Numerical Analysis II

Final Exam Spring 2019

Problem 1 [15 Marks]

Consider (1a)

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = f(t,x), & t \in [0,T], \\ x(0) = x_0 \in \mathbb{R} \end{cases}$$
(1.1)

with $f \in C^0([0,T] \times \mathbb{R})$ satisfying the Lipschitz condition

$$|f(t,x) - f(t,y)| \le C_f|x - y|$$

for any $x, y \in \mathbb{R}$, any $t \in [0, T]$ and some positive constant C_f .

Does (1.1) have a unique solution $x(t) \in C^1([0,T])$? Please explain why.

Does f(t,x) = a(t)x with $a \in C^{\circ}([0,T])$ satisfy the Lipschitz condition? Please explain why.

(1c) Locally solve the equation

$$\begin{cases} \frac{\mathrm{d}x(t)}{\mathrm{d}t} = a(t)x, \\ x(0) = x_0 > 0 \end{cases}$$

with $a \in C^0([0,T])$ by the method of integrating factors.

(1d) Local	lly solve the equation	$\begin{cases} \frac{\mathrm{d}x(t)}{\mathrm{d}t} = a(t)x, \\ x(0) = x_0 \in \mathbb{R} \end{cases}$	
with $a \in C^0$	([0,T]) by the method of s		
Problem 2			 [15 Mark
(2a) Consid	der the system of equation	$\begin{cases} \frac{\mathrm{d}p}{\mathrm{d}t} = \sin q, & t \ge 0, \\ \frac{\mathrm{d}q}{\mathrm{d}t} = p, & t \ge 0, \end{cases}$	(2.
	. (0)		
vith initial va	alue $p(0) = p_0 \in \mathbb{R}$ and $q($	$q(0) = q_0 \in \mathbb{R}$. Is (2.1) a Hamiltonian system?	Please explain why.
(2b) Find a	an invariant for (2.1) i.e. s	a function F such that $F(p(t),q(t))=\mathrm{Const}$	ant for all $t > 0$
(=3) I ma t	, 101 (2.17), 110. 0	P(v), q(v)	

(2c)	Now consider a different system of equations
	$\begin{cases} \frac{\mathrm{d}p}{\mathrm{d}t} = q, & t \ge 0, \\ \frac{\mathrm{d}q}{\mathrm{d}t} = p - p^2, & t \ge 0, \end{cases} $ (2.2)
with in	nitial value $p(0)=p_0\in\mathbb{R}$ and $q(0)=q_0\in\mathbb{R}$. Prove that $I(p,q):=\frac{1}{2}q^2-\frac{1}{2}p^2+\frac{1}{3}p^3$ is an invariant for (2.2)
(2d)	Is (2.2) a Hamiltonian system? If so, please find its Hamiltonian.
 Prob	lem 3 [12 Marks]
(3a)	Verify that e^t and te^t are solutions to

 $\mathrm{d}^2 x$, $\mathrm{d} x$

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} - 2\frac{\mathrm{d}x}{\mathrm{d}t} + x = 0. \tag{3.1}$$

(3b) Solve the following initial value problem

$$\begin{cases} \frac{d^2x}{dt^2} - 2\frac{dx}{dt} + x = 0, & t \ge 0, \\ x(0) = 0, & \\ \frac{dx}{dt}(0) = 1. \end{cases}$$
 (3.2)

(3c) Verify that $x(t) = \frac{1}{2}t^2e^t$ satisfies

$$\frac{\mathrm{d}^2 x}{\mathrm{d}t^2} - 2\frac{\mathrm{d}x}{\mathrm{d}t} + x = e^t. \tag{3.3}$$

1	
ı	
_	
	dw (a)
	Solve the equation (3.3) with initial value $r(0) = 0$ and $\frac{dx}{dt}(0) = 1$
	Solve the equation (3.3) with initial value $x(0) = 0$ and $\frac{dx}{dt}(0) = 1$.
	Solve the equation (3.3) with initial value $x(0) = 0$ and $\frac{dx}{dt}(0) = 1$.
_	Solve the equation (3.3) with initial value $x(0) = 0$ and $\frac{dx}{dt}(0) = 1$.
_	Solve the equation (3.3) with initial value $x(0) = 0$ and $\frac{dx}{dt}(0) = 1$.
_	Solve the equation (3.3) with initial value $x(0) = 0$ and $\frac{dx}{dt}(0) = 1$.
_	Solve the equation (3.3) with initial value $x(0) = 0$ and $\frac{dx}{dt}(0) = 1$.
	Solve the equation (3.3) with initial value $x(0) = 0$ and $\frac{dx}{dt}(0) = 1$.
	Solve the equation (3.3) with initial value $x(0) = 0$ and $\frac{dx}{dt}(0) = 1$.
	Solve the equation (3.3) with initial value $x(0) = 0$ and $\frac{dx}{dt}(0) = 1$.
	Solve the equation (3.3) with initial value $x(0) = 0$ and $\frac{dx}{dt}(0) = 1$.
	Solve the equation (3.3) with initial value $x(0) = 0$ and $\frac{dx}{dt}(0) = 1$.
	Solve the equation (3.3) with initial value $x(0) = 0$ and $\frac{dx}{dt}(0) = 1$.
	Solve the equation (3.3) with initial value $x(0) = 0$ and $\frac{dx}{dt}(0) = 1$.
	Solve the equation (3.3) with initial value $x(0) = 0$ and $\frac{dx}{dt}(0) = 1$.
	Solve the equation (3.3) with initial value $x(0) = 0$ and $\frac{dx}{dt}(0) = 1$.

Consider the equation system

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = 2x(t) + y(t), & t \ge 0, \\ \frac{\mathrm{d}y}{\mathrm{d}t} = -x(t), & t \ge 0. \end{cases}$$
(4.1)

with initial conditions x(0) = y(0) = 1.

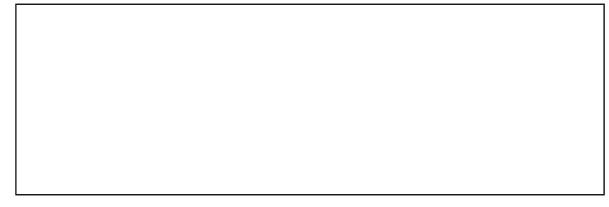
(4a) Reformulate the problem into the form of

$$\frac{\mathrm{d}\boldsymbol{X}}{\mathrm{d}t} = \boldsymbol{A}\boldsymbol{X}$$

with initial condition $X(0) = X_0$. Please specify A, X and X_0 .

(4b) Try to find matrix C such that $C^{-1}AC = D + N$, where D is a diagonal matrix, and $N^2 = 0$. Then calculate explicitly e^{At} .

HINT: You may want to recall the knowledge of Jordan decomposition.



(4c) Use the result in (4a) and (4b) to explicitly solve (4.1).

