the required update z**' on the
right-hand side of the implicit scheme by a less accurate prediction z**!. The resulting explicit,
corrected value z#*' will be an improved approximation of the true solution, provided the method
has been designed with due care.

We can design a range of numerical solution schemes by implementing alternative numerical
approximations to the integral equation . For example, the midpoint rule approximates
the integral of f(t,xz(t)) between t; < t < t;41 by the area of the rectangle whose height is the
value of f at the midpoint t = t; + (At)/2

/ " Fs,a(s) ds ~ (A0 £t + g,x(tk + g))- (4.33)

. 2 2
The midpoint rule has the same order of accuracy as the trapezoid rule. Substituting (4.33) into
(4.24) leads to the midpoint scheme
: At At :
e =t (A f (e + 50 + S f (e Y), (4.34)

where we have approximated z(t; + ) by ¥ + &L f(t, z*).

A comparison between the terms in the Taylor expansion (4.19) of x(t;+1) and (4.34) reveals
that the midpoint scheme is also of second order.
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4.3. Example of linear systems

Consider the linear system of ODEs , where A € M(C) is independent of t.
A one-step numerical scheme for solving is said to be stable if there exists a positive
constant Cy such that
|z**1| < Co|2®| for all k € N. (4.35)
Consider the following schemes for solving :
(i) Explicit Euler’s scheme

2R = ob 4 (At) Azt (4.36)
(if) Implicit Euler’s scheme
of T = oh ¢ (At) Agh Tt (4.37)
(iii) Trapezoidal scheme:
At
zhtl = gk 4 % [Axk + Aka] , (4.38)

where k € N, and 2° = z,.

PROPOSITION 4.13. Suppose that R\; < 0 for all j. The following results hold:

(i) The explicit Euler scheme is stable for At small enough;
(ii) The implicit Euler scheme is unconditionally stable;
(iii) The Trapezoidal scheme is unconditionally stable.

ProoF. Consider the explicit Euler scheme (4.36]). By a change of basis, we have
¥ = (I + At(D + N))*z°,
where 7% = Cz*. If 2° € E;, then
min{k,d}
=Y G+ A (AN,
1=0
where C! is the binomial coefficient.

If |1 + (At)A\;| < 1, then Z* is bounded. If |1 + (At)A\;| > 1, then one can find z° such that
|Z*| — +00 (exponentially) as k — +o00. If |L + (At)A;| = 1 and N # 0, then for all Z° such that
Nz° #0,N22° = 0, it can be seen that

T8 = (1+ (AHA)PZ° + (14 (AN EALNT?
goes to infinity as k — +oo.

The stability condition |1 + (At)A;| < 1 is equivalent to
RA;

A%

At < =2

and therefore holds for At small enough.
For the implicit Euler scheme (4.36]), we have
¢ = (I — At(D + N))~*z°.

Note that all the eigenvalues of the matrix (I — At(D + N))~! are of modulus strictly smaller than
1. Therefore, the implicit Euler scheme (4.36) is unconditionally stable.
For the Trapezoidal scheme, we have

At
Tt = (I - @(D +N) I+ %(D + N))k20,
Therefore, the stability condition is
At At
1+ B <n- B
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which holds for all At > 0 since A; < 0.
a

Note that while the explicit and implicit Euler schemes are of order one, the Trapezoidal
scheme is of order two.

REMARK 4.14. If R\; = 0 for some j, then the explicit Euler scheme may be unstable for any
At > 0. Consider the second order linear equation

d2
2 4r=0, telo,+od,
dat d (4.39)
x
2(0) = 70, 5 (0) = b, 0,7 € B,
We first reduce to the first order linear equation

X
X _AX, teo,+ol,
d (4.40)

X(0) = (z,zp) " € R,

0 -1
where X = (x,dx/dt)" and A = Lo ) The eigenvalues of A are +i. Consequently, the

explicit Euler scheme is unstable since |1 £ iAt| > 1 for any At > 0. However, the implicit Euler
scheme is stable since |1 +iAt|~1 < 1.

4.4. Runge-Kutta methods

The Runge-Kutta methods are by far the most popular and powerful general-purpose nu-
merical methods for integrating ordinary differential equations.

The idea behind the Runge-Kutta methods is to evaluate f at carefully chosen values of its
arguments, ¢ and z, in order to create an approximation that is as accurate as a higher-order Taylor
expansion of z(t+ At) without evaluating derivatives of f. Runge-Kutta schemes are time-stepping
schemes that can be derived by matching multivariable Taylor series expansions of f(¢,x)
with the Taylor series expansion of z(t + At). To find the right values of ¢ and = at which to
evaluate f, we need to take a Taylor expansion of f evaluated at these (unknown) values, and then
match the resulting numerical scheme to a Taylor series expansion of z(t + At) around ¢. Towards
this, we state a generalization of Taylor’s theorem to functions of two variables.

THEOREM 4.15. Let f(t,x) € C"1([0,T)xR). Let (to, 7o) € [0,T)xR. There existty < 7 < t,
zo9 < &€ <z, such that

ft,x) = Py(t,x) + Ry(t, ),
where Py (t,z) is the nth Taylor polynomial of f around (to,xo),

Patir) = flto,z0) + {(t — 1) (49, 20) + (2 - xo)af(toaﬂﬁo)}

ot Ox
(t —to)2 02 f 0% f (z —20)* &*f
+|:28t2(t07m0)+(t_t0)(x_m0)8ta$(t0’w0)+283?2(t0’$0)
L&, - . onf
L+ |:n!j2%0j (t —to) J(x—xo)]w(toaxﬂ)}a

and R, (t,z) is the remainder term associated with P,(t,x),

1 n+1 _— 1 i 6n+1f
j=0
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We now illustrate the proposed approach in order to obtain a second-order accurate method,
that is, its local truncation error is O((At)?). This involves matching

(At)? Of of
5 L5 (ho) + 5o (o) f(ta)] +

x4+ Atf(t,z) +

to
T+ (At)f(t+ a1,T +ﬂ1)7

where 7 € [t,t + At] and a1 and f; are to be found. After simplifying by removing terms that
already match, we see that we only need to match
(At) Of of (At)* d
T[E(t’x) + %(t,m)f(t,w)] + 6 d [f( z)]

with f(t+ aq,z + 1) at least up to terms of the order of O(At), so that the local truncation error
will be O((At)?). Applying the multivariable version of Taylor’s theorem to f, we obtain

ft,x) +

_ of of ai &*f >*f gt 0% f
ft+ar,z+p1) —f(t:l’)‘l'ala(tam)‘l'ﬂla (t,x )+7ﬁ( O+ 1516&9 (T §)+7@(Taf)a
where t <7 <t+ o and x < ¢ < x + (1. Hence comparing terms yields

ap = % and B = %f(tal")-

The resulting numerical scheme is therefore the explicit midpoint method , which is the
simplest example of a Runge-Kutta method of second order. The improved Euler method
is also another often-used Runge-Kutta method.

The most general Runge-Kutta method takes the form

m
L + At Z Cif(t,'7k, xi,k); (4.41)

=1

where m stands for the number of terms in the method. Each t;; denotes a point in [ty, tg+1].
The second argument ; ; = z(¢; ;) can be viewed as an approximation to the solution at the point
t;.r, and so is computed by a similar but simpler formula of the same type. To construct an nth
order Runge-Kutta method, we need to take at least m > n terms in .

The best-known Runge-Kutta method is the fourth-order Runge-Kutta method, which
uses four evaluations of f during each step. The method proceeds as follows:

Ry = f tr + A2t,iL'k + %K/l),
Ky o= f(te + %,w’“ + Stka), (4.42)

. At
$k+1 — .’EA + %(K/l + 2k9 + 2K3 + 54)‘

In (4.42)), the values of f at the midpoint in time are given four times as much weight as values at
the endpoints ¢y and t;41, which is similar to Simpson’s rule (4.27) from numerical integration.

4.4.1. Construction of Runge-Kutta methods. In this subsection we first construct
Runge-Kutta methods by generalizing collocation methods. Then we discuss their consistency,
stability, and order.
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4.4.1.1. Collocation methods. Let P, denote the space of real polynomials of degree < m.
Given a set of m distinct quadrature points ¢; < ¢2 < ... < ¢, in R, and corresponding data
J1,---,9m, there exists a unique polynomial, called the interpolating polynomial, P(t) € P,
satisfying P(¢;) = g;,1 = 1,...,m.

Define the ith Lagrange interpolating polynomial /;(¢), i = 1,...,m, for the set of quad-
rature points {c;} by

7 t— Cj
li t) = —
v j;ég:l G
The set of Lagrange interpolating polynomials form a basis of P,,—; and the interpolating polyno-
mial P corresponding to the data {g;} is given by

P(t) := Z gili(t). (4.43)

Consider first a smooth function g on [0,1]. We can approximate the integral of g on [0, 1] by
exactly integrating the Lagrange interpolating polynomial of order m — 1 based on m quadrature
points 0 < ¢; < ¢3 < ... < ¢, < 1. The data are the values of g at the quadrature points

9i :g(ci)7 i = 15"'7m'
Define the weights

b = / 1 1;(s) ds. (4.44)

The quadrature formula is

/O Cg(s) ds / " Pls)ds = gjbig@),

where P is defined by (4.43).
Now let f be a smooth function on [0,7] and let ¢, = kAt for k =0,..., K = T/(At), be the

discretization points in [0,T]. The integral f::“ f(s) ds can be approximated by

/t " ) ds = (A1) /O Flti+ Atr)dr ~ (AD) S bif (1 + (At)ey). (4.45)

i=1

Next let « be a polynomial of degree m satisfying

z(0) = zo,
dz (4.46)
E(Q’At) = F,

where F; e R,e=1,...,m.
From the Lagrange interpolation formula (4.43)), it follows that for ¢ in the first time-step
interval [0, At],

dz - t
—(t) = Fili(—). 4.4
a0 =2 Fi(xy) (147
Integrating (4.47) over the intervals [0, ¢; At] gives
x(c; At) = zg + (At) ZFj / lj(s)ds = zo + (At) Z a;ijFj, i=1,...,m, (4.48)
j=1 70 j=1

where

Qi 1= /Ci lj(S) ds. (449)
0
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Integrating (4.47) over [0, At] yields

z(At) = zg + (At) iFZ /01 l;(s)ds = zo + (At) i b F;, (4.50)

i=1

where b; is defined by (4.44).
Writing dz/dt = f(z(t)), we obtain from (4.48) and (4.50) on the first time step interval [0, At]

F; :f($0+(At)Zaiij), i=1,...,m,

=1

. (4.51)
i=1
Similarly, we have on [ty, t511]
Fiy = fx(ty) +(At)zaiij,k): i1=1,...,m,
7 (4.52)

@(tet1) = @(te) + (At) Z biF -

In the collocation method (4.52)), one first solves the coupled nonlinear system to obtain F; j,
i=1,...,m, and then computes z(ty41) from x(ty).

REMARK 4.16. Since

m
=3 dT, teII=1,..,m,
i=1
we have
" 1
Db t=1, I=1...m,
i=1
and
™ !
Zaijcé 1:%, ,l=1,...,m
j=1

4.4.2. Runge-Kutta methods as generalized collocation methods. In , the co-
efficients b; and a;; are defined by certain integrals of the Lagrange interpolating polynomials
associated with a chosen set of quadrature nodes ¢;, i =1,...,m.

A natural generalization of collocation methods is obtained by allowing the coefficients ¢;, b;,
and a;; to take arbitrary values, not necessary related to quadrature formulas. In fact, we no
longer assume the ¢; to be distinct. However, we should assume that

ci=Y aj, i=1,...,m. (4.53)
j=1
The result is the class of Runge-Kutta methods for solving (4.1)), which can be written as

Fip = f(tig 2" + (At) Zaiij,k)a
j=1

i (4.54)
.’Ek+1 = .Zk + (At) Z biFi,k:

i=1
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where t; , = tp + ¢;At, or equivalently,

m
zig = + (At) Zaijf(tj,kaxj,k)a
j=1

(4.55)
m
=k (A bif (tig, wik)-
i=1
Let
Hj = f(t+CjAt,l'j), (456)
and define the function @ by
Tr; =2+ (At) Zaij‘lﬁl]‘,
7=t (4.57)

O(t,w, At) = bif(t+ ciAt,x;).
i=1
One can see that the scheme is a one step method. Moreover, if a;; = 0 for 7 > 7, then
is explicit.

