Lecture 4: Numerical solution of ordinary differential equations

Habib Ammari

Department of Mathematics, ETH Zürich

Numerical solution of ODEs

- General explicit one-step method:
- Consistency;
- Stability;
- Convergence.
- High-order methods:
- Taylor methods;
- Integral equation method;
- Runge-Kutta methods.
- Multi-step methods.

Numerical solution of ODEs

- Stiff equations and systems.
- Perturbation theories for differential equations:
- Regular perturbation theory;
- Singular perturbation theory.

Numerical solution of ODEs

- Consistency, stability and convergence
- Consider

$$
\left\{\begin{aligned}
\frac{\mathrm{d} x}{\mathrm{~d} t} & =f(t, x), \quad t \in[0, T] \\
x(0) & =x_{0}, \quad x_{0} \in \mathbb{R}
\end{aligned}\right.
$$

- $f \in \mathcal{C}^{0}([0, t] \times \mathbb{R}):$ Lipschitz condition.
- Start at the initial time $t=0$;
- Introduce successive discretization points

$$
t_{0}=0<t_{1}<t_{2}<\ldots,
$$

continuing on until we reach the final time T.

- Uniform step size:

$$
\Delta t:=t_{k+1}-t_{k}>0
$$

does not dependent on k and assumed to be relatively small, with $t_{k}=k \Delta t$.

- Suppose that $K=T /(\Delta t)$: an integer.

Numerical solution of ODEs

- General explicit one-step method:

$$
x^{k+1}=x^{k}+\Delta t \Phi\left(t_{k}, x^{k}, \Delta t\right)
$$

for some continuous function $\Phi(t, x, h)$.

- Taking in succession $k=0,1, \ldots, K-1$, one-step at a time \Rightarrow the approximate values x^{k} of x at t_{k} : obtained.
- Explicit scheme: x^{k+1} obtained from $x^{k} ; x^{k+1}$ appears only on the left-hand side.

Numerical solution of ODEs

- Truncation error of the numerical scheme:

$$
T_{k}(\Delta t)=\frac{x\left(t_{k+1}\right)-x\left(t_{k}\right)}{\Delta t}-\Phi\left(t_{k}, x\left(t_{k}\right), \Delta t\right)
$$

- As $\Delta t \rightarrow 0, k \rightarrow+\infty, k \Delta t=t$,

$$
T_{k}(\Delta t) \rightarrow \frac{d x}{d t}-\Phi(t, x, 0)
$$

- DEFINITION: Consistency
- Numerical scheme consistent with the ODE if

$$
\Phi(t, x, 0)=f(t, x) \quad \text { for all } t \in[0, T] \text { and } x \in \mathbb{R}
$$

Numerical solution of ODEs

- DEFINITION: Stability
- Numerical scheme stable if Φ : Lipschitz continuous in x, i.e., there exist positive constants C_{Φ} and h_{0} s.t.

$$
|\Phi(t, x, h)-\Phi(t, y, h)| \leq C_{\Phi}|x-y|, t \in[0, T], h \in\left[0, h_{0}\right], x, y \in \mathbb{R}
$$

- Global error of the numerical scheme:

$$
e_{k}=x^{k}-x\left(t_{k}\right)
$$

- DEFINITION: Convergence
- Numerical scheme: convergent if

$$
\left|e_{k}\right| \rightarrow 0 \quad \text { as } \Delta t \rightarrow 0, k \rightarrow+\infty, k \Delta t=t \in[0, T]
$$

Numerical solution of ODEs

- THEOREM: Dahlquist-Lax equivalence theorem
- Numerical scheme: convergent iff consistent and stable.

Numerical solution of ODEs

- PROOF:

$$
x\left(t_{k+1}\right)-x\left(t_{k}\right)=\int_{t_{k}}^{t_{k+1}} f(s, x(s)) d s ;
$$

- \Rightarrow

$$
x\left(t_{k+1}\right)-x\left(t_{k}\right)=(\Delta t) f\left(t_{k}, x\left(t_{k}\right)\right)+\int_{t_{k}}^{t_{k+1}}\left[f(s, x(s))-f\left(t_{k}, x\left(t_{k}\right)\right)\right] d s
$$

- \Rightarrow

$$
\begin{aligned}
& \left|x\left(t_{k+1}\right)-x\left(t_{k}\right)-(\Delta t) f\left(t_{k}, x\left(t_{k}\right)\right)\right| \\
& \quad=\left|\int_{t_{k}}^{t_{k+1}}\left[f(s, x(s))-f\left(t_{k}, x\left(t_{k}\right)\right)\right] d s\right| \leq(\Delta t) \omega_{1}(\Delta t)
\end{aligned}
$$

Numerical solution of ODEs

- $\omega_{1}(\Delta t)$:

$$
\omega_{1}(\Delta t):=\sup \{|f(t, x(t))-f(s, x(s))|, 0 \leq s, t \leq T,|t-s| \leq \Delta t\}
$$

- $\omega_{1}(\Delta t) \rightarrow 0$ as $\Delta t \rightarrow 0$.
- If f : Lipschitz in t, then $\omega_{1}(\Delta t)=O(\Delta t)$.

Numerical solution of ODEs

- From

$$
e_{k+1}-e_{k}=x^{k+1}-x^{k}-\left(x\left(t_{k+1}\right)-x\left(t_{k}\right)\right)
$$

- \Rightarrow

$$
e_{k+1}-e_{k}=\Delta t \Phi\left(t_{k}, x^{k}, \Delta t\right)-\left(x\left(t_{k+1}\right)-x\left(t_{k}\right)\right)
$$

- Or equivalently,

$$
e_{k+1}-e_{k}=\Delta t\left[\Phi\left(t_{k}, x^{k}, \Delta t\right)-f\left(t_{k}, x\left(t_{k}\right)\right)\right]-\left[x\left(t_{k+1}\right)-x\left(t_{k}\right)-\Delta t f\left(t_{k}, x\left(t_{k}\right)\right)\right] .
$$

- Write

$$
\begin{aligned}
e_{k+1}-e_{k}= & \Delta t\left[\Phi\left(t_{k}, x^{k}, \Delta t\right)-\Phi\left(t_{k}, x\left(t_{k}\right), \Delta t\right)+\Phi\left(t_{k}, x\left(t_{k}\right), \Delta t\right)\right. \\
& \left.-f\left(t_{k}, x\left(t_{k}\right)\right)\right]-\left[x\left(t_{k+1}\right)-x\left(t_{k}\right)-\Delta t f\left(t_{k}, x\left(t_{k}\right)\right)\right] .
\end{aligned}
$$

Numerical solution of ODEs

- Let

$$
\omega_{2}(\Delta t):=\sup \{|\Phi(t, x, h)-f(t, x)|, t \in[0, T], x \in \mathbb{R}, 0<h \leq(\Delta t)\} .
$$

- Consistency \Rightarrow

$$
\left|\Phi\left(t_{k}, x\left(t_{k}\right), \Delta t\right)-f\left(t_{k}, x\left(t_{k}\right)\right)\right| \leq \omega_{2}(\Delta t) \rightarrow 0 \text { as } \Delta t \rightarrow 0
$$

- Stability condition \Rightarrow

$$
\left|\Phi\left(t_{k}, x^{k}, \Delta t\right)-\Phi\left(t_{k}, x\left(t_{k}\right), \Delta t\right)\right| \leq C_{\Phi}\left|e_{k}\right|
$$

Numerical solution of ODEs

- \Rightarrow

$$
\left|e_{k+1}\right| \leq\left(1+C_{\Phi} \Delta t\right)\left|e_{k}\right|+\Delta t \omega_{3}(\Delta t), \quad 0 \leq k \leq K-1 ;
$$

- $K=T /(\Delta t)$ and $\omega_{3}(\Delta t):=\omega_{1}(\Delta t)+\omega_{2}(\Delta t) \rightarrow 0$ as $\Delta t \rightarrow 0$.

Numerical solution of ODEs

- By induction,

$$
\left|e_{k+1}\right| \leq\left(1+C_{\Phi} \Delta t\right)^{k}\left|e_{0}\right|+(\Delta t) \omega_{3}(\Delta t) \sum_{l=0}^{k-1}\left(1+C_{\Phi} \Delta t\right)^{\prime}, \quad 0 \leq k \leq K
$$

$$
\sum_{l=0}^{k-1}\left(1+C_{\Phi} \Delta t\right)^{\prime}=\frac{\left(1+C_{\Phi} \Delta t\right)^{k}-1}{C_{\Phi} \Delta t}
$$

and

$$
\left(1+C_{\Phi} \Delta t\right)^{K} \leq\left(1+C_{\Phi} \frac{T}{K}\right)^{K} \leq e^{C_{\Phi} T} .
$$

- \Rightarrow

$$
\left|e_{k}\right| \leq e^{C_{\Phi} T}\left|e_{0}\right|+\frac{e^{C_{\Phi} T}-1}{C_{\Phi}} \omega_{3}(\Delta t)
$$

- If $e_{0}=0$, then as $\Delta t \rightarrow 0, k \rightarrow+\infty$ s.t. $k \Delta t=t \in[0, T]$

$$
\lim _{k \rightarrow+\infty}\left|e_{k}\right|=0
$$

Numerical solution of ODEs

- DEFINITION:
- An explicit one-step method: order p if there exist positive constants h_{0} and C s.t.

$$
\left|T_{k}(\Delta t)\right| \leq C(\Delta t)^{p}, \quad 0<\Delta t \leq h_{0}, k=0, \ldots, K-1
$$

$T_{k}(\Delta t)$: truncation error.

