Summer 2021

Last Name		Note
First Name		
Degree Programme		
Legi Number		
Date	13.08 .2021	

1	2	Marks

- First fill out the cover sheet and place your Legi on the edge of the desk.
- Begin each problem on a separate sheet of paper. Please write out the problem ID in a striking font.
- Every sheet must bear your name and Legi number.
- Write with neither red nor green pens nor with a pencil.
- Please write out your ideas clearly and show your reasoning rigorously.
- You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

Good luck!

Consider

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} x}{\mathrm{~d} t}=f(t, x), \quad t \in[0, T] \tag{1.1}\\
x(0)=x_{0} \in \mathbb{R},
\end{array}\right.
$$

with $f \in C^{\infty}([0, T] \times \mathbb{R})$ satisfying the Lipschitz condition

$$
|f(t, x)-f(t, y)| \leq C_{f}|x-y|, \quad \forall x, y \in \mathbb{R}, \forall t \in[0, T]
$$

for some positive constant C_{f}.
(1a) [2 points] Does (1.1) have a unique solution $x(t) \in C^{\infty}([0, T])$? Justify.
(1b) Consider the following numerical scheme:

$$
\left\{\begin{array}{l}
x^{k+\frac{1}{2}}=x^{k}+\Delta t f\left(t_{k}, x^{k}\right) \tag{1.2}\\
x^{k+1}=x^{k}+\frac{\Delta t}{2}\left(f\left(t_{k}, x^{k}\right)+f\left(t_{k+1}, x^{k+\frac{1}{2}}\right)\right)
\end{array}\right.
$$

where $\Delta t>0$ is small enough, $N=\frac{T}{\Delta t}$ is an integer and $t_{k}=k \Delta t$ for $k=$ $0, \ldots, N$.

Let $\phi(t, x, \Delta t)$ be defined by

$$
\phi(t, x, \Delta t)=\frac{1}{2} f(t, x)+\frac{1}{2} f(t+\Delta t, x+\Delta t f(t, x))
$$

so that (1.2) can be rewritten in the form

$$
x^{k+1}=x^{k}+\Delta t \phi\left(t_{k}, x^{k}, \Delta t\right) .
$$

(i) [2 points] Prove, from the definition of consistency, that (1.2) is consistent with (1.1).
(ii) [6 points] Define the truncation error by

$$
T_{k}(\Delta t)=\frac{x\left(t_{k+1}\right)-x\left(t_{k}\right)}{\Delta t}-\phi\left(t_{k}, x\left(t_{k}\right), \Delta t\right) .
$$

Prove, using Taylor's theorem, that (1.2) is of order two as $\Delta t \rightarrow 0$.
(iii) [4 points] Prove that (1.2) is stable, i.e., there exist positive constants h_{0} and C_{ϕ} such that

$$
|\phi(t, x, \Delta t)-\phi(t, y, \Delta t)| \leq C_{\phi}|x-y|,
$$

for all $t \in[0, T]$ and for all $x, y \in \mathbb{R}$ and $\Delta t \in\left[0, h_{0}\right]$.
(iv) [2 points] Is (1.2) for solving (1.1) convergent?
(1c) Consider the numerical scheme

$$
\left\{\begin{array}{l}
x^{k+1}=x^{k}+\alpha_{1} \kappa_{1}+\alpha_{2} \kappa_{2} \tag{1.3}\\
\kappa_{1}=\Delta t f\left(t_{k}, x^{k}\right) \\
\kappa_{2}=\Delta t f\left(t_{k}+\lambda \Delta t, x^{k}+\lambda \kappa_{1}\right)
\end{array}\right.
$$

where $\alpha_{1}, \alpha_{2}, \lambda \in \mathbb{R}$.
(i) [6 points] Denote by

$$
g(h)=f\left(t_{k}+\lambda h, x\left(t_{k}\right)+\lambda h x^{\prime}\left(t_{k}\right)\right)
$$

with $x(t)$ being the solution of (1.1) and $x^{\prime}\left(t_{k}\right)$ being the derivative of x with respect to t calculated at t_{k}.

Prove that

$$
g(0)=x^{\prime}\left(t_{k}\right), \quad g^{\prime}(0)=\lambda x^{\prime \prime}\left(t_{k}\right) .
$$

(ii) [6 points] Prove that if $\alpha_{1}+\alpha_{2}=1$ and $\alpha_{2} \lambda=\frac{1}{2}$, then (1.3) is at least of order two.

Hint: Use formulas for $g(0), g^{\prime}(0)$ stated in (i).
(iii) [2 points] Explicit (1.3) for $\lambda=1$.
(iv) [8 points] Prove that (1.3) is consistent and stable and deduce that it is convergent.
(1d) Consider the differential equation

$$
\left\{\begin{array}{l}
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t}+\alpha x(t)+\beta t x^{2}(t)+\gamma \frac{\mathrm{d} x}{\mathrm{~d} t}=0, \quad t \in[0, T] \tag{1.4}\\
x(0)=0, \quad \frac{\mathrm{~d} x}{\mathrm{~d} t}(0)=1
\end{array}\right.
$$

(i) [4 points] Explicit schemes (1.2) and (1.3) for solving (1.4).

