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Numerical solution of ODEs

® General explicit one-step method:

¢ Consistency;
o Stability;
e Convergence.

® High-order methods:

e Taylor methods;
¢ Integral equation method;
¢ Runge-Kutta methods.

® Multi-step methods.
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Numerical solution of ODEs

® Stiff equations and systems.
® Perturbation theories for differential equations:

¢ Regular perturbation theory;
o Singular perturbation theory.

Numerical methods for ODEs Habib Ammari



Numerical solution of ODEs

® Consistency, stability and convergence
e Consider
Y f(tx), tel, T,
x(0) =x, x €R.
e fcC°[0,t] x R): Lipschitz condition.
e Start at the initial time t = 0;

® Introduce successive discretization points
h=0<ti<tr<...,

continuing on until we reach the final time T.

e Uniform step size:
At = tet1 — te > 0,

does not dependent on k and assumed to be relatively small, with
te = kAt.

® Suppose that K = T /(At): an integer.
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Numerical solution of ODEs

® General explicit one-step method:
X=Xk 4 At ¢(tk,><k., At),

for some continuous function ®(t, x, h).

® Taking in succession k =0,1,..., K — 1, one-step at a time = the
approximate values x* of x at t,: obtained.

e Explicit scheme: x*™! obtained from x*; x*™! appears only on the

left-hand side.
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Numerical solution of ODEs

® Truncation error of the numerical scheme:

Tu(At) = W — (1, x(t), At).

® As At — 0,k — 400, kKAt = t,

To(At) — % — &(t,x,0).

® DEFINITION: Consistency

e Numerical scheme consistent with the ODE if

®(t,x,0) = f(t,x) forallte[0,T]and x € R.
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Numerical solution of ODEs

e DEFINITION: Stability

e Numerical scheme stable if ®: Lipschitz continuous in x, i.e.,
there exist positive constants Ce and hg s.t.

“D(t,X, h) - Cb(t,y’ h)| < C¢|X - y|v te [07 T]a he [07 hO]vxay eR.
e Global error of the numerical scheme:
ex = Xk — X(tk).

® DEFINITION: Convergence

e Numerical scheme: convergent if

x| 0 as At — 0,k — o0, kAt =t € [0, T].
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Numerical solution of ODEs

e THEOREM: Dahlquist-Lax equivalence theorem

e Numerical scheme: convergent iff consistent and stable.
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Numerical solution of ODEs

e PROOF:

X(twn) =x(0) = [ s.x(9) s
« =

s(tesn)—x(t) = (At)f(tk,x(tk))—i—/t (s, x(8))— (8 x(80))] ds.

o =

X(thr1) = x(te) — (At)F (b, x(t))

< (At) wl(At).

[ s = fex(w)] s
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Numerical solution of ODEs

o wi(At):

wi(At) :=sup {|f(t,x(t)) — f(s,x(s))[,0 < 5,6 < T, |t —s| < At}

e wi(At) — 0as At — 0.
e If f: Lipschitz in t, then wi(At) = O(At).
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Numerical solution of ODEs

® From
a1 — e = X — XK — (x(tr1) — x(t)),
° =
et — e = At O(ty, x5, At) — (x(tr1) — x(t)).
e Or equivalently,

exi1—ex = At [O(te, X, At)—F(ti, x(t))] — [x(tes1) —x(t) = At £ (ti, x(t))]-
o Write
e — ek = At [O(ti, X", At) — O(ti, x(te), At) + O(ti, x(t), At)
—f (i, x(8))] = [x(tirr) = x(t) — At £ (e, x(8))]-
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Numerical solution of ODEs

® |et
wa(At) :=sup {|®(t,x, h) — f(t,x)|,t €[0, T],x € R,0 < h < (At)}.
e Consistency =
‘d)(tk,x(tk),At) - f(tk,x(tk))‘ < wy(At) — 0 as At — 0.
e Stability condition =

‘Cb(tk,xk,At) - ¢(tk,x(tk),At)‘ < Colex|.
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Numerical solution of ODEs

|ek+1\ < (1 + C¢At)|ek| -+ Atw:a,(At), 0<k<K-1,
e K =T/(At) and w3(At) := wi(At) + wr(At) — 0 as At — 0.
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Numerical solution of ODEs

® By induction,

k—1
lenia] < (14 CoAt) |eo| + (AL) w3(At)Y (1+ CoAt), 0< k< K.
1=0

o
k—1
1+ CoAt)F —1
14 Cont) = L CoAT =1
/Z:;( + Colrt) Colrt ’
and T
(1+ CoAt) < (1+ cb?)" < el
o = c
oT _
le] < €T |eo| + E——= 10J3(At).
Co

® If eg =0, then as At — 0,k — 400 s.t. kAt =1t € [0, T]

lim |ek\ =0.
k—+o0
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Numerical solution of ODEs

e DEFINITION:

e An explicit one-step method: order p if there exist positive
constants hg and C s.t.

ITW(At)] < C(AL)P, 0<At<hyk=0,... K—1;

Tk(At): truncation error.
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Numerical solution of ODEs

® |f the explicit one-step method: stable = global error: bounded by the
truncation error.
e PROPOSITION:

o Consider the explicit one-step scheme with ¢ satisfying the
stability condition.
e Suppose that g = 0.
e Then
(qu,T _ 1) .
ler1] < G Orgf‘gk|T/(At)| for k=0,....,.K—-1,

e T;: truncation error and ex: global error.

Numerical methods for ODEs Habib Ammari



Numerical solution of ODEs

e PROOF:

exr1—ex = —(A) Ti(At)+(AL) | D(ti, x5, At)—D(ti, x(t), At)].

