Lecture 1: Some basics

Habib Ammari

Department of Mathematics, ETH Zürich
Some basics

• What is a differential equation?

• Some methods of resolution:
 • Separation of variables;
 • Change of variables;
 • Method of integrating factors.

• Important examples of ODEs:
 • Autonomous ODEs;
 • Exact equations;
 • Hamiltonian systems.
Some basics

- Ordinary differential equation (ODE): equation that contains one or more derivatives of an unknown function $x(t)$.
- Equation may also contain x itself and constants.
- ODE of order n if the n-th derivative of the unknown function is the highest order derivative in the equation.
Some basics

- Examples of ODEs:
 - **Membrane equation** as a neuron model:
 \[C \frac{dx(t)}{dt} + gx(t) = f(t), \]
 where:
 - \(x(t)\): membrane potential, i.e., the voltage difference between the inside and the outside of the neuron;
 - \(f(t)\): current flow due to excitation;
 - \(C\): capacitance;
 - \(g\): conductance (the inverse of the resistance) of the membrane.
 - **Linear ODE of order 1.**
Some basics

- **Theta model**: one-dimensional model for the spiking of a neuron.

\[
\frac{d\theta(t)}{dt} = 1 - \cos \theta(t) + (1 + \cos \theta(t))f(t);
\]

\(f(t)\): inputs to the model.

- \(\theta \in [0, 2\pi]; \ \theta = \pi\) the neuron spikes → produces an action potential.

- Change of variables, \(x(t) = \tan(\theta(t)/2)\), → quadratic model

\[
(*) \quad \frac{dx(t)}{dt} = x(t)^2 + f(t).
\]

- Population growth under competition for resources:

\[
(**) \quad \frac{dx(t)}{dt} = rx(t) - \frac{r}{k}x(t)^2;
\]

\(r\) and \(k\): positive parameters; \(x(t)\): number of cells at time instant \(t\),

\(rx(t)\): growth rate and \(-(r/k)x(t)^2\): death rate.

- \((*)\) and \((**)\): **Nonlinear ODEs of order 1**.

Numerical methods for ODEs

Habib Ammari
Some basics

- **FitzHugh-Nagumo model:**

\[
\begin{align*}
\frac{dV}{dt} &= f(V) - W + I, \\
\frac{dW}{dt} &= a(V - bW);
\end{align*}
\]

- \(V\): membrane potential, \(W\): recovery variable, and \(I\): magnitude of stimulus current.
- \(f(V)\): polynomial of third degree, and \(a\) and \(b\): constant parameters.
- **FitzHugh-Nagumo model:** two-dimensional simplification of the Hodgkin-Huxley model of spike generation in squid giant axons.
- **Mathematical properties of excitation and propagation** from the electrochemical properties of sodium and potassium ion flow.
- **System of nonlinear ODEs of order 1.**
Some basics

- **Langevin equation** of motion for a single particle:

 \[
 \frac{dx(t)}{dt} = -ax(t) + \eta(t);
 \]

- \(x(t)\): position of the particle at time instant \(t\), \(a > 0\): coefficient of friction, and \(\eta\): random variable that represents some uncertainties or stochastic effects perturbing the particle.

- **Diffusion-like motion** from the probabilistic perspective of a single microscopic particle moving in a fluid medium.

- **Linear stochastic ODE of order 1.**
Some basics

- **Vander der Pol equation:**
 \[
 \frac{d^2x(t)}{dt^2} - a(1 - x^2(t)) \frac{dx(t)}{dt} + x(t) = 0;
 \]

- \(a\): positive parameter, which controls the nonlinearity and the strength of the damping.

- Generate waveforms corresponding to **electrocardiogram patterns**.