We explicit scheme (1.3):
$Z^{(k+1)}=Z^{(k)}+\Delta t\left(\alpha_{1} F\left(t_{k}, Z^{(k)}\right)+\alpha_{2} F\left(t_{k}+\lambda \Delta t, Z^{(k)}\right)+\lambda \Delta t F\left(t_{k}, Z^{(k)}\right)\right)$.
(ii) [10 points] Let $\alpha=1, \beta=\gamma=0$. Write down the explicit solution.

Implement the two schemes (1.2) and (1.3) for solving (1.4). Choose in (1.3) $\alpha_{1}=\frac{3}{4}, \alpha_{2}=\frac{1}{4}, \lambda=2$.

Compare the numerical solutions with the exact solution.

Let $\binom{x_{0}}{p_{0}} \in \mathbb{R}^{2}$. Consider the second-order differential equation:

$$
\left\{\begin{array}{l}
\frac{d^{2} x}{d t^{2}}(t)+x(t)=0, \quad t \geq 0, \tag{2.1}\\
\frac{d x}{d t}(0)=p_{0} \\
x(0)=x_{0} .
\end{array}\right.
$$

(2a) Introduce

$$
\begin{aligned}
H: \mathbb{R}^{2} & \longrightarrow \mathbb{R} \\
(x, p) & \longmapsto \frac{1}{2}\left(x^{2}+p^{2}\right)
\end{aligned}
$$

(i) [2 points] Show that (2.1) can be rewritten as

$$
\left\{\begin{array}{l}
\frac{d}{d t}\binom{x}{p}(t)=\binom{\frac{\partial H}{\partial p}(x, p)}{-\frac{\partial H}{\partial q}(x, p)}, \quad t \geq 0 \tag{2.2}\\
\binom{x}{p}(0)=\binom{x_{0}}{p_{0}}
\end{array}\right.
$$

(ii) [2 points] Prove that if $\binom{x}{p}$ solves (2.2) then

$$
H(x(t), p(t))=H\left(x_{0}, p_{0}\right), \forall t \geq 0
$$

(2b) Let $\Delta t>0$ be small enough and let $t_{k}=k \Delta t, k \in \mathbb{N}$.
Consider the scheme

$$
\begin{equation*}
\binom{x^{k+1}}{p^{k+1}}=\binom{x^{k}}{p^{k}}+\Delta t\binom{p^{k}}{-x^{k}} . \tag{2.3}
\end{equation*}
$$

(i) [6 points] Find explicitly $H\left(x^{k}, p^{k}\right)$.
(ii) [4 points] Find the limit of the norm of the vector $\binom{x^{k}}{p^{k}}$ as $k \rightarrow+\infty$. Consider separately the cases $\binom{x^{0}}{p^{0}} \neq 0$ and $\binom{x^{0}}{p^{0}}=0$.
(iii) [4 points] Consider the scheme

$$
\begin{equation*}
\binom{x^{k+1}}{p^{k+1}}=\binom{x^{k}}{p^{k}}+\Delta t\binom{p^{k+1}}{-x^{k+1}} . \tag{2.4}
\end{equation*}
$$

Are (2.3) and (2.4) symplectic? Justify.
(2c) Let

$$
\begin{aligned}
H_{\mathrm{num}}: \mathbb{R}^{2} \times \mathbb{R}_{+} & \longrightarrow \mathbb{R} \\
(x, p, \Delta t) & \longmapsto \frac{1}{2}\left(x^{2}+p^{2}+\Delta t x p\right) .
\end{aligned}
$$

(i) [6 points] Prove that

$$
\left(1-\frac{\Delta t}{2}\right) H(x, p) \leq H_{\mathrm{num}}(x, p, \Delta t) \leq\left(1+\frac{\Delta t}{2}\right) H(x, p) .
$$

(ii) [4 points] Justify that the scheme

$$
\begin{equation*}
\binom{x^{k+1}}{p^{k+1}}=\binom{x^{k}}{p^{k}}+\Delta t\binom{p^{k}}{-x^{k+1}}, \quad\binom{x^{0}}{p^{0}}=\binom{x_{0}}{p_{0}}, \tag{2.5}
\end{equation*}
$$

is well-defined. Is (2.5) symplectic? Justify.
(iii) [4 points] Consider $\left(x^{k}\right)_{k \in \mathbb{N}},\left(p^{k}\right)_{k \in \mathbb{N}}$ the sequences generated from (2.5). Prove that $\forall k \in \mathbb{N}$,

$$
H_{\mathrm{num}}\left(x^{k}, p^{k}, \Delta t\right)=H_{\mathrm{num}}\left(x_{0}, p_{0}, \Delta t\right)
$$

(iv) [8 points] Prove that (2.5) is convergent and is at least of order one.
(2d)
(i) [4 points] Write down the equations of the adjoint of (2.5).
(ii) [6 points] Write down the composition of (2.5) with its adjoint. Is the obtained scheme symplectic? Justify. Is the obtained scheme of order at least two? Justify.
(2e) [14 points] Implement (2.5) and the composition with its adjoint. Verify their order and that they approximately preserve the energy.

