Problem 10.1 Order and Stability of Multistep Method

Consider the problem
\[
y'(t) = f(t, y(t)), \quad t_0 < t < t_0 + T, \\
y(t_0) = y_0
\]
where \(f \in C^3([t_0, t_0 + T], \mathbb{R}^m) \) satisfies the Lipschitz condition
\[
\forall t, y, z : |f(t, y) - f(t, z)| \leq L|y - z|.
\]
For \(n \geq 1 \) consider the following multistep scheme with constant time step \(h_n = h \):
\[
p_{n+1} = y_{n-1} + 2hf(t_n, y_n) \\
y_{n+1} = y_{n-1} + \frac{h}{3}[f(t_{n+1}, p_{n+1}) + 4f(t_n, y_n) + f(t_{n-1}, y_{n-1})]
\]

\textbf{(10.1a)} Study the stability of the scheme.

\textbf{Solution:}

Suppose we have two sets of initial values \((y_0, y_1)\) and \((y'_0, y'_1)\), and \(y_2, y'_2\) are the results corresponding to these two initial values, then
\[
y_2 - y'_2 = y_0 - y'_0 + \frac{h}{3}[f(t_2, p_2) - f(t_2, p'_2) + 4(f(t_1, y_1) - f(t_1, y'_1)) + f(t_0, y_0) - f(t_0, y'_0)]
\]
Notice that
\[
p_2 - p'_2 = (y_0 - y'_0) + 2h(f(t_1, y_1) - f(t_1, y'_1)),
\]
so
\[
|p_2 - p'_2| \leq |y_0 - y'_0| + 2h|f(t_1, y_1) - f(t_1, y'_1)|
\]
Back to main equation and taking abstract value on both sides, we have
\[
|y_2 - y'_2| \leq |y_0 - y'_0| + \frac{h}{3}[|f(t_2, p_2) - f(t_2, p'_2)| + 4|f(t_1, y_1) - f(t_1, y'_1)| + |f(t_0, y_0) - f(t_0, y'_0)|]
\]
\[
\leq |y_0 - y'_0| + \frac{h}{3}L(|y_0 - y'_0| + 2hL|y_1 - y'_1|) + 4L|y_1 - y'_1| + L|y_0 - y'_0|
\]
\[
= (1 + \frac{2hL}{3})|y_0 - y'_0| + \frac{hL}{3}(2hL + 4)|y_1 - y'_1|
\]
\[
\leq C(h, L) \max\{|y_0 - y'_0|, |y_1 - y'_1|\},
\]
which proved its stability.
(10.1b) Prove that the order of truncation error defined by

\[T_n(h) := \frac{1}{2h}[y(t_{n+1})-y(t_{n-1})-\frac{h}{3}[f(t_{n+1}, y(t_{n-1}))+2hf(t_n, y(t_n))]+4f(t_n, y(t_n))+f(t_{n-1}, y(t_{n-1}))]] \]

is at least 3.

Solution: Let

\[I := y(t_{n+1}) - y(t_{n-1}), \]
\[II := f(t_{n+1}, y(t_{n-1}))+2hf(t_n, y(t_n)), \]
\[III := f(t_n, y(t_n)), \]
\[IV := f(t_{n-1}, y(t_{n-1})). \]

By the same way as in Problem 7.2, Assignment 7, we have

\[
I = \int_{t_{n-1}}^{t_{n+1}} f(t, y(t))\,dt \\
= \int_{t_{n-1}}^{t_{n+1}} f(t_{n-1}, y(t_{n-1}))(t-t_{n-1}) + Df(t_{n-1}, y(t_{n-1}))(t-t_{n-1})^2 + O(h^3)\,dt \\
= 2hf(t_{n-1}, y(t_{n-1}))+\langle f_t + fyf \rangle|_{(t_{n-1}, y(t_{n-1}))}2h^2 + \\
(f_{tt} + f_{ty}f + fyf + fyf + f_{fy}f)|_{(t_{n-1}, y(t_{n-1}))} \frac{4}{3}h^3 + O(h^4)
\]

\[
II = f(t_{n-1}, y(t_{n-1}))+2hf(t_t + f_t, y(t_n))f(f_t + f_{yy})|_{(t_{n-1}, y(t_{n-1}))}2h^2 + \\
= f(t_{n-1}, y(t_{n-1}))+2hf(t_t + f_t, y(t_n))f(f_t + f_{yy})|_{(t_{n-1}, y(t_{n-1}))}2h^2 + \\
O(h^3),
\]

the last step holds because \(f(t_n, y(t_n)) = f(t_{n-1}, y(t_{n-1})) + O(h) \).

