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Problem 1 Implementation of the Gaussian Collocation Method [25.5 Marks]

As explained in the section [NODE, Def. 2.2.1] of the lecture notes, a one-step collocation scheme
y1 = Ψt0,t0+hy0 for the solution of the ODE ẏ = f(t,y), with collocation points

t0 ≤ t0 + c1h < · · · < t0 + csh ≤ t0 + h = t1, s ∈ N,

can be described by

ki = f(t0 + cih,y0 + h
s∑

j=1

aijkj)

y1 := yh(t1) = y0 + h
s∑

i=1

biki

with
aij =

∫ ci

0

Lj(τ) dτ

bi =

∫ 1

0

Li(τ) dτ .

(1.1)

Here

Li(ξ) =
s∏

j=1

j 6=i

ξ − cj
ci − cj

, i = 1, . . . s

are the Lagrange polynomials. The coefficients aij , 1 ≤ i, j ≤ s are collected in the matrix A ∈
Rs×s.

(1a) Write a MATLAB function

function [A,b] = collCoeff(c)

which takes the relative positions ci ∈ [0, 1] of the collocation points as a vector c ∈ Rs and
returns the coefficients of the matrix A ∈ Rs×s and the vector b ∈ Rs with (A)ij = aij and
(b)i = bi.

HINT: Familiarize yourself with the MATLAB functions polyint und polyval. vander
may also be of use.

(1b) If the collocation points ci are the roots of the Legendre polynomial of nth degree for
the interval [0, 1], the resulting method is called the Gaussian collocation one-step method. This
method inherits the convergence properties of the Gaussian quadrature, meaning its convergence
order is 2n. Create a MATLAB function

function c = GaussNodes(n)
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which returns the roots of the Legendre polynomial of nth degree on the interval [0, 1].
HINT: The Golub-Welsch algorithm returns the roots of the Legendre polynomial of nth degree
on the interval [−1, 1]. To be specific, The roots c1, . . . , cn of the Legendre polynomial of degree
n for the interval [−1, 1] are the eigenvalues of the matrix

0 b1

b1 0
. . .

. . . . . . bn−1
bn−1 0

,
where bj := j(4j2 − 1)−1/2.

The eigenvalues of the matrix mentioned in the hint can be calculated with the MATLAB command
eig. Notice you may need scaling and translation to get the eigenvalue on [0, 1].

(1c) The Gaussian collocation one-step method is implicit and is usually used with Newton’s
method. Let F : Rn → Rn be a function, of which we want to find the roots. Modify the
code MATLAB function newton(x0, F, DF) provided in the template, so that the function
performs nNewton steps of Newton’s method.

(1d) Implement the implicit Gaussian collocation method of order 4: find the coefficients
using the Matlab function [A,b]=collCoeffs(c) and the vector b ∈ Rs with (A)ij = aij
and (b)i = bi and subproblem (1b) and rephrase the method as a root-finding problem. Apply
your implementation of Newton’s method from subproblem (1c) to it. Complete the template
impGauss.m with inputs: the initial value y0 of the IVP, the right hand side f of the initial
value problem, the Jacobian of the right hand side Df, the end point T, the number of steps Nh
and nNewton, the number of iterations of Newton’s method.

(1e) Consider the initial value problem

ẏ = exp(y) sin(y); y(0) = π/4.

Find the absolute error of the Gaussian collocation method at T=0.5 by varying both the number
of steps Nh = 2i, i = 4, . . . , 8 and the number of Newton iterations nNewton= 1, 2, 3. Plot
the error against the number of steps in logarithmic scale and estimate the algebraic convergence
order with the MATLAB function polyfit. Use the template GaussConv.m.
HINT: You can find a reference solution with ode45. Set the relative and absolute tolerance to
10−12.
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Problem 2 Stability Domain of a Rational Single Step Method [24.5 Marks]

Consider the rational function

R(z) =
2− z2

2(1− z)
.

(2a) Determine the maximal p ∈ N such that

| exp(z)−R(z)| = O(|z|p+1) for z → 0.

HINT: Compute the first three derivatives of R(z) and use them to compare the Taylor series of
exp(z) and R(z) around the point 0.

(2b) Consider R(z) as a stability function of a Runge-Kutta single step method and plot its
stability domain in MATLAB by completing the template StabilityRegion.m.

(2c) Show that a Runge-Kutta method with stability function R(z) is of convergence order
2 when applied to linear ODEs, that is, to problems of the form ẏ = λy, y(0) = y0.

