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CHAPTER 1

Some basics

1.1. What is a differential equation?

An ordinary differential equation (ODE) is an equation that contains one or more derivatives
of an unknown function x(t). The equation may also contain x itself and constants. We say that
an ODE is of order n if the n-th derivative of the unknown function is the highest order derivative
in the equation. The following equations are examples of ODEs:

Membrane equation as a neuron model:

C
dx(t)

dt
+ gx(t) = f(t), (1.1)

where x(t) is the membrane potential, i.e., the voltage difference between the inside and
the outside of the neuron, f(t) is the current flow due to excitation, C is the capacitance
and g is the conductance (the inverse of the resistance) of the membrane.

Equation (1.1) is linear ODE of order 1.
The theta model: The theta model is a simple one-dimensional model for the spiking of

a neuron. It takes the form

dθ(t)

dt
= 1− cos θ(t) + (1 + cos θ(t))f(t), (1.2)

where f(t) are the inputs to the model. The variable θ lies on the unit circle and ranges
between 0 and 2π. When θ = π the neuron spikes, that is, it produces an action potential.
By the change of variables, x(t) = tan(θ(t)/2), (1.2) leads to the quadratic model

dx(t)

dt
= x2(t) + f(t). (1.3)

Population growth under competition for resources:

dx(t)

dt
= rx(t)− r

k
x2(t), (1.4)

where r and k are positive parameters. In (1.4), x(t) is the number of cells at time instant
t, rx(t) is the growth rate and −(r/k)x2(t) is the death rate. Equations (1.2), (1.3), and
(1.4) are nonlinear ODEs of order 1.

FitzHugh-Nagumo model:{
dV
dt = f(V )−W + I

dW
dt = a(V − bW ),

(1.5)

where f(V ) is a polynomial of third degree, and a and b are constant parameters.
The FitzHugh-Nagumo model is a two-dimensional simplification of the Hodgkin-Huxley
model of spike generation in squid giant axons. It aims at isolating the mathematical
properties of excitation and propagation from the electrochemical properties of sodium
and potassium ion flow. In (1.5), V is the membrane potential, W is a recovery variable,
and I is the magnitude of stimulus current. Equation (1.5) is a system of nonlinear ODEs
of order 1.

5



6 1. SOME BASICS

Langevin equation of motion for a single particle:

dx(t)

dt
= −ax(t) + η(t), (1.6)

where x(t) is the position of the particle at time instant t, a > 0 is coefficient of fric-
tion, and η is a random variable that represents some uncertainties or stochastic effects
perturbing the particle. Equation (1.6) represents diffusion-like motion from the proba-
bilistic perspective of a single microscopic particle moving in a fluid medium. Equation
(1.6) is a linear stochastic ODE of order 1.

Vander der Pol equation:

d2x(t)

dt2
− a(1− x2(t))

dx(t)

dt
+ x(t) = 0, (1.7)

where a is a positive parameter, which controls the nonlinearity and the strength of the
damping. Equation (1.7) is used to generate waveforms corresponding to electrocardio-
gram patterns. Equation (1.7) is a nonlinear ODE of order 2.

1.1.1. Higher order ODEs. Here we introduce higher order ODEs. Let Ω ⊂ Rn+2 and
n ∈ N. Then an ODE of order n is an equation of the form:

F (t, x(t),
dx

dt
(t), . . . ,

dnx

dtn
(t)) = 0,

where x is a real-valued unknown function and dx(t)/dt, . . . , dnx(t)/dtn are its derivatives. We say
that ϕ ∈ Cn(I) is a solution of the differential equation if I is an open interval,

(t, ϕ(t),
dϕ

dt
(t), . . . ,

dnϕ

dtn
(t)) ∈ Ω

for all t ∈ I, and

F (t, ϕ(t),
dϕ

dt
(t), . . . ,

dnϕ

dtn
(t)) = 0

for all t ∈ I. When x is a vector valued function, i.e., x(t) ∈ Rd, then Ω ⊂ R× R(n+1)d.
Next we consider the following form of n-th order ODE:

x(n)(t) = f(t, x,
dx

dt
, . . . ,

dn−1x

dtn−1
), t ∈ I. (1.8)

where x(t) ∈ Rd and f : I × Rnd → Rd. To ensure uniqueness of the solution, (1.8) has to be
augmented with the initial condition:

(x(t0), x′(t0), x′′(t0), . . . , x(n−1)(t0))>.

Here > denotes the transpose.
We can reduce the high order ODE (1.8) into a first order ODE. Let us define

y(t) := (x(t), dx(t)/dt, . . . , dn−1x(t)/dtn−1)> ∈ Rnd

and

F (t, y) := (y2, . . . , yn, f(t, y1, . . . , yn))>

for y = (y1, . . . , yn)> ∈ Rnd and yi ∈ Rd for i = 1, 2, . . . , n. Then the n-th order ODE (1.8) is
equivalent to the following first order ODE:

dy

dt
= F (t, y(t)).

Example 1.1. Consider the second order ODE given by

d2x

dt2
+ p(t)

dx

dt
+ q(t)x(t) = g(t).
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Then we have

d

dt

[
x
dx
dt

]
=

 dx

dt

−p(t)dx
dt
− q(t)x(t) + g(t)

 =

[
0 1
−q(t) −p(t)

] [
x
dx
dt

]
+

[
0
g(t)

]
.

The main problems concerning ordinary differential equations are:

(i) Existence of solutions;
(ii) Uniqueness of solutions with suitable initial conditions;
(iii) Regularity and stability of solutions (e.g. dependence on the initial conditions, large time

stability, higher regularity);
(iv) Computation of solutions.

The existence of solutions can be proved by fixed point theorems, by the implicit function
theorem in Banach spaces, and by functional analysis techniques. The problem of uniqueness is
typically more difficult. Only in a very few special cases is it possible to compute solutions in some
explicit form.

1.2. Some methods of resolution

In the following subsections, we present several examples of exactly solvable ODEs and then
explain how to solve them.

1.2.1. Separation of variables. Let I and J be two open intervals and let f ∈ C0(I) and
g ∈ C0(J) be two continuous functions. We look for solutions to the first order equation

dx

dt
= f(t)g(x). (1.9)

Let t0 ∈ I and x0 ∈ J . If g(x0) = 0 for some x0 ∈ J , then the constant function x(t) = x0 for
t ∈ I is a solution to (1.9). Suppose that g(x0) 6= 0. Then g 6= 0 in a neighborhood of x0 and we
can divide (1.9) by g(x) and hence, separate the variables. We find

dx

g(x)
= f(t)dt. (1.10)

Integrating (1.10) gives ∫
dx

g(x)
=

∫
f(t)dt+ c,

where the constant c is uniquely determined by the initial condition.
Let F and G be the primitives of f and 1/g, respectively. The function G is strictly monotonic,

because G′(x) 6= 0, and thus invertible. The solution of the differential equation (1.9) is then

x(t) = G−1(F (t) + c).

This method of solving ODEs is called the method of separation of variables and (1.9) is
called a separable equation.

Example 1.2. Consider the following ODE:
dx

dt
=

1 + 2t

cosx(t)
,

x(0) = π.

In this case, we have g(x) = 1/ cosx and f(t) = 1+2t. Note that g is defined for x 6= π/2+kπ, k ∈
Z. By separating variables, we get

cosxdx = 1 + 2tdt.

By integration, we have
sinx(t) = t2 + t+ C,

for some constant C ∈ R. Then, from the initial condition x(0) = π, we see that C = 0.
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One might think that we can obtain the solution by taking the arcsin. But the function x(t) =
arcsin(t2+t) is not the solution because x(0) = arcsin(0) = 0. In order to get the correct solution, we
note that arcsin is the inverse of sin on [−π/2, π/2], whereas x(t) takes the values in a neighborhood
of π. Letting w(t) = x(t)− π, we have w(0) = x(0)− π = 0. So, we have w(t) = − arcsin(t2 + t).
Therefore, we get the following correct solution:

x(t) = π − arcsin(t2 + t).

1.2.2. Change of variables. There are a few important first-order equations that can be
solved using some transformation.

1.2.2.1. Homogeneous equation. Consider the following ODE:

dx

dt
= f

(x(t)

t

)
, (1.11)

where f : I ⊂ R → R is a continuous function on some open interval I ⊂ R. The ODE (1.11) is
called homogeneous. By the change of variables x(t) = ty(t) where y(t) is the new unknown
function, the above ODE can be changed to a separable equation. Since

dx

dt
= y(t) + t

dy

dt
= f(y(t)),

we have a separable equation for y, which reads:

dy

f(y)− y
=
dt

t
.

Therefore, (1.11) can be solved by the method of separation of variables.

Example 1.3. Consider

dx

dt
=
t2 + x2

xt
.

In this case, f(s) = s+ 1/s with s = x/t. By letting y(t) = x(t)/t, we get ydy = dt/t. So, we have
(1/2)y2 = ln t+ C. Therefore, we obtain

x(t) = ±t
√

2(ln t+ C).

1.2.2.2. Bernoulli equation. A differential equation is of Bernoulli type if it is of the form

dx

dt
= f(t)x+ g(t)xn, n 6= 0, 1. (1.12)

The transformation y = x1−n gives the linear equation

dy

dt
= (1− n)f(t)y + (1− n)g(t).