- **Nonlinear ODE of order 2.**
Some basics

- Higher order ODEs: \(\Omega \subset \mathbb{R}^{n+2} \) and \(n \in \mathbb{N} \).
- ODE of order \(n \):
 \[
 F(t, x(t), \frac{dx}{dt}(t), ..., \frac{d^n x}{dt^n}(t)) = 0;
 \]
- \(x \): real-valued unknown function and \(dx(t)/dt, ..., d^n x(t)/dt^n \): its derivatives.
- \(\varphi \in C^n(I) \): solution of the differential equation if \(I \): open interval, for all \(t \in I \),
 \[
 (t, \varphi(t), \frac{\partial \varphi}{\partial t}(t), ..., \frac{\partial^n \varphi}{\partial t^n}(t)) \in \Omega
 \]
 and
 \[
 F(t, \varphi(t), \frac{\partial \varphi}{\partial t}(t), ..., \frac{\partial^n \varphi}{\partial t^n}(t)) = 0.
 \]
- \(x \): vector valued function, \(x(t) \in \mathbb{R}^d \), \(\rightarrow \) \(\Omega \subset \mathbb{R} \times \mathbb{R}^{(n+1)d} \).
Some basics

• n-th order ODE:

\[(***) \quad x^{(n)}(t) = f(t, x, \frac{dx}{dt}, ..., \frac{d^{n-1}x}{dt^{n-1}}), \quad t \in I.\]

• $x(t) \in \mathbb{R}^d$ and $f : I \times \mathbb{R}^{nd} \to \mathbb{R}^d$.

• Initial condition:

\[
(x(t_0), x'(t_0), x''(t_0), ..., x^{(n-1)}(t_0))^\top.
\]

• Reduce the high order ODE (*** into a first order ODE:

\[
y(t) := (x(t), dx(t)/dt, ..., d^{n-1}x(t)/dt^{n-1})^\top \in \mathbb{R}^{nd}
\]

and

\[
F(t, y) := (y_2, ..., y_n, f(t, y_1, ..., y_n))^\top
\]

for $y = (y_1, ..., y_n)^\top \in \mathbb{R}^{nd}$ and $y_i \in \mathbb{R}^d$ for $i = 1, 2, ..., n$.
Some basics

• (***) equivalent to the following first order ODE:

\[
\frac{dy}{dt} = F(t, y(t)).
\]
Some basics

• EXAMPLE:
 • Consider the second order ODE:

\[
\frac{d^2x}{dt^2} + p(t)\frac{dx}{dt} + q(t)x(t) = g(t).
\]

• \[\Rightarrow\]

\[
\frac{d}{dt} \begin{bmatrix} x \\ \frac{dx}{dt} \end{bmatrix} = \begin{bmatrix} \frac{dx}{dt} \\ -p(t)\frac{dx}{dt} - q(t)x(t) + g(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -q(t) & -p(t) \end{bmatrix} \begin{bmatrix} x \\ \frac{dx}{dt} \end{bmatrix} + \begin{bmatrix} 0 \\ g(t) \end{bmatrix}.
\]
Some basics

- ODEs:
 - **Existence** of solutions;
 - **Uniqueness** of solutions with suitable initial conditions;
 - **Regularity** and **stability** of solutions (e.g. dependence on the initial conditions, large time stability, higher regularity);
 - **Computation** of solutions.

- Existence of solutions: **fixed point theorems; implicit function theorem in Banach spaces**.

- Uniqueness: more difficult.

- Explicit solutions: only in a very few special cases.

- **Numerical solutions**.
Some basics

• Some methods of resolution:
 • Separation of variables;
 • Change of variables;
 • Method of integrating factors.
Some basics

- **Separation of variables:**
 - I and J: open intervals;
 - $f \in C^0(I)$ and $g \in C^0(J)$: continuous functions.
 - Solutions to the first order equation
 \[
 (***) \quad \frac{dx}{dt} = f(t)g(x).
 \]
 - $t_0 \in I$ and $x_0 \in J$.
 - $g(x_0) = 0$ for some $x_0 \in J \rightarrow x(t) = x_0$ for $t \in I$: solution to $(***)$.
 - Suppose $g(x_0) \neq 0 \rightarrow g \neq 0$ in a neighborhood of $x_0 \Rightarrow
 \[
 \frac{dx}{g(x)} = f(t)dt.
 \]
 - Integration \Rightarrow
 \[
 \int \frac{dx}{g(x)} = \int f(t)dt + c;
 \]
 c: constant uniquely determined by the initial condition.
Some basics

- F and G: primitives of f and $1/g$.
- $G'(x) \neq 0 \Rightarrow G$: strictly monotonic \rightarrow invertible.
- Solution:
 \[x(t) = G^{-1}(F(t) + c). \]
- Method of separation of variables.
- $(\ast \ast \ast \ast)$: separable equation.
Some basics