Numerical solution of ODEs

- If the explicit one-step method: stable \Rightarrow global error: bounded by the truncation error.
- PROPOSITION:
- Consider the explicit one-step scheme with Φ satisfying the stability condition.
- Suppose that $e_{0}=0$.
- Then

$$
\left|e_{k+1}\right| \leq \frac{\left(e^{C_{\Phi} T}-1\right)}{C_{\Phi}} \max _{0 \leq I \leq k}\left|T_{l}(\Delta t)\right| \quad \text { for } k=0, \ldots, K-1 ;
$$

- T_{l} : truncation error and e_{k} : global error.

Numerical solution of ODEs

- PROOF:

$$
e_{k+1}-e_{k}=-(\Delta t) T_{k}(\Delta t)+(\Delta t)\left[\Phi\left(t_{k}, x^{k}, \Delta t\right)-\Phi\left(t_{k}, x\left(t_{k}\right), \Delta t\right)\right]
$$

- \Rightarrow

$$
\begin{aligned}
\left|e_{k+1}\right| & \leq\left(1+C_{\Phi}(\Delta t)\right)\left|e_{k}\right|+(\Delta t)\left|T_{k}(\Delta t)\right| \\
& \leq\left(1+C_{\Phi}(\Delta t)\right)\left|e_{k}\right|+(\Delta t) \max _{0 \leq I \leq k}\left|T_{l}(\Delta t)\right|
\end{aligned}
$$

Numerical solution of ODEs

- Explicit Euler's method
- $\Phi(t, x, h)=f(t, x)$.
- Explicit Euler scheme:

$$
x^{k+1}=x^{k}+(\Delta t) f\left(t, x^{k}\right)
$$

Numerical solution of ODEs

- THEOREM:
- Suppose that f satisfies the Lipschitz condition;
- Suppose that f : Lipschitz with respect to t.
- Then the explicit Euler scheme: convergent and the global error e_{k} : of order Δt.
- If $f \in \mathcal{C}^{1}$, then the scheme: of order one.

Numerical solution of ODEs

- PROOF:
- f satisfies the Lipschitz condition \Rightarrow numerical scheme with $\Phi(t, x, h)=f(t, x)$: stable.
- $\Phi(t, x, 0)=f(t, x)$ for all $t \in[0, T]$ and $x \in \mathbb{R} \Rightarrow$ numerical scheme: consistent.
- \Rightarrow convergence.
- f : Lipschitz in $t \Rightarrow \omega_{1}(\Delta t)=O(\Delta t)$.
- $\omega_{2}(\Delta t)=0 \Rightarrow \omega_{3}(\Delta t)=O(\Delta t)$.
- $\Rightarrow\left|e_{k}\right|=O(\Delta t)$ for $1 \leq k \leq K$.

Numerical solution of ODEs

- $f \in \mathcal{C}^{1} \Rightarrow x \in \mathcal{C}^{2}$.
- Mean-value theorem \Rightarrow

$$
\begin{aligned}
& T_{k}(\Delta t)=\frac{1}{\Delta t}\left(x\left(t_{k+1}\right)-x\left(t_{k}\right)\right)-f\left(t_{k}, x\left(t_{k}\right)\right) \\
& =\frac{1}{\Delta t}\left(x\left(t_{k}\right)+(\Delta t) \frac{d x}{d t}\left(t_{k}\right)+\frac{(\Delta t)^{2}}{2} \frac{d^{2} x}{d t^{2}}(\tau)-x\left(t_{k}\right)\right)-f\left(t_{k}, x\left(t_{k}\right)\right) \\
& =\frac{\Delta t}{2} \frac{d^{2} x}{d t^{2}}(\tau)
\end{aligned}
$$

for some $\tau \in\left[t_{k}, t_{k+1}\right]$.

- \Rightarrow Scheme: first order.

Numerical solution of ODEs

- High-order methods:
- In general, the order of a numerical solution method governs both the accuracy of its approximations and the speed of convergence to the true solution as the step size $\Delta t \rightarrow 0$.
- Explicit Euler method: only a first order scheme;
- Devise simple numerical methods that enjoy a higher order of accuracy.
- The higher the order, the more accurate the numerical scheme, and hence the larger the step size that can be used to produce the solution to a desired accuracy.
- However, this should be balanced with the fact that higher order methods inevitably require more computational effort at each step.

Numerical solution of ODEs

- High-order methods:
- Taylor methods;
- Integral equation method;
- Runge-Kutta methods.

Numerical solution of ODEs

- Taylor methods
- Explicit Euler scheme: based on a first order Taylor approximation to the solution.
- Taylor expansion of the solution $x(t)$ at the discretization points t_{k+1} :

$$
x\left(t_{k+1}\right)=x\left(t_{k}\right)+(\Delta t) \frac{d x}{d t}\left(t_{k}\right)+\frac{(\Delta t)^{2}}{2} \frac{d^{2} x}{d t^{2}}\left(t_{k}\right)+\frac{(\Delta t)^{3}}{6} \frac{d^{3} x}{d t^{3}}\left(t_{k}\right)+\ldots
$$

- Evaluate the first derivative term by using the differential equation

$$
\frac{d x}{d t}=f(t, x)
$$

Numerical solution of ODEs

- Second derivative can be found by differentiating the equation with respect to t :

$$
\frac{d^{2} x}{d t^{2}}=\frac{d}{d t} f(t, x)=\frac{\partial f}{\partial t}(t, x)+\frac{\partial f}{\partial x}(t, x) \frac{d x}{d t}
$$

- Second order Taylor method
$(*) \quad x^{k+1}=x^{k}+(\Delta t) f\left(t_{k}, x^{k}\right)+\frac{(\Delta t)^{2}}{2}\left(\frac{\partial f}{\partial t}\left(t_{k}, x^{k}\right)+\frac{\partial f}{\partial x}\left(t_{k}, x^{k}\right) f\left(t_{k}, x^{k}\right)\right)$.

Numerical solution of ODEs

- Proposition:
- Suppose that $f \in \mathcal{C}^{2}$.
- Then (*): of second order.

Numerical solution of ODEs

- Proof:
- $f \in \mathcal{C}^{2} \Rightarrow x \in \mathcal{C}^{3}$.
- \Rightarrow truncation error T_{k} given by

$$
T_{k}(\Delta t)=\frac{(\Delta t)^{2}}{6} \frac{d^{3} x}{d t^{3}}(\tau)
$$

for some $\tau \in\left[t_{k}, t_{k+1}\right]$ and so, $(*)$: of second order.

Numerical solution of ODEs

- Drawbacks of higher order Taylor methods:
(i) Owing to their dependence upon the partial derivatives of f, f needs to be smooth;
(ii) Efficient evaluation of the terms in the Taylor approximation and avoidance of round off errors.

Numerical solution of ODEs

- Integral equation method
- Avoid the complications inherent in a direct Taylor expansion.
- $x(t)$ coincides with the solution to the integral equation

$$
x(t)=x_{0}+\int_{0}^{t} f(s, x(s)) d s, \quad t \in[0, T]
$$

Starting at the discretization point t_{k} instead of 0 , and integrating until time $t=t_{k+1}$ gives

$$
(* *) \quad x\left(t_{k+1}\right)=x\left(t_{k}\right)+\int_{t_{k}}^{t_{k+1}} f(s, x(s)) d s .
$$

- Implicitly computes the value of the solution at the subsequent discretization point.

Numerical solution of ODEs

- Compare formula $(* *)$ with the explicit Euler method

$$
x^{k+1}=x^{k}+(\Delta t) f\left(t_{k}, x^{k}\right)
$$

- \Rightarrow Approximation of the integral by

$$
\int_{t_{k}}^{t_{k+1}} f(s, x(s)) d s \approx(\Delta t) f\left(t_{k}, x\left(t_{k}\right)\right)
$$

- Left endpoint rule for numerical integration.

Numerical solution of ODEs

- Left endpoint rule for numerical integration:
- Left endpoint rule: not an especially accurate method of numerical integration.
- Better methods include the Trapezoid rule:

Numerical solution of ODEs

- Numerical integration formulas for continuous functions.
(i) Trapezoidal rule:

$$
\int_{t_{k}}^{t_{k+1}} g(s) d s \approx \frac{\Delta t}{2}\left(g\left(t_{k+1}\right)+g\left(t_{k}\right)\right)
$$

(ii) Simpson's rule:

$$
\int_{t_{k}}^{t_{k+1}} g(s) d s \approx \frac{\Delta t}{6}\left(g\left(t_{k+1}\right)+4 g\left(\frac{t_{k}+t_{k+1}}{2}\right)+g\left(t_{k}\right)\right)
$$

(iii) Trapezoidal rule: exact for polynomials of order one; Simpson's rule: exact for polynomials of second order.

Numerical solution of ODEs

- Use the more accurate Trapezoidal approximation

$$
\int_{t_{k}}^{t_{k+1}} f(s, x(s)) d s \approx \frac{(\Delta t)}{2}\left[f\left(t_{k}, x\left(t_{k}\right)\right)+f\left(t_{k+1}, x\left(t_{k+1}\right)\right)\right] .
$$

- Trapezoidal scheme:

$$
x^{k+1}=x^{k}+\frac{(\Delta t)}{2}\left[f\left(t_{k}, x^{k}\right)+f\left(t_{k+1}, x^{k+1}\right)\right]
$$

- Trapezoidal scheme: implicit numerical method.