1.2.2.3. Riccati equation. A differential equation is of Riccati type if it is of the form

dx

dt
= f(t)x+ g(t)x2 + h(t). (1.13)

Assume that a particular solution xp of (1.13) is known. Then the transformation y = 1/(x−xp(t)
yields the linear equation

dy

dt
= −(f(t) + 2xp(t)g(t))y − g(t).
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1.2.3. Method of integrating factors. Consider

dx(t)

dt
= f(t). (1.14)

By integrating (1.14), it follows that the solution x(t) is given by

x(t) = x(0) +

∫ t

0

f(s) ds.

Consider
dx

dt
+ p(t)x(t) = g(t), (1.15)

where p and g are functions of t.
If (1.15) were of the form (1.14), then we could immediately write down a solution in terms of

integrals. By (1.15) being of the form (1.14), we mean that the left-hand side is expressed as the
derivative of our unknown quantity. To make this happen, we can multiply (1.15) by a function,
µ(t), and ask whether the resulting equation can be put in the form (1.14).

Let us look for µ(t) such that

µ(t)
dx

dt
+ µ(t)p(t)x(t) =

d

dt
(µ(t)x(t)).

Taking derivatives, we have (1/µ)dµ/dt = p(t) or

d

dt
lnµ(t) = p(t). (1.16)

Integrating (1.16) gives

µ(t) = exp(

∫ t

0

p(s)ds),

up to a multiplicative constant. The equation (1.15) is transformed to

d

dt
(µ(t)x(t)) = µ(t)g(t).

This equation is precisely of the form (1.14), so we can immediately conclude

x(t) =
1

µ(t)

(∫ t

0

µ(s)g(s)ds
)

+
C

µ(t)
,

where the constant C can be determined from the initial condition x(0) = x0. The function µ(t)
is called the integrating factor.

Example 1.4. Consider 
dx

dt
+

1

t+ 1
x(t) = (1 + t)2, t ≥ 0,

x(0) = 1.

In this case, p(t) = 1/(t+ 1) and g(t) = (1 + t)2. Then the integrating factor µ is

µ(t) = exp(

∫ t

0

p(s)ds) = eln(t+1) = t+ 1.

Therefore, we get

x(t) =
1

t+ 1

∫ t

0

(s+ 1)3ds+
C

t+ 1
=

(t+ 1)3

4
+
C − 1

4

t+ 1
.

Then, from the initial condition x(0) = 1, we obtain C = 1.
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Example 1.5. (Bernoulli’s equation) Consider

dx

dt
+ p(t)x(t) = g(t)xα(t). (1.17)

Here α is a real parameter satisfying α /∈ {0, 1}. Letting x = z
1

1−α , we get

dx

dt
=

1

1− α
z

α
1−α

dz

dt
.

Then (1.17) can be reduced to the following linear equation:

dz

dt
+ (1− α)p(t)z(t) = (1− α)g(t),

which can be solved by the method of integrating factors.

1.3. Important examples of ODEs

1.3.1. Autonomous ODEs.

Definition 1.6. The equation

dx(t)

dt
= f(t, x(t)) (1.18)

is called autonomous if f is independent of t.

Any ODE can be rewritten as an autonomous ODE on a higher-dimensional space. Writing
y = (t, x(t)), (1.18) is equivalent to the autonomous ODE

dy(t)

dt
= F (y(t)),

where F (y) =

(
1

f(t, x(t))

)
.

1.3.2. Exact equations. Let Ω = I × R ⊂ R2 with I ⊂ R being an open interval. Let
f, g ∈ C0(Ω). We look for a solution x ∈ C1(I) of the differential equation

f(t, x(t)) + g(t, x(t))
dx

dt
= 0 (1.19)

satisfying the initial condition x(t0) = x0 for some (t0, x0) ∈ Ω.
Consider the differential form

ω = f(t, x)dt+ g(t, x)dx.

Definition 1.7. The differential form is called exact if there exists F ∈ C1(Ω) such that

ω = dF =
∂F

∂t
dt+

∂F

∂x
dx.

The function F is called a potential of ω. In this case the differential equation (1.19) is called an
exact equation.

Theorem 1.8 (Implicit function theorem). Suppose that F (t, x) is continuously differentiable
in a neighborhood of (t0, x0) ∈ R × Rd and F (t0, x0) = 0. Suppose that ∂F/∂x(t0, x0) 6= 0. Then
there exist δ > 0 and ε > 0 such that for each t satisfying |t− t0| < δ, there exists a unique x such
that |x − x0| < ε for which F (t, x) = 0. This correspondence defines a function x(t) continuously
differentiable on {|t− t0| < δ} such that

F (t, x) = 0⇔ x = x(t).
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Theorem 1.9. Suppose that ω is an exact form with potential F such that

∂F

∂x
(t0, x0) 6= 0,

then the equation F (t, x) = F (t0, x0) implicitly defines a function x ∈ C1(I) for some open interval
I containing t0, which solves (1.19) with the initial condition x(t0) = x0. This solution is unique
on I.

Proof. Suppose without loss of generality that F (t0, x0) = 0. By the implicit function
theorem, there exist δ, η > 0 and x ∈ C1(t0 − δ, t0 + δ) such that

{(t, x) ∈ Ω : |t− t0| < δ, |x− x0| < η, F (t, x) = 0} = {(t, x(t)) ∈ Ω : |t− t0| < δ}.

By differentiating the identity F (t, x(t)) = 0, we get

0 =
d

dt
F (t, x(t)) =

∂F

∂t
(t, x(t)) +

∂F

∂x
(t, x(t))

dx

dt
= f(t, x(t)) + g(t, x(t))

dx

dt
,

and hence x(t) is a solution of the differential equation. Moreover, x(t0) = x0.
On the other hand, if z ∈ C1(I) is a solution to (1.19) such that z(t0) = x0, then

d

dt
F (t, z(t)) = 0 =⇒ F (t, z(t)) = F (t0, z(t0)) = 0 =⇒ z(t) = x(t).

�

Definition 1.10. Let f, g ∈ C1(Ω). The differential form ω = fdt+ gdx is closed in Ω if

∂f

∂x
=
∂g

∂t

for all (t, x) ∈ Ω.

Proposition 1.11. An exact differential form ω = fdt+gdx with a potential F ∈ C2 is closed
since by Schwarz’s theorem

∂2F

∂t∂x
=

∂2F

∂x∂t
for all (t, x) ∈ Ω. The converse is also true if Ω is simply connected: If ω is closed then ω is exact
and is associated to a potential F ∈ C2.

Closed forms always have a potential (at least locally).

Example 1.12. Consider the equation

tx2 + x− tdx
dt

= 0. (1.20)

Here, f(t, x) = tx2 + x and g(t, x) = −t. Since

∂f

∂x
= 2xt+ 1 6= ∂g

∂t
= −1,

equation (1.20) is not exact.

Example 1.13. The equation

t+
1

x
− t

x2

dx

dt
= 0

is exact with the potential function F given by

F (t, x) =
t2

2
+
t

x
+ C, C ∈ R.

The equation F (t, x) = 0 implicitly defines the solutions (locally for t 6= 0 and x 6= 0 such that
∂F/∂x(t, x) 6= 0).
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Example 1.14. Consider the equation

− 2t2 + 2x− x2 + t(1− x)
dx

dt
= 0. (1.21)

Here, f(t, x) = −2t2 + 2x− x2 and g(t, x) = t(1− x). Since

∂f

∂x
= 2− 2x 6= ∂g

∂t
= 1− x,

equation (1.21) is not exact. However, multiplying (1.21) by t gives

−2t3 + 2xt− tx2 + t2(1− x)
dx

dt
= 0.

We see from this that f(t, x) = −2t3 + 2tx− tx2 and g(t, x) = t2(1− x). This leads to

∂f

∂x
= 2t− 2tx,

∂g

∂t
= 2t(1− x),

which satisfies the condition
∂f

∂x
=
∂g

∂t
. Thus, there must exist a function F (t, x) such that

∂F

∂t
= f(t, x) and

∂F

∂x
= g(t, x). (1.22)

Integrating equations (1.22) with respect to t and x and comparing the obtained formulas yields

F (t, x) =
1

2
t4 − t2x+

1

2
t2x2 + C,

for some constant C. Therefore, the differential equation (1.21) has the general solution F (t, x) = 0
(locally for t 6= 0 and x 6= 1).

1.3.3. Hamiltonian systems.

Definition 1.15. Let M be a subset of Rd and let H : Rd ×M → R be a C1 function.
The Hamiltonian system with Hamiltonian H is given by the first-order system of ODEs

dp

dt
= −∂H

∂q
(p, q),

dq

dt
=
∂H

∂p
(p, q).

(1.23)

Example 1.16. An important basic example of a Hamiltonian system is the simple harmonic
oscillator with Hamiltonian

H(p, q) =
1

2

p2

m
+

1

2
kq2,

where m and k are positive constants. Given a potential V , Hamiltonian systems of the form

H(p, q) =
1

2
p>M−1p+ V (q),

where M is symmetric positive definite matrix and > denotes the transpose, are widely used in
molecular and biological dynamics.

We now introduce the notion of an invariant (also called first integral) for a system of ODEs.

Definition 1.17. Let Ω = I ×D, where I ⊂ R and D ⊂ Rd. Consider

dx

dt
= f(t, x(t)), (1.24)

where f : Ω → Rd. We call F : D → R an invariant of (1.24) if F (x(t)) = Constant. A point
(t, x) ∈ I ×D is called a stationary point if f(t, x) = 0.
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Example 1.18. Consider the system of Lotka-Volterra’s ODEs given by
du

dt
= u(v − 2),

dv

dt
= v(1− u).

(1.25)

The system of ODEs (1.25) is used to describe the dynamics of biological systems in which two
species interact, one as a predator and the other as prey.