It is also easy to see that with definition , explicit Euler’s method and Trapezoidal scheme
are Runge-Kutta methods. For example, explicit Euler’s method can be put into the form
(4.55) with m = 1,b; = 1,a17; = 0. The Trapezoidal scheme hasm =2,by = by =1/2,a1; =
a1s = 0,a21 = ass = 1/2. Finally, for the fourth-order Runge-Kutta method , we have
m = 4,01 = 0,62 = C3 = 1/2,04 = ].,bl = 1/6,b2 = bg = 1/3,b4 = 1/6,@21 = Q33 = 1/2,(143 = ].,
and all the other a;; entries are zero.

4.4.3. Counsistency, stability, convergence, and order of Runge-Kutta methods.

From (4.57), the Runge-Kutta scheme is consistent if and only if
> bi=1. (4.58)
j=1

Let |A| be the matrix defined by (|a;;|)i%—,. Let the spectral radius p(|A|) of the matrix |A|
be defined by
p(|4]) := max{|A;|, A; is an eigenvalue of |A[}. (4.59)
The following stability result holds.
THEOREM 4.17. Let C; be the Lipschitz constant for f. Suppose that
(At)Crp(JA]) < 1. (4.60)
Then the Runge-Kutta method for solving 1s stable.
PRrROOF. Let @ be defined by (4.57)). We have

i=1
where
Tr; =T+ (At) Z aijf(t + CjAt, ZU]‘), (462)
j=1
and
Yi =y + (At) Z aijf(t + C]‘At,yj). (463)

J=1



56 4. NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

Subtracting (4.63)) from ({.62) yields

m
z,—y; =z —y+ (At) Zaij [f(t +cjAt,x;) — f(t+ c;At,y;) |- (4.64)
j=1
Therefore, fori =1,...,m,
i = yil < |z =yl + (ADC; Y laijlla; — w51, (4.65)
j=1

where C is the Lipschitz constant for f. Let the vectors X and Y be defined by

|21 — w1 |z -y
X = : and Y = :
|Zm — Yml |z -y
From ([@.65)), it follows that
X <Y + (A)Cy|A|X, (4.66)
and therefore,
X < (I—(At)ChA)TYY, (4.67)
provided that condition (4.60) holds. Finally, combining and yields the stability of
the Runge-Kutta scheme (4.53)). O

By the Dahlquist-Lax equivalence theorem (Theorem , it follows that the Runge-Kutta

scheme (4.55) is convergent provided that (4.58) and (4.60) hold.

In order to establish the order of the Runge-Kutta scheme (4.55), we compute the order as
At — 0 of the truncation error

Tk(At) = —x(tk+1)At_ :L‘(tk) — @(tk,x(tk), At),
where ® is defined by (4.57). We write

Ty (At) = %t_“’“ Zb F(te + ciAt, 2 (ty) +At2a”/<ej
j=1

Suppose that f is smooth enough. We have
F b+ ()AL S agng) = (b a(t) +At [ O .z Zam (2 (tk»] FO((A?).

j=1
Suppose that (4.53) holds. Then, from

> aijk; = Zam (te, z(t)) + O(At) = ¢; f(ty, 2(ty)) + O(AL),
j=1
it follows that

- 0 0

Fltrtei At z(ty)+AL Y aijr;) = f(tn, o(t))+Atc; [85:(tk,m(tk))-ka;];(tk,m(tk))f(tk,m(tk))} +0((A1)?).
j=1

Therefore, we obtain the following theorem.

THEOREM 4.18. Assume that f is smooth enough. Then the Runge-Kutta scheme for
solving is of order 2 provided that the conditions and

= 1
> biei = = (4.68)
i=1 2

hold.

One can prove by higher-order Taylor expansions that the following results hold.
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THEOREM 4.19. Assume that f is smooth enough. Then the Runge-Kutta scheme for
solving is of order 3 provided that the conditions , , and

m m

Zblc% - %, Z ibiaijcj = é (469)

i=1 i=1 j=1

hold. It is of order 4 provided that (4.58), (4.68), (4.69), and

szcf = i’ Zzbiciaijcj = é7 Zzbza”cj = %, Z Zbiaijaﬂcl = i (470)
=1 =1 j=1 i=1 j=1 i=1 j=11=1
hold.

The Runge-Kutta scheme (4.42) satisfies the four conditions (4.58), (4.68), (4.69), and (4.70).
Hence, (4.42) is of order 4.

4.5. Multi-step methods

While Runge-Kutta methods present an improvement over Euler’s methods in terms of accu-
racy, this is achieved by investing additional computational effort. For example, the fourth-order
method involves four function evaluations per step. For comparison, by considering three
consecutive points ty_1, g, tx+1, integrating the differential equation between t_1 and t;41, and
applying Simpson’s rule to approximate the resulting integral yields

sten) = ot + [ flsa(s)ds

th—1

(At)

~ et + 52 [f(tk_l,xak_l)) At 2(t)) + f(tk+1,x<tk+1)>],

which leads to the method

_ At _
phtl = k-1 + % |:f(tk_1,.’1,’k 1) + 4f(tk,l’k) + f(tk+1,:1,‘k+1):| . (471)
In contrast with the one-step methods considered in the previous sections where only a single
value of z* was required to compute the next approximation z#*1, in (4.71) we need two preceding
values, ¥ and z*~' in order to calculate z**', and therefore (4.71) is a two-step method.
A general n-step method is of the form

n

Zn) a;zt = (A1) B f(tkyj, "), (4.72)
=0

Jj=0

where the coefficients a; and f; are real constants and a,, # 0.

If 8, = 0, then z**" is obtained explicitly from previous values of 2/ and f(t;,#7), and the
n-step method is explicit. Otherwise, the n-step method is implicit.

In multi-step methods we need a starting procedure which provides approximations to the exact
solution at the points t1,...,t,_1. One possibility for obtaining these missing starting values is
the use of any one-step method, e.g., a Runge-Kutta method.

The following are classical examples of multi-step methods:

ExXAMPLE 4.20. (i) The two-step Adams-Bashforth method
. At
R Ul 5 ) 3f (terr, 2"Y) — f(ty, 2¥) (4.73)

is an example of an explicit two-step method;
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(ii) The three-step Adams-Bashforth method

12

is an example of an explicit three-step method;
(iii) The four-step Adams-Bashforth method

oh S = k+2+(At)[23f<tk+2, k+2)—16f(tk+1,w’f+1>+5f<tk,a:k>} (4.74)

phtd = ght3 4 (34) [55f(tk+3; 2" 3) — 59 f (teya, 22) + 37f (tpyr, 2 — 9f(tk>l"k)] (4.75)

is an example of an explicit four-step method;
(iv) The two-step Adams-Moulton method

12

is an example of an tmplicit two-step method;
(v) The three-step Adams-Moulton method

oht? = phtl 4 227 CU) [5f(tk+27 ") + 8 f (tyr, 2™t — f(tkamk)] (4.76)

AT (if) [9f(tk+3; 2* ) £ 19f (thpa, " F2) + 5F (tya, 2" ) — 9f(tk;$k)} (4.77)

is an example of an implicit three-step method.

The construction of general classes of linear multi-step methods is discussed in the next sub-
section.

4.5.1. Construction of linear multi-step methods. Suppose that 2*, k € N, is a sequence
of real numbers. We introduce the shift operator E, the forward difference operator A, and
the backward difference operator A_ by

)R A N L L L S N L = S Lt

)

Since Ay = E—T and A_ =1 — E7! it follows that, for any n € N,

n

(E-D" =) (-1)cpE",

j=0
and .
(- By =S (~1icrE
7j=0
Therefore,
Ai k _ Z(_l)jcjna:k-‘rn—j
§=0
and

Amgk =3 (-1 Cpati.
§=0
Now let y(¢) € C*(R) and let t; = kAt, At > 0. By applying the Taylor series we find that,
for any s € N,
+oo

Bt =t + 580) = (3 (s ) () = (40 %) 1),

= ot

and hence
ES = es(At)%‘
Thus, formally,
0

1 1
(Af) g = E=—In(l —A_) = A_+ ZAZ + 2AZ + .. (4.78)
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Therefore, if z(t) is the solution of (4.1), then by using (4.78) we find that
1 .. 1
(A f(tg, z(tg)) = <A_ + §A2_ + gAg_ +. )a:(tk) (4.79)

The successive truncation of the infinite series on the right-hand side of (4.79) yields
b — 2kl = (A1) f(tg, 2"),

3 _ 1,

imk — QIk ! + E'rk = (At)f(tkaxk)a (480)
11 2 1

e gxkfz — 5t = (A0 f (b, a),

and so on. This gives rise to a class of implicit multi-step methods called backward differenti-
ation formulas.

Similarly,
E~Y((At) gt) = (At)%E—1 =—(I-A)In(I-A),
and hence,
((At)%) =—FE[Il-A_ )lm(I-A_)=—IT-A_)In(I-A_)E. (4.81)

Therefore, if z(t) is the solution of (4.1, then we find that
1 1
(A1) f(tg, 2(ty)) = <A - §A2, - EAB’, +. ..>x(tk+1). (4.82)

The successive truncation of the infinite series on the right-hand side of (4.82)) yields the following
explicit numerical schemes:

.’Ek+1 _ a;k = (At)f(tkaxk)7

1 1, o
SRt = St = (A0 f(te, a),

4.83)
1 1 d (
5%’““ + gx’“ — " b = (A f(ty, "),

The first of these numerical scheme is the explicit Euler method, while the second is the explicit
mid-point method.
In order to construct further classes of multi-step methods, we define, for y € C*,
th

D"y (ty) = y(to) + / y(s) ds,

to
and observe that

try1

(E-DD ) = [ ylo)ds
tr
Now, from
(E-I)D™'=A,D'=FEA D' = (At)EA_((At)D)™!,
it follows that
1

(E— D)D" = —(At)EA_(In(I - A_)) . (4.84)

Furthermore,

(E-D)D'=EA_D'=A_ED ' =A_(DE")"' = (A)A_((A)DE 1) .

Thus,

(E-I)D™' = —(At)A_ ((1 — A_)In(I — A_)> o (4.85)
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By using (4.84) and (4.85)), we deduce from
try1
w(ter) — w(ty) = / f(s,2(s)) ds = (B = I)D™" f(te, w(tr)),

that k .
—(AHA_((I = A)In(I = A_)) ™ f(te, x(tr))

B (4.86)
—(A)EA (In(I —A)) " ftr, z(t)),

T(teyr) — z(te) = {

where z(t) is the solution of (4.1).
On expanding In(I — A_) into a Taylor series on the right-hand side of (4.86)) we find that

2(tos1) — (ty) = (At) [I + %A, + %Ai + gAi +. ..}f(tk,x(tk)), (4.87)
and . . .
i) = a(t) = (A0 T= 38 = 582 = 2088 ot a(iar) (433)

The successive truncation of (4.87)) yields the family (4.75)) of (explicit) Adams-Bashforth methods,
while similar successive truncation of (4.88]) gives rise to the family (4.77) of (implicit) Adams-
Moulton methods.

4.5.2. Counsistency, stability, and convergence. In this subsection, we introduce the con-
cepts of consistency, stability, and convergence for analyzing linear multi-step methods.

DEFINITION 4.21 (Consistency). The n-step method is consistent with if the
truncation error defined by
Yo [aja(ters) — (A8)B; G (b )]
(At)

Ty (At) =

is such that for any € > 0 there exists hy for which
T (At)| <€  for 0 < At < hg (4.89)
and any (n+ 1) points ((t;,z(t;)), ..., (tj1n,x(tj4n))) on any solution x(t).
THEOREM 4.22. The n-step method is comsistent if and only if the two conditions

n n n
Zaj =0 and Zjaj = Zﬂj, (4.90)
=0 =0 7=0

hold. Furthermore, it is of order p if and only if

I~ —
ijlaj:Z]l 185, foralll=1,...,p, (4.91)
7j=0 j=0
and
1 - jpti - iP
ﬁZ] a; # Z] B;j- (4.92)
p 7=0 7=0
PrROOF. Assume that f € C*°. Using the Taylor expansions for both z and dz/dt,
=1 da =1
o(thes) = Y ﬁ(jAt)lx(l) (tr), o (thay) = > i AL Y (1),
=0 =0
we obtain
n n +oo +o00

> fageltnrs) = (A08 5 ()] = 3 oy 3 (A0 (1) — (A08; Y 7 (GA0'2 ) 1)

j=0 Jj=0 =0 "’ =0
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n n -

= (X ag)at) + (3 Loy — B5)) At o 1) +Z Z A1) (An'z0 (t),

j=0 j=0 1=2 j=0 ( )
which yields the result. |

In view of Theorem [4.22] one can easily check that (4.71)) is of order 4, (4.73) is of order 2,
(4.74)) is of order 3, (4.75) is of order 4, (4.76) is of order 3, and (4.77) is of order 4.

