Spring Term 2022 Numerical Analysis II

Exam Summer 2022

Last Name		Note
First Name		
Degree Programme		
Legi Number		-
Date	16.08.2022	

1	2	Marks

- First fill out the cover sheet and place your Legi on the edge of the desk.
- Begin each problem on a separate sheet of paper. Please write out the problem ID in a striking font.
- Every sheet must bear your name and Legi number.
- Write with neither red nor green pens nor with a pencil.
- Please write out your ideas clearly and show your reasoning rigorously.
- You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

Good luck!

[60 pts.]

Problem 1

Consider

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = f(t, x), & t \in [0, T], \\ x(0) = x_0 \in \mathbb{R}, \end{cases}$$
(1.1)

with $f \in C^{\infty}([0,T] \times \mathbb{R})$ satisfying the Lipschitz condition

$$\left|f(t,x) - f(t,y)\right| \le C_f |x - y|, \ \forall x, y \in \mathbb{R}, \ \forall t \in [0,T],$$

for some positive constant C_f .

(**1**a)

- (i) Does (1.1) have a unique solution $x(t) \in C^{\infty}([0,T])$? You should justify your answer.
- (ii) If we also regard x(t) as a function of the initial value x_0 , what is the equation satisfied by the derivative with respect to t of $\frac{\partial x(t)}{\partial x_0}$? Is it a linear differential equation? You should justify your answer. Check that its solution in terms of $\frac{\partial f}{\partial x}(t, x(t))$ is given by $\frac{\partial x}{\partial x_0}(t) = e^{\int_0^t \frac{\partial f}{\partial x}(y, x(y)) dy}$.

(1b) Consider the numerical scheme

$$x^{k+1} = x^k + \frac{\Delta t}{2} \Big[f(t_k, x^k) + f(t_{k+1}, x^k + \theta \Delta t f(t_k, x^k)) \Big], \quad (1.2)$$

where $\Delta t > 0$ is small enough, $\frac{T}{\Delta t}$ is an integer and $t_k = k\Delta t$, for $k \in \mathbb{N}$. Here, θ is a positive fixed real parameter.

(i) The scheme (1.2) is an

explicit one-step method. \Box explicit two-step method. \Box

implicit one-step method. \Box im

implicit two-step method. \Box

(ii) Let $\phi(t, x, h)$ be defined by

$$\phi(t, x, h) = \frac{1}{2} \Big[f(t, x) + f(t + h, x + \theta h f(t, x)) \Big]$$

so that (1.2) can be rewritten in the form

$$x^{k+1} = x^k + \Delta t \phi(t_k, x^k, \Delta t).$$

Prove, from the definition of consistency, that (1.2) is consistent with (1.1).

(iii) Define the truncation error by

$$T_k(\Delta t) = \frac{x(t_{k+1}) - x(t_k)}{\Delta t} - \phi(t_k, x(t_k), \Delta t),$$

where x(t) is the solution of (1.1). Prove, using Taylor's theorem, that (1.2) is of order two as $\Delta t \rightarrow 0$ if and only if $\theta = 1$.

(iv) Prove that (1.2) is stable, i.e., there exist positive constants h_0 and C_{ϕ} , such that

$$\left|\phi(t,x,h) - \phi(t,y,h)\right| \le C_{\phi}|x-y|,$$

for all $t \in [0, T]$ and for all $x, y \in \mathbb{R}$ and $h \in [0, h_0]$.

(v) Is (1.2) for solving (1.1) convergent? What is the order in Δt of the global error $e_k = x^k - x(t_k)$ in terms of θ ? You should justify your answer.

(1c) Consider the numerical scheme

$$x^{k+1} = x^{k} + \Delta t f(t_k + \theta \Delta t, (1 - \theta) x^{k} + \theta x^{k+1}),$$
 (1.3)

where θ is a positive fixed real parameter.

(i) The scheme (1.3) is an

explicit one-step method. \Box explicit two-step method. \Box

- implicit one-step method. \Box implicit two-step method. \Box
- (ii) Let $\phi(t, x, h)$ be defined implicitly by

$$\phi(t, x, h) = f(t + \theta h, x + \theta h \phi(t, x, h))$$

so that (1.3) can be rewritten in the form

$$x^{k+1} = x^k + \Delta t \phi(t_k, x^k, \Delta t).$$

Prove that (1.3) is consistent with (1.1).

(iii) Prove that (1.3) is of order two if and only if $\theta = \frac{1}{2}$.

(iv) Prove that (1.3) is convergent provided that

$$\Delta t < \frac{1}{C_f \theta}.$$

(1d) Suppose that (1.2) with $\theta = 1$ and (1.3) with $\theta = \frac{1}{2}$ are applied to the initial value problem

$$\begin{cases} \frac{\mathrm{d}x(t)}{\mathrm{d}t} = \sin(t) + \lambda x(t), \ t \in [0, 1], \\ x(0) = 0, \end{cases}$$
(1.4)

where λ is a positive real parameter.