Define

F (u, v) := lnu− u+ 2 ln v − v.
F (u, v) is an invariant of (1.25). In fact, by differentiating with respect to time, we have

d

dt
F (u, v) =

1

u

du

dt
− du

dt
+

2

v

dv

dt
− dv

dt

= v − 2− du

dt
+ 2(1− u)− dv

dt
= (v − 2)− u(v − 2) + 2(1− u) + v(1− u)

= (v − 2)(1− u) + (2− v)(1− u)

= 0.

For the system (1.25), (u, v) = (1, 2) and (u, v) = (0, 0) are two stationary points.

Lemma 1.19. The Hamiltonian H is an invariant of the associated Hamiltonian system (1.23).

Proof. We have

d

dt
H(p(t), q(t)) =

∂H

∂p
(p(t), q(t))

dp

dt
+
∂H

∂q
(p(t), q(t))

dq

dt

= −∂H
∂p

(p(t), q(t))
∂H

∂q
(p(t), q(t)) +

∂H

∂q
(p(t), q(t))

∂H

∂p
(p(t), q(t)) = 0.

Hence, H(p, q) is an invariant of the system of equations (1.23). �

Example 1.20. Consider the system of equations
dp

dt
= − sin q,

dq

dt
= p.

Here, H(p, q) = 1
2p

2 − cos q is the Hamiltonian of the above system, because
∂H

∂q
= sin q = −dp

dt
,

∂H

∂p
= p =

dq

dt
.

There is another equivalent expression for Hamiltonian systems. Let x = (p, q)> (note that
p, q ∈ Rd), and let

J =

(
0 I
−I 0

)
, (1.26)

where I denotes the d× d identity matrix. Note that

J−1 = J>.

We can rewrite the Hamiltonian system (1.23) in the form

dx

dt
= J−1∇H(x). (1.27)
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Here, we use the notation ∇H(x) := (∂H∂x )> = ( ∂H∂x1
, . . . , ∂H∂xd )>. For a vector function f : Rd → Rd,

f(x) = (f1(x), . . . , fd(x)), we define the Jacobian matrix f ′ of f by

f ′(x) :=


∂f1

∂x1
. . . ∂f1

∂xd
... . . .

...
∂fd
∂x1

. . . ∂fd
∂xd

 .

Definition 1.21 (Symplectic linear mapping). A matrix A ∈ R2d×R2d (which is also a linear
mapping from R2d to R2d) is called symplectic if A>JA = J .

Definition 1.22 (Symplectic mapping). A differentiable map g : U → R2d is called symplec-
tic if the Jacobian matrix g′(p, q) is everywhere symplectic, i.e., if

g′(p, q)>Jg′(p, q) = J.

Taking the transpose of both sides of the above equation, we also have

g′(p, q)>J>g′(p, q) = J>,

or equivalently,

g′(p, q)>J−1g′(p, q) = J−1.

Theorem 1.23. If g is a symplectic mapping, then it preserves the Hamiltonian form of the
equation.

Proof. Let x = (p, q)>, y = g(p, q)> and let G(y) := H(x). By using the chain rule, we have

∂

∂x
H(x) =

∂

∂x
G(y)

=
∂

∂y
G(y)

∂

∂x
y(x)

=
∂

∂y
G(y)g′>(p, q).

Then,
dy

dt
= g′>(p, q)

dx

dt

= g′>(p, q)J−1

(
∂H(x)

∂x

)>
= g′>J−1g′∇yG(y)

= J−1∇yG(y),

and therefore,
dy

dt
= J−1∇yG(y).

�

Definition 1.24 (Flow). We define the flow by φt(p0, q0) = (p(t, p0, q0), q(t, p0, q0)), φt : U →
R2d, U ⊂ R2d, and p0 and q0 are the initial data at t = 0.

Theorem 1.25 (Poincaré’s theorem). Suppose that H is twice differentiable. Then the flow
φt is a symplectic transformation whenever it is defined.

Proof. Let y0 = (p0, q0). Note that

d

dt

(∂φt
∂y0

)
= J−1∇2H(φt(y0))

∂φt
∂y0

.
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Then we have

d

dt

((
∂φt
∂y0

)>
J

(
∂φt
∂y0

))

=

(
∂φt
∂y0

)′>
J

(
∂φt
∂y0

)
+

(
∂φt
∂y0

)>
J

(
∂φt
∂y0

)′
=

(
∂φt
∂y0

)>
∇2HJ−>J

(
∂φt
∂y0

)
+

(
∂φt
∂y0

)>
JJ−1∇2H

(
∂φt
∂y0

)
=0,

where ∇2H is the Hessian matrix of H(p, q) (and is symmetric). Moreover, since ∂φt/∂y0 at t = 0
is the identity map, the identity (

∂φt
∂y0

)>
J

(
∂φt
∂y0

)
= J

is satisfied for all t and all (p0, q0) as long as the solution remains in the domain of definition of
H. �

The following result shows that the symplecticity of the flow is a characteristic property of the
Hamiltonian system.

Theorem 1.26. Let f : U → R2n be continuously differentiable. Then dx
dt = f(x) is locally

Hamiltonian if and only if φt(x) is symplectic for all x ∈ U and for all sufficiently small t.

Proof. The necessity follows from Theorem 1.25. We therefore suppose that φt is symplectic,
and we have to prove the local existence of a Hamiltonian H such that f(x) = J−1∇H(s). Using

the fact that ∂φt
∂y0

is a solution of

dy

dt
= f ′(φt(y0))y,

we obtain

d

dt

((
∂φt
∂y0

)>
J

(
∂φt
∂y0

))
=

(
∂φt
∂y0

)>
[f ′(φt(y0))>J + Jf ′]

(
∂φt
∂y0

)
= 0.

Putting t = 0, it follows from J = −J> that Jf ′(y0) is a symmetric matrix for all y0. The
integrability lemma below shows that Jf(y) can be written as the gradient of a function H. �

Lemma 1.27 (Integrability lemma). Let D ⊂ Rd be an open set and let g : D → Rd be of class
C1. Suppose that the Jacobian g′(y) is symmetric for all y ∈ D. Then, for every y0 ∈ D, there
exists a neighborhood of y0 and a function H(y) such that

g(y) = ∇H(y)

on this neighborhood.

Proof. Suppose that y0 = 0, and consider a ball around y0 which is contained in D. On this
ball we define

H(y) =

∫ 1

0

y>g(ty)dt.

Differentiating with respect to yk, and using the symmetry assumption

∂gi
∂yk

=
∂gk
∂yi
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yields

∂H

∂yk
=

∫ 1

0

(gk(ty) + y>
∂g

∂yk
(ty)t)dt

=

∫ 1

0

d

dt
(tgk(ty))dt = gk(y),

which proves that

∇H = g.

�

1.3.4. Gradient systems. Finally, consider the gradient systems.

Definition 1.28. Gradient systems are differential equations that have the form

dx

dt
= −∇V (x), (1.28)

with V (called the potential function) being a real-valued function.

In order to guarantee that the right-hand side of (1.28) is a continuously differentiable function
of x, one requires that V is twice-continuously differentiable.

On solutions to (1.28) one has

d

dt
V (x(t)) = ∇V (x(t)) · dx

dt
= −|∇V (x)|2.

A differential equation
dx

dt
= f(x) = (f1(x), . . . , fd(x)) (1.29)

is a gradient system if and only if there exists a scalar-valued function V (x) so that

−(f1(x), . . . , fd(x)) = (
∂V

∂x1
(x), . . . ,

∂V

∂xd
(x)).

In dimension d = 1, one can always choose an antiderivative V of −f so that

dV

dx
(x) = −f(x).

Equation (1.29) is always a gradient system in dimension one.
In dimension two, a system 

dx1

dt
= f1(x1, x2),

dx2

dt
= f2(x1, x2),

(1.30)

is a gradient system if and only if there is a potential V (x1, x2) so that

∂V

∂x1
= −f1,

∂V

∂x2
= −f2. (1.31)

A necessary and sufficient condition for solvability of (1.31) is the equality of mixed partials,

∂f1

∂x2
=
∂f2

∂x1
.

In the general case, the necessary and sufficient condition is again equality of mixed partials
expressed as

∂fi
∂xj

=
∂fj
∂xi

for all 1 ≤ i < j ≤ d.

Lemma 1.29. The Hamiltonian system (1.23) is a gradient system if and only if the function
H is harmonic.
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Proof. Suppose that H is harmonic, i.e.,

∂2H

∂p2
+
∂2H

∂q2
= 0.

Then the Jacobian of J−1∇H given by

(J−1∇H)′ =

(
− ∂2H
∂p∂q −∂

2H
∂q2

∂2H
∂p2

∂2H
∂p∂q

)
is symmetric. The integrability lemma shows that there exists V such that J−1∇H = ∇V and
therefore, the Hamiltonian system is a gradient system.

Suppose that the Hamiltonian system is a gradient system. Then, there exists V such that

∂V

∂p
=
∂H

∂q
and

∂V

∂q
= −∂H

∂p
.

Therefore,

∆H :=
∂2H

∂p2
+
∂2H

∂q2
= 0.

�

Example 1.30. The Hamiltonian system with H(p, q) = p2 − q2 is a gradient system.

1.3.5. Hamilton-Jacobi equation. The Hamilton-Jacobi equation is used to generate
particular symplectic transformations that simplify Hamiltonian systems.

Let d = 1 and let

H(p, q) =
1

2
p2 + V (q).