DEFINITION 4.23 (Stability). The n-step method is stable if there exists a constant C

such that, for any two sequences (z*) and (%) which have been generated by the same formulas

but different initial data z°,2',...,z" ! and 2°,T",..., 2", respectively, we have

le* — 3% < Cmax{|z® = Z°, |2' = Z,...,Jz" 1 =" 1|} (4.93)

as At — 0 for all k > n.

THEOREM 4.24 (Convergence). Suppose that the n-step method is consistent with .
The stability condition is necessary and sufficient for the convergence. Moreover, if x € CPT!
and the truncation error is O((At)P), then the global error ey, = z(t;) — x* is also O((At)P).

PrOOF. One way to prove Theorem is to rewrite (4.72) as a one-step method in a higher
dimensional space. For this, let ¢(t, z*,..., 2*t" "1 At) be defined implicitly by

n—1 n—1
¢ =Y B f(tras, @) + Bl f (trgn, (AP — > o)
Jj=0 j=0
where oy = a;/ay, and B} = Bj/a,. Then, (4.72)) can be written as
n—1
attt = =3 ajatt + (M.
i=0

Introduce the n-dimensional vectors
X = (@Mt e T B (e, XE AL = oty 2", 2T A)(1,0,...,0) 7,

and the n x n matrix
! ! !

—Qp 1 —Qpy_ 5 ... - —Qy
1 0 . -0
A= 1 .0
1 0

The n-step method (4.72)) can be rewritten as
XEFL = AXE 4 Atd(t, X* At),

and the concepts of consistency and stability can be expressed in this new notation. In fact, let z(t)
be the exact solution and denote by X (¢,) = (2(tg4n_1),...,2(tx))". The consistency condition

implies that
| X (tgr1) — AX (tg) — AtP(tg, X (tg), At)] = 0 as At — 0.
Moreover, if is of order p then
| X (thi1) — AX (ty) — AtD(tg, X (tr), At)| = O((AL)P)

as At — 0. Furthermore, the stability condition (4.93]) implies that there exists a matrix norm
such that ||A|| < 1. The rest of the proof is similar to the proof of Theorem O
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4.6. Stiff equations and systems

Let € > 0 be a small parameter. Consider the initial value problem

de(t) 1
5 =), te[oT), (4.94)

z(0) =1,

which has an exponential solution z(t) = e~%/¢. The explicit Euler method with step size At relies
on the iterative scheme

bl — (1 - —)at, 2t =1, (4.95)

T

with solution A
o= (1= 2y,
€

Since € > 0 the exact solution is exponentially decaying and positive. But now, if 1 — % < -1,
then the iterates grow exponentially fast in magnitude, with alternating signs. In this case,
the numerical solution is nowhere close to the true solution. If —1 < 1 — % < 0, then the
numerical solution decays in magnitude, but continue to alternate between positive and negative
values. Thus, to correctly model the qualitative features of the solution and obtain a numerically
accurate solution, we need to choose the step size At so as to ensure that 1 — % > 0, and hence
At < e.

Equation is the simplest example of what is known as a stiff differential equation.
In general, an equation or system is stiff if it has one or more very rapidly decaying solutions. In
the case of the autonomous constant coefficient linear system , stiffness occurs whenever the
coefficient matrix A has an eigenvalues A;, with large negative real part: A;, < 0, resulting in a
very rapidly decaying eigensolution. It only takes one such eigensolution to render the equation stiff,
and ruin the numerical computation of even well behaved solutions. Even though the component of
the actual solution corresponding to Aj, is almost irrelevant, as it becomes almost instantaneously
tiny, its presence continues to render the numerical solution to the system very difficult. Stiff
equations require more sophisticated numerical schemes to integrate.

Most of the numerical methods derived above also suffer from instability due to stiffness of
for sufficiently small positive e. Interestingly, stability of suffices to characterize
acceptable step sizes At, depending on the size of —1/e, which, in the case of linear systems, is the

eigenvalue. Applying the Trapezoidal scheme (4.29) to (4.94) leads to

At
h Tl = gk — Q—(xk +2*t), 2% =1, (4.96)
€
which we solve for
k+1 1- % k 0 ( )
T = cxt oz’ =1. 4.97
1+ 4t
Thus, the behavior of the numerical solution is entirely determined by the size of the coefficient
_ At
2¢
K= AL°
1+ 57

Since |p| < 1 for all € > 0, the Trapezoidal scheme (4.96]) is not affected by stiffness.
In the system of equations (1.5, the parameter satisfies 0 < a < 1. This makes (1.5)) a stiff
system of ODEs.

4.7. Perturbation theories for differential equations

4.7.1. Regular perturbation theory. Let ¢ > 0 be a small parameter and consider the

differential equation
d
- = fltae, teloT),

z(0) = zg, zo € R.

(4.98)
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If we suppose that f € C', then (4.98) is a regular perturbation problem. The solution z(t,¢)
is in C! and has the following Taylor expansion:

w(t,e) = O (t) + ez (t) + o(e) (4.99)

with respect to € in a neighborhood of 0.
Clearly, the unperturbed term z(9) is given as the solution of the unperturbed equation

dz®
dt
29(0) =20, z0€R,

= fo(t,z®), te[0,T],

(4.100)

where fo(t,z) := f(t,z,0). Moreover, the first-order correction term z(!), which is the derivative
of z(t, €) with respect to € at 0,

ox
1)y = 22
(1) = 92 (1,0),

solves the equation
dz™ B (lf

dt ox
1 (0) = 0.

of
(0) (1 4 9 (0) T
(1,2, 002t + = (t,2,0), t€[0,7], (4.101)

The initial condition 2" (0) = 0 follows from the fact that the initial condition zo does not depend
on e.

The numerical methods described in Section [£:4] can be used to efficiently compute the unper-
turbed solution z(®) and the first-order correction z(!).

REMARK 4.25. Consider the equation

dx
b 1
P ex+1, te0,+oo, (4.102)
z(0) = 0.
The solution can be easily found
—et __ 1
o(te) = (4.103)
€
If we apply the perturbation theory to , then by solving (4.100) and (4.101) with
ft,x,e) = —ex + 1,
we find
t2
O =t and V() = 2
which gives
t2
z(t,e) = —t + €5 + o(e). (4.104)

The approzimation of course coincides with the Taylor expansion of the exact solution given
by . However, note that the approzimation is valid only for fized t = O(1) and diverges to
+00 as t increases while the exact solution converges to —1/e. The limits e — 0 and t — 400 do
not commute. Erpansion is mot uniformly valid in time.
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4.7.2. Singular perturbation theory. In this subsection we consider a system of ordinary
differential equations (together with appropriate boundary conditions) in which the highest deriv-
ative is multiplied by a small, positive parameter €. In what follows we give the general (nonlinear)

form of the system: ,
d’z dx

€ = ft,x, E)’ t € (0,7,

z(0) = xo, x(T)=ux1.
The problem above is called a singular perturbation problem, and is characterized by the fact
that its order reduces when the problem parameter € equals zero. In such a situation, the problem
becomes singular since, in general, not all of the original boundary conditions can be satisfied by
the reduced problem. Singular perturbed problems form a particular class of stiff problems.

Consider the following linear, scalar and of second-order ODE which is subject to Dirichlet

boundary conditions:

(4.105)

d’z dx
— +2— = t 1
S + 7 +z=0, telo0,1], (4.106)
z(0)=0, z(1)=1.
Let
1—+v1-—
a(e) :== L and fB(e):=14++v1—ce
€
The solution of equation (4.106) is given by
e—ot _ e—ﬂt/e
x(t,e) = t €10,1]. (4.107)

e —e Ble’
The solution z(t, €) involves two terms which vary on widely different length-scales. Let us consider

the behavior of z(¢,€) as ¢ — 07. The asymptotic behavior is nonuniform, and there are two cases,
which lead to matching outer and inner solutions.

(i) Outer limit: ¢ > 0 fixed and € — 0. Then z(t,¢) — 29 (t), where
O (t) := e1-0/2, (4.108)

This leading-order outer solution satisfies the boundary condition at ¢ = 1 but not the
boundary condition at ¢ = 0. Indeed, z(®(0) = e'/2.

(ii) Inner limit: ¢/e = 7 fixed and € — 0F. Then z(er,¢) — X0 (7) := e'/2(1 —e~?7). This
leading-order inner solution satisfies the boundary condition at ¢ = 0 but not the one
at t = 1, which corresponds to 7 = 1/e. Indeed, lim,_, o, X () = !/2.

(iii) Matching: Both the inner and outer expansions are valid in the region ¢ < t < 1,
corresponding to t — 0 and 7 — 400 as € — 0. They satisfy the matching condition

i Oy = 1 (0)
t1_1>1(1)1+ zVN(t) = TEI-EOOX (7). (4.109)
Let us now construct an asymptotic solution of without relying on the fact that we
can solve it exactly.
We begin with the outer solution. We look for a straightforward expansion

z(t,€) = 2O (t) + exV(t) + O(e?). (4.110)

We use this expansion in (4.106)) and equate the coefficients of the leading-order terms to zero.
Guided by our analysis of the exact solution, we only impose the boundary condition at ¢ = 1. We
will see later that matching is impossible if, instead, we attempt to impose the boundary condition

at t = 0. We obtain that

dz(©

) 0) — 1
7 +z 0, telo,1],

(1) = 1.

The solution of (4.111]) is given by (4.108), in agreement with the expansion of the exact solution
x(t, €).

(4.111)
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Next we consider the inner solution. We suppose that there is a boundary layer at ¢ = 0
of width d(e), and introduce a stretched variable 7 = t/J. We look for an inner solution
X(r,€) = z(t,€). Since

d_1d
dt ~— §dr’
we find from (4.106| that X satisfies
e X 2dX
——— 4+ - — 4+ X=0.
02 dr? + o dr +

There are two possible dominant balances in this equation:

(i) 0 =1, leading to the outer solution;

(if) § = ¢, leading to the inner solution.
Thus we conclude that the boundary layer thickness is of the order of €, and the appropriate inner
variable is 7 = t/e. The equation for X is then

X dX

T2 0% L x =
dr? + dr te 0,
X(0,¢) = 0.

We impose only the boundary condition at 7 = 0, since we do not expect the inner expansion to
be valid outside the boundary layer where t = O(e).
We seek an inner expansion

X(r,e) = XO(r) + X (1) + O(e?)

and find that
A2 x(0) dx (0

=0
dr? * dr ’ (4.112)
X©0) =o0.
The general solution of (4.112) is
XO(r) = (1 —e?7), (4.113)

where ¢ is an arbitrary constant of integration.
We can determine the unknown constant ¢ in (4.113) by requiring that the inner solution
(4.113) matches with the outer solution (4.108). Here the matching condition is simply

lim 2 () = lim X©(7),
t—0+ T—+00

which implies that ¢ = /2.

In summary, the asymptotic solution as € — 07 is given by
(.0 e'/2(1 —e27) as e — 01 with t/e fixed,
z(t,e) =
’ e1=8/2 a5 € - 01 with ¢ fixed.

4.7.3. WKB approximations.
4.7.3.1. Schrddinger equation. Consider the Schrodinger equation
v 2y
ie%—t(t,m) + 622?(15,1’) —V(x)¥(t,z) =0, ze€R,t>0,
\I!(va) = \I’O(m)a T € Ra

where € « 1 and V(z) > 0.
Write

(4.114)

. S(t,x)

U(t,z) =€«

It follows that

oS  8S, . 98 -
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Hence, the leading order term in the asymptotic expansion with respect to e
S(t,z) = SO (t,z) + eSS (¢, ) + ...
satisfies the Hamilton-Jacobi type equation

oS as©
(0) =
S (120) + (5 ) (1) + V(@) SO (t,2) = 0.