Numerical solution of ODEs

- Proposition:
- Suppose that $f \in \mathcal{C}^{2}$ and

$$
(* * *) \quad \frac{(\Delta t) C_{f}}{2}<1 ;
$$

C_{f} : Lipschitz constant for f in x.

- Trapezoidal scheme: convergent and of second order.

Numerical solution of ODEs

- Proof:
- Consistency:

$$
\Phi(t, x, \Delta t):=\frac{1}{2}[f(t, x)+f(t+\Delta t, x+(\Delta t) \Phi(t, x, \Delta t))]
$$

- $\Delta t=0$.

Numerical solution of ODEs

- Stability:
-

$$
\begin{array}{r}
|\Phi(t, x, \Delta t)-\Phi(t, y, \Delta t)| \leq C_{f}|x-y| \\
+\frac{\Delta t}{2} C_{f}|\Phi(t, x, \Delta t)-\Phi(t, y, \Delta t)|
\end{array}
$$

- \Rightarrow

$$
\left(1-\frac{(\Delta t) C_{f}}{2}\right)|\Phi(t, x, \Delta t)-\Phi(t, y, \Delta t)| \leq C_{f}|x-y|
$$

- \Rightarrow Stability holds with

$$
C_{\Phi}=\frac{C_{f}}{1-\frac{(\Delta t) C_{f}}{2}}
$$

provided that Δt satisfies $(* * *)$.

Numerical solution of ODEs

- Second order scheme:
- By the mean-value theorem,

$$
\begin{aligned}
T_{k}(\Delta t)= & \frac{x\left(t_{k+1}\right)-x\left(t_{k}\right)}{\Delta t} \\
& -\frac{1}{2}\left[f\left(t_{k}, x\left(t_{k}\right)\right)+f\left(t_{k+1}, x\left(t_{k+1}\right)\right)\right] \\
= & -\frac{1}{12}(\Delta t)^{2} \frac{d^{3} x}{d t^{3}}(\tau),
\end{aligned}
$$

for some $\tau \in\left[t_{k}, t_{k+1}\right] \Rightarrow$ second order scheme, provided that $f \in \mathcal{C}^{2}$ (and consequently $x \in \mathcal{C}^{3}$).

Numerical solution of ODEs

- An alternative scheme: replace x^{k+1} by $x^{k}+(\Delta t) f\left(t_{k}, x^{k}\right)$.
- \Rightarrow Improved Euler scheme:

$$
x^{k+1}=x^{k}+\frac{(\Delta t)}{2}\left[f\left(t_{k}, x^{k}\right)+f\left(t_{k+1}, \mathbf{x}^{\mathbf{k}}+(\boldsymbol{\Delta} \mathbf{t}) \mathbf{f}\left(\mathbf{t}_{\mathbf{k}}, \mathbf{x}^{\mathbf{k}}\right)\right)\right] .
$$

- Proposition: Improved Euler scheme: convergent and of second order.
- Improved Euler scheme: performs comparably to the Trapezoidal scheme, and significantly better than the Euler scheme.
- Alternative numerical approximations to the integral equation \Rightarrow a range of numerical solution schemes.

Numerical solution of ODEs

- Midpoint rule:

$$
\int_{t_{k}}^{t_{k+1}} f(s, x(s)) d s \approx(\Delta t) f\left(t_{k}+\frac{\Delta t}{2}, x\left(t_{k}+\frac{\Delta t}{2}\right)\right)
$$

- Midpoint rule: same order of accuracy as the trapezoid rule.
- Midpoint scheme: approximate $x\left(t_{k}+\frac{\Delta t}{2}\right)$ by $x^{k}+\frac{\Delta t}{2} f\left(t_{k}, x^{k}\right)$,

$$
x^{k+1}=x^{k}+(\Delta t) f\left(t_{k}+\frac{\Delta t}{2}, x^{k}+\frac{\Delta t}{2} f\left(t_{k}, x^{k}\right)\right)
$$

- Midpoint scheme: of second order.

Numerical solution of ODEs

- Example of linear systems
- Consider the linear system of ODEs

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=A x(t), \quad t \in[0,+\infty[\\
x(0)=x_{0} \in \mathbb{R}^{d}
\end{array}\right.
$$

- $A \in \mathbb{M}_{d}(\mathbb{C})$: independent of t.
- DEFINITION:
- A one-step numerical scheme for solving the linear system of ODEs: stable if there exists a positive constant C_{0} s.t.

$$
\left|x^{k+1}\right| \leq C_{0}\left|x^{0}\right| \quad \text { for all } k \in \mathbb{N}
$$

Numerical solution of ODEs

- Consider the following schemes:
(i) Explicit Euler's scheme:

$$
x^{k+1}=x^{k}+(\Delta t) A x^{k}
$$

(ii) Implicit Euler's scheme:

$$
x^{k+1}=x^{k}+(\Delta t) A x^{k+1}
$$

(iii) Trapezoidal scheme:

$$
x^{k+1}=x^{k}+\frac{(\Delta t)}{2}\left[A x^{k}+A x^{k+1}\right]
$$

with $k \in \mathbb{N}$, and $x^{0}=x_{0}$.

Numerical solution of ODEs

- Proposition:

Suppose that $\Re \lambda_{j}<0$ for all j. The following results hold:
(i) Explicit Euler scheme: stable for Δt small enough;
(ii) Implicit Euler scheme: unconditionally stable;
(iii) Trapezoidal scheme: unconditionally stable.

Numerical solution of ODEs

- Proof:
- Consider the explicit Euler scheme. By a change of basis,

$$
\widetilde{x}^{k+1}=(I+\Delta t(D+N))^{k} \widetilde{x}^{0},
$$

where $\widetilde{x}^{k}=C x^{k}$.

- If $\widetilde{x}^{0} \in E_{j}$, then

$$
\widetilde{x}^{k}=\sum_{l=0}^{\min \{k, d\}} C_{k}^{\prime}\left(1+\Delta t \lambda_{j}\right)^{k-l}(\Delta t)^{\prime} N^{\prime} \widetilde{x}^{0},
$$

C_{k}^{l} : binomial coefficient.

Numerical solution of ODEs

- If $\left|1+(\Delta t) \lambda_{j}\right|<1$, then \widetilde{x}^{k} : bounded.
- If $\left|1+(\Delta t) \lambda_{j}\right|>1$, then one can find \widetilde{x}^{0} s.t. $\left|\widetilde{x}^{k}\right| \rightarrow+\infty$ (exponentially) as $k \rightarrow+\infty$.
- If $\left|1+(\Delta t) \lambda_{j}\right|=1$ and $N \neq 0$, then for all \widetilde{x}^{0} s.t. $N \widetilde{x}^{0} \neq 0, N^{2} \widetilde{x}^{0}=0$,

$$
\widetilde{x}^{k}=\left(1+(\Delta t) \lambda_{j}\right)^{k} \widetilde{x}^{0}+\left(1+(\Delta t) \lambda_{j}\right)^{k-1} k \Delta t N \widetilde{x}^{0}
$$

goes to infinity as $k \rightarrow+\infty$.

- Stability condition $\left|1+(\Delta t) \lambda_{j}\right|<1 \Leftrightarrow$

$$
\Delta t<-2 \frac{\Re \lambda_{j}}{\left|\lambda_{j}\right|^{2}},
$$

holds for Δt small enough.

Numerical solution of ODEs

- Implicit Euler scheme:

$$
\widetilde{x}^{k+1}=(I-\Delta t(D+N))^{-k} \widetilde{x}^{0} .
$$

- All the eigenvalues of the matrix $(I-\Delta t(D+N))^{-1}$: of modulus strictly smaller than 1.
- \Rightarrow Implicit Euler scheme: unconditionally stable.
- Trapezoidal scheme:

$$
\widetilde{x}^{k+1}=\left(I-\frac{(\Delta t)}{2}(D+N)\right)^{-k}\left(I+\frac{(\Delta t)}{2}(D+N)\right)^{k} \widetilde{x}^{0} .
$$

- Stability condition:

$$
\left|1+\frac{(\Delta t)}{2} \lambda_{j}\right|<\left|1-\frac{(\Delta t)}{2} \lambda_{j}\right|
$$

holds for all $\Delta t>0$ since $\Re \lambda_{j}<0$.

Numerical solution of ODEs

- REMARK: Explicit and implicit Euler schemes: of order one; Trapezoidal scheme: of order two.

Numerical solution of ODEs

- Runge-Kutta methods:
- By far the most popular and powerful general-purpose numerical methods for integrating ODEs.
- Idea behind: evaluate f at carefully chosen values of its arguments, t and x, in order to create an accurate approximation (as accurate as a higher-order Taylor expansion) of $x(t+\Delta t)$ without evaluating derivatives of f.

Numerical solution of ODEs

- Runge-Kutta schemes: derived by matching multivariable Taylor series expansions of $f(t, x)$ with the Taylor series expansion of $x(t+\Delta t)$.
- To find the right values of t and x at which to evaluate f :
- Take a Taylor expansion of f evaluated at these (unknown) values;
- Match the resulting numerical scheme to a Taylor series expansion of $x(t+\Delta t)$ around t.

Numerical solution of ODEs

- Generalization of Taylor's theorem to functions of two variables: THEOREM:
- $f(t, x) \in \mathcal{C}^{n+1}([0, T] \times \mathbb{R})$. Let $\left(t_{0}, x_{0}\right) \in[0, T] \times \mathbb{R}$.
- There exist $t_{0} \leq \tau \leq t, x_{0} \leq \xi \leq x$, s.t.

$$
f(t, x)=P_{n}(t, x)+R_{n}(t, x)
$$

- $P_{n}(t, x)$: nth Taylor polynomial of f around $\left(t_{0}, x_{0}\right)$;
- $R_{n}(t, x)$: remainder term associated with $P_{n}(t, x)$.