Consider the Hamiltonian-Jacobi equation
∂u

∂t
+H(

∂u

∂q
, q) = 0, q ∈ R, t ≥ 0,

u(0, q) = u0(q), q ∈ R.
(1.32)

A smooth function u(P, q, t) satisfying (1.32) can be used to map the variables (p, q) to a set of
variables (P,Q) that are constants over time. Let p = ∂u

∂q , and define Q = ∂u
∂P . Then, (p, q) 7→

(P,Q) is symplectic. Moreover, in the new coordinates (P,Q), the Hamiltonian system (1.23)
reduces to 

dP

dt
= 0,

dQ

dt
= 0,

(1.33)

and becomes trivial to solve.

Problem 1.31 (Exact equations). Consider the equation F (t, x) = 0, where F ∈ C2(R2,R).
Suppose x(t) solves this equation.

(i) Show that x(t) satisfies

g(t, x)
dx

dt
+ f(t, x) = 0, (1.34)

where

g(t, x) =
∂F (t, x)

∂x
and f(t, x) =

∂F (t, x)

∂t
.

(ii) Show that we have
∂g(t, x)

∂t
=
∂f(t, x)

∂x
,

and deduce that (1.34) is exact.
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(iii) Conversely, show that if a first-order equation as (1.34) is exact, then there is a corre-
sponding function F as above. Find an explicit formula for F in terms of f and g. Is F
uniquely determined by f and g ?

(iv) Show that

(2tx+ 3t+ 5)
dx

dt
+ 3t2 + t+ x2 + 3x = 0

is exact. Find F and find the solution.

Problem 1.32 (Method of integrating factor). Consider

g(t, x)
dx

dt
+ f(t, x) = 0.

(i) Prove that µ(t, x) is an integrating factor if

µ(t, x)g(t, x)
dx

dt
+ µ(t, x)f(t, x) = 0

is exact.
(ii) Consider

t
dx

dt
+ 3t− 2

dx

dt
= 0

and look for an integrating factor µ depending only on t. Solve the equation.

Problem 1.33. (i) Prove that a smooth differential map g : R2 → R2 is symplectic if
and only if det g′ = 1.

(ii) Find a counterexample to the statement in (i) in R2d for d > 1.

Problem 1.34. Consider the system of linear equations
dX

dt
= AX(t),

X(0) = X0,

where X,X0, and A are d× d real matrices.

(i) Prove that if A is a skew-symmetric matrix then X>X is an invariant of the system.
(ii) Prove that if X0 is orthogonal then the solution X(t) is orthogonal for all t ≥ 0.

Problem 1.35 (Transport theorem). Let φt denote the flow of the system dx/dt = f(x),
x ∈ Rd, and let Ω be a bounded domain in Rd. Define

V (t) =

∫
φt(Ω)

dx1 . . . dxd,

and recall that the divergence of a vector field f = (f1, . . . , fd)
> is

∇ · f =

d∑
i=1

∂fi
∂xi

.

(i) Use Liouville’s theorem and the change of variables formula for multiple integrals to prove
that

dV

dt
=

∫
φt(Ω)

(∇ · f)dx1 . . . dxd.

(ii) Prove that the flow of a vector field whose divergence is everywhere negative contracts
volume.

(iii) Suppose that g : R× Rd → R is continuously differentiable. Prove the transport theorem

d

dt

∫
φt(Ω)

g(t, x)dx1 . . . dxd =

∫
φt(Ω)

[
∂g

∂t
+∇ · (gf)

]
dx1 . . . dxd.



CHAPTER 2

Existence, uniqueness, and regularity in the Lipschitz case

2.1. Banach fixed point theorem

Definition 2.1 (Contraction). Let (X, d) be a metric space. A mapping F : X → X is a
contraction if there exists 0 < λ < 1 such that

d(F (x), F (y)) ≤ λd(x, y)

for all x, y ∈ X.

Theorem 2.2 (Banach fixed point theorem). Let (X, d) be a complete metric space (i.e.,
every Cauchy sequence of elements of X is convergent) and let F : X → X be a contraction. Then
there exists a unique x ∈ X such that

F (x) = x.

2.2. Gronwall’s lemma

Lemma 2.3 (Gronwall’s lemma). Let I = [0, T ] and let φ ∈ C0(I). If there exist two
constants α, β ∈ R, β ≥ 0, such that

φ(t) ≤ α+ β

∫ t

0

φ(s)ds for all t ∈ I, (2.1)

then

φ(t) ≤ αeβt for all t ∈ I.

Proof. Let ϕ : I → R be the function

ϕ(t) := α+ β

∫ t

0

φ(s)ds.

Since φ ∈ C0, we conclude that ϕ ∈ C1, and

dϕ

dt
= βφ(t) for all t ∈ I.

By using (2.1), it follows that
dϕ

dt
≤ βϕ.

Let ψ(t) := exp(−βt)ϕ(t) for t ∈ I. Then

dψ

dt
= −βe−βtϕ(t) + e−βt

dϕ

dt

= e−βt
(
−βϕ(t) +

dϕ

dt

)
≤ 0.

Since ψ(0) = ϕ(0) = α, we have ψ(t) ≤ α for t ∈ I, and hence

ϕ(t) ≤ αeβt,

which implies that φ(t) ≤ ϕ(t) ≤ αeβt for all t ∈ I. �

19
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2.3. Cauchy-Lipschitz theorem

Let I = [0, T ], let d be a positive integer, and let f : I×Rd → Rd. Suppose that f ∈ C0(I×Rd).

Definition 2.4 (Lipschitz condition). If there exists a constant Cf ≥ 0 such that, for any
x1, x2 ∈ Rd and any t ∈ I, the following inequality holds:

|f(t, x1)− f(t, x2)| ≤ Cf |x1 − x2|, (2.2)

then we say that f satisfies a Lipschitz condition on I. The constant Cf is called the Lipschitz
constant for f .

Theorem 2.5 (Cauchy-Lipschitz theorem). Consider the initial value problem
dx

dt
= f(t, x), t ∈ [0, T ],

x(0) = x0, x0 ∈ Rd.
(2.3)

If f ∈ C0(I×Rd) satisfies the Lipschitz condition (2.2) on [0, T ], then there exists a unique solution
x ∈ C1(I) to (2.3) on [0, T ].

Proof. By (2.3), we have

x(t) = x0 +

∫ t

0

f(s, x(s))ds, ∀t ∈ [0, T ].

Define the functional F : C0([0, T ];Rd)→ C0([0, T ];Rd) by

F (y) := x0 +

∫ t

0

f(s, y(s))ds.

For y ∈ C0([0, T ];Rd), defined the norm of y by

‖y‖ := sup
t∈[0,T ]

{|y(t)|e−Cf t}, (2.4)

where Cf is the Lipschitz constant for f . It is easy to prove that (2.4) is equivalent to the usual
norm sup

t∈[0,T ]

|y(t)| and hence, C0([0, T ];Rd) equipped with (2.4) is complete.

With (2.4), we compute

‖F [y1]− F [y2]‖ = sup
t∈[0,T ]

|F [y1](t)− F [y2](t)|e−Cf t

≤ sup
t∈[0,T ]

e−Cf t
∫ t

0

|f(s, y1(s))− f(s, y2(s))|ds

≤ sup
t∈[0,T ]

e−Cf tCf

∫ t

0

|y1(s)− y2(s)|ds

≤ sup
t∈[0,T ]

e−Cf tCf

∫ t

0

eCfse−Cfs|y1(s)− y2(s)|ds

≤ sup
t∈[0,T ]

{e−Cf tCf
∫ t

0

eCfsds}‖y1 − y2‖

≤ (1− e−CfT )‖y1 − y2‖.
By Banach fixed point theorem in a complete metric space (Theorem 2.2), there exists a unique
y ∈ C0([0, T ];Rd) such that F (y) = y. The Picard iteration

y(n+1) = F [y(n)]

is a Cauchy sequence and converges to the unique fixed point y. Therefore, there exists a unique
solution to (2.3). �
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Remark 2.6. Theorem 2.5 holds true if Rd is replaced with a Banach space (a complete
normed vector space). The proof is the same.

If f is continuous, there is no guarantee that the initial value problem (2.3) possesses a unique
solution.

Example 2.7. Consider
dx

dt
= x

2
3 , x(0) = 0. (2.5)

Then there are two solutions to (2.5) given by x1(t) = t3

27 and x2(t) = 0.

Theorem 2.8 (Cauchy-Peano existence theorem). If f is continuous, then (2.3) admits a
solution x(t) that is, at least, defined for small t.

This theorem can be proved by using the Arzela-Ascoli theorem.

Definition 2.9 (Equicontinuity). A family of functions F is said to be equicontinuous on
[a, b] if for any given ε > 0, there exists δ > 0 such that

|f(t)− f(s)| < ε

whenever |t− s| < δ for every function f ∈ F and t, s ∈ [a, b].

Definition 2.10 (Uniform boundedness). A family of continuous functions F on [a, b] is
uniformly bounded if there exists a positive number M such that |f(t)| ≤ M for every function
f ∈ F and t ∈ [a, b].

Theorem 2.11 (Arzela-Ascoli). Suppose that the sequence of functions {fn(t)}n∈N on [a, b]
is uniformly bounded and equicontinuous, then there exists a subsequence {fnk(t)}k∈N that is uni-
formly convergent on [a, b].

Example 2.12. Consider
dx

dt
= x2, x(0) = x0 6= 0.

By separation of variables, we obtain

dx

x2
= dt.

Thus,

− 1

x
=

∫
dx

x2
= t+ C,

and hence,

x = − 1

t+ C
.

Since x(0) = x0,

x(t) =
x0

1− x0t
.