4.7.4. Wave equation. Consider the Helmholtz equation
L d* W
€ W(w) +V(2)¥(z) =0, z€R, (4.115)
where € € 1 and V(z) > 0.

Using the ansatz
S(x)

U(z) = a(z,e)e «

= (a9(2) + eaV(z) +..)e <,
it follows that

ds , . dSda . d*S  ,d%a
—|— V) + 2ie—— — — =0.
( |dx| V) + " dz dr +Z€ad;ﬁ te dx?
Therefore, the phase S is solution to the eikonal equation
ds .
|% (z) = V(2), (4.116)

and the leading order term a(?) in the asymptotic expansion of the amplitude a(z, €) with respect
to € satisfies the transport equation

ds da'® d?s
2-= 0O== _q. 4.11
dr dx ta dx? 0 (4.117)

4.8. Problems

PROBLEM 4.26. (i) Prove Proposition[{.12
(ii) Prove estimate .

PROBLEM 4.27. Prove that the so-called explicit Milne’s four-step method:

A
et =gt % 8f(tr, o) — 4f (tr—1, 2" ") + 8f (tp—2,2"?)

is of order 4.



CHAPTER 5

Geometrical numerical integration methods for differential
equations

5.1. Introduction

Geometric integration is the numerical integration of a differential equation, while preserving
one or more of its geometric properties exactly, i.e., to within round-off error. Many of these
geometric properties are of crucial importance in physical applications: preservation of energy,
momentum, volume, symmetries, time-reversal symmetry, dissipation, and symplectic structure
being examples. The aim of this chapter is to present geometric numerical integration methods for
ordinary differential equations. We concentrate mainly on Hamiltonian systems and on methods
that preserve their symplectic structure, invariants, symmetries, or volume.

5.2. Structure preserving methods for Hamiltonian systems

The numerical methods discussed in Chapter [4 are designed for general differential equations,
and a distinction was drawn only between stiff and nonstiff problems. As shown in Chapter [T}
Hamiltonian systems are an important class of differential equations with a geometric structure
(their flow has the geometric property of being symplectic), whose preservation in the numerical
discretization leads to substantially better methods, especially when integrating over long times. In
general, most geometric properties are not preserved by the standard numerical methods presented
in Chapter [

Some of the reasons we are motivated to preserve structure are

(i) it may yield methods that are faster, simpler, more stable, and/or more accurate for some
types of ODEs;

(ii) it may yield more robust and quantitatively better results than standard methods for the
long-time integration of Hamiltonian systems.

The standard problem in numerical ODEs discussed in the previous chapter is to compute the
solution to an initial value problem at a fixed time, to within a given global error, as efficiently as
possible. The class of method, its order and local error, and choice of time steps are all tailored to
this end. In contrast, a typical application of a geometric numerical method is to fix a (sometimes
moderately large) time step and compute solutions with perhaps many different initial conditions
over very long time intervals.

5.2.1. Symplectic methods. Consider the Hamiltonian system

dp 0H

dat = —8761(1?; Q);

dq oOH (5.1)
at = aip(l% q),

p(0) = po, ¢(0) = qo,

where pg,go € R?, and the Hamiltonian function H : R? x R — R is a smooth function.

67
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Let = (p,q)". The Hamiltonian system of equations (5.1) can be rewritten as a first-order
differential equation

dx
T f(x)a
dt (5.2)
z(0) = o € R??,
where 29 = (po,qo) " and

f : R? 5 R
rw J 'VH(2).
DEFINITION 5.1. Let J be defined by . A numerical one-step method (p**1, ¢*+1) =

D (p*, q%) for solving is called symplectic if the numerical flow ®x; is a symplectic
map:

O, (p.q) " TN (p,q) = J, (5.3)

for all (p,q) and all step sizes At.
5.2.2. Symplectic Euler methods.

THEOREM 5.2. The implicit Euler method for solving

0H
P = = At (T gY),
6; (5.4)
= qk+Ata—(pk+1,qk),
p

is symplectic. Moreover, if the Hamiltonian function H(p,q) = T'(p) + V(q) is separable, then
is explicit.

PrOOF. Let ®5; be the numerical flow associated with (5.4). We have

(I)IAt(pk qk) — 6(pk+1aqk+1)

a(p*, q")
From
2
H
T+ Atgp 50 O I A2
) (0", ¢") = o2 |- (5.5)
ATH 0 I+At
op? dpdq
where the matrices %2;;:’ , 8;21 , and %215 are evaluated at (p¥T! ¢*), one can easily verify by com-
puting ®'y,(p*, ¢*) from (5.5) that the symplecticity condition (5.3 holds. O
A variant of (5.4)) is
OH
P =t = At g,
q
oI (5.6)
¢ = g A (f ).
p

Analogously to (5.4]), the Euler method (/5.6)) is symplectic and turns out to be explicit for separable
Hamiltonian functions.
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5.2.3. Composition of symplectic methods.

THEOREM 5.3. The composition of two symplectic one-step methods for solving 15 also
symplectic.

PROOF. Let Q(Alz and @fz be the numerical flows associated with two symplectic one-step
methods for solving 1} Let ®p; := ‘I>(A22 o <I>(1). We have

(@, () TR, (2) = (@) (@) (1) ()T T(@R)) (z*)(@1))' (z)
Vo1 (1)

(28] (@) T (28D (@) TT(@E) (@) (2K)) (x)
= (%) (@) TJ(@R) () = J,
where z* = <I>(Alt) (z). That is, the composition of symplectic one-step methods is again a symplectic
one-step method. O

5.2.4. The adjoint method. The flow ¢; of an autonomous differential equation dz/dt =
f(z) satisfies ¢:% = ¢;. This property is in general not satisfied by the one-step map ®; of a
numerical method.

DEFINITION 5.4. The adjoint method ®%, of a method ® . is the inverse map of the original
method with reversed time step —At, i.e.,

* . F—1
(I>At T ¢)7At

In other terms, ®4, is defined by replacing, in the method associated with ®a., At by —At and
exchanging the superscripts k and k + 1.

The adjoint method satisfies the usual properties.

ProrosiTION 5.5. We have

() (®3)" = Bay; |

(i) (Q(Azt) o Q(Alz)* = (@gz)* o (<I’(Azt))* for any two one-step methods Q(Alz and ‘I"(AQQ;
(ii) (Pae/o (I)*At/Q)* = Par/2 0 Phypn-

5.2.5. Leapfrog method. Define the leapfrog method (Verlet method and Strémer-Verlet
method are also often-used names) for solving the Hamiltonian system (5.1) by

( it —ph ~ AEOH ey iy
2 6q ) )
OH O0H ,6 . 1
=g+ — 5 <6p (p’”+5,qk)+ap(p'”+5,q’““)>, (5.7)
k+1 _  k+3 _ AtOH i1 pyy
\ prtt=ptte 26q(p 2,¢"7).

THEOREM 5.6. The leapfrog method for solving the Hamiltonian system is symplec-
tic.

ProOF. The leapfrog method (5.7)) can be interpreted as the composition of the symplectric
Euler method

1 At 0H 1
prte k‘?aT( M24Y),
(5.8)
kL ok Haj( k+%’ k)’

q ¢+ 5o
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and its adjoint

1 AtOH 1
¢ttt = gktE +787p( ks, ),
(5.9)
Pl = pk+% _ ﬁaj( k45 k+1)
2 dq ’ '

In other terms, if ¥a; denotes the numerical flow associated with the leapfrog method and ®a;
the one associated with the symplectic Euler method (5.4), then

\pAt = @*At/g [®] ¢At/2' (510)
The methods (5.8) and (5.9) are symplectic. Hence their composition (5.7)) is also symplectic. O

5.2.6. Preserving time-reversal symmetry and invariants.

5.2.6.1. Preserving time-reversal symmetry. The leapfrog method is symmetric with re-
spect to changing the direction of time: replacing At by —At and exchanging the superscripts k
and k + 1 results in the same method. In terms of the numerical one-step map ®a; : (p*, ¢*) —
(p**1, ¢"+1), the symmetry property is stated as follows.

DEFINITION 5.7. The numerical one-step map ®a; is said to be symmetric if
Dap = Phy(=D7Y,). (5.11)

Relation does not hold for the symplectic Euler methods and (5.9), where the time
reflection transforms (5.8) to (5.9) and vice versa.

The time-symmetry of the leapfrog method , which follows from and item (iii)
in Proposition [5.5] implies an important geometric property of the numerical map, namely re-
versibility.

Assume that

H(=p,q) = H(p,q). (5.12)
Then the system has the property that inverting the direction of the initial py does not change
the solution trajectory. The flow ¢; associated with satisfies
¢t(p07q0) = (pa q) = ¢t(_p7 q) = (_p07q0)' (513)
Relation shows that ¢; is reversible with respect to the reflection (p,q) — (—=p,q).

DEFINITION 5.8. The numerical one-step map ®az is said to be reversible if
for all p,q and all At.
Since
(I)At(pa q) = (ﬁ; d) = (I)fAt(_p; q) = (_ﬁa (j)ﬂ (515)
the symmetry (5.11)) of the leapfrog method ([5.7) is therefore equivalent to the reversibility (5.13]).

THEOREM 5.9. The leapfrog method applied to with H satisfying is both
symmetric and reversible, i.e., its one-step map satisfies and .

REMARK 5.10. Consider a one-step method ®a; of order one. Then, formally,
Dat(70) = pat(wo) + Clzo) At + O((AL)?),
and
@ (0) = pai(zo) — Clwo) At + O((AL)?),

with pagpar being the exact flow. Therefore, if ®ay is symmetric, then it should be of order two
since C(x¢) has to be zero.

REMARK 5.11. From Remark it follows that the composition with the adjoint method
turns every consistent one-step method of order one into a second-order symmetric method

Uar = Paiyz o Phypo-
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5.2.6.2. Preserving invariants.

DEFINITION 5.12. A numerical one-step method ®a; for solving is said to preserve the
invariant F if F(®a(p,q)) = Constant for all p,q and all At. If F = H, then we say that the
scheme preserves energy.

THEOREM 5.13. The leapfrog method applied to preserves linear invariants and
quadratic invariants of the form

F(p,q) =p" (Bq+b). (5.16)
PROOF. Let the linear invariant be F'(p,q) =b'q + ¢ p, so that
OH OH
T - ) = 0
o (pq) —c 94 (p,q) =0,

for all p,q. Multiplying the formulas for ®a;(p, q) in (5.7) by (¢,b) " thus yields the desired result
on linear invariants.

Next we turn to the conservation by the leapfrog method of quadratic invariants of the form
(5.16). In order to prove that (5.7) applied to (5.1) preserves quadratic invariants of the form
F(p,q) = p" (Bq+1), we write (5.7) as the composition of the two symplectic Euler methods (/5.8))
and (5.9). For the first half-step, we obtain

1 1
P**=2) " (Bg* = +0) = ()" (Bg" +b).
For the second half-step, we obtain in the same way
(P T (B +0) = (") T (Bg*T3 +b),

and the result follows. O

The energy is generally not preserved by the leapfrog method (5.7). Consider H(p,q) =
3 +¢%). Applying (5.7) gives

phtl _ [1 _ (Azt) —At(1 - (A4t) )-I Pk (517)
s [ At 1— % J ¢*

Since the propagation matrix in ([5.17) is not orthogonal, H (p, q) is not preserved along numerical
solutions.
Consider the Hamiltonian

1
H(p,q) == §pTM‘1p +V(q), (5.18)

where M is a symmetric positive definite matrix and the potential V' is a smooth function.
In the particular case of the Hamiltonian (5.18]), the leapfrog method (5.7) reduces to the

explicit method

1 At
phrz =pk— 7VV(q’“),

@ =gF + At PRt e (5.19)

At )
P =phte = V().

Note that the Hamiltonian ([5.18)) is invariant under p — —p and the corresponding Hamiltonian
system (|5.1) is invariant under the transformation

p -p
HE -
The time-reversal symmetry of (5.1]) is preserved by the leapfrog method ([5.19).
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5.2.6.3. Preserving volume. Recall that, due to equality of mixed partial derivatives, (5.2) is
divergence-free, i.e.,

d

ofi
i=1 8‘%7’
A remarkable feature of divergence-free vector fields is that the associated flows are volume

preserving.
Given a map ¢ : R?¢ — R?? and a domain , by change of variables

voM¢<ﬂ>>=:/£|det¢%y)|dy,

where ¢’ is the Jacobian of ¢. It follows that ¢ preserves volume provided that

V-f:= =0.

|det ¢'(y)| =1 fory € Q. (5.21)
Let ¢; be the flow associated with dz/dt = f(x), where V - f = 0. Then ¢, satisfies
d
WD) — 1gu(w)),

and therefore, its Jacobian ¢’ satisfies

%%Q:fwmmdwy

Assuming ¢} is invertible yields

d
tr| 861000 = e ot
Combining trf' = V- f = 0 and Jacobi’s formula for the derivative of a determinant gives
d 1 d
tr| 800100 = G ) =

Hence,
det ¢} (y) = det ¢j—o(y) = 1.
The following result holds.

