Lecture 1: Some basics

Habib Ammari

Department of Mathematics, ETH Zürich
Some basics

• What is a differential equation?
• Some methods of resolution:
 • Separation of variables;
 • Change of variables;
 • Method of integrating factors.
• Important examples of ODEs:
 • Autonomous ODEs;
 • Exact equations;
 • Hamiltonian systems.
Some basics

- Ordinary differential equation (ODE): equation that contains one or more derivatives of an unknown function \(x(t) \).
- Equation may also contain \(x \) itself and constants.
- ODE of order \(n \) if the \(n \)-th derivative of the unknown function is the highest order derivative in the equation.
Some basics

• Examples of ODEs:
 • **Membrane equation** as a neuron model:

 \[C \frac{dx(t)}{dt} + gx(t) = f(t), \]

 \(x(t) \): membrane potential, i.e., the voltage difference between the inside and the outside of the neuron; \(f(t) \): current flow due to excitation; \(C \): capacitance; \(g \): conductance (the inverse of the resistance) of the membrane.
 • **Linear ODE of order 1.**
Some basics

- **Theta model**: one-dimensional model for the spiking of a neuron.

\[
\frac{d\theta(t)}{dt} = 1 - \cos \theta(t) + (1 + \cos \theta(t))f(t);
\]

\(f(t)\): inputs to the model.

- \(\theta \in [0, 2\pi]; \theta = \pi\) the neuron spikes \(\rightarrow\) produces an action potential.

- Change of variables, \(x(t) = \tan(\theta(t)/2)\), \(\rightarrow\) quadratic model

\[(*) \quad \frac{dx(t)}{dt} = x^2(t) + f(t).\]

- **Population growth** under competition for resources:

\[(**) \quad \frac{dx(t)}{dt} = rx(t) - \frac{r}{k}x^2(t);\]

\(r\) and \(k\): positive parameters; \(x(t)\): number of cells at time instant \(t\),
\(rx(t)\): growth rate and \(- (r/k)x^2(t)\): death rate.

- \((*)\) and \((**): Nonlinear ODEs of order 1.
Some basics

• **FitzHugh-Nagumo model:**

\[
\begin{align*}
\frac{dV}{dt} &= f(V) - W + I, \\
\frac{dW}{dt} &= a(V - bW);
\end{align*}
\]

- $f(V)$: polynomial of third degree, and a and b: constant parameters.
- **FitzHugh-Nagumo model**: two-dimensional simplification of the Hodgkin-Huxley model of spike generation in squid giant axons.

- **Mathematical properties** of excitation and propagation from the electrochemical properties of sodium and potassium ion flow.

- **System of nonlinear ODEs** of order 1.
Some basics

- **Langevin equation** of motion for a single particle:

\[
\frac{dx(t)}{dt} = -ax(t) + \eta(t);
\]

- \(x(t)\): position of the particle at time instant \(t\), \(a > 0\): coefficient of friction, and \(\eta\): random variable that represents some uncertainties or stochastic effects perturbing the particle.

- **Diffusion-like motion** from the probabilistic perspective of a single microscopic particle moving in a fluid medium.

- **Linear stochastic ODE of order 1**.
Some basics

• Vander der Pol equation:

\[\frac{d^2x(t)}{dt^2} - a(1 - x^2(t)) \frac{dx(t)}{dt} + x(t) = 0; \]

• \(a \): positive parameter, which controls the nonlinearity and the strength of the damping.

• Generate waveforms corresponding to electrocardiogram patterns.

• Nonlinear ODE of order 2.
Some basics

• Higher order ODEs: $\Omega \subset \mathbb{R}^{n+2}$ and $n \in \mathbb{N}$.

• ODE of order n:

\[F(t, x(t), \frac{dx}{dt}(t), ..., \frac{d^n x}{dt^n}(t)) = 0; \]

• x: real-valued unknown function and $dx(t)/dt, ..., d^n x(t)/dt^n$: its derivatives.