If x0 > 0, x(t) blows up when t → 1
x0

from below. If x0 < 0, the singularity is in the

past(t < 0). The only solution defined for all positive and negative t is the constant solution
x(t) = 0, corresponding to x0 = 0.

Remark 2.13 (Local existence and uniqueness theorem). If f(t, x) satisfies a Lipschitz
condition in a bounded domain, then a unique solution exists in a limited region.

Theorem 2.14. Assume that f is continuous and satisfies the Lipschitz condition in the closed
domain K := {|x| ≤ k} and t ∈ [0, T ],

|f(t, x1)− f(t, x2)| ≤ Cf |x1 − x2|, for all x, y ∈ K, t ∈ [0, T ],
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then the equation 
dx

dt
= f(t, x), t ∈ [0, T ],

x(0) = x0, x0 ∈ K,

has a unique solution in t ∈ [0,min{T, kM }], where

M := sup
x∈K,t∈[0,T ]

|f(t, x)|.

Example 2.15. The initial value problem
dx

dt
= 1 + x2, t ∈ [0, 1],

x(0) = 0,

in the region {(x, t) : |x| ≤ 1, 0 ≤ t ≤ 1} has a unique solution for 0 ≤ t ≤ 1/2.

Now we turn to the continuity of the solution of (2.3).

Theorem 2.16 (Continuity with respect to the initial data). Suppose that f satisfies
the Lipschitz condition (2.2). Let x1(t) and x2(t) be the solutions of (2.3) corresponding to the
initial data x1(0) and x2(0), respectively. Then we have

|x1(t)− x2(t)| ≤ eCf t|x1(0)− x2(0)| for all t ∈ [0, T ]. (2.6)

Proof. Since

d

dt
|x1(t)− x2(t)|2 = 2(f(t, x1(t))− f(t, x2(t)))(x1(t)− x2(t))

≤ 2Cf |x1(t)− x2(t)|2, t ∈ [0, T ],

we have

d

dt

(
|x1(t)− x2(t)|2e−2Cf t

)
≤ 0. (2.7)

Integrating (2.7) from 0 to t gives

|x1(t)− x2(t)|2e−2Cf t ≤ |x1(0)− x2(0)|2,

or equivalently,

|x1(t)− x2(t)| ≤ |x1(0)− x2(0)|eCf t,

which yields the desired inequality. �

Next we discuss the differentiability of the solution of (2.3) with respect to the initial data.
Formally, taking the derivative of the solution x of (2.3) with respect to the initial data, we

obtain that ∂x(t)/∂x0 is the solution of the linear equation
d

dt

∂x(t)

∂x0
=
∂f

∂x
(t, x(t))

∂x(t)

∂x0
,

∂x(t)

∂x0
= 1.

(2.8)

Theorem 2.17. Suppose that f is of class C1. Then x0 7→ x(t) is differentiable and ∂x(t)/∂x0

is the unique solution of the linear equation (2.8).
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Proof. Let ∆x(t, x0, h) := x(t, x0 + h) − x(t, x0) be the difference quotient. By using the
mean-value theorem, we have

∆x(t, x0, h) = h+

∫ t

0

(f(s, x(s, x0 + h))− f(s, x(s, x0)))ds

= h+

∫ t

0

(f(s, x(t, x0) + ∆x(s, x0, h))− f(s, x(s, x0)))ds

= h+

∫ t

0

∂f

∂x
(s, x(s, x0) + τ∆x)∆xds,

where τ = τ(s, x0, h) ∈ [0, 1]. Since there exists a positive constant M such that |∂f∂x | < M , it
holds that

|∆x| ≤ |h|+M

∫ t

0

|∆x(s, x0, h)|ds,

By Gronwall’s lemma (Lemma 2.3),

|∆x(t, x0, h)| ≤ |h|eMT .

Let v(t) be the unique solution of (2.8). We compute

∆x(t, x0, h)

h
− v(t) =

∫ t

0

(
f(s, x(s, x0 + h))− f(s, x(s, x0))

h
− ∂f

∂x
(s, x(s, x0))v(s)

)
ds

=

∫ t

0

∆x(s, x0, h)

h

[
∂f

∂x
(s, x(s, x0) + τ∆x(s, x0, h))− ∂f

∂x
(s, x(s, x0))

]
ds

+

∫ t

0

∂f

∂x
(s, x(s, x0))

(
∆x(s, x0, h)

h
− v(s)

)
ds.

By using the uniform continuity of ∂f
∂x , we have that for any ε > 0 there exists h0 > 0 such that,

for any |h| ≤ h0, the first term on the right-hand side is of order O(ε). Then, again by Gronwall’s
lemma,

|∆x(t, x0, h)

h
− v| ≤ εMTeMT ,

for |h| small enough, which proves that x0 7→ x(t) is differentiable and its derivative is given by

∂x

∂x0
= v,

where v is the solution of (2.8). �

2.4. Stability

Theorem 2.18 (Strong continuity theorem). Let

dx

dt
= f(t, x) and

dy

dt
= g(t, y)

be two ODEs on [0, T ]. If f satisfies the Lipschitz condition (2.2) on [0, T ] and there exists ε > 0
such that, for any x ∈ Rd, t ∈ [0, T ],

|f(t, x)− g(t, x)| ≤ ε,

then the following inequality holds:

|x(t)− y(t)| ≤ |x(0)− y(0)|eCf t +
ε

Cf
(eCf t − 1), t ∈ [0, T ].

Remark 2.19. The function g may not satisfy a Lipschitz condition.
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Proof. Since
d

dt
|x(t)− y(t)|2 = 2(f(t, x(t))− g(t, y(t)))(x(t)− y(t))

= 2(f(t, x(t))− f(t, y(t)))(x(t)− y(t)) + 2(f(t, y(t))− g(t, y(t)))(x(t)− y(t)),

we have

d

dt
|x(t)− y(t)|2 ≤

∣∣∣∣ d

dt
|x(t)− y(t)|2

∣∣∣∣
≤ 2|f(t, x(t))− f(t, y(t))| |x(t)− y(t)|+ 2|f(t, y(t))− g(t, y(t))| |x(t)− y(t)|
≤ 2Cf |x(t)− y(t)|2 + 2ε|x(t)− y(t)|

≤ 2Cf |x(t)− y(t)|2 + 2ε
√
|x(t)− y(t)|2.

If we denote by h(t) := |x(t)− y(t)|2, then

dh

dt
≤ 2Cfh+ 2ε

√
h.

Consider the following initial value problem:
du

dt
= 2Cfu+ 2ε

√
u,

u(0) = |x(0)− y(0)|2.
(2.9)

Since Cf > 0, u(0) ≥ 0, it follows that du
dt is always non-negative when t ≥ 0, and hence u is

increasing.
Let z(t) :=

√
u(t) and suppose that h(0) > 0. Then (2.9) is equivalent to

dz

dt
− Cfz = ε, t ∈ [0, T ],

z(0) =
√
u(0).

This gives the solution of (2.4):√
u(t) = z(t) =

√
u(0)eCf t +

ε

Cf
(eCf t − 1).

Moreover,
d

dt
(h(t)− u(t)) ≤ 2Cf (h(t)− u(t)) + 2ε(

√
h(t)−

√
u(t))

= 2Cf (h(t)− u(t)) + 2ε
h(t)− u(t)√
h(t) +

√
u(t)

.

Suppose that there exists t1 such that h(t1) > u(t1). Let t0 := sup{t : 0 ≤ t ≤ t1, h(t) ≤ u(t)}. By
the continuity of h and u, we must have h(t0) = u(t0). Since u(t0) > 0, we obtain for t0 ≤ t ≤ t1,
that

d

dt
(h(t)− u(t)) ≤ 2Cf (h(t)− u(t)) + 2ε

h(t)− u(t)√
u(0)

= (2Cf +
2ε√
u(0)

)(h(t)− u(t)).

Hence,

d

dt

(
(h(t)− u(t)) exp(−2Cf +

2ε√
u(0)

)t

)
≤ 0.

Integrating from t0 to t gives h(t) ≤ u(t) for t0 ≤ t ≤ t1, which is a contradiction to h(t1) > u(t1).
Therefore, it follows that for all t ∈ [0, T ],

d

dt

(
(h(t)− u(t)) exp(−2Cf +

2ε√
u(0)

)t

)
≤ 0.
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By integrating now the last inequality from 0 to t, we obtain

(h(t)− u(t)) exp(−2Cf +
2ε√
u(0)

t) ≤ h(0)− u(0).

Since u(0) = h(0), we have h(t) ≤ u(t) for t ∈ [0, T ], and hence

|x(t)− y(t)| ≤
√
u(t)

=
√
u(0)eCf t +

ε

Cf
(eCf t − 1)

=
√
h(0)eCf t +

ε

Cf
(eCf t − 1).

Therefore, the desired estimate

|x(t)− y(t)| ≤ |x(0)− y(0)|eCf t +
ε

Cf
(eCf t − 1)

holds.
If h(0) = 0, then, instead of (2.9), we consider the following equation:

dun
dt

= 2Cfun + 2ε
√
un, t ∈ [0, T ],

un(0) =
1

n
,

(2.10)

which, analogously to (2.9), has the explicit solution

un(t) =

[
1√
n
eCf t +

ε

Cf
(eCf t − 1)

]2

.

We only need to prove that for each n ∈ N,

h(t) ≤ un(t) (2.11)

holds for t ∈ [0, T ]. Then by letting n→ +∞, un → u, where u is the solution to (2.9), and hence
h(t) ≤ u(t).

