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W. Wu Numerical Analysis I D-MATH

Exam Summer 2016

Problem 1 Symplectic RK 1-Step Method for Linear Hamiltonian Differ-
ential Equation [29
Marks]

A given symplectic matrix C € R?"*?" ig partitioned into four (n x n) blocks as follows:

C C
C— | pr pq} '
{ng qu

Furthermore, we set

where I, stands for n x n identity matrix.

(1a) (I Derive the Hamiltonian differential equation, which is defined by the Hamilton function
[NODE, Def. 1.2.3]
H:R"xR"— R, H(p,q)=1iy'Cy.

[
In the next section we discuss the proof of the following statements:
For an arbitrary Runge-Kutta method the following properties are equivalent.
(i) The stability function S(z) of the method satisfies S(—z)S(z) = 1 forall z € C.
(i) The method is reversible [NUMODE, Def. 2.1.27] for linear differential equations
y = Ay with A € R p € N,
(iii)) The method is symplectic NUMODE, Def. 4.4.18] for the differential equation y =
J~1Cy with symmetric symplectic matrix C. C and J are defined at the beginning of
this problem.
(1b) (I Show that (i) = (ii). [
(1c) (I Show that (ii) = (i). [
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1d) Show that (i) = (iii). []

HINT: Use the fact that when applied to matrices, the stability function S : R?"*27 —y R2nx2n
satisfies the identities S(TMT™!) = TS(M)T ! and S(M") = S(M)" for any matrix M €
R2™*27 and any invertible matrix T € R?"*%",

(1e) For simplified case n = 1, show that (iii) = (i). (Proof for general n is welcome but
not mandatory!) [

HINT: Set C = I, and diagonalise the resulting matrix equation by an appropriate basis transfor-
mation. Furthermore use the special structure of the stability function of a Runge-Kutta method.

2 3
ImpMidSymSolve .m using implicit midpoint method to approximate y (1) with N = 20 steps.
Perform 2 iterations in each Newton method for root-finding problem. Plot the corresponding
Hamiltonian of each step. [

1) LetC = (1 2). For the IVP y = J"'Cy, y(0) = (1,1)", complete the template
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Problem 2 Singly Diagonal Implicit Runge-Kutta Methods [25 Marks]

For general implicit Runge-Kutta methods, the £;’s cannot be evaluated succesively since they
are coupled in the system of implicit equations that is given for their determination. One way to
decouple a nonlinear system is to use diagonal implicit Runge-Kutta methods. A special family of
those methods are singly diagonal implicit Runge-Kutta methods (SDIRK), in which the matrix of
the method is lower triangular and all the diagonal entries are equal. Continuing in this direction
we define the following one parameter family of SDIRK-methods

v Y 0
1—v]1-2y 0
| 1/2 1/2

Table I: Singly Diagonal Implicit Runge-Kutta

(2a) (I Determine the values of v for which the corresponding Runge-Kutta method is of at
least (consistency) order 3. O

(2b) () Write down the iterations of the Runge-Kutta method defined in Table I, when applied
to the ODE
y=2Xy, y0)=1, reC.

HINT: Use the stability function and the fact that the ODE is linear.

(2¢) I Complete the template StabilityRegion.m and plot the stability region of the
Runge-Kutta method (Table I). Using the given plots, for that values of -y from problem (2a) (the
values with which the method is of order 3) can we conjecture the corresponding Runge-Kutta
method to be A-stable? []

(2d) (I Investigate whether the method is A-stable for v = 1. Is it L-stable? O

HINT: Notice that in order to investigate A-stability it is sufficient to consider only the case
z =y, for y € R. Why?

(2e) (I Consider the ODE

. 9 Y 1
g=cos(y’) + 7, y(0)=3
and compute its numerical solution with the Runge-Kutta method table lon T = [0 3] and

for N = 300. To do so, compute the stages k; and k5 by first computing %, and then k5, both
by using Newton method. The iteration in Newton method will stop when 100 iterations have
been carried out, or the difference between neighboring results is less than 1e—10. Complete the
template

function SDIRK(T, N, gamma).
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Problem 3 Extrapolating Implicit Mid-Point and Explicit Euler [24 Marks]

In this problem we will apply the extrapolation method to the implicit midpoint method and the

explicit Euler method, and then compare their performances. Consider the logistic ODE
y=M1—-y), A>0, 3.1

with the initial value y(0) = yo > 0

(3a) [J Find the fixed points of the ODE (3.1) and determine if any of them are attractive.
Explain why given y(0) > 0 it follows that y(¢) > 0 for all ¢t > 0. O

(3b) I Give the closed form of the discrete evolution ¥"y of the implicit mid-point rule when
applied to the logistic differential equation (3.1), and argue whether the solution is admissible
assuming the initial value satisfies y(0) > 0. O

HINT: The discrete evolution of the implicit mid-point rule leads to a quadratic equation which
admits an explicit solution. Then use (3a) to conclude which of the two expressions makes sense
for y(0) > 0.

