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Some basics

® What is a differential equation ?
® Some methods of resolution:

e Separation of variables;
o Change of variables;
e Method of integrating factors.

® |mportant examples of ODEs:

e Autonomous ODEs;
e Exact equations;
e Hamiltonian systems.
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Some basics

e Ordinary differential equation (ODE): equation that contains one or more
derivatives of an unknown function x(t).

® Equation may also contain x itself and constants.

® ODE of order n if the n-th derivative of the unknown function is the
highest order derivative in the equation.
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Some basics

® Examples of ODEs:
e Membrane equation as a neuron model:

dx(t)

C
dt

+ gx(t) = (1),

x(t): membrane potential, i.e., the voltage difference between
the inside and the outside of the neuron; f(t): current flow
due to excitation; C: capacitance; g: conductance (the inverse
of the resistance) of the membrane.

e Linear ODE of order 1.
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Some basics

® Theta model: one-dimensional model for the spiking of a neuron.
do(t)
dt

f(t): inputs to the model.

=1—cosf(t) + (1 + cosO(t))f(t);

® 0 € [0,27]; 8 = 7 the neuron spikes — produces an action potential.

e Change of variables, x(t) = tan(6(t)/2), — quadratic model

() 4 =0+ (o),

® Population growth under competition for resources:
dx(t)
(%) pn

r and k: positive parameters; x(t): number of cells at time instant t,
rx(t): growth rate and —(r/k)x?(t): death rate.

® (x) and (xx): Nonlinear ODEs of order 1.
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Some basics

® FitzHugh-Nagumo model:

dv

S = (V) =W,
daw

? = a(Vf bW),

® V: membrane potential, W: recovery variable, and /: magnitude of
stimulus current.

e f(V): polynomial of third degree, and a and b: constant parameters.

® FitzHugh-Nagumo model: two-dimensional simplification of the
Hodgkin-Huxley model of spike generation in squid giant axons.

® Mathematical properties of excitation and propagation from the
electrochemical properties of sodium and potassium ion flow.

® System of nonlinear ODEs of order 1.
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Some basics

® Langevin equation of motion for a single particle:

dx(t)
dt

= —ax(t) +n(t);

® x(t): position of the particle at time instant t, a > 0: coefficient of
friction, and n: random variable that represents some uncertainties or
stochastic effects perturbing the particle.

® Diffusion-like motion from the probabilistic perspective of a single
microscopic particle moving in a fluid medium.

® Linear stochastic ODE of order 1.
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Some basics

® Vander der Pol equation:
d’x(t) 2,0, dx(t) o
e a(l —x°(¢v)) ™ + x(t) =0;

® a: positive parameter, which controls the nonlinearity and the strength of
the damping.

® Generate waveforms corresponding to electrocardiogram patterns.

® Nonlinear ODE of order 2.
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Some basics

Higher order ODEs: Q € R™ and n € N.
ODE of order n:

Flt.x(0), %), .. 2X (@) =0,

® x: real-valued unknown function and dx(t)/dt, ..., d"x(t)/dt": its

derivatives.
® € C"(I): solution of the differential equation if /: open interval, for all
tel, 5 o
¥ P
——(t), ... Q
(6 0(8), 22 (1), T2 (1) €
and

Flto(0), 22(1), . T2 (0) =0,

e x: vector valued function, x(t) € RY, — Q ¢ R x R("9,
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Some basics

® n-th order ODE:
dx d"1x

g F)’ tel.

(% % %) x(")(t) = f(t, x,

® x(t)eR%and f: /xR — R
® |nitial condition:
(x(to), X' (t0), X" (t0), ..., X" V(1)) .
® Reduce the high order ODE (x * ) into a first order ODE:
y(t) = (x(¢), dx(t)/dt, ..., d"*x(t)/dt" )" € R™

and
F(t7y) = (}/27-.-7}/177 f(t7)/1, -~-7y’7))T
for y = (yi,..., ¥n) " €R™ and y; € R? for i = 1,2, ..., n.

