Lecture 4: Numerical solution of ordinary differential equations

Habib Ammari

Department of Mathematics, ETH Zürich
Numerical solution of ODEs

- General explicit one-step method:
 - Consistency;
 - Stability;
 - Convergence.

- High-order methods:
 - Taylor methods;
 - Integral equation method;
 - Runge-Kutta methods.

- Multi-step methods.
Numerical solution of ODEs

- Stiff equations and systems.
- Perturbation theories for differential equations:
 - Regular perturbation theory;
 - Singular perturbation theory.
Numerical solution of ODEs

- Consistency, stability and convergence
- Consider

\[
\begin{align*}
\frac{dx}{dt} &= f(t, x), \quad t \in [0, T], \\
x(0) &= x_0, \quad x_0 \in \mathbb{R}.
\end{align*}
\]

- \(f \in C^0([0, t] \times \mathbb{R}) \): Lipschitz condition.
- Start at the initial time \(t = 0 \);
- Introduce successive discretization points

\[t_0 = 0 < t_1 < t_2 < \ldots , \]

continuing on until we reach the final time \(T \).
- Uniform step size:

\[
\Delta t := t_{k+1} - t_k > 0,
\]

does not depend on \(k \) and assumed to be relatively small, with \(t_k = k \Delta t \).
- Suppose that \(K = T / (\Delta t) \): an integer.
Numerical solution of ODEs

• General explicit one-step method:

\[x^{k+1} = x^k + \Delta t \, \Phi(t_k, x^k, \Delta t), \]

for some continuous function \(\Phi(t, x, h) \).

• Taking in succession \(k = 0, 1, \ldots, K - 1 \), one-step at a time \(\Rightarrow \) the approximate values \(x^k \) of \(x \) at \(t_k \): obtained.

• Explicit scheme: \(x^{k+1} \) obtained from \(x^k \); \(x^{k+1} \) appears only on the left-hand side.
Numerical solution of ODEs

- **Truncation error** of the numerical scheme:

 \[T_k(\Delta t) = \frac{x(t_{k+1}) - x(t_k)}{\Delta t} - \Phi(t_k, x(t_k), \Delta t). \]

- As \(\Delta t \to 0, k \to +\infty, k\Delta t = t, \)

 \[T_k(\Delta t) \to \frac{dx}{dt} - \Phi(t, x, 0). \]

- **DEFINITION: Consistency**

 - Numerical scheme consistent with the ODE if

 \[\Phi(t, x, 0) = f(t, x) \quad \text{for all } t \in [0, T] \text{ and } x \in \mathbb{R}. \]
Numerical solution of ODEs

• **DEFINITION: Stability**
 - Numerical scheme stable if Φ: Lipschitz continuous in x, i.e., there exist positive constants C_Φ and h_0 s.t.
 \[
 |\Phi(t, x, h) - \Phi(t, y, h)| \leq C_\Phi |x - y|, \quad t \in [0, T], \quad h \in [0, h_0], \quad x, y \in \mathbb{R}.
 \]

• **Global error** of the numerical scheme:
 \[
e_k = x^k - x(t_k).
 \]

• **DEFINITION: Convergence**
 - Numerical scheme: convergent if
 \[
 |e_k| \to 0 \quad \text{as} \quad \Delta t \to 0, \quad k \to +\infty, \quad k\Delta t = t \in [0, T].
 \]
Numerical solution of ODEs

- **THEOREM: Dahlquist-Lax equivalence theorem**
 - Numerical scheme: convergent iff consistent and stable.
Numerical solution of ODEs

• PROOF:

\[x(t_{k+1}) - x(t_k) = \int_{t_k}^{t_{k+1}} f(s, x(s)) \, ds; \]

• \(\Rightarrow\)

\[x(t_{k+1}) - x(t_k) = (\Delta t)f(t_k, x(t_k)) + \int_{t_k}^{t_{k+1}} [f(s, x(s)) - f(t_k, x(t_k))] \, ds. \]

• \(\Rightarrow\)

\[
\left| x(t_{k+1}) - x(t_k) - (\Delta t)f(t_k, x(t_k)) \right|
= \left| \int_{t_k}^{t_{k+1}} [f(s, x(s)) - f(t_k, x(t_k))] \, ds \right| \leq (\Delta t) \omega_1(\Delta t).
\]
Numerical solution of ODEs

- $\omega_1(\Delta t)$:

 $$\omega_1(\Delta t) := \sup \{|f(t, x(t)) - f(s, x(s))|, 0 \leq s, t \leq T, |t - s| \leq \Delta t\}.$$

- $\omega_1(\Delta t) \to 0$ as $\Delta t \to 0$.
- If f: Lipschitz in t, then $\omega_1(\Delta t) = O(\Delta t)$.

Numerical methods for ODEs Habib Ammari
Numerical solution of ODEs

- From
 \[e_{k+1} - e_k = x^{k+1} - x^k - (x(t_{k+1}) - x(t_k)), \]

- \(\Rightarrow \)
 \[e_{k+1} - e_k = \Delta t \Phi(t_k, x^k, \Delta t) - (x(t_{k+1}) - x(t_k)). \]

- Or equivalently,
 \[e_{k+1} - e_k = \Delta t \left[\Phi(t_k, x^k, \Delta t) - f(t_k, x(t_k)) \right] - \left[x(t_{k+1}) - x(t_k) - \Delta t f(t_k, x(t_k)) \right]. \]

- Write
 \[e_{k+1} - e_k = \Delta t \left[\Phi(t_k, x^k, \Delta t) - \Phi(t_k, x(t_k), \Delta t) + \Phi(t_k, x(t_k), \Delta t) \\ - f(t_k, x(t_k)) \right] - \left[x(t_{k+1}) - x(t_k) - \Delta t f(t_k, x(t_k)) \right]. \]
Numerical solution of ODEs

• Let

\[\omega_2(\Delta t) := \sup \{ |\Phi(t, x, h) - f(t, x)|, t \in [0, T], x \in \mathbb{R}, 0 < h \leq (\Delta t) \}. \]

• Consistency \(\Rightarrow \)

\[\left| \Phi(t_k, x(t_k), \Delta t) - f(t_k, x(t_k)) \right| \leq \omega_2(\Delta t) \to 0 \text{ as } \Delta t \to 0. \]

• Stability condition \(\Rightarrow \)

\[\left| \Phi(t_k, x^k, \Delta t) - \Phi(t_k, x(t_k), \Delta t) \right| \leq C_\Phi |e_k|. \]
Numerical solution of ODEs

• \(|e_{k+1}| \leq (1 + C_\Phi \Delta t)|e_k| + \Delta t \omega_3(\Delta t), \quad 0 \leq k \leq K - 1; \)

• \(K = T/(\Delta t) \) and \(\omega_3(\Delta t) := \omega_1(\Delta t) + \omega_2(\Delta t) \to 0 \) as \(\Delta t \to 0. \)
Numerical solution of ODEs

• By induction,

\[|e_{k+1}| \leq (1 + C\Phi \Delta t)^k |e_0| + (\Delta t) \omega_3(\Delta t) \sum_{l=0}^{k-1} (1 + C\Phi \Delta t)^l, \quad 0 \leq k \leq K. \]

•

\[\sum_{l=0}^{k-1} (1 + C\Phi \Delta t)^l = \frac{(1 + C\Phi \Delta t)^k - 1}{C\Phi \Delta t}, \]

and

\[(1 + C\Phi \Delta t)^K \leq (1 + C\Phi \frac{T}{K})^K \leq e^{C\Phi T}. \]

• \(\Rightarrow \)

\[|e_k| \leq e^{C\Phi T} |e_0| + \frac{e^{C\Phi T} - 1}{C\Phi} \omega_3(\Delta t). \]

• If \(e_0 = 0 \), then as \(\Delta t \to 0, k \to +\infty \) s.t. \(k\Delta t = t \in [0, T] \)

\[\lim_{k \to +\infty} |e_k| = 0. \]
Numerical solution of ODEs

• DEFINITION:
 • An explicit one-step method: order p if there exist positive constants h_0 and C s.t.

 $$|T_k(\Delta t)| \leq C(\Delta t)^p, \quad 0 < \Delta t \leq h_0, \ k = 0, \ldots, K - 1;$$

 $T_k(\Delta t)$: truncation error.
If the explicit one-step method: stable \Rightarrow global error: bounded by the truncation error.