• $\varphi \in C^n(I)$: solution of the differential equation if I: open interval, for all $t \in I$,

\[(t, \varphi(t), \frac{\partial \varphi}{\partial t}(t), ..., \frac{\partial^n \varphi}{\partial t^n}(t)) \in \Omega \]

and

\[F(t, \varphi(t), \frac{\partial \varphi}{\partial t}(t), ..., \frac{\partial^n \varphi}{\partial t^n}(t)) = 0. \]

• x: vector valued function, $x(t) \in \mathbb{R}^d$, $\rightarrow \Omega \subset \mathbb{R} \times \mathbb{R}^{(n+1)d}$.
Some basics

• n-th order ODE:

\[(\ast \ast \ast) \quad x^{(n)}(t) = f(t, x, \frac{dx}{dt}, ..., \frac{d^{n-1}x}{dt^{n-1}}), \quad t \in I. \]

• $x(t) \in \mathbb{R}^d$ and $f : I \times \mathbb{R}^{nd} \to \mathbb{R}^d$.

• Initial condition:

\[(x(t_0), x'(t_0), x''(t_0), ..., x^{(n-1)}(t_0))^\top. \]

• Reduce the high order ODE (\ast \ast \ast) into a first order ODE:

\[y(t) := (x(t), dx(t)/dt, ..., d^{n-1}x(t)/dt^{n-1})^\top \in \mathbb{R}^{nd} \]

and

\[F(t, y) := (y_2, ..., y_n, f(t, y_1, ..., y_n))^\top \]

for $y = (y_1, ..., y_n)^\top \in \mathbb{R}^{nd}$ and $y_i \in \mathbb{R}^d$ for $i = 1, 2, ..., n$.

• (\ast \ast \ast) equivalent to the following first order ODE:

\[\frac{dy}{dt} = F(t, y(t)). \]
Some basics

• EXAMPLE:
 • Consider the second order ODE:

 \[
 \frac{d^2x}{dt^2} + p(t)\frac{dx}{dt} + q(t)x(t) = g(t).
 \]

 • \[\Rightarrow\]

 \[
 \frac{d}{dt} \begin{bmatrix} x \\ \frac{dx}{dt} \end{bmatrix} = \begin{bmatrix} \frac{dx}{dt} \\ -p(t)\frac{dx}{dt} - q(t)x(t) + g(t) \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -q(t) & -p(t) \end{bmatrix} \begin{bmatrix} x \\ \frac{dx}{dt} \end{bmatrix} + \begin{bmatrix} 0 \\ g(t) \end{bmatrix}.
 \]
Some basics

- ODEs:
 - **Existence** of solutions;
 - **Uniqueness** of solutions with suitable initial conditions;
 - **Regularity and stability** of solutions (e.g. dependence on the initial conditions, large time stability, higher regularity);
 - **Computation** of solutions.

- Existence of solutions: **fixed point theorems; implicit function theorem** in Banach spaces.

- Uniqueness: more difficult.

- Explicit solutions: only in a very few special cases.

- **Numerical solutions**.
Some basics

- Some methods of resolution:
 - Separation of variables;
 - Change of variables;
 - Method of integrating factors.
Some basics

- **Separation of variables:**
 - \(I \) and \(J \): open intervals;
 - \(f \in C^0(I) \) and \(g \in C^0(J) \): continuous functions.
 - Solutions to the first order equation
 \[
 (\ast \ast \ast \ast) \quad \frac{dx}{dt} = f(t)g(x).
 \]
 - \(t_0 \in I \) and \(x_0 \in J \).
 - \(g(x_0) = 0 \) for some \(x_0 \in J \rightarrow x(t) = x_0 \) for \(t \in I \): solution to
 \((\ast \ast \ast \ast) \).
 - Suppose \(g(x_0) \neq 0 \rightarrow g \neq 0 \) in a neighborhood of \(x_0 \) ⇒
 \[
 \frac{dx}{g(x)} = f(t)dt.
 \]
 - Integration ⇒
 \[
 \int \frac{dx}{g(x)} = \int f(t)dt + c;
 \]
 \(c \): constant uniquely determined by the initial condition.
Some basics

- F and G: primitives of f and $1/g$.
- $G'(x) \neq 0 \Rightarrow G$: strictly monotonic \rightarrow invertible.
- Solution:
 \[x(t) = G^{-1}(F(t) + c). \]
- Method of separation of variables.
- (** ** **): separable equation.
Some basics

• **EXAMPLE:**

 • Consider the following ODE:

 \[
 \begin{align*}
 \frac{dx}{dt} &= \frac{1 + 2t}{\cos x(t)}, \\
 x(0) &= \pi.
 \end{align*}
 \]

 • \(g(x) = \frac{1}{\cos x}\) and \(f(t) = 1 + 2t\).

