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Problem 1 Discontinuous Collocation Methods [25 Marks]
Consider the following non-autonomous ODE

ẏ = f(t, y) , y(t0) = y0 .

Let c2, . . . , cs−1 ∈ R be distinct real numbers with 0 ≤ cj ≤ 1, j = 2, . . . , s − 1 and let
b1, bs ∈ R be two arbitrary real numbers. The corresponding discontinuous collocation method is
then defined via a polynomial u(t) of degree s− 2 satisfying

u(t0) = y0 − hb1(u̇(t0)− f(t0, u(t0))) (1.1)
u̇(t0 + cih) = f(t0 + cih, u(t0 + cih)) , i = 2, . . . , s− 1 (1.2)
y1 = u(t1)− hbs(u̇(t1)− f(t1, u(t1))) (1.3)

with t1 = t0 + h.

(1a) Let u(t) be the interpolation polynomial of degree s− 2 and define

ki := u̇(t0 + cih) i = 2, . . . , s− 1 ,

k1 := f(t0, u(t0)) and ks := f(t1, u(t1)). We have

u̇(t0 + τh) =
s−1∑
j=2

kjlj(τ)

by the Lagrange interpolation formula, where lj(τ) is the Lagrange polynomial

lj(τ) =
s−1∏

l=2,l 6=j

(τ − cl)/(cj − cl) .

Show (by integration) that

ki = f(t0 + cih, y0 + h

s∑
j=1

kjaij) , i = 1, . . . , s , (1.4)
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where the coefficients aij, i, j = 1, . . . , s are given by

ai1 = b1 , ais = 0 , i = 1, . . . , s , (1.5)

aij =

∫ ci

0

lj(τ) dτ − b1lj(0) , i = 1, . . . , s , j = 2, . . . , s− 1 , (1.6)

bj =

∫ 1

0

lj(τ)dτ − b1lj(0)− bslj(1) , j = 2, . . . , s− 1 (1.7)

with c1 = 0, cs = 1.

(1b) Using ki, i = 1, . . . , s given by (1.4), show that

y1 = y0 + h
s∑
j=1

kjbj , (1.8)

with bj, j = 2, . . . , s− 1 defined by (1.7).

(1c) Let the coefficients aij, i, j = 1, . . . , s be given by (1.5) - (1.6) with c1 = 0, cs = 1. Show
that

s∑
j=1

aij = ci . (1.9)

Thus, the discontinuous collocation method (1.1) - (1.3) is equivalent to an s-stage Runge-Kutta
method with coefficients (1.5) - (1.7) and c1 = 0, cs = 1.

(1d) Investigate the link to standard collocation methods in the case where b1 = bs = 0.

(1e) Write a MATLAB function

function [A,b] = CollCoeff(c,b1,bs)

which takes the collocation points ci ∈ [0, 1] as a vector c ∈ Rs and the two real numbers b1, bs
as input and returns the matrix A ∈ Rs×s and the vector b ∈ Rs with (A)ij = aij and (b)i = bi
(see (1.5) - (1.7)) of the corresponding Runge-Kutta method.

HINT: The MATLAB functions polyint, polyval and vander may be of use.

(1f) Implement the discontinuous collocation method (1.1) - (1.3) based on Lobatto quadrature
formulas (note that c1 = 0 and cs = 1 for Lobatto methods) to solve autonomous differential
equations of the form

ẏ = f(y) , y(t0) = y0 .

Compute the Lobatto points with the function LobattoRoots.m, find the coefficients with
your implementation from subproblem (1e) and rephrase the method as a root finding problem.
Apply the implementation of Newton’s method Newton.m to it.

Complete the template DiscCollLobatto.m. Rephrase the method as a root-finding problem
by completing the templates fNewton.m and DfNewton.m.

HINT: In case of problems with rephrasing the method as a root-finding problem, you can use
the corresponding pcodes. Bear in mind though that you will not be awarded full marks for the
subproblem unless you complete all the templates.
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(1g) Consider the initial value problem

ẏ = exp(y) sin(y) , y(0) = π/4.

Find the absolute error of the discontinuous collocation method at the point T=0.5 for a variation
of the number of steps Nh = 2i, i = 2, . . . , 6 and of the stages s = 3, b1 = 1/6, bs = 1/6 and
s = 4, b1 = 1/12, bs = 1/12. Use a fixed number of Newton iterations nNewton= 3. Plot the
error curves against the number of steps on logarithmic scale and find the algebraic convergence
order using the MATLAB function polyfit. Use the template DiscCollLobattoConv.m.