PROPOSITION:

- Consider the explicit one-step scheme with Φ satisfying the stability condition.
- Suppose that $e_0 = 0$.
- Then

\[
|e_{k+1}| \leq \frac{(e^{C_\Phi T} - 1)}{C_\Phi} \max_{0\leq l\leq k} |T_l(\Delta t)| \quad \text{for } k = 0, \ldots, K - 1;
\]

- T_l: truncation error and e_k: global error.
Numerical solution of ODEs

• PROOF:

\[e_{k+1} - e_k = -(\Delta t) T_k(\Delta t) + (\Delta t) \left[\Phi(t_k, x^k, \Delta t) - \Phi(t_k, x(t_k), \Delta t) \right]. \]

• \(\Rightarrow \)

\[|e_{k+1}| \leq (1 + C_\Phi(\Delta t))|e_k| + (\Delta t)|T_k(\Delta t)| \]

\[\leq (1 + C_\Phi(\Delta t))|e_k| + (\Delta t) \max_{0 \leq l \leq k} |T_l(\Delta t)|. \]
Numerical solution of ODEs

- Explicit Euler’s method
 - \(\Phi(t, x, h) = f(t, x) \).
 - Explicit Euler scheme:
 \[
 x^{k+1} = x^k + (\Delta t)f(t, x^k).
 \]
Numerical solution of ODEs

• **THEOREM:**
 • Suppose that f satisfies the Lipschitz condition;
 • Suppose that f: Lipschitz with respect to t.
 • Then the explicit Euler scheme: convergent and the global error e_k: of order Δt.
 • If $f \in C^1$, then the scheme: of order one.
Numerical solution of ODEs

- **PROOF:**
 - f satisfies the Lipschitz condition \Rightarrow numerical scheme with $\Phi(t, x, h) = f(t, x)$: stable.
 - $\Phi(t, x, 0) = f(t, x)$ for all $t \in [0, T]$ and $x \in \mathbb{R}$ \Rightarrow numerical scheme: consistent.
 - \Rightarrow convergence.
 - f: Lipschitz in t \Rightarrow $\omega_1(\Delta t) = O(\Delta t)$.
 - $\omega_2(\Delta t) = 0$ \Rightarrow $\omega_3(\Delta t) = O(\Delta t)$.
 - $\Rightarrow |e_k| = O(\Delta t)$ for $1 \leq k \leq K$.
Numerical solution of ODEs

• \(f \in C^1 \Rightarrow x \in C^2 \).

• Mean-value theorem \(\Rightarrow \)

\[
T_k(\Delta t) = \frac{1}{\Delta t} \left(x(t_{k+1}) - x(t_k) \right) - f(t_k, x(t_k))
\]

\[
= \frac{1}{\Delta t} \left(x(t_k) + (\Delta t) \frac{dx}{dt}(t_k) + \frac{(\Delta t)^2}{2} \frac{d^2x}{dt^2}(\tau) - x(t_k) \right) - f(t_k, x(t_k))
\]

\[
= \frac{\Delta t}{2} \frac{d^2x}{dt^2}(\tau),
\]

for some \(\tau \in [t_k, t_{k+1}] \).

• \(\Rightarrow \) Scheme: first order.
Numerical solution of ODEs

• High-order methods:
 • In general, the order of a numerical solution method governs both the accuracy of its approximations and the speed of convergence to the true solution as the step size $\Delta t \to 0$.
 • Explicit Euler method: only a first order scheme;
 • Devise simple numerical methods that enjoy a higher order of accuracy.
 • The higher the order, the more accurate the numerical scheme, and hence the larger the step size that can be used to produce the solution to a desired accuracy.
 • However, this should be balanced with the fact that higher order methods inevitably require more computational effort at each step.
Numerical solution of ODEs

• High-order methods:
 • Taylor methods;
 • Integral equation method;
 • Runge-Kutta methods.
Numerical solution of ODEs

- Taylor methods
- Explicit Euler scheme: based on a first order Taylor approximation to the solution.
- Taylor expansion of the solution $x(t)$ at the discretization points t_{k+1}:

$$x(t_{k+1}) = x(t_k) + (\Delta t) \frac{dx}{dt}(t_k) + \frac{(\Delta t)^2}{2} \frac{d^2x}{dt^2}(t_k) + \frac{(\Delta t)^3}{6} \frac{d^3x}{dt^3}(t_k) + \ldots.$$

- Evaluate the first derivative term by using the differential equation

$$\frac{dx}{dt} = f(t, x).$$
Numerical solution of ODEs

• Second derivative can be found by differentiating the equation with respect to t:

$$\frac{d^2 x}{dt^2} = \frac{d}{dt} f(t, x) = \frac{\partial f}{\partial t}(t, x) + \frac{\partial f}{\partial x}(t, x) \frac{dx}{dt}.$$

• Second order Taylor method

\begin{equation}
(*) \quad x^{k+1} = x^k + (\Delta t)f(t_k, x^k) + \frac{(\Delta t)^2}{2} \left(\frac{\partial f}{\partial t}(t_k, x^k) + \frac{\partial f}{\partial x}(t_k, x^k)f(t_k, x^k) \right).
\end{equation}
Numerical solution of ODEs

• Proposition:
 • Suppose that \(f \in C^2 \).
 • Then (\(*\)): of second order.
Proof:

- \(f \in C^2 \Rightarrow x \in C^3 \).
- \(\Rightarrow \) truncation error \(T_k \) given by

\[
T_k(\Delta t) = \frac{(\Delta t)^2}{6} \frac{d^3 x}{dt^3}(\tau),
\]

for some \(\tau \in [t_k, t_{k+1}] \) and so, (\(* \)): of second order.
Numerical solution of ODEs

• **Drawbacks** of higher order Taylor methods:
 (i) Owing to their dependence upon the partial derivatives of f, f needs to be smooth;
 (ii) Efficient evaluation of the terms in the Taylor approximation and avoidance of round off errors.
Numerical solution of ODEs

- Integral equation method
- Avoid the complications inherent in a direct Taylor expansion.
- \(x(t) \) coincides with the solution to the **integral equation**

\[
x(t) = x_0 + \int_0^t f(s, x(s)) \, ds, \quad t \in [0, T].
\]

Starting at the discretization point \(t_k \) instead of 0, and integrating until time \(t = t_{k+1} \) gives

\[
(**) \quad x(t_{k+1}) = x(t_k) + \int_{t_k}^{t_{k+1}} f(s, x(s)) \, ds.
\]

- Implicitly computes the value of the solution at the subsequent discretization point.
Numerical solution of ODEs

• Compare formula (**) with the explicit Euler method

\[x^{k+1} = x^k + (\Delta t)f(t_k, x^k). \]

• ⇒ Approximation of the integral by

\[\int_{t_k}^{t_{k+1}} f(s, x(s)) \, ds \approx (\Delta t)f(t_k, x(t_k)). \]

• Left endpoint rule for numerical integration.
Numerical solution of ODEs

- **Left endpoint rule** for numerical integration:

 - **Left endpoint rule**: not an especially accurate method of numerical integration.
 - Better methods include the **Trapezoid rule**:
Numerical solution of ODEs

- Numerical integration formulas for continuous functions.