Inequality (2.11) can be proved by contradiction. Suppose that there exists t1 > 0 such that
h(t1) > un(t1). Let t0 be the largest t in the interval 0 < t ≤ t1 such that h(t0) ≤ un(t0). By the
continuity of h(t) and un(t), we assert that

h(t0) = un(t0) > 0,

and h(t) > un(t) on (t0, t0 + ε), a small right-neighborhood of t0. But this is impossible according
to the discussion in the case where h(0) > 0 by replacing 0 by t0. The proof of the theorem is now
complete. �

2.5. Regularity

Theorem 2.20. If f ∈ Cn for n ≥ 0, then the solution x of (2.3) is of class Cn+1.

Proof. The proof is by induction, the case n = 0 being clear. If f ∈ Cn then x is at least of
class Cn, by the inductive assumption. Then the function t 7→ f(t, x(t)) = dx(t)/dt is also of class
Cn. The function x(t) is then of class Cn+1. �

Remark 2.21. If f is a real analytic function, then it can be proved that x is also real analytic.

Problem 2.22 (Generalized Gronwall’s inequality). Suppose φ(t) satisfies

φ(t) ≤ α(t) +

∫ t

0

β(s)φ(s) ds for all t ∈ [0, T ],

with α(t) ∈ R and β(t) ≥ 0.
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(i) Prove that

φ(t) ≤ α(t) +

∫ t

0

α(s)β(s)e
∫ t
s
β(τ)dτ ds.

(ii) Prove that, if in addition α(s) ≤ α(t) for s ≤ t, then

φ(t) ≤ α(t)e
∫ t
0
β(s)ds, for all t ∈ [0, T ].

Problem 2.23. Let d = 1 and let f(t, x) be a continuous function satisfying the Lipschitz
condition (2.2). Let M := supx∈R,t∈[0,T ] |f(t, x)|. Let x be the solution to (2.3) and let x(n) be the
nth term in its Picard’s approximation. Prove that

|x(t)− x(n)(t)| ≤
MCnf

(n+ 1)!
tn+1 for t ∈ [0, T ].

Problem 2.24. State and prove a uniqueness theorem for the differential equation
d2x

dt2
= f(t, x,

dx

dt
), t ∈ [0, T ],

x(0) = x0,
dx

dt
(0) = x′0, x0, x

′
0 ∈ R.



CHAPTER 3

Linear systems

3.1. Exponential of a matrix

Let Md(C) be the vector space of d × d matrices with entries in C. Let GLd(C) ⊂ Md(C) be
the group of invertible matrices.

Definition 3.1 (Matrix norm). The matrix norm of A ∈Md(C) is

‖A‖ = max
|y|=1

|Ay|.

Lemma 3.2. The matrix norm has the following properties:

(i) |Ay| ≤ ‖A‖|y| for all y ∈ Cd;
(ii) ‖A+B‖ ≤ ‖A‖+ ‖B‖ for all A,B ∈Md(C);

(iii) ‖AB‖ ≤ ‖A‖ ‖B‖ for all A,B ∈Md(C).

Lemma 3.3 (Jordan-Chevalley decomposition). Let A ∈ Md(C). Then there exists C ∈
GLd(C) such that A has a unique decomposition

C−1AC = D +N,

where D is diagonal, N is nilpotent (i.e., Nd = 0), and ND = DN .

We now define the exponential of a matrix.

Definition 3.4. For a matrix A ∈Md(C), we define

eA =
∑
n≥0

An

n!
.

We list some properties of the exponential of a matrix.

Lemma 3.5. The exponential of a matrix has the following properties:

(i) (exponential of the sum) Let A,B ∈Md(C). If AB = BA, then eA+B = eAeB;
(ii) (conjugation and exponentiation) Let A,B ∈ Md(C) and C ∈ GLd(C) be such that A =

C−1BC. Then we have
eA = C−1eBC.

In fact,

eA =
∑
n≥0

An

n!
=
∑
n≥0

(C−1BC)n

n!
=
∑
n≥0

C−1BnC

n!
= C−1eBC;

(iii) (exponential of a diagonalizable matrix) If A is a diagonalizable matrix of the form

A = C−1

λ1 0
. . .

0 λd

C,

where λ1, . . . , λd ∈ C and C ∈ GLd(C), then

eA = C−1

e
λ1 0

. . .

0 eλd

C;

27
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(iv) (exponential of a block matrix) Let Aj ∈Mhj (C) for j = 1, . . . , p. Let A be a block matrix
of the form

A =

A1 0
. . .

0 Ap

 .

Then

eA =

e
A1 0

. . .

0 eAp

 ;

(v) (derivative) Let A ∈Md(C). We have

d

dt
etA = AetA = etAA.

3.2. Linear systems with constant coefficients

Let A ∈ Md(C)) be independent of t. Let f ∈ C0([0, T ]). Consider the following linear ODE
with constant coefficients: 

dx

dt
= Ax(t) + f(t), t ∈ [0, T ],

x(0) = x0 ∈ Rd.
(3.1)

Since

|A(x− y)| ≤ ‖A‖|x− y| for all x, y ∈ Cd,
by the Cauchy-Lipschitz theorem there exists a unique solution x to (3.1). The system of equations
(3.1) is an autonomous system.

If d = 1 (i.e., A = a ∈ C), then by the method of integrating factors,

x(t) = eatx0 +

∫ t

0

ea(t−s)f(s)ds. (3.2)

In the general case (d ≥ 1), if f = 0, then, from Lemma 3.5 (v), it follows that the solution x
of (3.1) is x(t) = etAx0.

For an arbitrary f , we have
d

dt
(e−tAx) = e−tAf(t),

and hence the solution x(t) of (3.1) is given by

x(t) = etAx0 +

∫ t

0

e(t−s)Af(s)ds. (3.3)

Observe that the solution of (3.1) has been reduced in (3.3) to matrix calculations and integration.

Example 3.6. An important class of linear system with constant coefficients are those that
can be converted into diagonal form. Suppose that we are given a system dx/dt = Ax such that
the eigenvalues λj of A are distinct. Then we can find an invertible matrix C such that C−1AC
is diagonal. If we choose a set of coordinates y = C−1x, then in the new coordinates the equation
becomes

dy

dt
= C−1ACy = Dy, y(0) = y0. (3.4)

By construction, D in (3.4) is diagonal and

y(t) =

e
λ1t 0

. . .

0 eλdt

 y0.
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Example 3.7. Consider (3.1) with d = 2, A =

(
0 1
0 0

)
. Then since A2 = 0 and hence

etA =

(
1 t
0 1

)
, the solution x(t) is given by

x(t) =

(
1 t
0 1

)
x0 +

∫ t

0

(
1 t− s
0 1

)
f(s) ds.

Example 3.8. Consider (3.1) with d = 2, A =

(
0 ω
−ω 0

)
for some ω ∈ R, ω 6= 0. Then

etA =

(
cosωt sinωt
− sinωt cosωt

)
.

This expression for etA can be verified by differentiation:

d

dt
etA =

(
−ω sinωt ω cosωt
−ω cosωt −ω sinωt

)
=

(
0 ω
−ω 0

)(
cosωt sinωt
− sinωt cosωt

)
= AetA.

The solution x(t) to (3.1) is then given by

x(t) =

(
cosωt sinωt
− sinωt cosωt

)
x0 +

∫ t

0

(
cosω(t− s) sinω(t− s)
− sinω(t− s) cosω(t− s)

)
f(s) ds.

3.3. Linear system with non-constant real coefficients

3.3.1. The homogeneous case. Let Md(R) be the vector space of d×d matrices with entries
in R.

Proposition 3.9. Let A : [0, T ] → Md(R) be continuous. The set S of solutions of dx/dt =
A(t)x defined by

S =
{
x ∈ C1([0, T ];Rd) : x satisfies

dx

dt
= A(t)x

}
(3.5)

is a linear subspace of C1([0, T ];Rd) of dimension d.

Proof. If x, y ∈ S, then, for any α, β ∈ R, αx + βy ∈ C1([0, T ];Rd) is also a solution. Then
S is a linear subspace of C1([0, T ];Rd). We show that the dimension of S is d. Let the mapping
F : S → Rd be defined by

F [x] = x(t0) (3.6)

for some t0 ∈ [0, T ]. Then F is linear: F [αx + βy] = αx(t0) + βy(t0) = αF [x] + βF [y]. F
is injective, i.e., F [x] = 0 implies that x = 0. In fact, x solves dx

dt = A(t)x(t) with the initial
condition x(t0) = 0. The solution to this problem is unique (by the Cauchy-Lipschitz theorem)
and 0 is a solution. Then x = 0. Finally, F is surjective because for any x0 ∈ Rd the equation

dx

dt
= A(t)x(t), t ∈ [0, T ],

x(t0) = x0,
(3.7)

has a solution x ∈ C1([0, T ];Rd).
�

Proposition 3.10. Let S be defined by (3.5) and let x1, . . . , xd ∈ S. The following statements
are equivalent:

(i) {x1, . . . , xd} is a basis of S;
(ii) det[x1(t), . . . , xd(t)] 6= 0 for all t ∈ [0, T ].
(iii) det[x1(t0), . . . , xd(t0)] 6= 0 for some t0 ∈ [0, T ].