* =

IN

(1+ Co(At)]ex] + (A1)| Tu(AD)
(1+ Co(At)]e] + (A1) max |Ti(Ae).

lext1]

IN
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Numerical solution of ODEs

® Explicit Euler's method

o O(t,x, h) = f(t,x).
e Explicit Euler scheme:

Xk = xk 4 (At)f(t,xk).
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Numerical solution of ODEs

e THEOREM:

Suppose that f satisfies the Lipschitz condition;

Suppose that f: Lipschitz with respect to t.

Then the explicit Euler scheme: convergent and the global
error e,: of order At.

If f € C!, then the scheme: of order one.
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Numerical solution of ODEs

e PROOF:

e f satisfies the Lipschitz condition = numerical scheme with
®(t, x, h) = f(t,x): stable.

®(t,x,0) = f(t,x) for all t € [0, T] and x € R = numerical
scheme: consistent.

= convergence.

f: Lipschitz in t = wi(At) = O(At).

wa(At) =0 = w3(At) = O(At).

= |ex| = O(At) for 1 < k < K.
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Numerical solution of ODEs

e feCl = xel?

® Mean-value theorem =

Tian = & <X(fk+1) - x(n)) (o x()

= i (X(tk) + (At)%(tk) + (Azt) % ) 7x(tk)) — f(tr, x(t))
At d°x
= TF(TL

for some 7 € [tk, tkt1].

® = Scheme: first order.

Numerical methods for ODEs Habib Ammari



Numerical solution of ODEs

® High-order methods:

o In general, the order of a numerical solution method governs
both the accuracy of its approximations and the speed of
convergence to the true solution as the step size At — 0.
Explicit Euler method: only a first order scheme;

Devise simple numerical methods that enjoy a higher order of
accuracy.

The higher the order, the more accurate the numerical scheme,
and hence the larger the step size that can be used to produce
the solution to a desired accuracy.

However, this should be balanced with the fact that higher
order methods inevitably require more computational effort at
each step.
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Numerical solution of ODEs

® High-order methods:

e Taylor methods;
¢ Integral equation method;
¢ Runge-Kutta methods.
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Numerical solution of ODEs

® Taylor methods

® Explicit Euler scheme: based on a first order Taylor approximation to the
solution.

® Taylor expansion of the solution x(t) at the discretization points tx;1:

(tk+1)_x(tk)+(At)dx(t)+(Azt) Zﬂ( )+(A6t) Zﬁ (t) +

Evaluate the first derivative term by using the differential equation

dx

— =f .
= (%)
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Numerical solution of ODEs

® Second derivative can be found by differentiating the equation with
respect to t:

d?>x d dx
W_dtf x) = (t )+7(t )dt

e Second order Taylor method

() X = x4 (A (tx) + 2) (W(tk, )+%(tk.,xk)f(tk,xk)).
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Numerical solution of ODEs

® Proposition:

e Suppose that f € C2.
e Then (x): of second order.
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Numerical solution of ODEs

® Proof:

e fc(C?=xe(C
e = truncation error T, given by

(At)? d®x

Tk(At) = 6 dt3

(1),

for some T € [tk, tk+1] and so, (x): of second order.

Numerical methods for ODEs Habib Ammari



Numerical solution of ODEs

® Drawbacks of higher order Taylor methods:

(i) Owing to their dependence upon the partial derivatives of f, f
needs to be smooth;

(ii) Efficient evaluation of the terms in the Taylor approximation
and avoidance of round off errors.
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Numerical solution of ODEs

® |Integral equation method
® Avoid the complications inherent in a direct Taylor expansion.

® x(t) coincides with the solution to the integral equation
t

x(t) = xo +/ f(s,x(s))ds, te]0,T].
0

Starting at the discretization point t. instead of 0, and integrating until
time t = ty4+1 gives

() X(tk+1):x(tk)+/twf(s.,x(s))ds.

® |mplicitly computes the value of the solution at the subsequent
discretization point.
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Numerical solution of ODEs

® Compare formula (*x*) with the explicit Euler method
X = XK 4 (A F (i, x5).

® = Approximation of the integral by

/.tk+1 f(s,x(s)) ds ~ (At)f(tx, x(tx))-

ti

® |eft endpoint rule for numerical integration.
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Numerical solution of ODEs

® |eft endpoint rule for numerical integration:

® Left endpoint rule: not an especially accurate method of numerical
integration.

® Better methods include the Trapezoid rule:
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Numerical solution of ODEs

® Numerical integration formulas for continuous functions.

(i) Trapezoidal rule:

Lyt At
/ g(s)ds ~ 2<g(tk+1)+g(tk)>?
ti
(i) Simpson’s rule:

tk + thy1

7 et as B (st + ae( ) g

(iii) Trapezoidal rule: exact for polynomials of order one;
Simpson'’s rule: exact for polynomials of second order.
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Numerical solution of ODEs

® Use the more accurate Trapezoidal approximation

[ e xte s~ G e xte) + s )|

® Trapezoidal scheme:

= xRy @ [f(tk,xk) + f(tk+1,Xk+1):|.