( * %) equivalent to the following first order ODE:

& F(ty(1).
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Some basics

o EXAMPLE:
e Consider the second order ODE:

2X X
e + P05+ a0x(1) = (1),
o =
d | X _ &
“ldx| = " dt
& M |-p(0) 5 — alx(0) + g(t>]
[ o 1 X 0
- a0 —n00) = * |sto)

Numerical methods for ODEs Habib Ammari



Some basics

ODEs:

o Existence of solutions;

e Uniqueness of solutions with suitable initial conditions;

e Regularity and stability of solutions (e.g. dependence on the
initial conditions, large time stability, higher regularity);

e Computation of solutions.

® Existence of solutions: fixed point theorems; implicit function theorem in
Banach spaces.

® Uniqueness: more difficult.
® Explicit solutions: only in a very few special cases.

® Numerical solutions.
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Some basics

® Some methods of resolution:

e Separation of variables;
e Change of variables;
e Method of integrating factors.
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Some basics

® Separation of variables:

I and J: open intervals;

f €C°(I) and g € CO(J): continuous functions.
Solutions to the first order equation

(% * *x) % = f(t)g(x).

toel and xp € J.
g(x0) = 0 for some xg € J — x(t) = xo for t € I: solution to

e Suppose g(xp) # 0 — g # 0 in a neighborhood of x; =
A f(t)dt
g(x)

Integration =

/;(b;) :/f(t)dt+c;

c: constant uniquely determined by the initial condition.
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Some basics

® [ and G: primitives of f and 1/g.
® G'(x) #£0 = G: strictly monotonic — invertible.
® Solution:

x(t) = GH(F(t) + ¢).
® Method of separation of variables.

® (xx *x): separable equation.
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Some basics

e EXAMPLE:
o Consider the following ODE:

dx 1402t
dt  cosx(t)’
x(0) = 7.

g(x) =1/cosx and f(t) =1+ 2t.
g: defined for x # 7/2 + km, k € Z.
Separation of variables,

cos xdx = 1 + 2tdt.

Integration,

sinx(t) =t> +t+ C,
for some constant C € R.
e Initial condition x(0) =7 = C =0.
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Some basics

e Taking the arcsin = x(t) = arcsin(t® + t): not the solution because
x(0) = arcsin(0) = 0.

® arcsin: inverse of sin on [—7/2,7/2]; x(t): takes the values in a
neighborhood of .

o w(t) =x(t) — 7 — w(0) = x(0) — 7 = 0 = w(t) = —arcsin(t? + t).

® Correct solution:
x(t) = m — arcsin(t* + t).
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Some basics

® Change of variables:
o Consider the following ODE:

& _ (2,

dt t
f: 1 C R — R: continuous function on some open interval
I CR.
e change of variable x(t) = ty(t); y(t): new unknown function,
dx dy
— =y(t)+t—= = f(y(t
=0+ 2 = (),
e Separable equation for y:
dy dt
fy)—y ¢

e Solution by the method of separation of variables.
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Some basics

e EXAMPLE:

o Consider
dx 2+ x2
dt  xt
f(s) =s+1/s with s = x/t.
Change of variable: y(t) = x(t)/t = ydy = dt/t
=

(1/2)y*>=1Int+ C.

x(t) = £t/2(Int + C).
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Some basics

® Method of integrating factors

e Consider

¢ Integration
x(t) = 0)+/ f(s

o Consider e
— t) = glt),
=+ p(Ox() = &(1)
p and g: functions of t.
o Left-hand side: expressed as the derivative of the unknown

quantity < Multiply by p(t).
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Some basics

® 4(t) s.t. . p
u(e) 2+ n(p(x(t) = Z-(u(t)x(D)).

Taking derivatives =

(1/m)dp/dt = p(t) or o Inpu(t) = p(t).

Integration =
t
(e = exp( [ p(s)ds),
0

up to a multiplicative constant.

