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CHAPTER 1

Some basics

1.1. What is a di�erential equation?

An ordinary di�erential equation (ODE) is an equation that contains one or more derivatives
of an unknown function x(t). The equation may also contain x itself and constants. We say that
an ODE is of order n if the n-th derivative of the unknown function is the highest order derivative
in the equation. The following equations are examples of ODEs:

Membrane equation as a neuron model:

C
dx(t)

dt
+ gx(t) = f(t); (1.1)

where x(t) is the membrane potential, i.e., the voltage di�erence between the inside and
the outside of the neuron, f(t) is the current ow due to excitation, C is the capacitance
and g is the conductance (the inverse of the resistance) of the membrane.

Equation (1.1) is linear ODE of order 1.
The theta model: The theta model is a simple one-dimensional model for the spiking of

a neuron. It takes the form

d�(t)

dt
= 1� cos �(t) + (1 + cos �(t))f(t); (1.2)

where f(t) are the inputs to the model. The variable � lies on the unit circle and ranges
between 0 and 2�. When � = � the neuron spikes, that is, it produces an action potential.
By the change of variables, x(t) = tan(�(t)=2), (1.2) leads to the quadratic model

dx(t)

dt
= x2(t) + f(t): (1.3)

Population growth under competition for resources:

dx(t)

dt
= rx(t)� r

k
x2(t); (1.4)

where r and k are positive parameters. In (1.4), x(t) is the number of cells at time instant
t, rx(t) is the growth rate and �(r=k)x2(t) is the death rate. Equations (1.2), (1.3), and
(1.4) are nonlinear ODEs of order 1.

FitzHugh-Nagumo model:(
dV
dt = f(V )�W + I

dW
dt = a(V � bW );

(1.5)

where f(V ) is a polynomial of third degree, and a and b are constant parameters.
The FitzHugh-Nagumo model is a two-dimensional simpli�cation of the Hodgkin-Huxley
model of spike generation in squid giant axons. It aims at isolating the mathematical
properties of excitation and propagation from the electrochemical properties of sodium
and potassium ion ow. In (1.5), V is the membrane potential, W is a recovery variable,
and I is the magnitude of stimulus current. Equation (1.5) is a system of nonlinear ODEs
of order 1.
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6 1. SOME BASICS

Langevin equation of motion for a single particle:

dx(t)

dt
= �ax(t) + �(t); (1.6)

where x(t) is the position of the particle at time instant t, a > 0 is coe�cient of fric-
tion, and � is a random variable that represents some uncertainties or stochastic e�ects
perturbing the particle. Equation (1.6) represents di�usion-like motion from the proba-
bilistic perspective of a single microscopic particle moving in a uid medium. Equation
(1.6) is a linear stochastic ODE of order 1.

Vander der Pol equation:

d2x(t)

dt2
� a(1� x2(t))

dx(t)

dt
+ x(t) = 0; (1.7)

where a is a positive parameter, which controls the nonlinearity and the strength of the
damping. Equation (1.7) is used to generate waveforms corresponding to electrocardio-
gram patterns. Equation (1.7) is a nonlinear ODE of order 2.

1.1.1. Higher order ODEs. Here we introduce higher order ODEs. Let 
 � Rn+2 and
n 2 N. Then an ODE of order n is an equation of the form:

F (t; x(t);
dx

dt
(t); : : : ;

dnx

dtn
(t)) = 0;

where x is a real-valued unknown function and dx(t)=dt; : : : ; dnx(t)=dtn are its derivatives. We say
that ' 2 Cn(I) is a solution of the di�erential equation if I is an open interval,

(t; '(t);
d'

dt
(t); : : : ;

dn'

dtn
(t)) 2 


for all t 2 I, and
F (t; '(t);

d'

dt
(t); : : : ;

dn'

dtn
(t)) = 0

for all t 2 I. When x is a vector valued function, i.e., x(t) 2 Rd, then 
 � R� R(n+1)d.
Next we consider the following form of n-th order ODE:

x(n)(t) = f(t; x;
dx

dt
; : : : ;

dn�1x

dtn�1
); t 2 I: (1.8)

where x(t) 2 Rd and f : I � Rnd ! Rd. To ensure uniqueness of the solution, (1.8) has to be
augmented with the initial condition:

(x(t0); x
0(t0); x

00(t0); : : : ; x
(n�1)(t0))

>:

Here > denotes the transpose.
We can reduce the high order ODE (1.8) into a �rst order ODE. Let us de�ne

y(t) := (x(t); dx(t)=dt; : : : ; dn�1x(t)=dtn�1)> 2 Rnd

and

F (t; y) := (y2; : : : ; yn; f(t; y1; : : : ; yn))
>

for y = (y1; : : : ; yn)
> 2 Rnd and yi 2 Rd for i = 1; 2; : : : ; n. Then the n-th order ODE (1.8) is

equivalent to the following �rst order ODE:

dy

dt
= F (t; y(t)):

Example 1.1. Consider the second order ODE given by

d2x

dt2
+ p(t)

dx

dt
+ q(t)x(t) = g(t):
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Then we have

d

dt

�
x
dx
dt

�
=

264 dx

dt

�p(t)dx
dt
� q(t)x(t) + g(t)

375 =

�
0 1

�q(t) �p(t)
� �

x
dx
dt

�
+

�
0
g(t)

�
:

The main problems concerning ordinary di�erential equations are:

(i) Existence of solutions;
(ii) Uniqueness of solutions with suitable initial conditions;
(iii) Regularity and stability of solutions (e.g. dependence on the initial conditions, large time

stability, higher regularity);
(iv) Computation of solutions.

The existence of solutions can be proved by �xed point theorems, by the implicit function
theorem in Banach spaces, and by functional analysis techniques. The problem of uniqueness is
typically more di�cult. Only in a very few special cases is it possible to compute solutions in some
explicit form.

1.2. Some methods of resolution

In the following subsections, we present several examples of exactly solvable ODEs and then
explain how to solve them.

1.2.1. Separation of variables. Let I and J be two open intervals and let f 2 C0(I) and
g 2 C0(J) be two continuous functions. We look for solutions to the �rst order equation

dx

dt
= f(t)g(x): (1.9)

Let t0 2 I and x0 2 J . If g(x0) = 0 for some x0 2 J , then the constant function x(t) = x0 for
t 2 I is a solution to (1.9). Suppose that g(x0) 6= 0. Then g 6= 0 in a neighborhood of x0 and we
can divide (1.9) by g(x) and hence, separate the variables. We �nd

dx

g(x)
= f(t)dt: (1.10)

Integrating (1.10) gives Z
dx

g(x)
=

Z
f(t)dt+ c;

where the constant c is uniquely determined by the initial condition.
Let F and G be the primitives of f and 1=g, respectively. The function G is strictly monotonic,

because G0(x) 6= 0, and thus invertible. The solution of the di�erential equation (1.9) is then

x(t) = G�1(F (t) + c):

This method of solving ODEs is called the method of separation of variables and (1.9) is
called a separable equation.

Example 1.2. Consider the following ODE:8><>:
dx

dt
=

1 + 2t

cosx(t)
;

x(0) = �:

In this case, we have g(x) = 1= cosx and f(t) = 1+2t. Note that g is de�ned for x 6= �=2+k�; k 2
Z. By separating variables, we get

cosxdx = 1 + 2tdt:

By integration, we have
sinx(t) = t2 + t+ C;

for some constant C 2 R. Then, from the initial condition x(0) = �, we see that C = 0.
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One might think that we can obtain the solution by taking the arcsin. But the function x(t) =
arcsin(t2+t) is not the solution because x(0) = arcsin(0) = 0. In order to get the correct solution, we
note that arcsin is the inverse of sin on [��=2; �=2], whereas x(t) takes the values in a neighborhood
of �. Letting w(t) = x(t)� �, we have w(0) = x(0)� � = 0. So, we have w(t) = � arcsin(t2 + t).
Therefore, we get the following correct solution:

x(t) = � � arcsin(t2 + t):

1.2.2. Change of variables. There are a few important �rst-order equations that can be
solved using some transformation.

1.2.2.1. Homogeneous equation. Consider the following ODE:

dx

dt
= f

�x(t)
t

�
; (1.11)

where f : I � R ! R is a continuous function on some open interval I � R. The ODE (1.11) is
called homogeneous. By the change of variables x(t) = ty(t) where y(t) is the new unknown
function, the above ODE can be changed to a separable equation. Since

dx

dt
= y(t) + t

dy

dt
= f(y(t));

we have a separable equation for y, which reads:

dy

f(y)� y
=
dt

t
:

Therefore, (1.11) can be solved by the method of separation of variables.

Example 1.3. Consider

dx

dt
=
t2 + x2

xt
:

In this case, f(s) = s+1=s with s = x=t. By letting y(t) = x(t)=t, we get ydy = dt=t. So, we have
(1=2)y2 = ln t+ C. Therefore, we obtain

x(t) = �t
p
2(ln t+ C):

1.2.2.2. Bernoulli equation. A di�erential equation is of Bernoulli type if it is of the form

dx

dt
= f(t)x+ g(t)xn; n 6= 0; 1: (1.12)

The transformation y = x1�n gives the linear equation

dy

dt
= (1� n)f(t)y + (1� n)g(t):

1.2.2.3. Riccati equation. A di�erential equation is of Riccati type if it is of the form

dx

dt
= f(t)x+ g(t)x2 + h(t): (1.13)

Assume that a particular solution xp of (1.13) is known. Then the transformation y = 1=(x�xp(t)
yields the linear equation

dy

dt
= �(f(t) + 2xp(t)g(t))y � g(t):
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1.2.3. Method of integrating factors. Consider

dx(t)

dt
= f(t): (1.14)

By integrating (1.14), it follows that the solution x(t) is given by

x(t) = x(0) +

Z t

0

f(s) ds:

Consider
dx

dt
+ p(t)x(t) = g(t); (1.15)

where p and g are functions of t.
If (1.15) were of the form (1.14), then we could immediately write down a solution in terms of

integrals. By (1.15) being of the form (1.14), we mean that the left-hand side is expressed as the
derivative of our unknown quantity. To make this happen, we can multiply (1.15) by a function,
�(t), and ask whether the resulting equation can be put in the form (1.14).

Let us look for �(t) such that

�(t)
dx

dt
+ �(t)p(t)x(t) =

d

dt
(�(t)x(t)):

Taking derivatives, we have (1=�)d�=dt = p(t) or

d

dt
ln�(t) = p(t): (1.16)

Integrating (1.16) gives

�(t) = exp(

Z t

0

p(s)ds);

up to a multiplicative constant. The equation (1.15) is transformed to

d

dt
(�(t)x(t)) = �(t)g(t):

This equation is precisely of the form (1.14), so we can immediately conclude

x(t) =
1

�(t)

�Z t

0

�(s)g(s)ds
�
+

C

�(t)
;

where the constant C can be determined from the initial condition x(0) = x0. The function �(t)
is called the integrating factor.

Example 1.4. Consider 8<:
dx

dt
+

1

t+ 1
x(t) = (1 + t)2; t � 0;

x(0) = 1:

In this case, p(t) = 1=(t+ 1) and g(t) = (1 + t)2. Then the integrating factor � is

�(t) = exp(

Z t

0

p(s)ds) = eln(t+1) = t+ 1:

Therefore, we get

x(t) =
1

t+ 1

Z t

0

(s+ 1)3ds+
C

t+ 1
=

(t+ 1)3

4
+
C � 1

4

t+ 1
:

Then, from the initial condition x(0) = 1, we obtain C = 1.
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Example 1.5. (Bernoulli's equation) Consider

dx

dt
+ p(t)x(t) = g(t)x�(t): (1.17)

Here � is a real parameter satisfying � =2 f0; 1g. Letting x = z
1

1�� , we get

dx

dt
=

1

1� �
z

�
1��

dz

dt
:

Then (1.17) can be reduced to the following linear equation:

dz

dt
+ (1� �)p(t)z(t) = (1� �)g(t);

which can be solved by the method of integrating factors.

1.3. Important examples of ODEs

1.3.1. Autonomous ODEs.

Definition 1.6. The equation

dx(t)

dt
= f(t; x(t)) (1.18)

is called autonomous if f is independent of t.

Any ODE can be rewritten as an autonomous ODE on a higher-dimensional space. Writing
y = (t; x(t)), (1.18) is equivalent to the autonomous ODE

dy(t)

dt
= F (y(t));

where F (y) =

�
1

f(t; x(t))

�
.

1.3.2. Exact equations. Let 
 = I � R � R2 with I � R being an open interval. Let
f; g 2 C0(
). We look for a solution x 2 C1(I) of the di�erential equation

f(t; x(t)) + g(t; x(t))
dx

dt
= 0 (1.19)

satisfying the initial condition x(t0) = x0 for some (t0; x0) 2 
.
Consider the di�erential form

! = f(t; x)dt+ g(t; x)dx:

Definition 1.7. The di�erential form is called exact if there exists F 2 C1(
) such that

! = dF =
@F

@t
dt+

@F

@x
dx:

The function F is called a potential of !. In this case the di�erential equation (1.19) is called an
exact equation.

Theorem 1.8 (Implicit function theorem). Suppose that F (t; x) is continuously di�erentiable
in a neighborhood of (t0; x0) 2 R�Rd and F (t0; x0) = 0. Suppose that det @F=@x(t0; x0) 6= 0. Then
there exist � > 0 and � > 0 such that for each t satisfying jt� t0j < �, there exists a unique x such
that jx � x0j < � for which F (t; x) = 0. This correspondence de�nes a function x(t) continuously
di�erentiable on fjt� t0j < �g such that

F (t; x) = 0, x = x(t):
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Theorem 1.9. Suppose that ! is an exact form with potential F such that

det
@F

@x
(t0; x0) 6= 0:

Then the equation F (t; x) = F (t0; x0) implicitly de�nes a function x 2 C1(I) for some open interval
I containing t0, which solves (1.19) with the initial condition x(t0) = x0. This solution is unique
on I.

Proof. Suppose without loss of generality that F (t0; x0) = 0. By the implicit function
theorem, there exist �; � > 0 and x 2 C1(t0 � �; t0 + �) such that

f(t; x) 2 
 : jt� t0j < �; jx� x0j < �; F (t; x) = 0g = f(t; x(t)) 2 
 : jt� t0j < �g:
By di�erentiating the identity F (t; x(t)) = 0, we get

0 =
d

dt
F (t; x(t)) =

@F

@t
(t; x(t)) +

@F

@x
(t; x(t))

dx

dt
= f(t; x(t)) + g(t; x(t))

dx

dt
;

and hence x(t) is a solution of the di�erential equation. Moreover, x(t0) = x0.
On the other hand, if z 2 C1(I) is a solution to (1.19) such that z(t0) = x0, then

d

dt
F (t; z(t)) = 0 =) F (t; z(t)) = F (t0; z(t0)) = 0 =) z(t) = x(t):

�

Definition 1.10. Let f; g 2 C1(
). The di�erential form ! = fdt+ gdx is closed in 
 if

@f

@x
=
@g

@t

for all (t; x) 2 
.

Proposition 1.11. An exact di�erential form ! = fdt+gdx with a potential F 2 C2 is closed
since by Schwarz's theorem

@2F

@t@x
=

@2F

@x@t
for all (t; x) 2 
. The converse is also true if 
 is simply connected: If ! is closed then ! is exact
and is associated to a potential F 2 C2.

Closed forms always have a potential (at least locally).

Example 1.12. Consider the equation

tx2 + x� t
dx

dt
= 0: (1.20)

Here, f(t; x) = tx2 + x and g(t; x) = �t. Since
@f

@x
= 2xt+ 1 6= @g

@t
= �1;

equation (1.20) is not exact.

Example 1.13. The equation

t+
1

x
� t

x2
dx

dt
= 0

is exact with the potential function F given by

F (t; x) =
t2

2
+
t

x
+ C; C 2 R:

The equation F (t; x) = 0 implicitly de�nes the solutions (locally for t 6= 0 and x 6= 0 such that
@F=@x(t; x) 6= 0).
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Example 1.14. Consider the equation

� 2t2 + 2x� x2 + t(1� x)
dx

dt
= 0: (1.21)

Here, f(t; x) = �2t2 + 2x� x2 and g(t; x) = t(1� x). Since

@f

@x
= 2� 2x 6= @g

@t
= 1� x;

equation (1.21) is not exact. However, multiplying (1.21) by t gives

�2t3 + 2xt� tx2 + t2(1� x)
dx

dt
= 0:

We see from this that f(t; x) = �2t3 + 2tx� tx2 and g(t; x) = t2(1� x). This leads to

@f

@x
= 2t� 2tx;

@g

@t
= 2t(1� x);

which satis�es the condition
@f

@x
=
@g

@t
. Thus, there must exist a function F (t; x) such that

@F

@t
= f(t; x) and

@F

@x
= g(t; x): (1.22)

Integrating equations (1.22) with respect to t and x and comparing the obtained formulas yields

F (t; x) =
1

2
t4 � t2x+

1

2
t2x2 + C;

for some constant C. Therefore, the di�erential equation (1.21) has the general solution F (t; x) = 0
(locally for t 6= 0 and x 6= 1).

1.3.3. Hamiltonian systems.

Definition 1.15. Let M be a subset of Rd and let H : Rd �M ! R be a C1 function.
The Hamiltonian system with Hamiltonian H is given by the �rst-order system of ODEs8>><>>:

dp

dt
= �@H

@q
(p; q);

dq

dt
=
@H

@p
(p; q):

(1.23)

Example 1.16. An important basic example of a Hamiltonian system is the simple harmonic
oscillator with Hamiltonian

H(p; q) =
1

2

p2

m
+

1

2
kq2;

where m and k are positive constants. Given a potential V , Hamiltonian systems of the form

H(p; q) =
1

2
p>M�1p+ V (q);

where M is symmetric positive de�nite matrix and > denotes the transpose, are widely used in
molecular and biological dynamics.

We now introduce the notion of an invariant (also called �rst integral) for a system of ODEs.

Definition 1.17. Let 
 = I �D, where I � R and D � Rd. Consider
dx

dt
= f(t; x(t)); (1.24)

where f : 
 ! Rd. We call F : D ! R an invariant of (1.24) if F (x(t)) = Constant. A point
(t; x) 2 I �D is called a stationary point if f(t; x) = 0.
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Example 1.18. Consider the system of Lotka-Volterra's ODEs given by8><>:
du

dt
= u(v � 2);

dv

dt
= v(1� u):

(1.25)

The system of ODEs (1.25) is used to describe the dynamics of biological systems in which two
species interact, one as a predator and the other as prey.

De�ne

F (u; v) := lnu� u+ 2 ln v � v:

F (u; v) is an invariant of (1.25). In fact, by di�erentiating with respect to time, we have

d

dt
F (u; v) =

1

u

du

dt
� du

dt
+

2

v

dv

dt
� dv

dt

= v � 2� du

dt
+ 2(1� u)� dv

dt
= (v � 2)� u(v � 2) + 2(1� u) + v(1� u)

= (v � 2)(1� u) + (2� v)(1� u)

= 0:

For the system (1.25), (u; v) = (1; 2) and (u; v) = (0; 0) are two stationary points.

Lemma 1.19. The Hamiltonian H is an invariant of the associated Hamiltonian system (1.23).

Proof. We have

d

dt
H(p(t); q(t)) =

@H

@p
(p(t); q(t))

dp

dt
+
@H

@q
(p(t); q(t))

dq

dt

= �@H
@p

(p(t); q(t))
@H

@q
(p(t); q(t)) +

@H

@q
(p(t); q(t))

@H

@p
(p(t); q(t)) = 0:

Hence, H(p; q) is an invariant of the system of equations (1.23). �

Example 1.20. Consider the system of equations8><>:
dp

dt
= � sin q;

dq

dt
= p:

Here, H(p; q) = 1
2p

2 � cos q is the Hamiltonian of the above system, because8>><>>:
@H

@q
= sin q = �dp

dt
;

@H

@p
= p =

dq

dt
:

There is another equivalent expression for Hamiltonian systems. Let x = (p; q)> (note that
p; q 2 Rd), and let

J =

�
0 I
�I 0

�
; (1.26)

where I denotes the d� d identity matrix. Note that

J�1 = J>:

We can rewrite the Hamiltonian system (1.23) in the form

dx

dt
= J�1rH(x): (1.27)



14 1. SOME BASICS

Here, we use the notation rH(x) := (@H@x )
> = ( @H@x1 ; : : : ;

@H
@x2d

)>. For a vector function f : R2d !
R2d, f(x) = (f1(x); : : : ; f2d(x)), we de�ne the Jacobian matrix f 0 of f by

f 0(x) :=

0B@
@f1
@x1

: : : @f1
@x2d

... : : :
...

@f2d
@x1

: : : @f2d
@x2d

1CA :

Definition 1.21 (Symplectic linear mapping). A matrix A 2 R2d�R2d (which is also a linear
mapping from R2d to R2d) is called symplectic if A>JA = J .

Definition 1.22 (Symplectic mapping). A di�erentiable map g : U ! R2d is called symplec-
tic if the Jacobian matrix g0(p; q) is everywhere symplectic, i.e., if

g0(p; q)>Jg0(p; q) = J:

Taking the transpose of both sides of the above equation, we also have

g0(p; q)>J>g0(p; q) = J>;

or equivalently,

g0(p; q)>J�1g0(p; q) = J�1:

Theorem 1.23. If g is a symplectic mapping, then it preserves the Hamiltonian form of the
equation.

Proof. Let x = (p; q)>, y = g(p; q)> and let G(y) := H(x). By using the chain rule, we have

@

@x
H(x) =

@

@x
G(y)

=
@

@y
G(y)

@

@x
y(x)

=
@

@y
G(y)g0>(p; q):

Then,
dy

dt
= g0>(p; q)

dx

dt

= g0>(p; q)J�1
�
@H(x)

@x

�>
= g0>J�1g0ryG(y)

= J�1ryG(y);

and therefore,
dy

dt
= J�1ryG(y):

�

Definition 1.24 (Flow). We de�ne the ow by �t(p0; q0) = (p(t; p0; q0); q(t; p0; q0)), �t : U !
R2d, U � R2d, and p0 and q0 are the initial data at t = 0.

Theorem 1.25 (Poincar�e's theorem). Suppose that H is twice di�erentiable. Then the ow
�t is a symplectic transformation whenever it is de�ned.

Proof. Let y0 = (p0; q0). Note that

d

dt

�@�t
@y0

�
= J�1r2H(�t(y0))

@�t
@y0

:
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Then we have

d

dt

 �
@�t
@y0

�>
J

�
@�t
@y0

�!

=

�
@�t
@y0

�0>
J

�
@�t
@y0

�
+

�
@�t
@y0

�>
J

�
@�t
@y0

�0
=

�
@�t
@y0

�>
r2HJ�>J

�
@�t
@y0

�
+

�
@�t
@y0

�>
JJ�1r2H

�
@�t
@y0

�
=0;

where r2H is the Hessian matrix of H(p; q) (and is symmetric). Moreover, since @�t=@y0 at t = 0
is the identity map, the identity �

@�t
@y0

�>
J

�
@�t
@y0

�
= J

is satis�ed for all t and all (p0; q0) as long as the solution remains in the domain of de�nition of
H. �

The following result shows that the symplecticity of the ow is a characteristic property of the
Hamiltonian system.

Theorem 1.26. Let f : U ! R2d be continuously di�erentiable. Then dx
dt = f(x) is locally

Hamiltonian if and only if �t(x) is symplectic for all x 2 U and for all su�ciently small t.

Proof. The necessity follows from Theorem 1.25. We therefore suppose that �t is symplectic,
and we have to prove the local existence of a Hamiltonian H such that f(x) = J�1rH(s). Using

the fact that @�t
@y0

is a solution of

dy

dt
= f 0(�t(y0))y;

we obtain

d

dt

 �
@�t
@y0

�>
J

�
@�t
@y0

�!
=

�
@�t
@y0

�>
[f 0(�t(y0))

>J + Jf 0]

�
@�t
@y0

�
= 0:

Putting t = 0, it follows from J = �J> that Jf 0(y0) is a symmetric matrix for all y0. The
integrability lemma below shows that Jf(y) can be written as the gradient of a function H. �

Lemma 1.27 (Integrability lemma). Let D � R2d be an open set and let g : D ! R2d be of
class C1. Suppose that the Jacobian g0(y) is symmetric for all y 2 D. Then, for every y0 2 D,
there exists a neighborhood of y0 and a function H(y) such that

g(y) = rH(y)

on this neighborhood.

Proof. Suppose that y0 = 0, and consider a ball around y0 which is contained in D. On this
ball we de�ne

H(y) =

Z 1

0

y>g(ty)dt:

Di�erentiating with respect to yk, and using the symmetry assumption

@gi
@yk

=
@gk
@yi
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yields

@H

@yk
=

Z 1

0

(gk(ty) + y>
@g

@yk
(ty)t)dt

=

Z 1

0

d

dt
(tgk(ty))dt = gk(y);

which proves that

rH = g:

�

1.3.4. Gradient systems. Finally, consider the gradient systems.

Definition 1.28. Gradient systems are di�erential equations that have the form

dx

dt
= �rV (x); (1.28)

with V (called the potential function) being a real-valued function.

In order to guarantee that the right-hand side of (1.28) is a continuously di�erentiable function
of x, one requires that V is twice-continuously di�erentiable.

On solutions to (1.28) one has

d

dt
V (x(t)) = rV (x(t)) � dx

dt
= �jrV (x)j2:

A di�erential equation
dx

dt
= f(x) = (f1(x); : : : ; fd(x)) (1.29)

is a gradient system if and only if there exists a scalar-valued function V (x) so that

�(f1(x); : : : ; fd(x)) = (
@V

@x1
(x); : : : ;

@V

@xd
(x)):

In dimension d = 1, one can always choose an antiderivative V of �f so that

dV

dx
(x) = �f(x):

Equation (1.29) is always a gradient system in dimension one.
In dimension two, a system 8><>:

dx1
dt

= f1(x1; x2);

dx2
dt

= f2(x1; x2);

(1.30)

is a gradient system if and only if there is a potential V (x1; x2) so that

@V

@x1
= �f1; @V

@x2
= �f2: (1.31)

A necessary and su�cient condition for solvability of (1.31) is the equality of mixed partials,

@f1
@x2

=
@f2
@x1

:

In the general case, the necessary and su�cient condition is again equality of mixed partials
expressed as

@fi
@xj

=
@fj
@xi

for all 1 � i < j � d:

Lemma 1.29. The Hamiltonian system (1.23) is a gradient system if and only if the function
H is harmonic.
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Proof. Suppose that H is harmonic, i.e.,

@2H

@p2
+
@2H

@q2
= 0:

Then the Jacobian of J�1rH given by

(J�1rH)0 =

 
� @2H
@p@q �@2H

@q2

@2H
@p2

@2H
@p@q

!
is symmetric. The integrability lemma shows that there exists V such that J�1rH = rV and
therefore, the Hamiltonian system is a gradient system.