• EXAMPLE:
 • Consider the following ODE:
 \[
 \begin{align*}
 \frac{dx}{dt} &= \frac{1 + 2t}{\cos x(t)}, \\
 x(0) &= \pi.
 \end{align*}
 \]
 • \(g(x) = 1/\cos x \) and \(f(t) = 1 + 2t \).
 • \(g \): defined for \(x \neq \pi/2 + k\pi, k \in \mathbb{Z} \).
 • Separation of variables,
 \[
 \cos x dx = 1 + 2t dt.
 \]
 • Integration,
 \[
 \sin x(t) = t^2 + t + C,
 \]
 for some constant \(C \in \mathbb{R} \).
 • Initial condition \(x(0) = \pi \Rightarrow C = 0 \).
Some basics

• Taking the arcsin ⇒ $x(t) = \arcsin(t^2 + t)$: not the solution because $x(0) = \arcsin(0) = 0$.

• \arcsin: inverse of sin on $[-\pi/2, \pi/2]$; $x(t)$: takes the values in a neighborhood of π.

• $w(t) = x(t) - \pi \rightarrow w(0) = x(0) - \pi = 0 \Rightarrow w(t) = -\arcsin(t^2 + t)$.

• Correct solution:

 $x(t) = \pi - \arcsin(t^2 + t)$.
Some basics

• Change of variables:
 • Consider the following ODE:
 \[
 \frac{dx}{dt} = f\left(\frac{x(t)}{t}\right); \\
 f : I \subset \mathbb{R} \rightarrow \mathbb{R}: \text{ continuous function on some open interval } I \subset \mathbb{R}.
 \]
 • change of variable \(x(t) = ty(t); \ y(t): \text{ new unknown function}, \)
 \[
 \frac{dx}{dt} = y(t) + t \frac{dy}{dt} = f(y(t)),
 \]
 • Separable equation for \(y: \)
 \[
 \frac{dy}{f(y) - y} = \frac{dt}{t}.
 \]
 • Solution by the method of separation of variables.
Some basics

• **EXAMPLE:**

 • Consider

 \[
 \frac{dx}{dt} = \frac{t^2 + x^2}{xt}.
 \]

 • \(f(s) = s + 1/s \) with \(s = x/t \).

 • Change of variable: \(y(t) = x(t)/t \Rightarrow ydy = dt/t \)

 • \(\Rightarrow \)

 \[
 (1/2)y^2 = \ln t + C.
 \]

 • \(\Rightarrow \)

 \[
 x(t) = \pm t \sqrt{2(\ln t + C)}.
 \]
Some basics

• Method of integrating factors

 • Consider

 \[
 \frac{dx(t)}{dt} = f(t).
 \]

 • Integration

 \[
 x(t) = x(0) + \int_0^t f(s) \, ds.
 \]

 • Consider

 \[
 \frac{dx}{dt} + p(t)x(t) = g(t);
 \]

 \(p \) and \(g \): functions of \(t \).

 • Left-hand side: expressed as the derivative of the unknown quantity \(\leftarrow \) Multiply by \(\mu(t) \).
Some basics

• $\mu(t)$ s.t.

$$\mu(t) \frac{dx}{dt} + \mu(t)p(t)x(t) = \frac{d}{dt} (\mu(t)x(t)).$$

• Taking derivatives \Rightarrow

$$(1/\mu) \frac{d\mu}{dt} = p(t) \text{ or } \frac{d}{dt} \ln \mu(t) = p(t).$$

• Integration \Rightarrow

$$\mu(t) = \exp\left(\int_0^t p(s)ds\right),$$

up to a multiplicative constant.

• Transformed equation:

$$\frac{d}{dt} (\mu(t)x(t)) = \mu(t)g(t).$$

• \Rightarrow

$$x(t) = \frac{1}{\mu(t)} \left(\int_0^t \mu(s)g(s)ds \right) + \frac{C}{\mu(t)};$$

C: determined from the initial condition $x(0) = x_0$.