HINT: You can find a reference solution with ode45. Set the relative and absolute tolerances to
10−12.
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Problem 2 Partitioned Runge-Kutta Methods [30 Marks]
We consider differential equations in the partitioned form

ṗ = f(p, q) , q̇ = g(p, q) , (2.1)

where p(t) ∈ Rn and q(t) ∈ Rm with m,n ∈ N. The initial data is given by p(t0) = p0 and
q(t0) = q0.

Let bi, aij and b̂i, âij be the coefficients of two s-stage Runge-Kutta methods

c A

b>
ĉ Â

b̂>
.

A partitioned Runge-Kutta method with s stages for the solution of (2.1) is defined by

ki = f
(
p0 + h

s∑
j=1

aijkj, q0 + h
s∑
j=1

âijlj
)

(2.2)

li = g
(
p0 + h

s∑
j=1

aijkj, q0 + h
s∑
j=1

âijlj
)

(2.3)

p1 = p0 + h
s∑
i=1

biki , q1 = q0 + h
s∑
i=1

b̂ili . (2.4)

(2a) Show that the partitioned Runge-Kutta method (2.2) - (2.4) is of order 2, if the coupling
conditions

s∑
i=1

biĉi =
1

2
,

s∑
i=1

b̂ici =
1

2
(2.5)

are satisfied, in addition to the usual Runge-Kutta conditions for order 2.

(2b) Show that Störmer-Verlet method defined for systems of the form (2.1) by

p1/2 = p0 +
h

2
f(p1/2, q0) (2.6)

q1 = q0 +
h

2
(g(p1/2, q0) + g(p1/2, q1)) (2.7)

p1 = p1/2 +
h

2
f(p1/2, q1) (2.8)

can be interpreted as a partitioned Runge-Kutta method.

(2c) Consider the following ODE(
ṗ
q̇

)
=

(
0 ω
−ω 0

)(
p
q

)
. (2.9)

Compute the exact solution of (2.9) and find an invariant of (2.9).
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(2d) Consider the s-stage Runge-Kutta methods given by

c A

b>
ĉ Â

b̂>
.

Provide an explicit expression for the numerical evolution of the corresponding partitioned Runge-
Kutta method applied to (2.9).

(2e) We consider the initial value problem(
ṗ
q̇

)
=

(
0 π
−π 0

)(
p
q

)
,

(
p(0)
q(0)

)
=

(
1
0

)
. (2.10)

Write a MATLAB function

function yend = SVMeth(T,N)

which solves (2.10) withN uniform steps on the time interval [0, T ] of the Störmer-Verlet method
(2.6) - (2.8), interpreted as a partitioned Runge-Kutta method, and returns an approximation of
y(T ).
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Problem 3 The Rattle Method [29 Marks]
We consider a mechanical system with coordinates q ∈ Rd that are subject to constraints g(q) = 0.
The equations of motion are given by

ṗ = −∇qH(p, q)−∇qg(q)λ(p, q) (3.1)
q̇ = ∇pH(p, q) (3.2)
0 = g(q) , (3.3)

where the Hamiltonian is defined asH(p, q) = 1
2
p>M−1p+U(q) with a positive definite mass ma-

trixM , potential U(q), Lagrange multiplier λ(p, q) ∈ Rm, constraint g(q) = (g1(q), . . . , gm(q))>,
where∇qg = (∇qg1, . . . ,∇qgm) denotes the transposed Jacobian matrix, and vectors p, q ∈ Rd.

Differentiating the constraint g(q(t)) = 0 with respect to time yields the hidden constraint

0 = ∇qg(q)>∇pH(p, q) .

To solve the system (3.1) - (3.3), we will apply an adaption of the Störmer-Verlet method, the
so-called Rattle method, defined as follows

p1/2 = p0 −
h

2
(∇qH(p1/2, q0) +∇qg(q0)λ0) (3.4)

q1 = q0 +
h

2
(∇pH(p1/2, q0) +∇pH(p1/2, q1)) (3.5)

0 = g(q1) (3.6)

p1 = p1/2 −
h

2
(∇qH(p1/2, q1) +∇qg(q1)µ0) (3.7)

0 = ∇qg(q1)
>∇pH(p1, q1) . (3.8)

The vector µ0 ∈ Rm results from an additional projection step (3.7) - (3.8), therefore one has to
additionally determine the unknowns λ0 and µ0 in order to compute p1 and q1.

(3a) Show that the Rattle method (3.4) - (3.8) is reversible.

HINT: A single step method is said to be reversible with respect to an autonomous ODE, if the
corresponding discrete evolution Ψ satisfies Ψ−h ◦Ψh = Id, cp. [NUMODE, Def. 2.1.27].