THEOREM 5.14 (Liouville’s theorem). The flow ¢; associated with the system

X ),

z(0) = 9 € R*?,

(5.22)

where the C* vector field f is divergence-free, is a volume preserving map (for all t).

Note that if the system (5.22) is Hamiltonian, then Theorem can be immediately obtained
from the symplecticity of the associated flow. In fact, from

CANPLA

it follows that | det ¢}|*> = 1 since det J = 1. Moreover, using the facts that det ¢,_, = 1 and the
continuity of the determinant, we obtain that det ¢} =1 for all ¢.

REMARK 5.15. Since
d d

0’H *H
1 H —
VoI Z 8:U]8xd+] Bacdﬂaa:] =0

for any smooth function H, Hamzltoman systems are dwergence free equations. If d = 1, all
divergence-free systems are Hamiltonians since V- f = 0 implies that f = V x H for some function
H € C? (at least locally) and

J 'V =Vx.
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For d > 1, the previous identity is no longer true. Consequently, divergence-free systems are not
necessary Hamiltonians.

DEFINITION 5.16. A numerical one-step method for solving is said to be volume pre-
serving if | det ®s,(p,q)| =1 for all p,q.

Note that if (5.22) is a Hamiltonian system, then any symplectic numerical method preserves
the volume. However, no standard methods can be volume-preserving for all divergence-free vector
fields.

EXAMPLE 5.17. Consider the divergence-free problem

d
@ _ Az,
dt (5.23)
z(0) = g € R??,
where A € May(R) and trA = 0. The Explicit and implicit Euler’s schemes for solving
zF = 2% 4 AtAx”,
Pt = b 4 AtAzh L,
are volume-preserving if and only if
|det(I + AtA)| =1,
and
|det(I — AtA)| =1,
respectively.

5.2.7. Composition methods. Now using the fact that (5.2) is divergence-free, we have
(when fo4 is assumed for simplicity to depend only on za4),

fule) = L@+ [ S,
Ihd 2d-1 o, (5.24)
= f2(Z) _/7 ( ) agi@) dzag,
z i=1 v

where T is an arbitrary point which can be chosen conveniently (e.g., if possible such that foq(Z) =
0).
Substituting (5.24) into (5.2) yields

dZ’l

o fi(z),
drog—1 (5.25)
7 = foqg 1(z),
diL’Qd _ _ = 2d afz(m)
o = @Y [ e
We now split this as the sum of 2d — 1 vector fields
= 2d — 1
7 0, i#j,2d-1,
dx;
- = fi@), (5.26)
diL‘Qd ¥2d 8fj (.Z’)

szd:

7 f2a(T)0; 291 —[ oz,

z
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for j =1,...,2d — 1. Here ¢ is the Kronecker delta function.

Note that each of the 2d — 1 vector fields is divergence-free. Moreover, we have split
into the 2d — 1 problems (5.26)). Each of these problems has a simpler structure than (5.2). In fact,
each of them corresponds to a two-dimensional Hamiltonian system

% _ _ aH]
dt B al'2d7
dra  OH, (5.27)
dt - aiEj ’
with Hamiltonian o
H](ﬁf) = f2d(f)6j,2d—1xj - /7 f](iI,') d.’L‘Qd, (528)

treating z; for i # j, 2d as fixed parameters.
Each of the two-dimensional problems can either be solved exactly (if possible), or

approximated with a symplectic integrator ®

given by

A volume-preserving integrator for f is then

Bp =W 0 0P 0. 0 dRIY) (5.29)
5.2.8. Splitting methods. Consider a Hamiltonian system
— = f(z)=J 'VH(z), H(z)= Hi(z)+ Ha(z), (5.30)

and suppose the flows

d dz

=) =J'VH(@@) and = fr) = I V@), (5.31)

can be exactly integrated.
Let QSS) and ¢§2) be the exact flows associated with the equations in 1) and let ¢ be the
flow associated with (5.30).
Since the exact solution of a Hamiltonian system defines a symplectic map, we have
(@I =7 and (7)) I(87) =7

Next consider the numerical method defined by composing these two exact flows:

Bai(e) = 6] 0 04} (@):
This map is also symplectic, since
(@5, (@) TR (2) = ((65))(@)(98)) (@) T (9K} () (9,
= ((BR)' @) (B (@) T (9K (=)
= (B8 @) I8 (@) = 7,
where z* = ng(l)( ). That is, as shown in Theorem the composition of symplectic maps is
again a symplectic map.
If, from a given initial value zq, we first solve the first system to obtain a value x 1, and from

this value integrate the second system to obtain z;, we get two numerical integrators where one is
the adjoint of the other:

) ()
¢80 (@)

bu= ool a3, ol o)
By Taylor expansion, we find that
62 0 6 (20) = pas(wo) + O((AL)?),

so that ®; (and analogously ®%,) gives approximation of order one to the solution of ([5.30).
Another idea is to use a symmetric version and put

at =081 0 0%) 0 0%} 5. (5.32)



5.3. RUNGE-KUTTA METHODS 75

By breaking up in (5.32)
(2) _ (2 (2)
bPar = ¢At/2 °© ¢At/2
an using Taylor expansion, we see that (5.32)) is symmetric and of order two.
ExXAMPLE 5.18. Consider the separable Hamiltonian H(p,q) = U(p)+V (q). Based on splitting
the Hamiltonian H into U and V, we interpret the symplectic Euler methods and the leapfrog
method for solving as splitting methods.

To do so, we consider @) as the sum of two Hamiltonians, the first one depending only on
p, the second one only on q. The corresponding Hamiltonian systems

dp dp 9V

£ _9 -2
dg oU and d
— =—5-(p), <1y,
dt Jdp dt
p(0) = po,q(0) = qo, p(0) = po,¢(0) = qo,
can be solved explicitly
t) = ov
Pe) =po, p(t) =po — t——(a0),
; taU and 0q
a(t) = a0 + 75 (po), o) = .
Denoting the flows of these two systems by ¢ and ¢, we see that the symplectic Euler method
oV
kL _ ok _ Ay k
p p 34 (€"),
ou
K+l _ ok o A¢ k+1
q @+ Aty ),
is just the composition
9K+ © DA (5.33)
and its adjoint is
$Ri © DR (5.34)
The leapfrog method
At 9V
k+3 _ ok 2UYYV g
p P 0 (q"),

oU .
kL _ ok 0 AT (ks
q q" + ap (p"r2),

pk+1 :pk+% —_ Haiv

k+1
\ > 04 (")

18
ORe/2 © A1 © ORejo- (5.35)
Decompositions , , and give second proofs of Theorems and in the

case of a separable Hamiltonian. They also show that the symplectic FEuler methods are of order
one while the leapfrog method is order two.

5.3. Runge-Kutta methods

Now we turn to Runge-Kutta methods

zip = ¥ + (At) Z aij (),

j=1

e =k (A1) bif (i),
i=1

(5.36)



76 5. GEOMETRICAL NUMERICAL INTEGRATION METHODS FOR DIFFERENTIAL EQUATIONS

for solving ([5.2).
THEOREM 5.19. (i) All the Runge-Kutta methods preserve linear invariants;
(ii) The Runge-Kutta method whose coefficients satisfy the condition

biaij + bjaji - blb] = 0, Z,] = ]., co.m, (537)
preserves all quadratic invariants.

PROOF. Define ®a; by 2! = ® o, (2z%). Let F(z) = d"z, where d € R*?. We compute

F(@pi(a%) =d" (2" + At bif(zin)) = d" ¥,
i=1
since d' z is assumed to be an invariant of 1) and hence de(a:i7k) =0.
Next, let F((z) = 2" Cz, where C' is a symmetric 2d x 2d matrix. Assume that F is an invariant
of (5.2). We have
z Cf(z) =0 for all . (5.38)

On the other hand, we have

F(@ar(@h)) = (" +AtY bif(jn)) Cla® + ALY bif (zin))
j=1 i=1
= (2F TC’:L'+Atz bex,k Z xjkTCac
1=1 =1
+(At)? Z bibjf(zjr) " Cf (i)
i,j=1

From (j5.38)), we obtain
(wik) Cflwir) =0,
and hence, by writing
F=a2b 4 Atz aij f(xjx) — Atz aij f (k) = ik — Atzaijf(mj,k);
j=1 j=1 j=1

we get

F@aab) = (%) 0t — (A2 3 biag; f(o0) Cf(@is) — (AD? Y bjagif (@) Cf (i)

i,j=1 i,j=1
+(At)? Z bib; f (k)T C f(zin)
i,j=1
= (=)TCa" - (At)2< Z (biaij + bjaj; — bibj)f(wj,k)TCf(%k))-
ij=1

Therefore, the Runge-Kutta method ([5.36]) preserves the quadratic invariant F' provided that ( -
holds.

Lemma shows that H is an invariant of (5.2). If H is quadratic, then Theorem says
that the energy is preserved by the Runge-Kutta method (5.36) provided that condition (5.37))

holds.
The following characterization of symplectic Runge-Kutta methods for solving (5.2) holds.

THEOREM 5.20. The Runge-Kutta method for solving whose coefficients satisfy
condition s symplectic.
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ProOOF. Theorem shows that the flow ¢, is a symplectic transformation (if H is smooth
enough). Let W(t) := 29:(20) — 4! where g is the initial condition. We have

Oz
aw
o~ @ (5.39)
U(0) = I.

Apply a Runge-Kutta method satisfying (5.37) to (5.2) and (5.39) to obtain the approximations
21 and ¥*+! from 2% and U*. Since ¥ ' JV is a quadratic invariant of the augmented system

(5.36) and (5.39), we obtain
(TMTJok = J  for all k.

Suppose for a moment that
8xk+1

q,k—&-l — )
ox*

(5.40)

We obtain

(awk-&-l T axk+1
ok Oxk

which means that the Runge-Kutta method for solving whose coefficients satisfy condition

(5.37) is symplectic.

In order to complete the proof, we prove . We want to show that the result of first
applying ®a; and then differentiating with respect to z* is the same as applying the same Runge-
Kutta method to (5.39).

In fact, on the one hand, by differentiating with respect to z* we obtain

=

0z 1, < O i
awk :I‘l‘(At)]:Zla”fl(l'j’k)W,
i . ) (5.41)
[ . Tik
ok =I+ (At) ; bzf (mz,k) Ok .

Multiplying the first equation in (5.41) by f'(z;s) yields the linear system in the unknowns

Owi
(@i k) Tt

5.(62‘7]@ - ox ik
j=1
Ozh+! L Ow;
o = [+ (A1) ;bif (i) 5 (5.43)
On the other hand, applying the same Runge-Kutta method to (5.39)) yields
m m
\Iji,k = f’(.’L‘k + At Z a,-jxﬁk) (I + (At) Z aijTj7k> s (544)
j=1 j=1
TEH = T4 (A1) Y0¥ (5.45)
i=1
We conclude the proof by observing that (5.44)) is the same system as (5.42) but in the unknowns
W, %t =1,...,m. It is easily seen that this system has a unique solution for sufficiently small At,
so it must be 5
‘I/Lk :fl(ﬂfi7k) aa;j;{k fOI‘i: 1,...,m,

which, in view of (5.43) and ([5.45), yields (5.40).
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For arbitrary Hamiltonians, the only known symplectic one-step numerical methods are the
symplectic Runge-Kutta methods of the form (4.55) that satisfy the symplectic condition ([5.37).
ExamMPpLE 5.21. The midpoint scheme for solving (@)
ok 4+ phtt
2 b}
is symplectic and preserves linear and quadratic invariants. Moreover, it is time-reversible.

b = 2F 4 Atf( (5.46)

5.4. Long-time behaviour of numerical solutions

In we have seen that the energy is not exactly preserved by the leapfrog method (5.7).
In that example, it is however, approximately preserved. As shown in the following theorem, the
symplecticity of a one-step numerical method yields an approximate conservation of energy over
very long times for general Hamiltonian systems.

THEOREM 5.22. For an analytic Hamiltonian H and a symplectic one-step numerical method
D¢ of order n, if the numerical trajectory remains in a compact subset, then there exist h > 0 and
At* > 0 such that, for At < At*,

H@p"* q*) = H@, ¢°) + O((At)"™), (5.47)
for exponentially long times kAt < eat. Here, (PPt ") = A (", ¢Y).