® Trapezoidal scheme: implicit numerical method.
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Numerical solution of ODEs

® Proposition:

e Suppose that f € C? and

(3 * %) (A;)Cf < 1;

Cr: Lipschitz constant for f in x.
e Trapezoidal scheme: convergent and of second order.
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Numerical solution of ODEs

® Proof:

o Consistency:
(¢, x, At) ;:% F(£,x) + F(t + AL x + (BE)D(t, x, At)) |

e At =0.
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Numerical solution of ODEs

e Stability:
[ )
|(t, x, At) — &(t,y, At)| < Ce|x — y]|
At
+7Cf|¢(t,X,At) — ®(t,y, At)].
« =
At)C
(1 LY ot x A1)~ 0(t.y.88)| < Grlx .
e = Stability holds with
Cr
Co = 1_ (At)Cr?
2

provided that At satisfies (x * x).
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Numerical solution of ODEs

® Second order scheme:

e By the mean-value theorem,

T (At = w
*% (e x(8)) + F(ticrr, x(tt1))

1 d®x
= — (A2 (r),

for some 7 € [ty, tx+1] = second order scheme, provided that
f € C? (and consequently x € C3).
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Numerical solution of ODEs

® An alternative scheme: replace x*™ by x* + (At)f(tx, x*).
® = Improved Euler scheme:

At
58 2o BT (1) 1 (b + (B (1, 1))|.

® Proposition: Improved Euler scheme: convergent and of second order.

® |mproved Euler scheme: performs comparably to the Trapezoidal scheme,
and significantly better than the Euler scheme.

® Alternative numerical approximations to the integral equation = a range
of numerical solution schemes.
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Numerical solution of ODEs

Midpoint rule:

At At
Shoxtn+50).

/k“ (s, x(s)) ds ~ (DE)F(t + >

tk
® Midpoint rule: same order of accuracy as the trapezoid rule.
e Midpoint scheme: approximate x(tx + 4%) by x* 4+ &£ (t, x¥),

X=X (A f (b + %,xk + %f(tk,xk)).

Midpoint scheme: of second order.
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Numerical solution of ODEs

® Example of linear systems

e Consider the linear system of ODEs
d
Z = A, telo,+odl,
x(0) = x € RY.

A € My(C): independent of t.
DEFINITION:

e A one-step numerical scheme for solving the linear system of
ODEs: stable if there exists a positive constant Cy s.t.

Ix*T1| < Co|x°|  forall k € N.
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Numerical solution of ODEs

e Consider the following schemes:

(i) Explicit Euler's scheme:
Xk = xk 4+ (At)Axk;
(i) Implicit Euler's scheme:
XKL = 3k (AR AXKTY,

(iii) Trapezoidal scheme:
XKL — xk o (A;) |:AXk I AXk+1]’

with k € N, and x? = xg.
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Numerical solution of ODEs

® Proposition:
Suppose that ®); < 0 for all j. The following results hold:

(i) Explicit Euler scheme: stable for At small enough;
(ii) Implicit Euler scheme: unconditionally stable;
(iii) Trapezoidal scheme: unconditionally stable.
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Numerical solution of ODEs

® Proof:

e Consider the explicit Euler scheme. By a change of basis,
XK = (I + At(D + N))*X°,

where Xk = C~1xk,
o If X% ¢ E;, then

min{k,d}
K= > CU1+ AN (A)N'R,
1=0

C,i: binomial coefficient.
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Numerical solution of ODEs

o If |14 (At)\] < 1, then X*: bounded.

o If |1+ (At))\j| > 1, then one can find X° s.t. |X¥| = oo (exponentially)
as k — +oo0.

o If |1+ (At))\j| =1 and N #0, then for all X° s.t. NX° # 0, N°X° =0,
X = 1+ (AON)T + (1 + (AN kAN
goes to infinity as k — +oo.
e Stability condition |1+ (At)\j]| <1 &

RN

At < -2
RViE

holds for At small enough.
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Numerical solution of ODEs

® Implicit Euler scheme:

X = (I — At(D + N))*%°

All the eigenvalues of the matrix (/ — At(D + N))™*: of modulus strictly
smaller than 1.

® = Implicit Euler scheme: unconditionally stable.

® Trapezoidal scheme:

M

=(I- (D + N))~ (/+(A2—”(D+N))k3<*’.

Stability condition:

(At)

n+ S <1 - (At)

Al

holds for all At > 0 since R\; < 0.
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Numerical solution of ODEs

e REMARK: Explicit and implicit Euler schemes: of order one; Trapezoidal
scheme: of order two.
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Numerical solution of ODEs

® Runge-Kutta methods:

o By far the most popular and powerful general-purpose
numerical methods for integrating ODEs.

o |dea behind: evaluate f at carefully chosen values of its
arguments, t and x, in order to create an accurate
approximation (as accurate as a higher-order Taylor expansion)
of x(t + At) without evaluating derivatives of f.
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Numerical solution of ODEs

® Runge-Kutta schemes: derived by matching multivariable Taylor series
expansions of f(t,x) with the Taylor series expansion of x(t + At).

® To find the right values of t and x at which to evaluate f:

e Take a Taylor expansion of f evaluated at these (unknown)
values;

e Match the resulting numerical scheme to a Taylor series
expansion of x(t + At) around t.
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Numerical solution of ODEs

® Generalization of Taylor's theorem to functions of two variables:
THEOREM:

e f(t,x) € C"™([0, T] x R). Let (to,x0) € [0, T] x R.
o Thereexist th <7 < t, xg <€ < x, s.t.

f(t,x) = Pp(t,x) + Ra(t, x),

e P,(t,x): nth Taylor polynomial of f around (tg, x0);
e Ry(t,x): remainder term associated with P,(t, x).
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Numerical solution of ODEs

[ ]
of
Pltx) = (t,0) + [ (& = )51 (t.50) + (x = 20) (10, 3)|
(t — to)? 0°F B O*f
|5 T 0,20 + ¢ = 0)x = 0 3 (.0
(xfxo) &*f
T2 e
1< ., e . O"f _
! [mjz;Q(t_t°) o ) g o)
[ ]
1 AR n+1 n+1—j j an+1f
Rn(tvx):m;q (t = 20)"" 7 (x = x0) 5.5 (7 6)-
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Numerical solution of ODEs

® |llustration: obtain a second-order accurate method (truncation error

o((At)?).