 • \(g\): defined for \(x \neq \pi/2 + k\pi, k \in \mathbb{Z}\).

 • Separation of variables,

 \[
 \cos x \, dx = 1 + 2t \, dt.
 \]

 • Integration,

 \[
 \sin x(t) = t^2 + t + C,
 \]

 for some constant \(C \in \mathbb{R}\).

 • Initial condition \(x(0) = \pi \Rightarrow C = 0\).
Some basics

• Taking the arcsin ⇒ $x(t) = \arcsin(t^2 + t)$: not the solution because $x(0) = \arcsin(0) = 0$.

• \arcsin: inverse of sin on $[-\pi/2, \pi/2]$; $x(t)$: takes the values in a neighborhood of π.

• $w(t) = x(t) - \pi \rightarrow w(0) = x(0) - \pi = 0 \Rightarrow w(t) = -\arcsin(t^2 + t)$.

• Correct solution:

$$x(t) = \pi - \arcsin(t^2 + t).$$
Some basics

- Change of variables:
 - Consider the following ODE:
 \[
 \frac{dx}{dt} = f\left(\frac{x(t)}{t}\right);
 \]
 \(f : I \subset \mathbb{R} \rightarrow \mathbb{R}\): continuous function on some open interval \(I \subset \mathbb{R}\).
 - change of variable \(x(t) = ty(t); \ y(t)\): new unknown function,
 \[
 \frac{dx}{dt} = y(t) + t \frac{dy}{dt} = f(y(t)),
 \]
 - Separable equation for \(y\):
 \[
 \frac{dy}{f(y) - y} = \frac{dt}{t}.
 \]
 - Solution by the method of separation of variables.
Some basics

• EXAMPLE:
 • Consider
 \[\frac{dx}{dt} = \frac{t^2 + x^2}{xt} . \]
 • \(f(s) = s + 1/s \) with \(s = x/t \).
 • Change of variable: \(y(t) = x(t)/t \Rightarrow ydy = dt/t \)
 • \(\Rightarrow \)
 \[(1/2)y^2 = \ln t + C. \]
 • \(\Rightarrow \)
 \[x(t) = \pm t \sqrt{2(\ln t + C)}. \]
Some basics

- **Method of integrating factors**
 - Consider
 \[
 \frac{dx(t)}{dt} = f(t).
 \]
 - Integration
 \[
 x(t) = x(0) + \int_0^t f(s) \, ds.
 \]
 - Consider
 \[
 \frac{dx}{dt} + p(t)x(t) = g(t);
 \]
 \(p\) and \(g\): functions of \(t\).
 - Left-hand side: expressed as the derivative of the unknown quantity \(\leftarrow\) Multiply by \(\mu(t)\).
Some basics

- $\mu(t)$ s.t.

$$\mu(t) \frac{dx}{dt} + \mu(t)p(t)x(t) = \frac{d}{dt} (\mu(t)x(t)).$$

- Taking derivatives \Rightarrow

$$(1/\mu) \frac{d\mu}{dt} = p(t) \text{ or } \frac{d}{dt} \ln \mu(t) = p(t).$$

- Integration \Rightarrow

$$\mu(t) = \exp \left(\int_0^t p(s) ds \right),$$

up to a multiplicative constant.

- Transformed equation:

$$\frac{d}{dt} (\mu(t)x(t)) = \mu(t)g(t).$$

- \Rightarrow

$$x(t) = \frac{1}{\mu(t)} \left(\int_0^t \mu(s)g(s) ds \right) + \frac{C}{\mu(t)};$$

C: determined from the initial condition $x(0) = x_0$.