Transformed equation:
& ((t)x(D)) = plD)e ().

1 /t C
x(t) = —= w(s)g(s)ds) + —;
0= (), 1)) + 5
C: determined from the initial condition x(0) = xg.
® ,(t): integrating factor.
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Some basics

o EXAMPLE:
e Consider
dx 1
= (1+ t)? t>
s L R )
x(0) = 1.

e p(t)=1/(t+1) and g(t) = (1 + t)°.
e |ntegrating factor:

t
() = exp( / p(s)ds) = €D — ¢ 41,
0

t

1 C t+1)3 C—

Lall NS

e Initial condition x(0) =1= C=1.
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Some basics

e EXAMPLE: (Bernoulli's equation)

e Consider

&4 p(x(t) = (<" (1)

e a¢{0,1}.

e Change of variable: x = zﬁ,

dx 1 o dz

zT-a —,

Ezl—a dt

e Linear equation:

% + (1 a)p(t)z(t) = (1 — a)g(t).

e Solved by the method of integrating factors.
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Some basics

® Important examples of ODEs:

e Autonomous ODEs;
e Exact equations;
e Hamiltonian systems.
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Some basics

® Autonomous ODEs:
dx(t) .
e DEFINITION: e f(t,x(t)): autonomous if f:

independent of t.
o Any ODE can be rewritten as an autonomous ODE on a

higher-dimensional space.
e y = (t,x(t)) — autonomous ODE
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Some basics

® [Exact equations:
e Q=1 xR cR?with | C R: open interval.
o f,g€C%Q).
e Solution x € C*(/) of the ODE:
dx

F(t,x(t)) +g(t, x(t) 3, =0

satisfying the initial condition x(tp) = xo for some (t, xp) € Q.
o Differential form:

w = f(t,x)dt + g(t, x)dx.

e DEFINITION: Differential form: exact if there exists
F eCY(Q) st.

e F: potential of w.
o Differential equation: exact equation.
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Some basics

e THEOREM: Implicit function theorem

e Suppose that F(t,x): continuously differentiable in a
neighborhood of (ty, x9) € R x R and F(ty, x) = 0.

e Suppose that OF /0x(to, xp) # 0.

e Then there exists a 6 > 0 and € > 0 s.t. for each t satisfying
|t — to] < &, there exists a unique x s.t. |x — x| < € for which
F(t,x)=0.

e This correspondence defines a function x(t) continuously
differentiable on {|t — to| < 0} s.t.

F(t,x) =0 < x = x(t).
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Some basics

e THEOREM:
e Suppose that w: exact form with potential F s.t.
oF
—(to, 0.
5 (100 %0) #

o F(t,x) = F(to,xo) implicitly defines a function x € C*(/) for
some open interval | containing ty, which solves

F(t,x(0) + (6 X(8) 5x =0

with the initial condition x(ty) = xo.
e Solution: unique on /.
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Some basics

e PROOF:
e Suppose without loss of generality that F(tp, %) = 0.
o Implicit function theorem = there exists §,77 > 0 and
x € CHty — J,tg + 6) s.t.
{(t,x) € Q: |t —to] <6, |x — x| <1,

F(t,x) = 0} = {(t,x(t)) € Q: [t — to] <6}
o By differentiating the identity F(t x(t)) =0,
0=2LF(t,x(t)) = ZE(t.x(t))+ ZE(t, x(t) %

= f(t.x(8) +g(t.x(1) 5
e = x(t): solution of the differential equation.

X(fo) = Xp.
e If z € C(/): solution s.t. z(ty) = xo, then
d

&F(Lz(t)) =0= F(t,z(t)) = F(to, z(tr)) = 0 = z(t) = x(t).
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Some basics

e DEFINITION:
o f,g €CYQ).
o Differential form w = fdt + gdx: closed in Q if
of _og
ox Ot

for all (t,x) € Q.
e PROPOSITION:

o Exact differential form w = fdt + gdx with a potential
F € C?: closed if
OPF  O°F
Otdx  Oxot

for all (t,x) € Q.
e Converse: also true if £: simply connected.