Theorem (5.22)) is based on simplicticity. It can be proved via backward error analysis. The
idea is to deduce the long-time behavior estimate (5.47) from properties of the solution of the
equation corresponding to an approximation Ha; of the Hamiltonian H.

5.5. Problems

PrROBLEM 5.23. Consider the flow ¢; of . Given a one-step numerical scheme x**! =
Dar(xh), its adjoint
P = 2y, (o)
is the method defined by
l'k — ¢7At($k+1)7
or equivalently,
e = @), (o).

(i) Prove that ¢ o s = Pyas and hence, ¢ o d_y =1, for t,s € R.
(ii) Prove that ®a is symmetric if and only if Ay = PX,.
(ili) Prove that (®h,)* = ®as.
(iv) Prove that for any one-step methods ®a; and U ay,

(ParoWay)* = T), 0 P4,
(v) Prove that for any one-step method ®ay,
gt = Qpy 0 @Zt/2($k)
s a symmetric method.

PROBLEM 5.24. Consider the Runge-Kutta method that is consistent, i.e., Zzl b; =1, and
with coefficients such that Z;n:l aij = ¢, for 1 <i <m.
(i) Prove that the adjoint of the Runge-Kutta method is again a Runge-Kutta method, with
coefficients given by
aj; = bmi1—j — Amt1-im+1-j, 0; =bpy1-i for 1 <d,j <m.

(ii) Deduce that if the method is symmetric, then a;; = b; — Gm41—imt1—; for all i,j =
1,...,m.
(iii) Prove that, if the Runge-Kutta method is explicit, then it can not be symmetric.
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PROBLEM 5.25. Consider the average vector field method

1
oFtl =gk 4 At/ F(O2"F1 4 (1 - 6)z*) do, (5.48)
0

where the vector field f is Lipschitz continuous.

(i) Prove that (5.48

(ii) Prove that (5.48

(iii) Suppose that the

is well-defined for a stepsize At small enough.
preserves exactly the energy of any Hamiltonian system.
Hamiltonian function is a polynomial. Prove that there exists a quadra-

ture formula (b, ¢;)i=1,....m, with nodes ¢; and weights b;, such that
1 m
/ f(OzFT + (1 - 6)z*) af = Zbif(a:k + ci(z* T — zk)),
0 i=1

where f(z) = J7'VH(z).
(iv) Construct a Runge-Kutta method that exactly preserves a given polynomial Hamiltonian

H.






CHAPTER 6

Finite difference methods

6.1. Introduction

Finite difference methods are basic numerical solution methods for partial differential equa-
tions. They are obtained by replacing the derivatives in the equation by the appropriate numerical
differentiation formulas. However, there is no guarantee that the resulting numerical scheme will
accurately approximate the true solution. Further analysis is required. In this chapter, we establish
some of the most basic finite difference schemes for the heat and the wave equations.

6.2. Numerical algorithms for the heat equation
6.2.1. Finite difference approximations. Consider the heat equation
ou 0*u
e
ot Ox
u(0,t) = u(1,t) =0, t>0,
U(:L’,O) :Uo(w); (S [07 ]-]7

=0, ze€l0,1],t>0,
(6.1)

where 7 > 0 is the thermal conductivity.
In order to design a numerical approximation to the solution u of (6.1)), we begin by introducing
a rectangular mesh consisting of points (3, ;) with

0:t0<t1<t2<... and 0:$0<$1<...<.’EN+1:1.

For simplicity, we maintain a uniform mesh spacing in both directions, with

1
TN+1

representing, respectively, the time step size and the spatial mesh size. We shall use the notation

At = tk+1 — tk, Az = Tj41 — Ty

uf ~ u(z;,tp) where x; = jAz, & = kAL,

to denote the numerical approximation of u at the mesh point (z;,t).
The Dirichlet boundary conditions «(0,t) = u(1,t) =0, t > 0, yield

uf =uk,, =0 forallk>0. (6.2)

As a first attempt at designing a numerical method, we shall employ the simplest finite differ-
ence approximations to the derivatives. The time derivative can be approximated by

ou w(zj, tyyr) — u(zy, te) KL _yk
—(zj,ty) ~ - - Aty L—7 At). :
5 (xj,tr) A7 + O(A?) A7 + O(Ab) (6.3)
Similarly, the second order space derivative is approximated by centered differences

0%u w(wi_1,tr) — 2u(x;, ty) + u(wiptq, ty .
eyt~ MR T 4 o(any)

N~ I j J Az)2).

A+ O((8))

81
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Replacing the derivatives in the heat equation (6.1) by their finite difference approximations (6.3)
and (6.4), we end up with the explicit scheme

E+1 k 3 2 3
u; U +7—u§_1+2u§—u§+1 _0 ©6.5)
At (Ax)? '
fork>0and je {1,...,N}.
Let N
Y
= 6.6
s (Az)?’ (6.6)
and let

u(k) = (ullgauga s 5ulfV)T ~ (u(xlatk)au(m%tk)) s vu('TNatk))T) (67)

be the vector whose entries are the numerical approximations to the solution values at time t; at
the interior nodes.
The scheme ([6.5) can be written in the matrix form

w1 = Au®) (6.8)

where
1=2p p
% 1=2p p
Iz 1-2p  p

Iz 1-2p p
Iz 1—2p
The matrix A is symmetric and tridiagonal: A = diag(u,1 — 2u, u) = In + pdiag(1l, —2,1). Here,
Iy is the N x N identity matrix.

LEMMA 6.1. Let M := diag(b,a,b) be a N x N tridiagonal symmetric matriz. The eigenvalues
of M are

Ap =a+2bcosb,, n=1,...,N, (6.10)
and the corresponding eigenvectors are
vn = V2(sinb,,sin(26,,), ..., sin(N6,)) ", (6.11)
where
g — T
"N+

Moreover, {v,}_; form an orthonormal basis of RN with respect to the (scaled) inner product
+ Zi\il wiw; for u = (uy,...,un)" and w = (wy,...,wy)" in RV,

Applying Lemmato A defined by shows that the eigenvectors v, of A are independent
of u.

REMARK 6.2. By using the following approzimation of the time derivative instead of :

Ou u(x;,ty) —u(z;, tp—1) uk —uf!
E(mj,tk) N~ — AL . + O(At) = ]Tt] + O(At) (6.12)
for k > 1, we obtain the tmplicit scheme
k k k k
u + —uh 2w g 6.13
Y

At (Ax)?
fork>0andje{l,...,N}.

With the same notation as in , the implicit scheme can be written in the matrix
form

But+D) = (0 (6.14)
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where
14 2p —u
- 14+2p —p

o 14+2p —p
B:= ' ) ) = Iy — pdiag(1,—2,1). (6.15)

- 14+2p —p
— 14+ 2p
The matriz B is symmetric and tridiagonal. Moreover, since it is diagonal dominant, it is positive
definite and hence, invertible.

REMARK 6.3. A convex combination of the explicit and implicit schemes and
yields the 6-scheme, for 0 <0 <1,
B+l k k41 k+1 k1 k k k
w; o — Uy N 67_uj_1 + 2uj — Uiy - 0)7_uj_1 + 2uj — Uiy
At (Ax)? (Az)?
fork>0and j e {l,...,N}. If 8 # 0, then the scheme is implicit. For § = 1/2, we obtain the
Crank-Nicolson scheme.

=0 (6.16)

REMARK 6.4. If we consider the heat equation with the periodic boundary conditions

u(0,t) = u(l,t) and g—Z(O,t) = g—z(l,t) fort >0, (6.17)
then should be replaced with
ul =k forall k> 0. (6.18)
If the Neumann boundary conditions,
ou ou
— = —(1,t) = > 1
0.0 = S0 =0 fort>0, (619)
are imposed then one may approzximate those conditions by
k k k k
uy — Up UN+1 — UN
= AL ot A e 2
Az 0 and s 0, (6.20)

and eliminate uf and u¥,,, to calculate only (“?)KJSN- Note that is a first-order approzi-
mation. The second-order approrimations

k k k k
Uy —uz, Uny2 —UN
_ — 21
297z 0 and 97z 0, (6.21)

can be used through the introduction of the two fictitious points x_1 and xnis.

REMARK 6.5. Both the explicit and implicit schemes and are one-step methods.
Higher step methods can be designed by employing appropriate finite difference approzimations to
the derivatives. Examples of two-step finite difference methods are

(i) The Richardson scheme:

k1 k—1 k E_ o,k
;" — Uy N ’)/_Uj71 +2ui —ujy, -0 (6.22)
2A¢ (Az)? ’ '
(ii) The DuFort-Frankel scheme:
k+1 k-1 k k+1 k-1 k
ujt — U, . W—Ujfl tuiT Fuy T Uiy —0: (6.23)
2At (Az)? ’ '
(iii) The Gear scheme:
k+1 koo, k=1 k41 B+ k4l
Bu; T —duj +u; —u; Ty +2u;T —up o (6.24)

21 +7 (Ax)?
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6.2.2. Consistency, stability, and convergence. A general finite difference method is
defined by

FAt,Aw({u;?i;n}mfgmgm+,n*§n§n+) = 07 (625)
where the integers m*,n* define the width of the stencil of the scheme. Here, Fat,az is such that
for any u not satisfying the heat equation, Fa¢ ae({4(Zj1n, thtm) fm—<m<m+.n—<n<n+) does not
converge to 0 as Ax, At — 0.

DEFINITION 6.6 (Consistency and order). The finite difference scheme s consistent
with the equation F(u) = 0 if, for any smooth solution u(x,t), the truncation error defined by
FAt,Am({u(ijrn: tk+m)}m—§m§m+,n—§n§n+) (6'26)

goes to zero as At and Az go to zero independently. Moreover, the scheme is said to be of order
p in time and order q in space if the truncation error is of the order of O((At)? + (Az)?) as At
and Az go to zero.

THEOREM 6.7. The explicit scheme is consistent with the heat equation , of order
one in time and two in space. Moreover, if

vAt 1
—_— = = 6.27
then it is of order two in time and four in space.
ProoF. Let v(z,t) € C%. By the Taylor expansion of v evaluated at (z,t),
v(z,t+ At) —v(z,t —v(x — Az, t) + 2v(x,t) —v(x + Ax,t ov 0%
AR REN) B O R Y ) R R C) DL Iy
At (Az) ot Oz (6.28)
At 9%v ~v(Az)? ot

5 g @) = Ty o (@ 1) + O((A1? + (Az)").

If v is a solution to (6.1)), then it follows from (6.28]) that the truncation error goes to zero as
At,Ax — 0 and hence, the explicit scheme is consistent. Moreover, it is of order 1 in time and 2
in space. If we suppose that (6.27) holds, then the terms in At and (Ax)? cancel out since

v dO3v 5 0
7 =7 2 =7 53
ot Otox ox
Thus, the explicit scheme is of order 2 in time and 4 in space. |

Analogously to Theorem [6.7} the following results can be proved.

THEOREM 6.8. (i) The truncation error for the 0-scheme is of the order of O(At+
(Az)?) for any 0 < 6 # £ < 1 and is of order of O((At)* + (Axz)?) for § = %, i.e., for
the Crank-Nicolson scheme.

(ii) The truncation error for the Richardson scheme is of order of O((At)? + (Ax)?).

(iii) The truncation error for the DuFort-Frankel scheme is of the order of O(% +
(Az)?) and hence, is mot consistent.

(iv) The truncation error for the Gear scheme is of order of O((At)? + (Ax)?).

DEFINITION 6.9 (Stability). A finite difference scheme is stable with respect to the norm || ||,
defined by

N 1
[t} = (ZAwlu?l’“) . 1<r< oo, (6.29)
j=1

where u*) is given by , if there exists a positive constant C' independent of At and Ax such
that

[u®|, < ClJu@]|, for all k > 0. (6.30)
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Note that
[u® oo == sup [uf].
1<j<N

DEFINITION 6.10 (Linear scheme). A finite difference scheme defined by is said to be

linear if is linear with respect to its arguments u;“_t;”

If a finite difference scheme is linear, then it can be written in the form
uwFH) = Ay, (6.31)
where A is the iteration matrix. From , it follows that
ulk 1) = gk+1,00)
and therefore, the stability of is equivalent to
|A* @], < OJjul?]|,, forall k>0 and u'® e RV. (6.32)
Introduce the matrix norm

M
wERN 40 |||

The stability of (6.31) with respect to || ||, is equivalent to
|A¥||, < C, forall k > 0.