® Match
At)? Of of At)® d?
x + Atf(t, x) + ( 2t) [E(t,x)—i— a(t,x)f(t,x)] + ( 6t) E[f(T,x)]
to
x + (At)f(t + o1, x + B1),

T € [t, t + At] and a1 and B1: to be found.

® Match
At) Of of At)? d?
F(t,x) + %[a(t,x)—l— S (£ (£:)] + ( 6” Sl 0)]

with f(t 4+ a1, x + 1) at least up to terms of the order of O(At).
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Numerical solution of ODEs

® Multivariable version of Taylor's theorem to f,
of of a? 9*f
f(t+ a1, x+ p1) = rf(t,x)+ alﬁ(nx) + Bla(nx) + 7w(r,§)
*f g: O*f
+a161 OtOx (T7 é) + ?@(T7 5)7

t<7<t+a;and x<{< x+ b1

° =
At At
a1 = 7 and 61 = 7f(t7X)
® = Resulting numerical scheme: explicit midpoint method: the simplest

example of a Runge-Kutta method of second order.

Improved Euler method: also another often-used Runge-Kutta method.
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Numerical solution of ODEs

® General Runge-Kutta method:

m
X = Xk 4 Atz Gif (i, Xi k),

i=1
m: number of terms in the method.
® Each tj, denotes a point in [tk, txs1].

® Second argument x; x &~ x(t; x) can be viewed as an approximation to the
solution at the point t; x.

® To construct an nth order Runge-Kutta method, we need to take at least
m > n terms.
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Numerical solution of ODEs

® Best-known Runge-Kutta method: fourth-order Runge-Kutta method,
which uses four evaluations of f during each step.

=f tie, X )7

(
f(te + 45 x* + 5t k1),
f(thr%,x + &t /-12)
f(ter1, X + Atrs),

(At)
6

k+1 k
X+

=x"+ (K1 4 2k2 + 263 + Ka).

® Values of f at the midpoint in time: given four times as much weight as

values at the endpoints tx and tx;1 (similar to Simpson'’s rule from
numerical integration).
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Numerical solution of ODEs

e Construction of Runge-Kutta methods:

e Construct Runge-Kutta methods by generalizing collocation
methods.
e Discuss their consistency, stability, and order.
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Numerical solution of ODEs

® Collocation methods:
® P, space of real polynomials of degree < m.
® |Interpolating polynomial:

e Given a set of m distinct quadrature points
<6 <...<cpinR, and corresponding data g1, ..., &m;
e There exists a unique polynomial, P(t) € P,,_1 s.t.

P(c)=g,i=1,...,m.
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Numerical solution of ODEs

e DEFINITION:
o Define the ith Lagrange interpolating polynomial /;(t),
i=1,...,m, for the set of quadrature points {c;} by

(t) = L

C. — C :
j#ij=1 " 7

® Set of Lagrange interpolating polynomials: form a basis of Py,—1;

e Interpolating polynomial P corresponding to the data {g;} given by

P(t) := Zg,-l,—(t).
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Numerical solution of ODEs

e Consider a smooth function g on [0, 1].

® Approximate the integral of g on [0, 1] by exactly integrating the
Lagrange interpolating polynomial of order m — 1 based on m quadrature
points0<ag<ao<...<cm <1

e Data: values of g at the quadrature points gi = g(ci), i=1,...,m.
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Numerical solution of ODEs

® Define the weights

1
bi:/ li(s) ds
0
® Quadrature formula:

(/O.lg(s)ds%/ Zg, ds—Zbg Gi)
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Numerical solution of ODEs

® f: smooth function on [0, T]; tx = kAt for k =0,...,K = T/(At):
discretization points in [0, T].

tit1
] / f(s) ds can be approximated by
tk

/ f(s)ds = (A1) / Flt+ Atr)dr~ (80) Y bf(6 + (At)a).

i=1
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Numerical solution of ODEs

® x: polynomial of degree m satisfying

x(0) = xo,
dx
dt(C,'At) = F;,

FeR,i=1,...,m

® |agrange interpolation formula = for t in the first time-step interval
[0, At],

dx - t
E(t) = ; Fi/i(E)-
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Numerical solution of ODEs

® Integrating over the intervals [0, ¢;At] =

x(ciAt) = xo + (At) Z / s)ds = xo + (At) ZaU

j=1
ajj ::/ I/j(s) ds.
0

fori=1,..., m, with
® |Integrating over [0, At] =

X(DE) = %0 + (A1) zm: F /I1 I(s) ds = xo + (At) zm: biF.
0

i=1 i=1
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Numerical solution of ODEs

e Writing dx/dt = f(x(t)), on the first time step interval [0, At],

Fi=f(o+(At)Y aF), i=1,...,m,
j=1

x(At) = xo + (At) Zm: biF;.

i=1

® Similarly, we have on [k, tit1]

Fi,k = f(X(tk)+(At)Zaﬁ,:j,k), i=1,...,m,
j=1

X(tk+1) = X(tk) + (At) zm: b,‘F,',k.

i=1

® |n the collocation method: one first solves the coupled nonlinear system
to obtain Fjx, i =1,...,m, and then computes x(tx+1) from x(tx).
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Numerical solution of ODEs

e REMARK:
°
tlil :Zcil_lll(t)v te [0’ 1]7/: L, » M,
i=1
* —
& -1 1
Z b,CI- — 7, =1 , m,
i=1
and m
Zaijcjlfl—c—/’, il=1,..., m
j=1
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Numerical solution of ODEs

® Runge-Kutta methods as generalized collocation methods

¢ In the collocation method, the coefficients b; and aj;: defined
by certain integrals of the Lagrange interpolating polynomials
associated with a chosen set of quadrature nodes ¢;,
i=1,...,m.

o Natural generalization of collocation methods: obtained by
allowing the coefficients ¢;, b;, and aj; to take arbitrary values,
not necessary related to quadrature formulas.
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Numerical solution of ODEs

® No longer assume the ¢; to be distinct.