® Closed forms always have a potential (at least locally).
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Some basics

e EXAMPLE:

o Consider 4
X
tx> +x —t— =0.
X"+ x 1z
o f(t,x) = tx®+ x and g(t,x) = —t.

e Not exact:

of og
Zoooxt 14 = =1
ox ~ XETLIE G,
e EXAMPLE:
e Consider
- 1 t dx _
x x2dt

e Exact equation with the potential function F:
#2
2

e F(t,x) = 0 implicitly defines the solutions (locally for t # 0
and x # 0 s.t. 9F /0x(t, x) # 0).
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Some basics

® Hamiltonian systems:
o DEFINITION:
e M: subset of R and H : RY x M — R: C* function.
e Hamiltonian system with Hamiltonian H: first-order system of

ODEs 4 oH
ap _ _on
dt - aq (p7 q)7
dg _ dH
Tl (p, q).
e EXAMPLE:
o Harmonic oscillator with Hamiltonian
1 1
H(p.q) = J’— + Sk’

2
m and k: positive constants.
e Given a potential V, Hamiltonian systems of the form:
1 +
H(p.q) = 5p" M "p+ V(q);
M: symmetric positive definite matrix and T: transpose.

Numerical methods for ODEs Habib Ammari



Some basics

® [nvariant for a system of ODEs:

e DEFINITION:
e Q=/xD;ICRand DCR".
e Consider d
X
o = flEx();
e F:Q 5 RY.

F : D — R: invariant if F(x(t)) = Constant.
(t,x) € I x D: stationary point if f(t,x) = 0.
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Some basics

® Example:

e Lotka-Volterra's ODEs:

% =u(v—2),
% =v(1l—u).

Dynamics of biological systems in which two species interact:
one as a predator and the other as prey.
Define

F(u,v):=Inu—u+2Ilnv—v.

F(u,v): invariant.
(u,v) =(1,2) and (u,v) = (0,0): stationary points.
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Some basics

® Differentiation with respect to time,

dpyyLdu_du 2dv_dv
dt’ 7 udt dt  vdt dt
du dv
—v—2—-""42(1—-u)— —

v ar T

v—2)—ulv—2)+2(1—u)+ v(1l—u)
=(v-2)1-u)+(2-v)1—-u)
0.

Numerical methods for ODEs Habib Ammari



Some basics

e |EMMA:
e Hamiltonian H: invariant of the associated Hamiltonian
system.
e PROOF:
o
S0 a(0) = 5 (p(0). o) + 5 (ple). a(e) ]

~

S COR ))Z—’;’(p(r), a(t)) + ‘;—’;’(pux a(0) 51 ((0).(0)

e H(p, q): invariant of the associated system of equations.
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Some basics

o EXAMPLE:
e Consider
@ = —sin
dr q,
dg _
a P
e H(p,q) = 3p* — cosq:
oH =sing = 7@
dq NP
OH dg
S —p=
op dt
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Some basics

® Equivalent expression for Hamiltonian systems:

e x=(p,q)" (p,qgeR?);

= (5 )

I: d x d identity matrix.
o JTL=JT,
o Rewrite the Hamiltonian system in the form
dx

- = -1
T JT VH(x).
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Some basics

® DEFINITION Symplectic linear mapping

e Matrix A € R?¢ x R?9 (linear mapping from R?9 to R29):
symplectic if AT JA = J.

e DEFINITION Symplectic mapping

e Differentiable map g : U — R?": symplectic if the Jacobian
matrix g’(p, q): everywhere symplectic, i.e., if

g'(p.q)" Jg'(p.q) = J.
o Taking the transpose of both sides of the above equation,
g'pa) I g (pa)=J";
o Or equivalently,

g'(p,q) I e (p.g)=J".
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Some basics

e THEOREM:

o If g: symplectic mapping, then it preserves the Hamiltonian
form of the equation.