Here, det denotes the determinant of a matrix and [x1, . . . , xd] is the d × d matrix with columns
x1, . . . , xd ∈ Rd.
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Proof. It is clear that (i) is equivalent to (ii). To see that (i) implies (iii), let {x1, . . . , xd} be
a basis of S. Then {F [x1], . . . , F [xd]} forms a basis of Rd, where the isomorphism F relative to t0
is defined by (3.6). Next let us check that (iii) implies (i). Let t0 be such that (iii) holds and let
F : S → Rd be the isomorphism relative to t0 defined by (3.6). Then the inverse F−1 : Rd → S is
also an isomorphism. It follows that x1 = F−1[x1(t0)], . . . , xd = F−1[xd(t0)] is a basis of S. �

Definition 3.11 (Fundamental matrix). If one of the three equivalent conditions of Propo-
sition 3.10 holds, then the functions x1, . . . , xd are called a fundamental system of solutions of
the differential equation dx

dt = A(t)x. The matrix X = [x1, . . . , xd] is then called a fundamental
matrix of the equation.

We now introduce the Wronskian determinant.

Definition 3.12 (Wronskian determinant). Let x1, . . . , xd ∈ S. The Wronskian determi-
nant w ∈ C1([0, T ];R) of x1, . . . , xd is defined by

w(t) = det[x1(t), . . . , xd(t)].

Theorem 3.13. Let x1, . . . , xd ∈ S and let w ∈ C1([0, T ];R) be the Wronskian determinant of
x1, . . . , xd. Then w solves the differential equation

dw

dt
= (trA(t))w for t ∈ [0, T ]. (3.8)

Here, tr denotes the trace of a matrix.

Proof. If x1, . . . , xd are linearly dependent, then w = 0 and (3.8) trivially holds. Suppose
that x1, . . . , xd are linearly independent, i.e., w(t) 6= 0 for all t ∈ [0, T ].

Let X : [0, T ]→Md(R) be the fundamental matrix having as columns the solutions x1, . . . , xd,
i.e.,

X(t) = (xij(t))i,j=1,...,d, t ∈ [0, T ],

where xj = (x1j , . . . , xdj)
> for j = 1, . . . , d.

Let zj be the solution of 
dzj
dt

= A(t)zj(t),

zj(t0) = ej ,

where {ej}j=1,...,d is the standard unit orthonormal basis in Rd.
Then {z1, . . . , zd} is a basis of the space of solutions to dz/dt = Az. Moreover, there exists

C ∈ GLd(Rd) such that

X(t) = CZ(t), t ∈ [0, T ],

where Z = [z1, . . . , zd].
Let v(t) := detZ(t). Then v solves

dv

dt
(t0) = trA(t0).

In fact, by the definition of the determinant of a matrix, we have

dv

dt
(t) =

d

dt

∑
σ∈Sd

(−1)sgnσ
d∏
i=1

ziσ(i)(t) =
∑
σ∈Sd

(−1)sgnσ
d∑
j=1

d

dt
zjσ(j)(t)

∏
i 6=j

ziσ(i)(t),

where Sd is the set of all permutations of the d elements {1, 2, . . . , d} and sgnσ is the signature of
the permutation σ. Note that∏

i 6=j

ziσ(i)(t0) = 0 unless σ = identity,
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and
dzjj
dt

(t0) = (A(t0)zj(t0))j

=

d∑
h=1

ajh(t0)zhj(t0) =

d∑
h=1

ajh(t0)δhj(t0)

= ajj(t0).

Therefore,

dv

dt
(t0) =

d∑
j=1

ajj(t0) = trA(t0).

Now the general result follows from the differentiation of the following identity:

w = detX = det(CZ) = (detC) detZ = (detC)v.

In fact, we have

dw

dt
(t0) = (detC)

dv

dt
(t0) = (detC)trA(t0).

Therefore,
dw

dt
(t0) = trA(t0)w(t0),

since v(t0) = 1. �

Remark 3.14. Let t0 ∈ [0, T ]. From (3.8), it follows that

w(t) = w(t0)e
∫ t
t0

trA(s) ds
for t ∈ [0, T ]. (3.9)

This is known as Abel’s identity or Liouville’s formula. Identity (3.9) shows that it suffices
to check that the determinant of the fundamental matrix is nonzero for one t0 ∈ [0, T ].

3.3.2. The inhomogeneous case. Consider the inhomogeneous linear differential equation
of the form {

dx

dt
= A(t)x+ f(t), (3.10)

where A(t) ∈ C0([0, T ];Md(R)) and f ∈ C0([0, T ];Rd).
Let X be a fundamental matrix for the homogeneous equation dx(t)/dt = A(t)x(t), i.e.,

dX

dt
= AX and detX 6= 0 for all t ∈ [0, T ].

Then, any solution x to the homogeneous equation is of the form

x(t) = X(t)c, t ∈ [0, T ], (3.11)

for some (column) vector c ∈ Rd.
By using the method of integrating factors, we look for a solution to (3.10) of the form (3.11)

with c ∈ C1([0, T ];Rd). In this case, we have

dx

dt
=
dX

dt
c+X

dc

dt
= AXc+X

dc

dt
= Ax+X

dc

dt
,

which implies X dc
dt = f(t). Since X is invertible, we obtain

dc

dt
= X−1f(t).

Therefore, we find

c(t) = c0 +

∫ t

0

X(s)−1f(s)ds,

for some c0 ∈ Rd.
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Theorem 3.15. Let X be a fundamental matrix for the homogeneous equation dx/dt = Ax.
Then, for all c0 ∈ Rd, the function

x(t) = X(t)
(
c0 +

∫ t

0

X(s)−1f(s)ds
)

(3.12)

is a solution to (3.10). Moreover, any solution to (3.10) is of the form (3.12) for some c0 ∈ Rd.

Proof. The first statement is already proved. To prove the second statement, let x2 be a
solution to (3.10). Since

d

dt
(x2 − x(t)) = A(x2 − x),

where x is given by (3.12), we get x2 − x = Xc1 for some c1 ∈ Rd and the claim follows. �

Formula (3.12) is called Duhamel’s formula.

3.4. Second order linear equations

Let d = 1 and consider the following second order ODE:

d2x

dt2
= f(t, x,

dx

dt
),

for a given scalar function f . The above ODE is linear if f is linear in x and dx/dt, namely,

f(t, x,
dx

dt
) = g(t)− p(t)dx

dt
− q(t)x,

where g, p, q are (scalar) functions of t but do not depend on x. Then the ODE becomes

d2x

dt2
+ p(t)

dx

dt
+ q(t)x = g(t). (3.13)

The initial value problem consists of (3.13) together with a pair of initial conditions

x(t0) = x0,
dx

dt
(t0) = x′0, x0, x

′
0 ∈ Rd. (3.14)

The second order ODE (3.13) is called homogeneous if g = 0 and inhomogeneous otherwise.
If p(t) and q(t) are constant, then (3.13) is called linear ODE with constant coefficients.

Suppose that

p, q ∈ C0([0, T ]). (3.15)

If the condition (3.15) fails, then the points at which either p or q fail to be continuous are called
singular points. The following are important examples:

Bessel’s equation: p(t) =
1

t
, q(t) = 1− ν

t2
, (at t = 0);

Legendre’s equation: p(t) =
2t

1− t2
, q(t) =

n(n+ 1)

1− t2
, n ∈ N (at t = ±1).

Theorem 3.16. Suppose that p, q, g ∈ C0([0, T ],Rd). Then there exists a unique solution x(t)
on [0, T ] to (3.13) with the initial conditions (3.14).

3.4.1. Structure of the general solution. Here we discuss the structure of the general
solution to the second order ODE (3.13).

First we consider the homogeneous case. We need the following results regarding the Wronskian
determinant.

Definition 3.17. Two functions x1 and x2 on [0, T ] are called linearly independent if
neither of them is a multiple of the other. Otherwise, they are called linearly dependent.
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Proposition 3.18. Let w be the Wronskian determinant given by

w(t) := x1(t)
dx2

dt
(t)− x2(t)

dx1

dt
(t) = det

(
x1 x2

dx1

dt

dx2

dt

)
.

If w(t) is not zero at some t0 ∈ [0, T ], then x1 and x2 are linearly independent.

Proof. Let us prove that if x1 and x2 are linearly dependent, then w(t) = 0 for all t ∈ [0, T ].
Suppose that x1 and x2 are linearly dependent. Then, with respect to (α1, α2), the following
system: α1x1 + α2x2 = 0,

α1
dx1

dt
+ α2

dx2

dt
= 0,

for all t ∈ [0, T ],

has a non-trivial solution. Therefore,

w(t) = det

(
x1 x2

dx1

dt

dx2

dt

)
= 0, for all t ∈ [0, T ].

This completes the proof. �

Proposition 3.19. If x1 and x2 solve (3.13) on [0, T ] then w(t) is either identically zero or
not equal to zero at any point of [0, T ].

Proof. We have

w′(t) = x1
d2x2

dt2
− x2

d2x1

dt2
.

We also have, by the assumption that x1, x2 solve (3.13), that

d2xi
dt2

= −p(t)dxi
dt
− q(t)xi, i = 1, 2.

So we get

dw

dt
= −p(t)(x1

dx2

dt
− dx1

dt
x2) = −p(t)w(t).

Therefore w(t) = w(t0)e
−

∫ t
t0
p(s)ds

, which is either identically zero or never vanishes depending on
w(t0). �

Now we discuss the structure of the general solution to the homogeneous system.

Theorem 3.20. Suppose that x1 and x2 solve the equation (3.13) with g = 0. Suppose also
that x1 and x2 are linearly independent. Then the general solution is of the form c1x1 + c2x2,
where c1 and c2 are constant coefficients.

Proof. Let x̃ be an arbitrary solution with the initial condition x̃(t0) = x̃0, dx̃/dt(t0) = x̃′0.
Consider the system of equations for (c1, c2){

c1x1(t0) + c2x2(t0) = x̃0,

c1
dx1

dt (t0) + c2
dx2

dt (t0) = x̃′0.