 (i) **Trapezoidal rule:**

 \[
 \int_{t_k}^{t_{k+1}} g(s) \, ds \approx \frac{\Delta t}{2} \left(g(t_{k+1}) + g(t_k) \right);
 \]

 (ii) **Simpson’s rule:**

 \[
 \int_{t_k}^{t_{k+1}} g(s) \, ds \approx \frac{\Delta t}{6} \left(g(t_{k+1}) + 4g\left(\frac{t_k + t_{k+1}}{2}\right) + g(t_k) \right);
 \]

 (iii) Trapezoidal rule: exact for polynomials of order one;

 Simpson’s rule: exact for polynomials of second order.
Numerical solution of ODEs

- Use the more accurate Trapezoidal approximation

\[
\int_{t_k}^{t_{k+1}} f(s, x(s)) \, ds \approx \frac{(\Delta t)}{2} \left[f(t_k, x(t_k)) + f(t_{k+1}, x(t_{k+1})) \right].
\]

- Trapezoidal scheme:

\[
x^{k+1} = x^k + \frac{(\Delta t)}{2} \left[f(t_k, x^k) + f(t_{k+1}, x^{k+1}) \right].
\]

- Trapezoidal scheme: implicit numerical method.
Numerical solution of ODEs

- Proposition:
 - Suppose that $f \in C^2$ and
 $$(***) \quad \frac{(\Delta t)C_f}{2} < 1;$$
 - C_f: Lipschitz constant for f in x.
 - Trapezoidal scheme: convergent and of second order.
Numerical solution of ODEs

- Proof:
 - Consistency:
 \[\Phi(t, x, \Delta t) := \frac{1}{2} \left[f(t, x) + f(t + \Delta t, x + (\Delta t)\Phi(t, x, \Delta t)) \right]. \]
 - \(\Delta t = 0. \)
Numerical solution of ODEs

- **Stability:**
 -

 \[
 |\Phi(t, x, \Delta t) - \Phi(t, y, \Delta t)| \leq C_f |x - y| + \frac{\Delta t}{2} C_f |\Phi(t, x, \Delta t) - \Phi(t, y, \Delta t)|.
 \]

- \[\Rightarrow \]

 \[
 (1 - \frac{(\Delta t)C_f}{2}) |\Phi(t, x, \Delta t) - \Phi(t, y, \Delta t)| \leq C_f |x - y|.
 \]

- \[\Rightarrow \] Stability holds with

 \[
 C_\Phi = \frac{C_f}{1 - \frac{(\Delta t)C_f}{2}},
 \]

 provided that \(\Delta t \) satisfies \((***)\).
Numerical solution of ODEs

- Second order scheme:
 - By the mean-value theorem,

\[
T_k(\Delta t) = \frac{x(t_{k+1}) - x(t_k)}{\Delta t} - \frac{1}{2} \left[f(t_k, x(t_k)) + f(t_{k+1}, x(t_{k+1})) \right]
\]

\[
= -\frac{1}{12} (\Delta t)^2 \frac{d^3 x}{dt^3}(\tau),
\]

for some \(\tau \in [t_k, t_{k+1}] \) \Rightarrow second order scheme, provided that \(f \in C^2 \) (and consequently \(x \in C^3 \)).
Numerical solution of ODEs

- An alternative scheme: replace x^{k+1} by $x^k + (\Delta t)f(t_k, x^k)$.
- \Rightarrow Improved Euler scheme:

$$x^{k+1} = x^k + \frac{(\Delta t)}{2} \left[f(t_k, x^k) + f(t_{k+1}, x^k + (\Delta t)f(t_k, x^k)) \right].$$

- Proposition: Improved Euler scheme: convergent and of second order.
- Improved Euler scheme: performs comparably to the Trapezoidal scheme, and significantly better than the Euler scheme.
- Alternative numerical approximations to the integral equation \Rightarrow a range of numerical solution schemes.
Numerical solution of ODEs

- **Midpoint rule:**
 \[\int_{t_k}^{t_{k+1}} f(s, x(s)) \, ds \approx (\Delta t)f(t_k + \frac{\Delta t}{2}, x(t_k + \frac{\Delta t}{2})). \]

- Midpoint rule: same order of accuracy as the trapezoid rule.
- **Midpoint scheme:** approximate \(x(t_k + \frac{\Delta t}{2})\) by \(x^k + \frac{\Delta t}{2} f(t_k, x^k)\),
 \[x^{k+1} = x^k + (\Delta t)f(t_k + \frac{\Delta t}{2}, x^k + \frac{\Delta t}{2} f(t_k, x^k)). \]

- Midpoint scheme: of second order.
Numerical solution of ODEs

- Example of linear systems
- Consider the linear system of ODEs
 \[
 \begin{cases}
 \frac{dx}{dt} = Ax(t), & t \in [0, +\infty[,
 \\
 x(0) = x_0 \in \mathbb{R}^d.
 \end{cases}
 \]
- \(A \in \mathbb{M}_d(\mathbb{C})\): independent of \(t\).
- **DEFINITION:**
 - A one-step numerical scheme for solving the linear system of ODEs: **stable** if there exists a positive constant \(C_0\) s.t.
 \[
 |x^{k+1}| \leq C_0|x^0| \quad \text{for all } k \in \mathbb{N}.
 \]
Numerical solution of ODEs

- Consider the following schemes:

 (i) Explicit Euler’s scheme:

 \[x^{k+1} = x^k + (\Delta t)A x^k; \]

 (ii) Implicit Euler’s scheme:

 \[x^{k+1} = x^k + (\Delta t)A x^{k+1}; \]

 (iii) Trapezoidal scheme:

 \[x^{k+1} = x^k + \frac{(\Delta t)}{2} \left[A x^k + A x^{k+1} \right], \]

 with \(k \in \mathbb{N} \), and \(x^0 = x_0 \).
Numerical solution of ODEs

• Proposition:

 Suppose that $\Re \lambda_j < 0$ for all j. The following results hold:

 (i) Explicit Euler scheme: stable for Δt small enough;
 (ii) Implicit Euler scheme: unconditionally stable;
 (iii) Trapezoidal scheme: unconditionally stable.
Numerical solution of ODEs

• Proof:
 • Consider the explicit Euler scheme. By a change of basis,
 \[\tilde{x}^{k+1} = (I + \Delta t(D + N))^k \tilde{x}^0, \]
 where \(\tilde{x}^k = Cx^k \).
 • If \(\tilde{x}^0 \in E_j \), then
 \[\tilde{x}^k = \sum_{l=0}^{\min\{k,d\}} C_k^l (1 + \Delta t \lambda_j)^{k-l} (\Delta t)^l N^l \tilde{x}^0, \]
 \(C_k^l \): binomial coefficient.
Numerical solution of ODEs

• If $|1 + (∆t)λ_j| < 1$, then \tilde{x}^k: bounded.

• If $|1 + (∆t)λ_j| > 1$, then one can find \tilde{x}^0 s.t. $|\tilde{x}^k| \to +∞$ (exponentially) as $k \to +∞$.

• If $|1 + (∆t)λ_j| = 1$ and $N \neq 0$, then for all \tilde{x}^0 s.t. $N\tilde{x}^0 \neq 0$, $N^2\tilde{x}^0 = 0$,

$$\tilde{x}^k = (1 + (∆t)λ_j)^k\tilde{x}^0 + (1 + (∆t)λ_j)^{k-1}k∆tN\tilde{x}^0$$

goes to infinity as $k \to +∞$.

• Stability condition $|1 + (∆t)λ_j| < 1 ⇔

$$∆t < -2\frac{ℜλ_j}{|λ_j|^2},$$

holds for $∆t$ small enough.
Numerical solution of ODEs

• Implicit Euler scheme:

\[\tilde{x}^{k+1} = (I - \Delta t(D + N))^{-k}\tilde{x}^0. \]

• All the eigenvalues of the matrix \((I - \Delta t(D + N))^{-1}\): of modulus strictly smaller than 1.

• ⇒ Implicit Euler scheme: unconditionally stable.

• Trapezoidal scheme:

\[\tilde{x}^{k+1} = (I - \frac{(\Delta t)}{2}(D + N))^{-k}(I + \frac{(\Delta t)}{2}(D + N))^{k}\tilde{x}^0. \]

• Stability condition:

\[|1 + \frac{(\Delta t)}{2} \lambda_j| < |1 - \frac{(\Delta t)}{2} \lambda_j|, \]

holds for all \(\Delta t > 0\) since \(\Re \lambda_j < 0\).
Numerical solution of ODEs

- **REMARK**: Explicit and implicit Euler schemes: of order one; Trapezoidal scheme: of order two.
Numerical solution of ODEs

- Runge-Kutta methods:
 - By far the most popular and powerful general-purpose numerical methods for integrating ODEs.
 - Idea behind: evaluate f at carefully chosen values of its arguments, t and x, in order to create an accurate approximation (as accurate as a higher-order Taylor expansion) of $x(t + \Delta t)$ without evaluating derivatives of f.
Numerical solution of ODEs

- Runge-Kutta schemes: derived by matching **multivariable Taylor series expansions** of $f(t,x)$ with the Taylor series expansion of $x(t + \Delta t)$.

- To find the right values of t and x at which to evaluate f:
 - Take a Taylor expansion of f evaluated at these (unknown) values;
 - Match the resulting numerical scheme to a Taylor series expansion of $x(t + \Delta t)$ around t.