\[
III = f(t_{n-1}, y(t_{n-1}))+hf(t_t + f_t, y(t_n) - y(t_{n-1}))f|_{(t_{n-1}, y(t_{n-1}))} + \frac{1}{2}(h^2f_{tt} + h\Delta yf_{ty} + \Delta yf_{fy} + (\Delta y)^2f_{yy})|_{(t_{n-1}, y(t_{n-1}))} + O(h^3), \quad (\Delta y := y(t_n) - y(t_{n-1}))
\]

\[
= f(t_{n-1}, y(t_{n-1}))+hf(t_t + f_t, y(t_n) - y(t_{n-1}))f|_{(t_{n-1}, y(t_{n-1}))} + \frac{1}{2}(h^2f_{tt} + h^2f_{ty} + h^2f_{fy} + h^2f_{yy})|_{(t_{n-1}, y(t_{n-1}))} + O(h^3))
\]

(10.1.2)

the last step holds because \(\Delta y = hf(t_{n-1}, y(t_{n-1})) + O(h) \).

Put everything together and compute

\[T_n(h) := \frac{1}{2h}(I - \frac{h}{3}(II + III + IV)), \]

we find that, the \(O(1) \) term, \(O(h^1) \) terms and \(O(h^2) \) terms get all cancelled out, so

\[T_n(h) = O(h^3), \]

which shows that the method is at least of order 3.
(10.1c) We introduce in the scheme an intermediate step:

\[p_{n+1} = y_{n-1} + 2hf(t_n, y_n) \]
\[c_{n+1} = y_{n-1} + \frac{h}{3}[f(t_{n+1}, p_{n+1}) + 4f(t_n, y_n) + f(t_{n-1}, y_{n-1})] \]
\[y_{n+1} = y_{n-1} + \frac{h}{3}[f(t_{n+1}, c_{n+1}) + 4f(t_n, y_n) + f(t_{n-1}, y_{n-1})] \]

Prove that, the order of truncation error of this method is 4.

Hint: Use the result in subproblem (b) and the fact that the error of Simpson’s rule is of order 5, i.e.

\[\int_a^b f(x)dx - \frac{b-a}{6}[f(a) + 4f((a+b)/2) + f(b)] = O((b-a)^5) \]

Solution: The truncation error of this method is

\[T_n'(h) := \frac{1}{2h}[y(t_{n+1}) - y(t_{n-1}) - \frac{h}{3}[f(t_{n+1}, \tilde{c}_{n+1}) + 4f(t_n, y(t_n)) + f(t_{n-1}, y(t_{n-1}))]], \]

where actually \(\tilde{c}_{n+1} = y(t_{n+1}) - 2hT_n(h) = y(t_{n+1}) + O(h^4) \) by using the definition of \(T_n(h) \) and result in (b). As a result, it holds that

\[2hT_n'(h) = y(t_{n+1}) - y(t_{n-1}) - \frac{h}{3}[f(t_{n+1}, y(t_{n+1})) + f_y(t_{n+1}, y(t_{n+1}))O(h^4) + O(h^5)] \]
\[+ 4f(t_n, y(t_n)) + f(t_{n-1}, y(t_{n-1}))] \]
\[= y(t_{n+1}) - y(t_{n-1}) - \frac{h}{3}[f(t_{n+1}, y(t_{n+1})) + 4f(t_n, y(t_n)) + f(t_{n-1}, y(t_{n-1}))] + O(h^5) \]
\[= O(h^5) \]

The last step is by result of Simpson’s rule.