• $\mu(t)$: integrating factor.
Some basics

- **EXAMPLE:**
 - Consider
 \[
 \begin{cases}
 \frac{dx}{dt} + \frac{1}{t+1}x(t) = (1 + t)^2, & t \geq 0, \\
 x(0) = 1.
 \end{cases}
 \]

 - \(p(t) = 1/(t + 1)\) and \(g(t) = (1 + t)^2\).
 - **Integrating factor:**
 \[
 \mu(t) = \exp\left(\int_0^t p(s)ds\right) = e^{\ln(t+1)} = t+1.
 \]

 - \(\Rightarrow \)
 \[
 x(t) = \frac{1}{t+1} \int_0^t (s + 1)^3ds + \frac{C}{t+1} = \frac{(t + 1)^3}{4} + \frac{C - \frac{1}{4}}{t+1}.
 \]

 - Initial condition \(x(0) = 1 \Rightarrow C = 1\).
Some basics

- **EXAMPLE:** (Bernoulli’s equation)

- Consider

\[
\frac{dx}{dt} + p(t)x(t) = g(t)x^{\alpha}(t).
\]

- \(\alpha \not\in \{0, 1\} \).

- Change of variable: \(x = z^{1-\alpha} \),

\[
\frac{dx}{dt} = \frac{1}{1-\alpha} z^{\frac{\alpha}{1-\alpha}} \frac{dz}{dt}.
\]

- Linear equation:

\[
\frac{dz}{dt} + (1-\alpha)p(t)z(t) = (1-\alpha)g(t).
\]

- Solved by the method of **integrating factors.**
Some basics

• Important examples of ODEs:
 • Autonomous ODEs;
 • Exact equations;
 • Hamiltonian systems.
Some basics

- Autonomous ODEs:
 - **DEFINITION:** \(\frac{dx(t)}{dt} = f(t, x(t)) \): autonomous if \(f \) independent of \(t \).
 - Any ODE can be rewritten as an autonomous ODE on a higher-dimensional space.
 - \(y = (t, x(t)) \) → autonomous ODE

\[
\frac{dy(t)}{dt} = F(y(t));
\]

\[
F(y) = \left(\frac{1}{f(t, x(t))} \right) .
\]
Some basics

- **Exact equations:**
 - $\Omega = I \times \mathbb{R} \subset \mathbb{R}^2$ with $I \subset \mathbb{R}$: open interval.
 - $f, g \in C^0(\Omega)$.
 - Solution $x \in C^1(I)$ of the ODE:
 \[
 f(t, x(t)) + g(t, x(t)) \frac{dx}{dt} = 0
 \]
 satisfying the initial condition $x(t_0) = x_0$ for some $(t_0, x_0) \in \Omega$.
- **Differential form:**
 \[
 \omega = f(t, x)dt + g(t, x)dx.
 \]
- **DEFINITION:** Differential form: **exact** if there exists $F \in C^1(\Omega)$ s.t.
 \[
 \omega = dF = \frac{\partial F}{\partial t}dt + \frac{\partial F}{\partial x}dx.
 \]
- F: potential of ω.
- Differential equation: **exact equation**.
Some basics

- **THEOREM: Implicit function theorem**
 - Suppose that $F(t, x)$: continuously differentiable in a neighborhood of $(t_0, x_0) \in \mathbb{R} \times \mathbb{R}^d$ and $F(t_0, x_0) = 0$.
 - Suppose that $\frac{\partial F}{\partial x}(t_0, x_0) \neq 0$.
 - Then there exists a $\delta > 0$ and $\epsilon > 0$ s.t. for each t satisfying $|t - t_0| < \delta$, there exists a unique x s.t. $|x - x_0| < \epsilon$ for which $F(t, x) = 0$.
 - This correspondence defines a function $x(t)$ continuously differentiable on $\{|t - t_0| < \delta\}$ s.t.
 \[
 F(t, x) = 0 \iff x = x(t).
 \]
Some basics

• **THEOREM:**
 - Suppose that \(\omega \): exact form with potential \(F \) s.t.
 \[
 \frac{\partial F}{\partial x}(t_0, x_0) \neq 0.
 \]
 - \(F(t, x) = F(t_0, x_0) \) implicitly defines a function \(x \in C^1(I) \) for some open interval \(I \) containing \(t_0 \), which solves
 \[
 f(t, x(t)) + g(t, x(t)) \frac{dx}{dt} = 0
 \]
 with the initial condition \(x(t_0) = x_0 \).
 - Solution: unique on \(I \).
Some basics

- **PROOF:**
 - Suppose without loss of generality that $F(t_0, x_0) = 0$.
 - **Implicit function theorem** \Rightarrow there exists $\delta, \eta > 0$ and $x \in C^1(t_0 - \delta, t_0 + \delta)$ s.t.