® However, assume that

® = Class of Runge-Kutta methods for solving the ODE,

Fis = (i, X+ (At) Z aijFj.«),

j=1
m

X=Xk 4 (Aat) E biFi k,
i=1

tik = tx + ciAt, or equivalently,

xik = X+ (At) Z ai f (L k, X k),
j=1
XkJrl = Xk —+ (At) Z b,'f(t,',k,X,',k).

i=1
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Numerical solution of ODEs

® |et
Kj = f(t + GAt, x);

Define ® by

xi = x + (At) Z aijkj,
j=1
o(t,x,At) = > bif(t+ cAt,x).

i=1

® = One step method.

If 2 =0 for j > i = scheme: explicit.
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Numerical solution of ODEs

e EXAMPLES:

o Explicit Euler's method and Trapezoidal scheme: Runge-Kutta
methods.
e Explicit Euler's method: m=1,b; =1,a;; =0.
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Numerical solution of ODEs

® Trapezoidal scheme:
m=2,by = by, = 1/2,211 =ap=0,a =axn = 1/2.
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Numerical solution of ODEs

® Fourth-order Runge-Kutta method: m=4,c0 =0, = =1/2,a =
l,bl = 1/6,b2 = b3 = 1/3, b4 = 1/6,221 = azx = 1/2,243 = ].7 and all
the other aj; entries are zero.
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Numerical solution of ODEs

e Consistency, stability, convergence, and order of Runge-Kutta methods

® Runge-Kutta scheme: consistent iff

by =1.

1

m
j=

Numerical methods for ODEs Habib Ammari



Numerical solution of ODEs

e Stability:

o A= (laj)7=1-
e Spectral radius p(|A|) of the matrix |A|:

p(JA]) := max{|\j], \; : eigenvalue of |A|}.
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Numerical solution of ODEs

e THEOREM:

e (Cr: Lipschitz constant for f.
e Suppose
(B8)Crp(Al) < 1.

e Then the Runge-Kutta method: stable.
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Numerical solution of ODEs

e PROOF:
L)

O(t, x, At) — d(t,y, At) = Z b; {f(tJrc,-At,x,-)—f(tJrc,-At, yi)l,
i=1

with .

Xi = X + (Af) Z a,-jf(t + C.,'Al',XJ')7

j=1

and

yi =y + (At) Za,-jf(t + ciAt, ;).
j=1
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Numerical solution of ODEs

Xi—yi=x—y+(At)) ay {f(t+cht,Xj) — f(t+ gAt,y)|.

j=1

e = Fori=1,...,m,

i = yil < Ix =yl + (A6 Cr Y faillx — .

=1
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Numerical solution of ODEs

e X and Y:

I =yl Ix =yl

X = and Y =

|xm = Yim| Ix =yl

o X <Y+ (A)G|AIX, =
X < (I —(At)CGA) Y,
provided that (At)Crp(|A|) < 1.

® = stability of the Runge-Kutta scheme.
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Numerical solution of ODEs

® Dahlquist-Lax equivalence theorem = Runge-Kutta scheme: convergent
provided that >~ b; = 1 and (At)Crp(]A]) < 1 hold.

j=
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Numerical solution of ODEs

® Order of the Runge-Kutta scheme: compute the order as At — 0 of the
truncation error

x(te1) — x(tk)

Te(At) = A — ®(t, x(t), At).
® Write
Te(At) = W Z bif (te + ciAt, x(ti) + AtZaun,)
i=1 Jj=1

® Suppose that f: smooth enough =

f(tk + C,'At,X(tk) =+ Atz a,'jlij)
=

= b x(0) + At 0 S (0 x(10) + (5 200 e x(0)
+0((At)%).
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Numerical solution of ODEs

> agr; = (> ag)f(te, x(t)) + O(At) = cif (t, x(t)) + O(At).

j=1
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Numerical solution of ODEs

f(tk + C,‘Ai‘7 X(tk) 4 Atz a,'jlfj)

Jj=1

= f(tx, x(tx)) + Atci [%(tk,x(tk)) + %(tk,x(tk))f(tk,x(tk))

+0((At)?).
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Numerical solution of ODEs

e THEOREM:

e Assume that f: smooth enough.
e Then the Runge-Kutta scheme: of order 2 provided that the

conditions .
by =1
j=1
and
1
bici = 5
=3
i=1
hold.
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Numerical solution of ODEs

® Higher-order Taylor expansions =
e THEOREM:

e Assume that f: smooth enough.
e Then the Runge-Kutta scheme: of order 3 provided that the

conditions
> =1
j=1
m
; bici = >
and . R
Z b,c,2 = 3 ZZ biajic; =
i=1 i=1 j=1
hold.
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Numerical solution of ODEs

e Of Order 4 provided that in addition

m m

ZbiC? = %, ZZ b,-c,-a,-jcj = é, ZZ b,'C,'a,'jCj2 = %,
i=1 i=1 j=1 i=1 j=1
ZZZb ajajc = 14

=1 j=1 /=1
hold.
® The (fourth-order) Runge-Kutta scheme: of order 4.
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Numerical solution of ODEs

® Multi-step methods

® Runge-Kutta methods: improvement over Euler's methods in terms of
accuracy, but achieved by investing additional computational effort.