(3b) Let us now consider a particle moving on the unit sphere and being attracted by a fixed
point a ∈ R3 on the sphere. Formulate the Rattle method (3.4) - (3.8) for the Kepler problem on
the sphere, which can be described by the equations of motion (3.1) - (3.3) with the Hamiltonian
of the form

H(p, q) =
1

2
p>p+ U(q, a) (3.9)

and the constraint
g(q) = q>q − 1 , (3.10)

where the potential is given by U(q, a) = − q>a√
1−(q>a)2

and q, p ∈ R3. Provide explicit expressions

for the unknowns p1, q1, µ0 and λ0.

HINT: Due to the separability of the Hamiltonian and the quadratic constraint g, the Rattle method
applied to the Kepler problem (3.9) - (3.10) will be explicit except for the computation of λ0, for
which a quadratic equation needs to be solved.
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(3c) Implement the Rattle method (3.4) - (3.8) to solve the Kepler problem on the sphere (3.9)
- (3.10) with a = (0.1/

√
1.05, 1/

√
1.05, 0.2/

√
1.05)> and initial values q0 = (1, 0, 0)>, p0 =

(0, 0,−1)>, step size h = 0.01 and time T = 10.0. Complete the template RattleKepler.m.
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Problem 4 Linearly Implicit Runge-Kutta Method [16 Marks]
Implicit Runge-Kutta methods applied to nonlinear initial value problems lead to a nonlinear
system of equations. Their solutions can in general only be obtained by iteration, which adds
the question of convergence of the iterations to the already existing problem of stability. In this
problem we will take a look at an alternative approach.

We consider an autonomous differential equation

ẏ = f(y), f ∈ C1(Ω0,Rd). (4.1)

For the computation of the discrete flow Ψhy at y ∈ Ω0 let us rewrite the ODE (4.1) as

ẏ(t) = Jy(t) + (f(y(t))− Jy(t))

where J = Df(y). Now we discretise implicitly only the first, linear, term. The second, nonlin-
ear, term is discretised explicitly. Hence, we can use a Runge-Kutta method and consider discrete
evolutions of the form

Ψhy = y + h

s∑
j=1

bjkj (4.2)

where

ki = J

(
y + h

i∑
j=1

dijkj

)
+

(
f

(
y + h

i−1∑
j=1

aijkj

)
− J

(
y + h

i−1∑
j=1

aijkj

))
. (4.3)

Let us define matrices A = (aij)
s
i,j=1 and D = (dij)

s
i,j=1, filled with zeros where needed. Note

that A corresponds to an explicit Runge-Kutta method, hence it is strictly lower triangular, while
D corresponds to a diagonally implicit Runge-Kutta method, hence it is lower triangular.

(4a) Determine the system of successive linear equations for each of the coefficients ki.

The question of the existence of solutions of linear systems obtained in (4a) is easier than it is for
general implicit Runge-Kutta methods.

(4b) Let β ≥ 0 and take a matrix J ∈ Rd×d. Show that the matrix I − hβJ is invertible for
0 ≤ h < h∗ where h∗ depends on the spectral abscissa ν(J) as follows

h∗ =∞ for ν(J) ≤ 0 and h∗ =
1

βν(J)
for ν(J) > 0.

Hence, we conclude that for stiff problems with ν(J) ≤ 0 there are no restrictions on the step
size.

HINT: Spectral abscissa is defined as ν(J) = maxλ∈σ(J){Reλi}, where σ(J) denotes the spec-
trum of J .

(4c) Show that the stability function of (4.2) - (4.3) is given by

S(z) = 1 + zb>(I − zD)−11

where 1 = (1, 1, . . . , 1)> and b = (b1, . . . , bs)
>.
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(4d) Consider the logistic equation

ẏ = f(y) = λy(1− y), y(0) =
1

100
,

for λ = 500. Find an approximate solution of this ODE by applying a linearly implicit method
consisting of a Runge-Kutta method of order 3, given by the Butcher tableau

1
2

+ 1
2
√
3

1
2

+ 1
2
√
3

0
1
2
− 1

2
√
3
− 1√

3
1
2

+ 1
2
√
3

1
2

1
2

,

and used for the linear term, and the explicit trapezoidal rule [NUMODE, Eq. (2.3.3)], which we
use to treat the nonlinear term. Write the equations for the coefficients (as in (4a)), implement the
resulting method in MATLAB with T=1 and study the convergence order using the MATLAB func-
tion polyfit for Nh = 2i, i = 9, . . . , 17. Complete the templates LinearlyImplicit.m
and ConvergenceOrder.m.
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