Final Exam Spring 2019

Dice marks difficulty of corresponding problem. \odot stands for the easiest, and $\because:$ stands for the hardest.

Problem 1

[60 points]
Assume that f is \mathcal{C}^{2} in $[0, T] \times \mathbb{R}^{2}$. Consider the initial value problem

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} x}{\mathrm{~d} t}=f(t, x), t \in[0, T] \tag{1.1}\\
x(0)=x_{0} \in \mathbb{R}^{2}
\end{array}\right.
$$

For $\Delta t>0$ small enough, consider the following schemes

$$
\begin{equation*}
x^{k+1}=\Phi_{\Delta t}^{(1)}\left(x^{k}\right):=x^{k}+\Delta t f\left(t_{k}, x^{k}\right) \tag{1.2}
\end{equation*}
$$

and

$$
\begin{equation*}
x^{k+1}=\Phi_{\Delta t}^{(2)}\left(x^{k}\right):=x^{k}+\Delta t f\left(t_{k+1}, x^{k+1}\right) . \tag{1.3}
\end{equation*}
$$

(1a)
(i) \cdot Is $\Phi_{\Delta t}^{(2)}$ the adjoint of $\Phi_{\Delta t}^{(1)}$? Justify.
(ii) \odot Prove that (1.2) and (1.3) are consistent with (1.1).
(iii) \odot Prove that (1.2) and (1.3) are of order one.
(1b) Let $\Psi_{\Delta t}:=\Phi_{\frac{\Delta t}{2}}^{(2)} \circ \Phi_{\frac{\Delta t}{2}}^{(1)}$
(i)Prove that

$$
\Psi_{\Delta t}\left(x^{k}\right)=x^{k}+\frac{\Delta t}{2}\left(f\left(t_{k}, x^{k}\right)+f\left(t_{k+1}, x^{k+1}\right)\right) .
$$

(ii) \odot Is $\Psi_{\Delta t}$ symmetric?
(iii) \odot Is $\Psi_{\Delta t}$ consistent with (1.1)?
(iv) ©i Prove that $\Psi_{\Delta t}$ is of order 2. Hint: compute $\int_{t_{k}}^{t_{k+1}}\left(t-t_{k+1}\right)\left(t-t_{k}\right) x^{\prime \prime \prime}(t) d t$ in two different ways, using integration by part and the integral mean value theorem.
(1c) Suppose that $f(x)=J^{-1} C x$, where C is a real symmetric 2×2 matrix and J is the matrix

$$
J=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)
$$

(i) \odot Prove that (1.1) is a Hamiltonian system associated with the Hamiltonian $H(x)=\frac{1}{2} x^{\top} C x$, where T denotes the transpose.
(ii) :: Compute the Jacobians $\left(\Phi_{\Delta t}^{(1)}\right)^{\prime}:=\frac{\partial x^{k+1}}{\partial x^{k}},\left(\Phi_{\Delta t}^{(2)}\right)^{\prime}$ and $\left(\Psi_{\Delta t}\right)^{\prime}$.
(iii) \because Are any of the schemes defined by $\Phi_{\Delta t}^{(1)}, \Phi_{\Delta t}^{(2)}, \Psi_{\Delta t}$ symplectic?
(iv) \odot Are any of the schemes defined by $\Phi_{\Delta t}^{(1)}, \Phi_{\Delta t}^{(2)}, \Psi_{\Delta t}$ volume preserving?
(v) \odot Is H an invariant?
(vi) \odot Is H preserved by $\Psi_{\Delta t}$?
(1d) Let $C=I$, the identity matrix.
(i) : Fill in the templates TrapezStep.m and TrapezSolve.m to implement the scheme $\Psi_{\Delta t}$ with initial data $x_{0}=(0,1)^{\top}$ and end time $T=2 \pi$.
(ii) \odot Write down the exact solution.
(iii) :: Plot the graphs of the exact and approximate solutions, Figure 1 is in phase space and Figure 2 shows each component over time using template TrapezScript.m.
(iv) \odot Plot the graph $H(t)$ in Figure 3 in template TrapezScript.m.
(v) : $:$ Check the order of $\Psi_{\Delta t}$ by filling in the template TrapezOrder. m for end time $T=\pi$..