Suppose that the Hamiltonian system is a gradient system. Then, there exists V such that

@V

@p
=
@H

@q
and

@V

@q
= �@H

@p
:

Therefore,

�H :=
@2H

@p2
+
@2H

@q2
= 0:

�

Example 1.30. The Hamiltonian system with H(p; q) = p2 � q2 is a gradient system.

1.3.5. Hamilton-Jacobi equation. The Hamilton-Jacobi equation is used to generate
particular symplectic transformations that simplify Hamiltonian systems.

Let d = 1 and let

H(p; q) =
1

2
p2 + V (q):

Consider the Hamiltonian-Jacobi equation8<:
@u

@t
+H(

@u

@q
; q) = 0; q 2 R; t � 0;

u(0; q) = u0(q); q 2 R:
(1.32)

A smooth function u(P; q; t) satisfying (1.32) can be used to map the variables (p; q) to a set of
variables (P;Q) that are constants over time. Let p = @u

@q , and de�ne Q = @u
@P . Then, (p; q) 7!

(P;Q) is symplectic. Moreover, in the new coordinates (P;Q), the Hamiltonian system (1.23)
reduces to 8><>:

dP

dt
= 0;

dQ

dt
= 0;

(1.33)

and becomes trivial to solve.

1.4. Problems

Problem 1.31 (Exact equations). Consider the equation F (t; x) = 0, where F 2 C2(R2;R).
Suppose x(t) solves this equation.

(i) Show that x(t) satis�es

g(t; x)
dx

dt
+ f(t; x) = 0; (1.34)

where

g(t; x) =
@F (t; x)

@x
and f(t; x) =

@F (t; x)

@t
:

(ii) Show that we have
@g(t; x)

@t
=
@f(t; x)

@x
;

and deduce that (1.34) is exact.
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(iii) Conversely, show that if a �rst-order equation as (1.34) is exact, then there is a corre-
sponding function F as above. Find an explicit formula for F in terms of f and g. Is F
uniquely determined by f and g ?

(iv) Show that

(2tx+ 3t+ 5)
dx

dt
+ 3t2 + t+ x2 + 3x = 0

is exact. Find F and �nd the solution.

Problem 1.32 (Method of integrating factor). Consider

g(t; x)
dx

dt
+ f(t; x) = 0:

(i) Prove that �(t; x) is an integrating factor if

�(t; x)g(t; x)
dx

dt
+ �(t; x)f(t; x) = 0

is exact.
(ii) Consider

t
dx

dt
+ 3t� 2

dx

dt
= 0

and look for an integrating factor � depending only on t. Solve the equation.

Problem 1.33. (i) Prove that a smooth di�erential map g : R2 ! R2 is symplectic if
and only if det g0 = 1.

(ii) Find a counterexample to the statement in (i) in R2d for d > 1.

Problem 1.34. Consider the system of linear equations8<:
dX

dt
= AX(t);

X(0) = X0;

where X;X0, and A are d� d real matrices.

(i) Prove that if A is a skew-symmetric matrix then X>X is an invariant of the system.
(ii) Prove that if X0 is orthogonal then the solution X(t) is orthogonal for all t � 0.

Problem 1.35 (Transport theorem). Let �t denote the ow of the system dx=dt = f(x),
x 2 Rd, and let 
 be a bounded domain in Rd. De�ne

V (t) =

Z
�t(
)

dx1 : : : dxd;

and recall that the divergence of a vector �eld f = (f1; : : : ; fd)
> is

r � f =

dX
i=1

@fi
@xi

:

(i) Use Liouville's theorem and the change of variables formula for multiple integrals to prove
that

dV

dt
=

Z
�t(
)

(r � f)dx1 : : : dxd:

(ii) Prove that the ow of a vector �eld whose divergence is everywhere negative contracts
volume.

(iii) Suppose that g : R� Rd ! R is continuously di�erentiable. Prove the transport theorem

d

dt

Z
�t(
)

g(t; x)dx1 : : : dxd =

Z
�t(
)

�
@g

@t
+r � (gf)

�
dx1 : : : dxd:



CHAPTER 2

Existence, uniqueness, and regularity in the Lipschitz case

2.1. Banach �xed point theorem

Definition 2.1 (Contraction). Let (X; d) be a metric space. A mapping F : X ! X is a
contraction if there exists 0 < � < 1 such that

d(F (x); F (y)) � �d(x; y)

for all x; y 2 X.

Theorem 2.2 (Banach �xed point theorem). Let (X; d) be a complete metric space (i.e.,
every Cauchy sequence of elements of X is convergent) and let F : X ! X be a contraction. Then
there exists a unique x 2 X such that

F (x) = x:

2.2. Gronwall's lemma

Lemma 2.3 (Gronwall's lemma). Let I = [0; T ] and let � 2 C0(I). If there exist two
constants �; � 2 R, � � 0, such that

�(t) � �+ �

Z t

0

�(s)ds for all t 2 I; (2.1)

then

�(t) � �e�t for all t 2 I:
Proof. Let ' : I ! R be the function

'(t) := �+ �

Z t

0

�(s)ds:

Since � 2 C0, we conclude that ' 2 C1, and
d'

dt
= ��(t) for all t 2 I:

By using (2.1), it follows that
d'

dt
� �':

Let  (t) := exp(��t)'(t) for t 2 I. Then
d 

dt
= ��e��t'(t) + e��t

d'

dt

= e��t
�
��'(t) + d'

dt

�
� 0:

Since  (0) = '(0) = �, we have  (t) � � for t 2 I, and hence

'(t) � �e�t;

which implies that �(t) � '(t) � �e�t for all t 2 I. �

19
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2.3. Cauchy-Lipschitz theorem

Let I = [0; T ], let d be a positive integer, and let f : I�Rd ! Rd. Suppose that f 2 C0(I�Rd).

Definition 2.4 (Lipschitz condition). If there exists a constant Cf � 0 such that, for any

x1; x2 2 Rd and any t 2 I, the following inequality holds:

jf(t; x1)� f(t; x2)j � Cf jx1 � x2j; (2.2)

then we say that f satis�es a Lipschitz condition on I. The constant Cf is called the Lipschitz
constant for f .

Theorem 2.5 (Cauchy-Lipschitz theorem). Consider the initial value problem8<:
dx

dt
= f(t; x); t 2 [0; T ];

x(0) = x0; x0 2 Rd:
(2.3)

If f 2 C0(I�Rd) satis�es the Lipschitz condition (2.2) on [0; T ], then there exists a unique solution
x 2 C1(I) to (2.3) on [0; T ].

Proof. By (2.3), we have

x(t) = x0 +

Z t

0

f(s; x(s))ds; 8t 2 [0; T ]:

De�ne the functional F : C0([0; T ];Rd)! C0([0; T ];Rd) by

F (y) := x0 +

Z t

0

f(s; y(s))ds:

For y 2 C0([0; T ];Rd), de�ned the norm of y by

kyk := sup
t2[0;T ]

fjy(t)je�Cf tg; (2.4)

where Cf is the Lipschitz constant for f . It is easy to prove that (2.4) is equivalent to the usual
norm sup

t2[0;T ]
jy(t)j and hence, C0([0; T ];Rd) equipped with (2.4) is complete.

With (2.4), we compute

kF [y1]� F [y2]k = sup
t2[0;T ]

jF [y1](t)� F [y2](t)je�Cf t

� sup
t2[0;T ]

e�Cf t
Z t

0

jf(s; y1(s))� f(s; y2(s))jds

� sup
t2[0;T ]

e�Cf tCf

Z t

0

jy1(s)� y2(s)jds

� sup
t2[0;T ]

e�Cf tCf

Z t

0

eCfse�Cfsjy1(s)� y2(s)jds

� sup
t2[0;T ]

fe�Cf tCf
Z t

0

eCfsdsgky1 � y2k

� (1� e�CfT )ky1 � y2k:
By Banach �xed point theorem in a complete metric space (Theorem 2.2), there exists a unique
y 2 C0([0; T ];Rd) such that F (y) = y. The Picard iteration

y(n+1) = F [y(n)]

is a Cauchy sequence and converges to the unique �xed point y. Therefore, there exists a unique
solution to (2.3). �
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Remark 2.6. Theorem 2.5 holds true if Rd is replaced with a Banach space (a complete
normed vector space). The proof is the same.

If f is continuous, there is no guarantee that the initial value problem (2.3) possesses a unique
solution.

Example 2.7. Consider
dx

dt
= x

2
3 ; x(0) = 0: (2.5)

Then there are two solutions to (2.5) given by x1(t) =
t3

27 and x2(t) = 0.

Theorem 2.8 (Cauchy-Peano existence theorem). If f is continuous, then (2.3) admits a
solution x(t) that is, at least, de�ned for small t.

This theorem can be proved by using the Arzela-Ascoli theorem.

Definition 2.9 (Equicontinuity). A family of functions F is said to be equicontinuous on
[a; b] if for any given � > 0, there exists � > 0 such that

jf(t)� f(s)j < �

whenever jt� sj < � for every function f 2 F and t; s 2 [a; b].

Definition 2.10 (Uniform boundedness). A family of continuous functions F on [a; b] is
uniformly bounded if there exists a positive number M such that jf(t)j � M for every function
f 2 F and t 2 [a; b].

Theorem 2.11 (Arzela-Ascoli). Suppose that the sequence of functions ffn(t)gn2N on [a; b]
is uniformly bounded and equicontinuous, then there exists a subsequence ffnk(t)gk2N that is uni-
formly convergent on [a; b].

Example 2.12. Consider
dx

dt
= x2; x(0) = x0 6= 0:

By separation of variables, we obtain

dx

x2
= dt:

Thus,

� 1

x
=

Z
dx

x2
= t+ C;

and hence,

x = � 1

t+ C
:

Since x(0) = x0,

x(t) =
x0

1� x0t
:

If x0 > 0, x(t) blows up when t ! 1
x0

from below. If x0 < 0, the singularity is in the

past(t < 0). The only solution de�ned for all positive and negative t is the constant solution
x(t) = 0, corresponding to x0 = 0.

Remark 2.13 (Local existence and uniqueness theorem). If f(t; x) satis�es a Lipschitz
condition in a bounded domain, then a unique solution exists in a limited region.

Theorem 2.14. Let x0 2 R. Assume that f is continuous and satis�es the Lipschitz condition
in the closed domain K := fjx� x0j � kg and t 2 [0; T ],

jf(t; x1)� f(t; x2)j � Cf jx1 � x2j; for all x; y 2 K; t 2 [0; T ];
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then the equation 8<:
dx

dt
= f(t; x); t 2 [0; T ];

x(0) = x0;

has a unique solution in t 2 [0;minfT; k
M g], where

M := sup
x2K;t2[0;T ]

jf(t; x)j:

Example 2.15. The initial value problem8<:
dx

dt
= 1 + x2; t 2 [0; 1];

x(0) = 0;

in the region f(x; t) : jxj � 1; 0 � t � 1g has a unique solution for 0 � t � 1=2.

Now we turn to the continuity of the solution of (2.3).

Theorem 2.16 (Continuity with respect to the initial data). Suppose that f satis�es
the Lipschitz condition (2.2). Let x1(t) and x2(t) be the solutions of (2.3) corresponding to the
initial data x1(0) and x2(0), respectively. Then we have

jx1(t)� x2(t)j � eCf tjx1(0)� x2(0)j for all t 2 [0; T ]: (2.6)

Proof. Since

d

dt
jx1(t)� x2(t)j2 = 2(f(t; x1(t))� f(t; x2(t)))(x1(t)� x2(t))

� 2Cf jx1(t)� x2(t)j2; t 2 [0; T ];

we have

d

dt

�
jx1(t)� x2(t)j2e�2Cf t

�
� 0: (2.7)

Integrating (2.7) from 0 to t gives

jx1(t)� x2(t)j2e�2Cf t � jx1(0)� x2(0)j2;
or equivalently,

jx1(t)� x2(t)j � jx1(0)� x2(0)jeCf t;
which yields the desired inequality. �

Next we discuss the di�erentiability of the solution of (2.3) with respect to the initial data.
Formally, taking the derivative of the solution x of (2.3) with respect to the initial data, we

obtain that @x(t)=@x0 is the solution of the linear equation8>><>>:
d

dt

@x(t)

@x0
=
@f

@x
(t; x(t))

@x(t)

@x0
;

@x(t)

@x0
= 1:

(2.8)

Theorem 2.17. Suppose that f is of class C1. Then x0 7! x(t) is di�erentiable and @x(t)=@x0
is the unique solution of the linear equation (2.8).
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Proof. Let �x(t; x0; h) := x(t; x0 + h) � x(t; x0) be the di�erence quotient. By using the
mean-value theorem, we have

�x(t; x0; h) = h+

Z t

0

(f(s; x(s; x0 + h))� f(s; x(s; x0)))ds

= h+

Z t

0

(f(s; x(s; x0) + �x(s; x0; h))� f(s; x(s; x0)))ds

= h+

Z t

0

@f

@x
(s; x(s; x0) + ��x)�xds;

where � = �(s; x0; h) 2 [0; 1]. Since there exists a positive constant M such that j@f@x j � M , it
holds that

j�xj � jhj+M

Z t

0

j�x(s; x0; h)jds;

By Gronwall's lemma (Lemma 2.3),

j�x(t; x0; h)j � jhjeMT :

Let v(t) be the unique solution of (2.8). We compute

�x(t; x0; h)

h
� v(t) =

Z t

0

�
f(s; x(s; x0 + h))� f(s; x(s; x0))

h
� @f

@x
(s; x(s; x0))v(s)

�
ds

=

Z t

0

�x(s; x0; h)

h

�
@f

@x
(s; x(s; x0) + ��x(s; x0; h))� @f

@x
(s; x(s; x0))

�
ds

+

Z t

0

@f

@x
(s; x(s; x0))

�
�x(s; x0; h)

h
� v(s)

�
ds:

By using the uniform continuity of @f
@x , we have that for any � > 0 there exists h0 > 0 such that,

for any jhj � h0, the �rst term on the right-hand side is of order O(�). Then, again by Gronwall's
lemma, there exists a positive constant M 0 such that

j�x(t; x0; h)
h

� vj �M 0�eMT ;

for jhj small enough, which proves that x0 7! x(t) is di�erentiable and its derivative is given by

@x

@x0
= v;

where v is the solution of (2.8). �

2.4. Stability

Theorem 2.18 (Strong continuity theorem). Let

dx

dt
= f(t; x) and

dy

dt
= g(t; y)

be two ODEs on [0; T ]. If f satis�es the Lipschitz condition (2.2) on [0; T ] and there exists � > 0
such that, for any x 2 Rd, t 2 [0; T ],

jf(t; x)� g(t; x)j � �;

then the following inequality holds:

jx(t)� y(t)j � jx(0)� y(0)jeCf t + �

Cf
(eCf t � 1); t 2 [0; T ]:

Remark 2.19. The function g may not satisfy a Lipschitz condition.
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Proof. Since
d

dt
jx(t)� y(t)j2 = 2(f(t; x(t))� g(t; y(t)))(x(t)� y(t))

= 2(f(t; x(t))� f(t; y(t)))(x(t)� y(t)) + 2(f(t; y(t))� g(t; y(t)))(x(t)� y(t));

we have

d

dt
jx(t)� y(t)j2 �

���� ddt jx(t)� y(t)j2
����

� 2jf(t; x(t))� f(t; y(t))j jx(t)� y(t)j+ 2jf(t; y(t))� g(t; y(t))j jx(t)� y(t)j
� 2Cf jx(t)� y(t)j2 + 2�jx(t)� y(t)j
� 2Cf jx(t)� y(t)j2 + 2�

p
jx(t)� y(t)j2:

If we denote by h(t) := jx(t)� y(t)j2, then
dh

dt
� 2Cfh+ 2�

p
h:

Consider the following initial value problem:8<:
du

dt
= 2Cfu+ 2�

p
u;

u(0) = jx(0)� y(0)j2:
(2.9)

Since Cf > 0, u(0) � 0, it follows that du
dt is always non-negative when t � 0, and hence u is

increasing.
Let z(t) :=

p
u(t) and suppose that h(0) > 0. Then (2.9) is equivalent to8<:

dz

dt
� Cfz = �; t 2 [0; T ];

z(0) =
p
u(0):

This gives the solution of (2.4):p
u(t) = z(t) =

p
u(0)eCf t +

�

Cf
(eCf t � 1):

Moreover,
d

dt
(h(t)� u(t)) � 2Cf (h(t)� u(t)) + 2�(

p
h(t)�

p
u(t))

= 2Cf (h(t)� u(t)) + 2�
h(t)� u(t)p
h(t) +

p
u(t)

:

Suppose that there exists t1 such that h(t1) > u(t1). Let t0 := supft : 0 � t � t1; h(t) � u(t)g. By
the continuity of h and u, we must have h(t0) = u(t0). Since u(t0) > 0, we obtain for t0 � t � t1,
that

d

dt
(h(t)� u(t)) � 2Cf (h(t)� u(t)) + 2�

h(t)� u(t)p
u(0)

= (2Cf +
2�p
u(0)

)(h(t)� u(t)):

Hence,

d

dt

 
(h(t)� u(t)) exp(�(2Cf + 2�p

u(0)
)t)

!
� 0:

Integrating from t0 to t gives h(t) � u(t) for t0 � t � t1, which is a contradiction to h(t1) > u(t1).
Therefore, it follows that for all t 2 [0; T ],

d

dt

 
(h(t)� u(t)) exp(�(2Cf + 2�p

u(0)
)t)

!
� 0:
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By integrating now the last inequality from 0 to t, we obtain

(h(t)� u(t)) exp(�(2Cf + 2�p
u(0)

)t) � h(0)� u(0):

Since u(0) = h(0), we have h(t) � u(t) for t 2 [0; T ], and hence

jx(t)� y(t)j �
p
u(t)

=
p
u(0)eCf t +

�

Cf
(eCf t � 1)

=
p
h(0)eCf t +

�

Cf
(eCf t � 1):

Therefore, the desired estimate

jx(t)� y(t)j � jx(0)� y(0)jeCf t + �

Cf
(eCf t � 1)

holds.
If h(0) = 0, then, instead of (2.9), we consider the following equation:8><>:

dun
dt

= 2Cfun + 2�
p
un; t 2 [0; T ];

un(0) =
1

n
;

(2.10)

which, analogously to (2.9), has the explicit solution

un(t) =

�
1p
n
eCf t +

�

Cf
(eCf t � 1)

�2
:

We only need to prove that for each n 2 N,
h(t) � un(t) (2.11)

holds for t 2 [0; T ]. Then by letting n! +1, un ! u, where u is the solution to (2.9), and hence
h(t) � u(t).

Inequality (2.11) can be proved by contradiction. Suppose that there exists t1 > 0 such that
h(t1) > un(t1). Let t0 be the largest t in the interval 0 < t � t1 such that h(t0) � un(t0). By the
continuity of h(t) and un(t), we assert that

h(t0) = un(t0) > 0;

and h(t) > un(t) on (t0; t0 + �), a small right-neighborhood of t0. But this is impossible according
to the discussion in the case where h(0) > 0 by replacing 0 by t0. The proof of the theorem is now
complete. �

2.5. Regularity

Theorem 2.20. If f 2 Cn for n � 0, then the solution x of (2.3) is of class Cn+1.
Proof. The proof is by induction, the case n = 0 being clear. If f 2 Cn then x is at least of

class Cn, by the inductive assumption. Then the function t 7! f(t; x(t)) = dx(t)=dt is also of class
Cn. The function x(t) is then of class Cn+1. �

Remark 2.21. If f is a real analytic function, then it can be proved that x is also real analytic.
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2.6. Problems

Problem 2.22 (Generalized Gronwall's inequality). Suppose �(t) satis�es

�(t) � �(t) +

Z t

0

�(s)�(s) ds for all t 2 [0; T ];

with �(t) 2 R and �(t) � 0.

(i) Prove that

�(t) � �(t) +

Z t

0

�(s)�(s)e
R
t
s
�(�)d� ds:

(ii) Prove that, if in addition �(s) � �(t) for s � t, then

�(t) � �(t)e
R
t
0
�(s)ds; for all t 2 [0; T ]:

Problem 2.23. Let d = 1 and let f(t; x) be a continuous function satisfying the Lipschitz

condition (2.2). Let M := supx2R;t2[0;T ] jf(t; x)j. Let x be the solution to (2.3) and let x(n) be the
nth term in its Picard's approximation. Prove that

jx(t)� x(n)(t)j � MCn
f

(n+ 1)!
tn+1 for t 2 [0; T ]:

Problem 2.24. State and prove a uniqueness theorem for the di�erential equation8><>:
d2x

dt2
= f(t; x;

dx

dt
); t 2 [0; T ];

x(0) = x0;
dx

dt
(0) = x00; x0; x

0
0 2 R:



CHAPTER 3

Linear systems

3.1. Exponential of a matrix

Let Md(C) be the vector space of d � d matrices with entries in C. Let GLd(C) � Md(C) be
the group of invertible matrices.

Definition 3.1 (Matrix norm). The matrix norm of A 2Md(C) is

kAk = max
jyj=1

jAyj:

Lemma 3.2. The matrix norm has the following properties:

(i) jAyj � kAkjyj for all y 2 Cd;
(ii) kA+Bk � kAk+ kBk for all A;B 2Md(C);
(iii) kABk � kAk kBk for all A;B 2Md(C).

Lemma 3.3 (Jordan-Chevalley decomposition). Let A 2 Md(C). Then there exists C 2
GLd(C) such that A has a unique decomposition

C�1AC = D +N;

where D is diagonal, N is nilpotent (i.e., Nd = 0), and ND = DN .

We now de�ne the exponential of a matrix.

Definition 3.4. For a matrix A 2Md(C), we de�ne

eA =
X
n�0

An

n!
:

We list some properties of the exponential of a matrix.

Lemma 3.5. The exponential of a matrix has the following properties:

(i) (exponential of the sum) Let A;B 2Md(C). If AB = BA, then eA+B = eAeB;
(ii) (conjugation and exponentiation) Let A;B 2 Md(C) and C 2 GLd(C) be such that A =

C�1BC: Then we have
eA = C�1eBC:

In fact,

eA =
X
n�0

An

n!
=
X
n�0

(C�1BC)n

n!
=
X
n�0

C�1BnC

n!
= C�1eBC;

(iii) (exponential of a diagonalizable matrix) If A is a diagonalizable matrix of the form

A = C�1

0B@�1 0
. . .

0 �d

1CAC;

where �1; : : : ; �d 2 C and C 2 GLd(C), then

eA = C�1

0B@e
�1 0

. . .

0 e�d

1CAC;

27
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(iv) (exponential of a block matrix) Let Aj 2Mhj (C) for j = 1; : : : ; p. Let A be a block matrix
of the form

A =

0B@A1 0
. . .

0 Ap

1CA :

Then

eA =

0B@e
A1 0

. . .

0 eAp

1CA ;

(v) (derivative) Let A 2Md(C). We have

d

dt
etA = AetA = etAA:

In addition, to the matrix exponential we will also need its inverse. That is, given a matrix A
we want to �nd a matrix B such that

A = eB :

In this case, we will call B = logA a matrix logarithm of A. Note that B is not unique.

Lemma 3.6. A matrix A has a logarithm if and only if detA 6= 0. Moreover, if A is real and
all real eigenvalues are positive, then there is a real logarithm.

3.2. Linear systems with constant coe�cients

Let A 2 Md(C)) be independent of t. Let f 2 C0([0; T ]). Consider the following linear ODE
with constant coe�cients: 8<:

dx

dt
= Ax(t) + f(t); t 2 [0; T ];

x(0) = x0 2 Rd:
(3.1)

Since
jA(x� y)j � kAkjx� yj for all x; y 2 Cd;

by the Cauchy-Lipschitz theorem there exists a unique solution x to (3.1). If f = 0, then the
system of equations (3.1) is an autonomous system.

If d = 1 (i.e., A = a 2 C), then by the method of integrating factors,

x(t) = eatx0 +

Z t

0

ea(t�s)f(s)ds: (3.2)

In the general case (d � 1), if f = 0, then, from Lemma 3.5 (v), it follows that the solution x
of (3.1) is x(t) = etAx0.

For an arbitrary f , we have
d

dt
(e�tAx) = e�tAf(t);

and hence the solution x(t) of (3.1) is given by

x(t) = etAx0 +

Z t

0

e(t�s)Af(s)ds: (3.3)

Observe that the solution of (3.1) has been reduced in (3.3) to matrix calculations and integration.

Example 3.7. An important class of linear system with constant coe�cients are those that
can be converted into diagonal form. Suppose that we are given a system dx=dt = Ax such that
the eigenvalues �j of A are distinct. Then we can �nd an invertible matrix C such that C�1AC
is diagonal. If we choose a set of coordinates y = C�1x, then in the new coordinates the equation
becomes

dy

dt
= C�1ACy = Dy; y(0) = y0: (3.4)
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By construction, D in (3.4) is diagonal and

y(t) =

0B@e
�1t 0

. . .

0 e�dt

1CA y0:

Example 3.8. Consider (3.1) with d = 2, A =

�
0 1
0 0

�
. Then since A2 = 0 and hence

etA =

�
1 t
0 1

�
, the solution x(t) is given by

x(t) =

�
1 t
0 1

�
x0 +

Z t

0

�
1 t� s
0 1

�
f(s) ds:

Example 3.9. Consider (3.1) with d = 2, A =

�
0 !
�! 0

�
for some ! 2 R, ! 6= 0. Then

etA =

�
cos!t sin!t
� sin!t cos!t

�
:

This expression for etA can be veri�ed by di�erentiation:

d

dt
etA =

��! sin!t ! cos!t
�! cos!t �! sin!t

�
=

�
0 !
�! 0

��
cos!t sin!t
� sin!t cos!t

�
= AetA:

The solution x(t) to (3.1) is then given by

x(t) =

�
cos!t sin!t
� sin!t cos!t

�
x0 +

Z t

0

�
cos!(t� s) sin!(t� s)
� sin!(t� s) cos!(t� s)

�
f(s) ds:

3.3. Linear system with non-constant real coe�cients

3.3.1. The homogeneous case. LetMd(R) be the vector space of d�d matrices with entries
in R.

Proposition 3.10. Let A : [0; T ]! Md(R) be continuous. The set S of solutions of dx=dt =
A(t)x de�ned by

S =
n
x 2 C1([0; T ];Rd) : x satis�es

dx

dt
= A(t)x

o
(3.5)

is a linear subspace of C1([0; T ];Rd) of dimension d.

Proof. If x; y 2 S, then, for any �; � 2 R, �x + �y 2 C1([0; T ];Rd) is also a solution. Then
S is a linear subspace of C1([0; T ];Rd). We show that the dimension of S is d. Let the mapping
F : S ! Rd be de�ned by

F [x] = x(t0) (3.6)

for some t0 2 [0; T ]. Then F is linear: F [�x + �y] = �x(t0) + �y(t0) = �F [x] + �F [y]. F
is injective, i.e., F [x] = 0 implies that x = 0. In fact, x solves dx

dt = A(t)x(t) with the initial
condition x(t0) = 0. The solution to this problem is unique (by the Cauchy-Lipschitz theorem)
and 0 is a solution. Then x = 0. Finally, F is surjective because for any x0 2 Rd the equation8<:

dx

dt
= A(t)x(t); t 2 [0; T ];

x(t0) = x0;
(3.7)

has a solution x 2 C1([0; T ];Rd).
�

Proposition 3.11. Let S be de�ned by (3.5) and let x1; : : : ; xd 2 S. The following statements
are equivalent:
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(i) fx1; : : : ; xdg is a basis of S;
(ii) det[x1(t); : : : ; xd(t)] 6= 0 for all t 2 [0; T ].
(iii) det[x1(t0); : : : ; xd(t0)] 6= 0 for some t0 2 [0; T ].