- $\mu(t)$: integrating factor.
Some basics

- **EXAMPLE:**
 - Consider

\[
\begin{cases}
\frac{dx}{dt} + \frac{1}{t+1}x(t) = (1 + t)^2, & t \geq 0, \\
x(0) = 1.
\end{cases}
\]

- \(p(t) = 1/(t + 1) \) and \(g(t) = (1 + t)^2 \).
- **Integrating factor:**

\[
\mu(t) = \exp\left(\int_0^t p(s)ds\right) = e^{\ln(t+1)} = t + 1.
\]

- \(x(t) = \frac{1}{t+1} \int_0^t (s + 1)^3 ds + \frac{C}{t + 1} = \frac{(t + 1)^3}{4} + \frac{C - \frac{1}{4}}{t + 1}. \)

- **Initial condition** \(x(0) = 1 \) \(\Rightarrow C = 1. \)
Some basics

- **EXAMPLE:** (Bernoulli’s equation)

- Consider

\[
\frac{dx}{dt} + p(t)x(t) = g(t)x^\alpha(t).
\]

- \(\alpha \notin \{0, 1\}\).

- **Change of variable:** \(x = z^{\frac{1}{1-\alpha}}\),

\[
\frac{dx}{dt} = \frac{1}{1-\alpha} z^{\frac{\alpha}{1-\alpha}} \frac{dz}{dt}.
\]

- **Linear equation:**

\[
\frac{dz}{dt} + (1-\alpha)p(t)z(t) = (1-\alpha)g(t).
\]

- Solved by the method of **integrating factors**.
Some basics

• Important examples of ODEs:
 • Autonomous ODEs;
 • Exact equations;
 • Hamiltonian systems.
Some basics

• Autonomous ODEs:
 • **DEFINITION:** \(\frac{dx(t)}{dt} = f(t, x(t)) \): autonomous if \(f \) is independent of \(t \).
 • Any ODE can be rewritten as an autonomous ODE on a higher-dimensional space.
 • \(y = (t, x(t)) \rightarrow \text{autonomous ODE} \)

\[
\frac{dy(t)}{dt} = F(y(t));
\]

\[
F(y) = \begin{pmatrix} 1 \\ f(t, x(t)) \end{pmatrix}.
\]
Some basics

• **Exact equations:**
 • \(\Omega = I \times \mathbb{R} \subset \mathbb{R}^2 \) with \(I \subset \mathbb{R} \): open interval.
 • \(f, g \in C^0(\Omega) \).
 • Solution \(x \in C^1(I) \) of the ODE:
 \[
 f(t, x(t)) + g(t, x(t)) \frac{dx}{dt} = 0
 \]
 satisfying the initial condition \(x(t_0) = x_0 \) for some \((t_0, x_0) \in \Omega \).

• **Differential form:**
 \[
 \omega = f(t, x)dt + g(t, x)dx.
 \]

• **DEFINITION:** Differential form: **exact** if there exists \(F \in C^1(\Omega) \) s.t.
 \[
 \omega = dF = \frac{\partial F}{\partial t} dt + \frac{\partial F}{\partial x} dx.
 \]

• \(F \): potential of \(\omega \).
• Differential equation: **exact equation**.
Some basics

- **THEOREM**: Implicit function theorem
 - Suppose that \(F(t, x) \): continuously differentiable in a neighborhood of \((t_0, x_0) \in \mathbb{R} \times \mathbb{R}^d\) and \(F(t_0, x_0) = 0 \).
 - Suppose that \(\frac{\partial F}{\partial x}(t_0, x_0) \neq 0 \).
 - Then there exists a \(\delta > 0 \) and \(\epsilon > 0 \) s.t. for each \(t \) satisfying \(|t - t_0| < \delta\), there exists a unique \(x \) s.t. \(|x - x_0| < \epsilon\) for which \(F(t, x) = 0 \).
 - This correspondence defines a function \(x(t) \) continuously differentiable on \(\{|t - t_0| < \delta\} \) s.t.
 \[
 F(t, x) = 0 \iff x = x(t).
 \]
Some basics

THEOREM:

• Suppose that \(\omega: \) exact form with potential \(F \) s.t.

\[
\frac{\partial F}{\partial x}(t_0, x_0) \neq 0.
\]

• \(F(t, x) = F(t_0, x_0) \) implicitly defines a function \(x \in C^1(I) \) for some open interval \(I \) containing \(t_0 \), which solves

\[
f(t, x(t)) + g(t, x(t))\frac{dx}{dt} = 0
\]

with the initial condition \(x(t_0) = x_0 \).