Consider

$$
\left\{\begin{array}{l}
\frac{\mathrm{d} x}{\mathrm{~d} t}=f(t, x), t \in[0, T] \tag{2.1}\\
x(0)=x_{0} \in \mathbb{R}
\end{array}\right.
$$

with $f \in C^{\infty}([0, T] \times \mathbb{R})$ satisfying the Lipschitz condition

$$
|f(t, x)-f(t, y)| \leq C_{f}|x-y|, \forall x, y \in \mathbb{R}, \forall t \in[0, T]
$$

for some positive constant C_{f}.
(2a)
(i) \odot Does (2.1) have a unique solution $x(t) \in C^{\infty}([0, T])$?
(ii) \odot If we regard $x(t)$ also as a function of the initial value x_{0}, what is the equation satisfied by the derivative with respect to t of $\partial x(t) / \partial x_{0}$? Is it a linear equation?
(2b) Consider the numerical scheme

$$
\begin{equation*}
x^{k+1}=x^{k}+\frac{\Delta t}{4} f\left(t_{k}, x^{k}\right)+\frac{3 \Delta t}{4} f\left(t_{k}+\frac{2 \Delta t}{3}, x^{k}+\frac{2 \Delta t}{3} f\left(t_{k}, x^{k}\right)\right) \tag{2.2}
\end{equation*}
$$

where $\Delta t>0$ is small enough and $t_{k}=k \Delta t$ for $k \in \mathbb{N}$.
(i) \odot Prove that (2.2) is consistent with (2.1).
(ii) © Prove that the truncation error can be expressed as

$$
T_{k}(\Delta t)=\frac{(\Delta t)^{2}}{6} \frac{\mathrm{~d}^{2} x}{\mathrm{~d} t^{2}}\left(t_{k}\right) \frac{\partial f}{\partial x}\left(t_{k}, x\left(t_{k}\right)\right)+\mathcal{O}\left((\Delta t)^{3}\right) .
$$

(2c) Consider the second order differential equation

$$
\left\{\begin{array}{l}
\frac{\mathrm{d}^{2} x}{\mathrm{~d} t^{2}}=\cos x \tag{2.3}\\
x(0)=\frac{\pi}{2} \\
\frac{\mathrm{~d} x}{\mathrm{~d} t}(0)=1
\end{array}\right.
$$

(i) \odot Rewrite the problem into a first-order ODE system.
(ii) : Solve the problem (2.4) using the scheme (2.2) by filling in the template methodPrb2c.m. Plot the solution $x(t)$ for $t \in[0,10]$ with the template RunPrb2c.m.
(2d) Consider the scheme

$$
\begin{align*}
x^{k+1} & =x^{k}+\frac{\Delta t}{4}\left(k_{1}+3 k_{3}\right) \tag{2.4}\\
k_{1} & =f\left(t_{k}, x^{k}\right) \\
k_{2} & =f\left(t_{k}+\frac{\Delta t}{3}, x^{k}+\frac{\Delta t}{3} k_{1}\right) \\
k_{3} & =f\left(t_{k}+\frac{2 \Delta t}{3}, x^{k}+\frac{2 \Delta t}{3} k_{2}\right) .
\end{align*}
$$

(i) : Is (2.5) a Runge-Kutta method?
(ii) \odot Is (2.5) consistent with (2.1)? What is its order?
(iii) \odot Is (2.5) stable? Is it convergent?
(iv) : $:$ Implement (2.5) by filling in the template $\mathrm{rk} 3 . \mathrm{m}$ for the following ODE:

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\sin t+x(t), \quad t \in[0,1], \quad x(0)=0
$$

and check the order of the method by filling in the template RKmethodscript.m.