Here, det denotes the determinant of a matrix and [x1; : : : ; xd] is the d � d matrix with columns
x1; : : : ; xd 2 Rd.

Proof. It is clear that (i) is equivalent to (ii). To see that (i) implies (iii), let fx1; : : : ; xdg be
a basis of S. Then fF [x1]; : : : ; F [xd]g forms a basis of Rd, where the isomorphism F relative to t0
is de�ned by (3.6). Next let us check that (iii) implies (i). Let t0 be such that (iii) holds and let
F : S ! Rd be the isomorphism relative to t0 de�ned by (3.6). Then the inverse F�1 : Rd ! S is
also an isomorphism. It follows that x1 = F�1[x1(t0)]; : : : ; xd = F�1[xd(t0)] is a basis of S. �

Definition 3.12 (Fundamental matrix). If one of the three equivalent conditions of Propo-
sition 3.11 holds, then the functions x1; : : : ; xd are called a fundamental system of solutions of
the di�erential equation dx

dt = A(t)x. The matrix X = [x1; : : : ; xd] is then called a fundamental
matrix of the equation.

We now introduce the Wronskian determinant.

Definition 3.13 (Wronskian determinant). Let x1; : : : ; xd 2 S. The Wronskian determi-
nant w 2 C1([0; T ];R) of x1; : : : ; xd is de�ned by

w(t) = det[x1(t); : : : ; xd(t)]:

Theorem 3.14. Let x1; : : : ; xd 2 S and let w 2 C1([0; T ];R) be the Wronskian determinant of
x1; : : : ; xd. Then w solves the di�erential equation

dw

dt
= (trA(t))w for t 2 [0; T ]: (3.8)

Here, tr denotes the trace of a matrix.

Proof. If x1; : : : ; xd are linearly dependent, then w = 0 and (3.8) trivially holds. Suppose
that x1; : : : ; xd are linearly independent, i.e., w(t) 6= 0 for all t 2 [0; T ].

Let X : [0; T ]!Md(R) be the fundamental matrix having as columns the solutions x1; : : : ; xd,
i.e.,

X(t) = (xij(t))i;j=1;:::;d; t 2 [0; T ];

where xj = (x1j ; : : : ; xdj)
> for j = 1; : : : ; d.

Let zj be the solution of 8<:
dzj
dt

= A(t)zj(t);

zj(t0) = ej ;

where fejgj=1;:::;d is the standard unit orthonormal basis in Rd.
Then fz1; : : : ; zdg is a basis of the space of solutions to dz=dt = Az. Moreover, there exists

C 2 GLd(Rd) such that

X(t) = Z(t)C; t 2 [0; T ];

where Z = [z1; : : : ; zd]. Since a fundamental matrix is uniquely determined by an initial condition,
C = Z(t0)

�1X(t0).
Let v(t) := detZ(t). Then v solves

dv

dt
(t0) = trA(t0):

In fact, by the de�nition of the determinant of a matrix, we have

dv

dt
(t) =

d

dt

X
�2Sd

(�1)sgn�
dY
i=1

zi�(i)(t) =
X
�2Sd

(�1)sgn�
dX

j=1

d

dt
zj�(j)(t)

Y
i6=j

zi�(i)(t);
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where Sd is the set of all permutations of the d elements f1; 2; : : : ; dg and sgn� is the signature of
the permutation �. Note thatY

i6=j

zi�(i)(t0) = 0 unless � = identity;

and
dzjj
dt

(t0) = (A(t0)zj(t0))j

=

dX
h=1

ajh(t0)zhj(t0) =

dX
h=1

ajh(t0)�hj(t0)

= ajj(t0):

Therefore,

dv

dt
(t0) =

dX
j=1

ajj(t0) = trA(t0):

Now the general result follows from the di�erentiation of the following identity:

w = detX = det(ZC) = (detC) detZ = (detC)v:

In fact, we have

dw

dt
(t0) = (detC)

dv

dt
(t0) = (detC)trA(t0):

Therefore,
dw

dt
(t0) = trA(t0)w(t0);

since v(t0) = 1. �

Remark 3.15. Let t0 2 [0; T ]. From (3.8), it follows that

w(t) = w(t0)e
R
t
t0
trA(s) ds

for t 2 [0; T ]: (3.9)

This is known as Abel's identity or Liouville's formula. Identity (3.9) shows that it su�ces
to check that the determinant of the fundamental matrix is nonzero for one t0 2 [0; T ].

3.3.2. The inhomogeneous case. Consider the inhomogeneous linear di�erential equation
of the form �

dx

dt
= A(t)x+ f(t); (3.10)

where A(t) 2 C0([0; T ];Md(R)) and f 2 C0([0; T ];Rd).
Let X be a fundamental matrix for the homogeneous equation dx(t)=dt = A(t)x(t), i.e.,

dX

dt
= AX and detX 6= 0 for all t 2 [0; T ]:

Then, any solution x to the homogeneous equation is of the form

x(t) = X(t)c; t 2 [0; T ]; (3.11)

for some (column) vector c 2 Rd.
By using the method of integrating factors, we look for a solution to (3.10) of the form (3.11)

with c 2 C1([0; T ];Rd). In this case, we have

dx

dt
=
dX

dt
c+X

dc

dt
= AXc+X

dc

dt
= Ax+X

dc

dt
;

which implies X dc
dt = f(t): Since X is invertible, we obtain

dc

dt
= X�1f(t):
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Therefore, we �nd

c(t) = c0 +

Z t

0

X(s)�1f(s)ds;

for some c0 2 Rd.
Theorem 3.16. Let X be a fundamental matrix for the homogeneous equation dx=dt = Ax.

Then, for all c0 2 Rd, the function

x(t) = X(t)
�
c0 +

Z t

0

X(s)�1f(s)ds
�

(3.12)

is a solution to (3.10). Moreover, any solution to (3.10) is of the form (3.12) for some c0 2 Rd.
Proof. The �rst statement is already proved. To prove the second statement, let x2 be a

solution to (3.10). Since

d

dt
(x2 � x(t)) = A(x2 � x);

where x is given by (3.12), we get x2 � x = Xc1 for some c1 2 Rd and the claim follows. �

Formula (3.12) is called Duhamel's formula.

3.4. Second order linear equations

Let d = 1 and consider the following second order ODE:

d2x

dt2
= f(t; x;

dx

dt
);

for a given scalar function f . The above ODE is linear if f is linear in x and dx=dt, namely,

f(t; x;
dx

dt
) = g(t)� p(t)

dx

dt
� q(t)x;

where g; p; q are (scalar) functions of t but do not depend on x. Then the ODE becomes

d2x

dt2
+ p(t)

dx

dt
+ q(t)x = g(t): (3.13)

The initial value problem consists of (3.13) together with a pair of initial conditions

x(t0) = x0;
dx

dt
(t0) = x00; x0; x

0
0 2 R: (3.14)

The second order ODE (3.13) is called homogeneous if g = 0 and inhomogeneous otherwise.
If p(t) and q(t) are constant, then (3.13) is called linear ODE with constant coe�cients.

Suppose that

p; q 2 C0([0; T ]): (3.15)

If the condition (3.15) fails, then the points at which either p or q fail to be continuous are called
singular points. The following are important examples:

Bessel's equation: p(t) =
1

t
; q(t) = 1� �

t2
; (at t = 0);

Legendre's equation: p(t) =
2t

1� t2
; q(t) =

n(n+ 1)

1� t2
; n 2 N (at t = �1):

Theorem 3.17. Suppose that p; q; g 2 C0([0; T ];Rd). Then there exists a unique solution x(t)
on [0; T ] to (3.13) with the initial conditions (3.14).
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3.4.1. Structure of the general solution. Here we discuss the structure of the general
solution to the second order ODE (3.13).

First we consider the homogeneous case. We need the following results regarding the Wronskian
determinant.

Definition 3.18. Two functions x1 and x2 on [0; T ] are called linearly independent if
neither of them is a multiple of the other. Otherwise, they are called linearly dependent.

Proposition 3.19. Let w be the Wronskian determinant given by

w(t) := x1(t)
dx2
dt

(t)� x2(t)
dx1
dt

(t) = det

 
x1 x2
dx1
dt

dx2
dt

!
:

If w(t) is not zero at some t0 2 [0; T ], then x1 and x2 are linearly independent.

Proof. Let us prove that if x1 and x2 are linearly dependent, then w(t) = 0 for all t 2 [0; T ].
Suppose that x1 and x2 are linearly dependent. Then, with respect to (�1; �2), the following
system: 8<:�1x1 + �2x2 = 0;

�1
dx1
dt

+ �2
dx2
dt

= 0;
for all t 2 [0; T ];

has a non-trivial solution. Therefore,

w(t) = det

 
x1 x2
dx1
dt

dx2
dt

!
= 0; for all t 2 [0; T ]:

This completes the proof. �

Proposition 3.20. If x1 and x2 solve (3.13) on [0; T ] then w(t) is either identically zero or
not equal to zero at any point of [0; T ].

Proof. We have

w0(t) = x1
d2x2
dt2

� x2
d2x1
dt2

:

We also have, by the assumption that x1; x2 solve (3.13), that

d2xi
dt2

= �p(t)dxi
dt

� q(t)xi; i = 1; 2:

So we get
dw

dt
= �p(t)(x1 dx2

dt
� dx1

dt
x2) = �p(t)w(t):

Therefore w(t) = w(t0)e
�
R
t
t0
p(s)ds

, which is either identically zero or never vanishes depending on
w(t0). �

Now we discuss the structure of the general solution to the homogeneous system.

Theorem 3.21. Suppose that x1 and x2 solve the equation (3.13) with g = 0. Suppose also
that x1 and x2 are linearly independent. Then the general solution is of the form c1x1 + c2x2,
where c1 and c2 are constant coe�cients.

Proof. Let ~x be an arbitrary solution with the initial condition ~x(t0) = ~x0; d~x=dt(t0) = ~x00.
Consider the system of equations for (c1; c2)(

c1x1(t0) + c2x2(t0) = ~x0;

c1
dx1
dt (t0) + c2

dx2
dt (t0) = ~x00:
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Since x1
dx2
dt � x2

dx1
dt 6= 0 at t = t0, there exists a unique nontrivial solution (c1; c2) = (~c1; ~c2) to

the above system. Then, by the existence and uniqueness theorem for the initial value problem of
the second order ODE, we conclude that ~c1x1 + ~c2x2 = ~x. �

3.4.2. Linear n-th order ODE with constant coe�cients. Here we discuss the approach
to solving a linear n-th order ODE with constant coe�cients. Consider

dnx

dtn
+ an�1

dn�1x

dtn�1
+ : : :+ a1

dx

dt
+ a0x = 0; (3.16)

where ai 2 R for i = 0; : : : ; n� 1.
The general solution has the form

x(t) = c1x1 + : : :+ cnxn;

where fxigni=1 is the set of linearly independent solutions (a fundamental set of solutions) and ci
are constant coe�cients.

Let w(t) be the Wronskian determinant of the set fx1; : : : ; xng, i.e.,

w(t) = det

26664
x1 x2 : : : xn
dx1
dt
...

...
dn�1

dtn�1x1
dn�1

dtn�1x2 : : : dn�1

dtn�1xn

37775 :
If w(t0) 6= 0 for some t0, then (x1; : : : ; xn) forms a fundamental set of solution.

We solve the equation through the characteristic equation

�n + an�1�
n�1 + : : :+ a1�+ a0 = 0: (3.17)

This equation is derived by guessing a solution x(t) has the form e�t with � 2 C.
The characteristic equation (3.17) has n complex roots �̂j counted with their multiplicities lj .

In other words, equation (3.17) can be rewritten in the form

mY
j=1

(�� �̂j)
lj = 0

with
Pm

j=1 lj = n. In fact, the general solution x(t) is a linear combination of tke�̂jt for 0 � k < lj

and j = 1; : : : ;m. In particular, if m = n, then x(t) is a linear combination of e�̂jt.

Theorem 3.22. Let �̂j ; 1 � j � m; be the zeros of the characteristic polynomial (3.17) asso-
ciated with (3.16) and let lj be the corresponding multiplicities. Then the functions

xj;k(t) = tke�̂jt; 0 � k < lj ; 1 � j � m; (3.18)

are n linearly independent solutions of (3.16). In particular, any other solution can be written as
a linear combination of these solutions.

Remark 3.23. Let y = (x; dx=dt; : : : ; dn�1x=dtn�1)>. Then (3.16) can be rewritten as

dy

dt
= Ay with A :=

0BBB@
0 1 0 0

0 0
. . . 0

0 0 0 1
�a0 �a1 : : : �an�1

1CCCA :

The characteristic polynomial of A, P (�) := det(A � �I), is given by P (�) =
Qm
j=1(� � �̂j)

lj .

The algebraic multiplicity of the eigenvalue �̂j of A is lj. If A has a basis of eigenvectors, there



3.4. SECOND ORDER LINEAR EQUATIONS 35

will only be in y(t) terms of the form e�̂jt. In general, let J be the Jordan bloc form of A. Then
etA = C�1etJC for some invertible matrix C, where

etJ =

0B@e
tJ1 0

. . .

0 etJk

1CA ;

and

etJi = et(�̂iI+Ni) = et�̂i
�
I + tNi + : : :+

tli�1

(li � 1)!
N li�1
i

�
:

Therefore, as stated in Theorem 3.22, in general the solution with be the sum of terms of the form

tke�̂jt; k < lj.

3.4.3. Reduction of order. Here we discuss a method for �nding a second solution to the
homogeneous second order ODE when a �rst solution is known by reducing the order.

Suppose that x1 a solution of (3.13). Let

x(t) = v(t)x1(t):

Then
dx

dt
(t) =

dv

dt
x1 + v

dx1
dt

and
d2x

dt2
(t) =

d2v

dt2
x1 + 2

dv

dt

dx1
dt

+ v
d2x1
dt2

:

So, we get
d2v

dt2
+ (p+ 2

(dx1=dt)

x1
)
dv

dt
= 0: (3.19)

By letting u = dv=dt, the equation above can be rewritten as a �rst order ODE

du

dt
+ (p+ 2

(dx1=dt)

x1
)u = 0:

Therefore,

u(t) = ce�
R
t(p+2

(dx1=dt)
x1

)ds =
c

(x1(t))2
e�

R
t p(s)ds: (3.20)

Since v =
R t
u(s)ds, we get

x(t) = x1(t)

Z t

u(s)ds: (3.21)

In conclusion, if one solution to (3.13) is known, then a second solution can be found and it is
expressed by (3.21), where u is given by (3.20).

Example 3.24. Consider the di�erential equation

d2x

dt2
� 2t

dx

dt
� 2x = 0; (3.22)

and observe that x1(t) = et
2

is a solution. Hence we can set x(t) = et
2

v(t). Then from (3.19), it
follows that

d2v

dt2
+ 2t

dv

dt
= 0: (3.23)

The solution of (3.23) is given by
dv

dt
= e�t

2

;

implying that

v(t) =

Z t

0

e�s
2

ds =

p
�

2
erf(t);
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where erf is the Gauss error function. Hence a second solution to (3.22) is given by

x2(t) = et
2

erf(t):

3.5. Linearization and stability for autonomous systems

3.5.1. Linear systems. Let A 2 Md(R) be independent of t. Consider the following linear
system of ODEs: 8<:

dx

dt
= Ax(t); t 2 [0;+1[;

x(0) = x0 2 Rd:
(3.24)

By Lemma 3.3, there exists C 2 GLd(C) such that

C�1AC = D +N;

where D is diagonal, N is nilpotent, and ND = DN . Let �j ; j = 1; : : : ; J be the (distinct)
eigenvalues of A. Let lj be the (algebraic) multiplicity of �j and denote by Ej = ker(A��jI)lj the
characteristic subspace associated with �j (called also generalized eigenspace). We have �Ej = Cd.
Moreover, each Ej is invariant under A.

The system (3.24) is said to be stable if there exists a positive constant C0 such that

jx(t)j � C0jx0j for all t 2 [0;+1[: (3.25)

Lemma 3.25. The system (3.24) is stable if and only if <�j < 0 or <�j = 0 and N jEj
= 0 for

j = 1; : : : ; J .

Proof. Let ex(t) = C�1x(t) and ex0 = C�1x0. By Lemma 3.5,ex(t) = etD+tNex0; t 2 [0;+1[: (3.26)

Since DN = ND, (3.26) yields

ex(t) = � d�1X
i=0

(tN)i

i!

�
etDex0; t 2 [0;+1[: (3.27)

If ex0 2 Ej , then
ex(t) = et�j

� d�1X
i=0

(tN)i

i!

�ex0; t 2 [0;+1[: (3.28)

Therefore, x(t) satis�es (3.25) for some positive constant C0 if and only if <�j < 0 or <�j = 0 and
N jEj

= 0. �

3.5.2. Nonlinear systems. Consider the autonomous system8<:
dx

dt
= f(x);

x(0) = x0 2 Rd;
(3.29)

where f is C1. Suppose that x� is an equilibrium point for (3.29), i.e., f(x�) = 0.

Theorem 3.26 (Local stability). Suppose that all the eigenvalues � of the Jacobian of f at
x�, f 0(x�), are with negative real parts. Then, there exists � > 0 such that if jx0 � x�j � �; then
jx(t)� x�j ! 0 as t! +1.

Proof. Let A = f 0(x�) and consider the linearized system8<:
dy(t)

dt
= Ay(t); t � 0;

y(0) = x0 � x�;

(3.30)
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which, in view of (3.3), has the explicit solution y(t) = etA(x0�x�) for t � 0. Suppose that <� < 0
for any eigenvalue � of f 0(x�). From (3.27), it follows that there exists r > 0 such that

jetAzj � C0e
�rtjzj for all z 2 Rd;

where the constant C0 depends only on f .
Now, rewrite (3.29) as a small perturbation of the linearized system8<:

dx

dt
= A(x� x�) + g(x);

x(0) = x�;
(3.31)

where
g(x) = jx� x�j�(x); with � 2 C0 and �(x�) = 0: (3.32)

Observe that there exists �0 > 0 such that for all � 2]0; �0[,

supfjg(x)j : jx� x�j � �g < r�

C0
: (3.33)

To conclude it su�ces to prove that if jx0 � x�j < min(�; �=C0), then

jx(t)� x�j � � for all t � 0:

From (3.31), it follows that

x(t)� x� = etA(x0 � x�) +

Z t

0

e(t�s)Ag(x(s)) ds;

and hence, (3.32) yields

jx(t)� x�j � e�rtC0jx0 � x�j+
Z t

0

e�r(t�s)C0jg(x(s))j ds

� e�rtC0jx0 � x�j+ (1� e�rt)
C0
r

supfjg(x(s)j : 0 � s � tg:
Thus, for all t � 0,

jx(t)� x�j � max

�
C0jx0 � x�j; C0

r
supfjg(x(s)j : 0 � s � tg

�
:

Introduce
T := infft > 0 : jx(t)� x�j � �g:

If we assume that T is �nite, we would obtain

jx(t)� x�j � � for all t 2 [0; T ]; jx(T )� x�j = �:

In view of (3.32), we arrive at a contradiction by using (3.33). �

Definition 3.27. A function V 2 C1(Rd;R) is said to be a Lyapunov function for (3.29) if

V (x�) < V (x) for any x 6= x�; (3.34)

and
f(x) � V 0(x) � 0 for any x 2 Rd: (3.35)

Example 3.28. (i) Consider the system8><>:
dx1
dt

= x2;

dx2
dt

= �2x1 � x2:
(3.36)

Then x� = (0; 0) is an equilibrium point and

V (x) = x21 +
1

2
x22

is a Lyapunov function for (3.36).
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(ii) For the gradient systems introduced in Subsection 1.3.4, there is a natural candidate for
a Lyapunov function. Suppose that f(x) = �r�(x). Suppose that the potential � is
smooth and there exists x� such that �(x�) < �(x) for any x 6= x�. Then V = � is a
Lyapunov function for (3.29).

Theorem 3.29. Suppose that there exists a Lyapunov function V . Then, for any � > 0, there
exists � > 0, such that

sup
t�0

jx(t)� x�j � �;

provided that jx0 � x�j � �.

Proof. Condition (3.34) on V implies that for �xed � > 0, there exists  > 0 (su�ciently
small) such that �

x : jx� x�j � 2�; V (x) � V (x�) + 
	 � �x : jx� x�j � �

	
:

Choose � (0 < � < �) such that�
x : jx� x�j � �

	 � �x : jx� x�j � 2�; V (x) � V (x�) + 
	
:

By using the fundamental property of a Lyapunov function V

d

dt
V (x(t)) = f(x(t)) � V 0(x(t)) � 0; t � 0; (3.37)

we obtain that

V (x(t)) � V (x0) � V (x�) +  if jx0 � x�j � �:

In fact, we have

jx(s)� x�j � 2� for all s � 0;

since otherwise, there would exist t > 0 such that jx(t)� x�j = 2�. From V (x(t)) � V (x�) +  we
would arrive at a contradiction. �

Theorem 3.30 (Global stability). Suppose that there exists V 2 C1(Rd;R) satisfying (3.34)
such that

f(x) � V 0(x) < 0 for any x 6= x�; (3.38)

and the set fx : V (x) � V (x0)g is bounded. Then the solution x(t) of (3.29) converges to x� as
t! +1.

Proof. As in the proof of Theorem 3.29, we have V (x(t)) � V (x0) and thus fx(t) : t � 0g is
bounded. More precisely, (3.37) yieldsZ +1

0

��f(x(t)) � V 0(x(t))�� dt = Z +1

0

�f(x(t)) � V 0(x(t)) dt � V (x0)� V �;

where V � := limt!+1 V (x(t)). Note that V � > �1 since (x(t))t�0 is bounded.
Therefore, we can choose (tn)n2N such that x(tn)! ex and f(x(tn))�V 0(x(tn))! 0 as n! +1.

Hence,

f(ex) � V 0(ex) = 0;

which, by (3.38), gives ex = x�. �

Example 3.31. Consider the equation dx=dt = f(x) with the initial condition x(0) = x0,
where f(0) = 0 and x> � f(x) < 0 if x 6= 0. Then x� = 0 is the unique equilibrium point. Let
V (x) := jxj2. We have V (x) > V (0) for x 6= 0 and dV=dt = 2x> � (dx=dt) = 2x> � f(x) < 0.
Moreover, fx : V (x) � V (x0)g is bounded since V (x) ! +1 if jxj ! +1. Therefore, it follows
from Theorem 3.30 that limt!+1 x(t) = 0.
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3.6. Periodic linear systems

In this section, we consider the equation

dx(t)

dt
= A(t)x(t)

in the special case where the matrix A(t) is periodic,

A(t+ T ) = A(t); T > 0:

This periodicity condition implies that x(t + T ) is again a solution if x(t) is. A �rst naive guess
would be that x(t + T ) = x(t). However, this is too much to hope for since it already fails with
A(t) a constant matrix (see Example 3.36). Nevertheless, as it will be shown later, x(t) exhibits
an exponential behavior if we move on by one period. If we factor out this exponential term, the
remainder is periodic.

For t0 2 R, let the matrix Y (t; t0) be the unique solution of8<:
dY (t; t0)

dt
= A(t)Y (t; t0); t > t0;

Y (t0; t0) = I:

(3.39)

Lemma 3.32. Suppose that A(t) is periodic with period T . Then Y (t; t0) satis�es

Y (t+ T; t0 + T ) = Y (t; t0):

Proof. By

dY (t+ T; t0 + T )

dt
= A(t+ T )Y (t+ T; t0 + T ) = A(t)Y (t+ T; t0 + T )

and Y (t0 + T; t0 + T ) = I, we see that Y (t + T; t0 + T ) solves (3.39). Thus it is equal to Y (t; t0)
by uniqueness. �

Let Z(t0) = Y (t0 + T; t0): By Lemma 3.32, Z is periodic,

Z(t0 + T ) = Z(t0):

Lemma 3.33. For all l 2 N, we have

Y (t0 + lT; t0) = Z(t0)
l:

Proof. We have

Y (t0 + lT; t0) = Y (t0 + lT; t0 + (l � 1)T )Y (t0 + (l � 1)T; t0)

= Z(t0 + (l � 1)T )Y (t0 + (l � 1)T; t0)

= Z(t0)Y (t0 + (l � 1)T; t0)

= Z(t0)
lY (t0; t0) = Z(t0)

l:

�

From Liouville's formula (3.9), it follows that

detZ(t0) = e
R t0+T
t0

tr(A(s)) ds = e
R
T
0
tr(A(s)) ds;

which is independent of t0 and positive.
Therefore, by Lemma 3.6, we can �nd a matrix Q(t0) such that

Z(t0) = eTQ(t0); Q(t0 + T ) = Q(t0):

Note that Q(t0) is not unique. Note also that Q(t0) is complex even if A(t) is real unless all real
eigenvalues of Z(t0) are positive.

Now, writing

Y (t; t0) = P (t; t0)e
(t�t0)Q(t0);
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a straightforward computation shows that

P (t+ T; t0) = Y (t+ T; t0)M(t0)
�1e�(t�t0)Q(t0)

= Y (t+ T; t0 + T )e�(t�t0)Q(t0)

= Y (t; t0)e
�(t�t0)Q(t0) = P (t; t0):

In summary, we have proven Floquet's theorem.

Theorem 3.34. Suppose that A(t) is periodic. Then Y (t; t0) de�ned by (3.39) has the form

Y (t; t0) = P (t; t0)e
(t�t0)Q(t0);

where P (�; t0) has the same period as A(�) and P (t0; t0) = I.

As a consequence of Floquet's theorem we obtain the following result.

Corollary 3.35. The transformation y(t) = P (t; t0)
�1x(t) renders the system dx=dt = A(t)x

into one with constant coe�cients,
dy(t)

dt
= Z(t0)y(t):

Example 3.36. Consider the one-dimensional case

dx

dt
= a(t)x; a(t+ T ) = a(t):

Then

Y (t; t0) = e
R
t
t0
a(s) ds

and

Z(t0) = e
R t0+T
t0

a(s) ds = eT<a>; < a >=
1

T

Z T

0

a(s) ds:

Moreover,

P (t; t0) = e
R
t
t0
(a(s)�<a>) ds

; Q(t0) =< a > :

The eigenvalues �j of Z(t0) are known as Floquet multipliers and the eigenvalues j of Q(t0)
are known as Floquet exponents. �j and j are related via �j = eTj . Since the periodic part
P (t; t0) is bounded, we obtain the following result as another consequence of Floquet's theorem.