Numerical methods for ODEs
Habib Ammari
Numerical solution of ODEs

- Generalization of Taylor’s theorem to functions of two variables:

THEOREM:

- \(f(t, x) \in C^{n+1}([0, T] \times \mathbb{R}) \). Let \((t_0, x_0) \in [0, T] \times \mathbb{R} \).
- There exist \(t_0 \leq \tau \leq t, x_0 \leq \xi \leq x \), s.t.

\[
f(t, x) = P_n(t, x) + R_n(t, x),
\]

- \(P_n(t, x) \): \(n \)th Taylor polynomial of \(f \) around \((t_0, x_0) \);
- \(R_n(t, x) \): remainder term associated with \(P_n(t, x) \).
Numerical solution of ODEs

\[P_n(t, x) = f(t_0, x_0) + \left[(t - t_0) \frac{\partial f}{\partial t}(t_0, x_0) + (x - x_0) \frac{\partial f}{\partial x}(t_0, x_0) \right] \\
\quad + \left[\frac{(t - t_0)^2}{2} \frac{\partial^2 f}{\partial t^2}(t_0, x_0) + (t - t_0)(x - x_0) \frac{\partial^2 f}{\partial t \partial x}(t_0, x_0) \right] \\
\quad + \left[\frac{(x - x_0)^2}{2} \frac{\partial^2 f}{\partial x^2}(t_0, x_0) \right] \\
\quad \ldots + \left[\frac{1}{n!} \sum_{j=0}^{n} C_j^n (t - t_0)^{n-j} (x - x_0)^j \frac{\partial^n f}{\partial t^{n-j} \partial x^j}(t_0, x_0) \right]; \]

\[R_n(t, x) = \frac{1}{(n + 1)!} \sum_{j=0}^{n+1} C_j^{n+1} (t - t_0)^{n+1-j} (x - x_0)^j \frac{\partial^{n+1} f}{\partial t^{n+1-j} \partial x^j}(\tau, \xi). \]
Numerical solution of ODEs

• **Illustration:** obtain a second-order accurate method (truncation error $O((\Delta t)^2)$).

• Match

\[
x + \Delta tf(t, x) + \frac{(\Delta t)^2}{2} \left[\frac{\partial f}{\partial t}(t, x) + \frac{\partial f}{\partial x}(t, x)f(t, x) \right] + \frac{(\Delta t)^3}{6} \frac{d^2}{dt^2}[f(\tau, x)]
\]

to

\[
x + (\Delta t)f(t + \alpha_1, x + \beta_1),
\]

$\tau \in [t, t + \Delta t]$ and α_1 and β_1: to be found.

• Match

\[
f(t, x) + \frac{(\Delta t)^2}{2} \left[\frac{\partial f}{\partial t}(t, x) + \frac{\partial f}{\partial x}(t, x)f(t, x) \right] + \frac{(\Delta t)^2}{6} \frac{d^2}{dt^2}[f(t, x)]
\]

with $f(t + \alpha_1, x + \beta_1)$ at least up to terms of the order of $O(\Delta t)$.

Numerical solution of ODEs

- Multivariable version of Taylor’s theorem to f,

\[
\begin{align*}
f(t + \alpha_1, x + \beta_1) &= f(t, x) + \alpha_1 \frac{\partial f}{\partial t}(t, x) + \beta_1 \frac{\partial f}{\partial x}(t, x) + \frac{\alpha_1^2}{2} \frac{\partial^2 f}{\partial t^2}(\tau, \xi) \\
&+ \alpha_1 \beta_1 \frac{\partial^2 f}{\partial t \partial x}(\tau, \xi) + \frac{\beta_1^2}{2} \frac{\partial^2 f}{\partial x^2}(\tau, \xi),
\end{align*}
\]

$t \leq \tau \leq t + \alpha_1$ and $x \leq \xi \leq x + \beta_1$.

- \Rightarrow

\[
\alpha_1 = \frac{\Delta t}{2} \quad \text{and} \quad \beta_1 = \frac{\Delta t}{2} f(t, x).
\]

- \Rightarrow Resulting numerical scheme: explicit midpoint method: the simplest example of a Runge-Kutta method of second order.

- Improved Euler method: also another often-used Runge-Kutta method.
Numerical solution of ODEs

• General Runge-Kutta method:

\[x^{k+1} = x^k + \Delta t \sum_{i=1}^{m} c_i f(t_{i,k}, x_{i,k}), \]

- \(m \): number of terms in the method.
- Each \(t_{i,k} \) denotes a point in \([t_k, t_{k+1}]\).
- Second argument \(x_{i,k} \approx x(t_{i,k}) \) can be viewed as an approximation to the solution at the point \(t_{i,k} \).
- To construct an \(n \)th order Runge-Kutta method, we need to take at least \(m \geq n \) terms.
Numerical solution of ODEs

• Best-known Runge-Kutta method: **fourth-order Runge-Kutta method**, which uses four evaluations of \(f \) during each step.

\[
\begin{align*}
\kappa_1 &:= f(t_k, x^k), \\
\kappa_2 &:= f(t_k + \frac{\Delta t}{2}, x^k + \frac{\Delta t}{2} \kappa_1), \\
\kappa_3 &:= f(t_k + \frac{\Delta t}{2}, x^k + \frac{\Delta t}{2} \kappa_2), \\
\kappa_4 &:= f(t_{k+1}, x^k + \Delta t \kappa_3),
\end{align*}
\]

\[
x^{k+1} = x^k + \frac{(\Delta t)}{6}(\kappa_1 + 2\kappa_2 + 2\kappa_3 + \kappa_4).
\]

• Values of \(f \) at the midpoint in time: given four times as much weight as values at the endpoints \(t_k \) and \(t_{k+1} \) (**similar to Simpson’s rule** from numerical integration).
Numerical solution of ODEs

• Construction of Runge-Kutta methods:
 • Construct Runge-Kutta methods by generalizing collocation methods.
 • Discuss their consistency, stability, and order.
Numerical solution of ODEs

- Collocation methods:
- \mathcal{P}_m: space of real polynomials of degree $\leq m$.

- Interpolating polynomial:
 - Given a set of m distinct quadrature points $c_1 < c_2 < \ldots < c_m$ in \mathbb{R}, and corresponding data g_1, \ldots, g_m;
 - There exists a unique polynomial, $P(t) \in \mathcal{P}_{m-1}$ s.t.
 \[
P(c_i) = g_i, i = 1, \ldots, m.
 \]
Numerical solution of ODEs

- **DEFINITION:**
 - Define the ith Lagrange interpolating polynomial $l_i(t)$, $i = 1, \ldots, m$, for the set of quadrature points $\{c_j\}$ by
 \[
l_i(t) := \prod_{j \neq i, j=1}^{m} \frac{t - c_j}{c_i - c_j}.
 \]
 - Set of Lagrange interpolating polynomials: form a basis of P_{m-1};
 - Interpolating polynomial P corresponding to the data $\{g_j\}$ given by
 \[
P(t) := \sum_{i=1}^{m} g_i l_i(t).
 \]
Consider a smooth function g on $[0, 1]$.
Approximate the integral of g on $[0, 1]$ by exactly integrating the
Lagrange interpolating polynomial of order $m - 1$ based on m
quadrature points $0 \leq c_1 < c_2 < \ldots < c_m \leq 1$.
Data: values of g at the quadrature points $g_i = g(c_i)$, $i = 1, \ldots, m$.
Numerical solution of ODEs

- Define the weights

\[b_i = \int_0^1 l_i(s) \, ds. \]

- Quadrature formula:

\[\int_0^1 g(s) \, ds \approx \int_0^1 \sum_{i=1}^m g_i l_i(s) \, ds = \sum_{i=1}^m b_i g(c_i). \]
Numerical solution of ODEs

- f: smooth function on $[0, T]$; $t_k = k \Delta t$ for $k = 0, \ldots, K = T/(\Delta t)$: discretization points in $[0, T]$.