REMARK 6.11. Note that since we require to hold uniformly in Ax as Ax together with
the fact that N = O(1/Ax), the norms || ||, defined by are not equivalent.

REMARK 6.12. The || ||2 is associated with the weighted scalar product
N

(u,v)2 = (Az) Zuz’% (6.33)

i=1

where u; and v; are the components of the vectors v and v.

REMARK 6.13. Consider for instance the explicit scheme (6.5)). Then holds with A
being defined by m . Let ﬂ? = u(zj,ty) and atk) = (ﬂ’f,...,ﬂ’f\,) . Then the truncation error
introduced in (0.26)) is given by

() att ) — ) n Un = A) -y _ ey — Aﬂ(’“)'
At At At

Therefore,
k) = A+ (At)e®.
6.2.2.1. Stability in the L norm. Recall that the implicit scheme given by (6.13)) is well
defined since u**t1) can be obtained from u*) by inverting the definite positive matrix B given by
(6.15)).
The following results hold.

THEOREM 6.14. (i) The explicit scheme is stable with respect to the L™ norm if
and only if the following Courant-Friedrichs-Lewy (CFL) condition holds:
2yAt < (Ax)* (6.34)

(ii) The implicit scheme is unconditionally stable with respect to the L™ norm.
Before proving Theorem [6.14] we first introduce the discrete maximum principle.

DEFINITION 6.15. We say that a finite difference scheme satisfies the discrete mazimum prin-
ciple if for all k> 0,1 <j <N,

i i 0) « ok < 0 .
min (O,OSjH%lJr\}+1 uf) < uf < max (O’OSIJHS%—H uj) (6.35)

for any initial data u'®.
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Condition (6.35) prevents unbounded oscillations of the numerical solution. It is clearly a
sufficient condition for the stability with respect to the L° norm.

Now, under the CFL condition ([6.34), the explicit scheme satisfies the discrete maximum
principle. This can be easily verified by induction. In fact, we can rewrite the explicit scheme as
follows: A A A

uttt = 1 uf |+ (1 - 9 J2° 8 ub
J (Az)2 (Az)2 (Az)2
which shows that if the CFL condition holds, then u?"'l is a convex combination of uffl, uf, ufﬂ
since all the coefficients in 1) are positive and their sum is one. So if m < u? < M for all 7,
then m < u;“ < M for all j and all & > 0. Moreover, assume that the CFL condition does not
hold. Then by taking u} = (—1)7, we find that

Juf + (6.36)

k j VAL Ly
= (=1)(1—-4 .
= (1P -4 )
vyAt . &
Hence, from 1 — 4—— < —1, it follows that |u?| — +o00 as k = +o0.
(Az)? J

To prove item (ii) in Theorem [6.14] we rewrite the implicit scheme as follows:

(14 2p)uf ™ = uf 4+ pubt] 4
which shows that
(14 2m)uf | < Ju®loo + 2l J ™V |,
and hence,
[u* ) [loo < ™[00

The following stability results with respect to the L norm hold.

THEOREM 6.16. (i) The Crank-Nicolson scheme is stable with respect to the L> norm
. YAt
<1
2At
(ii) The DuFort-Frankel scheme (6.25) is stable with respect to the L™ norm if W <1
x

In order to prove the stability of the Crank-Nicolson scheme with respect to the L°° norm

At
under the CFL condition (17)2 < 1, we rewrite it as follows:
x

(I — Sdiag(L,—2, 1))ul"*Y) = (Iy + Sdiag(1, 2, 1))u®.
By the unconditional stability of the implicit scheme, we have

lu® D |og < [[(In = Sdiag(1,-2,1)u®*V]lo

~yAt
(Az)?

(2 + Ediag(1, -2,1)u®l < Cllu® |

On the other hand, under the CFL condition < 1, we have from item (i) in Theorem |6.14

Combining the above two estimates yields the desired result.

6.2.2.2. Stability in the L?> norm. In order to investigate the stability of a finite difference
scheme for solving the heat equation with respect to the L? norm, we consider with the
periodic boundary conditions

w(z + 1,t) = u(z,t) forall z €[0,1], t>0.
For any ul® = (U‘,;)j:(]’“.7N, we associate a piecewise constant function u*)(z), periodic with
period 1, defined on [0, 1] by

u® (z) = u;? forz; 1 <z <y,

_1
3
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where

1
"I;J+%:(]+§)A.’L’, j:Oa"'7N7 z

The Fourier series of u® reads

ZO,ZL'NJrlJr% =1.

1
2

’Lt(k)(:l',‘) _ Z aglk)e%rinac,
nez
where

1
ﬁ%k) ::/ u(k)(x)eﬁ”m dz.
0

Moreover, by Plancherel’s formula, we have

1
/ ) ()2 dz = 3 [l (6.37)
0

neEZL
Furthermore, an important property of Fourier series of periodic functions is that

v(k)(x) = u(k)(m + Az) = f)ﬁlk) = ﬂ%’“)e2m”Az.
With this notation, one can rewrite the explicit scheme (6.5]) in the form
w0 (z) — u®) () N —u®) (z — Az) 4+ 2u® (z) — u®) (z + Az)
Y

N Aoy —0. (6.38)
Applying the Fourier transform yields
Al = (1 _ (Zi; (—e 2rinde 4o _ e27rinAw)>a%k)’
or equivalently,
(k1) _ N k41 5(0) _ AL 2
4, = a(n)ay’ = a(n) 4y, with a(n) :=1— )2 (sin(mnAx))”. (6.39)

Therefore, ﬁ%k) is bounded as k — +oo if and only if the amplification factor a(n) satisfies

la(n)] <1 forall n € Z. (6.40)
Assume that (6.40) holds, i.e., 2yAt/(Az)? < 1. Then from (6.37), it follows that
1
W91 = [ 1P @) de = Y [a#P < 3 a0 = Ju
0 nez nez

and therefore the scheme is stable with respect to the L? norm.
Similarly, the implicit scheme (6.13]) can be rewritten in the form

u* ) (2) — u®) (2) N —uF ) (g — Az) 4 205D (2) — uF D (2 4+ Ax)
At 7 (Az)?
Again, by applying the Fourier transform, it follows that

Al = pn)alh = p(n)1ald,

=0. (6.41)

where .
= LAt sin(mnAzx))? )
) = (14 (3 (sin(enaa)? )

Since the amplification factor §(n) satisfies 0 < S(n) < 1, for all At >0 and Az > 0, we obtain
™13 < [[ul®]3
for all k£ > 0.

THEOREM 6.17. (i) The explicit scheme is stable with respect to the L? norm if
and only if the CFL condition holds.
(ii) The implicit scheme is unconditionally stable with respect to the L? norm.
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Note that the stability results for and with respect to the L? norm are the same
as those with respect to L° norm. This is however not in general true for other finite difference
schemes.

The following stability results for the #-scheme with respect to the L? norm hold.

THEOREM 6.18. The 0-scheme is unconditionally stable with respect to the L?> norm if
<0 <1 and provided the CFL condition 2(1 — 20)yAt < (Az)? if 0 <0 < 1.

1
2

The method described here is called the von Neumann stability analysis.

Based on Lemma there is a more direct (but equivalent) way for verifying the stability with
respect to the L? norm for the explicit, implicit, and Crank-Nicolson schemes. Such a technique
extends to the heat equation with either Dirichlet or Neumann boundary conditions. For more
general schemes, one uses the von Neumann analysis of stability.

To fix ideas, consider first the explicit scheme for solving the heat equation with
the Dirichlet boundary conditions.

We expand w € RV in the orthonormal basis of eigenvectors {v,}Y_; of A (with respect to

the weighted scalar product (6.33)) given by (6.11):

N N
w = anvn with W, = (w,vy,)2 = (Ax) Zwi(vn)i,
n=1 i=1
where w = (wy,...,wy)" and v, = ((V)1,..., (V) N) .

The discrete Parseval identity is

N n
lwl3 = (Az) Y (wy)? = Jia*. (6.42)

=1 —

Since ukt1) = Au®) with A = diag(pu, 1 — 2u, ut), the stability in the L? norm is related to the
spectral radius p(A4). That is

[ulk Dy < (| Al [[u™ 2,
and since A is symmetric with respect to (. .),

[ All2 = p(A) = max, |A(A)] = 1r§nlég§vll — 24+ 2pcos B

The uniform stability with respect to NV implies that p < %
If we consider the implicit scheme (6.13)), then since
1

B = <1
i ) 122’%|1+2u—2ucos91|— ’

for any p > 0, the implicit is unconditionally stable with respect to the L?-norm.
Finally, we can easily check that the Crank-Nicolson scheme can be rewritten as

) 2 B Ao,

where

1 -1
B = jdiag(—p, 2+ 2p,—p) and A= Sdiag(u, 2 = 2p, p).

Since A and B have the same eigenvectors (by Lemma, we have

p(B-13) = max M) L= pt pcos|
LI<ISN \/(B) 1<I<N |1+ p— pcosfy|

Consequently, p(E’lAV) < 1 for all 4 > 0 and therefore, the Crank-Nicolson scheme is uncondi-
tionally stable with respect to the L? norm.
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6.2.3. Convergence.

THEOREM 6.19 (Lax theorem). Letu be a smooth solution of the heat equation . Suppose

that the finite difference scheme for computing the numerical solution u;“ 1s linear, consistent, and
stable with respect to the norm || ||.. Let e;? = u;? —u(zj,ty) and e®) = (ek ek, ... k). Assume

that u} = uo(z;). Then,

li "), = T >0.
Atvggﬁo(ti?gp”e l.) =0 forallT >0

Moreover, if the scheme is of order p in time and q in space, then there exists a constant Cp > 0
such that

sup [[e®], < Cr((At)” + (Az)?).
e <T

Proor. Let uf*t1) = Ay where A is the iteration matrix, and let uh = u(xj,ty). Since the
scheme is consistent, there exists e*) such that

At = AT + (A and - lim [le®]], =0, (6.43)
At,Az—0

uniformly in k. If the scheme is of order p in time and ¢ in space, then
el < (AR + (Ax));
see Remark [6.13]
By subtracting (6.43) from (6.31), we obtain

et = 4el®) — Atk (6.44)
and therefore, by induction,
k
et = Ak — Ay~ ARl (6.45)
=1
The stability of the scheme yields
4%, < ¢’
for some positive constant C'. Therefore, since e(®) = 0, (6.45) yields
e, < (AKCC'((At)? + (Az)?) < TCC'((At)? + (Az)?). (6.46)
The proof is then complete. |

6.2.4. Multi-step schemes. Assume that u(*t1) depends linearly on ©®) and u*~1 | as for

example in (6.22)), (6.23), and (6.24). Then, we set
ple in (6.22), , ,

(k)
k) _ u
o® = (i)

There exist then two N x N matrices 4; and As such that
UE+D) — 4yt = Ar Ay Uk
Iy O
where A is a 2N x 2N matrix and Iy is the N x N identity matrix. As before, we obtain that
U®) = A¥U() and the stability of the scheme is equivalent to
|A¥||, < C for all k> 0.

For r = 2 and A normal, the L? stability condition reduces to the von Neumann stability
condition
p(4) <1 (6.47)
with p(A) being the spectral radius. In general, we have [|A|l2 > p(A) and therefore, the von
Neumann stability condition is only a necessary condition.
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LEMMA 6.20. The Richardson scheme is unstable with respect to the L* norm.
PrOOF. With the same notation as in Subsection [6.2.2.2] the Richardson scheme (6.22)) reads

D () —ub (@) | (@ = Az) + 200 (@) — ulh) ()
u T)—u x ul® (z x u™ (z) — u\ (x
=0. A4

2A1 + (A2)? 0 (6.48)
Then, applying the Fourier transform yields

alk+ 4 m(sin(wnAx))Qﬁ%k) —alfb =, (6.49)
or in other words,

C(k+1) _ 8yAL 9

k1) = (unw) ) _ " agpEn(man) 1 U = Am)U®. (6.50)

in 1 0

Consequently,

Ur(Lk_H) — A(n)kU,(ll)
In (6.50), A(n) is a 2 x 2 (amplification) matrix, while for a one-step method, it is a scalar; see
(6-39)

For n € Z, the vector U is bounded iff the amplification matrix A(n) satisfies
|A(n)¥|l, < C forall k > 1 (6.51)

for some constant C' independent of k and n. Since A(n) is real symmetric, ||A(n)|l2 = p(A(n))
and ||A(n)*||2 = ||A(n)||5. Here, p(M) is the spectral radius of M. Therefore, (6.51) is satisfied iff
p(A(n)) < 1. The eigenvalues of A(n) are roots of the second order polynomial

8vAt
(Az)?
which admits two distinct real roots with product equals to —1. Therefore, A(n) has an eigenvalue

with modulus strictly larger than 1. Consequently, the Richardson scheme is unstable with respect
to the L? norm. 0

A2 4 (sin(mnAz))*A -1 =0,

For the DuFort-Frankel and Gear schemes, the following convergence results hold.