Theorem 3.37. A periodic linear system is stable if all Floquet multipliers satisfy j�j j � 1
(respectively all Floquet exponents satisfy <j � 0) and for all Floquet multipliers with j�j j = 1
(respectively all Floquet exponents with <j = 0) the algebraic and geometric multiplicities are
equal.

Example 3.38. Consider Hill's equation

d2x(t)

dt2
+ q(t)x(t) = 0; q(t+ T ) = q(t): (3.40)

In this case, the associated system is with

A(t) =

�
0 1

�q(t) 0

�
:

Let x1 and x2 be the solutions of (3.40) corresponding to the initial conditions

x1(t0; t0) = 1;
dx1
dt

(t0; t0) = 0 and x2(t0; t0) = 0;
dx2
dt

(t0; t0) = 1:

Then

Y (t; t0) =

 
x1(t; t0) x2(t; t0)

dx1
dt (t; t0)

dx2
dt (t; t0)

!
:
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Liouville's formula (3.9) shows that detY (t; t0) = 1 and hence the characteristic equation for

Z(t0) =

�
x1(t0 + T; t0) x2(t0 + T; t0)
dx1
dt (t0 + T; t0)

dx2
dt (t0 + T; t0)

�
is given by

�2 � 2��+ 1 = 0; � :=
tr(Z(t0))

2
:

Therefore, by Theorem 3.37, Hill's equation (3.40) is stable if j�j < 1 and unstable if j�j > 1.

3.7. Problems

Problem 3.39 (Laplace transform). (i) Prove that if A 2Md(R), then

etA � I =

Z t

0

AesA ds:

(ii) Prove that if all eigenvalues of A have negative real parts, then

�A�1 =
Z +1

0

esA ds:

(iii) Prove that if s 2 R is su�ciently large, then

(sA� I)�1 =

Z +1

0

es(A�tI) ds;

that is, the Laplace transform of etA is (sI �A)�1.

Problem 3.40. Let A 2Md(R).

(i) Apply the Jacobi formula

d

dt
detB(t) = (detB(t)) tr(B(t)�1

dB

dt
(t)) (3.41)

for B(t) = etA to prove that

det eA = etrA:

(ii) Prove that a vector u is an eigenvector of A corresponding to the eigenvalue � if and only
if u is an eigenvector of eA corresponding to the eigenvalue e�.

(iii) Prove that if detA(t) 6= 0, then

d

dt
A�1(t) = �A�1(t)dA

dt
(t)A�1(t):

(iv) Prove that

det(I + �A+ o(�)) = 1 + �trA+ o(�);

where o(�) (Landau symbol) collects terms which vanish faster than � as �! 0.

Problem 3.41 (Reduction of order). Use reduction of order to �nd the general solution of
the following equations:

(i)

t
d2x

dt2
� 2(t+ 1)

dx

dt
+ (t+ 2)x = 0; x1(t) = et:

(ii)

t2
d2x

dt2
� 3t

dx

dt
+ 4x = 0; x1(t) = t2:
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Problem 3.42. (i) Verify that the second-order equation

d2x

dt2
+ (1� t2)x = 0; (3.42)

can be factorized as

(
d

dt
� t)(

d

dt
+ t)x = 0: (3.43)

(ii) By solving two �rst-order problems, �nd the solution of (3.42).

Problem 3.43. Let A 2 Md(R) be independent of t. Consider the linear system of ODEs
(3.24).

(i) Assume that there exist two positive de�nite matrices P and Q such that

A>P + PA = �Q: (3.44)

Prove that V (x) := x>Px is a Lyapunov function for (3.24).
(ii) De�ne

r := min
x 6=0

x>Qx

x>Px
:

Prove that V (x(t)) � e�rtV (x0), where x(t) is the solution of (3.24).
(iii) Assume that every eigenvalue of A has a negative real part. Prove that given Q, the

solution P to (3.44) can be written as

P =

Z +1

0

etA
>

QetA dt:

Problem 3.44 (Convergence of the gradient algorithm for �nding a local minimum

of a function). Let f : Rd ! R and assume that x� is a local minimum, i.e., f(x�) < f(x) for x
close enough but not equal to x�. Assume that f is continuously di�erentiable and let x(t) be the
solution to 8<:

dx

dt
= �rf(x); t 2 [0;+1[;

x(0) = x0 2 Rd:
(i) Prove that if x0 is close to x� then limt!+1 x(t) = x�.
(ii) Let f(x) = 1

2x
>Qx, where Q is symmetric, positive de�nite. Show directly that x(t)

converges to zero (= x�).

Problem 3.45. Consider
dx(t)

dt
= a(t)Ax(t);

where a(t) is a scalar periodic function with period T and A is a constant 2� 2 matrix. Compute
the Floquet exponent, and �nd P (t; t0) and Q(t0) in this case.



CHAPTER 4

Numerical solution of ordinary di�erential equations

4.1. Introduction

This chapter is concerned with the numerical solution of initial value problems for systems of
ordinary di�erential equations. Since there is no hope of solving the vast majority of di�erential
equations in explicit and analytic form, the design of suitable numerical schemes for accurately
approximating solutions is essential. Explicit solutions, when they are known, can also be used as
test cases for tracking the reliability and accuracy of a chosen numerical scheme. In this chapter,
we survey the most basic numerical methods for solving initial value problems. It goes without
saying that some equations are more di�cult to accurately approximate than others, and a variety
of more specialized techniques are employed when confronted with a recalcitrant system. However,
all of the more advanced developments build on the basic schemes and ideas laid out in this chapter.

4.2. The general explicit one-step method

4.2.1. Consistency, stability and convergence. Consider the initial value problem8<:
dx

dt
= f(t; x); t 2 [0; T ];

x(0) = x0; x0 2 R;
(4.1)

where f 2 C0([0; T ]� R) satis�es the Lipschitz condition (2.2).
Starting at the initial time t = 0, we introduce successive discretization points

t0 = 0 < t1 < t2 < : : : ;

continuing on until we reach the �nal time T . To keep the analysis as simple as possible, we use a
uniform step size, and so

�t := tk+1 � tk > 0; (4.2)

does not depend on k and is assumed to be relatively small, with tk = k�t. We also suppose that
K = T=(�t) is an integer.

A general explicit one-step method may be written in the form:

xk+1 = xk +�t�(tk; x
k;�t); (4.3)

for some continuous function �(t; x; h). In (4.3), taking in succession k = 0; 1; : : : ;K � 1, one-
step at a time, the approximate values xk of x at tk can be easily obtained. Scheme (4.3) is called
explicit since xk+1 is obtained from xk. xk+1 appears only on the left-hand side of (4.3).

We de�ne the truncation error of the numerical scheme (4.3) by

Tk(�t) =
x(tk+1)� x(tk)

�t
� �(tk; x(tk);�t): (4.4)

As �t! 0; k ! +1; k�t = t,

Tk(�t)! dx

dt
� �(t; x; 0):

Definition 4.1 (Consistency). The numerical scheme (4.3) is consistent with (4.1) if

�(t; x; 0) = f(t; x) for all t 2 [0; T ] and x 2 R:

43
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Definition 4.2 (Stability). The numerical scheme (4.3) for solving (4.1) is stable if � is
Lipschitz continuous in x, i.e., there exist positive constants C� and h0 such that

j�(t; x; h)� �(t; y; h)j � C�jx� yj; t 2 [0; T ]; h 2 [0; h0]; x; y 2 R: (4.5)

De�ne the global error of the numerical scheme (4.3) by

ek = xk � x(tk): (4.6)

Definition 4.3 (Convergence). The numerical scheme (4.3) for solving (4.1) is convergent
if

jekj ! 0 as �t! 0; k ! +1; k�t = t 2 [0; T ]:

Theorem 4.4 (Dahlquist-Lax equivalence theorem). The numerical scheme (4.3) is convergent
if and only if it is consistent and stable.

Proof. From (4.1), it follows that

x(tk+1)� x(tk) =

Z tk+1

tk

f(s; x(s)) ds;

which gives

x(tk+1)� x(tk) = (�t)f(tk; x(tk)) +

Z tk+1

tk

�
f(s; x(s))� f(tk; x(tk))

�
ds:

Therefore,����x(tk+1)� x(tk)� (�t)f(tk; x(tk))

���� = ���� Z tk+1

tk

�
f(s; x(s))� f(tk; x(tk))

�
ds

���� � (�t) !1(�t); (4.7)

where

!1(�t) := sup
�jf(t; x(t))� f(s; x(s))j; 0 � s; t � T; jt� sj � �t

	
: (4.8)

Note that !1(�t)! 0 as �t! 0. Moreover, if f is Lipschitz in t, then !1(�t) = O(�t).
From (4.3) and

ek+1 � ek = xk+1 � xk � (x(tk+1)� x(tk));

we obtain

ek+1 � ek = �t�(tk; x
k;�t)� (x(tk+1)� x(tk));

or equivalently,

ek+1 � ek = �t
�
�(tk; x

k;�t)� f(tk; x(tk))
�� �x(tk+1)� x(tk)��t f(tk; x(tk))

�
:

Write
ek+1 � ek = �t

�
�(tk; x

k;�t)� �(tk; x(tk);�t) + �(tk; x(tk);�t)

�f(tk; x(tk))
�� �x(tk+1)� x(tk)��t f(tk; x(tk))

�
:

(4.9)

Let

!2(�t) := sup
�j�(t; x; h)� f(t; x)j; t 2 [0; T ]; x 2 R; 0 < h � (�t)

	
: (4.10)

Since the numerical scheme is consistent,�����(tk; x(tk);�t)� f(tk; x(tk))

���� � !2(�t)! 0 as �t! 0: (4.11)

On the other hand, from the stability condition (4.5), it follows that�����(tk; xk;�t)� �(tk; x(tk);�t)

���� � C�jekj: (4.12)

Combining (4.7), (4.9), (4.11), and (4.12) yields

jek+1j �
�
1 + C��t

�jekj+�t!3(�t); 0 � k � K � 1; (4.13)
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where K = T=(�t) and !3(�t) := !1(�t)+!2(�t)! 0 as �t! 0. By induction, we deduce from
(4.13) that

jek+1j � (1 + C��t)
kje0j+ (�t) !3(�t)

k�1X
l=0

(1 + C��t)
l; 0 � k � K: (4.14)

Estimate (4.14) together with

k�1X
l=0

(1 + C��t)
l =

(1 + C��t)
k � 1

C��t
;

and

(1 + C��t)
K � (1 + C�

T

K
)K � eC�T ;

yields

jekj � eC�T je0j+ eC�T � 1

C�
!3(�t): (4.15)

Therefore, if e0 = 0, then as �t! 0; k ! +1 such that k�t = t 2 [0; T ]

lim
k!+1

jekj = 0;

which shows that the scheme is in fact convergent. �

Definition 4.5. An explicit one-step method is said to be of order p if there exist positive
constants h0 and C such that

jTk(�t)j � C(�t)p; 0 < �t � h0; k = 0; : : : ;K � 1;

where the truncation error Tk(�t) is de�ned by (4.4).

If the explicit one-step method is stable, then the global error is bounded by the truncation
error.

Proposition 4.6. Consider the explicit one-step scheme (4.3), where � satis�es the stability
condition (4.5). Suppose that e0 = 0. Then

jek+1j � (eC�T � 1)

C�
max
0�l�k

jTl(�t)j for k = 0; : : : ;K � 1; (4.16)

where the truncation error Tl and the global error ek are de�ned by (4.4) and (4.6), respectively.

Proof. From (4.9), we have

ek+1 � ek = �(�t)Tk(�t) + (�t)

�
�(tk; x

k;�t)� �(tk; x(tk);�t)

�
;

so we get

jek+1j � (1 + C�(�t))jekj+ (�t)jTk(�t)j
� (1 + C�(�t))jekj+ (�t) max

0�l�k
jTl(�t)j:

In exactly the same manner as in the proof of Theorem 4.4, we obtain estimate (4.16). �
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4.2.2. Explicit Euler's method. Let �(t; x; h) = f(t; x). The numerical method (4.3)
reduces to

xk+1 = xk + (�t)f(t; xk): (4.17)

The numerical method (4.17) is called the explicit Euler scheme.

Theorem 4.7. Consider the initial value problem (4.1). Suppose that f satis�es the Lipschitz
condition (2.2) and f is Lipschitz with respect to t. Then the explicit Euler scheme (4.17) is
convergent and the global error ek is of order �t. If f 2 C1, then (4.17) is of order one.

Proof. Since f satis�es the Lipschitz condition (2.2) then the numerical scheme with �(t; x; h) =
f(t; x) is stable. Moreover, it is consistent since �(t; x; 0) = f(t; x) for all t 2 [0; T ] and x 2 R.
Therefore, by Theorem 4.4, (4.17) is convergent. Furthermore, since f is Lipschitz in t, !1(�t) =
O(�t), where !1 is de�ned by (4.8). On the other hand, !2(�t) = 0, and hence !3(�t) = O(�t),
where !2 is de�ned by (4.10) and !3 = !1 + !2. Then, from (4.15), we have jekj = O(�t) for
1 � k � K. Now if f 2 C1, then from Theorem 2.20 x 2 C2. By using the mean-value theorem, we
have

Tk(�t) =
1

�t

�
x(tk+1)� x(tk)

�
� f(tk; x(tk))

=
1

�t

�
x(tk) + (�t)

dx

dt
(tk) +

(�t)2

2

d2x

dt2
(�)� x(tk)

�
� f(tk; x(tk))

=
�t

2

d2x

dt2
(�);

(4.18)

for some � 2 [tk; tk+1], which shows that (4.17) is of �rst order. �

Remark 4.8 (Round o� error e�ects). Theorem 4.7 is true provided the arithmetic in
calculating the numerical approximation is perfect, that is, when performing the operations required
by (4.17) no errors occur. However computers always round o� real numbers. In numerical methods
rounding errors become important when the step size �t is comparable with the precision of the
computations. Thus, when running Euler's method (4.17), the best we can do is to compute the
solution of the perturbed scheme:exk+1 = exk +�tf(tk; exk) + (�t)�k + �k;

where �k and �k represent the errors in f and in the assembling, respectively. Assume that j�kj � �
and j�kj � � for all k and f 2 C1. De�ning eek = x(tk)� exk, we have

jeek+1j � (1 + Cf�t)eek + (�t)�+ �;

and hence

jeekj � eCfT jee0j+ (�t)eCfT
Z T

0

jd
2x

dt2
j(s) ds+ �(�t)

eCfT

Cf
+ �

T

�t
eCfT ;

where Cf is the Lipschitz constant for f .
Introduce

'(�t) =
�eCfT

Cf
�t+

T�eCfT

�t
:

One can see that ' attains its minimum at
p
�CfT=� and diverges for �t! 0. From a practical

point of view, it is better to take time steps that are larger than
p
�CfT=�.

Remark 4.9 (Control of the time step). In (4.17) the time step is uniform and is chosen
such that the global error jekj is smaller than a given tolerance. In view of (4.18) this supposes a
good knowledge of the exact solution. An alternative method consists in computing the numerical
solution for an arbitrary �t and then for 2�t. If the discrepancy between the two numerical
solutions is smaller than the tolerance, we keep �t. If not, we restart the calculations with a
smaller step size, say �t=2, until we reach the target.
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4.2.3. High-order methods. In general, the order of a numerical solution method governs
both the accuracy of its approximations and the speed at which they converge to the true solution
as the step size �t ! 0. Although the explicit Euler method is simple and easy to implement, it
is only a �rst order scheme as shown in Theorem 4.7, and therefore of limited use. So, the goal is
to devise simple numerical methods that enjoy a higher order of accuracy. The higher its order,
the more accurate the numerical scheme, and hence the larger the step size that can be used to
produce the solution to a desired accuracy. However, this should be balanced with the fact that
higher order methods inevitably require more computational e�ort at each step.

4.2.3.1. Taylor methods. The explicit Euler scheme is based on a �rst order Taylor approxi-
mation to the solution. The Taylor expansion of the solution x(t) at the discretization points tk+1
has the form

x(tk+1) = x(tk +�t) = x(tk) + (�t)
dx

dt
(tk) +

(�t)2

2

d2x

dt2
(tk) +

(�t)3

6

d3x

dt3
(tk) + : : : : (4.19)

We can evaluate the �rst derivative term by using the di�erential equation

dx

dt
= f(t; x): (4.20)

The second derivative can be found by di�erentiating the equation with respect to t. Invoking the
chain rule,

d2x

dt2
=

d

dt
f(t; x) =

@f

@t
(t; x) +

@f

@x
(t; x)

dx

dt
: (4.21)

Substituting (4.20) and (4.21) into (4.19) and truncating at order (�t)2 leads to the second order
Taylor method

xk+1 = xk + (�t)f(tk; x
k) +

(�t)2

2

�
@f

@t
(tk; x

k) +
@f

@x
(tk; x

k)f(tk; x
k)

�
; (4.22)

in which we have replaced the solution value x(tk) by its computed approximation xk. The resulting
method is of second order.

Proposition 4.10. Suppose that f 2 C2. Then (4.22) is of second order.

Proof. If f is of class C2, then by Theorem 2.20 x 2 C3. Therefore, by using the Taylor
expansion (4.19), we obtain that the truncation error Tk is given by

Tk(�t) =
(�t)2

6

d3x

dt3
(�);

for some � 2 [tk; tk+1] and so, (4.22) is of second order. �

Higher order Taylor methods are obtained by including further terms in the expansion (4.19).
Whereas higher order Taylor methods are easy to motivate, they are rarely used in practice. There
are two principal di�culties:

(i) Owing to their dependence upon the partial derivatives of f , f needs to be smooth;
(ii) E�cient evaluation of the terms in the Taylor approximation and avoidance of round o�

errors are signi�cant concerns.

4.2.3.2. Integral equation method. In order to design high-order numerical schemes that avoid
the complications inherent in a direct Taylor expansion, we replace the di�erential equation by
an equivalent integral equation. The solution x(t) of (4.1) coincides with the solution to the
integral equation

x(t) = x0 +

Z t

0

f(s; x(s)) ds; t 2 [0; T ]: (4.23)

Starting at the discretization point tk instead of 0, and integrating until time t = tk+1 gives an
expression

x(tk+1) = x(tk) +

Z tk+1

tk

f(s; x(s)) ds; (4.24)
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that implicitly computes the value of the solution at the subsequent discretization point. Compar-
ing formula (4.24) with the explicit Euler method

xk+1 = xk + (�t)f(tk; x
k);

where �t is de�ned by (4.2) and assuming for the moment that xk = x(tk) is exact, we see that
we are merely approximating the integral byZ tk+1

tk

f(s; x(s)) ds � (�t)f(tk; x(tk)); (4.25)

which is the left endpoint rule for numerical integration{that approximates the integral of
f(t; x(t)) between tk � t � tk+1 by the area of the rectangle whose height f(tk; x(tk)) is pre-
scribed by the left endpoint of the curve t 7! f(t; x(t)). Approximation (4.25) is not an especially
accurate method of numerical integration. Better methods include the Trapezoid rule, which
approximates the integral of the function f(t; x(t)) between tk � t � tk+1 by the area of the trape-
zoid obtained by connecting the points f(tk; x(tk)) and f(tk+1; x(tk+1)) of the curve t 7! f(t; x(t))
by a straight line.

We recall the following basic numerical integration formulas for continuous functions.

(i) Trapezoidal rule: Z tk+1

tk

g(s) ds � �t

2

�
g(tk+1) + g(tk)

�
; (4.26)

(ii) Simpson's rule:Z tk+1

tk

g(s) ds � �t

6

�
g(tk+1) + 4g(

tk + tk+1
2

) + g(tk)

�
; (4.27)

(iii) The Trapezoidal rule is exact for polynomials of order one, while the Simpson's rule is
exact for polynomials of second order.

Replacing (4.25) by the more accurate Trapezoidal approximationZ tk+1

tk

f(s; x(s)) ds � (�t)

2

�
f(tk; x(tk)) + f(tk+1; x(tk+1))

�
; (4.28)

and substituting (4.28) into the integral equation (4.24) leads to the Trapezoidal scheme

xk+1 = xk +
(�t)

2

�
f(tk; x

k) + f(tk+1; x
k+1)

�
: (4.29)

The Trapezoidal scheme is an implicit numerical method, since the updated value xk+1 appears
on both sides of the equation, and hence is only de�ned implicitly. Only for very simple functions
f(t; x) can one expect to solve (4.29) explicitly for xk+1 given tk; x

k; and tk+1.

Proposition 4.11. Suppose that f 2 C2 and

(�t)Cf
2

< 1; (4.30)

where Cf is the Lipschitz constant for f in x de�ned by (2.2). Then the Trapezoidal scheme (4.29)
is convergent and is of second order.

Proof. Let � be de�ned implicitly by

�(t; x;�t) :=
1

2

�
f(t; x) + f(t+�t; x+ (�t)�(t; x;�t))

�
:

The scheme (4.29) is clearly consistent. In order to show that it converges, according to Theorem
4.4, we must establish the stability condition (4.5). We have���(t; x;�t)� �(t; y;�t)

�� � Cf jx� yj+ �t

2
Cf
���(t; x;�t)� �(t; y;�t)

��:
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Hence �
1� (�t)Cf

2

����(t; x;�t)� �(t; y;�t)
�� � Cf jx� yj;

and therefore, (4.5) holds with

C� =
Cf

1� (�t)Cf
2

;

provided that �t satis�es (4.30). Now we prove that (4.29) is of second order.
By the mean-value theorem,

Tk(�t) =
x(tk+1)� x(tk)

�t
� 1

2

�
f(tk; x(tk)) + f(tk+1; x(tk+1))

�
= � 1

12
(�t)2

d3x

dt3
(�);

(4.31)

for some � 2 [tk; tk+1], and therefore (4.29) is of second order, provided that f 2 C2 (and conse-
quently x 2 C3). �

An alternative is to replace in (4.29) xk+1 by xk + (�t)f(tk; x
k). This yields the improved

Euler scheme

xk+1 = xk +
(�t)

2

�
f(tk; x

k) + f(tk+1;x
k + (�t)f(tk;x

k))

�
: (4.32)

Proposition 4.12. The numerical scheme (4.32) is convergent and is of second order.

The improved Euler scheme (4.32) performs comparably to the Trapezoidal scheme (4.29), and
signi�cantly better than the Euler scheme (4.17). The improved Euler scheme (4.32) is the simplest
of a large family of so-called predictor-corrector algorithms. In general, one begins by using
a relatively crude method{in this case the explicit Euler method{to predict a �rst approximationexk+1 to the desired solution value x(tk+1). One then employs a more sophisticated, typically
implicit, method to correct the original prediction, by replacing the required update xk+1 on the
right-hand side of the implicit scheme by a less accurate prediction exk+1. The resulting explicit,
corrected value xk+1 will be an improved approximation of the true solution, provided the method
has been designed with due care.

We can design a range of numerical solution schemes by implementing alternative numerical
approximations to the integral equation (4.24). For example, the midpoint rule approximates
the integral of f(t; x(t)) between tk � t � tk+1 by the area of the rectangle whose height is the
value of f at the midpoint t = tk + (�t)=2Z tk+1

tk

f(s; x(s)) ds � (�t)f(tk +
�t

2
; x(tk +

�t

2
)): (4.33)

The midpoint rule has the same order of accuracy as the trapezoid rule. Substituting (4.33) into
(4.24) leads to the midpoint scheme

xk+1 = xk + (�t)f
�
tk +

�t

2
; xk +

�t

2
f(tk; x

k)
�
; (4.34)

where we have approximated x(tk +
�t
2 ) by x

k + �t
2 f(tk; x

k).
A comparison between the terms in the Taylor expansion (4.19) of x(tk+1) and (4.34) reveals

that the midpoint scheme is also of second order.
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4.3. Example of linear systems

Consider the linear system of ODEs (3.24), where A 2Md(C) is independent of t.
A one-step numerical scheme for solving (3.24) is said to be stable if there exists a positive

constant C0 such that
jxk+1j � C0jx0j for all k 2 N: (4.35)

Consider the following schemes for solving (3.1):

(i) Explicit Euler's scheme

xk+1 = xk + (�t)Axk; (4.36)

(ii) Implicit Euler's scheme

xk+1 = xk + (�t)Axk+1; (4.37)

(iii) Trapezoidal scheme:

xk+1 = xk +
(�t)

2

�
Axk +Axk+1

�
; (4.38)

where k 2 N, and x0 = x0.

Proposition 4.13. Suppose that <�j < 0 for all j. The following results hold:

(i) The explicit Euler scheme (4.36) is stable for �t small enough;
(ii) The implicit Euler scheme is unconditionally stable;
(iii) The Trapezoidal scheme (4.38) is unconditionally stable.

Proof. Consider the explicit Euler scheme (4.36). By a change of basis, we haveexk = (I +�t(D +N))kex0;
where exk = Cxk. If ex0 2 Ej , then

exk = minfk;dgX
l=0

Cl
k(1 + �t�j)

k�l(�t)lN lex0;
where Cl

k is the binomial coe�cient.
If j1 + (�t)�j j < 1, then exk is bounded. If j1 + (�t)�j j > 1, then one can �nd ex0 such that

jexkj ! +1 (exponentially) as k ! +1. If j1 + (�t)�j j = 1 and N 6= 0, then for all ex0 such that
Nex0 6= 0; N2ex0 = 0, it can be seen thatexk = (1 + (�t)�j)

kex0 + (1 + (�t)�j)
k�1k�tNex0

goes to in�nity as k ! +1.
The stability condition j1 + (�t)�j j < 1 is equivalent to

�t < �2 <�jj�j j2 ;

and therefore holds for �t small enough.
For the implicit Euler scheme (4.36), we haveexk = (I ��t(D +N))�kex0:

Note that all the eigenvalues of the matrix (I��t(D+N))�1 are of modulus strictly smaller than
1. Therefore, the implicit Euler scheme (4.36) is unconditionally stable.

For the Trapezoidal scheme, we have

exk = (I � (�t)

2
(D +N))�k(I +

(�t)

2
(D +N))kex0:

Therefore, the stability condition is

j1 + (�t)

2
�j j < j1� (�t)

2
�j j;
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which holds for all �t > 0 since <�j < 0.
�

Note that while the explicit and implicit Euler schemes are of order one, the Trapezoidal
scheme is of order two.

Remark 4.14. If <�j = 0 for some j, then the explicit Euler scheme may be unstable for any
�t > 0. Consider the second order linear equation8><>:

d2x

dt2
+ x = 0; t 2 [0;+1[;

x(0) = x0;
dx

dt
(0) = x00; x0; x

0
0 2 Rd:

(4.39)

We �rst reduce (4.39) to the �rst order linear equation8<:
dX

dt
= AX; t 2 [0;+1[;

X(0) = (x0; x
0
0)
> 2 R2d;

(4.40)

where X = (x; dx=dt)> and A =

 
0 �1
1 0

!
. The eigenvalues of A are �i. Consequently, the

explicit Euler scheme is unstable since j1� i�tj > 1 for any �t > 0. However, the implicit Euler
scheme is stable since j1� i�tj�1 < 1.

4.4. Runge-Kutta methods

The Runge-Kutta methods are by far the most popular and powerful general-purpose nu-
merical methods for integrating ordinary di�erential equations.