- $\int_{t_k}^{t_{k+1}} f(s) \, ds$ can be approximated by

$$\int_{t_k}^{t_{k+1}} f(s) \, ds = (\Delta t) \int_0^1 f(t_k + \Delta t \tau) \, d\tau \approx (\Delta t) \sum_{i=1}^{m} b_i f(t_k + (\Delta t)c_i).$$
Numerical solution of ODEs

• x: polynomial of degree m satisfying

$$
\begin{cases}
 x(0) = x_0, \\
 \frac{dx}{dt}(c_i \Delta t) = F_i,
\end{cases}
$$

$F_i \in \mathbb{R}, i = 1, \ldots, m.$

• Lagrange interpolation formula \Rightarrow for t in the first time-step interval $[0, \Delta t]$,

$$
\frac{dx}{dt}(t) = \sum_{i=1}^{m} F_i l_i \left(\frac{t}{\Delta t} \right).
$$
Numerical solution of ODEs

- Integrating over the intervals $[0, c_i \Delta t]$ \Rightarrow

$$x(c_i \Delta t) = x_0 + (\Delta t) \sum_{j=1}^{m} F_j \int_0^{c_i} l_j(s) \, ds = x_0 + (\Delta t) \sum_{j=1}^{m} a_{ij} F_j,$$

for $i = 1, \ldots, m$, with

$$a_{ij} := \int_0^{c_i} l_j(s) \, ds.$$

- Integrating over $[0, \Delta t]$ \Rightarrow

$$x(\Delta t) = x_0 + (\Delta t) \sum_{i=1}^{m} F_i \int_0^{1} l_i(s) \, ds = x_0 + (\Delta t) \sum_{i=1}^{m} b_i F_i.$$
Numerical solution of ODEs

• Writing \(\frac{dx}{dt} = f(x(t)) \), on the first time step interval \([0, \Delta t]\),

\[
\begin{align*}
F_i &= f(x_0 + (\Delta t) \sum_{j=1}^{m} a_{ij} F_j), \quad i = 1, \ldots, m, \\
x(\Delta t) &= x_0 + (\Delta t) \sum_{i=1}^{m} b_i F_i.
\end{align*}
\]

• Similarly, we have on \([t_k, t_{k+1}]\)

\[
\begin{align*}
F_{i,k} &= f(x(t_k) + (\Delta t) \sum_{j=1}^{m} a_{ij} F_{j,k}), \quad i = 1, \ldots, m, \\
x(t_{k+1}) &= x(t_k) + (\Delta t) \sum_{i=1}^{m} b_i F_{i,k}.
\end{align*}
\]

• In the collocation method: one first solves the coupled nonlinear system to obtain \(F_{i,k}, i = 1, \ldots, m \), and then computes \(x(t_{k+1}) \) from \(x(t_k) \).
Numerical solution of ODEs

• REMARK:

\[t^{l-1} = \sum_{i=1}^{m} c_i^{l-1} l_i(t), \quad t \in [0, 1], \, l = 1, \ldots, m, \]

\[\Rightarrow \]

\[\sum_{i=1}^{m} b_i c_i^{l-1} = \frac{1}{l}, \quad l = 1, \ldots, m, \]

and

\[\sum_{j=1}^{m} a_{ij} c_j^{l-1} = \frac{c_i^l}{l}, \quad i, \, l = 1, \ldots, m. \]
• Runge-Kutta methods as generalized collocation methods

 • In the collocation method, the coefficients b_i and a_{ij}: defined by certain integrals of the Lagrange interpolating polynomials associated with a chosen set of quadrature nodes c_i, $i = 1, \ldots, m$.

 • Natural generalization of collocation methods: obtained by allowing the coefficients $c_i, b_i, \text{ and } a_{ij}$ to take arbitrary values, not necessary related to quadrature formulas.
Numerical solution of ODEs

- No longer assume the c_i to be distinct.
- However, assume that

$$c_i = \sum_{j=1}^{m} a_{ij}, \quad i = 1, \ldots, m.$$

- \Rightarrow Class of Runge-Kutta methods for solving the ODE,

$$F_{i,k} = f(t_{i,k}, x^k + (\Delta t) \sum_{j=1}^{m} a_{ij} F_{j,k}),$$

$$x^{k+1} = x^k + (\Delta t) \sum_{i=1}^{m} b_i F_{i,k},$$

$$t_{i,k} = t_k + c_i \Delta t,$$ or equivalently,

$$x_{i,k} = x^k + (\Delta t) \sum_{j=1}^{m} a_{ij} f(t_{j,k}, x_{j,k}),$$

$$x^{k+1} = x^k + (\Delta t) \sum_{i=1}^{m} b_i f(t_{i,k}, x_{i,k}).$$
Numerical solution of ODEs

• Let

\[\kappa_j := f(t + c_j \Delta t, x_j); \]

• Define \(\Phi \) by

\[
\begin{align*}
 x_i &= x + (\Delta t) \sum_{j=1}^{m} a_{ij} \kappa_j, \\
 \Phi(t, x, \Delta t) &= \sum_{i=1}^{m} b_i f(t + c_i \Delta t, x_i).
\end{align*}
\]

• \(\Rightarrow \) One step method.

• If \(a_{ij} = 0 \) for \(j \geq i \) \(\Rightarrow \) scheme: explicit.
Numerical solution of ODEs

• EXAMPLES:
 • Explicit Euler’s method and Trapezoidal scheme: Runge-Kutta methods.
 • Explicit Euler’s method: $m = 1$, $b_1 = 1$, $a_{11} = 0$.

Numerical solution of ODEs

- Trapezoidal scheme:
 \[m = 2, b_1 = b_2 = 1/2, a_{11} = a_{12} = 0, a_{21} = a_{22} = 1/2. \]
Numerical solution of ODEs

- Fourth-order Runge-Kutta method: \(m = 4, c_1 = 0, c_2 = c_3 = 1/2, c_4 = 1, b_1 = 1/6, b_2 = b_3 = 1/3, b_4 = 1/6, a_{21} = a_{32} = 1/2, a_{43} = 1, \) and all the other \(a_{ij} \) entries are zero.
Numerical solution of ODEs

• Consistency, stability, convergence, and order of Runge-Kutta methods
• Runge-Kutta scheme: consistent iff

\[\sum_{j=1}^{m} b_j = 1. \]
Numerical solution of ODEs

• **Stability:**

 - $|A| = (|a_{ij}|)_{i,j=1}^m$.
 - **Spectral radius** $\rho(|A|)$ of the matrix $|A|$:

 $$\rho(|A|) := \max\{|\lambda_j|, \lambda_j : \text{eigenvalue of } |A|\}.$$
Numerical solution of ODEs

• **THEOREM:**
 • C_f: Lipschitz constant for f.
 • Suppose
 $$\frac{(\Delta t)C_f \rho(|A|)}{1} < 1.$$
 • Then the **Runge-Kutta method**: stable.
Numerical solution of ODEs

• PROOF:

\[\Phi(t, x, \Delta t) - \Phi(t, y, \Delta t) = \sum_{i=1}^{m} b_i \left[f(t+c_i \Delta t, x_i) - f(t+c_i \Delta t, y_i) \right], \]

with

\[x_i = x + (\Delta t) \sum_{j=1}^{m} a_{ij} f(t + c_j \Delta t, x_j), \]

and

\[y_i = y + (\Delta t) \sum_{j=1}^{m} a_{ij} f(t + c_j \Delta t, y_j). \]
Numerical solution of ODEs

- \[x_i - y_i = x - y + (\Delta t) \sum_{j=1}^{m} a_{ij} \left[f(t + c_j \Delta t, x_j) - f(t + c_j \Delta t, y_j) \right]. \]

- For \(i = 1, \ldots, m, \)

\[|x_i - y_i| \leq |x - y| + (\Delta t) C_f \sum_{j=1}^{m} |a_{ij}| |x_j - y_j|. \]
Numerical solution of ODEs

• X and Y:

$$X = \begin{bmatrix} |x_1 - y_1| \\ \vdots \\ |x_m - y_m| \end{bmatrix} \quad \text{and} \quad Y = \begin{bmatrix} |x - y| \\ \vdots \\ |x - y| \end{bmatrix}.$$

• $X \leq Y + (\Delta t)C_f|A|X$, \Rightarrow

$$X \leq (I - (\Delta t)C_f|A|)^{-1}Y,$$

provided that $(\Delta t)C_f\rho(|A|) < 1$.

