Problem 7.1 Error estimate for the trapezium rule method

We consider the trapezium rule method

\[x_{n+1} = x_n + \frac{1}{2}h(f_{n+1} + f_n). \]

for the numerical solution of the initial value problem \(\frac{dx}{dt} = f(t, x) \), \(x(0) \) given, where \(f_n = f(t_n, x_n) \) and \(h = t_{n+1} - t_n \). Let us define the truncation error \(T_n \) as

\[T_n := \frac{x(t_{n+1}) - x(t_n)}{h} - \frac{1}{2}\left(f(t_{n+1}, x(t_{n+1})) + f(t_n, x(t_n)) \right). \]

(7.1a) By integrating by parts the integral

\[\int_{t_n}^{t_{n+1}} (t - t_{n+1})(t - t_n)x'''(t)dt, \]

show that

\[T_n = -\frac{1}{12}h^2 x'''(\xi_n), \]

for some \(\xi_n \) in the interval \((t_n, t_{n+1})\), where \(x \) is the solution of the initial value problem.

(7.1b) Suppose that \(f \) satisfies the Lipschitz condition

\[|f(t, x) - f(t, y)| \leq L|x - y| \]

for all real \(t, x, y \), where \(L \) is a positive constant independent of \(t \), and that \(|x'''(t)| \leq M \) for some positive constant \(M \) independent of \(t \). Show that the global error \(e_n = x(t_n) - x_n \) satisfies the inequality

\[|e_{n+1}| \leq |e_n| + \frac{1}{2}hL(|e_{n+1}| + |e_n|) + \frac{1}{12}h^3 M. \]

(7.1c) For a uniform step \(h \) satisfying \(hL < 2 \) deduce that, if \(x_0 = x(t_0) \), then

\[|e_n| \leq \frac{h^2 M}{12L} \left[\left(\frac{1 + \frac{1}{2}hL}{1 - \frac{1}{2}hL} \right)^n - 1 \right]. \]
Problem 7.2 Truncation Error

Consider the following one-step method for the numerical solution of initial value problem \(x' = f(t, x), x(t_0) = x_0, f : \mathbb{R}_+ \times \mathbb{R} \rightarrow \mathbb{R} \):

\[
x_{n+1} = x_n + \frac{1}{2} h (k_1 + k_2),
\]

where

\[
k_1 = f(t_n, x_n), \quad k_2 = f(t_n + h, x_n + hk_1).
\]

Show that the method is consistent and has truncation error

\[
T_n = \frac{1}{6} h^2 \left(f_x (f_t + f_x f) - \frac{1}{2} (f_{tt} + 2f_{tx} f + f_{xx} f^2) \right) + O(h^3)
\]

Problem 7.3 Roundoff Error Effects

In practical situations, computers always round off real numbers. In numerical methods rounding errors become important when the step size \(\Delta t \) is comparable with the precision of the computations. Thus, if taking rounding error into consideration, the Explicit Euler method will become the following perturbed scheme:

\[
x^{k+1} = x^k + \Delta t f(t_k, x^k) + (\Delta t) \mu^k + \rho^k,
\]

where \(\mu^k \) and \(\rho^k \) represent the errors in \(f \) and in the assembling, respectively. Assume that \(|\mu^k| \leq \mu \) and \(|\rho^k| \leq \rho \) for all \(k \) and \(f \in C^1 \). Let \(e^k := x(t_k) - x^k \), and try to prove that

\[
|e^{k+1}| \leq (1 + \Delta t C)|e^k| + \Delta t \mu + \rho + \sup_{\xi \in [t_k, t_{k+1}]} |Df(\xi)| \frac{1}{2} (\Delta t)^2,
\]

and hence

\[
|e^k| \leq e^{CT}|e^0| + \frac{\mu e^{CT}}{C} + \frac{\rho e^{CT}}{C\Delta t} + \frac{1}{2C} \sup_{\xi \in [0,T]} |Df(\xi)| e^{CT} \Delta t,
\]

where \(C_f \) is the Lipschitz constant for \(f \), and \(Df \) denotes the differentiation to \(f \) where \(f(t, x(t)) \) is regarded as a function with single parameter \(t \).

Introduce

\[
\phi(\Delta t) = \frac{\rho e^{CT}}{C\Delta t} + \frac{1}{2C} \sup_{\xi \in [0,T]} |Df(\xi)| e^{CT} \Delta t,
\]

when does \(\phi \) attain its minimum, and therefore what suggestion do you have for the minimal step size \(\Delta t \)?

Published on 03 April 2019.
To be submitted by 11 April 2019.