The idea behind the Runge-Kutta methods is to evaluate f at carefully chosen values of its
arguments, t and x, in order to create an approximation that is as accurate as a higher-order Taylor
expansion of x(t+�t) without evaluating derivatives of f . Runge-Kutta schemes are time-stepping
schemes that can be derived by matching multivariable Taylor series expansions of f(t; x)
with the Taylor series expansion of x(t + �t). To �nd the right values of t and x at which to
evaluate f , we need to take a Taylor expansion of f evaluated at these (unknown) values, and then
match the resulting numerical scheme to a Taylor series expansion of x(t+�t) around t. Towards
this, we state a generalization of Taylor's theorem to functions of two variables.

Theorem 4.15. Let f(t; x) 2 Cn+1([0; T ]�R). Let (t0; x0) 2 [0; T ]�R. There exist t0 � � � t,
x0 � � � x, such that

f(t; x) = Pn(t; x) +Rn(t; x);

where Pn(t; x) is the nth Taylor polynomial of f around (t0; x0),

Pn(t; x) = f(t0; x0) +

�
(t� t0)

@f

@t
(t0; x0) + (x� x0)

@f

@x
(t0; x0)

�
+

�
(t� t0)

2

2

@2f

@t2
(t0; x0) + (t� t0)(x� x0)

@2f

@t@x
(t0; x0) +

(x� x0)
2

2

@2f

@x2
(t0; x0)

�
: : :+

�
1

n!

nX
j=0

Cn
j (t� t0)

n�j(x� x0)
j @nf

@tn�j@xj
(t0; x0)

�
;

and Rn(t; x) is the remainder term associated with Pn(t; x),

Rn(t; x) =
1

(n+ 1)!

n+1X
j=0

Cn+1
j (t� t0)

n+1�j(x� x0)
j @n+1f

@tn+1�j@xj
(�; �):
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We now illustrate the proposed approach in order to obtain a second-order accurate method,
that is, its local truncation error is O((�t)2). This involves matching

x+�tf(t; x) +
(�t)2

2

�@f
@t

(t; x) +
@f

@x
(t; x)f(t; x)

�
+

(�t)3

6

d2

dt2
[f(�; x)]

to

x+ (�t)f(t+ �1; x+ �1);

where � 2 [t; t + �t] and �1 and �1 are to be found. After simplifying by removing terms that
already match, we see that we only need to match

f(t; x) +
(�t)

2

�@f
@t

(t; x) +
@f

@x
(t; x)f(t; x)

�
+

(�t)2

6

d2

dt2
[f(t; x)]

with f(t+�1; x+�1) at least up to terms of the order of O(�t), so that the local truncation error
will be O((�t)2). Applying the multivariable version of Taylor's theorem to f , we obtain

f(t+�1; x+�1) = f(t; x)+�1
@f

@t
(t; x)+�1

@f

@x
(t; x)+

�21
2

@2f

@t2
(�; �)+�1�1

@2f

@t@x
(�; �)+

�21
2

@2f

@x2
(�; �);

where t � � � t+ �1 and x � � � x+ �1. Hence comparing terms yields

�1 =
�t

2
and �1 =

�t

2
f(t; x):

The resulting numerical scheme is therefore the explicit midpoint method (4.34), which is the
simplest example of a Runge-Kutta method of second order. The improved Euler method

(4.32) is also another often-used Runge-Kutta method.
The most general Runge-Kutta method takes the form

xk+1 = xk +�t

mX
i=1

cif(ti;k; xi;k); (4.41)

where m stands for the number of terms in the method. Each ti;k denotes a point in [tk; tk+1].
The second argument xi;k � x(ti;k) can be viewed as an approximation to the solution at the point
ti;k, and so is computed by a similar but simpler formula of the same type. To construct an nth
order Runge-Kutta method, we need to take at least m � n terms in (4.41).

The best-known Runge-Kutta method is the fourth-order Runge-Kutta method, which
uses four evaluations of f during each step. The method proceeds as follows:8>>>>>>>>>><>>>>>>>>>>:

�1 := f(tk; x
k);

�2 := f(tk +
�t
2 ; x

k + �t
2 �1);

�3 := f(tk +
�t
2 ; x

k + �t
2 �2);

�4 := f(tk+1; x
k +�t�3);

xk+1 = xk +
(�t)

6
(�1 + 2�2 + 2�3 + �4):

(4.42)

In (4.42), the values of f at the midpoint in time are given four times as much weight as values at
the endpoints tk and tk+1, which is similar to Simpson's rule (4.27) from numerical integration.

4.4.1. Construction of Runge-Kutta methods. In this subsection we �rst construct
Runge-Kutta methods by generalizing collocation methods. Then we discuss their consistency,
stability, and order.
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4.4.1.1. Collocation methods. Let Pm denote the space of real polynomials of degree � m.
Given a set of m distinct quadrature points c1 < c2 < : : : < cm in R, and corresponding data
g1; : : : ; gm, there exists a unique polynomial, called the interpolating polynomial, P (t) 2 Pm�1
satisfying P (ci) = gi; i = 1; : : : ;m.

De�ne the ith Lagrange interpolating polynomial li(t), i = 1; : : : ;m, for the set of quad-
rature points fcjg by

li(t) :=

mY
j 6=i;j=1

t� cj
ci � cj

:

The set of Lagrange interpolating polynomials form a basis of Pm�1 and the interpolating polyno-
mial P corresponding to the data fgjg is given by

P (t) :=

mX
i=1

gili(t): (4.43)

Consider �rst a smooth function g on [0; 1]. We can approximate the integral of g on [0; 1] by
exactly integrating the Lagrange interpolating polynomial of order m�1 based on m quadrature

points 0 � c1 < c2 < : : : < cm � 1. The data are the values of g at the quadrature points
gi = g(ci), i = 1; : : : ;m.

De�ne the weights

bi =

Z 1

0

li(s) ds: (4.44)

The quadrature formula isZ 1

0

g(s) ds �
Z 1

0

P (s) ds =

mX
i=1

big(ci);

where P is de�ned by (4.43).
Now let f be a smooth function on [0; T ] and let tk = k�t for k = 0; : : : ;K = T=(�t), be the

discretization points in [0; T ]. The integral
R tk+1
tk

f(s) ds can be approximated byZ tk+1

tk

f(s) ds = (�t)

Z 1

0

f(tk +�t�) d� � (�t)

mX
i=1

bif(tk + (�t)ci): (4.45)

Next let x be a polynomial of degree m satisfying8<:
x(0) = x0;

dx

dt
(ci�t) = Fi;

(4.46)

where Fi 2 R; i = 1; : : : ;m.
From the Lagrange interpolation formula (4.43), it follows that for t in the �rst time-step

interval [0;�t],

dx

dt
(t) =

mX
i=1

Fili(
t

�t
): (4.47)

Integrating (4.47) over the intervals [0; ci�t] gives

x(ci�t) = x0 + (�t)

mX
j=1

Fj

Z ci

0

lj(s) ds = x0 + (�t)

mX
j=1

aijFj ; i = 1; : : : ;m; (4.48)

where

aij :=

Z ci

0

lj(s) ds: (4.49)
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Integrating (4.47) over [0;�t] yields

x(�t) = x0 + (�t)

mX
i=1

Fi

Z 1

0

li(s) ds = x0 + (�t)

mX
i=1

biFi; (4.50)

where bi is de�ned by (4.44).
Writing dx=dt = f(x(t)), we obtain from (4.48) and (4.50) on the �rst time step interval [0;�t]8>>>><>>>>:

Fi = f(x0 + (�t)

mX
j=1

aijFj); i = 1; : : : ;m;

x(�t) = x0 + (�t)

mX
i=1

biFi:

(4.51)

Similarly, we have on [tk; tk+1]8>>>><>>>>:
Fi;k = f(x(tk) + (�t)

mX
j=1

aijFj;k); i = 1; : : : ;m;

x(tk+1) = x(tk) + (�t)

mX
i=1

biFi;k:

(4.52)

In the collocation method (4.52), one �rst solves the coupled nonlinear system to obtain Fi;k,
i = 1; : : : ;m, and then computes x(tk+1) from x(tk).

Remark 4.16. Since

tl�1 =

mX
i=1

cl�1i li(t); t 2 [0; 1]; l = 1; : : : ;m;

we have
mX
i=1

bic
l�1
i =

1

l
; l = 1; : : : ;m;

and
mX
j=1

aijc
l�1
j =

cli
l
; i; l = 1; : : : ;m:

4.4.2. Runge-Kutta methods as generalized collocation methods. In (4.52), the co-
e�cients bi and aij are de�ned by certain integrals of the Lagrange interpolating polynomials
associated with a chosen set of quadrature nodes ci, i = 1; : : : ;m.

A natural generalization of collocation methods is obtained by allowing the coe�cients ci; bi;
and aij to take arbitrary values, not necessary related to quadrature formulas. In fact, we no
longer assume the ci to be distinct. However, we should assume that

ci =

mX
j=1

aij ; i = 1; : : : ;m: (4.53)

The result is the class of Runge-Kutta methods for solving (4.1), which can be written as8>>>><>>>>:
Fi;k = f(ti;k; x

k + (�t)

mX
j=1

aijFj;k);

xk+1 = xk + (�t)

mX
i=1

biFi;k;

(4.54)
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where ti;k = tk + ci�t, or equivalently,8>>>><>>>>:
xi;k = xk + (�t)

mX
j=1

aijf(tj;k; xj;k);

xk+1 = xk + (�t)

mX
i=1

bif(ti;k; xi;k):

(4.55)

Let

�j := f(t+ cj�t; xj); (4.56)

and de�ne the function � by 8>>>><>>>>:
xi = x+ (�t)

mX
j=1

aij�j ;

�(t; x;�t) =

mX
i=1

bif(t+ ci�t; xi):

(4.57)

One can see that the scheme (4.55) is a one step method. Moreover, if aij = 0 for j � i, then
(4.55) is explicit.

It is also easy to see that with de�nition (4.55), explicit Euler's method and Trapezoidal scheme
are Runge-Kutta methods. For example, explicit Euler's method (4.17) can be put into the form
(4.55) with m = 1; b1 = 1; a11 = 0. The Trapezoidal scheme (4.29) has m = 2; b1 = b2 = 1=2; a11 =
a12 = 0; a21 = a22 = 1=2. Finally, for the fourth-order Runge-Kutta method (4.42), we have
m = 4; c1 = 0; c2 = c3 = 1=2; c4 = 1; b1 = 1=6; b2 = b3 = 1=3; b4 = 1=6; a21 = a32 = 1=2; a43 = 1;
and all the other aij entries are zero.

4.4.3. Consistency, stability, convergence, and order of Runge-Kutta methods.

From (4.57), the Runge-Kutta scheme is consistent if and only if

mX
j=1

bj = 1: (4.58)

Let jAj be the matrix de�ned by (jaij j)mi;j=1. Let the spectral radius �(jAj) of the matrix jAj
be de�ned by

�(jAj) := maxfj�j j; �j is an eigenvalue of jAjg: (4.59)

The following stability result holds.

Theorem 4.17. Let Cf be the Lipschitz constant for f . Suppose that

(�t)Cf�(jAj) < 1: (4.60)

Then the Runge-Kutta method (4.55) for solving (4.1) is stable.

Proof. Let � be de�ned by (4.57). We have

�(t; x;�t)� �(t; y;�t) =

mX
i=1

bi

�
f(t+ ci�t; xi)� f(t+ ci�t; yi)

�
; (4.61)

where

xi = x+ (�t)

mX
j=1

aijf(t+ cj�t; xj); (4.62)

and

yi = y + (�t)

mX
j=1

aijf(t+ cj�t; yj): (4.63)



56 4. NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

Subtracting (4.63) from (4.62) yields

xi � yi = x� y + (�t)

mX
j=1

aij

�
f(t+ cj�t; xj)� f(t+ cj�t; yj)

�
: (4.64)

Therefore, for i = 1; : : : ;m,

jxi � yij � jx� yj+ (�t)Cf

mX
j=1

jaij jjxj � yj j; (4.65)

where Cf is the Lipschitz constant for f . Let the vectors X and Y be de�ned by

X =

264 jx1 � y1j
...

jxm � ymj

375 and Y =

264jx� yj
...

jx� yj

375 :
From (4.65), it follows that

X � Y + (�t)Cf jAjX; (4.66)

and therefore,
X � (I � (�t)Cf jAj)�1Y; (4.67)

provided that condition (4.60) holds. Finally, combining (4.61) and (4.67) yields the stability of
the Runge-Kutta scheme (4.55). �

By the Dahlquist-Lax equivalence theorem (Theorem 4.4), it follows that the Runge-Kutta
scheme (4.55) is convergent provided that (4.58) and (4.60) hold.

In order to establish the order of the Runge-Kutta scheme (4.55), we compute the order as
�t! 0 of the truncation error

Tk(�t) =
x(tk+1)� x(tk)

�t
� �(tk; x(tk);�t);

where � is de�ned by (4.57). We write

Tk(�t) =
x(tk+1)� x(tk)

�t
�

mX
i=1

bif(tk + ci�t; x(tk) + �t

mX
j=1

aij�j):

Suppose that f is smooth enough. We have

f(tk+ci�t; x(tk)+�t

mX
j=1

aij�j) = f(tk; x(tk))+�t

�
ci
@f

@t
(tk; x(tk))+(

X
j=1

aij�j)
@f

@x
(tk; x(tk))

�
+O((�t)2):

Suppose that (4.53) holds. Then, fromX
j=1

aij�j = (
X
j=1

aij)f(tk; x(tk)) +O(�t) = cif(tk; x(tk)) +O(�t);

it follows that

f(tk+ci�t; x(tk)+�t

mX
j=1

aij�j) = f(tk; x(tk))+�tci

�
@f

@t
(tk; x(tk))+

@f

@x
(tk; x(tk))f(tk; x(tk))

�
+O((�t)2):

Therefore, we obtain the following theorem.

Theorem 4.18. Assume that f is smooth enough. Then the Runge-Kutta scheme (4.55) for
solving (4.1) is of order 2 provided that the conditions (4.58) and

mX
i=1

bici =
1

2
(4.68)

hold.

One can prove by higher-order Taylor expansions that the following results hold.
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Theorem 4.19. Assume that f is smooth enough. Then the Runge-Kutta scheme (4.55) for
solving (4.1) is of order 3 provided that the conditions (4.58), (4.68), and

mX
i=1

bic
2
i =

1

3
;

mX
i=1

mX
j=1

biaijcj =
1

6
(4.69)

hold. It is of order 4 provided that (4.58), (4.68), (4.69), and

mX
i=1

bic
3
i =

1

4
;

mX
i=1

mX
j=1

biciaijcj =
1

8
;

mX
i=1

mX
j=1

biaijc
2
j =

1

12
;

mX
i=1

mX
j=1

mX
l=1

biaijajlcl =
1

24
(4.70)

hold.

The Runge-Kutta scheme (4.42) satis�es the four conditions (4.58), (4.68), (4.69), and (4.70).
Hence, (4.42) is of order 4.

4.5. Multi-step methods

While Runge-Kutta methods present an improvement over Euler's methods in terms of accu-
racy, this is achieved by investing additional computational e�ort. For example, the fourth-order
method (4.42) involves four function evaluations per step. For comparison, by considering three
consecutive points tk�1; tk; tk+1, integrating the di�erential equation between tk�1 and tk+1, and
applying Simpson's rule to approximate the resulting integral yields

x(tk+1) = x(tk�1) +

Z tk+1

tk�1

f(s; x(s)) ds

� x(tk�1) +
(�t)

3

�
f(tk�1; x(tk�1)) + 4f(tk; x(tk)) + f(tk+1; x(tk+1))

�
;

which leads to the method

xk+1 = xk�1 +
(�t)

3

�
f(tk�1; x

k�1) + 4f(tk; x
k) + f(tk+1; x

k+1)

�
: (4.71)

In contrast with the one-step methods considered in the previous sections where only a single
value of xk was required to compute the next approximation xk+1, in (4.71) we need two preceding
values, xk and xk�1 in order to calculate xk+1, and therefore (4.71) is a two-step method.

A general n-step method is of the form

nX
j=0

�jx
k+j = (�t)

nX
j=0

�jf(tk+j ; x
k+j); (4.72)

where the coe�cients �j and �j are real constants and �n 6= 0.
If �n = 0, then xk+n is obtained explicitly from previous values of xj and f(tj ; x

j), and the
n-step method is explicit. Otherwise, the n-step method is implicit.

In multi-step methods we need a starting procedure which provides approximations to the exact
solution at the points t1; : : : ; tn�1. One possibility for obtaining these missing starting values is
the use of any one-step method, e.g., a Runge-Kutta method.

The following are classical examples of multi-step methods:

Example 4.20. (i) The two-step Adams-Bashforth method

xk+2 = xk+1 +
(�t)

2

�
3f(tk+1; x

k+1)� f(tk; x
k)

�
(4.73)

is an example of an explicit two-step method;



58 4. NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

(ii) The three-step Adams-Bashforth method

xk+3 = xk+2 +
(�t)

12

�
23f(tk+2; x

k+2)� 16f(tk+1; x
k+1) + 5f(tk; x

k)

�
(4.74)

is an example of an explicit three-step method;
(iii) The four-step Adams-Bashforth method

xk+4 = xk+3 +
(�t)

24

�
55f(tk+3; x

k+3)� 59f(tk+2; x
k+2) + 37f(tk+1; x

k+1)� 9f(tk; x
k)

�
(4.75)

is an example of an explicit four-step method;
(iv) The two-step Adams-Moulton method

xk+2 = xk+1 +
(�t)

12

�
5f(tk+2; x

k+2) + 8f(tk+1; x
k+1)� f(tk; x

k)

�
(4.76)

is an example of an implicit two-step method;
(v) The three-step Adams-Moulton method

xk+3 = xk+2 +
(�t)

24

�
9f(tk+3; x

k+3) + 19f(tk+2; x
k+2) + 5f(tk+1; x

k+1)� 9f(tk; x
k)

�
(4.77)

is an example of an implicit three-step method.

The construction of general classes of linear multi-step methods is discussed in the next sub-
section.

4.5.1. Construction of linear multi-step methods. Suppose that xk; k 2 N, is a sequence
of real numbers. We introduce the shift operator E, the forward di�erence operator �+ and
the backward di�erence operator �� by

E : xk 7! xk+1; �+ : xk 7! xk+1 � xk; �� : xk 7! xk � xk�1:

Since �+ = E � I and �� = I � E�1, it follows that, for any n 2 N,

(E � I)n =

nX
j=0

(�1)jCn
j E

n�j ;

and

(I � E�1)n =

nX
j=0

(�1)jCn
j E

�j :

Therefore,

�n
+x

k =

nX
j=0

(�1)jCn
j x

k+n�j

and

�n
�x

k =

nX
j=0

(�1)jCn
j x

k�j :

Now let y(t) 2 C1(R) and let tk = k�t;�t > 0. By applying the Taylor series we �nd that,
for any s 2 N,

Esy(tk) = y(tk + s�t) =

�+1X
l=0

1

l!
(s�t

@

@t
)ly

�
(tk) =

�
es(�t)

@
@t y
�
(tk);

and hence
Es = es(�t)

@
@t :

Thus, formally,

(�t)
@

@t
= lnE = � ln(I ���) = �� +

1

2
�2
� +

1

3
�3
� + : : : (4.78)



4.5. MULTI-STEP METHODS 59

Therefore, if x(t) is the solution of (4.1), then by using (4.78) we �nd that

(�t)f(tk; x(tk)) =

�
�� +

1

2
�2
� +

1

3
�3
� + : : :

�
x(tk): (4.79)

The successive truncation of the in�nite series on the right-hand side of (4.79) yields

xk � xk�1 = (�t)f(tk; x
k);

3

2
xk � 2xk�1 +

1

2
xk�2 = (�t)f(tk; x

k);

11

6
xk � 3xk�1 +

3

2
xk�2 � 1

3
xk�3 = (�t)f(tk; x

k);

(4.80)

and so on. This gives rise to a class of implicit multi-step methods called backward di�erenti-

ation formulas.
Similarly,

E�1((�t)
@

@t
) = (�t)

@

@t
E�1 = �(I ���) ln(I ���);

and hence,

((�t)
@

@t
) = �E(I ���) ln(I ���) = �(I ���) ln(I ���)E: (4.81)

Therefore, if x(t) is the solution of (4.1), then we �nd that

(�t)f(tk; x(tk)) =

�
�� � 1

2
�2
� �

1

6
�3
� + : : :

�
x(tk+1): (4.82)

The successive truncation of the in�nite series on the right-hand side of (4.82) yields the following
explicit numerical schemes:

xk+1 � xk = (�t)f(tk; x
k);

1

2
xk+1 � 1

2
xk�1 = (�t)f(tk; x

k);

1

3
xk+1 +

1

2
xk � xk�1 +

1

6
xk�2 = (�t)f(tk; x

k);

...

(4.83)

The �rst of these numerical scheme is the explicit Euler method, while the second is the explicit
mid-point method.

In order to construct further classes of multi-step methods, we de�ne, for y 2 C1,

D�1y(tk) = y(t0) +

Z tk

t0

y(s) ds;

and observe that

(E � I)D�1y(tk) =

Z tk+1

tk

y(s) ds:

Now, from

(E � I)D�1 = �+D
�1 = E��D

�1 = (�t)E��((�t)D)�1;

it follows that

(E � I)D�1 = �(�t)E��

�
ln(I ���)

��1
: (4.84)

Furthermore,

(E � I)D�1 = E��D
�1 = ��ED

�1 = ��(DE
�1)�1 = (�t)��

�
(�t)DE�1

��1
:

Thus,

(E � I)D�1 = �(�t)��

�
(I ���) ln(I ���)

��1
: (4.85)
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By using (4.84) and (4.85), we deduce from

x(tk+1)� x(tk) =

Z tk+1

tk

f(s; x(s)) ds = (E � I)D�1f(tk; x(tk));

that

x(tk+1)� x(tk) =

(
�(�t)��

�
(I ���) ln(I ���)

��1
f(tk; x(tk))

�(�t)E��

�
ln(I ���)

��1
f(tk; x(tk));

(4.86)

where x(t) is the solution of (4.1).
On expanding ln(I ���) into a Taylor series on the right-hand side of (4.86) we �nd that

x(tk+1)� x(tk) = (�t)

�
I +

1

2
�� +

5

12
�2
� +

3

8
�3
� + : : :

�
f(tk; x(tk)); (4.87)

and

x(tk+1)� x(tk) = (�t)

�
I � 1

2
�� � 1

12
�2
� �

1

24
�3
� + : : :

�
f(tk+1; x(tk+1)): (4.88)

The successive truncation of (4.87) yields the family (4.75) of (explicit) Adams-Bashforth methods,
while similar successive truncation of (4.88) gives rise to the family (4.77) of (implicit) Adams-
Moulton methods.

4.5.2. Consistency, stability, and convergence. In this subsection, we introduce the con-
cepts of consistency, stability, and convergence for analyzing linear multi-step methods.

Definition 4.21 (Consistency). The n-step method (4.72) is consistent with (4.1) if the
truncation error de�ned by

Tk(�t) =

Pn
j=0

�
�jx(tk+j)� (�t)�j

dx
dt (tk+j)

�
(�t)

is such that for any � > 0 there exists h0 for which

jTk(�t)j � � for 0 < �t � h0 (4.89)

and any (n+ 1) points
�
(tj ; x(tj)); : : : ; (tj+n; x(tj+n))

�
on any solution x(t).

Theorem 4.22. The n-step method (4.72) is consistent if and only if the two conditions

nX
j=0

�j = 0 and

nX
j=0

j�j =

nX
j=0

�j ; (4.90)

hold. Furthermore, it is of order p if and only if

1

l

nX
j=0

jl�j =

nX
j=0

jl�1�j ; for all l = 1; : : : ; p; (4.91)

and
1

p+ 1

nX
j=0

jp+1�j 6=
nX
j=0

jp�j : (4.92)

Proof. Assume that f 2 C1. Using the Taylor expansions for both x and dx=dt,

x(tk+j) =

+1X
l=0

1

l!
(j�t)lx(l)(tk);

dx

dt
(tk+j) =

+1X
l=0

1

l!
(j�t)lx(l+1)(tk);

we obtain
nX
j=0

�
�jx(tk+j)� (�t)�j

dx

dt
(tk+j)

�
=

nX
j=0

�
�j

+1X
l=0

1

l!
(j�t)lx(l)(tk)� (�t)�j

+1X
l=0

1

l!
(j�t)lx(l+1)(tk)

�
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=
� nX
j=0

�j
�
x(tk) +

� nX
j=0

�
j�j � �j

��
�t

dx

dt
(tk) +

+1X
l=2

� nX
j=0

�jl
l!
�j � jl�1

(l � 1)!
�j
��
(�t)lx(l)(tk);

which yields the result. �

In view of Theorem 4.22, one can easily check that (4.71) is of order 4, (4.73) is of order 2,
(4.74) is of order 3, (4.75) is of order 4, (4.76) is of order 3, and (4.77) is of order 4.

Definition 4.23 (Stability). The n-step method (4.72) is stable if there exists a constant C
such that, for any two sequences (xk) and (exk) which have been generated by the same formulas
but di�erent initial data x0; x1; : : : ; xn�1 and ex0; ex1; : : : ; exn�1, respectively, we have

jxk � exkj � Cmaxfjx0 � ex0j; jx1 � ex1j; : : : ; jxn�1 � exn�1jg (4.93)

as �t! 0 for all k � n.

Theorem 4.24 (Convergence). Suppose that the n-step method (4.72) is consistent with (4.1).
The stability condition (4.93) is necessary and su�cient for the convergence. Moreover, if x 2 Cp+1
and the truncation error is O((�t)p), then the global error ek = x(tk)� xk is also O((�t)p).

Proof. One way to prove Theorem 4.24 is to rewrite (4.72) as a one-step method in a higher
dimensional space. For this, let �(tk; x

k; : : : ; xk+n�1;�t) be de�ned implicitly by

� =

n�1X
j=0

�0jf(tk+j ; x
k+j) + �0nf

�
tk+n; (�t)��

n�1X
j=0

�0jx
k+j
�
;

where �0j = �j=�n and �0j = �j=�n. Then, (4.72) can be written as

xk+n = �
n�1X
j=0

�0jx
k+j + (�t)�:

Introduce the n-dimensional vectors

Xk = (xk+n�1; : : : ; xk)>;�(tk; X
k;�t) = �(tk; x

k; : : : ; xk+n�1;�t)(1; 0; : : : ; 0)>;

and the n� n matrix

A =

0BBBBBB@

��0n�1 ��0n�2 : : : � ��00
1 0 : : : � 0

1 : : :
... 0

. . .
...