• \Rightarrow stability of the Runge-Kutta scheme.
Numerical solution of ODEs

- **Dahlquist-Lax equivalence theorem** ⇒ **Runge-Kutta scheme**: convergent provided that $\sum_{j=1}^{m} b_j = 1$ and $(\Delta t) C_f \rho (|A|) < 1$ hold.
Numerical solution of ODEs

- **Order of the Runge-Kutta scheme**: compute the order as $\Delta t \to 0$ of the truncation error

$$T_k(\Delta t) = \frac{x(t_{k+1}) - x(t_k)}{\Delta t} - \Phi(t_k, x(t_k), \Delta t).$$

- Write

$$T_k(\Delta t) = \frac{x(t_{k+1}) - x(t_k)}{\Delta t} - \sum_{i=1}^{m} b_i f(t_k + c_i \Delta t, x(t_k)) + \Delta t \sum_{j=1}^{m} a_{ij} \kappa_j.$$

- Suppose that f: smooth enough \Rightarrow

$$f(t_k + c_i \Delta t, x(t_k) + \Delta t \sum_{j=1}^{m} a_{ij} \kappa_j)$$

$$= f(t_k, x(t_k)) + \Delta t \left[c_i \frac{\partial f}{\partial t}(t_k, x(t_k)) + \sum_{j=1}^{m} a_{ij} \kappa_j \frac{\partial f}{\partial x}(t_k, x(t_k)) \right]$$

$$+ O((\Delta t)^2).$$
Numerical solution of ODEs

\[
\sum_{j=1} a_{ij} \kappa_j = (\sum_{j=1} a_{ij}) f(t_k, x(t_k)) + O(\Delta t) = c_i f(t_k, x(t_k)) + O(\Delta t).
\]
Numerical solution of ODEs

\[f(t_k + c_i \Delta t, x(t_k)) + \Delta t \sum_{j=1}^{m} a_{ij} \kappa_j) = f(t_k, x(t_k)) + \Delta t c_i \left[\frac{\partial f}{\partial t}(t_k, x(t_k)) + \frac{\partial f}{\partial x}(t_k, x(t_k))f(t_k, x(t_k)) \right] + O((\Delta t)^2). \]
THEOREM:

- Assume that \(f \): smooth enough.
- Then the Runge-Kutta scheme: of order 2 provided that the conditions

\[
\sum_{j=1}^{m} b_j = 1
\]

and

\[
\sum_{i=1}^{m} b_i c_i = \frac{1}{2}
\]

hold.
Numerical solution of ODEs

- Higher-order Taylor expansions \(\Rightarrow \)
- THEOREM:
 - Assume that \(f \): smooth enough.
 - Then the Runge-Kutta scheme: of order 3 provided that the conditions
 \[
 \sum_{j=1}^{m} b_j = 1, \\
 \sum_{i=1}^{m} b_i c_i = \frac{1}{2}, \\
 \sum_{i=1}^{m} b_i c_i^2 = \frac{1}{3}, \\
 \sum_{i=1}^{m} \sum_{j=1}^{m} b_i a_{ij} c_j = \frac{1}{6}
 \]
 hold.
Numerical solution of ODEs

- **Of Order 4** provided that in addition

\[
\sum_{i=1}^{m} b_i c_i^3 = \frac{1}{4}, \quad \sum_{i=1}^{m} \sum_{j=1}^{m} b_i c_i a_{ij} c_j = \frac{1}{8}, \quad \sum_{i=1}^{m} \sum_{j=1}^{m} b_i c_i a_{ij} c_j^2 = \frac{1}{12},
\]

\[
\sum_{i=1}^{m} \sum_{j=1}^{m} \sum_{l=1}^{m} b_i a_{ij} a_{jl} c_l = \frac{1}{24}
\]

hold.

Numerical solution of ODEs

- **Multi-step methods**
- Runge-Kutta methods: improvement over Euler’s methods in terms of accuracy, but achieved by investing additional computational effort.
- The fourth-order Runge-Kutta method involves four function evaluations per step.
Numerical solution of ODEs

- For comparison, by considering three consecutive points t_{k-1}, t_k, t_{k+1}, integrating the differential equation between t_{k-1} and t_{k+1}, and applying Simpson’s rule to approximate the resulting integral yields

$$
x(t_{k+1}) = x(t_{k-1}) + \int_{t_{k-1}}^{t_{k+1}} f(s, x(s)) \, ds
$$

$$
\approx x(t_{k-1}) + \frac{(\Delta t)}{3} \left[f(t_{k-1}, x(t_{k-1})) + 4f(t_k, x(t_k)) + f(t_{k+1}, x(t_{k+1})) \right],
$$

$$
\Rightarrow
$$

$$
x^{k+1} = x^{k-1} + \frac{(\Delta t)}{3} \left[f(t_{k-1}, x^{k-1}) + 4f(t_k, x^k) + f(t_{k+1}, x^{k+1}) \right].
$$

- Need two preceding values, x^k and x^{k-1} in order to calculate x^{k+1}: two-step method.

- In contrast with the one-step methods: only a single value of x^k required to compute the next approximation x^{k+1}.
Numerical solution of ODEs

- **General** n-step method:

\[
\sum_{j=0}^{n} \alpha_j x^{k+j} = (\Delta t) \sum_{j=0}^{n} \beta_j f(t_{k+j}, x^{k+j}),
\]

α_j and β_j: real constants and $\alpha_n \neq 0$.

- If $\beta_n = 0$, then x^{k+n}: obtained explicitly from previous values of x^j and $f(t_j, x^j) \Rightarrow n$-step method: **explicit**. Otherwise, the n-step method: **implicit**.
Numerical solution of ODEs

• **EXAMPLE:**

(i) Two-step Adams-Bashforth method: explicit two-step method

\[x^{k+2} = x^{k+1} + \frac{(\Delta t)}{2} \left[3f(t_{k+1}, x^{k+1}) - f(t_k, x^k) \right]; \]

(ii) Three-step Adams-Bashforth method: explicit three-step method

\[x^{k+3} = x^{k+2} + \frac{(\Delta t)}{12} \left[23f(t_{k+2}, x^{k+2}) - 16f(t_{k+1}, x^{k+1}) + f(t_k, x^k) \right]; \]
Numerical solution of ODEs

(iii) Four-step Adams-Bashforth method: explicit four-step method

\[x^{k+4} = x^{k+3} + \frac{(\Delta t)}{24} \left[55f(t_{k+3}, x^{k+3}) - 59f(t_{k+2}, x^{k+2})
ight. \\
\left. + 37f(t_{k+1}, x^{k+1}) - 9f(t_k, x^k) \right]; \]

(iv) Two-step Adams-Moulton method: implicit two-step method

\[x^{k+2} = x^{k+1} + \frac{(\Delta t)}{12} \left[5f(t_{k+2}, x^{k+2}) + 8f(t_{k+1}, x^{k+1}) + f(t_k, x^k) \right]; \]

(v) Three-step Adams-Moulton method: implicit three-step method

\[x^{k+3} = x^{k+2} + \frac{(\Delta t)}{24} \left[9f(t_{k+3}, x^{k+3}) + 19f(t_{k+2}, x^{k+2}) - 5f(t_{k+1}, x^{k+1}) - 9f(t_k, x^k) \right]. \]
Numerical solution of ODEs

- Construction of linear multi-step methods
- Suppose that $x^k, \ k \in \mathbb{N}$: sequence of real numbers.
- Shift operator E, forward difference operator Δ_+ and backward difference operator $\Delta_-:$
 \[
 E : x^k \mapsto x^{k+1}, \quad \Delta_+ : x^k \mapsto x^{k+1} - x^k, \quad \Delta_- : x^k \mapsto x^k - x^{k-1}.
 \]
- $\Delta_+ = E - I$ and $\Delta_- = I - E^{-1} \Rightarrow$ for any $n \in \mathbb{N},$
 \[
 (E - I)^n = \sum_{j=0}^{n} (-1)^j C_j^n E^{n-j}
 \]
 and
 \[
 (I - E^{-1})^n = \sum_{j=0}^{n} (-1)^j C_j^n E^{-j}.
 \]
Numerical solution of ODEs

\[\Delta_n^+ x^k = \sum_{j=0}^{n} (-1)^j C_j^n x^{k+n-j} \]

and

\[\Delta_n^- x^k = \sum_{j=0}^{n} (-1)^j C_j^n x^{k-j} . \]
Numerical solution of ODEs

- \(y(t) \in C^\infty(\mathbb{R}); \ t_k = k\Delta t, \Delta t > 0. \)
- Taylor series \(\Rightarrow \) for any \(s \in \mathbb{N}, \)

\[
E^s y(t_k) = y(t_k + s\Delta t) = \left(\sum_{l=0}^{+\infty} \frac{1}{l!} (s\Delta t \frac{\partial}{\partial t})^l y \right)(t_k) = (e^{s(\Delta t) \frac{\partial}{\partial t}} y)(t_k),
\]

- \(\Rightarrow \)

\[
E^s = e^{s(\Delta t) \frac{\partial}{\partial t}}.
\]

- Formally,

\[
(\Delta t) \frac{\partial}{\partial t} = \ln E = -\ln(1 - \Delta \Delta) = \Delta + \frac{1}{2} \Delta^2 + \frac{1}{3} \Delta^3 + \ldots
\]
Numerical solution of ODEs

• $x(t)$: solution of ODE:

$$(\Delta t)f(t_k, x(t_k)) = \left(\Delta - \frac{1}{2}\Delta^2 + \frac{1}{3}\Delta^3 + \ldots\right)x(t_k).$$

• Successive truncation of the infinite series \Rightarrow

$$x^k - x^{k-1} = (\Delta t)f(t_k, x^k),$$

$$\frac{3}{2}x^k - 2x^{k-1} + \frac{1}{2}x^{k-2} = (\Delta t)f(t_k, x^k),$$

$$\frac{11}{6}x^k - 3x^{k-1} + \frac{3}{2}x^{k-2} - \frac{1}{3}x^{k-3} = (\Delta t)f(t_k, x^k),$$

and so on.