® The fourth-order Runge-Kutta method involves four function evaluations

per step.
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Numerical solution of ODEs

® For comparison, by considering three consecutive points ti_1, tk, tkt1,
integrating the differential equation between tx_1 and tx;+1, and applying
Simpson’s rule to approximate the resulting integral yields

M) = x(ts) + [ 7 f(s,x(s)) ds

te—1

~ x(ten) + B [f(rm, x(tie)) + 4F (B0 x(8)) + F(tis, x(rkﬂ))} ,

_ At _
X = x4 (&at) 3 ) |:f(tk717Xk Y +4f(tk-,Xk) + f(tk+17xk+1)}-

1

Lin order to calculate x**:

® Need two preceding values, x* and x*~
two-step method.

® In contrast with the one-step methods: only a single value of x* required
to compute the next approximation x**1,
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Numerical solution of ODEs

® General n-step method:

n n
k+j k+j
DX = (A1) Y Bif(tiy, x),
j=0 j=0
o and f;: real constants and a;, # 0.

e If 8, =0, then x**": obtained explicitly from previous values of x/ and
f(tj,x’) = n-step method: explicit. Otherwise, the n-step method:
implicit.

® A starting procedure which provides approximations to the exact solution
at the points t1, ..., th—1: One possibility for obtaining these missing

starting values is the use of any one-step method, e.g., a Runge-Kutta
method.
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Numerical solution of ODEs

e EXAMPLE:
(i) Two-step Adams-Bashforth method: explicit two-step method

At
12 = ety (B1) 5 ) [3f(tk+17><k+1) - f(tk,Xk)];

(ii) Three-step Adams-Bashforth method: explicit three-step
method

At
xkT3 = Xk+2+7( 12) {23f(tk+27Xk+2)16f(tk+1aXk+1)+5f(tk,xk):| ;
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Numerical solution of ODEs

(iii) Four-step Adams-Bashforth method: explicit four-step method
XH—4 = Xk+3 + % [55f(tk+3,xk+3) — 59f(tk+2,xk+2)
+37f(tk+17 Xk+1) — gf(tk, Xk):| ;

(iv) Two-step Adams-Moulton method: implicit two-step method

X = XM % {5f(tk+2,xk+2) + 8f (tey1, x ) — f(tk,xk)] ;

(v) Three-step Adams-Moulton method: implicit three-step method

xk+3 — Xk+2+% |:9f(tk+3, Xk+3)+19f(tk+2, Xk+2)+5f(tk+1, Xk+1)—9f(tk,Xk):| .
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Numerical solution of ODEs

® Construction of linear multi-step methods
e Suppose that x, k € N: sequence of real numbers.

® Shift operator E, forward difference operator A} and backward difference
operator A_:

1 1

k k k k k K K k—1
E:x"—x A X X XK AL X X=X

e A,=FE—/land A_=I/—-—E'=forany neN,

n

(E— 1) =3 (-1 e

Jj=0

and

(- E7y = S (1Y Qe

Jj=0
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Numerical solution of ODEs

Aixk _ Z(*l)jCjHXk+n7j
j=0

and
n

A" XK = Z(—l)j(:jnxkfj.

Jj=0
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Numerical solution of ODEs

y(t) € C*(R); tk = kAt, At > 0.

® Taylor series = for any s € N,

+o0
s — _ L 9 i _(san
Ey(w) = (0 + 500 = (3 lsaeg)y )6 = (%)),

° =
ES — es(At)%.

® Formally,

9 _ _ _ 1o 1.3
(At)at =hE=—In(/l-A_)=A_+ 2A7+ 3A7+“,
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Numerical solution of ODEs

® x(t): solution of ODE:

(At)f(te, x(t)) = (A, + %Ai + %Ai +. ..)X(tk).

® Successive truncation of the infinite series =

X = X = (A f(t, XY,

§xk S L X2 = (At)F(t, x5,

2 2
%xk —3x 4 gxk_2 — %xk_3 = (At)f(tk,xk),

and so on.

® Class of implicit multi-step methods: backward differentiation formulas.
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Numerical solution of ODEs

e Similarly,

E*l((At)%) = (At)%E*1 =—(I-A_)In(l—A").

((At)%) =—E(/—A)In(l—A_)=—(—A_)In(/ — A_)E.

(AL (te, x(t)) = (A, — %A{ - %Ai +. ..)X(tk+1).

Numerical methods for ODEs Habib Ammari



Numerical solution of ODEs

® Successive truncation of the infinite series = explicit numerical schemes:

XK XE = (A F(t, x5),

%Xk+1 _ %Xk_l = (At)f(tlmxk),
D L Bk (A (8, 1),

3 2

® The first of these numerical scheme: explicit Euler method, while the
second: explicit mid-point method.
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Numerical solution of ODEs

® Construct further classes of multi-step methods:
® Forye(C™,
tk
D71 = ylw) + [ ¥(5) s

and
(E—ND"y(t) = / " y(s) ds.

tk

(E-ND'=AD'=EA_D'=(At)EA_((At)D) !,
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Numerical solution of ODEs

—1

(E—ND™'=—(At)EA_(In(I — AL))

Numerical methods for ODEs Habib Ammari



Numerical solution of ODEs

(E-D'=EA_D'=A_ED™' = A_(DE™)"' = (At)A_((At)DEY) .