THEOREM 6.21. We have

(i) The DuFort-Frankel is stable and hence convergent with respect to the L? norm,
provided that At/(Ax)? stays bounded as At and Az go to 0.

(ii) The Gear scheme is unconditionally stable and hence convergent with respect to
the L? norm.

6.3. Numerical algorithms for the wave equation

We first consider the one-way wave equation given by
Ou Ou
=,
ot Oz (6.52)
u(z,0) = uo(x),
where ¢ > 0 is the wave speed. The solution of (6.52) is given by u(x,t) = ug(x + ct). Note that if
a smooth function u satisfies the first equation in (6.52)), then

Pu  ,0%u
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There are three finite difference approximations of the solution:

( uk, —uk
o A upwind scheme,
. i Az
HL gk E_ ok
% = c% downwind scheme,
x
k k
e Y
| T 9As centered scheme.
Using the Taylor expansions of a smooth solution u to (6.52)),
u(z,t + At) —u(z,t) Ou At %u 5
= —(z,t — —(z,t) + O((At
- O, ) + 5L O 1) + O((A1)?),
u(z + Az, t) —u(z,t) Ou Az 8%u 5
= —(x,t ——(z,1 A
- O 1) + 500 8 1)+ O((A)),

and
u(z + Az, t) —u(x — Az,t)  Ou 9
= —(z,t A
N L (wt) + O(An)?),
we obtain that the truncation error in the upwind scheme is O(At + Az). Analogously, the
truncation error in the downwind scheme is O(At + Az), while the one in the centered scheme is

O(At + (Ax)?). Note that if

Ax
At’
then the truncation error in the upwind scheme is O((At)? + (Az)?). This directly follows from
16.53).

Now, regarding the stability of these schemes, one can easily see that the upwind scheme is
stable with respect to the L? norm provided that the following CFL condition holds:

cAt <1
Az =7
while both the downwind and the centered schemes are unstable. In fact, with the notation of

Subsection [6.2.2:2] we have for the centered scheme

cC=

At
Y = (1 iy sin(mnA)if).

One can write the following implicit version of the centered scheme which is consistent, of
order one in time and two in space and is unconditionally stable with respect to the L? norm:
1 _ K k+1 _  k+1
i R R & B’ e R} (6.54)
At 2Azx
If we want to stay within the class of explicit centered schemes, we can use the Lax-Friedrichs

scheme

k+1 _ k  _ .k koo ok
2uj Ujpr — Uiy Ui — U

= _
AL T oAr Y (6.55)
which is consistent if At/Az is constant as At, Az — 0, stable in L? under the CFL condition
cAt < Az, (6.56)

and of order 1 in time and space. It is worth emphasizing that this scheme is not consistent in the
sense of Definition but is only conditionally consistent. In fact, the truncation error is given
by
(Ax)? ( (cAt)? ) 0%u (Az)t )
2At (Az)2’ 0x2 At 7
To check its L? stability properties under the CFL condition (6.56]), we use Fourier analysis to
obtain

(zj,te) + O((Az)® + (6.57)

aft) = (cos(2mnAz) + Z%A; sin(2mnAz))alk).
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A centered, explicit scheme of higher order than the Lax-Friedrichs scheme is the Lax-
Wendroff scheme

k1 ok ko _ ok 9 E _ ok k
u; uj cujJrl uji_y ¢ Atuj_y 2uj +ui, -0 (6.58)
At 2Ax 2 (Az)? ’
which is consistent, stable in L? under the CFL condition (6.56), and is of order 2 in time and
space.
A general way to fix the stability issue for the centered scheme is to replace the centered scheme
with

B+l ok ko _ ok ko k o .k
A L o e L S R e

At 2Ax (Az)2 ’

where 6 > 0, or equivalently, with

(6.59)

J 2751 J

At - 2Ax

k
wt = Guf + =N+ 3ul ) by —

Here, A is defined by

_oar,
- (Ax)2 T

For 0 = (Ax)?/(2At) (ie., A = 1), (6.59) reduces to the Lax-Friedrichs scheme (6.55) while for
6 = c2At/2, (6.59) reduces to the Lax-Wendroff scheme (6.58). Moreover, the scheme (6.59) solves

(approximately, up to order two in time and space) the equation
ou ou At _8%u
—=c—+ 0 - ——)=.
ot or 2 '0x?
Here, we have used the fact that

Pu 0%
— = —.
ot2 Ox?
Next, consider the wave equation (with periodic boundary conditions)
((%u  ,0%u
CE_ 2?0 g<az<1, t>0,
ot2 Ox? -

u(z +1,t) =u(z,t), 0<z<l, ¢t>0,
u(z,0) = up(z), 0<ax <1,

0

—u(m,O):ul(m), 0<z<l

\ Ot

To insure that the solution stays bounded in ¢, we suppose that

(6.60)

/1 ui(x)dr = 0. (6.61)
0

In fact, if uop = 0 and u; is equal to some constant C, then u(¢,z) = Ct. To eliminate this effect
we impose the normalization condition .

Similar to the numerical schemes for the heat equation, we can use differentiation formulas to
arrive at a numerical scheme for the wave equation . Since both time and space derivatives
are of second order, we use centered differences to approximate them. Analogously to , we
have

2 . _ ) .
0 u(acj,tk) ~ u(zj,th—1) — 2u(z;, ty) + u(z, tp1) 4 O((At)z)
ot? (At)? 6.62
u;-“—l — 2uf + uf“ (6.62)

~ A + O((A1)?).
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Then up to an error of order O((Az)? + (At)?) the solution to the wave equation can be
approximated by the following explicit finite difference scheme:

k41 ko k=1 k ko ok
upt T2y Ry e — 20 T
(At)? (Az)?
One can prove that (6.63) is stable in the L? norm provided that ¢(At)/(Az) < 1.
Another standard finite difference scheme for solving is the #-centered scheme

kL k+1 _ k1
w;y + 2u; (G

(6.63)

u?“ — 2u? + u;?*l 5
+ 6c

(At)? (Az)?
k-1 k=1 _ k-1
—ub |+ 2uk -k e —u; Ty +2upT —ugyy 0
(Az)? (Az)? o

(6.64)
+(1 —26)c?

where 0 < 6 <1/2.
If § = 0, then the scheme is nothing else than the explicit scheme (6.63)), while it is implicit if
6 #0.

The initial conditions can be expressed by
1 0 T
0 uj —uy 1 [
u; =uo(z;) and = — uy(z) dz,
J At Az 2512
which shows that (6.61)) is satisfied by the numerical solution.

THEOREM 6.22. If1/4 < 60 < 1/2, then the 8-centered scheme is unconditionally stable
with respect to the L? norm. If0 <0 < 1/4, is stable provided that the CFL condition

cAt /1
Az < 1—10 (6.65)

holds and is unstable if cAt/Az > 1/+/1 —486.

PROOF. By using Fourier analysis, we obtain

Al — 200 4 a(n) (9aHY + (1 - 20)al® + ai—D) + a4k~ =0

n I

where A
a(n) = 402(A—;)2 sin?(mTnAx).

Therefore,

ﬂ(k+1) 2 — (]. — 20)0[(’”) 1

U = ( " ) — [ 1+6am) T = Am)UP.
Un 1 0
The eigenvalues of A(n) are the roots of
2—(1-26
a2 Jaln) s 1. (6.66)

1+ 6a(n)
The discriminant of this second order equation is
a(n)(4 — (1 —40)a(n))
(1+6a(n))?
The study of the stability properties of is quite delicate since the amplification matrix A(n)

is not normal (i.e., it does not commute with its adjoint ZT). Recall that for a non normal
matrix, its L? norm does not in general coincide with its spectral radius p(A4). Then, let us only
check here the necessary condition p(A(n)) < 1. If cAt/Az > 1/+/1 — 46, choosing n such that
sin?(mnAx) ~ 1 yields A > 0 and thus, there are two distinct real solutions to with product
1. Hence, p(A(n)) > 1 and the scheme is unstable. If cAt/Az < 1/+/1 — 46, then A < 0 for all

A=—
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n and the two roots are complex with modulus 1. Therefore, p(A(n)) = 1 and the von Neumann
stability condition (6.47) is satisfied. O

An important property of the wave equation is the conservation of energy.

LEMMA 6.23. Suppose that u satisfies the the wave equation on (0,1) x (0,00) together with
the boundary conditions
u(0,t) = u(1,t) =0,
and the initial conditions

du
ot

E(t) ;:/0 (a“)de/O (242 gy (6.67)

u(z,0) = g(x), (,0) = h(x).

Then, the energy

ot Ox
is constant over time, i.e., E(t) = E(0) for all t > 0.

PrOOF. By multiplying the wave equation by du/dt and integrating in  over (0,1), we obtain
that dE(t)/dt = 0. O

In view of Lemma the energy E(t) given by (6.67) is conserved. It is then desirable that
a discrete version of the energy is conserved at the discrete level. For the #-scheme designed to
solve the wave equation with periodic boundary conditions, we introduce the discrete energy

N o k+l _ ok

uw” uk
EFL = Aa:[jz:%(%f + an, (WD u®) 4 fap, (uHD) — o®) yEFD ()]
with u®) = (uf, ..., u%)T and
N
Ujp1 — Uj v- — v
an u, U CQZ ]+1 ] J-i-lAa7 ])
7=0
with
u = (ug,...,un)' and v = (vo,...,vn) " and uypi = g, VN1 = Vo.

E*+1 approximates FE(t,y1) up to O(Az + At). We can show that EF = E° for all £ > 0 and
therefore, the #-scheme preserves the conservation of energy property. The proof is based on the
following discrete integration by parts formula:
N N
2(_uj+1 +2u; —ujq)v; = E(U]Jrl —u;)(vj41 —vj) with u_y = up. (6.68)
Jj=0 j=0
Another way to derive finite difference schemes for the wave equation is to rewrite as a
system of first order equations (by choosing v = 0u/dt and w = du/0x)

(9 (v 0 c\ g (v
hdl — — 1 >
SO VL) eerer con

v(z +1,t) =v(x,t), w(x+1,t)=wzt), 0<z<l, t>0, (6.69)
8UO

L v(z,0) =ui(z), 0<z<l.

Hence, we can use the algorithms developed for the one-way wave equation in order to solve (6.60).
For instance, the following scheme for solving is of Lax-Friedrichs type:

R (2”5““ by b ) v <0 1) ( s %) =Y (6.70)
24t 2wf+1—wf+1—w§“fl 24z \1 0 e —wig ,
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while

o 2
1 (vf“—v}”) ¢ (0 1) <v§+1—vfl> EIN (0 1) <v§1—2vf+v§+1> i
At \whtt — k] 282 \1 0) \w}, —wh ) 2(Az)* \1 0 wh | =20k +wh,

(6.71)

is of Lax-Wendroff type.

PROBLEM 6.24. Consider the advection equation
ou ou
—=—-v—, 0 1, t>0
ot Yoz’ se<h =
u(t,z +1) =u(t,z), 0<z<1l, ¢>0, (6.72)
u(0,2) = up(z), 0<z<1,
where v > 0.
(i) Prove that the centered explicit scheme
k+1 k k k
ot A B = S i S
At 2Ax
is unconditionally unstable in L.
(ii) Prove that the Lax-Friedrichs scheme

k+1 k k
2u;T — gy Uy .
2A¢ 2Ax
is consistent if At/Ax is constant as At, Az — 0, stable in L? under the CFL condition

vAt < Az, (6.73)

E .k
Ujrr — Uy

=0

and of order 1 in time and space.
(iii) Prove that the Laz- Wendroff scheme
k41 3 3 3
uy N v“§+1 —uiy vPARUS L — 2uf fufy,

At 2Az 2 (Az)?

is consistent, stable in L? under the CFL condition , and is of order 2 in time and
space.
(iv) Prove that the leapfrog scheme
u?"'l — u?_l n vu;?_H — u?_l
2At 2Ax
is consistent and is stable in L? under the CFL condition

vAt < MAz, (6.74)

=0

with M < 1.
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