(3¢) I Complete the templates
function y = ImplicitMidpoint (y0, lambda, h)
and
function y = ExplicitEuler(y0, lambda, h),

to carry out the implicit midpoint and the explicit euler method for (3.1) where the parameters
include a given initial value y 0, positive parameter 1ambda and step size h. Use the result in
(3b) directly for implicit midpoint method. U

(3d) (7 Suppose that for ODE (3.1), we have performed a chosen single step method n times
with different step sizes h = (hy,--- , h,) on time interval [0, t], where hy < hy < -+ < h,.
Let 7; be the approximation of y(ty) for step size h;, i = 1,--- ,n. Let T := (11, ---,T,).
Implement a MATLAB function using the template

function y = Extrapolation(T, h).

that performs Aitken-Neville extrapolation method to compute the extrapolated value for y(t).
[

(3e) [ Consider again the ODE (3.1), where we take y(0) = 0.03, A\ = 5, and complete the
template ExtrapolatedSingleStep.m which performs a series of the implicit midpoint
and explicit Euler methods with different step sizes and calculate the extrapolated result using
Extrapolation (T, h) in (3d).

In the program we take 2. ~ (3:8) subdivisions of the time interval [0 1]. Print out the result
at the end of program. O]
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Problem 4 Index Reduction and Constraint Stabilization [22 Marks]

(4a) (I Consider the system of differential equations

y=f(y)
0=yg(y)

where y(t) € R*, f : R* — R", g : R® — R™, n and m are fixed constants. Here we
assume that Dg(y) has full rank and solution exists in R for all initial value y, € R". Prove by
differentiation of the constraints that, for initial values satisfying g(yo) = 0, the solution of the
differential-algebraic equation (DAE) with a new variable  of size rank(g,)

J=f(y)+Dyg(y)

(4.1)

0= Dg(y)f(y) (4.2)
0=g(y)
also solves the differential equation (4.1). This trick can be used for index reduction. O

When trying to solve a DAE or a ODE using a single step method, one usually cannot ensure
that the constraints are preserved during each step. In practice, projection method is often used
to remedy this defect. For differential equation system (4.1), suppose that the initial value y,, €
M :={y; g(y) = 0}. We want to ensure that y,,.; is also in M. One step of projection method
UYn — Yn+1 1S defined as follows:

e Step 1: Compute 7,1 = V,(y,), where W), could be any single step method applied to
y=ry)

e Step 2: Project the value ¢, 1 onto the manifold M to obtain y,, ., € M.

For the computation of Step 2, one has to solve the constrained minimization problem

[Yn+1 = Ynia]] — min subject 0 g(Yn+41) =0

To solve this minimization problem, a standard approach is to introduce Lagrange multipliers
A = A(n) which depends only on n, and to consider the Lagrange function

'C(yn—i-h >‘) = Hyn—i-l - gn-l-IH2 - g(yn+1)T)‘(n + 1)‘

OL/0y,+1 = 0 is a necessary condition for ||y, 11 — ¥n+1]| to reach the minimum. This leads to
the system

Ynt1 = Gns1 + Dg(Fns1) " A(n + 1) (4.3)

0 = g(Yn+1) (4.4)

Notice that y,,,1 has been replaced by 7,1 in first equation to simplify the calculation of Dg(y).
We have to calculate A for y,, 1. Inserting (4.3) into (4.4) gives a nonlinear equation for \:

G(Uns1 + Dg(Gni1) " An+1)) =0 4.5)

To solve A out of (4.5), we use Newton method with one iteration. The initial estimation for
A(n+1)is A(n), and AN, := A(n + 1) — A(n) can be approximately given as

ANy = —(Dg(Fn+1)Dg(Gns1) ") 9(Tns1 + Dg(Fnr1) " No),

Now we consider a practical example.
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(4b) (I Consider the perturbed Kepler problem with Hamiltonian function
1 B 0.005
Vi +4d 2y + )

Write out the Hamiltonian system given Hamiltonian in (4.6).

(4.6)

1
H(p,q) = §(p?+p§) -

Prove that the angular momentum, L(p, q) := ¢1p2 — ¢op1, is an invariant((NODE, Def. 1.2.2])
to the Hamiltonian system above. [

(4c) (I Given initial values ¢;(0) = 1 — e, g2(0) = 0, p1(0) = 0, p2(0) = /(1 +¢)/(1 —e),
where e = 0.6 stands for the eccentricity. Use explicit Euler method with step size h = 0.03
on time interval [0,201]. Complete the template KeplerWithoutProjection.m and plot
the trajectory of solution and the evolution in the value of H and L with time. Are H and L
conserved? [

(4d) Given the same initial values as in (4c), conduct the explicit Euler method with the pro-
Jjection method introduced before (4b). Complete the template KeplerWithProjection.m
and plot trajectory of solution and the evolution of the value of A and L with time. What con-
clusion can you draw by comparing the outcome of KeplerWithoutProjection.m and
KeplerWithProjection.m? 0
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