 $\{(t, x) \in \Omega : |t - t_0| < \delta, |x - x_0| < \eta, F(t, x) = 0 \} = \{(t, x(t)) \in \Omega : |t - t_0| < \delta \}$.

 - By differentiating the identity $F(t, x(t)) = 0$,

 $0 = \frac{d}{dt} F(t, x(t)) = \frac{\partial F}{\partial t} (t, x(t)) + \frac{\partial F}{\partial x} (t, x(t)) \frac{dx}{dt} = \frac{\partial F}{\partial t} (t_0, x(t_0)) + \frac{\partial F}{\partial x} (t_0, x(t_0)) \frac{dx}{dt} = f(t, x(t)) + g(t, x(t)) \frac{dx}{dt}$.

 - $\Rightarrow x(t)$: solution of the differential equation.
 - $x(t_0) = x_0$.
 - If $z \in C^1(I)$: solution s.t. $z(t_0) = x_0$, then

 $\frac{d}{dt} F(t, z(t)) = 0 \iff F(t, z(t)) = F(t_0, z(t_0)) = 0 \iff z(t) = x(t)$.

Numerical methods for ODEs Habib Ammari
Some basics

- **DEFINITION:**
 - \(f, g \in C^1(\Omega) \).
 - Differential form \(\omega = f \, dt + g \, dx \): **closed** in \(\Omega \) if
 \[
 \frac{\partial f}{\partial x} = \frac{\partial g}{\partial t}
 \]
 for all \((t, x) \in \Omega \).

- **PROPOSITION:**
 - Exact differential form \(\omega = f \, dt + g \, dx \) with a potential \(F \in C^2 \): **closed** since
 \[
 \frac{\partial^2 F}{\partial t \partial x} = \frac{\partial^2 F}{\partial x \partial t}
 \]
 for all \((t, x) \in \Omega \).
 - Converse: also **true** if \(\Omega \): simply connected.
 - Closed forms always have a potential (at least locally).
Some basics

- **EXAMPLE:**
 - Consider
 \[tx^2 + x - t \frac{dx}{dt} = 0. \]
 - \(f(t, x) = tx^2 + x \) and \(g(t, x) = -t \).
 - Not exact:
 \[\frac{\partial f}{\partial x} = 2xt + 1 \neq \frac{\partial g}{\partial t} = -1. \]

- **EXAMPLE:**
 - Consider
 \[t + \frac{1}{x} - t \frac{dx}{x^2 \, dt} = 0 \]
 - Exact equation with the potential function \(F \):
 \[F(t, x) = \frac{t^2}{2} + \frac{t}{x} + C, \quad C \in \mathbb{R}. \]
 - \(F(t, x) = 0 \) implicitly defines the solutions (locally for \(t \neq 0 \) and \(x \neq 0 \) s.t. \(\partial F / \partial x(t, x) \neq 0 \)).
Some basics

- Hamiltonian systems:
 - DEFINITION:
 - M: subset of \mathbb{R}^d and $H : \mathbb{R}^d \times M \to \mathbb{R}$: C^1 function.
 - Hamiltonian system with Hamiltonian H: first-order system of ODEs
 \[
 \begin{align*}
 \frac{dp}{dt} &= -\frac{\partial H}{\partial q}(p, q), \\
 \frac{dq}{dt} &= \frac{\partial H}{\partial p}(p, q).
 \end{align*}
 \]
 - EXAMPLE:
 - Harmonic oscillator with Hamiltonian
 \[
 H(p, q) = \frac{1}{2} p^2 \frac{1}{m} + \frac{1}{2} kq^2;
 \]
 m and k: positive constants.
 - Given a potential V, widely used Hamiltonian systems in molecular dynamics:
 \[
 H(p, q) = \frac{1}{2} p^\top M^{-1} p + V(q);
 \]
 M: symmetric positive definite matrix and \top: transpose.
Some basics