Numerical solution of ODEs

$$
\begin{aligned}
& P_{n}(t, x)=f\left(t_{0}, x_{0}\right)+\left[\left(t-t_{0}\right) \frac{\partial f}{\partial t}\left(t_{0}, x_{0}\right)+\left(x-x_{0}\right) \frac{\partial f}{\partial x}\left(t_{0}, x_{0}\right)\right] \\
& +\left[\frac{\left(t-t_{0}\right)^{2}}{2} \frac{\partial^{2} f}{\partial t^{2}}\left(t_{0}, x_{0}\right)+\left(t-t_{0}\right)\left(x-x_{0}\right) \frac{\partial^{2} f}{\partial t \partial x}\left(t_{0}, x_{0}\right)\right. \\
& \left.\quad+\frac{\left(x-x_{0}\right)^{2}}{2} \frac{\partial^{2} f}{\partial x^{2}}\left(t_{0}, x_{0}\right)\right] \\
& \ldots+\left[\frac{1}{n!} \sum_{j=0}^{n} C_{j}^{n}\left(t-t_{0}\right)^{n-j}\left(x-x_{0}\right)^{j} \frac{\partial^{n} f}{\partial t^{n-j} \partial x^{j}}\left(t_{0}, x_{0}\right)\right] ;
\end{aligned}
$$

$$
R_{n}(t, x)=\frac{1}{(n+1)!} \sum_{j=0}^{n+1} C_{j}^{n+1}\left(t-t_{0}\right)^{n+1-j}\left(x-x_{0}\right)^{j} \frac{\partial^{n+1} f}{\partial t^{n+1-j} \partial x^{j}}(\tau, \xi) .
$$

Numerical solution of ODEs

- Illustration: obtain a second-order accurate method (truncation error $\left.O\left((\Delta t)^{2}\right)\right)$.
- Match

$$
x+\Delta t f(t, x)+\frac{(\Delta t)^{2}}{2}\left[\frac{\partial f}{\partial t}(t, x)+\frac{\partial f}{\partial x}(t, x) f(t, x)\right]+\frac{(\Delta t)^{3}}{6} \frac{d^{2}}{d t^{2}}[f(\tau, x)]
$$

to

$$
x+(\Delta t) f\left(t+\alpha_{1}, x+\beta_{1}\right)
$$

$\tau \in[t, t+\Delta t]$ and α_{1} and β_{1} : to be found.

- Match

$$
f(t, x)+\frac{(\Delta t)}{2}\left[\frac{\partial f}{\partial t}(t, x)+\frac{\partial f}{\partial x}(t, x) f(t, x)\right]+\frac{(\Delta t)^{2}}{6} \frac{d^{2}}{d t^{2}}[f(t, x)]
$$

with $f\left(t+\alpha_{1}, x+\beta_{1}\right)$ at least up to terms of the order of $O(\Delta t)$.

Numerical solution of ODEs

- Multivariable version of Taylor's theorem to f,

$$
\begin{aligned}
& f\left(t+\alpha_{1}, x+\beta_{1}\right)=f(t, x)+\alpha_{1} \frac{\partial f}{\partial t}(t, x)+\beta_{1} \frac{\partial f}{\partial x}(t, x)+\frac{\alpha_{1}^{2}}{2} \frac{\partial^{2} f}{\partial t^{2}}(\tau, \xi) \\
& \quad+\alpha_{1} \beta_{1} \frac{\partial^{2} f}{\partial t \partial x}(\tau, \xi)+\frac{\beta_{1}^{2}}{2} \frac{\partial^{2} f}{\partial x^{2}}(\tau, \xi) \\
& t \leq \tau \leq t+\alpha_{1} \text { and } x \leq \xi \leq x+\beta_{1}
\end{aligned}
$$

- \Rightarrow

$$
\alpha_{1}=\frac{\Delta t}{2} \quad \text { and } \quad \beta_{1}=\frac{\Delta t}{2} f(t, x)
$$

- \Rightarrow Resulting numerical scheme: explicit midpoint method: the simplest example of a Runge-Kutta method of second order.
- Improved Euler method: also another often-used Runge-Kutta method.

Numerical solution of ODEs

- General Runge-Kutta method:

$$
x^{k+1}=x^{k}+\Delta t \sum_{i=1}^{m} c_{i} f\left(t_{i, k}, x_{i, k}\right)
$$

m : number of terms in the method.

- Each $t_{i, k}$ denotes a point in $\left[t_{k}, t_{k+1}\right]$.
- Second argument $x_{i, k} \approx x\left(t_{i, k}\right)$ can be viewed as an approximation to the solution at the point $t_{i, k}$.
- To construct an nth order Runge-Kutta method, we need to take at least $m \geq n$ terms.

Numerical solution of ODEs

- Best-known Runge-Kutta method: fourth-order Runge-Kutta method, which uses four evaluations of f during each step.

$$
\left\{\begin{array}{l}
\kappa_{1}:=f\left(t_{k}, x^{k}\right) \\
\kappa_{2}:=f\left(t_{k}+\frac{\Delta t}{2}, x^{k}+\frac{\Delta t}{2} \kappa_{1}\right) \\
\kappa_{3}:=f\left(t_{k}+\frac{\Delta t}{2}, x^{k}+\frac{\Delta t}{2} \kappa_{2}\right), \\
\kappa_{4}:=f\left(t_{k+1}, x^{k}+\Delta t \kappa_{3}\right) \\
x^{k+1}=x^{k}+\frac{(\Delta t)}{6}\left(\kappa_{1}+2 \kappa_{2}+2 \kappa_{3}+\kappa_{4}\right)
\end{array}\right.
$$

- Values of f at the midpoint in time: given four times as much weight as values at the endpoints t_{k} and t_{k+1} (similar to Simpson's rule from numerical integration).

Numerical solution of ODEs

- Construction of Runge-Kutta methods:
- Construct Runge-Kutta methods by generalizing collocation methods.
- Discuss their consistency, stability, and order.

Numerical solution of ODEs

- Collocation methods:
- \mathcal{P}_{m} : space of real polynomials of degree $\leq m$.
- Interpolating polynomial:
- Given a set of m distinct quadrature points $c_{1}<c_{2}<\ldots<c_{m}$ in \mathbb{R}, and corresponding data g_{1}, \ldots, g_{m};
- There exists a unique polynomial, $P(t) \in \mathcal{P}_{m-1}$ s.t.

$$
P\left(c_{i}\right)=g_{i}, i=1, \ldots, m
$$

Numerical solution of ODEs

- DEFINITION:
- Define the i th Lagrange interpolating polynomial $I_{i}(t)$, $i=1, \ldots, m$, for the set of quadrature points $\left\{c_{j}\right\}$ by

$$
l_{i}(t):=\prod_{j \neq i, j=1}^{m} \frac{t-c_{j}}{c_{i}-c_{j}} .
$$

- Set of Lagrange interpolating polynomials: form a basis of \mathcal{P}_{m-1};
- Interpolating polynomial P corresponding to the data $\left\{g_{j}\right\}$ given by

$$
P(t):=\sum_{i=1}^{m} g_{i} l_{i}(t)
$$

Numerical solution of ODEs

- Consider a smooth function g on $[0,1]$.
- Approximate the integral of g on $[0,1]$ by exactly integrating the Lagrange interpolating polynomial of order $m-1$ based on m quadrature points $0 \leq c_{1}<c_{2}<\ldots<c_{m} \leq 1$.
- Data: values of g at the quadrature points $g_{i}=g\left(c_{i}\right), i=1, \ldots, m$.

Numerical solution of ODEs

- Define the weights

$$
b_{i}=\int_{0}^{1} l_{i}(s) d s
$$

- Quadrature formula:

$$
\int_{0}^{1} g(s) d s \approx \int_{0}^{1} \sum_{i=1}^{m} g_{i} l_{i}(s) d s=\sum_{i=1}^{m} b_{i} g\left(c_{i}\right)
$$

Numerical solution of ODEs

- f : smooth function on $[0, T] ; t_{k}=k \Delta t$ for $k=0, \ldots, K=T /(\Delta t)$: discretization points in $[0, T]$.
- $\int_{t_{k}}^{t_{k+1}} f(s) d s$ can be approximated by

$$
\int_{t_{k}}^{t_{k+1}} f(s) d s=(\Delta t) \int_{0}^{1} f\left(t_{k}+\Delta t \tau\right) d \tau \approx(\Delta t) \sum_{i=1}^{m} b_{i} f\left(t_{k}+(\Delta t) c_{i}\right)
$$

Numerical solution of ODEs

- x : polynomial of degree m satisfying

$$
\left\{\begin{array}{l}
x(0)=x_{0} \\
\frac{d x}{d t}\left(c_{i} \Delta t\right)=F_{i}
\end{array}\right.
$$

$F_{i} \in \mathbb{R}, i=1, \ldots, m$.