• Solution: unique on \(I \).
Some basics

- **PROOF:**
 - Suppose without loss of generality that $F(t_0, x_0) = 0$.
 - **Implicit function theorem** ⇒ there exists $\delta, \eta > 0$ and $x \in C^1(t_0 - \delta, t_0 + \delta)$ s.t.
 $$\{(t, x) \in \Omega : |t - t_0| < \delta, |x - x_0| < \eta, F(t, x) = 0\} = \{(t, x(t)) \in \Omega : |t - t_0| < \delta\}.$$
 - By differentiating the identity $F(t, x(t)) = 0$,
 $$0 = \frac{d}{dt} F(t, x(t)) = \frac{\partial F}{\partial t} (t, x(t)) + \frac{\partial F}{\partial x} (t, x(t)) \frac{dx}{dt} = f(t, x(t)) + g(t, x(t)) \frac{dx}{dt}.$$
 - ⇒ $x(t)$: solution of the differential equation.
 - $x(t_0) = x_0$.
 - If $z \in C^1(I)$: solution s.t. $z(t_0) = x_0$, then
 $$\frac{d}{dt} F(t, z(t)) = 0 \implies F(t, z(t)) = F(t_0, z(t_0)) = 0 \implies z(t) = x(t).$$
Some basics

- **DEFINITION:**
 - \(f, g \in C^1(\Omega) \).
 - Differential form \(\omega = f \, dt + g \, dx \): **closed** in \(\Omega \) if
 \[
 \frac{\partial f}{\partial x} = \frac{\partial g}{\partial t}
 \]
 for all \((t, x) \in \Omega \).

- **PROPOSITION:**
 - Exact differential form \(\omega = f \, dt + g \, dx \) with a potential \(F \in C^2 \): **closed** if
 \[
 \frac{\partial^2 F}{\partial t \partial x} = \frac{\partial^2 F}{\partial x \partial t}
 \]
 for all \((t, x) \in \Omega \).
 - Converse: also true if \(\Omega \): simply connected.

- Closed forms always have a potential (at least locally).
Some basics

• \textbf{EXAMPLE:}

 • Consider

\[tx^2 + x - t \frac{dx}{dt} = 0. \]

 • \(f(t, x) = tx^2 + x \) and \(g(t, x) = -t \).

 • Not exact:

\[\frac{\partial f}{\partial x} = 2xt + 1 \neq \frac{\partial g}{\partial t} = -1. \]

• \textbf{EXAMPLE:}

 • Consider

\[t + \frac{1}{x} - \frac{t}{x^2} \frac{dx}{dt} = 0 \]

 • \textbf{Exact equation with the potential function} \(F \):

\[F(t, x) = \frac{t^2}{2} + \frac{t}{x} + C, \quad C \in \mathbb{R}. \]

 • \(F(t, x) = 0 \) implicitly defines the solutions (locally for \(t \neq 0 \) and \(x \neq 0 \) s.t. \(\partial F / \partial x(t, x) \neq 0 \)).
Some basics

- Hamiltonian systems:
 - **DEFINITION:**
 - \(M \): subset of \(\mathbb{R}^d \) and \(H : \mathbb{R}^d \times M \to \mathbb{R} : C^1 \) function.
 - Hamiltonian system with Hamiltonian \(H \): first-order system of ODEs

 \[
 \begin{align*}
 \frac{dp}{dt} &= -\frac{\partial H}{\partial q}(p, q), \\
 \frac{dq}{dt} &= \frac{\partial H}{\partial p}(p, q).
 \end{align*}
 \]
 - **EXAMPLE:**
 - Harmonic oscillator with Hamiltonian

 \[
 H(p, q) = \frac{1}{2} \frac{p^2}{m} + \frac{1}{2} kq^2;
 \]