...
1 0

1CCCCCCA :

The n-step method (4.72) can be rewritten as

Xk+1 = AXk +�t�(tk; X
k;�t);

and the concepts of consistency and stability can be expressed in this new notation. In fact, let x(t)
be the exact solution and denote by X(tk) = (x(tk+n�1); : : : ; x(tk))

>. The consistency condition
(4.89) implies that

jX(tk+1)�AX(tk)��t�(tk; X(tk);�t)j ! 0 as �t! 0:

Moreover, if (4.72) is of order p then

jX(tk+1)�AX(tk)��t�(tk; X(tk);�t)j = O
�
(�t)p

�
as �t ! 0. Furthermore, the stability condition (4.93) implies that there exists a matrix norm
such that kAk � 1. The rest of the proof is similar to the proof of Theorem 4.4. �
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4.6. Sti� equations and systems

Let � > 0 be a small parameter. Consider the initial value problem8<:
dx(t)

dt
= �1

�
x(t); t 2 [0; T ];

x(0) = 1;
(4.94)

which has an exponential solution x(t) = e�t=�. The explicit Euler method with step size �t relies
on the iterative scheme

xk+1 = (1� �t

�
)xk; x0 = 1; (4.95)

with solution

xk = (1� �t

�
)k:

Since � > 0 the exact solution is exponentially decaying and positive. But now, if 1 � �t
� < �1,

then the iterates (4.95) grow exponentially fast in magnitude, with alternating signs. In this case,
the numerical solution is nowhere close to the true solution. If �1 < 1 � �t

� < 0, then the
numerical solution decays in magnitude, but continue to alternate between positive and negative
values. Thus, to correctly model the qualitative features of the solution and obtain a numerically
accurate solution, we need to choose the step size �t so as to ensure that 1 � �t

� > 0, and hence
�t < �.

Equation (4.94) is the simplest example of what is known as a sti� di�erential equation.
In general, an equation or system is sti� if it has one or more very rapidly decaying solutions. In
the case of the autonomous constant coe�cient linear system (3.24), sti�ness occurs whenever the
coe�cient matrix A has an eigenvalues �j0 with large negative real part: <�j0 � 0, resulting in a
very rapidly decaying eigensolution. It only takes one such eigensolution to render the equation sti�,
and ruin the numerical computation of even well behaved solutions. Even though the component of
the actual solution corresponding to �j0 is almost irrelevant, as it becomes almost instantaneously
tiny, its presence continues to render the numerical solution to the system very di�cult. Sti�
equations require more sophisticated numerical schemes to integrate.

Most of the numerical methods derived above also su�er from instability due to sti�ness of
(4.94) for su�ciently small positive �. Interestingly, stability of (4.94) su�ces to characterize
acceptable step sizes �t, depending on the size of �1=�, which, in the case of linear systems, is the
eigenvalue. Applying the Trapezoidal scheme (4.29) to (4.94) leads to

xk+1 = xk � �t

2�

�
xk + xk+1

�
; x0 = 1; (4.96)

which we solve for

xk+1 =
1� �t

2�

1 + �t
2�

xk; x0 = 1: (4.97)

Thus, the behavior of the numerical solution is entirely determined by the size of the coe�cient

� :=
1� �t

2�

1 + �t
2�

:

Since j�j < 1 for all � > 0, the Trapezoidal scheme (4.96) is not a�ected by sti�ness.
In the system of equations (1.5), the parameter satis�es 0 < a � 1. This makes (1.5) a sti�

system of ODEs.

4.7. Perturbation theories for di�erential equations

4.7.1. Regular perturbation theory. Let � > 0 be a small parameter and consider the
di�erential equation 8<:

dx

dt
= f(t; x; �); t 2 [0; T ];

x(0) = x0; x0 2 R:
(4.98)
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If we suppose that f 2 C1, then (4.98) is a regular perturbation problem. The solution x(t; �)
is in C1 and has the following Taylor expansion:

x(t; �) = x(0)(t) + �x(1)(t) + o(�) (4.99)

with respect to � in a neighborhood of 0.
Clearly, the unperturbed term x(0) is given as the solution of the unperturbed equation8><>:

dx(0)

dt
= f0(t; x

(0)); t 2 [0; T ];

x(0)(0) = x0; x0 2 R;
(4.100)

where f0(t; x) := f(t; x; 0). Moreover, the �rst-order correction term x(1), which is the derivative
of x(t; �) with respect to � at 0,

x(1)(t) =
@x

@�
(t; 0);

solves the equation 8><>:
dx(1)

dt
=
@f

@x
(t; x(0); 0)x(1) +

@f

@�
(t; x(0); 0); t 2 [0; T ];

x(1)(0) = 0:

(4.101)

The initial condition x(1)(0) = 0 follows from the fact that the initial condition x0 does not depend
on �.

The numerical methods described in Section 4.4 can be used to e�ciently compute the unper-
turbed solution x(0) and the �rst-order correction x(1).

Remark 4.25. Consider the equation8<:
dx

dt
= ��x+ 1; t 2 [0;+1[;

x(0) = 0:
(4.102)

The solution can be easily found

x(t; �) =
e��t � 1

�
: (4.103)

If we apply the perturbation theory to (4.102), then by solving (4.100) and (4.101) with

f(t; x; �) = ��x+ 1;

we �nd

x(0)(t) = �t and x(1)(t) =
t2

2
;

which gives

x(t; �) = �t+ �
t2

2
+ o(�): (4.104)

The approximation (4.104) of course coincides with the Taylor expansion of the exact solution given
by (4.103). However, note that the approximation is valid only for �xed t = O(1) and diverges to
+1 as t increases while the exact solution converges to �1=�. The limits � ! 0 and t ! +1 do
not commute. Expansion (4.104) is not uniformly valid in time.



64 4. NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

4.7.2. Singular perturbation theory. In this subsection we consider a system of ordinary
di�erential equations (together with appropriate boundary conditions) in which the highest deriv-
ative is multiplied by a small, positive parameter �. In what follows we give the general (nonlinear)
form of the system: 8<: �

d2x

dt2
= f(t; x;

dx

dt
); t 2 [0; T ];

x(0) = x0; x(T ) = x1:

(4.105)

The problem above is called a singular perturbation problem, and is characterized by the fact
that its order reduces when the problem parameter � equals zero. In such a situation, the problem
becomes singular since, in general, not all of the original boundary conditions can be satis�ed by
the reduced problem. Singular perturbed problems form a particular class of sti� problems.

Consider the following linear, scalar and of second-order ODE which is subject to Dirichlet
boundary conditions: 8<: �

d2x

dt2
+ 2

dx

dt
+ x = 0; t 2 [0; 1];

x(0) = 0; x(1) = 1:

(4.106)

Let

�(�) :=
1�p1� �

�
and �(�) := 1 +

p
1� �:

The solution of equation (4.106) is given by

x(t; �) =
e��t � e��t=�

e�� � e��=�
; t 2 [0; 1]: (4.107)

The solution x(t; �) involves two terms which vary on widely di�erent length-scales. Let us consider
the behavior of x(t; �) as �! 0+. The asymptotic behavior is nonuniform, and there are two cases,
which lead to matching outer and inner solutions.

(i) Outer limit: t > 0 �xed and �! 0+. Then x(t; �)! x(0)(t), where

x(0)(t) := e(1�t)=2: (4.108)

This leading-order outer solution satis�es the boundary condition at t = 1 but not the
boundary condition at t = 0. Indeed, x(0)(0) = e1=2.

(ii) Inner limit: t=� = � �xed and �! 0+. Then x(��; �)! X(0)(�) := e1=2(1� e�2� ). This
leading-order inner solution satis�es the boundary condition at t = 0 but not the one
at t = 1, which corresponds to � = 1=�. Indeed, lim�!+1X(0)(�) = e1=2.

(iii) Matching: Both the inner and outer expansions are valid in the region � � t � 1,
corresponding to t! 0 and � ! +1 as �! 0+. They satisfy the matching condition

lim
t!0+

x(0)(t) = lim
�!+1

X(0)(�): (4.109)

Let us now construct an asymptotic solution of (4.106) without relying on the fact that we
can solve it exactly.

We begin with the outer solution. We look for a straightforward expansion

x(t; �) = x(0)(t) + �x(1)(t) +O(�2): (4.110)

We use this expansion in (4.106) and equate the coe�cients of the leading-order terms to zero.
Guided by our analysis of the exact solution, we only impose the boundary condition at t = 1. We
will see later that matching is impossible if, instead, we attempt to impose the boundary condition
at t = 0. We obtain that 8<: 2

dx(0)

dt
+ x(0) = 0; t 2 [0; 1];

x(0)(1) = 1:

(4.111)

The solution of (4.111) is given by (4.108), in agreement with the expansion of the exact solution
x(t; �).
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Next we consider the inner solution. We suppose that there is a boundary layer at t = 0
of width �(�), and introduce a stretched variable � = t=�. We look for an inner solution
X(�; �) = x(t; �). Since

d

dt
=

1

�

d

d�
;

we �nd from (4.106) that X satis�es

�

�2
d2X

d�2
+

2

�

dX

d�
+X = 0:

There are two possible dominant balances in this equation:

(i) � = 1, leading to the outer solution;
(ii) � = �, leading to the inner solution.

Thus we conclude that the boundary layer thickness is of the order of �, and the appropriate inner
variable is � = t=�. The equation for X is then8<:

d2X

d�2
+ 2

dX

d�
+ �X = 0;

X(0; �) = 0:

We impose only the boundary condition at � = 0, since we do not expect the inner expansion to
be valid outside the boundary layer where t = O(�).

We seek an inner expansion

X(�; �) = X(0)(�) + �X(1)(�) +O(�2)

and �nd that 8<:
d2X(0)

d�2
+ 2

dX(0)

d�
= 0;

X(0)(0) = 0:

(4.112)

The general solution of (4.112) is

X(0)(�) = c(1� e�2� ); (4.113)

where c is an arbitrary constant of integration.
We can determine the unknown constant c in (4.113) by requiring that the inner solution

(4.113) matches with the outer solution (4.108). Here the matching condition is simply

lim
t!0+

x(0)(t) = lim
�!+1

X(0)(�);

which implies that c = e1=2.
In summary, the asymptotic solution as �! 0+ is given by

x(t; �) =

(
e1=2(1� e�2� ) as �! 0+ with t=� �xed;

e(1�t)=2 as �! 0+ with t �xed:

4.7.3. WKB approximations.

4.7.3.1. Schr�odinger equation. Consider the Schr�odinger equation8<: i�
@	

@t
(t; x) + �2

@2	

@x2
(t; x)� V (x)	(t; x) = 0; x 2 R; t � 0;

	(0; x) = 	0(x); x 2 R;
(4.114)

where �� 1 and V (x) > 0.
Write

	(t; x) = ei
S(t;x)

� :

It follows that

�@S
@t

� (
@S

@x
)2 + i�

@2S

@x2
� V (x)S = 0:
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Hence, the leading order term in the asymptotic expansion with respect to �

S(t; x) = S(0)(t; x) + �S(1)(t; x) + : : :

satis�es the Hamilton-Jacobi type equation

@S(0)

@t
(t; x) + (

@S(0)

@x
)2(t; x) + V (x)S(0)(t; x) = 0:

4.7.4. Wave equation. Consider the Helmholtz equation�
�2
d2	

dx2
(x) + V (x)	(x) = 0; x 2 R; (4.115)

where �� 1 and V (x) > 0.
Using the ansatz

	(x) = a(x; �)e
S(x)
� = (a(0)(x) + �a(1)(x) + : : :)e

S(x)
� ;

it follows that

(�jdS
dx
j2 + V ) + 2i�

dS

dx

da

dx
+ i�a

d2S

dx2
+ �2

d2a

dx2
= 0:

Therefore, the phase S is solution to the eikonal equation

jdS
dx
j2(x) = V (x); (4.116)

and the leading order term a(0) in the asymptotic expansion of the amplitude a(x; �) with respect
to � satis�es the transport equation

2
dS

dx

da(0)

dx
+ a(0)

d2S

dx2
= 0: (4.117)

4.8. Problems

Problem 4.26. (i) Prove Proposition 4.12.
(ii) Prove estimate (4.31).

Problem 4.27. Prove that the so-called explicit Milne's four-step method:

xk+1 = xk�3 +
(�t)

3

�
8f(tk; x

k)� 4f(tk�1; x
k�1) + 8f(tk�2; x

k�2)

�
is of order 4.



CHAPTER 5

Geometrical numerical integration methods for di�erential

equations

5.1. Introduction

Geometric integration is the numerical integration of a di�erential equation, while preserving
one or more of its geometric properties exactly, i.e., to within round-o� error. Many of these
geometric properties are of crucial importance in physical applications: preservation of energy,
momentum, volume, symmetries, time-reversal symmetry, dissipation, and symplectic structure
being examples. The aim of this chapter is to present geometric numerical integration methods for
ordinary di�erential equations. We concentrate mainly on Hamiltonian systems and on methods
that preserve their symplectic structure, invariants, symmetries, or volume.

5.2. Structure preserving methods for Hamiltonian systems

The numerical methods discussed in Chapter 4 are designed for general di�erential equations,
and a distinction was drawn only between sti� and nonsti� problems. As shown in Chapter 1,
Hamiltonian systems are an important class of di�erential equations with a geometric structure
(their ow has the geometric property of being symplectic), whose preservation in the numerical
discretization leads to substantially better methods, especially when integrating over long times. In
general, most geometric properties are not preserved by the standard numerical methods presented
in Chapter 4.

Some of the reasons we are motivated to preserve structure are

(i) it may yield methods that are faster, simpler, more stable, and/or more accurate for some
types of ODEs;

(ii) it may yield more robust and quantitatively better results than standard methods for the
long-time integration of Hamiltonian systems.

The standard problem in numerical ODEs discussed in the previous chapter is to compute the
solution to an initial value problem at a �xed time, to within a given global error, as e�ciently as
possible. The class of method, its order and local error, and choice of time steps are all tailored to
this end. In contrast, a typical application of a geometric numerical method is to �x a (sometimes
moderately large) time step and compute solutions with perhaps many di�erent initial conditions
over very long time intervals.

5.2.1. Symplectic methods. Consider the Hamiltonian system8>>>><>>>>:
dp

dt
= �@H

@q
(p; q);

dq

dt
=
@H

@p
(p; q);

p(0) = p0; q(0) = q0;

(5.1)

where p0; q0 2 Rd, and the Hamiltonian function H : Rd � Rd ! R is a smooth function.

67
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Let x = (p; q)>. The Hamiltonian system of equations (5.1) can be rewritten as a �rst-order
di�erential equation 8><>:

dx

dt
= f(x);

x(0) = x0 2 R2d;
(5.2)

where x0 = (p0; q0)
> and

f : R2d ! R2d

x 7! J�1rH(x):

Definition 5.1. Let J be de�ned by (1.26). A numerical one-step method (pk+1; qk+1) =
��t(p

k; qk) for solving (5.1) is called symplectic if the numerical ow ��t is a symplectic
map:

�0�t(p; q)
>J�0�t(p; q) = J; (5.3)

for all (p; q) and all step sizes �t.

5.2.2. Symplectic Euler methods.

Theorem 5.2. The implicit Euler method for solving (5.1)8>><>>:
pk+1 = pk ��t

@H

@q
(pk+1; qk);

qk+1 = qk +�t
@H

@p
(pk+1; qk);

(5.4)

is symplectic. Moreover, if the Hamiltonian function H(p; q) = T (p) + V (q) is separable, then
(5.4) is explicit.

Proof. Let ��t be the numerical ow associated with (5.4). We have

�0�t(p
k; qk) =

@(pk+1; qk+1)

@(pk; qk)
:

From 0BB@I +�t
@2H

@p@q
0

��t@
2H

@p2
I

1CCA�0�t(p
k; qk) =

0B@I ��t@2H@q2

0 I +�t
@2H

@p@q

1CA ; (5.5)

where the matrices @2H
@p2 ,

@2H
@q2 , and

@2H
@p2 are evaluated at (pk+1; qk), one can easily verify by com-

puting �0�t(p
k; qk) from (5.5) that the symplecticity condition (5.3) holds. �

A variant of (5.4) is 8>><>>:
pk+1 = pk ��t

@H

@q
(pk; qk+1);

qk+1 = qk +�t
@H

@p
(pk; qk+1):

(5.6)

Analogously to (5.4), the Euler method (5.6) is symplectic and turns out to be explicit for separable
Hamiltonian functions.
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5.2.3. Composition of symplectic methods.

Theorem 5.3. The composition of two symplectic one-step methods for solving (5.1) is also
symplectic.

Proof. Let �
(1)
�t and �

(2)
�t be the numerical ows associated with two symplectic one-step

methods for solving (5.1). Let ��t := �
(2)
�t � �(1)�t . We have

(�0�t(x))
>J�0�t(x) = ((�

(2)
�t)

0(x�)(�
(1)
�t)

0(x))>J(�
(2)
�t)

0(x�)(�
(1)
�t)

0(x)

= ((�
(1)
�t)

0(x))>((�
(2)
�t)

0(x�))>J(�
(2)
�t)

0(x�)(�
(1)
�t)

0(x)

= ((�
(1)
�t)

0(x))>J(�
(1)
�t)

0(x) = J;

where x� = �
(1)
�t(x). That is, the composition of symplectic one-step methods is again a symplectic

one-step method. �

5.2.4. The adjoint method. The ow �t of an autonomous di�erential equation dx=dt =
f(x) satis�es ��1�t = �t. This property is in general not satis�ed by the one-step map ��t of a
numerical method.

Definition 5.4. The adjoint method ���t of a method ��t is the inverse map of the original
method with reversed time step ��t, i.e.,

���t := ��1��t:

In other terms, ���t is de�ned by replacing, in the method associated with ��t, �t by ��t and
exchanging the superscripts k and k + 1.

The adjoint method satis�es the usual properties.

Proposition 5.5. We have

(i) (���t)
� = ��t;

(ii)
�
�
(2)
�t � �(1)�t

��
= (�

(1)
�t)

� � (�(2)�t)� for any two one-step methods �
(1)
�t and �

(2)
�t ;

(iii)
�
��t=2 � ���t=2

��
= ��t=2 � ���t=2.

5.2.5. Leapfrog method. De�ne the leapfrog method (Verlet method and Str�omer-Verlet
method are also often-used names) for solving the Hamiltonian system (5.1) by8>>>>>>>><>>>>>>>>:

pk+
1
2 = pk � �t

2

@H

@q
(pk+

1
2 ; qk);

qk+1 = qk +
�t

2

�
@H

@p
(pk+

1
2 ; qk) +

@H

@p
(pk+

1
2 ; qk+1)

�
;

pk+1 = pk+
1
2 � �t

2

@H

@q
(pk+

1
2 ; qk+1):

(5.7)

Theorem 5.6. The leapfrog method (5.7) for solving the Hamiltonian system (5.1) is symplec-
tic.

Proof. The leapfrog method (5.7) can be interpreted as the composition of the symplectric
Euler method 8>><>>:

pk+
1
2 = pk � �t

2

@H

@q
(pk+

1
2 ; qk);

qk+
1
2 = qk +

�t

2

@H

@p
(pk+

1
2 ; qk);

(5.8)
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and its adjoint 8>><>>:
qk+1 = qk+

1
2 +

�t

2

@H

@p
(pk+

1
2 ; qk+1);

pk+1 = pk+
1
2 � �t

2

@H

@q
(pk+

1
2 ; qk+1):

(5.9)

In other terms, if 	�t denotes the numerical ow associated with the leapfrog method and ��t
the one associated with the symplectic Euler method (5.4), then

	�t = ���t=2 � ��t=2: (5.10)

The methods (5.8) and (5.9) are symplectic. Hence their composition (5.7) is also symplectic. �

5.2.6. Preserving time-reversal symmetry and invariants.

5.2.6.1. Preserving time-reversal symmetry. The leapfrog method (5.7) is symmetric with re-
spect to changing the direction of time: replacing �t by ��t and exchanging the superscripts k
and k + 1 results in the same method. In terms of the numerical one-step map ��t : (p

k; qk) 7!
(pk+1; qk+1), the symmetry property is stated as follows.

Definition 5.7. The numerical one-step map ��t is said to be symmetric if

��t = ���t(= ��1��t): (5.11)

Relation (5.11) does not hold for the symplectic Euler methods (5.8) and (5.9), where the time
reection transforms (5.8) to (5.9) and vice versa.

The time-symmetry of the leapfrog method (5.7), which follows from (5.10) and item (iii)
in Proposition 5.5, implies an important geometric property of the numerical map, namely re-

versibility.
Assume that

H(�p; q) = H(p; q): (5.12)

Then the system (5.1) has the property that inverting the direction of the initial p0 does not change
the solution trajectory. The ow �t associated with (5.1) satis�es

�t(p0; q0) = (p; q)) �t(�p; q) = (�p0; q0): (5.13)

Relation (5.13) shows that �t is reversible with respect to the reection (p; q) 7! (�p; q).
Definition 5.8. The numerical one-step map ��t is said to be reversible if

��t(p; q) = (p̂; q̂)) ��t(�p̂; q̂) = (�p; q); (5.14)

for all p; q and all �t.

Since
��t(p; q) = (p̂; q̂)) ���t(�p; q) = (�p̂; q̂); (5.15)

the symmetry (5.11) of the leapfrog method (5.7) is therefore equivalent to the reversibility (5.13).

Theorem 5.9. The leapfrog method (5.7) applied to (5.1) with H satisfying (5.12) is both
symmetric and reversible, i.e., its one-step map satis�es (5.11) and (5.14).

Remark 5.10. Consider a one-step method ��t of order one. Then, formally,

��t(x0) = '�t(x0) + C(x0)�t+O((�t)2);

and
���t(x0) = '�t(x0)� C(x0)�t+O((�t)2);

with '�t'�t being the exact ow. Therefore, if ��t is symmetric, then it should be of order two
since C(x0) has to be zero.

Remark 5.11. From Remark 5.10, it follows that the composition with the adjoint method
turns every consistent one-step method of order one into a second-order symmetric method

	�t = ��t=2 � ���t=2:
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5.2.6.2. Preserving invariants.

Definition 5.12. A numerical one-step method ��t for solving (5.2) is said to preserve the
invariant F if F (��t(p; q)) = Constant for all p; q and all �t. If F = H, then we say that the
scheme preserves energy.

Theorem 5.13. The leapfrog method (5.7) applied to (5.1) preserves linear invariants and
quadratic invariants of the form

F (p; q) = p>(Bq + b): (5.16)

Proof. Let the linear invariant be F (p; q) = b>q + c>p, so that

b>
@H

@p
(p; q)� c>

@H

@q
(p; q) = 0;

for all p; q. Multiplying the formulas for ��t(p; q) in (5.7) by (c; b)> thus yields the desired result
on linear invariants.

Next we turn to the conservation by the leapfrog method of quadratic invariants of the form
(5.16). In order to prove that (5.7) applied to (5.1) preserves quadratic invariants of the form
F (p; q) = p>(Bq+ b), we write (5.7) as the composition of the two symplectic Euler methods (5.8)
and (5.9). For the �rst half-step, we obtain

(pk+
1
2 )>(Bqk+

1
2 + b) = (pk)>(Bqk + b):

For the second half-step, we obtain in the same way

(pk+1)>(Bqk+1 + b) = (pk+
1
2 )>(Bqk+

1
2 + b);

and the result follows. �

The energy is generally not preserved by the leapfrog method (5.7). Consider H(p; q) =
1
2 (p

2 + q2). Applying (5.7) gives 
pk+1

qk+1

!
=

241� (�t)2

2 ��t(1� (�t)2

4 )

�t 1� (�t)2

2

35 pk
qk

!
: (5.17)

Since the propagation matrix in (5.17) is not orthogonal,H(p; q) is not preserved along numerical
solutions.

Consider the Hamiltonian

H(p; q) :=
1

2
p>M�1p+ V (q); (5.18)

where M is a symmetric positive de�nite matrix and the potential V is a smooth function.
In the particular case of the Hamiltonian (5.18), the leapfrog method (5.7) reduces to the

explicit method 8>>>>>><>>>>>>:

pk+
1
2 = pk � �t

2
rV (qk);

qk+1 = qk +�tM�1pk+
1
2 ;

pk+1 = pk+
1
2 � �t

2
rV (qk+1):

(5.19)

Note that the Hamiltonian (5.18) is invariant under p 7! �p and the corresponding Hamiltonian
system (5.1) is invariant under the transformation�

p
t

�
7!
��p
�t
�
: (5.20)

The time-reversal symmetry of (5.1) is preserved by the leapfrog method (5.19).
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5.2.6.3. Preserving volume. Recall that, due to equality of mixed partial derivatives, (5.2) is
divergence-free, i.e.,

r � f :=

2dX
i=1

@fi
@xi

= 0:

A remarkable feature of divergence-free vector �elds is that the associated ows are volume
preserving.

Given a map � : R2d ! R2d and a domain 
, by change of variables

vol(�(
)) =

Z



j det�0(y)j dy;

where �0 is the Jacobian of �. It follows that � preserves volume provided that

jdet�0(y)j = 1 for y 2 
: (5.21)

Let �t be the ow associated with dx=dt = f(x), where r � f = 0. Then �t satis�es

d�t(y)

dt
= f(�t(y));

and therefore, its Jacobian �0 satis�es

d�0t(y)

dt
= f 0(�t(y))�

0
t(y):

Assuming �0t is invertible yields

tr

�
d�0t(y)

dt
�0t(y)

�1

�
= trf 0(�t(y)):

Combining trf 0 = r � f = 0 and Jacobi's formula (3.41) for the derivative of a determinant gives

tr

�
d�0t(y)

dt
�0t(y)

�1

�
=

1

det�0t(y)

d

dt
det�0t(y) = 0:

Hence,
det�0t(y) = det�0t=0(y) = 1:

The following result holds.

Theorem 5.14 (Liouville's theorem). The ow �t associated with the system8><>:
dx

dt
= f(x);

x(0) = x0 2 R2d;
(5.22)

where the C1 vector �eld f is divergence-free, is a volume preserving map (for all t).

Note that if the system (5.22) is Hamiltonian, then Theorem 5.14 can be immediately obtained
from the symplecticity of the associated ow. In fact, from

(�0t)
>J�0t = J;

it follows that j det�0tj2 = 1 since det J = 1. Moreover, using the facts that det�0t=0 = 1 and the
continuity of the determinant, we obtain that det�0t = 1 for all t.

Remark 5.15. Since

r � J�1rH(x) = �
dX

j=1

@2H

@xj@xd+j
+

dX
j=1

@2H

@xd+j@xj
= 0

for any smooth function H, Hamiltonian systems are divergence free equations. If d = 1, all
divergence-free systems are Hamiltonians since r�f = 0 implies that f = r�H for some function
H 2 C2 (at least locally) and

J�1r = r� :



5.2. STRUCTURE PRESERVING METHODS FOR HAMILTONIAN SYSTEMS 73

For d > 1, the previous identity is no longer true. Consequently, divergence-free systems are not
necessary Hamiltonians.

Definition 5.16. A numerical one-step method for solving (5.22) is said to be volume pre-
serving if j det�0�t(p; q)j = 1 for all p; q.

Note that if (5.22) is a Hamiltonian system, then any symplectic numerical method preserves
the volume. However, no standard methods can be volume-preserving for all divergence-free vector
�elds.