- Lagrange interpolation formula \Rightarrow for t in the first time-step interval $[0, \Delta t]$,

$$
\frac{d x}{d t}(t)=\sum_{i=1}^{m} F_{i} l_{i}\left(\frac{t}{\Delta t}\right)
$$

Numerical solution of ODEs

- Integrating over the intervals $\left[0, c_{i} \Delta t\right] \Rightarrow$

$$
x\left(c_{i} \Delta t\right)=x_{0}+(\Delta t) \sum_{j=1}^{m} F_{j} \int_{0}^{c_{i}} l_{j}(s) d s=x_{0}+(\Delta t) \sum_{j=1}^{m} a_{i j} F_{j}
$$

for $i=1, \ldots, m$, with

$$
a_{i j}:=\int_{0}^{c_{i}} I_{j}(s) d s
$$

- Integrating over $[0, \Delta t] \Rightarrow$

$$
x(\Delta t)=x_{0}+(\Delta t) \sum_{i=1}^{m} F_{i} \int_{0}^{1} I_{i}(s) d s=x_{0}+(\Delta t) \sum_{i=1}^{m} b_{i} F_{i} .
$$

Numerical solution of ODEs

- Writing $d x / d t=f(x(t))$, on the first time step interval $[0, \Delta t]$,

$$
\left\{\begin{array}{l}
F_{i}=f\left(x_{0}+(\Delta t) \sum_{j=1}^{m} a_{i j} F_{j}\right), \quad i=1, \ldots, m \\
x(\Delta t)=x_{0}+(\Delta t) \sum_{i=1}^{m} b_{i} F_{i}
\end{array}\right.
$$

- Similarly, we have on $\left[t_{k}, t_{k+1}\right]$

$$
\left\{\begin{array}{l}
F_{i, k}=f\left(x\left(t_{k}\right)+(\Delta t) \sum_{j=1}^{m} a_{i j} F_{j, k}\right), \quad i=1, \ldots, m \\
x\left(t_{k+1}\right)=x\left(t_{k}\right)+(\Delta t) \sum_{i=1}^{m} b_{i} F_{i, k}
\end{array}\right.
$$

- In the collocation method: one first solves the coupled nonlinear system to obtain $F_{i, k}, i=1, \ldots, m$, and then computes $x\left(t_{k+1}\right)$ from $x\left(t_{k}\right)$.

Numerical solution of ODEs

- REMARK:

$$
t^{I-1}=\sum_{i=1}^{m} c_{i}^{\prime-1} l_{i}(t), \quad t \in[0,1], I=1, \ldots, m
$$

- \Rightarrow

$$
\sum_{i=1}^{m} b_{i} c_{i}^{l-1}=\frac{1}{l}, \quad I=1, \ldots, m
$$

and

$$
\sum_{j=1}^{m} a_{i j} c_{j}^{I-1}=\frac{c_{i}^{l}}{l}, \quad i, l=1, \ldots, m
$$

Numerical solution of ODEs

- Runge-Kutta methods as generalized collocation methods
- In the collocation method, the coefficients b_{i} and $a_{i j}$: defined by certain integrals of the Lagrange interpolating polynomials associated with a chosen set of quadrature nodes c_{i}, $i=1, \ldots, m$.
- Natural generalization of collocation methods: obtained by allowing the coefficients c_{i}, b_{i}, and $a_{i j}$ to take arbitrary values, not necessary related to quadrature formulas.

Numerical solution of ODEs

- No longer assume the c_{i} to be distinct.
- However, assume that

$$
c_{i}=\sum_{j=1}^{m} a_{i j}, \quad i=1, \ldots, m
$$

- \Rightarrow Class of Runge-Kutta methods for solving the ODE,

$$
\left\{\begin{array}{l}
F_{i, k}=f\left(t_{i, k}, x^{k}+(\Delta t) \sum_{j=1}^{m} a_{i j} F_{j, k}\right), \\
x^{k+1}=x^{k}+(\Delta t) \sum_{i=1}^{m} b_{i} F_{i, k},
\end{array}\right.
$$

$t_{i, k}=t_{k}+c_{i} \Delta t$, or equivalently,

$$
\left\{\begin{array}{l}
x_{i, k}=x^{k}+(\Delta t) \sum_{j=1}^{m} a_{i j} f\left(t_{j, k}, x_{j, k}\right) \\
x^{k+1}=x^{k}+(\Delta t) \sum_{i=1}^{m} b_{i} f\left(t_{i, k}, x_{i, k}\right)
\end{array}\right.
$$

Numerical solution of ODEs

- Let

$$
\kappa_{j}:=f\left(t+c_{j} \Delta t, x_{j}\right) ;
$$

- Define Φ by

$$
\left\{\begin{array}{l}
x_{i}=x+(\Delta t) \sum_{j=1}^{m} a_{i j} \kappa_{j}, \\
\Phi(t, x, \Delta t)=\sum_{i=1}^{m} b_{i} f\left(t+c_{i} \Delta t, x_{i}\right)
\end{array}\right.
$$

- \Rightarrow One step method.
- If $a_{i j}=0$ for $j \geq i \Rightarrow$ scheme: explicit.

Numerical solution of ODEs

- EXAMPLES:
- Explicit Euler's method and Trapezoidal scheme: Runge-Kutta methods.
- Explicit Euler's method: $m=1, b_{1}=1, a_{11}=0$.

Numerical solution of ODEs

- Trapezoidal scheme:

$$
m=2, b_{1}=b_{2}=1 / 2, a_{11}=a_{12}=0, a_{21}=a_{22}=1 / 2
$$

Numerical solution of ODEs

- Fourth-order Runge-Kutta method: $m=4, c_{1}=0, c_{2}=c_{3}=1 / 2, c_{4}=$ $1, b_{1}=1 / 6, b_{2}=b_{3}=1 / 3, b_{4}=1 / 6, a_{21}=a_{32}=1 / 2, a_{43}=1$, and all the other $a_{i j}$ entries are zero.

Numerical solution of ODEs

- Consistency, stability, convergence, and order of Runge-Kutta methods
- Runge-Kutta scheme: consistent iff

$$
\sum_{j=1}^{m} b_{j}=1
$$

Numerical solution of ODEs

- Stability:
- $|A|=\left(\left|a_{i j}\right|\right)_{i, j=1}^{m}$.
- Spectral radius $\rho(|A|)$ of the matrix $|A|$:

$$
\rho(|A|):=\max \left\{\left|\lambda_{j}\right|, \lambda_{j}: \text { eigenvalue of }|A|\right\} .
$$

Numerical solution of ODEs

- THEOREM:
- C_{f} : Lipschitz constant for f.
- Suppose

$$
(\Delta t) C_{f} \rho(|A|)<1
$$

- Then the Runge-Kutta method: stable.

Numerical solution of ODEs

- PROOF:

$$
\Phi(t, x, \Delta t)-\Phi(t, y, \Delta t)=\sum_{i=1}^{m} b_{i}\left[f\left(t+c_{i} \Delta t, x_{i}\right)-f\left(t+c_{i} \Delta t, y_{i}\right)\right]
$$

with

$$
x_{i}=x+(\Delta t) \sum_{j=1}^{m} a_{i j} f\left(t+c_{j} \Delta t, x_{j}\right)
$$

and

$$
y_{i}=y+(\Delta t) \sum_{j=1}^{m} a_{i j} f\left(t+c_{j} \Delta t, y_{j}\right)
$$

Numerical solution of ODEs

- \Rightarrow

$$
x_{i}-y_{i}=x-y+(\Delta t) \sum_{j=1}^{m} a_{i j}\left[f\left(t+c_{j} \Delta t, x_{j}\right)-f\left(t+c_{j} \Delta t, y_{j}\right)\right]
$$

- \Rightarrow For $i=1, \ldots, m$,

$$
\left|x_{i}-y_{i}\right| \leq|x-y|+(\Delta t) C_{f} \sum_{j=1}^{m}\left|a_{i j}\right|\left|x_{j}-y_{j}\right|
$$

Numerical solution of ODEs

- X and Y :

$$
X=\left[\begin{array}{c}
\left|x_{1}-y_{1}\right| \\
\vdots \\
\left|x_{m}-y_{m}\right|
\end{array}\right] \quad \text { and } \quad Y=\left[\begin{array}{c}
|x-y| \\
\vdots \\
|x-y|
\end{array}\right] .
$$

- $X \leq Y+(\Delta t) C_{f}|A| X, \Rightarrow$

$$
X \leq\left(I-(\Delta t) C_{f}|A|\right)^{-1} Y,
$$

provided that $(\Delta t) C_{f} \rho(|A|)<1$.

- \Rightarrow stability of the Runge-Kutta scheme.

Numerical solution of ODEs

- Dahlquist-Lax equivalence theorem \Rightarrow Runge-Kutta scheme: convergent provided that $\sum_{j=1}^{m} b_{j}=1$ and $(\Delta t) C_{f} \rho(|A|)<1$ hold.