 \(m \) and \(k \): positive constants.
 - Given a potential \(V \), Hamiltonian systems of the form:

 \[
 H(p, q) = \frac{1}{2} p^\top M^{-1} p + V(q);
 \]

 \(M \): symmetric positive definite matrix and \(\top \): transpose.
Some basics

- **Invariant** for a system of ODEs:
 - **DEFINITION:**
 - $\Omega = I \times D; \ I \subset \mathbb{R} \text{ and } D \subset \mathbb{R}^d$.
 - Consider
 $$\frac{dx}{dt} = f(t, x(t));$$
 - $f : \Omega \rightarrow \mathbb{R}^d$.
 - $F : D \rightarrow \mathbb{R}$: invariant if $F(x(t)) = \text{Constant}$.
 - $(t, x) \in I \times D$: stationary point if $f(t, x) = 0$.

Numerical methods for ODEs

Habib Ammari
Some basics

- Example:
 - Lotka-Volterra's ODEs:
 \[
 \begin{align*}
 \frac{du}{dt} &= u(v - 2), \\
 \frac{dv}{dt} &= v(1 - u).
 \end{align*}
 \]
 - Dynamics of biological systems in which two species interact: one as a predator and the other as prey.
 - Define
 \[F(u, v) := \ln u - u + 2 \ln v - v.\]
 - \(F(u, v)\): invariant.
 - \((u, v) = (1, 2)\) and \((u, v) = (0, 0)\): stationary points.
Some basics

- Differentiation with respect to time,

\[
\frac{d}{dt} F(u, v) = \frac{1}{u} \frac{du}{dt} - \frac{du}{dt} + \frac{2}{v} \frac{dv}{dt} - \frac{dv}{dt}
\]

\[
= v - 2 - \frac{du}{dt} + 2(1 - u) - \frac{dv}{dt}
\]

\[
= (v - 2) - u(v - 2) + 2(1 - u) + v(1 - u)
\]

\[
= (v - 2)(1 - u) + (2 - v)(1 - u)
\]

\[
= 0.
\]
Some basics

• **LEMMA:**

 • Hamiltonian H: invariant of the associated Hamiltonian system.

• **PROOF:**

 $$\frac{d}{dt} H(p(t), q(t)) = \frac{\partial H}{\partial p} (p(t), q(t)) \frac{dp}{dt} + \frac{\partial H}{\partial q} (p(t), q(t)) \frac{dq}{dt}$$

 $$= - \frac{\partial H}{\partial p} (p(t), q(t)) \frac{\partial H}{\partial q} (p(t), q(t)) + \frac{\partial H}{\partial q} (p(t), q(t)) \frac{\partial H}{\partial p} (p(t), q(t))$$

 $$= 0.$$

• $H(p, q)$: invariant of the associated system of equations.
Some basics

- **EXAMPLE:**
 - Consider
 \[
 \begin{align*}
 \frac{dp}{dt} &= -\sin q,

 \frac{dq}{dt} &= p.
 \end{align*}
 \]
 - \(H(p, q) = \frac{1}{2} p^2 - \cos q: \)
 \[
 \begin{align*}
 \frac{\partial H}{\partial q} &= \sin q = -\frac{dp}{dt}, \\
 \frac{\partial H}{\partial p} &= p = \frac{dq}{dt}.
 \end{align*}
 \]
Some basics

- **Equivalent expression** for Hamiltonian systems:
 - $x = (p, q)^\top (p, q \in \mathbb{R}^d)$;
 - $J = \begin{pmatrix} 0 & I \\ -I & 0 \end{pmatrix}$;
 - I: $d \times d$ identity matrix.
 - $J^{-1} = J^\top$.
 - Rewrite the Hamiltonian system in the form
 \[
 \frac{dx}{dt} = J^{-1} \nabla H(x).
 \]
Some basics

- **DEFINITION** Symplectic linear mapping
 - Matrix $A \in \mathbb{R}^{2d} \times \mathbb{R}^{2d}$ (linear mapping from \mathbb{R}^{2d} to \mathbb{R}^{2d}): symplectic if $A^\top JA = J$.