Problem 10.2 A Complex Hamiltonian Differential Equation

We will look at the complex differential equation

\[i\dot{z} = \lambda z + |z|^2z, \quad \lambda \in \mathbb{R}. \] (10.2.1)

(10.2a) Show that the function \(I(z) := |z|^2 \) is an invariant of the differential equation (10.2.1).

Solution: For the time-derivative of \(I(z) \), it holds that

\[\frac{d}{dt} I(z) = \frac{d}{dt} |z|^2 = \frac{d}{dt} z \bar{z} = \dot{z}\bar{z} + z\dot{\bar{z}} \]
\[\overset{\text{diff. eq.}}{=} [-i\lambda z - i|z|^2z\bar{z} + z[-i\lambda z - i|z|^2z] \]
\[= -i\lambda |z|^2 - i|z|^4 + i\lambda |z|^2 + i|z|^4 = 0. \]

Thus \(I(z) \) is an invariant.
Show that the differential equation (10.2.1) for \(p = \text{Re}(z), q = \text{Im}(z) \) is equivalent to a Hamiltonian differential equation of the form

\[
\dot{p} = -\frac{\partial H}{\partial q}, \quad \dot{q} = \frac{\partial H}{\partial p}.
\]

Solution: We substitute \(z = p + iq \) in the differential equation and separate the received equation

\[
i(\dot{p} + i\dot{q}) = -\dot{q} + i\dot{p} = \lambda(p + iq) + (p^2 + q^2)(p + iq).
\]

into its real and imaginary parts. In this way we receive

\[
\dot{p} = \lambda q + (p^2 + q^2)q, \\
-\dot{q} = \lambda p + (p^2 + q^2)p.
\]

(10.2.2)

It remains to show that (10.2.2) is indeed a Hamiltonian differential equation. The ansatz \(\frac{\partial H}{\partial q} = -\dot{p} = -\lambda q - (p^2 + q^2)q \) and integrating gives us

\[
H(p, q) = -\frac{\lambda}{2}q^2 - \frac{1}{2}p^2q^2 - \frac{1}{4}q^4 + C(p),
\]

where the constant \(C(p) \) does not depend on \(q \). Analogously, from \(\frac{\partial H}{\partial p} = \dot{q} = -\lambda p - (p^2 + q^2)p \), we get

\[
H(p, q) = -\frac{\lambda}{2}p^2 - \frac{1}{4}p^2 - \frac{1}{2}p^2q^2 + C(q)
\]

With \(C(q) \) independent of \(p \). Equating and sorting of both expressions gives us

\[
\frac{\lambda}{2}p^2 + \frac{1}{4}p^2 + C(p) = \frac{\lambda}{2}q^2 + \frac{1}{4}q^4 + C(q).
\]

As the left side of above equation does not depend on \(q \) and the right hand side does not depend on \(p \), both sides must be constant. We denote this constant with \(C \) and receive

\[
C(p) = C - \frac{\lambda}{2}p^2 - \frac{1}{4}p^2.
\]

We can substitute this above, and we get our Hamiltonian function

\[
H(p, q) = -\frac{\lambda}{2}(p^2 + q^2) - \frac{1}{4}(p^2 + q^2)^2.
\]

One can easily confirm that \(H \) is indeed a Hamiltonian of the system (10.2.2).

(10.2c) We will now look at the following generalisation of the above differential equation with a real, continuously differentiable function \(\psi \):

\[
i\dot{z} = -\psi(|z|^2)z.
\]

Write this equation as a Hamiltonian differential equation and find an invariant.
Solution: Analogously to above, we receive, by setting $z = p + iq$, substituting this in the equation and separating real and imaginary parts,

$$\dot{p} = -\psi'(p^2 + q^2)q,$$
$$\dot{q} = -\psi'(p^2 + q^2)p.$$

One can easily convince oneself that above system is created by the Hamiltonian $H(p, q) = \frac{1}{2} \psi(p^2 + q^2)$. As we know, $H(z) = \frac{1}{2} \psi(|z|^2)$ is then an invariant of the system.