Numerical solution of ODEs

- Order of the Runge-Kutta scheme: compute the order as $\Delta t \rightarrow 0$ of the truncation error

$$
T_{k}(\Delta t)=\frac{x\left(t_{k+1}\right)-x\left(t_{k}\right)}{\Delta t}-\Phi\left(t_{k}, x\left(t_{k}\right), \Delta t\right) .
$$

- Write

$$
T_{k}(\Delta t)=\frac{x\left(t_{k+1}\right)-x\left(t_{k}\right)}{\Delta t}-\sum_{i=1}^{m} b_{i} f\left(t_{k}+c_{i} \Delta t, x\left(t_{k}\right)+\Delta t \sum_{j=1}^{m} a_{i j} \kappa_{j}\right)
$$

- Suppose that f : smooth enough \Rightarrow

$$
\begin{aligned}
& f\left(t_{k}+c_{i} \Delta t, x\left(t_{k}\right)+\Delta t \sum_{j=1}^{m} a_{i j} \kappa_{j}\right) \\
& =f\left(t_{k}, x\left(t_{k}\right)\right)+\Delta t\left[c_{i} \frac{\partial f}{\partial t}\left(t_{k}, x\left(t_{k}\right)\right)+\left(\sum_{j=1} a_{i j} \kappa_{j}\right) \frac{\partial f}{\partial x}\left(t_{k}, x\left(t_{k}\right)\right)\right] \\
& \quad+O\left((\Delta t)^{2}\right)
\end{aligned}
$$

Numerical solution of ODEs

$$
\sum_{j=1} a_{i j} k_{j}=\left(\sum_{j=1} a_{i j}\right) f\left(t_{k}, x\left(t_{k}\right)\right)+O(\Delta t)=c_{i} f\left(t_{k}, x\left(t_{k}\right)\right)+O(\Delta t) .
$$

Numerical solution of ODEs

- \Rightarrow

$$
\begin{aligned}
& f\left(t_{k}+c_{i} \Delta t, x\left(t_{k}\right)+\Delta t \sum_{j=1}^{m} a_{i j} \kappa_{j}\right) \\
& =f\left(t_{k}, x\left(t_{k}\right)\right)+\Delta t c_{i}\left[\frac{\partial f}{\partial t}\left(t_{k}, x\left(t_{k}\right)\right)+\frac{\partial f}{\partial x}\left(t_{k}, x\left(t_{k}\right)\right) f\left(t_{k}, x\left(t_{k}\right)\right)\right] \\
& \quad+O\left((\Delta t)^{2}\right)
\end{aligned}
$$

Numerical solution of ODEs

- THEOREM:
- Assume that f : smooth enough.
- Then the Runge-Kutta scheme: of order 2 provided that the conditions

$$
\sum_{j=1}^{m} b_{j}=1
$$

and

$$
\sum_{i=1}^{m} b_{i} c_{i}=\frac{1}{2}
$$

hold.

Numerical solution of ODEs

- Higher-order Taylor expansions \Rightarrow
- THEOREM:
- Assume that f : smooth enough.
- Then the Runge-Kutta scheme: of order 3 provided that the conditions

$$
\begin{aligned}
\sum_{j=1}^{m} b_{j} & =1 \\
\sum_{i=1}^{m} b_{i} c_{i} & =\frac{1}{2}
\end{aligned}
$$

and

$$
\sum_{i=1}^{m} b_{i} c_{i}^{2}=\frac{1}{3}, \quad \sum_{i=1}^{m} \sum_{j=1}^{m} b_{i} a_{i j} c_{j}=\frac{1}{6}
$$

hold.

Numerical solution of ODEs

- Of Order 4 provided that in addition

$$
\begin{aligned}
& \sum_{i=1}^{m} b_{i} c_{i}^{3}=\frac{1}{4}, \quad \sum_{i=1}^{m} \sum_{j=1}^{m} b_{i} c_{i} a_{i j} c_{j}=\frac{1}{8}, \quad \sum_{i=1}^{m} \sum_{j=1}^{m} b_{i} c_{i} a_{i j} c_{j}^{2}=\frac{1}{12}, \\
& \quad \sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{l=1}^{m} b_{i} a_{i j} a_{j l} c_{l}=\frac{1}{24}
\end{aligned}
$$

hold.

- The (fourth-order) Runge-Kutta scheme: of order 4.

Numerical solution of ODEs

- Multi-step methods
- Runge-Kutta methods: improvement over Euler's methods in terms of accuracy, but achieved by investing additional computational effort.
- The fourth-order Runge-Kutta method involves four function evaluations per step.

Numerical solution of ODEs

- For comparison, by considering three consecutive points t_{k-1}, t_{k}, t_{k+1}, integrating the differential equation between t_{k-1} and t_{k+1}, and applying Simpson's rule to approximate the resulting integral yields

$$
\begin{aligned}
& x\left(t_{k+1}\right)=x\left(t_{k-1}\right)+\int_{t_{k-1}}^{t_{k+1}} f(s, x(s)) d s \\
& \quad \approx x\left(t_{k-1}\right)+\frac{(\Delta t)}{3}\left[f\left(t_{k-1}, x\left(t_{k-1}\right)\right)+4 f\left(t_{k}, x\left(t_{k}\right)\right)+f\left(t_{k+1}, x\left(t_{k+1}\right)\right)\right] \\
& \Rightarrow \\
& \quad x^{k+1}=x^{k-1}+\frac{(\Delta t)}{3}\left[f\left(t_{k-1}, x^{k-1}\right)+4 f\left(t_{k}, x^{k}\right)+f\left(t_{k+1}, x^{k+1}\right)\right]
\end{aligned}
$$

- Need two preceding values, x^{k} and x^{k-1} in order to calculate x^{k+1} : two-step method.
- In contrast with the one-step methods: only a single value of x^{k} required to compute the next approximation x^{k+1}.

Numerical solution of ODEs

- General n-step method:

$$
\sum_{j=0}^{n} \alpha_{j} x^{k+j}=(\Delta t) \sum_{j=0}^{n} \beta_{j} f\left(t_{k+j}, x^{k+j}\right)
$$

α_{j} and β_{j} : real constants and $\alpha_{n} \neq 0$.

- If $\beta_{n}=0$, then x^{k+n} : obtained explicitly from previous values of x^{j} and $f\left(t_{j}, x^{j}\right) \Rightarrow n$-step method: explicit. Otherwise, the n-step method: implicit.

Numerical solution of ODEs

- EXAMPLE:
(i) Two-step Adams-Bashforth method: explicit two-step method

$$
x^{k+2}=x^{k+1}+\frac{(\Delta t)}{2}\left[3 f\left(t_{k+1}, x^{k+1}\right)-f\left(t_{k}, x^{k}\right)\right]
$$

(ii) Three-step Adams-Bashforth method: explicit three-step method

$$
x^{k+3}=x^{k+2}+\frac{(\Delta t)}{12}\left[23 f\left(t_{k+2}, x^{k+2}\right)-16 f\left(t_{k+1}, x^{k+1}\right)+f\left(t_{k}, x^{k}\right)\right]
$$

Numerical solution of ODEs

(iii) Four-step Adams-Bashforth method: explicit four-step method

$$
\begin{aligned}
& x^{k+4}=x^{k+3}+\frac{(\Delta t)}{24}\left[55 f\left(t_{k+3}, x^{k+3}\right)-59 f\left(t_{k+2}, x^{k+2}\right)\right. \\
& \left.\quad+37 f\left(t_{k+1}, x^{k+1}\right)-9 f\left(t_{k}, x^{k}\right)\right]
\end{aligned}
$$

(iv) Two-step Adams-Moulton method: implicit two-step method

$$
x^{k+2}=x^{k+1}+\frac{(\Delta t)}{12}\left[5 f\left(t_{k+2}, x^{k+2}\right)+8 f\left(t_{k+1}, x^{k+1}\right)+f\left(t_{k}, x^{k}\right)\right]
$$

(v) Three-step Adams-Moulton method: implicit three-step method

$$
x^{k+3}=x^{k+2}+\frac{(\Delta t)}{24}\left[9 f\left(t_{k+3}, x^{k+3}\right)+19 f\left(t_{k+2}, x^{k+2}\right)-5 f\left(t_{k+1}, x^{k+1}\right)-9 f\left(t_{k}, x^{k}\right)\right] .
$$

Numerical solution of ODEs

- Construction of linear multi-step methods
- Suppose that $x^{k}, k \in \mathbb{N}$: sequence of real numbers.
- Shift operator E, forward difference operator Δ_{+}and backward difference operator Δ_{-}:

$$
E: x^{k} \mapsto x^{k+1}, \quad \Delta_{+}: x^{k} \mapsto x^{k+1}-x^{k}, \quad \Delta_{-}: x^{k} \mapsto x^{k}-x^{k-1} .
$$

- $\Delta_{+}=E-I$ and $\Delta_{-}=I-E^{-1} \Rightarrow$ for any $n \in \mathbb{N}$,

$$
(E-I)^{n}=\sum_{j=0}^{n}(-1)^{j} C_{j}^{n} E^{n-j}
$$

and

$$
\left(I-E^{-1}\right)^{n}=\sum_{j=0}^{n}(-1)^{j} C_{j}^{n} E^{-j}
$$

Numerical solution of ODEs

- \Rightarrow

$$
\Delta_{+}^{n} x^{k}=\sum_{j=0}^{n}(-1)^{j} C_{j}^{n} x^{k+n-j}
$$

and

$$
\Delta_{-}^{n} x^{k}=\sum_{j=0}^{n}(-1)^{j} C_{j}^{n} x^{k-j}
$$

Numerical solution of ODEs

- $y(t) \in \mathcal{C}^{\infty}(\mathbb{R}) ; t_{k}=k \Delta t, \Delta t>0$.
- Taylor series \Rightarrow for any $s \in \mathbb{N}$,

$$
E^{s} y\left(t_{k}\right)=y\left(t_{k}+s \Delta t\right)=\left(\sum_{l=0}^{+\infty} \frac{1}{1!}\left(s \Delta t \frac{\partial}{\partial t}\right)^{\prime} y\right)\left(t_{k}\right)=\left(e^{s(\Delta t) \frac{\partial}{\partial t}} y\right)\left(t_{k}\right)
$$

- \Rightarrow

$$
E^{s}=e^{s(\Delta t) \frac{\partial}{\partial t}}
$$

- Formally,

$$
(\Delta t) \frac{\partial}{\partial t}=\ln E=-\ln \left(I-\Delta_{-}\right)=\Delta_{-}+\frac{1}{2} \Delta_{-}^{2}+\frac{1}{3} \Delta_{-}^{3}+\ldots
$$

Numerical solution of ODEs

- $x(t)$: solution of ODE:

$$
(\Delta t) f\left(t_{k}, x\left(t_{k}\right)\right)=\left(\Delta_{-}+\frac{1}{2} \Delta_{-}^{2}+\frac{1}{3} \Delta_{-}^{3}+\ldots\right) x\left(t_{k}\right)
$$

- Successive truncation of the infinite series \Rightarrow

$$
\begin{aligned}
& x^{k}-x^{k-1}=(\Delta t) f\left(t_{k}, x^{k}\right) \\
& \frac{3}{2} x^{k}-2 x^{k-1}+\frac{1}{2} x^{k-2}=(\Delta t) f\left(t_{k}, x^{k}\right) \\
& \frac{11}{6} x^{k}-3 x^{k-1}+\frac{3}{2} x^{k-2}-\frac{1}{3} x^{k-3}=(\Delta t) f\left(t_{k}, x^{k}\right)
\end{aligned}
$$

and so on.