- **DEFINITION** Symplectic mapping
 - Differentiable map $g : U \to \mathbb{R}^{2n}$: symplectic if the Jacobian matrix $g'(p, q)$: everywhere symplectic, i.e., if

 $$g'(p, q)^\top Jg'(p, q) = J.$$

 - Taking the transpose of both sides of the above equation,

 $$g'(p, q)^\top J^\top g'(p, q) = J^\top;$$

 - Or equivalently,

 $$g'(p, q)^\top J^{-1}g'(p, q) = J^{-1}.$$
Some basics

- **THEOREM:**
 - If g: symplectic mapping, then it preserves the Hamiltonian form of the equation.
Some basics

- **PROOF:**
 - \(x = (p, q)^T, \ y = g(p, q)^T; \ G(y) := H(x). \)
 - **Chain rule** \(\Rightarrow \)

 \[
 \frac{\partial}{\partial x} H(x) = \frac{\partial}{\partial x} G(y) = \frac{\partial}{\partial y} G(y) \frac{\partial y}{\partial x} (x)
 \]

 \[
 = (\nabla_y G(y))^T g'(p, q).
 \]
Some basics

\[\frac{dy}{dt} = g'(p, q) \frac{dx}{dt} \]

\[= g'(p, q) J^{-1} \left(\frac{\partial H(x)}{\partial x} \right)^T \]

\[= g' J^{-1} g' \nabla_y G(y) \]

\[= J^{-1} \nabla_y G(y). \]
Some basics

- **DEFINITION:**
 - Flow:
 \[\phi_t(p_0, q_0) = (p(t, p_0, q_0), q(t, p_0, q_0)) \];
 - \(\phi_t : U \to \mathbb{R}^{2d}, U \subset \mathbb{R}^{2d} \);
 - \(p_0 \) and \(q_0 \): initial data at \(t = 0 \).
Some basics

- **THEOREM**: Poincaré’s theorem
 - H: twice differentiable.
 - **Flow** ϕ_t: symplectic transformation.
Some basics

- PROOF:
 - $y_0 = (p_0, q_0)$.
 -
 $$\frac{d}{dt} \left(\left(\frac{\partial \phi_t}{\partial y_0} \right)^\top J \left(\frac{\partial \phi_t}{\partial y_0} \right) \right)$$
 $$= \left(\frac{\partial \phi_t}{\partial y_0} \right)^\top J \left(\frac{\partial \phi_t}{\partial y_0} \right) + \left(\frac{\partial \phi_t}{\partial y_0} \right)^\top J \left(\frac{\partial \phi_t}{\partial y_0} \right)'$$
 $$= \left(\frac{\partial \phi_t}{\partial y_0} \right)^\top \nabla^2 H J^{-1} \left(\frac{\partial \phi_t}{\partial y_0} \right) + \left(\frac{\partial \phi_t}{\partial y_0} \right)^\top J J^{-1} \nabla^2 H \left(\frac{\partial \phi_t}{\partial y_0} \right)$$
 $$= 0;$$
 - $\nabla^2 H$: Hessian matrix of $H(p, q)$ (symmetric).
Some basics

- $\partial \phi_t / \partial y_0$ at $t = 0$: identity map \Rightarrow

\[
\left(\frac{\partial \phi_t}{\partial y_0} \right)^T J \left(\frac{\partial \phi_t}{\partial y_0} \right) = J
\]

for all t and all (p_0, q_0).

Some basics

• **Symplecticity of the flow**: characteristic property of the Hamiltonian system.