(2d) Write down (in detail) the discrete evolution of the single step method (whose stability
function is R(z)), when applied to the autonomous linear differential equation

ẏ = Ay, A ∈ Rd×d. (2.1)

(2e) Implement the method (in MATLAB) for the approximate solution of (2.1) by complet-
ing the template RationalSSM.m to solve the initial value problem

ẏ =

(
α β
−β α

)
y, y(0) =

(
2
2

)
for t ∈ [0, 10] with the values

(i) (ii) (iii) (iv) (v) (vi)
α -2 -2 -2 1.5 1.5 1.5
β -1 -2 -2 0 0 0
h 1 1 0.5 0.5 1 1.5

where h is the step size. Plot your results and compare them with the exact solution. Explain
the behaviour of the method with all the six different sets of parameters with the help of the
stability domain of R(z).
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Problem 3 ODEs for Matrix-Valued Functions [23 Marks]

Let the matrix-valued function Y : R→ Rd×d be a solution of the (matrix) differential equation

Ẏ = AY with A ∈ Rd×d. (3.1)

(3a) Assume A>H = −HA. Show that Y(t)>HY(t) = H for all t > 0 provided
Y(0)>HY(0) = H.

HINT: You might want to compute d
dt

of Y>HY.

(3b) Implement the following functions in MATLAB

(i) function Y = ExplEulStep(A, Y0, h),

(ii) function Y = ImplEulStep(A, Y0, h),

(iii) function Y = ImplMidpStep(A, Y0, h),

which, for a given initial value Y(t0) = Y0 and for a given step size h, compute approximations
to Y(t0 + h) for the solution of (3.1) using a (single) step of

(i) the explicit Euler method,

(ii) the implicit Euler method,

(iii) the implicit mid-point method.

For (ii) and (iii), write out the closed form for Yk+1 instead of using Newton’s method. Explain
how you get the formula on your answer sheet.

(3c) Take now A =

(
−3 −6
6 3

)
, Y(0) = 1√

3

(
2 1
−1 −2

)
, and H =

(
2 1
1 2

)
. Complete

the template CompareNorms.m where, using the functions from subproblem (3b), you should
compute discrete approximations Yk of Y(kh), for k = 1, . . . , 20 with h = 1/20. Compare
the norms

∥∥Y>k HYk −H
∥∥
F

, for k = 1, . . . , 20 and all three methods, and comment on your
observations with regards to the invariant from subproblem (3a).

HINT: The Frobenius norm ‖·‖F of a matrix can be computed using the command norm(A,’fro’).

(3d) Show that the solution Yk computed via the implicit mid-point rule satisfies:

if Y>0 HY0 = H then Y>k HYk = H for all k ≥ 1.

HINT: You might find the identity Y1 −Y0 = h
2
A(Y0 + Y1) useful.
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Problem 4 Extrapolating Implicit Trapzoidal [27 Marks]

In this problem we will apply the extrapolation method to the implicit Trapzoidal method. Con-
sider the logistic ODE

ẏ = λy(1− y), λ > 0, (4.1)

with the initial value y(0) = y0 > 0

(4a) Find the fixed points of the ODE (4.1) and determine if any of them are attractive.
Explain why given 1 > y0 > 0 and y(t) is a smooth solution to the IVP, it follows that 1 > y(t) >
0 for all t > 0.

(4b) The implicit trapezoidal rule for solving the autonomous differential equation ẏ = f(y)
is given by

y1 = Ψt0,t0+hy0 := y0 + 1
2
h[f(y0) + f(y1)]. (4.2)

Give the closed form of the discrete evolution Ψt0,t0+hy0 of the implicit trapezoidal rule when
applied to the logistic differential equation (4.1), and argue whether the solution is admissible
assuming the initial value satisfies 1 > y(0) > 0 given stepsize h small enough.

HINT: The discrete evolution of the implicit trapezoidal rule leads to a quadratic equation which
admits an explicit solution. Then use (4a) to conclude which of the two expressions makes sense
for 1 > y(0) > 0, or none of them may not be admissble.

(4c) The method (4.2) can be interpreted as a Runge-Kutta-method. Write down the corre-
sponding Butcher-tableau.

(4d) Complete the templates

function y = ImplicitTrapzoidal(y0, lambda, h)

to carry out the implicit trapzoidal method for (4.1) where the parameters include a given initial
value y0, positive parameter lambda and step size h. Use the result in (4b) directly for implicit
trapzoidal method.

(4e) Suppose that for ODE (4.1), we have performed a chosen single step method n times
with different step sizes h = (h1, · · · , hn) on time interval [0, t0], where h1 < h2 < · · · < hn.
Let Ti be the approximation of y(t0) for step size hi, i = 1, · · · , n. Let T := (T1, · · · , Tn).
Implement a MATLAB function using the template

function y = Extrapolation(T, h).

that performs Aitken-Neville extrapolation method to compute the extrapolated value for y(t0).

(4f) Consider again the ODE (4.1), where we take y(0) = 0.03, λ = 5, and complete the tem-
plate ExtrapolatedSingleStep.mwhich performs a series of the implicit trapzoidal meth-
ods with different step sizes and calculate the extrapolated result using Extrapolation(T,h)
in (4e).

In the program we take 2.ˆ(3:8) subdivisions of the time interval [0 1]. Print out the result
at the end of program.
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