- **Invariant** for a system of ODEs:

 - **DEFINITION:**

 - $\Omega = I \times D$; $I \subset \mathbb{R}$ and $D \subset \mathbb{R}^d$.
 - Consider

 \[
 \frac{dx}{dt} = f(t, x(t));
 \]

 - $f : \Omega \to \mathbb{R}^d$.
 - $F : D \to \mathbb{R}$: invariant if $F(x(t)) = \text{Constant}$.
 - $(t, x) \in I \times D$: stationary point if $f(t, x) = 0$.

Some basics

• Example:
 • Lotka-Volterra’s ODEs:
 \[
 \begin{align*}
 \frac{du}{dt} &= u(v - 2), \\
 \frac{dv}{dt} &= v(1 - u).
 \end{align*}
 \]
 • Dynamics of biological systems in which two species interact: one as a predator and the other as prey.
 • Define
 \[F(u, v) := \ln u - u + 2 \ln v - v. \]
 • \(F(u, v) \): invariant.
 • \((u, v) = (1, 2) \) and \((u, v) = (0, 0) \): stationary points.
Some basics

- Differentiation with respect to time,

\[
\frac{d}{dt} F(u, v) = \frac{1}{u} \frac{du}{dt} - \frac{du}{dt} + \frac{2}{v} \frac{dv}{dt} - \frac{dv}{dt}
\]

\[
= v - 2 - \frac{du}{dt} + 2(1 - u) - \frac{dv}{dt}
\]

\[
= (v - 2) - u(v - 2) + 2(1 - u) + v(1 - u)
\]

\[
= (v - 2)(1 - u) + (2 - v)(1 - u)
\]

\[
= 0.
\]
Some basics

- **LEMMA:**
 - Hamiltonian H: invariant of the associated Hamiltonian system.

- **PROOF:**
 - \[
 \frac{d}{dt} H(p(t), q(t)) = \frac{\partial H}{\partial p}(p(t), q(t)) \frac{dp}{dt} + \frac{\partial H}{\partial q}(p(t), q(t)) \frac{dq}{dt}
 \]
 - \[
 = -\frac{\partial H}{\partial p}(p(t), q(t)) \frac{\partial H}{\partial q}(p(t), q(t)) + \frac{\partial H}{\partial q}(p(t), q(t)) \frac{\partial H}{\partial p}(p(t), q(t))
 \]
 - \[
 = 0.
 \]
 - $H(p, q)$: invariant of the associated system of equations.
Some basics

• **EXAMPLE:**

 • Consider

 \[
 \begin{align*}
 \frac{dp}{dt} &= -\sin q, \\
 \frac{dq}{dt} &= p.
 \end{align*}
 \]

 • \(H(p, q) = \frac{1}{2}p^2 - \cos q: \)

 \[
 \begin{align*}
 \frac{\partial H}{\partial q} &= \sin q = -\frac{dp}{dt}, \\
 \frac{\partial H}{\partial p} &= p = \frac{dq}{dt}.
 \end{align*}
 \]
Some basics

- **Equivalent expression** for Hamiltonian systems:
 - $x = (p, q)^\top (p, q \in \mathbb{R}^d)$;

 \[
 J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix};
 \]

 I: $d \times d$ identity matrix.

- $J^{-1} = J^\top$.

- Rewrite the Hamiltonian system in the form

 \[
 \frac{dx}{dt} = J^{-1} \nabla H(x).
 \]
Some basics

• Notation $\nabla H(x) := \left(\frac{\partial H}{\partial x} \right)^T = \left(\frac{\partial H}{\partial x_1}, \ldots, \frac{\partial H}{\partial x_d} \right)^T$.

• For a vector function $f : \mathbb{R}^d \rightarrow \mathbb{R}^d$, $f(x) = (f_1(x), \ldots, f_d(x))$, we define the Jacobian matrix f' of f by

$$f'(x) := \begin{pmatrix}
\frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_d} \\
\vdots & \ddots & \vdots \\
\frac{\partial f_d}{\partial x_1} & \cdots & \frac{\partial f_d}{\partial x_d}
\end{pmatrix}.$$
Some basics

- DEFINITION Symplectic linear mapping
 - Matrix $A \in \mathbb{R}^{2d} \times \mathbb{R}^{2d}$ (linear mapping from \mathbb{R}^{2d} to \mathbb{R}^{2d}): symplectic if $A^TJA = J$.