° =

(E-ND'=—(At)A_ ((/ — A )In(l — A,))il.
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Numerical solution of ODEs

t,

x(tern) — x(t) = / (s, x(5)) ds = (E — YD (ke x(8)),

tk
. =

X(tes1) — x(t) = —(At)A- ((/ — A )In(I — A,))flf(thx(tk))
+ ~(A)EA_(In(l = A2)) ™ F (b, x(8)).
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Numerical solution of ODEs

® Expand In(/ — A_) into a Taylor series on the right-hand side =

1 5 3
x(tis1) — x(tx) = (At) {l +50-+ EAQ’ + éAi +.. } f (e, x(tx))
and
(b)) —x(t) = (A1) | 1= 2a — 2 A2 Z L A% o (i, x(t01))
X\ Tk+1 X\lk) = 5= 127 g T k+1y X\ Tk+1))-

® Successive truncations = families of (explicit) Adams-Bashforth methods
and of (implicit) Adams-Moulton methods.

Numerical methods for ODEs Habib Ammari



Numerical solution of ODEs

e Consistency, stability, and convergence

® [ntroduce the concepts of consistency, stability, and convergence for
analyzing linear multi-step methods.
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Numerical solution of ODEs

o DEFINITION: Consistency

e The n-step method: consistent with the ODE if the
truncation error defined by

Yoo [apx(tesj) — (AL)B; % (tir)]

Tk(At) = (At)

is s.t. for any € > 0 there exists hg for which
|Tk(At)‘ <e for0< At < ho

and any (n+ 1) points ((t;, x(t;)), - - ., (tj+n x(tj4n))) on any
solution x(t).
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Numerical solution of ODEs

® Theorem: The n-step method is consistent if and only if the following two
conditions hold:

Zaj:O and Zjaj:Z@-.
j=0 j=0 j=0
® The n-step method is of order p if and only if

1~ o
72_//0@-:211 lﬁj, forall I=1,...,p,
j=0 j=0

and

1 & .
b+l ZJP+1aj # ijﬂj-
p j=0 j=0
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Numerical solution of ODEs

® Assume that f € C*°.
® Taylor expansions for both x and dx/dt:

x(tirs) = Z l,(JAt)I X (t0), tk+J) Z l,(JAt)I XD (1),
=3 [orn(onn) - (At)ﬂj%nﬂ-)}

BNHS ,,oAr)’x(”(tk)—(Ar)@Z 0B (5]

Jj=0 1=0

n

. d
= (Zaj x(tx) + Z oy — At—x(tk)
j=0 j=0

=1

300 G gy D@0,

=2 j=0
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Numerical solution of ODEs

® Simpson's scheme: of order 4; 2-step AB: of order 2; 3-step AB: of order
3, 4-step AB: of order 4; 2-step AM: of order 3, and 3-step AM: of order
4.
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Numerical solution of ODEs

e DEFINITION: Stability

e The n-step method: stable if there exists a constant C s.t., for
any two sequences (x¥) and (x¥) which have been generated

by the same formulas but different initial data x%, x*,...,x" "1
and X%, X, ..., X", respectively,
\xk — >~<k| < Cmax{|x® =X, |x} =X,..., |x" 1 =x""}}

as At — 0, k> n.
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Numerical solution of ODEs

e THEOREM: Convergence
e Suppose that the n-step method: consistent with the ODE.
e Stability condition: necessary and sufficient for the

convergence.
e If x € CP*1 and the truncation error O((At)P), then the global

error e, = x(ty) — x*: O((At)P).
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Numerical solution of ODEs

® Rewrite the n-multi-step method as a one-step method in a higher
dimensional space.

o Let d(ty,x*,...,x*"=1 At) be defined implicitly by

n—1

b= Bif(tirj, ™) + Buf (teen, (D) — Zo/ ),

Jj=0
a; = aj/an and Bj = B/ an.
® The n-multi-step method can be written as

n—1
P onzx o (At)g.

Jj=0
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Numerical solution of ODEs

e Introduce the n-dimensional vectors: X* = (x**"~1

ey X

(e, X5, At) = p(ti,x", ..., X" A1)(1,0,...,0) .

® |ntroduce the n X n matrix:

! ! !

—Qph_1 —OQph_> e . —Qp
1 0 R 0
A= 1 .0
1 0

® The n-step method can be rewritten as

X = AXK 4 Atd (1, X5, At).

® The concepts of consistency and stability can be expressed in this new
notation.
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Numerical solution of ODEs

® Let x(t) be the exact solution and denote by

X(tk) = (X(tk+,,,1, - ,X(tk))T.

® The consistency condition =

| X (tks1) — AX(tk) — AtP(tr, X(tx), At)] — 0 as At — 0.

® The truncation error of order p =
IX(tis1) — AX(tc) — Atd(te, X (), At)| = O((At)")

as At — 0.

® The stability condition = that exists a vector norm on R" such that the
matrix A satisfies ||A|| < 1 in the subordinate matrix norm. .
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Numerical solution of ODEs

® Stiff equations and systems:

® Let € > 0: small parameter. Consider the initial value problem

dx(t) 1
3 = —Ex(t), t€[0, T],

x(0) =1,

e Exponential solution x(t) = e~ /<.

® Explicit Euler method with step size At:

At
Xk+l — (1 _ 7)Xk, XO 1’
with solution A
t
Xk = (1- —)k
€
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Numerical solution of ODEs

® ¢ > 0 = exact solution: exponentially decaying and positive.

o |f1— % < —1, then the iterates grow exponentially fast in magnitude,
with alternating signs.