Example 5.17. Consider the divergence-free problem8><>:
dx

dt
= Ax;

x(0) = x0 2 R2d;
(5.23)

where A 2M2d(R) and trA = 0. The Explicit and implicit Euler's schemes for solving (5.23)

xk+1 = xk +�tAxk;

xk+1 = xk +�tAxk+1;

are volume-preserving if and only if

j det(I +�tA)j = 1;

and

j det(I ��tA)j = 1;

respectively.

5.2.7. Composition methods. Now using the fact that (5.2) is divergence-free, we have
(when f2d is assumed for simplicity to depend only on x2d),

f2d(x) = f2d(x) +

Z x2d

x

@f2d
@x2d

dx2d

= f2d(x)�
Z x2d

x

� 2d�1X
i=1

@fi(x)

@xi

�
dx2d;

(5.24)

where x is an arbitrary point which can be chosen conveniently (e.g., if possible such that f2d(x) =
0).

Substituting (5.24) into (5.2) yields

dx1
dt

= f1(x);

...

dx2d�1
dt

= f2d�1(x);

dx2d
dt

= f2d(x)�
2d�1X
i=1

Z x2d

x

@fi(x)

@xi
dx2d:

(5.25)

We now split this as the sum of 2d� 1 vector �elds

dxi
dt

= 0; i 6= j; 2d� 1;

dxj
dt

= fj(x);

dx2d
dt

= f2d(x)�j;2d�1 �
Z x2d

x

@fj(x)

@xj
dx2d;

(5.26)
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for j = 1; : : : ; 2d� 1. Here � is the Kronecker delta function.
Note that each of the 2d � 1 vector �elds is divergence-free. Moreover, we have split (5.25)

into the 2d�1 problems (5.26). Each of these problems has a simpler structure than (5.2). In fact,
each of them corresponds to a two-dimensional Hamiltonian system

dxj
dt

= � @Hj

@x2d
;

dx2d
dt

=
@Hj

@xj
;

(5.27)

with Hamiltonian

Hj(x) := f2d(x)�j;2d�1xj �
Z x2d

x

fj(x) dx2d; (5.28)

treating xi for i 6= j; 2d as �xed parameters.
Each of the two-dimensional problems (5.27) can either be solved exactly (if possible), or

approximated with a symplectic integrator �
(j)
�t . A volume-preserving integrator for f is then

given by

��t = �
(1)
�t � �(2)�t � : : : � �(2d�1)�t : (5.29)

5.2.8. Splitting methods. Consider a Hamiltonian system

dx

dt
= f(x) = J�1rH(x); H(x) = H1(x) +H2(x); (5.30)

and suppose the ows

dx

dt
= f1(x) = J�1rH1(x) and

dx

dt
= f2(x) = J�1rH2(x); (5.31)

can be exactly integrated.

Let �
(1)
t and �

(2)
t be the exact ows associated with the equations in (5.31) and let � be the

ow associated with (5.30).
Since the exact solution of a Hamiltonian system de�nes a symplectic map, we have

((�
(1)
t )0)>J(�

(1)
t )0 = J and ((�

(2)
t )0)>J(�

(2)
t )0 = J:

Next consider the numerical method de�ned by composing these two exact ows:

��t(x) := �
(2)
�t � �(1)�t(x):

This map is also symplectic, since

(�0�t(x))
>J�0�t(x) = ((�

(2)
�t)

0(x�)(�
(1)
�t)

0(x))>J(�
(2)
�t)

0(x�)(�
(1)
�t)

0(x)

= ((�
(1)
�t)

0(x))>((�
(2)
�t)

0(x�))>J(�
(2)
�t)

0(x�)(�
(1)
�t)

0(x)

= ((�
(1)
�t)

0(x))>J(�
(1)
�t)

0(x) = J;

where x� = �
(1)
�t(x). That is, as shown in Theorem 5.3, the composition of symplectic maps is

again a symplectic map.
If, from a given initial value x0, we �rst solve the �rst system to obtain a value x 1

2
, and from

this value integrate the second system to obtain x1, we get two numerical integrators where one is
the adjoint of the other:

��t = �
(2)
�t � �(1)�t and ���t = �

(1)
�t � �(2)�t :

By Taylor expansion, we �nd that

�
(2)
�t � �(1)�t(x0) = ��t(x0) +O((�t)2);

so that ��t (and analogously ���t) gives approximation of order one to the solution of (5.30).
Another idea is to use a symmetric version and put

��t = �
(1)
�t=2 � �

(2)
�t � �(1)�t=2: (5.32)



5.3. RUNGE-KUTTA METHODS 75

By breaking up in (5.32)

�
(2)
�t = �

(2)
�t=2 � �

(2)
�t=2

an using Taylor expansion, we see that (5.32) is symmetric and of order two.

Example 5.18. Consider the separable Hamiltonian H(p; q) = U(p)+V (q). Based on splitting
the Hamiltonian H into U and V , we interpret the symplectic Euler methods and the leapfrog
method for solving (5.2) as splitting methods.

To do so, we consider (5.30) as the sum of two Hamiltonians, the �rst one depending only on
p, the second one only on q. The corresponding Hamiltonian systems8>>>><>>>>:

dp

dt
= 0;

dq

dt
=
@U

@p
(p);

p(0) = p0; q(0) = q0;

and

8>>>><>>>>:
dp

dt
= �@V

@q
(q);

dq

dt
= 0;

p(0) = p0; q(0) = q0;

can be solved explicitly8<:
p(t) = p0;

q(t) = q0 + t
@U

@p
(p0);

and

8<: p(t) = p0 � t
@V

@q
(q0);

q(t) = q0:

Denoting the ows of these two systems by �Ut and �Vt , we see that the symplectic Euler method8>>><>>>:
pk+1 = pk ��t

@V

@q
(qk);

qk+1 = qk +�t
@U

@p
(pk+1);

is just the composition
�U�t � �V�t; (5.33)

and its adjoint is
�V�t � �U�t: (5.34)

The leapfrog method 8>>>>>>>><>>>>>>>>:

pk+
1
2 = pk � �t

2

@V

@q
(qk);

qk+1 = qk +�t
@U

@p
(pk+

1
2 );

pk+1 = pk+
1
2 � �t

2

@V

@q
(qk+1);

is
�V�t=2 � �U�t � �V�t=2: (5.35)

Decompositions (5.33), (5.34), and (5.35) give second proofs of Theorems 5.2 and 5.6 in the
case of a separable Hamiltonian. They also show that the symplectic Euler methods are of order
one while the leapfrog method is order two.

5.3. Runge-Kutta methods

Now we turn to Runge-Kutta methods8>>>><>>>>:
xi;k = xk + (�t)

mX
j=1

aijf(xj;k);

xk+1 = xk + (�t)

mX
i=1

bif(xi;k);

(5.36)
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for solving (5.2).

Theorem 5.19. (i) All the Runge-Kutta methods (5.36) preserve linear invariants;
(ii) The Runge-Kutta method (5.36) whose coe�cients satisfy the condition

biaij + bjaji � bibj = 0; i; j = 1; : : :m; (5.37)

preserves all quadratic invariants.

Proof. De�ne ��t by x
k+1 = ��t(x

k). Let F (x) = d>x, where d 2 R2d. We compute

F (��t(x
k)) = d>(xk +�t

mX
i=1

bif(xi;k)) = d>xk;

since d>x is assumed to be an invariant of (5.2) and hence d>f(xi;k) = 0.
Next, let F (x) = x>Cx, where C is a symmetric 2d�2d matrix. Assume that F is an invariant

of (5.2). We have

x>Cf(x) = 0 for all x: (5.38)

On the other hand, we have

F (��t(x
k)) = (xk +�t

mX
j=1

bjf(xj;k))
>C(xk +�t

mX
i=1

bif(xi;k))

= (xk)>Cxk + (�t)

mX
i=1

(xk)>Cbif(xi;k) + (�t)

mX
j=1

bjf(xj;k)
>Cxk

+(�t)2
mX

i;j=1

bibjf(xj;k)
>Cf(xi;k):

From (5.38), we obtain

(xi;k)
>Cf(xi;k) = 0;

and hence, by writing

xk = xk +�t

mX
j=1

aijf(xj;k)��t

mX
j=1

aijf(xj;k) = xi;k ��t

mX
j=1

aijf(xj;k);

we get

F (��t(x
k)) = (xk)>Cxk � (�t)2

mX
i;j=1

biaijf(xj;k)
>Cf(xi;k)� (�t)2

mX
i;j=1

bjajif(xj;k)
>Cf(xi;k)

+(�t)2
mX

i;j=1

bibjf(xj;k)
>Cf(xi;k)

= (xk)>Cxk � (�t)2
� mX
i;j=1

(biaij + bjaji � bibj)f(xj;k)
>Cf(xi;k)

�
:

Therefore, the Runge-Kutta method (5.36) preserves the quadratic invariant F provided that (5.37)
holds. �

Lemma 1.19 shows that H is an invariant of (5.2). If H is quadratic, then Theorem 5.19 says
that the energy is preserved by the Runge-Kutta method (5.36) provided that condition (5.37)
holds.

The following characterization of symplectic Runge-Kutta methods for solving (5.2) holds.

Theorem 5.20. The Runge-Kutta method (5.36) for solving (5.2) whose coe�cients satisfy
condition (5.37) is symplectic.
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Proof. Theorem 1.25 shows that the ow �t is a symplectic transformation (if H is smooth

enough). Let 	(t) := @�t(x0)
@x0

= �0t, where x0 is the initial condition. We have8<:
d	

dt
= f 0(x)	;

	(0) = I:
(5.39)

Apply a Runge-Kutta method satisfying (5.37) to (5.2) and (5.39) to obtain the approximations
xk+1 and 	k+1 from xk and 	k. Since 	>J	 is a quadratic invariant of the augmented system

(5.36) and (5.39), we obtain

(	k)>J	k = J for all k:

Suppose for a moment that

	k+1 =
@xk+1

@xk
: (5.40)

We obtain

(
@xk+1

@xk
)>J

@xk+1

@xk
= J;

which means that the Runge-Kutta method for solving (5.2) whose coe�cients satisfy condition
(5.37) is symplectic.

In order to complete the proof, we prove (5.40). We want to show that the result of �rst
applying ��t and then di�erentiating with respect to xk is the same as applying the same Runge-
Kutta method to (5.39).

In fact, on the one hand, by di�erentiating (5.36) with respect to xk we obtain8>>>><>>>>:
@xi;k
@xk

= I + (�t)

mX
j=1

aijf
0(xj;k)

@xj;k
@xk

;

@xk+1

@xk
= I + (�t)

mX
i=1

bif
0(xi;k)

@xi;k
@xk

:

(5.41)

Multiplying the �rst equation in (5.41) by f 0(xi;k) yields the linear system in the unknowns

f 0(xi;k)
@xi;k
@xk

f 0(xi;k)
@xi;k
@xk

= f 0(xi;k)

�
I + (�t)

mX
j=1

aijf
0(xj;k)

@xj;k
@xk

�
; (5.42)

@xk+1

@xk
= I + (�t)

mX
i=1

bif
0(xi;k)

@xi;k
@xk

: (5.43)

On the other hand, applying the same Runge-Kutta method to (5.39) yields

	i;k = f 0(xk +�t

mX
j=1

aijxj;k)

�
I + (�t)

mX
j=1

aij	j;k

�
; (5.44)

	k+1 = I + (�t)

mX
i=1

bi	i;k: (5.45)

We conclude the proof by observing that (5.44) is the same system as (5.42) but in the unknowns
	i;k; i = 1; : : : ;m. It is easily seen that this system has a unique solution for su�ciently small �t,
so it must be

	i;k = f 0(xi;k)
@xi;k
@xk

for i = 1; : : : ;m;

which, in view of (5.43) and (5.45), yields (5.40).
�
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For arbitrary Hamiltonians, the only known symplectic one-step numerical methods are the
symplectic Runge-Kutta methods of the form (4.55) that satisfy the symplectic condition (5.37).

Example 5.21. The midpoint scheme for solving (5.2)

xk+1 = xk +�tf(
xk + xk+1

2
); (5.46)

is symplectic and preserves linear and quadratic invariants. Moreover, it is time-reversible.

5.4. Long-time behaviour of numerical solutions

In (5.17) we have seen that the energy is not exactly preserved by the leapfrog method (5.7).
In that example, it is however, approximately preserved. As shown in the following theorem, the
symplecticity of a one-step numerical method yields an approximate conservation of energy over
very long times for general Hamiltonian systems.

Theorem 5.22. For an analytic Hamiltonian H and a symplectic one-step numerical method
��t of order n, if the numerical trajectory remains in a compact subset, then there exist h > 0 and
�t� > 0 such that, for �t � �t�,

H(pk; qk) = H(p0; q0) +O((�t)n); (5.47)

for exponentially long times k�t � e
h
�t . Here, (pk+1; qk+1) = ��t(p

k; qk).

Theorem (5.22) is based on simplicticity. It can be proved via backward error analysis. The
idea is to deduce the long-time behavior estimate (5.47) from properties of the solution of the
equation corresponding to an approximation H�t of the Hamiltonian H.

5.5. Problems

Problem 5.23. Consider the ow �t of (5.2). Given a one-step numerical scheme xk+1 =
��t(x

k), its adjoint

xk+1 = ���t(x
k)

is the method de�ned by
xk = ���t(x

k+1);

or equivalently,
xk+1 = ��1��t(x

k):

(i) Prove that �t � �s = �t+s and hence, �t � ��t = I, for t; s 2 R.
(ii) Prove that ��t is symmetric if and only if ��t = ���t.
(iii) Prove that (���t)

� = ��t.
(iv) Prove that for any one-step methods ��t and 	�t,

(��t �	�t)
� = 	��t � ���t:

(v) Prove that for any one-step method ��t,

xk+1 = ��t=2 � ���t=2(xk)
is a symmetric method.

Problem 5.24. Consider the Runge-Kutta method that is consistent, i.e.,
Pm

i=1 bi = 1, and
with coe�cients such that

Pm
j=1 aij = ci, for 1 � i � m.

(i) Prove that the adjoint of the Runge-Kutta method is again a Runge-Kutta method, with
coe�cients given by

a�ij = bm+1�j � am+1�i;m+1�j ; b�i = bm+1�i for 1 � i; j � m:

(ii) Deduce that if the method is symmetric, then aij = bj � am+1�i;m+1�j for all i; j =
1; : : : ;m.

(iii) Prove that, if the Runge-Kutta method is explicit, then it can not be symmetric.
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Problem 5.25. Consider the average vector �eld method

xk+1 = xk +�t

Z 1

0

f(�xk+1 + (1� �)xk) d�; (5.48)

where the vector �eld f is Lipschitz continuous.

(i) Prove that (5.48) is well-de�ned for a stepsize �t small enough.
(ii) Prove that (5.48) preserves exactly the energy of any Hamiltonian system.
(iii) Suppose that the Hamiltonian function is a polynomial. Prove that there exists a quadra-

ture formula (bi; ci)i=1;:::;m, with nodes ci and weights bi, such thatZ 1

0

f(�xk+1 + (1� �)xk) d� =

mX
i=1

bif(x
k + ci(x

k+1 � xk));

where f(x) = J�1rH(x).
(iv) Construct a Runge-Kutta method that exactly preserves a given polynomial Hamiltonian

H.





CHAPTER 6

Finite di�erence methods

6.1. Introduction

Finite di�erence methods are basic numerical solution methods for partial di�erential equa-
tions. They are obtained by replacing the derivatives in the equation by the appropriate numerical
di�erentiation formulas. However, there is no guarantee that the resulting numerical scheme will
accurately approximate the true solution. Further analysis is required. In this chapter, we establish
some of the most basic �nite di�erence schemes for the heat and the wave equations.

6.2. Numerical algorithms for the heat equation

6.2.1. Finite di�erence approximations. Consider the heat equation8>>><>>>:
@u

@t
� 

@2u

@x2
= 0; x 2 [0; 1]; t � 0;

u(0; t) = u(1; t) = 0; t � 0;

u(x; 0) = u0(x); x 2 [0; 1];

(6.1)

where  > 0 is the thermal conductivity.
In order to design a numerical approximation to the solution u of (6.1), we begin by introducing

a rectangular mesh consisting of points (tk; xj) with

0 = t0 < t1 < t2 < : : : and 0 = x0 < x1 < : : : < xN+1 = 1:

For simplicity, we maintain a uniform mesh spacing in both directions, with

�t = tk+1 � tk; �x = xj+1 � xj =
1

N + 1
;

representing, respectively, the time step size and the spatial mesh size. We shall use the notation

ukj � u(xj ; tk) where xj = j�x; tk = k�t;

to denote the numerical approximation of u at the mesh point (xj ; tk).
The Dirichlet boundary conditions u(0; t) = u(1; t) = 0; t � 0, yield

uk0 = ukN+1 = 0 for all k > 0: (6.2)

As a �rst attempt at designing a numerical method, we shall employ the simplest �nite di�er-
ence approximations to the derivatives. The time derivative can be approximated by

@u

@t
(xj ; tk) � u(xj ; tk+1)� u(xj ; tk)

�t
+O(�t) � uk+1j � ukj

�t
+O(�t): (6.3)

Similarly, the second order space derivative is approximated by centered di�erences

@2u

@x2
(xj ; tk) � u(xj�1; tk)� 2u(xj ; tk) + u(xj+1; tk)

(�x)2
+O((�x)2)

� ukj�1 � 2ukj + ukj+1
(�x)2

+O((�x)2):

(6.4)

81
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Replacing the derivatives in the heat equation (6.1) by their �nite di�erence approximations (6.3)
and (6.4), we end up with the explicit scheme

uk+1j � ukj
�t

+ 
�ukj�1 + 2ukj � ukj+1

(�x)2
= 0 (6.5)

for k � 0 and j 2 f1; : : : ; Ng.
Let

� :=
�t

(�x)2
; (6.6)

and let

u(k) := (uk1 ; u
k
2 ; : : : ; u

k
N )

> � (u(x1; tk); u(x2; tk); : : : ; u(xN ; tk))
>; (6.7)

be the vector whose entries are the numerical approximations to the solution values at time tk at
the interior nodes.

The scheme (6.5) can be written in the matrix form

u(k+1) = Au(k); (6.8)

where

A :=

0BBBBBBB@

1� 2� �
� 1� 2� �

� 1� 2� �
. . .

. . .
. . .

� 1� 2� �
� 1� 2�

1CCCCCCCA
: (6.9)

The matrix A is symmetric and tridiagonal: A = diag(�; 1� 2�; �) = IN + �diag(1;�2; 1). Here,
IN is the N �N identity matrix.

Lemma 6.1. Let M := diag(b; a; b) be a N �N tridiagonal symmetric matrix. The eigenvalues
of M are

�n = a+ 2b cos �n; n = 1; : : : ; N; (6.10)

and the corresponding eigenvectors are

vn =
p
2
�
sin �n; sin(2�n); : : : ; sin(N�n)

�>
; (6.11)

where

�n =
n�

N + 1
:

Moreover, fvngNn=1 form an orthonormal basis of RN with respect to the (scaled) inner product
1
N

PN
l=1 uiwi for u = (u1; : : : ; uN )

> and w = (w1; : : : ; wN )
> in RN .

Applying Lemma 6.1 to A de�ned by (6.9) shows that the eigenvectors vn of A are independent
of �.

Remark 6.2. By using the following approximation of the time derivative instead of (6.3):

@u

@t
(xj ; tk) � u(xj ; tk)� u(xj ; tk�1)

�t
+O(�t) � ukj � uk�1j

�t
+O(�t) (6.12)

for k � 1, we obtain the implicit scheme

uk+1j � ukj
�t

+ 
�uk+1j�1 + 2uk+1j � uk+1j+1

(�x)2
= 0 (6.13)

for k � 0 and j 2 f1; : : : ; Ng.
With the same notation as in (6.7), the implicit scheme (6.13) can be written in the matrix

form

Bu(k+1) = u(k); (6.14)



6.2. NUMERICAL ALGORITHMS FOR THE HEAT EQUATION 83

where

B :=

0BBBBBBB@

1 + 2� ��
�� 1 + 2� ��

�� 1 + 2� ��
. . .

. . .
. . .

�� 1 + 2� ��
�� 1 + 2�

1CCCCCCCA
= IN � �diag(1;�2; 1): (6.15)

The matrix B is symmetric and tridiagonal. Moreover, since it is diagonal dominant, it is positive
de�nite and hence, invertible.

Remark 6.3. A convex combination of the explicit and implicit schemes (6.5) and (6.13)
yields the �-scheme, for 0 � � � 1,

uk+1j � ukj
�t

+ �
�uk+1j�1 + 2uk+1j � uk+1j+1

(�x)2
+ (1� �)

�ukj�1 + 2ukj � ukj+1
(�x)2

= 0 (6.16)

for k � 0 and j 2 f1; : : : ; Ng. If � 6= 0, then the scheme is implicit. For � = 1=2, we obtain the
Crank-Nicolson scheme.

Remark 6.4. If we consider the heat equation with the periodic boundary conditions

u(0; t) = u(1; t) and
@u

@x
(0; t) =

@u

@x
(1; t) for t � 0; (6.17)

then (6.2) should be replaced with

uk0 = ukN+1 for all k > 0: (6.18)

If the Neumann boundary conditions,

@u

@x
(0; t) =

@u

@x
(1; t) = 0 for t � 0; (6.19)

are imposed then one may approximate those conditions by

uk1 � uk0
�x

= 0 and
ukN+1 � ukN

�x
= 0; (6.20)

and eliminate uk0 and ukN+1 to calculate only (ukj )1�j�N . Note that (6.20) is a �rst-order approxi-
mation. The second-order approximations

uk1 � uk�1
2�x

= 0 and
ukN+2 � ukN

2�x
= 0; (6.21)

can be used through the introduction of the two �ctitious points x�1 and xN+2.

Remark 6.5. Both the explicit and implicit schemes (6.3) and (6.12) are one-step methods.
Higher step methods can be designed by employing appropriate �nite di�erence approximations to
the derivatives. Examples of two-step �nite di�erence methods are

(i) The Richardson scheme:

uk+1j � uk�1j

2�t
+ 

�ukj�1 + 2ukj � ukj+1
(�x)2

= 0; (6.22)

(ii) The DuFort-Frankel scheme:

uk+1j � uk�1j

2�t
+ 

�ukj�1 + uk+1j + uk�1j � ukj+1
(�x)2

= 0; (6.23)

(iii) The Gear scheme:

3uk+1j � 4ukj + uk�1j

2�t
+ 

�uk+1j�1 + 2uk+1j � uk+1j+1

(�x)2
= 0: (6.24)
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6.2.2. Consistency, stability, and convergence. A general �nite di�erence method is
de�ned by

F�t;�x(fuk+mj+n gm��m�m+;n��n�n+) = 0; (6.25)

where the integers m�; n� de�ne the width of the stencil of the scheme. Here, F�t;�x is such that
for any u not satisfying the heat equation, F�t;�x(fu(xj+n; tk+m)gm��m�m+;n��n�n+) does not
converge to 0 as �x;�t! 0.

Definition 6.6 (Consistency and order). The �nite di�erence scheme (6.25) is consistent
with the equation F (u) = 0 if, for any smooth solution u(x; t), the truncation error de�ned by

F�t;�x(fu(xj+n; tk+m)gm��m�m+;n��n�n+) (6.26)

goes to zero as �t and �x go to zero independently. Moreover, the scheme is said to be of order
p in time and order q in space if the truncation error is of the order of O((�t)p + (�x)q) as �t
and �x go to zero.

Theorem 6.7. The explicit scheme (6.5) is consistent with the heat equation (6.1), of order
one in time and two in space. Moreover, if

�t

(�x)2
=

1

6
; (6.27)

then it is of order two in time and four in space.

Proof. Let v(x; t) 2 C6. By the Taylor expansion of v evaluated at (x; t),

v(x; t+�t)� v(x; t)

�t
+ 

�v(x��x; t) + 2v(x; t)� v(x+�x; t)

(�x)2
= (

@v

@t
� 

@2v

@x2
)(x; t)

+
�t

2

@2v

@t2
(x; t)� (�x)2

12

@4v

@x4
(x; t) +O((�t)2 + (�x)4):

(6.28)

If v is a solution to (6.1), then it follows from (6.28) that the truncation error goes to zero as
�t;�x ! 0 and hence, the explicit scheme is consistent. Moreover, it is of order 1 in time and 2
in space. If we suppose that (6.27) holds, then the terms in �t and (�x)2 cancel out since

@2v

@t2
= 

@3v

@t@x2
= 2

@4v

@x4
:

Thus, the explicit scheme is of order 2 in time and 4 in space. �

Analogously to Theorem 6.7, the following results can be proved.

Theorem 6.8. (i) The truncation error for the �-scheme (6.16) is of the order of O(�t+
(�x)2) for any 0 � � 6= 1

2 � 1 and is of order of O((�t)2 + (�x)2) for � = 1
2 , i.e., for

the Crank-Nicolson scheme.
(ii) The truncation error for the Richardson scheme (6.22) is of order of O((�t)2 + (�x)2).
(iii) The truncation error for the DuFort-Frankel scheme (6.23) is of the order of O(�t�x +

(�x)2) and hence, (6.23) is not consistent.
(iv) The truncation error for the Gear scheme (6.24) is of order of O((�t)2 + (�x)2).

Definition 6.9 (Stability). A �nite di�erence scheme is stable with respect to the norm k kr
de�ned by

ku(k)kr :=
� NX
j=1

�xjukj jr
� 1

r

; 1 � r � +1; (6.29)

where u(k) is given by (6.7), if there exists a positive constant C independent of �t and �x such
that

ku(k)kr � Cku(0)kr for all k � 0: (6.30)
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Note that
ku(k)k1 := sup

1�j�N
jukj j:

Definition 6.10 (Linear scheme). A �nite di�erence scheme de�ned by (6.25) is said to be

linear if (6.25) is linear with respect to its arguments uk+mj+n .

If a �nite di�erence scheme is linear, then it can be written in the form

u(k+1) = Au(k); (6.31)

where A is the iteration matrix. From (6.31), it follows that

u(k+1) = Ak+1u(0);

and therefore, the stability of (6.31) is equivalent to

kAku(0)kr � Cku(0)kr; for all k � 0 and u(0) 2 RN : (6.32)

Introduce the matrix norm

kMkr = sup
u2RN ;u 6=0

kMukr
kukr :

The stability of (6.31) with respect to k kr is equivalent to
kAkkr � C; for all k � 0:

Remark 6.11. Note that since we require (6.30) to hold uniformly in �x as �x together with
the fact that N = O(1=�x), the norms k kr de�ned by (6.29) are not equivalent.

Remark 6.12. The k k2 is associated with the weighted scalar product

(u; v)2 = (�x)

NX
i=1

uivi; (6.33)

where ui and vi are the components of the vectors u and v.

Remark 6.13. Consider for instance the explicit scheme (6.5). Then (6.31) holds with A

being de�ned by (6.9). Let eukj = u(xj ; tk) and eu(k) = �euk1 ; : : : ; eukN�>. Then the truncation error

introduced in (6.26) is given by

�(k) :=
eu(k+1) � eu(k)

�t
+

(IN �A)

�t
eu(k) = eu(k+1) �Aeu(k)

�t
:

Therefore, eu(k+1) = Aeu(k) + (�t)�(k):

6.2.2.1. Stability in the L1 norm. Recall that the implicit scheme given by (6.13) is well
de�ned since u(k+1) can be obtained from u(k) by inverting the de�nite positive matrix B given by
(6.15).

