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Problem 1 Gauss-Radau IIA for a DAE of Order 1 [27 Marks]
We consider the following DAE

ẋ1 = x1x2x3 ,
ẋ2 = x5x3 + x2 ,
ẋ3 = − cos(x1)x4 + π ,
ẋ4 = −x2 + x4 ,
0 = x21 + 3x23 − 4x5 + x2x

3
4 .

(1.1)

with initial conditions

x1(0) = 1 , x2(0) = 1 , x3(0) = 0 , x4(0) = −1 , x5(0) = 0.

(1a) Check whether the initial conditions are consistent with the algebraic condition.

(1b) Show that the DAE (1.1) has index 1 and state the equivalent ODE explicitly.

(1c) Apply the order 3 Gauss-Radau IIA method [NUMODE, Sect. 3.4] to (1.1) and explic-
itly state the system of equations. Furthermore, set up the equations required for solving the given
implicit system for the stages of the method by using Newton’s algorithm.

HINT: You are not required to take into account the algebraic condition at this point, only set up
the Newton system for the k’s (stages of the method), i.e., an equation of the form G(k) = 0
where G is some function.

(1d) Complete MATLAB templates firstDAE.m and Newton.m, in which the system of
equations from subproblem (1c) is solved using nNewton iterations of the Newton method, and
plot the solution and the error (distance from the manifold).

HINT: In case of problems with writing the implementation of the required Newton method, you
may use the corresponding pcode. Bear in mind though, that you will not be awarded full marks
unless you complete the template Newton.m as well. Furthermore, take into account the fact
that your code for the Newton method ought to include information about the algebraic condition,
which means you will have to adjust the Newton system obtained in (1c). Further instructions
will be given in the template.
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Problem 2 Exponential Methods [25 Marks]
Consider the general form of the exponential Runge-Kutta method [NUMODE, Def. 3.7.7]

ki :=ϕ(γhA)

(
f(ui) + hA

i−1∑
j=1

γijkj

)
, i = 1, . . . , s,

ui :=y0 + h
i−1∑
j=1

αijkj i = 1, . . . , s, (2.1)

Ψhy0 :=y0 + h
s∑
i=1

biki.

for the autonomous differential equation ẏ = f(y), where A := Df(y0) for some y0, and

ϕ(z) =
exp(z)− 1

z
.

(2a) Take s = 2. Determine the equations on the parameters α21, γ21, b1, b2 and γ which
need to hold so that the method (2.1) is of (consistency) order 3. Furthermore, show that those
equations define a quadratic equation for γ, with γ = 1

2
as one solution, and obtain explicit

expressions for the parameters with respect to a single parameter α21 = α, when we take γ = 1
2
.

Let us consider now a specific example of the method (2.1). The exponential Euler method
[NUMODE, Eq. (3.7.3)] with constant step size is given by

yk+1 = yk + hϕ(hA)f(yk), k = 0, . . . , N, A := Df(yk), (2.2)

where

ϕ(z) =
exp(z)− 1

z
.

(2b) Derive the stability function of (2.2).

(2c) Complete the MATLAB template

function [t, y] = expEM(T, h),

which solves the non-linear initial value problem(
ẏ1
ẏ2

)
= ẏ =

(
−y2

−y22
y1

+ y1 log(y1)

)
, y(0) =

(
e
0

)
,

with the exponential Euler method (2.2) using a constant step size.

(2d) Complete the template expEMconv.m and use it to empirically determine the order
of convergence of the method (2.2) by computing the error of the method at the end time, i.e., for
t = 6, with respect to the exact solution

y(t) = (exp(cos(t)), sin(t) exp(cos(t)))>

given on the time interval T = [0 6] and for varying time steps h=2−2, . . . , 2−7.
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Problem 3 Proximal Operator [22 Marks]
Proximal algorithms are a standard tool for solving convex problems. The fundamental operation
involves computing the proximal operator of a function. They are often solved very quickly as
they can admit closed-form solutions. Even though we usually use them for non-smoooth, large
scale, or distributed problems, in this problem we will restrict our attention to C2 functions, thus
simplifying computations and allowing us to reinterpret proximal algorithms and relate them to
the topics we know more about.

The proximal operator proxf : Rn → Rn of a function f is defined by

prox
f

(v) = argmin
x

(
f(x) +

1

2
‖x− v‖2

)
.

(3a) Let f ∈ C2 be convex and λ > 0. Show that y = proxλf (v) if and only if y =
v − λ∇f(y).

(3b) Show that the minimiser of a convex function f ∈ C2 is an attractive fixed point of

ẋ = −∇f(x). (3.1)

(3c) Show that for a convex f ∈ C2 the iterations

xk+1 : = prox
λf

(xk) (3.2)

converge to the minimiser of f as k → ∞ for a starting value x0 that is sufficiently close to the
minimiser of f .

HINT: Preceding subproblems might be helpful.

We will now discuss a special case of proximal minimisation. Consider the function

f(x) =
1

2
x>Ax− b>x, (3.3)

where A is an n× n symmetric positive definite matrix.

(3d) Show that for a regular A the iterations (3.2) converge to the solution of Ax = b.

(3e) Show that

prox
λf

(x) = x+ (A+ εI)−1(b−Ax) , with ε =
1

λ
.

(3f) Consider the matrix

A =


2, if i = j

−1, if |i− j|= 1

0, otherwise.
.
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and a vector b obtained by evaluating the function g(x) = −2h2(cos(x2) − 2x2 sin(x2)) on an
equidistant grid on [h,

√
π − h] of stepsize h. Find the solution of Ax = b by using itera-

tions (3.2), and compute the error with respect to the exact solution by completing the template
IterRefine.m. Matrices A and I, and the vectors b and xexact can be found in the folder
and loaded.
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Problem 4 Singly Diagonal Implicit Runge-Kutta Methods [26 Marks]
For general implicit Runge-Kutta methods, the ki’s cannot be evaluated succesively since they
are coupled in the system of implicit equations that is given for their determination. One way to
decouple a nonlinear system is to use diagonal implicit Runge-Kutta methods. A special family of
those methods are singly diagonal implicit Runge-Kutta methods (SDIRK), in which the matrix of
the method is lower triangular and all the diagonal entries are equal. Continuing in this direction
we define the following one parameter family of SDIRK-methods

γ γ 0

1− γ 1− 2γ γ

1/2 1/2

Table 4.1: Singly Diagonal Implicit Runge-Kutta

(4a) Determine the values of γ for which the corresponding Runge-Kutta method is of
(consistency) order 3.

(4b) Compute the stability function of the Runge-Kutta method (4.1).

(4c) Complete the template StabilityRegion.m and plot the stability region of the
Runge-Kutta method (4.1). Using the given plots, for which values of γ from problem (4a) (the
values with which the method is of order 3) can we conjecture the corresponding Runge-Kutta
method to be A-stable?

(4d) Investigate whether the method is A-stable for γ = 1. Is it L-stable?

HINT: Notice that in order to investigate A-stability it is sufficient to consider only the case
z = ıy, for y ∈ R. Why?

(4e) Consider the ODE

ẏ = cos(y2) +
y

4
, y(0) =

1

2
.

and compute its numerical solution with the Runge-Kutta method 4.1 on T = [0 3] and for N
= 300 To do so compute the stages k1 and k2 by first computing k1 and then k2, both by using
Newton’s algorithm, and complete the template

function SDIRK(T, N, gamma).
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