• Class of implicit multi-step methods: backward differentiation formulas.
Similarly,

\[E^{-1}((\Delta t) \frac{\partial}{\partial t}) = (\Delta t) \frac{\partial}{\partial t} E^{-1} = -(I - \Delta_-) \ln(I - \Delta_-). \]

\[\Rightarrow \]

\[((\Delta t) \frac{\partial}{\partial t}) = -E(I - \Delta_-) \ln(I - \Delta_-) = -(I - \Delta_-) \ln(I - \Delta_-)E. \]

\[\Rightarrow \]

\[(\Delta t)f(t_k, x(t_k)) = \left(\Delta_- - \frac{1}{2} \Delta_-^2 - \frac{1}{6} \Delta_-^3 + \ldots \right) x(t_{k+1}). \]
Numerical solution of ODEs

- Successive truncation of the infinite series ⇒ explicit numerical schemes:

 \[x^{k+1} - x^k = (\Delta t)f(t_k, x^k), \]

 \[\frac{1}{2}x^{k+1} - \frac{1}{2}x^{k-1} = (\Delta t)f(t_k, x^k), \]

 \[\frac{1}{3}x^{k+1} + \frac{1}{2}x^k - x^{k-1} + \frac{1}{6}x^{k-2} = (\Delta t)f(t_k, x^k), \]

 ...

- The first of these numerical scheme: explicit Euler method, while the second: explicit mid-point method.
Numerical solution of ODEs

• Construct further classes of multi-step methods:

• For $y \in C^\infty$,

$$D^{-1}y(t_k) = y(t_0) + \int_{t_0}^{t_k} y(s) \, ds,$$

and

$$(E - I)D^{-1}y(t_k) = \int_{t_k}^{t_{k+1}} y(s) \, ds.$$

•

$$(E - I)D^{-1} = \Delta_+ D^{-1} = E \Delta_- D^{-1} = (\Delta t) E \Delta_- ((\Delta t)D)^{-1},$$
Numerical solution of ODEs

\[(E - I)D^{-1} = -\left(\Delta t\right)E\Delta_-(\ln(l - \Delta_-))^{-1}. \]
Numerical solution of ODEs

\[(E-I)D^{-1} = E\Delta_- D^{-1} = \Delta_- E D^{-1} = \Delta_-(DE^{-1})^{-1} = (\Delta t)\Delta_- ((\Delta t)DE^{-1})^{-1}.\]

\[\Rightarrow\]

\[(E - I)D^{-1} = -(\Delta t)\Delta_- \left((I - \Delta_-) \ln(I - \Delta_-) \right)^{-1}.\]
Numerical solution of ODEs

\[x(t_{k+1}) - x(t_k) = \int_{t_k}^{t_{k+1}} f(s, x(s)) \, ds = (E - I)D^{-1}f(t_k, x(t_k)), \]

\[x(t_{k+1}) - x(t_k) = \begin{cases} -\Delta x \Delta_-(I - \Delta_-) \ln(I - \Delta_-)^{-1}f(t_k, x(t_k)) \\ -(\Delta t)E \Delta_-(\ln(I - \Delta_-))^{-1}f(t_k, x(t_k)) \end{cases}. \]
Numerical solution of ODEs

- Expand $\ln(I - \Delta_\tau)$ into a Taylor series on the right-hand side \Rightarrow

$$x(t_{k+1}) - x(t_k) = (\Delta t) \left[I + \frac{1}{2} \Delta_\tau + \frac{5}{12} \Delta_\tau^2 + \frac{3}{8} \Delta_\tau^3 + \ldots \right] f(t_k, x(t_k))$$

and

$$x(t_{k+1}) - x(t_k) = (\Delta t) \left[I - \frac{1}{2} \Delta_\tau - \frac{1}{12} \Delta_\tau^2 - \frac{1}{24} \Delta_\tau^3 + \ldots \right] f(t_{k+1}, x(t_{k+1})).$$

- **Successive truncations** \Rightarrow families of (explicit) **Adams-Bashforth** methods and of (implicit) **Adams-Moulton** methods.
Numerical solution of ODEs

• Consistency, stability, and convergence
• Introduce the concepts of consistency, stability, and convergence for analyzing linear multi-step methods.
Numerical solution of ODEs

- **DEFINITION**: Consistency
 - The \(n \)-step method: **consistent** with the ODE if the truncation error defined by
 \[
 T_k = \frac{\sum_{j=0}^{n} \left[\alpha_j x(t_k+j) - (\Delta t) \beta_j \frac{dx}{dt}(t_k+j) \right]}{(\Delta t) \sum_{j=0}^{n} \beta_j}
 \]
 is s.t. for any \(\epsilon > 0 \) there exists \(h_0 \) for which
 \[
 |T_k| \leq \epsilon \quad \text{for } 0 < \Delta t \leq h_0
 \]
 and any \((n+1)\) points \(((t_j, x(t_j)), \ldots, (t_{j+n}, x(t_{j+n}))) \) on any solution \(x(t) \).
Numerical solution of ODEs

- **DEFINITION**: Stability

 - The n-step method: **stable** if there exists a constant C s.t., for any two sequences (x^k) and (\tilde{x}^k) which have been generated by the same formulas but different initial data $x^0, x^1, \ldots, x^{k-1}$ and $\tilde{x}^0, \tilde{x}^1, \ldots, \tilde{x}^{k-1}$, respectively,

 $$|x^k - \tilde{x}^k| \leq C \max\{|x^0 - \tilde{x}^0|, |x^1 - \tilde{x}^1|, \ldots, |x^{k-1} - \tilde{x}^{k-1}|\}$$

 as $\Delta t \to 0$.
Numerical solution of ODEs

• THEOREM: Convergence
 • Suppose that the n-step method: consistent with the ODE.
 • Stability condition: necessary and sufficient for the convergence.
 • If $x \in C^{p+1}$ and the truncation error $O((\Delta t)^p)$, then the global error $e_k = x(t_k) - x^k: O((\Delta t)^p)$.
Numerical solution of ODEs

- **Stiff equations and systems:**
- Let $\epsilon > 0$: small parameter. Consider the initial value problem

\[
\begin{align*}
\frac{dx(t)}{dt} &= -\frac{1}{\epsilon}x(t), & t \in [0, T], \\
x(0) &= 1,
\end{align*}
\]

- Exponential solution $x(t) = e^{-t/\epsilon}$.
- Explicit Euler method with step size Δt:

\[
x^{k+1} = (1 - \frac{\Delta t}{\epsilon})x^k, \quad x^0 = 1,
\]

with solution

\[
x^k = (1 - \frac{\Delta t}{\epsilon})^k.
\]
Numerical solution of ODEs

• $\epsilon > 0 \Rightarrow$ exact solution: exponentially decaying and positive.

• If $1 - \frac{\Delta t}{\epsilon} < -1$, then the iterates grow exponentially fast in magnitude, with alternating signs.

• Numerical solution: nowhere close to the true solution.

• If $-1 < 1 - \frac{\Delta t}{\epsilon} < 0$, then the numerical solution decays in magnitude, but continue to alternate between positive and negative values.

• To correctly model the qualitative features of the solution and obtain a numerically accurate solution: choose the step size Δt so as to ensure that $1 - \frac{\Delta t}{\epsilon} > 0$, and hence $\Delta t < \epsilon$.