- (i) Implement (1.2) with θ = 1 and (1.3) with θ = ¹/₂ for solving (1.4) for different values of Δt and λ. You should use the templates provided in 1 (d) .py. For the (1.3) part, you should use the provided functions EulerStep, ImpEulerStep and ImpMidPointSolveWithEuler.
- (ii) Illustrate the convergence properties.

Problem 2

Consider the system of equations

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = f(x, y), & t \in [0, T], \\ \frac{\mathrm{d}y}{\mathrm{d}t} = g(x, y), & t \in [0, T], \end{cases}$$
(2.1)

with the initial conditions $x(0) = x_0$ and $y(0) = y_0$. Here, $f, g : \mathbb{R}^2 \to \mathbb{R}$ are C^1 functions. Throughout this problem, we assume that there exists a unique pair (x, y) solution of (2.1) for given initial conditions.

(**2a**)

(i) Use the integrability lemma (Lemma 1.27 in the lecture notes) to prove that(2.1) is locally Hamiltonian if and only if

$$\frac{\partial g}{\partial y} = -\frac{\partial f}{\partial x}.$$

(ii) Is the system given by

$$\begin{cases} \frac{\mathrm{d}u}{\mathrm{d}t} = u(v-2) \\ \frac{\mathrm{d}v}{\mathrm{d}t} = v(1-u) \end{cases}$$
(2.2)

Hamiltonian? You should justify your answer.

(iii) Use the transformation $x = \ln(u)$ and $y = \ln(v)$ in (2.2) to verify that the resulting system in x, y is Hamiltonian with the Hamiltonian function H given by

$$H(x,y) = x - e^x + 2y - e^y.$$

(iv) Deduce from (iii) that

$$F(u, v) := \ln(u) - u + 2\ln(v) - v$$

is an invariant of (2.2).

(2b) Consider the numerical scheme, for solving (2.1),

$$\begin{cases} x^{k+\frac{1}{2}} = x^{k} + \frac{\Delta t}{2} f(x^{k}, y^{k}), \\ x^{k+1} = x^{k+\frac{1}{2}} + \frac{\Delta t}{2} f(x^{k+\frac{1}{2}}, y^{k}), \\ y^{k+1} = y^{k} + \Delta t g(x^{k}, y^{k}), \end{cases}$$
(2.3)

where Δt is small enough, $\frac{T}{\Delta t}$ is an integer and $t_k = k \Delta t$ for $k \in \mathbb{N}$.

(i) Verify that (2.3) reduces to

$$\begin{cases} x^{k+1} = x^k + \frac{\Delta t}{2} f(x^k, y^k) + \frac{\Delta t}{2} f\left(x^k + \frac{\Delta t}{2} f(x^k, y^k), y^k\right), \\ y^{k+1} = y^k + \Delta t g(x^k, y^k). \end{cases}$$

(ii) Compute the order of the truncation errors $T_k^{(x)}$ and $T_k^{(y)}$ as $\Delta t \to 0$, where $T_k^{(x)}$ and $T_k^{(y)}$ are given by:

$$T_k^{(x)}(\Delta t) = \frac{x(t_{k+1}) - x(t_k)}{\Delta t} - \frac{1}{2} \Big[f\Big(x(t_k), y(t_k)\Big) + f\Big(x(t_k) + \frac{\Delta t}{2} f(x(t_k), y(t_k)), y(t_k)\Big) \Big]$$

and

$$T_k^{(y)}(\Delta t) = \frac{y(t_{k+1}) - y(t_k)}{\Delta t} - g\Big(x(t_k), y(t_k)\Big).$$

Here, the pair (x(t), y(t)) is the solution to (2.1).

(iii) Consider (2.1) with

$$f(x,y) = -x + y$$
 and $g(x,y) = -y$.

Prove that

$$\begin{pmatrix} x^{k+1} \\ y^{k+1} \end{pmatrix} = \begin{bmatrix} \left(1 - \frac{\Delta t}{2}\right)^2 & \Delta t \left(1 - \frac{\Delta t}{4}\right) \\ 0 & 1 - \Delta t \end{bmatrix} \begin{pmatrix} x^k \\ y^k \end{pmatrix}.$$

Is (2.3) for solving (2.1) convergent in this case? You should justify your answer.

(2c) Consider (2.1) with

$$f(x,y) = -y$$
 and $g(x,y) = x$.

- (i) Is (2.1) a Hamiltonian system in this case? What is the associated Hamiltonian function?
- (ii) Prove that in this case

$$\begin{pmatrix} x^{k+1} \\ y^{k+1} \end{pmatrix} = \begin{bmatrix} 1 & -\Delta t \\ \Delta t & 1 \end{bmatrix} \begin{pmatrix} x^k \\ y^k \end{pmatrix}.$$
 (2.4)

Is the energy preserved by the scheme (2.4)? You should justify your answer.

- Is (2.4) symplectic? You should justify your answer.
- Is (2.4) symmetric? You should justify your answer.

(2d) Now, we return to the Hamiltonian system obtained in (2a)(iii). Implement (2.3), using the templates in 2 (d) .py, for solving this system. Plot the graph $H(x^k, y^k)$. Is this energy preserved by (2.3)? You may use different initial data to conclude.