- Class of implicit multi-step methods: backward differentiation formulas.

Numerical solution of ODEs

- Similarly,

$$
E^{-1}\left((\Delta t) \frac{\partial}{\partial t}\right)=(\Delta t) \frac{\partial}{\partial t} E^{-1}=-\left(I-\Delta_{-}\right) \ln \left(I-\Delta_{-}\right) .
$$

- \Rightarrow

$$
\left((\Delta t) \frac{\partial}{\partial t}\right)=-E\left(I-\Delta_{-}\right) \ln \left(I-\Delta_{-}\right)=-\left(I-\Delta_{-}\right) \ln \left(I-\Delta_{-}\right) E .
$$

- \Rightarrow

$$
(\Delta t) f\left(t_{k}, x\left(t_{k}\right)\right)=\left(\Delta_{-}-\frac{1}{2} \Delta_{-}^{2}-\frac{1}{6} \Delta_{-}^{3}+\ldots\right) \times\left(t_{k+1}\right) .
$$

Numerical solution of ODEs

- Successive truncation of the infinite series \Rightarrow explicit numerical schemes:

$$
\begin{aligned}
& x^{k+1}-x^{k}=(\Delta t) f\left(t_{k}, x^{k}\right) \\
& \frac{1}{2} x^{k+1}-\frac{1}{2} x^{k-1}=(\Delta t) f\left(t_{k}, x^{k}\right) \\
& \frac{1}{3} x^{k+1}+\frac{1}{2} x^{k}-x^{k-1}+\frac{1}{6} x^{k-2}=(\Delta t) f\left(t_{k}, x^{k}\right)
\end{aligned}
$$

- The first of these numerical scheme: explicit Euler method, while the second: explicit mid-point method.

Numerical solution of ODEs

- Construct further classes of multi-step methods:
- For $y \in \mathcal{C}^{\infty}$,

$$
D^{-1} y\left(t_{k}\right)=y\left(t_{0}\right)+\int_{t_{0}}^{t_{k}} y(s) d s
$$

and

$$
\begin{gathered}
(E-I) D^{-1} y\left(t_{k}\right)=\int_{t_{k}}^{t_{k+1}} y(s) d s \\
(E-I) D^{-1}=\Delta_{+} D^{-1}=E \Delta_{-} D^{-1}=(\Delta t) E \Delta_{-}((\Delta t) D)^{-1}
\end{gathered}
$$

Numerical solution of ODEs

- \Rightarrow

$$
(E-I) D^{-1}=-(\Delta t) E \Delta_{-}\left(\ln \left(I-\Delta_{-}\right)\right)^{-1}
$$

Numerical solution of ODEs

$$
(E-I) D^{-1}=E \Delta_{-} D^{-1}=\Delta_{-} E D^{-1}=\Delta_{-}\left(D E^{-1}\right)^{-1}=\left(\Delta_{t}\right) \Delta_{-}\left((\Delta t) D E^{-1}\right)^{-1} .
$$

- \Rightarrow

$$
(E-I) D^{-1}=-(\Delta t) \Delta_{-}\left(\left(I-\Delta_{-}\right) \ln \left(I-\Delta_{-}\right)\right)^{-1}
$$

Numerical solution of ODEs

$$
x\left(t_{k+1}\right)-x\left(t_{k}\right)=\int_{t_{k}}^{t_{k+1}} f(s, x(s)) d s=(E-I) D^{-1} f\left(t_{k}, x\left(t_{k}\right)\right)
$$

- \Rightarrow

$$
x\left(t_{k+1}\right)-x\left(t_{k}\right)=\left\{\begin{array}{l}
-(\Delta t) \Delta_{-}\left(\left(I-\Delta_{-}\right) \ln \left(I-\Delta_{-}\right)\right)^{-1} f\left(t_{k}, x\left(t_{k}\right)\right) \\
-(\Delta t) E \Delta_{-}\left(\ln \left(I-\Delta_{-}\right)\right)^{-1} f\left(t_{k}, x\left(t_{k}\right)\right)
\end{array}\right.
$$

Numerical solution of ODEs

- Expand $\ln \left(I-\Delta_{-}\right)$into a Taylor series on the right-hand side \Rightarrow

$$
x\left(t_{k+1}\right)-x\left(t_{k}\right)=(\Delta t)\left[I+\frac{1}{2} \Delta_{-}+\frac{5}{12} \Delta_{-}^{2}+\frac{3}{8} \Delta_{-}^{3}+\ldots\right] f\left(t_{k}, x\left(t_{k}\right)\right)
$$

and

$$
x\left(t_{k+1}\right)-x\left(t_{k}\right)=(\Delta t)\left[I-\frac{1}{2} \Delta_{-}-\frac{1}{12} \Delta_{-}^{2}-\frac{1}{24} \Delta_{-}^{3}+\ldots\right] f\left(t_{k+1}, x\left(t_{k+1}\right)\right)
$$

- Successive truncations \Rightarrow families of (explicit) Adams-Bashforth methods and of (implicit) Adams-Moulton methods.

Numerical solution of ODEs

- Consistency, stability, and convergence
- Introduce the concepts of consistency, stability, and convergence for analyzing linear multi-step methods.

Numerical solution of ODEs

- DEFINITION: Consistency
- The n-step method: consistent with the ODE if the truncation error defined by

$$
T_{k}=\frac{\sum_{j=0}^{n}\left[\alpha_{j} x\left(t_{k+j}\right)-(\Delta t) \beta_{j} \frac{d x}{d t}\left(t_{k+j}\right)\right]}{(\Delta t) \sum_{j=0}^{n} \beta_{j}}
$$

is s.t. for any $\epsilon>0$ there exists h_{0} for which

$$
\left|T_{k}\right| \leq \epsilon \quad \text { for } 0<\Delta t \leq h_{0}
$$

and any $(n+1)$ points $\left(\left(t_{j}, x\left(t_{j}\right)\right), \ldots,\left(t_{j+n}, x\left(t_{j+n}\right)\right)\right)$ on any solution $x(t)$.

Numerical solution of ODEs

- DEFINITION: Stability
- The n-step method: stable if there exists a constant C s.t., for any two sequences $\left(x^{k}\right)$ and $\left(\widetilde{x}^{k}\right)$ which have been generated by the same formulas but different initial data $x^{0}, x^{1}, \ldots, x^{k-1}$ and $\widetilde{x}^{0}, \widetilde{x}^{1}, \ldots, \widetilde{x}^{k-1}$, respectively,

$$
\begin{aligned}
& \left|x^{k}-\widetilde{x}^{k}\right| \leq C \max \left\{\left|x^{0}-\widetilde{x}^{0}\right|,\left|x^{1}-\widetilde{x}^{1}\right|, \ldots,\left|x^{k-1}-\widetilde{x}^{k-1}\right|\right\} \\
& \text { as } \Delta t \rightarrow 0
\end{aligned}
$$

Numerical solution of ODEs

- THEOREM: Convergence
- Suppose that the n-step method: consistent with the ODE.
- Stability condition: necessary and sufficient for the convergence.
- If $x \in \mathcal{C}^{p+1}$ and the truncation error $O\left((\Delta t)^{p}\right)$, then the global error $e_{k}=x\left(t_{k}\right)-x^{k}: O\left((\Delta t)^{p}\right)$.

Numerical solution of ODEs

- Stiff equations and systems:
- Let $\epsilon>0$: small parameter. Consider the initial value problem

$$
\left\{\begin{aligned}
\frac{\mathrm{d} x(t)}{\mathrm{d} t} & =-\frac{1}{\epsilon} x(t), \quad t \in[0, T] \\
x(0) & =1,
\end{aligned}\right.
$$

- Exponential solution $x(t)=e^{-t / \epsilon}$.
- Explicit Euler method with step size Δt :

$$
x^{k+1}=\left(1-\frac{\Delta t}{\epsilon}\right) x^{k}, \quad x^{0}=1
$$

with solution

$$
x^{k}=\left(1-\frac{\Delta t}{\epsilon}\right)^{k}
$$

Numerical solution of ODEs

- $\epsilon>0 \Rightarrow$ exact solution: exponentially decaying and positive.
- If $1-\frac{\Delta t}{\epsilon}<-1$, then the iterates grow exponentially fast in magnitude, with alternating signs.
- Numerical solution: nowhere close to the true solution.
- If $-1<1-\frac{\Delta t}{\epsilon}<0$, then the numerical solution decays in magnitude, but continue to alternate between positive and negative values.
- To correctly model the qualitative features of the solution and obtain a numerically accurate solution: choose the step size Δt so as to ensure that $1-\frac{\Delta t}{\epsilon}>0$, and hence $\Delta t<\epsilon$.
- stiff differential equation.

