H. Ammari A. Scapin

A. Vanel

Spring Term 2019

ETH Zürich D-MATH

Numerical Analysis II

End-term Exam 2019

Problem 1 [28 Marks]

Consider

$$\begin{cases} \frac{\mathrm{d}x}{\mathrm{d}t} = f(t,x), & t \in [0,T] \\ x(0) = x_0 \in \mathbb{R} \end{cases}$$
 (1.1)

with $f \in C^{\infty}$ subject to the Lipschitz condition $|f(t,x) - f(t,y)| \le C_f |x-y|$ for all $x,y \in \mathbb{R}$, for all $t \in [0,T]$.

Consider the scheme

$$x^{k+1} = x^k + \frac{\Delta t}{2}(\kappa_1 + \kappa_2) \tag{1.2}$$

where

$$\kappa_1 = f(t_k, x^k),$$

$$\kappa_2 = f(t_{k+1}, x^k + \Delta t \kappa_1).$$

(1a) Is (1.2) explicit or implicit? Is (1.2) a one-step or a two-step method?

Explicit □ Implicit □

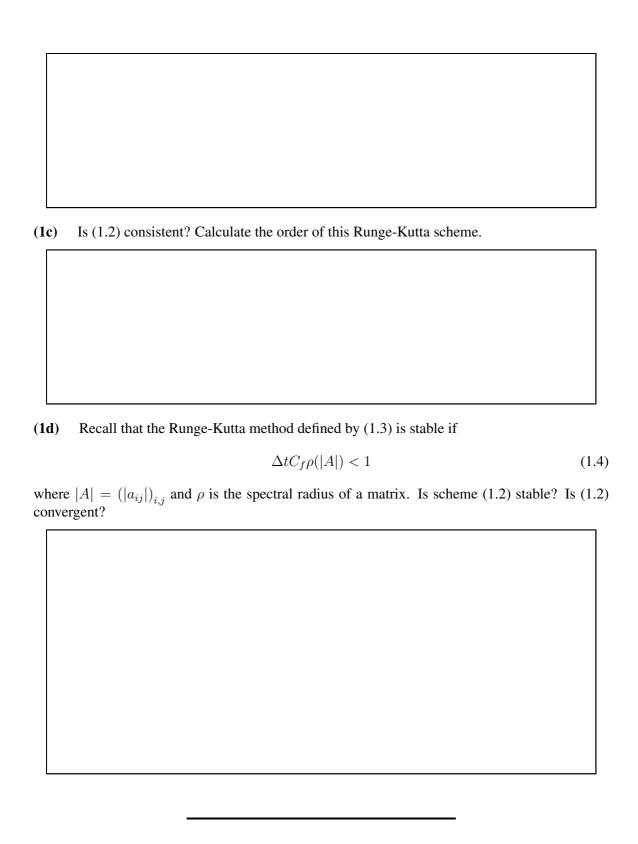
One-step method \square Two-step Method \square

(1b) Find the coefficients $(a_{i,j})$, (b_i) , (c_i) such that the scheme (1.2) can be rewritten in the form

$$x_{i,k} = x^k + \Delta t \sum_{j=1}^m a_{i,j} f(t_{j,k}, x_{j,k})$$

$$x^{k+1} = x^k + \Delta t \sum_{i=1}^m b_i f(t_{i,k}, x_{i,k})$$

$$t_{i,k} = t_k + c_i \Delta t$$
(1.3)



Now, consider another numerical scheme for (1.1), defined by

$$x^{k+1} = x^k + \frac{\Delta t}{2} \left[3f(t_k, x^k) - f(t_{k-1}, x^{k-1}) \right].$$
 (1.5)

(1e)	What kind of method is (1.5)?				
		Explicit One-step ☐ Implicit One-step ☐	Explicit Two-step \square Implicit Two-step \square		
(1f)	Define the trunc				
	$T_k(\Delta t) = \frac{x(t_{k+1}) - x(t_k) - \frac{\Delta t}{2} [3f(t_k, x(t_k)) - f(t_{k-1}, x(t_{k-1}))]}{\Delta t}$				
	$e t_{k\pm 1} = t_k \pm \Delta t.$				
Is sch	neme (1.5) consiste	ent with (1.1)?, i.e., does	$T_k(\Delta t) = O(\Delta t)$ hold? Prove it.		

End-term Exam 2019

Page 3

Problem 2 [32 Marks]

Let T and V be two smooth real valued functions. Consider the system of equations

$$\begin{cases} \frac{\mathrm{d}p}{\mathrm{d}t} = -V'(q), \\ \frac{\mathrm{d}q}{\mathrm{d}t} = T'(p), \end{cases}$$
 (2.1)

where T' and V' are the derivatives of T and V, and $p,q\in\mathbb{R}$.

Consider the numerical scheme (for $\Delta t > 0$)

$$\begin{cases}
p^{k+1} = p^k - \Delta t \, V'(q^k), \\
q^{k+1} = q^k + \Delta t \, T'(p^{k+1}) = q^k + \Delta t \, T'(p^k - \Delta t \, V'(q^k)),
\end{cases} (2.2)$$

and define the numerical flow

$$\Phi_{\Delta t}: (p^k, q^k) \mapsto (p^{k+1}, q^{k+1}). \tag{2.3}$$

(2a) Compute the Jacobian $\Phi'_{\Delta t}$ of the numerical flow $\Phi_{\Delta t}$ defined by

$$\Phi'_{\Delta t}(p^k,q^k) = \frac{\partial (p^{k+1},q^{k+1})}{\partial (p^k,q^k)} := \begin{pmatrix} \frac{\partial p^{k+1}}{\partial p^k} & \frac{\partial p^{k+1}}{\partial q^k} \\ \frac{\partial q^{k+1}}{\partial p^k} & \frac{\partial q^{k+1}}{\partial q^k} \end{pmatrix}.$$

(2b) Is (2.2) symplectic? i.e. does the numerical flow satisfy

$$(\Phi'_{\Delta t})^{\top} J \Phi'_{\Delta t} = J,$$

where $J := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ and $^{\top}$ denotes the transpose of a matrix? Prove it.

(2c) Is (2.2) symmetric, i.e. does

$$\Phi_{\Delta t}^* = \Phi_{\Delta t}?$$

Justify your answer. Here $\Phi_{\Delta t}^*$ is defined by $\Phi_{\Delta t}^* = (\Phi_{-\Delta t})^{-1}$, i.e. by replacing Δt by $-\Delta t$ and exchanging k and k+1.