The following results hold.

Theorem 6.14. (i) The explicit scheme (6.5) is stable with respect to the L1 norm if
and only if the following Courant-Friedrichs-Lewy (CFL) condition holds:

2�t � (�x)2: (6.34)

(ii) The implicit scheme (6.13) is unconditionally stable with respect to the L1 norm.

Before proving Theorem 6.14, we �rst introduce the discrete maximum principle.

Definition 6.15. We say that a �nite di�erence scheme satis�es the discrete maximum prin-
ciple if for all k � 0; 1 � j � N ,

min
�
0; min
0�j�N+1

u0j
� � ukj � max

�
0; max
0�j�N+1

u0j
�

(6.35)

for any initial data u(0).
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Condition (6.35) prevents unbounded oscillations of the numerical solution. It is clearly a
su�cient condition for the stability with respect to the L1 norm.

Now, under the CFL condition (6.34), the explicit scheme satis�es the discrete maximum
principle. This can be easily veri�ed by induction. In fact, we can rewrite the explicit scheme as
follows:

uk+1j =
�t

(�x)2
ukj�1 + (1� 2

�t

(�x)2
)ukj +

�t

(�x)2
ukj+1; (6.36)

which shows that if the CFL condition holds, then uk+1j is a convex combination of ukj�1; u
k
j ; u

k
j+1

since all the coe�cients in (6.36) are positive and their sum is one. So if m � u0j � M for all j,

then m � ukj � M for all j and all k � 0. Moreover, assume that the CFL condition does not

hold. Then by taking u0j = (�1)j , we �nd that

ukj = (�1)j(1� 4
�t

(�x)2
)k:

Hence, from 1� 4
�t

(�x)2
< �1, it follows that jukj j ! +1 as k ! +1.

To prove item (ii) in Theorem 6.14, we rewrite the implicit scheme as follows:

(1 + 2�)uk+1j = ukj + �uk+1j�1 + �uk+1j+1 ;

which shows that
(1 + 2�)juk+1j j � ku(k)k1 + 2�ku(k+1)k1;

and hence,

ku(k+1)k1 � ku(k)k1:
The following stability results with respect to the L1 norm hold.

Theorem 6.16. (i) The Crank-Nicolson scheme is stable with respect to the L1 norm

if
�t

(�x)2
� 1.

(ii) The DuFort-Frankel scheme (6.23) is stable with respect to the L1 norm if
2�t

(�x)2
� 1.

In order to prove the stability of the Crank-Nicolson scheme with respect to the L1 norm

under the CFL condition
�t

(�x)2
� 1, we rewrite it as follows:�

IN � �

2
diag(1;�2; 1)�u(k+1) = �IN +

�

2
diag(1;�2; 1)�u(k):

By the unconditional stability of the implicit scheme, we have

ku(k+1)k1 � k�IN � �

2
diag(1;�2; 1)�u(k+1)k1:

On the other hand, under the CFL condition
�t

(�x)2
� 1, we have from item (i) in Theorem 6.14,

k�IN +
�

2
diag(1;�2; 1)�u(k)k1 � Cku(k)k1:

Combining the above two estimates yields the desired result.
6.2.2.2. Stability in the L2 norm. In order to investigate the stability of a �nite di�erence

scheme for solving the heat equation with respect to the L2 norm, we consider (6.1) with the
periodic boundary conditions

u(x+ 1; t) = u(x; t) for all x 2 [0; 1]; t � 0:

For any u(k) = (ukj )j=0;:::;N , we associate a piecewise constant function u(k)(x), periodic with
period 1, de�ned on [0; 1] by

u(k)(x) := ukj for xj� 1
2
< x < xj+ 1

2
;
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where

xj+ 1
2
= (j +

1

2
)�x; j = 0; : : : ; N; x� 1

2
= 0; xN+1+ 1

2
= 1:

The Fourier series of u(k) reads
u(k)(x) =

X
n2Z

û(k)n e2�inx;

where

û(k)n :=

Z 1

0

u(k)(x)e�2�inx dx:

Moreover, by Plancherel's formula, we haveZ 1

0

ju(k)(x)j2 dx =
X
n2Z

jû(k)n j2: (6.37)

Furthermore, an important property of Fourier series of periodic functions is that

v(k)(x) = u(k)(x+�x)) v̂(k)n = û(k)n e2�in�x:

With this notation, one can rewrite the explicit scheme (6.5) in the form

u(k+1)(x)� u(k)(x)

�t
+ 

�u(k)(x��x) + 2u(k)(x)� u(k)(x+�x)

(�x)2
= 0: (6.38)

Applying the Fourier transform yields

û(k+1)n =

�
1� �t

(�x)2
(�e�2�in�x + 2� e2�in�x)

�
û(k)n ;

or equivalently,

û(k+1)n = �(n)û(k)n = �(n)k+1û(0)n with �(n) := 1� 4�t

(�x)2
(sin(�n�x))2: (6.39)

Therefore, û
(k)
n is bounded as k ! +1 if and only if the ampli�cation factor �(n) satis�es

j�(n)j � 1 for all n 2 Z: (6.40)

Assume that (6.40) holds, i.e., 2�t=(�x)2 � 1. Then from (6.37), it follows that

ku(k)k22 =
Z 1

0

ju(k)(x)j2 dx =
X
n2Z

jû(k)n j2 �
X
n2Z

jû(0)n j2 = ku(0)k22;

and therefore the scheme is stable with respect to the L2 norm.
Similarly, the implicit scheme (6.13) can be rewritten in the form

u(k+1)(x)� u(k)(x)

�t
+ 

�u(k+1)(x��x) + 2u(k+1)(x)� u(k+1)(x+�x)

(�x)2
= 0: (6.41)

Again, by applying the Fourier transform, it follows that

û(k+1)n = �(n)û(k)n = �(n)k+1û(0)n ;

where

�(n) :=

�
1 +

4�t

(�x)2
(sin(�n�x))2

��1
:

Since the ampli�cation factor �(n) satis�es 0 � �(n) � 1; for all �t > 0 and �x > 0, we obtain

ku(k)k22 � ku(0)k22
for all k � 0.

Theorem 6.17. (i) The explicit scheme (6.5) is stable with respect to the L2 norm if
and only if the CFL condition (6.34) holds.

(ii) The implicit scheme (6.13) is unconditionally stable with respect to the L2 norm.
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Note that the stability results for (6.5) and (6.13) with respect to the L2 norm are the same
as those with respect to L1 norm. This is however not in general true for other �nite di�erence
schemes.

The following stability results for the �-scheme with respect to the L2 norm hold.

Theorem 6.18. The �-scheme (6.16) is unconditionally stable with respect to the L2 norm if
1
2 � � � 1 and provided the CFL condition 2(1� 2�)�t � (�x)2 if 0 � � < 1

2 :

The method described here is called the von Neumann stability analysis.
Based on Lemma 6.1, there is a more direct (but equivalent) way for verifying the stability with

respect to the L2 norm for the explicit, implicit, and Crank-Nicolson schemes. Such a technique
extends to the heat equation with either Dirichlet or Neumann boundary conditions. For more
general schemes, one uses the von Neumann analysis of stability.

To �x ideas, consider �rst the explicit scheme (6.5) for solving the heat equation (6.1) with
the Dirichlet boundary conditions.

We expand w 2 RN in the orthonormal basis of eigenvectors fvngNn=1 of A (with respect to
the weighted scalar product (6.33)) given by (6.11):

w =

NX
n=1

ŵnvn with ŵn = (w; vn)2 = (�x)

NX
i=1

wi(vn)i;

where w = (w1; : : : ; wN )
> and vn = ((vn)1; : : : ; (vn)N )

>.
The discrete Parseval identity is

kwk22 = (�x)

NX
i=1

(wi)
2 =

nX
n=1

jŵnj2: (6.42)

Since u(k+1) = Au(k) with A = diag(�; 1 � 2�; �), the stability in the L2 norm is related to the
spectral radius �(A). That is

ku(k+1)k2 � kAk2ku(k)k2;
and since A is symmetric with respect to (: :)2,

kAk2 = �(A) = max
1�l�N

j�l(A)j = max
1�l�N

j1� 2�+ 2� cos �lj:

The uniform stability with respect to N implies that � � 1
2 .

If we consider the implicit scheme (6.13), then since

�(B�1) = max
1�l�N

1

j1 + 2�� 2� cos �lj � 1;

for any � > 0, the implicit is unconditionally stable with respect to the L2-norm.
Finally, we can easily check that the Crank-Nicolson scheme can be rewritten as

u(k+1) = eB�1 eAu(k);
where eB =

1

2
diag(��; 2 + 2�;��) and eA =

1

2
diag(�; 2� 2�; �):

Since eA and eB have the same eigenvectors (by Lemma 6.1), we have

�( eB�1 eA) = max
1�l�N

�l( eA)
�l( eB) = max

1�l�N

j1� �+ � cos �lj
j1 + �� � cos �lj :

Consequently, �( eB�1 eA) � 1 for all � > 0 and therefore, the Crank-Nicolson scheme is uncondi-
tionally stable with respect to the L2 norm.
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6.2.3. Convergence.

Theorem 6.19 (Lax theorem). Let u be a smooth solution of the heat equation (6.1). Suppose
that the �nite di�erence scheme for computing the numerical solution ukj is linear, consistent, and

stable with respect to the norm k kr. Let ekj := ukj �u(xj ; tk) and e(k) = (ek1 ; e
k
2 ; : : : ; e

k
N )

>. Assume

that u0j = u0(xj). Then,

lim
�t;�x!0

�
sup
tk�T

ke(k)kr
�
= 0 for all T > 0:

Moreover, if the scheme is of order p in time and q in space, then there exists a constant CT > 0
such that

sup
tk�T

ke(k)kr � CT
�
(�t)p + (�x)q

�
:

Proof. Let u(k+1) = Au(k), where A is the iteration matrix, and let eukj = u(xj ; tk). Since the

scheme is consistent, there exists �(k) such thateu(k+1) = Aeu(k) + (�t)�(k) and lim
�t;�x!0

k�(k)kr = 0; (6.43)

uniformly in k. If the scheme is of order p in time and q in space, then

k�(k)kr � C((�t)p + (�x)q
�
;

see Remark 6.13.
By subtracting (6.43) from (6.31), we obtain

e(k+1) = Ae(k) ��t�(k); (6.44)

and therefore, by induction,

e(k) = Ake(0) ��t

kX
l=1

Ak�l�(l�1): (6.45)

The stability of the scheme yields
kAkkr � C 0

for some positive constant C 0. Therefore, since e(0) = 0, (6.45) yields

ke(k)kr � (�t)kCC 0((�t)p + (�x)q
� � TCC 0((�t)p + (�x)q

�
: (6.46)

The proof is then complete. �

6.2.4. Multi-step schemes. Assume that u(k+1) depends linearly on u(k) and u(k�1), as for
example in (6.22), (6.23), and (6.24). Then, we set

U (k) =

�
u(k)

u(k�1)

�
:

There exist then two N �N matrices A1 and A2 such that

U (k+1) = AU (k) =

 
A1 A2

IN 0

!
U (k);

where A is a 2N � 2N matrix and IN is the N � N identity matrix. As before, we obtain that
U (k) = AkU (1) and the stability of the scheme is equivalent to

kAkkr � C for all k � 0:

For r = 2 and A normal, the L2 stability condition reduces to the von Neumann stability

condition

�(A) � 1 (6.47)

with �(A) being the spectral radius. In general, we have kAk2 � �(A) and therefore, the von
Neumann stability condition is only a necessary condition.
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Lemma 6.20. The Richardson scheme (6.22) is unstable with respect to the L2 norm.

Proof. With the same notation as in Subsection 6.2.2.2, the Richardson scheme (6.22) reads

u(k+1)(x)� u(k�1)(x)

2�t
+ 

�u(k)(x��x) + 2u(k)(x)� u(k)(x)

(�x)2
= 0: (6.48)

Then, applying the Fourier transform yields

û(k+1)n +
8�t

(�x)2
(sin(�n�x))2û(k)n � û(k�1)n = 0; (6.49)

or in other words,

Û (k+1)
n =

 
û
(k+1)
n

û
(k)
n

!
=

0@� 8�t

(�x)2
(sin(�n�x))2 1

1 0

1A Û (k)
n = A(n)Û (k)

n : (6.50)

Consequently,

Û (k+1)
n = A(n)kÛ (1)

n :

In (6.50), A(n) is a 2 � 2 (ampli�cation) matrix, while for a one-step method, it is a scalar; see
(6.39).

For n 2 Z, the vector Û (k)
n is bounded i� the ampli�cation matrix A(n) satis�es

kA(n)kk2 � C for all k � 1 (6.51)

for some constant C independent of k and n. Since A(n) is real symmetric, kA(n)k2 = �(A(n))
and kA(n)kk2 = kA(n)kk2 . Here, �(M) is the spectral radius of M . Therefore, (6.51) is satis�ed i�
�(A(n)) � 1. The eigenvalues of A(n) are roots of the second order polynomial

�2 +
8�t

(�x)2
(sin(�n�x))2�� 1 = 0;

which admits two distinct real roots with product equals to �1. Therefore, A(n) has an eigenvalue
with modulus strictly larger than 1. Consequently, the Richardson scheme is unstable with respect
to the L2 norm. �

For the DuFort-Frankel and Gear schemes, the following convergence results hold.

Theorem 6.21. We have

(i) The DuFort-Frankel (6.23) is stable and hence convergent with respect to the L2 norm,
provided that �t=(�x)2 stays bounded as �t and �x go to 0.

(ii) The Gear scheme (6.24) is unconditionally stable and hence convergent with respect to
the L2 norm.

6.3. Numerical algorithms for the wave equation

We �rst consider the one-way wave equation given by8<:
@u

@t
= c

@u

@x
;

u(x; 0) = u0(x);
(6.52)

where c > 0 is the wave speed. The solution of (6.52) is given by u(x; t) = u0(x+ ct): Note that if
a smooth function u satis�es the �rst equation in (6.52), then

@2u

@t2
= c2

@2u

@x2
: (6.53)



6.3. NUMERICAL ALGORITHMS FOR THE WAVE EQUATION 91

There are three �nite di�erence approximations of the solution:

uk+1j � ukj
�t

=

8>>>>>>><>>>>>>>:

c
ukj+1 � ukj

�x
upwind scheme;

c
ukj � ukj�1

�x
downwind scheme;

c
ukj+1 � ukj�1

2�x
centered scheme:

Using the Taylor expansions of a smooth solution u to (6.52),

u(x; t+�t)� u(x; t)

�t
=
@u

@t
(x; t) +

�t

2

@2u

@t2
(x; t) +O((�t)2);

u(x+�x; t)� u(x; t)

�x
=
@u

@x
(x; t) +

�x

2

@2u

@x2
(x; t) +O((�x)2);

and
u(x+�x; t)� u(x��x; t)

�x
=
@u

@x
(x; t) +O((�x)2);

we obtain that the truncation error in the upwind scheme is O(�t + �x). Analogously, the
truncation error in the downwind scheme is O(�t+�x), while the one in the centered scheme is
O(�t+ (�x)2). Note that if

c =
�x

�t
;

then the truncation error in the upwind scheme is O((�t)2 + (�x)2). This directly follows from
(6.53).

Now, regarding the stability of these schemes, one can easily see that the upwind scheme is
stable with respect to the L2 norm provided that the following CFL condition holds:

c�t

�x
� 1;

while both the downwind and the centered schemes are unstable. In fact, with the notation of
Subsection 6.2.2.2, we have for the centered scheme

û(k+1)n =
�
1 + i

c�t

�x
sin(2�n�x)

�
û(k)n :

One can write the following implicit version of the centered scheme which is consistent, of
order one in time and two in space and is unconditionally stable with respect to the L2 norm:

uk+1j � ukj
�t

� c
uk+1j+1 � uk+1j�1

2�x
= 0: (6.54)

If we want to stay within the class of explicit centered schemes, we can use the Lax-Friedrichs
scheme

2uk+1j � ukj+1 � ukj�1
2�t

� c
ukj+1 � ukj�1

2�x
= 0; (6.55)

which is consistent if �t=�x is constant as �t;�x! 0, stable in L2 under the CFL condition

c�t � �x; (6.56)

and of order 1 in time and space. It is worth emphasizing that this scheme is not consistent in the
sense of De�nition 6.6, but is only conditionally consistent. In fact, the truncation error is given
by

� (�x)2

2�t

�
1� (c�t)2

(�x)2
�@2u
@x2

(xj ; tk) +O
�
(�x)2 +

(�x)4

�t

�
: (6.57)

To check its L2 stability properties under the CFL condition (6.56), we use Fourier analysis to
obtain

û(k+1)n =
�
cos(2�n�x) + i

c�t

�x
sin(2�n�x)

�
û(k)n :
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A centered, explicit scheme of higher order than the Lax-Friedrichs scheme is the Lax-

Wendro� scheme

uk+1j � ukj
�t

� c
ukj+1 � ukj�1

2�x
� c2�t

2

ukj�1 � 2ukj + ukj+1
(�x)2

= 0; (6.58)

which is consistent, stable in L2 under the CFL condition (6.56), and is of order 2 in time and
space.

A general way to �x the stability issue for the centered scheme is to replace the centered scheme
with

uk+1j � ukj
�t

= c
ukj+1 � ukj�1

2�x
+ �

ukj+1 � 2ukj + ukj�1
(�x)2

; (6.59)

where � > 0, or equivalently, with

uk+1j � (�2u
k
j+1 + (1� �)ukj +

�
2u

k
j�1)

�t
= c

ukj+1 � ukj�1
2�x

:

Here, � is de�ned by

� =
2�t

(�x)2
�:

For � = (�x)2=(2�t) (i.e., � = 1), (6.59) reduces to the Lax-Friedrichs scheme (6.55) while for
� = c2�t=2, (6.59) reduces to the Lax-Wendro� scheme (6.58). Moreover, the scheme (6.59) solves
(approximately, up to order two in time and space) the equation

@u

@t
= c

@u

@x
+ (� � c2�t

2
)
@2u

@x2
:

Here, we have used the fact that

@2u

@t2
= c2

@2u

@x2
:

Next, consider the wave equation (with periodic boundary conditions)8>>>>>>><>>>>>>>:

@2u

@t2
= c2

@2u

@x2
; 0 < x < 1; t � 0;

u(x+ 1; t) = u(x; t); 0 < x < 1; t � 0;

u(x; 0) = u0(x); 0 < x < 1;

@u

@t
(x; 0) = u1(x); 0 < x < 1:

(6.60)

To insure that the solution stays bounded in t, we suppose thatZ 1

0

u1(x) dx = 0: (6.61)

In fact, if u0 = 0 and u1 is equal to some constant C, then u(t; x) = Ct. To eliminate this e�ect
we impose the normalization condition (6.61).

Similar to the numerical schemes for the heat equation, we can use di�erentiation formulas to
arrive at a numerical scheme for the wave equation (6.60). Since both time and space derivatives
are of second order, we use centered di�erences to approximate them. Analogously to (6.4), we
have

@2u

@t2
(xj ; tk) � u(xj ; tk�1)� 2u(xj ; tk) + u(xj ; tk+1)

(�t)2
+O((�t)2)

� uk�1j � 2ukj + uk+1j

(�t)2
+O((�t)2):

(6.62)
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Then up to an error of order O((�x)2 + (�t)2) the solution to the wave equation (6.60) can be
approximated by the following explicit �nite di�erence scheme:

uk+1j � 2ukj + uk�1j

(�t)2
= c2

ukj+1 � 2ukj + ukj�1
(�x)2

: (6.63)

One can prove that (6.63) is stable in the L2 norm provided that c(�t)=(�x) � 1.
Another standard �nite di�erence scheme for solving (6.60) is the �-centered scheme8>>><>>>:

uk+1j � 2ukj + uk�1j

(�t)2
+ �c2

�uk+1j�1 + 2uk+1j � uk+1j+1

(�x)2

+(1� 2�)c2
�ukj�1 + 2ukj � ukj+1

(�x)2
+ �c2

�uk�1j�1 + 2uk�1j � uk�1j+1

(�x)2
= 0;

(6.64)

where 0 � � � 1=2.
If � = 0, then the scheme is nothing else than the explicit scheme (6.63), while it is implicit if

� 6= 0.
The initial conditions can be expressed by

u0j = u0(xj) and
u1j � u0j
�t

=
1

�x

Z xj+1=2

xj�1=2

u1(x) dx;

which shows that (6.61) is satis�ed by the numerical solution.

Theorem 6.22. If 1=4 � � � 1=2, then the �-centered scheme (6.64) is unconditionally stable
with respect to the L2 norm. If 0 � � < 1=4, (6.64) is stable provided that the CFL condition

c�t

�x
<

r
1

1� 4�
(6.65)

holds and is unstable if c�t=�x > 1=
p
1� 4�.

Proof. By using Fourier analysis, we obtain

û(k+1)n � 2û(k)n + �(n)
�
�û(k+1)n + (1� 2�)û(k)n + �û(k�1)n

�
+ û(k�1)n = 0;

where

�(n) = 4c2(
�t

�x
)2 sin2(�n�x):

Therefore,

Û (k+1)
n =

 
û
(k+1)
n

û
(k)
n

!
=

0@2� (1� 2�)�(n)

1 + ��(n)
�1

1 0

1A Û (k)
n = A(n)Û (k)

n :

The eigenvalues of A(n) are the roots of

�2 � 2� (1� 2�)�(n)

1 + ��(n)
�+ 1 = 0: (6.66)

The discriminant of this second order equation is

� = ��(n)(4� (1� 4�)�(n))

(1 + ��(n))2
:

The study of the stability properties of (6.64) is quite delicate since the ampli�cation matrix A(n)

is not normal (i.e., it does not commute with its adjoint A
>
). Recall that for a non normal

matrix, its L2 norm does not in general coincide with its spectral radius �(A). Then, let us only
check here the necessary condition �(A(n)) � 1. If c�t=�x > 1=

p
1� 4�, choosing n such that

sin2(�n�x) � 1 yields � > 0 and thus, there are two distinct real solutions to (6.66) with product
1. Hence, �(A(n)) > 1 and the scheme is unstable. If c�t=�x < 1=

p
1� 4�, then � � 0 for all
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n and the two roots are complex with modulus 1. Therefore, �(A(n)) = 1 and the von Neumann
stability condition (6.47) is satis�ed. �

An important property of the wave equation is the conservation of energy.

Lemma 6.23. Suppose that u satis�es the the wave equation on (0; 1) � (0;1) together with
the boundary conditions

u(0; t) = u(1; t) = 0;

and the initial conditions

u(x; 0) = g(x);
@u

@t
(x; 0) = h(x):

Then, the energy

E(t) :=

Z 1

0

(
@u

@t
)2 dx+

Z 1

0

(
@u

@x
)2 dx (6.67)

is constant over time, i.e., E(t) = E(0) for all t � 0.

Proof. By multiplying the wave equation by @u=@t and integrating in x over (0; 1), we obtain
that dE(t)=dt = 0. �

In view of Lemma 6.23, the energy E(t) given by (6.67) is conserved. It is then desirable that
a discrete version of the energy is conserved at the discrete level. For the �-scheme designed to
solve the wave equation with periodic boundary conditions, we introduce the discrete energy

Ek+1 = �x
� NX
j=0

(
uk+1j � ukj

�t
)2 + a�x(u

(k+1); u(k)) + �a�x(u
(k+1) � u(k); u(k+1) � u(k))

�
with u(k) = (uk0 ; : : : ; u

k
N )

> and

a�x(u; v) = c2
NX
j=0

(
uj+1 � uj

�x
)(
vj+1 � vj

�x
)

with
u = (u0; : : : ; uN )

> and v = (v0; : : : ; vN )
> and uN+1 = u0; vN+1 = v0:

Ek+1 approximates E(tk+1) up to O(�x + �t). We can show that Ek = E0 for all k � 0 and
therefore, the �-scheme preserves the conservation of energy property. The proof is based on the
following discrete integration by parts formula:

NX
j=0

(�uj+1 + 2uj � uj�1)vj =

NX
j=0

(uj+1 � uj)(vj+1 � vj) with u�1 = uN : (6.68)

Another way to derive �nite di�erence schemes for the wave equation is to rewrite (6.60) as a
system of �rst order equations (by choosing v = @u=@t and w = @u=@x)8>>>>>>>><>>>>>>>>:

@

@t

 
v

w

!
=

 
0 c

c 0

!
@

@x

 
v

w

!
; 0 < x < 1; t � 0;

v(x+ 1; t) = v(x; t); w(x+ 1; t) = w(x; t); 0 < x < 1; t � 0;

w(x; 0) =
@u0
@x

(x); 0 < x < 1;

v(x; 0) = u1(x); 0 < x < 1:

(6.69)

Hence, we can use the algorithms developed for the one-way wave equation in order to solve (6.60).
For instance, the following scheme for solving (6.60) is of Lax-Friedrichs type:

1

2�t

 
2vk+1j � vkj+1 � vkj�1

2wk+1j � wkj+1 � wkj�1

!
� c

2�x

 
0 1

1 0

! 
vkj+1 � vkj�1

wkj+1 � wkj�1

!
= 0; (6.70)
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while

1

�t

 
vk+1j � vkj

wk+1j � wkj

!
� c

2�x

 
0 1

1 0

! 
vkj+1 � vkj�1

wkj+1 � wkj�1

!
� c2�t

2(�x)2

 
0 1

1 0

!2 
vkj�1 � 2vkj + vkj+1

wkj�1 � 2wkj + wkj+1

!
= 0

(6.71)
is of Lax-Wendro� type.

Problem 6.24. Consider the advection equation8>><>>:
@u

@t
= �v @u

@x
; 0 < x < 1; t � 0;

u(t; x+ 1) = u(t; x); 0 < x < 1; t � 0;

u(0; x) = u0(x); 0 < x < 1;

(6.72)

where v > 0.

(i) Prove that the centered explicit scheme

uk+1j � ukj
�t

+ v
ukj+1 � ukj�1

2�x
= 0

is unconditionally unstable in L2.
(ii) Prove that the Lax-Friedrichs scheme

2uk+1j � ukj+1 � ukj�1
2�t

+ v
ukj+1 � ukj�1

2�x
= 0

is consistent if �t=�x is constant as �t;�x! 0, stable in L2 under the CFL condition

v�t � �x; (6.73)

and of order 1 in time and space.
(iii) Prove that the Lax-Wendro� scheme

uk+1j � ukj
�t

+ v
ukj+1 � ukj�1

2�x
� v2�t

2

ukj�1 � 2ukj + ukj+1
(�x)2

= 0

is consistent, stable in L2 under the CFL condition (6.73), and is of order 2 in time and
space.

(iv) Prove that the leapfrog scheme

uk+1j � uk�1j

2�t
+ v

ukj+1 � ukj�1
2�x

= 0

is consistent and is stable in L2 under the CFL condition

v�t �M�x; (6.74)

with M < 1.
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