Spring Term 2019 Numerical Analysis II

Final Exam Spring 2019

Dice marks difficulty of corresponding problem. \odot stands for the easiest, and \blacksquare stands for the hardest.

Problem 1

[60 points]

Assume that f is C^2 in $[0, T] \times \mathbb{R}^2$. Consider the initial value problem

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = f(t, x), \ t \in [0, T], \\ x(0) = x_0 \in \mathbb{R}^2. \end{cases}$$
(1.1)

For $\Delta t > 0$ small enough, consider the following schemes

$$x^{k+1} = \Phi_{\Delta t}^{(1)}(x^k) := x^k + \Delta t f(t_k, x^k), \tag{1.2}$$

and

$$x^{k+1} = \Phi_{\Delta t}^{(2)}(x^k) := x^k + \Delta t f(t_{k+1}, x^{k+1}).$$
(1.3)

(**1**a)

- (i) \Box Is $\Phi_{\Delta t}^{(2)}$ the adjoint of $\Phi_{\Delta t}^{(1)}$? Justify.
- (ii) \bigcirc Prove that (1.2) and (1.3) are consistent with (1.1).
- (iii) \bigcirc Prove that (1.2) and (1.3) are of order one.
- (1b) Let $\Psi_{\Delta t} := \Phi_{\frac{\Delta t}{2}}^{(2)} \circ \Phi_{\frac{\Delta t}{2}}^{(1)}$
 - (i) \bigcirc Prove that

$$\Psi_{\Delta t}(x^k) = x^k + \frac{\Delta t}{2} \big(f(t_k, x^k) + f(t_{k+1}, x^{k+1}) \big).$$

- (ii) \bigcirc Is $\Psi_{\Delta t}$ symmetric?
- (iii) \bigcirc Is $\Psi_{\Delta t}$ consistent with (1.1)?
- (iv) IProve that $\Psi_{\Delta t}$ is of order 2. Hint: compute $\int_{t_k}^{t_{k+1}} (t-t_{k+1})(t-t_k) x'''(t) dt$ in two different ways, using integration by part and the integral mean value theorem.

(1c) Suppose that $f(x) = J^{-1}Cx$, where C is a real symmetric 2×2 matrix and J is the matrix

$$J = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

- (i) Prove that (1.1) is a Hamiltonian system associated with the Hamiltonian $H(x) = \frac{1}{2}x^{\top}Cx$, where \top denotes the transpose.
- (ii) Compute the Jacobians $\left(\Phi_{\Delta t}^{(1)}\right)' := \frac{\partial x^{k+1}}{\partial x^k}, \left(\Phi_{\Delta t}^{(2)}\right)'$ and $\left(\Psi_{\Delta t}\right)'$.
- (iii) : Are any of the schemes defined by $\Phi_{\Delta t}^{(1)}, \Phi_{\Delta t}^{(2)}, \Psi_{\Delta t}$ symplectic?
- (iv) \Box Are any of the schemes defined by $\Phi_{\Delta t}^{(1)}, \Phi_{\Delta t}^{(2)}, \Psi_{\Delta t}$ volume preserving?
- (v) \Box Is H an invariant?
- (vi) \Box Is *H* preserved by $\Psi_{\Delta t}$?
- (1d) Let C = I, the identity matrix.
 - (i) \square Fill in the templates TrapezStep.m and TrapezSolve.m to implement the scheme $\Psi_{\Delta t}$ with initial data $x_0 = (0, 1)^{\top}$ and end time $T = 2\pi$.
- (ii) \bigcirc Write down the exact solution.
- (iii) I Plot the graphs of the exact and approximate solutions, Figure 1 is in phase space and Figure 2 shows each component over time using template TrapezScript.m.
- (iv) \bigcirc Plot the graph H(t) in Figure 3 in template TrapezScript.m.
- (v) \Box Check the order of $\Psi_{\Delta t}$ by filling in the template TrapezOrder.m for end time $T = \pi$..

[40 points]

Problem 2

Consider

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = f(t,x), \ t \in [0,T],\\ x(0) = x_0 \in \mathbb{R}, \end{cases}$$

$$(2.1)$$

with $f \in C^{\infty}([0,T] \times \mathbb{R})$ satisfying the Lipschitz condition

$$|f(t,x) - f(t,y)| \le C_f |x - y|, \, \forall x, y \in \mathbb{R}, \forall t \in [0,T],$$

for some positive constant C_f .

(2a)

- (i) \bigcirc Does (2.1) have a unique solution $x(t) \in C^{\infty}([0,T])$?
- (ii) If we regard x(t) also as a function of the initial value x_0 , what is the equation satisfied by the derivative with respect to t of $\partial x(t)/\partial x_0$? Is it a linear equation?
- (2b) Consider the numerical scheme

$$x^{k+1} = x^k + \frac{\Delta t}{4} f(t_k, x^k) + \frac{3\Delta t}{4} f\left(t_k + \frac{2\Delta t}{3}, x^k + \frac{2\Delta t}{3} f(t_k, x^k)\right),$$
(2.2)

where $\Delta t > 0$ is small enough and $t_k = k \Delta t$ for $k \in \mathbb{N}$.

- (i) \bigcirc Prove that (2.2) is consistent with (2.1).
- (ii) **I** Prove that the truncation error can be expressed as

$$T_k(\Delta t) = \frac{(\Delta t)^2}{6} \frac{\mathrm{d}^2 x}{\mathrm{d}t^2}(t_k) \frac{\partial f}{\partial x}(t_k, x(t_k)) + \mathcal{O}((\Delta t)^3).$$

(2c) Consider the second order differential equation

$$\begin{cases}
\frac{d^2x}{dt^2} = \cos x, \\
x(0) = \frac{\pi}{2}, \\
\frac{dx}{dt}(0) = 1.
\end{cases}$$
(2.3)

- (i) \bigcirc Rewrite the problem into a first-order ODE system.
- (ii) Solve the problem (2.4) using the scheme (2.2) by filling in the template methodPrb2c.m. Plot the solution x(t) for $t \in [0, 10]$ with the template RunPrb2c.m.

$$x^{k+1} = x^{k} + \frac{\Delta t}{4}(k_{1} + 3k_{3}), \qquad (2.4)$$

$$k_{1} = f(t_{k}, x^{k}), \qquad (2.4)$$

$$k_{2} = f(t_{k} + \frac{\Delta t}{3}, x^{k} + \frac{\Delta t}{3}k_{1}), \qquad (2.4)$$

$$k_{3} = f(t_{k} + \frac{2\Delta t}{3}, x^{k} + \frac{2\Delta t}{3}k_{2}).$$

- (i) 🖸 Is (2.5) a Runge-Kutta method?
- (ii) \Box Is (2.5) consistent with (2.1)? What is its order?
- (iii) Is (2.5) stable? Is it convergent?
- (iv) 🖸 Implement (2.5) by filling in the template rk3.m for the following ODE:

$$\frac{\mathrm{d}x}{\mathrm{d}t} = \sin t + x(t), \quad t \in [0, 1], \quad x(0) = 0,$$

and check the order of the method by filling in the template RKmethodscript.m.