• stiff differential equation.
Numerical solution of ODEs

• In general, an equation or system: stiff if it has one or more very rapidly decaying solutions.

• In the case of the autonomous constant coefficient linear system: stiffness occurs whenever the coefficient matrix A has an eigenvalues λ_{j0} with large negative real part: $\Re \lambda_{j0} \ll 0$, resulting in a very rapidly decaying eigensolution.

• It only takes one such eigensolution to render the equation stiff, and ruin the numerical computation of even well behaved solutions.

• Even though the component of the actual solution corresponding to λ_{j0}: almost irrelevant, its presence continues to render the numerical solution to the system very difficult.

• Most of the numerical methods: suffer from instability due to stiffness for sufficiently small positive ϵ.

• Stiff equations require more sophisticated numerical schemes to integrate.
Numerical solution of ODEs

- Perturbation theories for differential equations
 - Regular perturbation theory;
 - Singular perturbation theory.
Numerical solution of ODEs

- Regular perturbation theory:
- $\epsilon > 0$: small parameter and consider

$$\begin{cases}
\frac{dx}{dt} = f(t, x, \epsilon), & t \in [0, T], \\
x(0) = x_0, & x_0 \in \mathbb{R}.
\end{cases}$$

- $f \in C^1 \Rightarrow$ regular perturbation problem.
- Taylor expansion of $x(t, \epsilon) \in C^1$:

$$x(t, \epsilon) = x^{(0)}(t) + \epsilon x^{(1)}(t) + o(\epsilon)$$

with respect to ϵ in a neighborhood of 0.
Numerical solution of ODEs

- \(x^{(0)}: \)
 \[
 \begin{align*}
 \frac{dx^{(0)}}{dt} &= f_0(t, x^{(0)}), \quad t \in [0, T], \\
 x^{(0)}(0) &= x_0, \quad x_0 \in \mathbb{R},
 \end{align*}
 \]
 \(f_0(t, x) := f(t, x, 0). \)

- \(x^{(1)}(t) = \frac{\partial x}{\partial \epsilon}(t, 0) : \)
 \[
 \begin{align*}
 \frac{dx^{(1)}}{dt} &= \frac{\partial f}{\partial x}(t, x^{(0)}, 0)x^{(1)} + \frac{\partial f}{\partial \epsilon}(t, x^{(0)}, 0), \quad t \in [0, T], \\
 x^{(1)}(0) &= 0.
 \end{align*}
 \]

- Compute numerically \(x^{(0)} \) and \(x^{(1)}. \)
Numerical solution of ODEs

• Singular perturbation theory:
• Consider
\[
\begin{cases}
\epsilon \frac{d^2x}{dt^2} = f(t, x, \frac{dx}{dt}), & t \in [0, T], \\
x(0) = x_0, & x(T) = x_1.
\end{cases}
\]
• Singular perturbation problem: order reduction when \(\epsilon = 0 \).
Numerical solution of ODEs

• Consider the linear, scalar and of second-order ODE:

\[
\begin{cases}
\epsilon \frac{d^2x}{dt^2} + 2 \frac{dx}{dt} + x = 0, & t \in [0, 1], \\
x(0) = 0, & x(1) = 1.
\end{cases}
\]

• \(\alpha(\epsilon) := \frac{1 - \sqrt{1 - \epsilon}}{\epsilon} \) and \(\beta(\epsilon) := 1 + \sqrt{1 - \epsilon} \).

• \(x(t, \epsilon) = \frac{e^{-\alpha t} - e^{-\beta t/\epsilon}}{e^{-\alpha} - e^{-\beta/\epsilon}}, \) \(t \in [0, 1] \).

• \(x(t, \epsilon) \): involves two terms which vary on widely different length-scales.
Numerical solution of ODEs

- Behavior of \(x(t, \epsilon) \) as \(\epsilon \to 0^+ \).
- Asymptotic behavior: nonuniform;
- There are two cases \(\rightarrow \) matching outer and inner solutions.
Numerical solution of ODEs

(i) **Outer limit:** $t > 0$ fixed and $\epsilon \to 0^+$. Then $x(t, \epsilon) \to x^{(0)}(t)$,

$$x^{(0)}(t) := e^{(1-t)/2}.$$

- Leading-order outer solution satisfies the boundary condition at $t = 1$ but not the boundary condition at $t = 0$. Indeed, $x^{(0)}(0) = e^{1/2}$.

(ii) **Inner limit:** $t/\epsilon = \tau$ fixed and $\epsilon \to 0^+$. Then $x(\epsilon \tau, \epsilon) \to X^{(0)}(\tau) := e^{1/2}(1 - e^{-2\tau})$.

- Leading-order inner solution satisfies the boundary condition at $t = 0$ but not the one at $t = 1$, which corresponds to $\tau = 1/\epsilon$. Indeed, $\lim_{\tau \to +\infty} X^{(0)}(\tau) = e^{1/2}$.

(iii) **Matching:** Both the inner and outer expansions: valid in the region $\epsilon \ll t \ll 1$, corresponding to $t \to 0$ and $\tau \to +\infty$ as $\epsilon \to 0^+$. They satisfy the matching condition

$$\lim_{t \to 0^+} x^{(0)}(t) = \lim_{\tau \to +\infty} X^{(0)}(\tau).$$
Construct an asymptotic solution without relying on the fact that we can solve it exactly.

Outer solution:

\[x(t, \epsilon) = x^{(0)}(t) + \epsilon x^{(1)}(t) + O(\epsilon^2). \]

Use this expansion and equate the coefficients of the leading-order terms to zero.

\[\begin{align*}
2 \frac{dx^{(0)}}{dt} + x^{(0)} &= 0, \quad t \in [0, 1], \\
x^{(0)}(1) &= 1.
\end{align*} \]
Numerical solution of ODEs

• Inner solution.
• Suppose that there is a boundary layer at $t = 0$ of width $\delta(\epsilon)$, and introduce a stretched variable $\tau = t/\delta$.
• Look for an inner solution $X(\tau, \epsilon) = x(t, \epsilon)$.
Numerical solution of ODEs

\[\frac{d}{dt} = \frac{1}{\delta} \frac{d}{d\tau}, \]

\[\Rightarrow X \text{ satisfies} \]

\[\frac{\epsilon}{\delta^2} \frac{d^2 X}{d\tau^2} + \frac{2}{\delta} \frac{dX}{d\tau} + X = 0. \]

Two possible dominant balances:

(i) \(\delta = 1 \), leading to the outer solution;
(ii) \(\delta = \epsilon \), leading to the inner solution.

\(\Rightarrow \) Boundary layer thickness: of the order of \(\epsilon \), and the appropriate inner variable: \(\tau = t/\epsilon \).
Numerical solution of ODEs

• Equation for X:
 \[
 \begin{cases}
 \frac{d^2 X}{d\tau^2} + 2 \frac{dX}{d\tau} + \epsilon X = 0, \\
 X(0, \epsilon) = 0.
 \end{cases}
 \]

• Impose only the boundary condition at $\tau = 0$, since we do not expect the inner expansion to be valid outside the boundary layer where $t = O(\epsilon)$.

• Seek an inner expansion
 \[
 X(\tau, \epsilon) = X^{(0)}(\tau) + \epsilon X^{(1)}(\tau) + O(\epsilon^2)
 \]
 and find that
 \[
 \begin{cases}
 \frac{d^2 X^{(0)}}{d\tau^2} + 2 \frac{dX^{(0)}}{d\tau} = 0, \\
 X^{(0)}(0) = 0.
 \end{cases}
 \]
Numerical solution of ODEs

• General solution:

\[X^{(0)}(\tau) = c(1 - e^{-2\tau}), \]

\(c \): arbitrary constant of integration.

• Determine the unknown constant \(c \) by requiring that the inner solution matches with the outer solution.

• Matching condition:

\[\lim_{t \to 0^+} x^{(0)}(t) = \lim_{\tau \to +\infty} X^{(0)}(\tau), \]

\(\Rightarrow c = e^{1/2}. \)
Numerical solution of ODEs

- Asymptotic solution as $\epsilon \to 0^+$:

$$x(t, \epsilon) = \begin{cases}
 e^{1/2}(1 - e^{-2\tau}) & \text{as } \epsilon \to 0^+ \text{ with } t/\epsilon \text{ fixed}, \\
 e^{(1-t)/2} & \text{as } \epsilon \to 0^+ \text{ with } t \text{ fixed}.
\end{cases}$$