Spring Term 2017

ETH Zürich D-MATH

Exam Summer 2017

In all problems, we always assume that all functions f on the right-hand side of Initial Value Problem are smooth with respect to all variables on the domain of definition.

Problem 1 Linear System

[30 Marks]

Consider the system of equations

$$\begin{cases} \frac{\mathrm{d}p}{\mathrm{d}t} = -\sin q, & t \ge 0, \\ \frac{\mathrm{d}q}{\mathrm{d}t} = p, & \\ p(0) = p_0 \in \mathbb{R}, \ q(0) = q_0 \in \mathbb{R}. \end{cases}$$

$$(1.1)$$

- (1b) \bigcirc Rewrite (1.1) in the form

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = f(x), & \text{where } x = (p, q)^T \\ x(0) = x_0 = (p_0, q_0)^T. \end{cases}$$
(1.2)

(1c) Consider the midpoint scheme

$$\begin{cases} x^{k+1} = x^k + \Delta t f\left(\frac{x^k + x^{k+1}}{2}\right), \\ x^0 = x_0. \end{cases}$$
 (1.3)

for solving (1.2) where Δt is the step size. Prove that the method is symplectic.

(1d) \square Suppose that there exists a matrix $S \in \mathbb{R}^{2\times 2}$ (symmetric and positive definite) and a positive constant c such that

$$x(t)^T S x(t) = c, \quad \forall t \ge 0, \quad \text{where } x \text{ is the solution to } (1.2).$$

Prove that $(x^k)^T S x^k = c$ for $k \ge 0$, where x^k is from (1.3).

(1e) Let us denote $x^k = (p^k, q^k)$. Does the midpoint scheme (1.3) preserve the quantity

$$\frac{1}{2}p_k^2 - \cos q_k ?$$

Exam Summer 2017

- Implement the midpoint scheme (1.3) using templates ImpMidPointSolve.m and ImpMidPointStep.m. y1=ImpMidPointStep(f,y0,t0,h,tol) should return the value of one-step midpoint scheme (1.3), and y=ImpMidPointSolve(f,y0,T,h,tol) should return the approximate value of IVP at the end time T. In ImpMidPointStep.m, we use the fixed point iteration as the method for root-finding problem in implicit method. The parameters f, y0, T, h, tol stand for the right-hand side of IVP, initial value of IVP, ending time, step size and error tolerance, correspondingly.
- Complete the template RunPrb1.m to solve (1.2) on time interval [0,8] using your codes ImpMidPointSolve.m and ImpMidPointStep.m. Set the initial value as $x(0) = [\pi/2, 0]^T$. Set the time step h as h = 0.25 and set the error tolerance tol as $tol = 10^{-6}$.
- At the end of RunPrb1.m, template code will plot the computed numerical solution.

Exam Summer 2017 Page 2

For Initial value problem

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = f(t,x), & t \in [0,T], \\ x(0) = x_0, & x_0 \in \mathbb{R}, \end{cases}$$
 (2.1)

consider the following scheme for solving (2.1):

$$\begin{cases} x^{k+1} = x^k + \Delta t(1-\alpha)f(t_k, x^k) + \Delta t \,\alpha \,f\Big(t_k + \frac{\Delta t}{2\alpha}, x^k + \frac{\Delta t}{2\alpha}f(t_k, x^k)\Big), \\ x^0 = x(0), \end{cases}$$
(2.2)

with some constant $\alpha \geq 1/4$.

(2a) Show that (2.2) is consistent and that the truncation error $T_k(\Delta t, \alpha)$ can be expressed as

$$T_k(\Delta t, \alpha) = \frac{(\Delta t)^2}{8\alpha} \left[\left(\frac{4}{3}\alpha - 1 \right) \frac{\mathrm{d}^3 x}{\mathrm{d}t^3} (t_k) + \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} (t_k) \frac{\partial f}{\partial x} (t_k, x(t_k)) \right] + O((\Delta t)^3). \tag{2.3}$$

(2b) Apply the method (2.2) to solve (numerically)

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = -x^p, & t \in [0, 1], \\ x(0) = 1, \end{cases}$$
(2.4)

where $p \in \mathbb{N}$.

Compare the numerical solution to the explicit analytic solution and give the order of convergence of the global error.

- \square Complete the template methodPrb2.m to implement the scheme (2.2). The function u=methodPrb2 (odefun, alp, T, y0, N) should return the value of x(1). Here odefun, alp, T, y0, N means the right-hand-side of the initial value problem, the value of α , the end time, initial value x(0) and total step number, respectively.
- \square Now set p=3 and $\alpha=1/4+0.3$ and total step number to be $N=2^k, k=1,2,\cdots,10$. Complete the template RunPrb2.m using your code methodPrb2.m to solve (2.4) numerically and then find the convergence order the scheme (2.2).
- (2c) \square Show (analytically) that, when method (2.2) is applied to (2.4), if p=1, then $T_k(\Delta t, \alpha)=O((\Delta t)^2)$ and, if p=2, then there exists $\alpha\geq 1/4$ such that $T_k(\Delta t, \alpha)=O((\Delta t)^3)$.

Problem 3 Symmetry of Numerical Method

[40 Marks]

Consider the differential equation

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = f(x) \\ x(0) = x_0 \in \mathbb{R}^2 \end{cases}$$
 (3.1)

We assume that f is Lipschitz continuous in \mathbb{R}^2 .

Given a numerical method

$$x^{k+1} = \Phi_{\Delta t}(x^k),$$

where Δt is the step size. Its adjoint $\tilde{x}^{k+1} = \Phi_{\Delta t}^*(\tilde{x}^k)$ is defined by $\tilde{x}^k = \Phi_{-\Delta t}(\tilde{x}^{k+1})$ or equivalently

$$\tilde{x}^{k+1} = \Phi_{-\Lambda_t}^{-1}(\tilde{x}^k).$$

We say that a numerical method is symmetric if it satisfies $\Phi_{\Delta t} \circ \Phi_{-\Delta t} = I$.

(3a)

- 2. Recall that $x^{k+1} = x^k + f((x^{k+1} + x^k)/2)$ is the implicit midpoint rule. Is implicit midpoint rule symmetric? Prove it.
- 3. \Box For $x^{k+1} = \Phi_{\Delta t}(x^k)$ a numerical method, show that

$$x^{k+1} = \Phi_{\Delta t/2} \circ \Phi_{\Delta t/2}^*(x^k) \tag{3.2}$$

is a symmetric method.

- 4. Denote x = (p, q). Assume that (3.1) is a Hamiltonian system with Hamiltonian function H = H(p, q). Write out the corresponding formulas(may be implicit) for numerical methods that (3.2) yields when Φ is explicit euler method and implicit euler method.
- (3b) Consider a Runge-Kutta method that is consistent, i.e. $\sum_{i=1}^{m} b_i = 1$, and with coefficient such that $\sum_{j=1}^{m} a_{ij} = c_i$ for $1 \le i \le m$.
 - 1. Show that adjoint of the Runge-Kutta method is again a Runge-Kutta method, with coefficient given by

$$a_{ij}^* = b_{m+1-j} - a_{m+1-i,m+1-j},$$

$$b_i^* = b_{m+1-i}$$

for $1 \leq i, j \leq m$.

- 2. Deduce from (3b).1 that $a_{ij} = b_j a_{m+1-i,m+1-j}$ for all $i, j = 1, \dots, m$, if the method is symmetric.
- 3. Deduce from (3b).2 that, if the Runge-Kutta method is explicit, it cannot be symmetric.