Numerical methods for ODEs Habib Ammari



Some basics

e PROOF:
e x=(p,q)", y=2g(p,q)"; G(y) := H(x).
e Chain rule =
0 0 dy

%H(x) = gG(y) = @G(y)&(x)

=(V,G(y) &' (p,q).
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Some basics

Y=g p S

dr
=g'"(p.q)J} (agix))T

=g'"Jg'V,G(y)
=J'V,G(y).

5= J7'V,G(y).
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Some basics

e DEFINITION:

o Flow:
®(po, go) = (P(t, pos go), q(t, Po, Go));

e ¢, : U— R UcR¥™;
e po and qo: initial data at t = 0.
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Some basics

e THEOREM: Poincaré’s theorem

e H: twice differentiable.
e Flow ¢;: symplectic transformation.
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Some basics

e PROOF:
* yo = (po; q0)-

d [ (96" S (99
i\ (o) 2 (5e)
(o) () + (o) +(5)
_<3yo) / Jyo * Jyo / dyo

(2w (2 1 (22) oo (22)
<3y0> VeHJ™ J 30 + I JJ7°V°H 50
=0;

e V2H: Hessian matrix of H(p, q) (symmetric).
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Some basics

® J¢:/0yo at t = 0: identity map =

99: )" (%)_
<3)/o) / dyo =/

for all t and all (po, qo)-
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Some basics

® Symplecticity of the flow: characteristic property of the Hamiltonian

system.
e THEOREM:
o f: U — R?" continuously differentiable.
o & = f(x): locally Hamiltonian iff ¢¢(x): symplectic for all

x € U and for all sufficiently small t.
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Some basics

e PROOF:

o Necessity <= Poincaré’s Theorem.

e Suppose that ¢;: symplectic; prove local existence of a
Hamiltonian H s.t. f(x) = J7'VH(s).

. %: solution of

¥ — Py
. =
i ((5) 1(3e)) = () roomrsem (5)
=0.

e Putting t =0; J = —JT = Jf'(y): symmetric matrix for all

Yo-
e Integrability lemma = Jf(y): can be written as the gradient
of a function H.
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Some basics

o | EMMA: Integrability lemma

e D CRY openset; g: D— R e
e Suppose that the Jacobian g’(y): symmetric for all y € D.
e For every yy € D, there exists a neighborhood of y, and a

function H(y) s.t.
g(y) = VH(y)

on this neighborhood.
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Some basics

e PROOF:

e Suppose that yy = 0, and consider a ball around yq: contained
in D.
e Define

H(y) = /O v g(ty)dt.

o Differentiation with respect to yk, and symmetry assumption:

Ogi _ D8
Oyx 0y
o =
OH ! +0g
—_—= ty) + — (ty)t)dt
i /O (ex(ty) +y ayk( y)t)
1 q
= a(tgk(ty))dt:gk(y)
0
o =

VH=g.
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Some basics

® Gradient system:

[ ]
dx
— = —VF(x);
1 (x)
e F: potential function.
e LEMMA:

e Hamiltonian system: gradient system iff H: harmonic.
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Some basics

e PROOF:
e Suppose that H: harmonic, i.e.,
0PH  0*H
— + = =0.
op?  0q?

e Jacobian of J~'VH: symmetric

_ 9*°H __9*H

-1 ’r_ apdq 0q?

(JTIVHY = | 2poa 09
op? Opdq

e Integrability lemma = there exists V s.t. JTIZVH=VV =
Hamiltonian system: gradient system.
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Some basics

® Suppose that Hamiltonian system: gradient system.
® There exists V s.t.

ov_oH . ov_ oM
op ~ Og dqg  Op’
¢ = 2 2
oO°H O0°H
BH =+ 5 =0
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Some basics

o EXAMPLE:
e Hamiltonian system with H(p, q) = p? — ¢*: gradient system.
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