Numerical methods for ODEs Habib Ammari
Some basics

• DEFINITION Symplectic mapping
 • Differentiable map \(g : U \rightarrow \mathbb{R}^{2n} \): symplectic if the Jacobian matrix \(g'(p, q) \): everywhere symplectic, i.e., if

 \[
 g'(p, q)^\top J g'(p, q) = J.
 \]

 • Taking the transpose of both sides of the above equation,

 \[
 g'(p, q)^\top J^\top g'(p, q) = J^\top;
 \]

 • Or equivalently,

 \[
 g'(p, q)^\top J^{-1} g'(p, q) = J^{-1}.
 \]
Some basics

• **THEOREM:**
 - If g: symplectic mapping, then it preserves the Hamiltonian form of the equation.
Some basics

• **PROOF:**

 • \(x = (p, q)^\top, \ y = g(p, q)^\top; \ G(y) := H(x). \)
 • **Chain rule \(\Rightarrow \)**

\[
\frac{\partial}{\partial x} H(x) = \frac{\partial}{\partial x} G(y) = \frac{\partial}{\partial y} G(y) \frac{\partial y}{\partial x}(x)
\]

\[
= (\nabla_y G(y))^\top g'(p, q).
\]
Some basics

\[\frac{dy}{dt} = g'(p, q) \frac{dx}{dt} \]

\[= g'(p, q) J^{-1} \left(\frac{\partial H(x)}{\partial x} \right)^\top \]

\[= g'(p, q) J^{-1} \nabla_y G(y) \]

\[= J^{-1} \nabla_y G(y). \]
Some basics

- **DEFINITION:**
 - Flow:
 \[
 \phi_t(p_0, q_0) = (p(t, p_0, q_0), q(t, p_0, q_0));
 \]
 - \(\phi_t : U \rightarrow \mathbb{R}^{2d}, U \subset \mathbb{R}^{2d};\)
 - \(p_0\) and \(q_0\): initial data at \(t = 0\).
Some basics

- **THEOREM: Poincaré’s theorem**
 - H: twice differentiable.
 - **Flow ϕ_t: symplectic transformation.**
Some basics

• **PROOF:**

 • \(y_0 = (p_0, q_0) \).

 \[
 \frac{d}{dt} \left(\left(\frac{\partial \phi_t}{\partial y_0} \right)^T J \left(\frac{\partial \phi_t}{\partial y_0} \right) \right) = \left(\frac{\partial \phi_t}{\partial y_0} \right)^T J \left(\frac{\partial \phi_t}{\partial y_0} \right) + \left(\frac{\partial \phi_t}{\partial y_0} \right)^T J \left(\frac{\partial \phi_t}{\partial y_0} \right)' \]

 \[
 = \left(\frac{\partial \phi_t}{\partial y_0} \right)^T \nabla^2 H J^{-T} J \left(\frac{\partial \phi_t}{\partial y_0} \right) + \left(\frac{\partial \phi_t}{\partial y_0} \right)^T JJ^{-1} \nabla^2 H \left(\frac{\partial \phi_t}{\partial y_0} \right) \]

 \[
 = 0;

 \]

 • \(\nabla^2 H \): Hessian matrix of \(H(p, q) \) (symmetric).
Some basics

- $\partial \phi_t / \partial y_0$ at $t = 0$: identity map \Rightarrow
-
 \[
 \left(\frac{\partial \phi_t}{\partial y_0} \right)^T J \left(\frac{\partial \phi_t}{\partial y_0} \right) = J
 \]

 for all t and all (p_0, q_0).

Numerical methods for ODEs

Habib Ammari
Some basics

• **Symplecticity** of the flow: characteristic property of the Hamiltonian system.