• **THEOREM**:
 - \(f : U \to \mathbb{R}^{2n} \): continuously differentiable.
 - \(\frac{dx}{dt} = f(x) \): locally Hamiltonian iff \(\phi_t(x) \): symplectic for all \(x \in U \) and for all sufficiently small \(t \).
Some basics

- **PROOF:**
 - Necessity \Leftarrow Poincaré’s Theorem.
 - Suppose that ϕ_t: symplectic; prove local existence of a Hamiltonian H s.t. $f(x) = J^{-1} \nabla H(s)$.
 - $\frac{\partial \phi_t}{\partial y_0}$: solution of
 \[
 \frac{dy}{dt} = f'(\phi_t(y_0))y;
 \]
 - \Rightarrow
 \[
 \frac{d}{dt} \left(\left(\frac{\partial \phi_t}{\partial y_0} \right)^\top J \left(\frac{\partial \phi_t}{\partial y_0} \right) \right) = \left(\frac{\partial \phi_t}{\partial y_0} \right)^\top \left[f'(\phi_t(y_0))^\top J + Jf' \right] \left(\frac{\partial \phi_t}{\partial y_0} \right)

 = 0.
 \]
 - Putting $t = 0$; $J = -J^\top \Rightarrow Jf'(y_0)$: symmetric matrix for all y_0.
 - Integrability lemma $\Rightarrow Jf(y)$: can be written as the gradient of a function H.

Numerical methods for ODEs Habib Ammari
Some basics

• **LEMMA:** Integrability lemma

 • $D \subset \mathbb{R}^d$: open set; $g: D \to \mathbb{R}^d \in C^1$.
 • Suppose that the Jacobian $g'(y)$: symmetric for all $y \in D$.
 • For every $y_0 \in D$, there exists a neighborhood of y_0 and a function $H(y)$ s.t.

 $$g(y) = \nabla H(y)$$

 on this neighborhood.
Some basics

• **PROOF:**
 • Suppose that \(y_0 = 0 \), and consider a ball around \(y_0 \): contained in \(D \).
 • Define
 \[
 H(y) = \int_0^1 y^\top g(ty)dt.
 \]
 • Differentiation with respect to \(y_k \), and symmetry assumption:
 \[
 \frac{\partial g_i}{\partial y_k} = \frac{\partial g_k}{\partial y_i}
 \]
 • \(\Rightarrow \)
 \[
 \frac{\partial H}{\partial y_k} = \int_0^1 (g_k(ty) + y^\top \frac{\partial g}{\partial y_k}(ty)t)dt
 = \int_0^1 \frac{d}{dt}(tg_k(ty))dt = g_k(y)
 \]
 • \(\Rightarrow \)
 \[
 \nabla H = g.
 \]
Some basics

- Gradient system:
 \[
 \frac{dx}{dt} = -\nabla F(x);
 \]
 - F: potential function.

- **LEMMA:**
 - Hamiltonian system: gradient system iff H: harmonic.
Some basics

• PROOF:
 • Suppose that H: harmonic, i.e.,
 \[
 \frac{\partial^2 H}{\partial p^2} + \frac{\partial^2 H}{\partial q^2} = 0.
 \]
 • Jacobian of $J^{-1} \nabla H$: symmetric
 \[
 (J^{-1} \nabla H)' = \begin{pmatrix}
 -\frac{\partial^2 H}{\partial p \partial q} & -\frac{\partial^2 H}{\partial q^2} \\
 -\frac{\partial^2 H}{\partial p^2} & \frac{\partial^2 H}{\partial p \partial q}
 \end{pmatrix}
 \]
 • Integrability lemma \Rightarrow there exists V s.t. $J^{-1} \nabla H = \nabla V \Rightarrow$ Hamiltonian system: gradient system.
Some basics

• Suppose that Hamiltonian system: gradient system.

• There exists V s.t.

$$\frac{\partial V}{\partial p} = \frac{\partial H}{\partial q} \quad \text{and} \quad \frac{\partial V}{\partial q} = -\frac{\partial H}{\partial p}.$$

• \Rightarrow

$$\Delta H := \frac{\partial^2 H}{\partial p^2} + \frac{\partial^2 H}{\partial q^2} = 0.$$
Some basics

- **EXAMPLE:**
 - Hamiltonian system with $H(p, q) = p^2 - q^2$: gradient system.