Numerical solution of ODEs

- In general, an equation or system: stiff if it has one or more very rapidly decaying solutions.
- In the case of the autonomous constant coefficient linear system: stiffness occurs whenever the coefficient matrix A has an eigenvalues $\lambda_{j_{0}}$ with large negative real part: $\Re \lambda_{j_{0}} \ll 0$, resulting in a very rapidly decaying eigensolution.
- It only takes one such eigensolution to render the equation stiff, and ruin the numerical computation of even well behaved solutions.
- Even though the component of the actual solution corresponding to $\lambda_{j_{0}}$: almost irrelevant, its presence continues to render the numerical solution to the system very difficult.
- Most of the numerical methods: suffer from instability due to stiffness for sufficiently small positive ϵ.
- Stiff equations require more sophisticated numerical schemes to integrate.

Numerical solution of ODEs

- Perturbation theories for differential equations
- Regular perturbation theory;
- Singular perturbation theory.

Numerical solution of ODEs

- Regular perturbation theory:
- $\epsilon>0$: small parameter and consider

$$
\left\{\begin{aligned}
\frac{\mathrm{d} x}{\mathrm{~d} t} & =f(t, x, \epsilon), \quad t \in[0, T] \\
x(0) & =x_{0}, \quad x_{0} \in \mathbb{R}
\end{aligned}\right.
$$

- $f \in \mathcal{C}^{1} \Rightarrow$ regular perturbation problem.
- Taylor expansion of $x(t, \epsilon) \in \mathcal{C}^{1}$:

$$
x(t, \epsilon)=x^{(0)}(t)+\epsilon x^{(1)}(t)+o(\epsilon)
$$

with respect to ϵ in a neighborhood of 0 .

Numerical solution of ODEs

- $x^{(0)}$:

$$
\left\{\begin{aligned}
\frac{\mathrm{d} x^{(0)}}{\mathrm{d} t} & =f_{0}\left(t, x^{(0)}\right), \quad t \in[0, T] \\
x^{(0)}(0) & =x_{0}, \quad x_{0} \in \mathbb{R}
\end{aligned}\right.
$$

$$
f_{0}(t, x):=f(t, x, 0)
$$

- $x^{(1)}(t)=\frac{\partial x}{\partial \epsilon}(t, 0):$

$$
\left\{\begin{aligned}
\frac{\mathrm{d} x^{(1)}}{\mathrm{d} t} & =\frac{\partial f}{\partial x}\left(t, x^{(0)}, 0\right) x^{(1)}+\frac{\partial f}{\partial \epsilon}\left(t, x^{(0)}, 0\right), \quad t \in[0, T] \\
x^{(1)}(0) & =0
\end{aligned}\right.
$$

- Compute numerically $x^{(0)}$ and $x^{(1)}$.

Numerical solution of ODEs

- Singular perturbation theory:
- Consider

$$
\left\{\begin{array}{l}
\epsilon \frac{d^{2} x}{d t^{2}}=f\left(t, x, \frac{d x}{d t}\right), \quad t \in[0, T] \\
x(0)=x_{0}, \quad x(T)=x_{1}
\end{array}\right.
$$

- Singular perturbation problem: order reduction when $\epsilon=0$.

Numerical solution of ODEs

- Consider the linear, scalar and of second-order ODE:

$$
\left\{\begin{array}{l}
\epsilon \frac{d^{2} x}{d t^{2}}+2 \frac{d x}{d t}+x=0, \quad t \in[0,1] \\
x(0)=0, \quad x(1)=1
\end{array}\right.
$$

$$
\alpha(\epsilon):=\frac{1-\sqrt{1-\epsilon}}{\epsilon} \quad \text { and } \quad \beta(\epsilon):=1+\sqrt{1-\epsilon}
$$

$$
x(t, \epsilon)=\frac{e^{-\alpha t}-e^{-\beta t / \epsilon}}{e^{-\alpha}-e^{-\beta / \epsilon}}, \quad t \in[0,1] .
$$

- $x(t, \epsilon)$: involves two terms which vary on widely different length-scales.

Numerical solution of ODEs

- Behavior of $x(t, \epsilon)$ as $\epsilon \rightarrow 0^{+}$.
- Asymptotic behavior: nonuniform;
- There are two cases \rightarrow matching outer and inner solutions.

Numerical solution of ODEs

(i) Outer limit: $t>0$ fixed and $\epsilon \rightarrow 0^{+}$. Then $x(t, \epsilon) \rightarrow x^{(0)}(t)$,

$$
x^{(0)}(t):=e^{(1-t) / 2}
$$

- Leading-order outer solution satisfies the boundary condition at $t=1$ but not the boundary condition at $t=0$. Indeed, $x^{(0)}(0)=e^{1 / 2}$.
(ii) Inner limit: $t / \epsilon=\tau$ fixed and $\epsilon \rightarrow 0^{+}$. Then $x(\epsilon \tau, \epsilon) \rightarrow X^{(0)}(\tau):=e^{1 / 2}\left(1-e^{-2 \tau}\right)$.
- Leading-order inner solution satisfies the boundary condition at $t=0$ but not the one at $t=1$, which corresponds to $\tau=1 / \epsilon$. Indeed, $\lim _{\tau \rightarrow+\infty} X^{(0)}(\tau)=e^{1 / 2}$.
(iii) Matching: Both the inner and outer expansions: valid in the region $\epsilon \ll t \ll 1$, corresponding to $t \rightarrow 0$ and $\tau \rightarrow+\infty$ as $\epsilon \rightarrow 0^{+}$. They satisfy the matching condition

$$
\lim _{t \rightarrow 0^{+}} x^{(0)}(t)=\lim _{\tau \rightarrow+\infty} X^{(0)}(\tau)
$$

Numerical solution of ODEs

- Construct an asymptotic solution without relying on the fact that we can solve it exactly.
- Outer solution:

$$
x(t, \epsilon)=x^{(0)}(t)+\epsilon x^{(1)}(t)+O\left(\epsilon^{2}\right)
$$

- Use this expansion and equate the coefficients of the leading-order terms to zero.
- \Rightarrow

$$
\left\{\begin{array}{l}
2 \frac{d x^{(0)}}{d t}+x^{(0)}=0, \quad t \in[0,1] \\
x^{(0)}(1)=1
\end{array}\right.
$$

Numerical solution of ODEs

- Inner solution.
- Suppose that there is a boundary layer at $t=0$ of width $\delta(\epsilon)$, and introduce a stretched variable $\tau=t / \delta$.
- Look for an inner solution $X(\tau, \epsilon)=x(t, \epsilon)$.

Numerical solution of ODEs

-

$$
\frac{d}{d t}=\frac{1}{\delta} \frac{d}{d \tau}
$$

$\Rightarrow X$ satisfies

$$
\frac{\epsilon}{\delta^{2}} \frac{d^{2} X}{d \tau^{2}}+\frac{2}{\delta} \frac{d X}{d \tau}+X=0
$$

- Two possible dominant balances:
(i) $\delta=1$, leading to the outer solution;
(ii) $\delta=\epsilon$, leading to the inner solution.
- \Rightarrow Boundary layer thickness: of the order of ϵ, and the appropriate inner variable: $\tau=t / \epsilon$.

Numerical solution of ODEs

- Equation for X :

$$
\left\{\begin{array}{l}
\frac{d^{2} X}{d \tau^{2}}+2 \frac{d X}{d \tau}+\epsilon X=0 \\
X(0, \epsilon)=0
\end{array}\right.
$$

- Impose only the boundary condition at $\tau=0$, since we do not expect the inner expansion to be valid outside the boundary layer where $t=O(\epsilon)$.
- Seek an inner expansion

$$
X(\tau, \epsilon)=X^{(0)}(\tau)+\epsilon X^{(1)}(\tau)+O\left(\epsilon^{2}\right)
$$

and find that

$$
\left\{\begin{array}{l}
\frac{d^{2} X^{(0)}}{d \tau^{2}}+2 \frac{d X^{(0)}}{d \tau}=0 \\
X^{(0)}(0)=0
\end{array}\right.
$$

Numerical solution of ODEs

- General solution:

$$
X^{(0)}(\tau)=c\left(1-e^{-2 \tau}\right)
$$

c: arbitrary constant of integration.

- Determine the unknown constant c by requiring that the inner solution matches with the outer solution.
- Matching condition:

$$
\lim _{t \rightarrow 0^{+}} x^{(0)}(t)=\lim _{\tau \rightarrow+\infty} X^{(0)}(\tau)
$$

$\Rightarrow c=e^{1 / 2}$.

Numerical solution of ODEs

- Asymptotic solution as $\epsilon \rightarrow 0^{+}$:

$$
x(t, \epsilon)=\left\{\begin{array}{l}
e^{1 / 2}\left(1-e^{-2 \tau}\right) \quad \text { as } \epsilon \rightarrow 0^{+} \text {with } t / \epsilon \text { fixed } \\
e^{(1-t) / 2} \text { as } \epsilon \rightarrow 0^{+} \text {with } t \text { fixed }
\end{array}\right.
$$