• **THEOREM:**
 - \(f : U \rightarrow \mathbb{R}^{2n} \): continuously differentiable.
 - \(\frac{dx}{dt} = f(x) \): locally Hamiltonian iff \(\phi_t(x) \): symplectic for all \(x \in U \) and for all sufficiently small \(t \).
Some basics

- **PROOF:**
 - Necessity \(\iff \) Poincaré’s Theorem.
 - Suppose that \(\phi_t \): symplectic; prove local existence of a Hamiltonian \(H \) s.t. \(f(x) = J^{-1} \nabla H(s) \).
 - \(\frac{\partial \phi_t}{\partial y_0} \): solution of
 \[
 \frac{dy}{dt} = f'(\phi_t(y_0))y;
 \]
 - \(\Rightarrow \)
 \[
 \frac{d}{dt} \left(\left(\frac{\partial \phi_t}{\partial y_0} \right)^\top J \left(\frac{\partial \phi_t}{\partial y_0} \right) \right) = \left(\frac{\partial \phi_t}{\partial y_0} \right)^\top \left[f'(\phi_t(y_0))^\top J + Jf' \right] \left(\frac{\partial \phi_t}{\partial y_0} \right)
 \]
 \[
 = 0.
 \]
 - Putting \(t = 0; J = -J^\top \Rightarrow Jf'(y_0) \): symmetric matrix for all \(y_0 \).
 - **Integrability lemma** \(\Rightarrow Jf(y) \): can be written as the gradient of a function \(H \).
Some basics

- **LEMMA: Integrability lemma**
 - \(D \subset \mathbb{R}^d \): open set; \(g : D \to \mathbb{R}^d \in C^1 \).
 - Suppose that the Jacobian \(g'(y) \): symmetric for all \(y \in D \).
 - For every \(y_0 \in D \), there exists a neighborhood of \(y_0 \) and a function \(H(y) \) s.t.
 \[
g(y) = \nabla H(y)
 \]
 on this neighborhood.
Some basics

- **PROOF:**
 - Suppose that $y_0 = 0$, and consider a ball around y_0: contained in D.
 - Define
 \[
 H(y) = \int_0^1 y^\top g(ty)dt.
 \]
 - Differentiation with respect to y_k, and symmetry assumption:
 \[
 \frac{\partial g_i}{\partial y_k} = \frac{\partial g_k}{\partial y_i}
 \]
 - \Rightarrow
 \[
 \frac{\partial H}{\partial y_k} = \int_0^1 (g_k(ty) + y^\top \frac{\partial g}{\partial y_k}(ty)t)dt
 \]
 \[
 = \int_0^1 \frac{d}{dt}(tg_k(ty))dt = g_k(y)
 \]
 - \Rightarrow
 \[
 \nabla H = g.
 \]
Some basics

• Gradient system:
 \[\frac{dx}{dt} = -\nabla F(x); \]
 • \(F \): potential function.

• LEMMA:
 • Hamiltonian system: gradient system iff \(H \): harmonic.
Some basics

• **PROOF:**

 • Suppose that H: harmonic, i.e.,

 \[
 \frac{\partial^2 H}{\partial p^2} + \frac{\partial^2 H}{\partial q^2} = 0.
 \]

 • Jacobian of $J^{-1} \nabla H$: symmetric

 \[
 (J^{-1} \nabla H)' = \begin{pmatrix}
 -\frac{\partial^2 H}{\partial p \partial q} & -\frac{\partial^2 H}{\partial q^2} \\
 -\frac{\partial^2 H}{\partial p^2} & \frac{\partial^2 H}{\partial p \partial q}
 \end{pmatrix}
 \]

 • Integrability lemma \Rightarrow there exists V s.t. $J^{-1} \nabla H = \nabla V$ \Rightarrow
 Hamiltonian system: gradient system.
Some basics

- Suppose that Hamiltonian system: gradient system.
- There exists V s.t.

 \[
 \frac{\partial V}{\partial p} = \frac{\partial H}{\partial q} \quad \text{and} \quad \frac{\partial V}{\partial q} = -\frac{\partial H}{\partial p}.
 \]

- \Rightarrow

 \[
 \Delta H := \frac{\partial^2 H}{\partial p^2} + \frac{\partial^2 H}{\partial q^2} = 0.
 \]
Some basics

- **EXAMPLE:**
 - Hamiltonian system with $H(p, q) = p^2 - q^2$: gradient system.