® Numerical solution: nowhere close to the true solution.

o [f-1<1— % < 0, then the numerical solution decays in magnitude, but
continue to alternate between positive and negative values.

® To correctly model the qualitative features of the solution and obtain a
numerically accurate solution: choose the step size At so as to ensure
that 1 — &£ > 0, and hence At < e.

o stiff differential equation.
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Numerical solution of ODEs

® |n general, an equation or system: stiff if it has one or more very rapidly
decaying solutions.

® In the case of the autonomous constant coefficient linear system: stiffness
occurs whenever the coefficient matrix A has an eigenvalues \j, with
large negative real part: '\, < 0, resulting in a very rapidly decaying
eigensolution.

® [t only takes one such eigensolution to render the equation stiff, and ruin
the numerical computation of even well behaved solutions.

® Even though the component of the actual solution corresponding to \j:
almost irrelevant, its presence continues to render the numerical solution
to the system very difficult.

® Most of the numerical methods: suffer from instability due to stiffness for
sufficiently small positive €.

® Stiff equations require more sophisticated numerical schemes to integrate.
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Numerical solution of ODEs

® Perturbation theories for differential equations

e Regular perturbation theory;
e Singular perturbation theory.

Numerical methods for ODEs Habib Ammari



Numerical solution of ODEs

® Regular perturbation theory:

® ¢ > 0: small parameter and consider

L !

x(0) = x0, x €R.

f € C' = regular perturbation problem.

® Taylor expansion of x(t,¢) € C*:
x(t, €) = xO(t) + exP(t) + o(e)

with respect to € in a neighborhood of 0.
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Numerical solution of ODEs

o x©:
dx©
dt
xX0) =x, x €R,
fo(t, x) := f(t, x,0).
o x(t) = 5:(t,0):

=f(t,x?), telo,T],

dx® B g
dt ~ ox
xW(0) =o.

(¢, x(o)7 O)X(l) + of

a(taX(O)yo)v te [07 T]a

e Compute numerically x(® and x®.
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Numerical solution of ODEs

® Singular perturbation theory:

e Consider )
d“x dx
2 _f
“de2 (tx, dt)’

x(0) = x0, x(T)=x.

telo, T],

® Singular perturbation problem: order reduction when € = 0.
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Numerical solution of ODEs

Consider the linear, scalar and of second-order ODE:

d?x dx
— +2— = 1
€ + dt+x 0, te]lo,1],

x(0)=0, x(1)=1.

a(e) == ¥ and B(e):=1++vV1—=c
* —at _ —pt/e
x(te) = < e’ t€[0,1].

e~ _ g—B/e’

® x(t,€): involves two terms which vary on widely different length-scales.
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Numerical solution of ODEs

® Behavior of x(t,€) as e — 0.
® Asymptotic behavior: nonuniform;

® There are two cases — matching outer and inner solutions.
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Numerical solution of ODEs
(i) Outer limit: t > 0 fixed and € — 0". Then x(t,¢) — x©(¢),
(0)(t) = el1-1)/2
® |eading-order outer solution satisfies the boundary condition at t =1 but

not the boundary condition at t = 0. Indeed, x(¥(0) = e'/2.

(i) Inner limit: t/e = 7 fixed and ¢ — 0*. Then

x(er, €) = XO(7) := e/2(1 — e 7).
® |eading-order inner solution satisfies the boundary condition at t = 0 but

not the one at t = 1, which corresponds to 7 = 1/e. Indeed,
lims 00 XO(7) = /2.

(iii) Matching: Both the inner and outer expansions: valid in the region
€ < t < 1, corresponding to t — 0 and 7 — 400 as € — 0. They
satisfy the matching condition

lim xX9) = lim xXO().

t—0t T—+00
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Numerical solution of ODEs

® Construct an asymptotic solution without relying on the fact that we can
solve it exactly.

e Quter solution:
x(t, €) = xO(t) + exV(t) + O().

® Use this expansion and equate the coefficients of the leading-order terms
to zero.

° =

) dx©
dt
xO(1) =1.

+x@ =0, telo,1],
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Numerical solution of ODEs

® |nner solution.

® Suppose that there is a boundary layer at t = 0 of width d(¢), and
introduce a stretched variable 7 = t/§.

® Look for an inner solution X(7,¢€) = x(t,¢).
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Numerical solution of ODEs

= X satisfies
e d*’X  2dX

2dr Tsdr X0
® Two possible dominant balances:

(i) 6 =1, leading to the outer solution;
(i) & = ¢, leading to the inner solution.

® = Boundary layer thickness: of the order of ¢, and the appropriate inner
variable: 7 = t/e.
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Numerical solution of ODEs

® Equation for X:

d’X  _dX

— +2— X =
dT2-+ dTﬂl_6 0,
X(0,¢€) = 0.

® Impose only the boundary condition at 7 = 0, since we do not expect the
inner expansion to be valid outside the boundary layer where t = O(e).

® Seek an inner expansion
X(r,€) = X (1) + exW(r) + O(¢?)

and find that

2 y(0) (0)
dX 2dX —o,
dr2 dr
X©0) =o.
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Numerical solution of ODEs

® General solution:
XO(r) =c(1—e),
c: arbitrary constant of integration.

® Determine the unknown constant ¢ by requiring that the inner solution
matches with the outer solution.

® Matching condition:

lim x©(t) = lim XO(r),

t—0t+ T—+4o00

= c=e'2
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Numerical solution of ODEs

e Asymptotic solution as € — 07

e'/?(1—e7?") ase— 0T with t/e fixed,
x(t,€) =

1—t)/2

el as ¢ — 01 with ¢ fixed.
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