Since x1
dx2

dt − x2
dx1

dt 6= 0 at t = t0, there exists a unique nontrivial solution (c1, c2) = (c̃1, c̃2) to
the above system. Then, by the existence and uniqueness theorem for the initial value problem of
the second order ODE, we conclude that c̃1x1 + c̃2x2 = x̃. �
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3.4.2. Linear n-th order ODE with constant coefficients. Here we discuss the approach
to solving a linear n-th order ODE with constant coefficients. Consider

dnx

dtn
+ an−1

dn−1x

dtn−1
+ . . .+ a1

dx

dt
+ a0x = 0, (3.16)

where ai ∈ R for i = 0, . . . , n− 1.
The general solution has the form

x(t) = c1x1 + . . .+ cnxn,

where {xi}ni=1 is the set of linearly independent solutions (a fundamental set of solutions) and ci
are constant coefficients.

Let w(t) be the Wronskian determinant of the set {x1, . . . , xn}, i.e.,

w(t) = det


x1 x2 . . . xn
dx1

dt
...

...
dn−1

dtn−1x1
dn−1

dtn−1x2 . . . dn−1

dtn−1xn

 .
If w(t0) 6= 0 for some t0, then (x1, . . . , xn) forms a fundamental set of solution.

We solve the equation through the characteristic equation

λn + an−1λ
n−1 + . . .+ a1λ+ a0 = 0. (3.17)

This equation is derived by guessing a solution x(t) has the form eλt with λ ∈ C.

The characteristic equation (3.17) has n complex roots λ̂j counted with their multiplicities lj .
In other words, equation (3.17) can be rewritten in the form

m∏
j=1

(λ− λ̂j)lj = 0

with
∑m
j=1 lj = n. In fact, the general solution x(t) is a linear combination of tkeλ̂jt for 0 ≤ k < lj

and j = 1, . . . ,m. In particular, if m = n, then x(t) is a linear combination of eλ̂jt.

Theorem 3.21. Let λ̂j , 1 ≤ j ≤ m, be the zeros of the characteristic polynomial (3.17) asso-
ciated with (3.16) and let lj be the corresponding multiplicities. Then the functions

xj,k(t) = tkeλ̂jt, 0 ≤ k < lj , 1 ≤ j ≤ m, (3.18)

are n linearly independent solutions of (3.16). In particular, any other solution can be written as
a linear combination of these solutions.

Remark 3.22. Let y = (x, dx/dt, . . . , dn−1x/dtn−1)>. Then (3.16) can be rewritten as

dy

dt
= Ay with A :=


0 1 0 0

0 0
. . . 0

0 0 0 1
−a0 −a1 . . . −an−1

 .

The characteristic polynomial of A, P (λ) := det(A − λI), is given by P (λ) =
∏m
j=1(λ − λ̂j)lj .

The algebraic multiplicity of the eigenvalue λ̂j of A is lj. If A has a basis of eigenvectors, there
will only be in y(t) terms of the form eλjt. In general, let J be the Jordan bloc form of A. Then
etA = C−1etJC for some invertible matrix C, where

etJ =

e
tJ1 0

. . .

0 etJk

 ,
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and

etJi = et(λ̂iI+Ni) = etλ̂i
(
I + tNi + . . .+

tli−1

(li − 1)!
N li−1
i

)
.

Therefore, as stated in Theorem 3.21, in general the solution with be the sum of terms of the form

tkeλ̂jt, k < lj.

3.4.3. Reduction of order. Here we discuss a method for finding a second solution to the
homogeneous second order ODE when a first solution is known by reducing the order.

Suppose that x1 a solution of (3.13). Let

x(t) = v(t)x1(t).

Then
dx

dt
(t) =

dv

dt
x1 + v

dx1

dt
and

d2x

dt2
(t) =

d2v

dt2
x1 + 2

dv

dt

dx1

dt
+ v

d2x1

dt2
.

So, we get

d2v

dt2
+ (p+ 2

(dx1/dt)

x1
)
dv

dt
= 0. (3.19)

By letting u = dv/dt, the equation above can be rewritten as a first order ODE

du

dt
+ (p+ 2

(dx1/dt)

x1
)u = 0.

Therefore,

u(t) = ce−
∫ t(p+2

(dx1/dt)
x1

)ds =
c

(x1(t))2
e−

∫ t p(s)ds. (3.20)

Since v =
∫ t
u(s)ds, we get

x(t) = x1(t)

∫ t

u(s)ds. (3.21)

In conclusion, if one solution to (3.13) is known, then a second solution can be found and it is
expressed by (3.21), where u is given by (3.20).

Example 3.23. Consider the differential equation

d2x

dt2
− 2t

dx

dt
− 2x = 0, (3.22)

and observe that x1(t) = et
2

is a solution. Hence we can set x(t) = et
2

v(t). Then from (3.19), it
follows that

d2v

dt2
+ 2t

dv

dt
= 0. (3.23)

The solution of (3.23) is given by

dv

dt
= e−t

2

,

implying that

v(t) =

∫ t

0

e−s
2

ds =

√
π

2
erf(t),

where erf is the Gauss error function. Hence a second solution to (3.22) is given by

x2(t) = et
2

erf(t).
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3.5. Linearization and stability for autonomous systems

3.5.1. Linear systems. Let A ∈ Md(R) be independent of t. Consider the following linear
system of ODEs: 

dx

dt
= Ax(t), t ∈ [0,+∞[,

x(0) = x0 ∈ Rd.
(3.24)

By Lemma 3.3, there exists C ∈ GLd(C) such that

C−1AC = D +N,

where D is diagonal, N is nilpotent, and ND = DN . Let λj , j = 1, . . . , J be the (distinct)
eigenvalues of A. Let lj be the (algebraic) multiplicity of λj and denote by Ej = ker(A−λjI)lj the
characteristic subspace associated with λj (called also generalized eigenspace). We have ⊕Ej = Cd.
Moreover, each Ej is invariant under A.

The system (3.24) is said to be stable if there exists a positive constant C0 such that

|x(t)| ≤ C0|x0| for all t ∈ [0,+∞[. (3.25)

Lemma 3.24. The system (3.24) is stable if and only if <λj < 0 or <λj = 0 and N |Ej = 0 for
j = 1, . . . , J .

Proof. Let x̃(t) = C−1x(t) and x̃0 = C−1x0. By Lemma 3.5,

x̃(t) = etD+tN x̃0, t ∈ [0,+∞[. (3.26)

Since DN = ND, (3.26) yields

x̃(t) =
( d−1∑
i=0

(tN)i

i!

)
etDx̃0, t ∈ [0,+∞[. (3.27)

If x̃0 ∈ Ej , then

x̃(t) = etλj
( d−1∑
i=0

(tN)i

i!

)
x̃0, t ∈ [0,+∞[. (3.28)

Therefore, x(t) satisfies (3.25) for some positive constant C0 if and only if <λj < 0 or <λj = 0 and
N |Ej = 0. �

3.5.2. Nonlinear systems. Consider the autonomous system
dx

dt
= f(x),

x(0) = x0 ∈ Rd,
(3.29)

where f is C1. Suppose that x∗ is an equilibrium point for (3.29), i.e., f(x∗) = 0.

Theorem 3.25 (Local stability). Suppose that all the eigenvalues λ of the Jacobian of f at
x∗, f ′(x∗), are with negative real parts. Then, there exists δ > 0 such that if |x0 − x∗| ≤ δ, then
|x(t)− x∗| → 0 as t→ +∞.

Proof. Let A = f ′(x∗) and consider the linearized system
dy(t)

dt
= Ay(t), t ≥ 0,

y(0) = x0 − x∗,
(3.30)

which, in view of (3.3), has the explicit solution y(t) = etA(x0−x∗) for t ≥ 0. Suppose that <λ < 0
for any eigenvalue λ of f ′(x∗). From (3.27), it follows that there exists r > 0 such that

|etAz| ≤ C0e
−rt|z| for all z ∈ Rd,

where the constant C0 depends only on f .
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Now, rewrite (3.29) as a small perturbation of the linearized system
dx

dt
= A(x− x∗) + g(x),

x(0) = x∗,
(3.31)

where
g(x) = |x− x∗|ε(x), with ε ∈ C0 and ε(x∗) = 0. (3.32)

Observe that there exists δ0 > 0 such that for all δ ∈]0, δ0[,

sup{|g(x)| : |x− x∗| ≤ δ} < rδ

C0
. (3.33)

To conclude it suffices to prove that if |x0 − x∗| < min(δ, δ/C0), then

|x(t)− x∗| ≤ δ for all t ≥ 0.

From (3.31), it follows that

x(t)− x∗ = etA(x0 − x∗) +

∫ t

0

e(t−s)Ag(x(s)) ds,

and hence, (3.32) yields

|x(t)− x∗| ≤ e−rt
(
C0|x0 − x∗|+

∫ t

0

e−r(t−s)C0|g(x(s))| ds
)

≤ e−rt
(
C0|x0 − x∗|+ (1− e−rt)C0

r
sup{|g(x(s)| : 0 ≤ s ≤ t}

)
.

Thus, for all t ≥ 0,

|x(t)− x∗| ≤ max

(
C0|x0 − x∗|,

C0

r
sup{|g(x(s)| : 0 ≤ s ≤ t}

)
.

Introduce
T := inf{t > 0 : |x(t)− x∗| ≥ δ}.

If we assume that T is finite, we would obtain

|x(t)− x∗| ≤ δ for all t ∈ [0, T ], |x(T )− x∗| = δ.

In view of (3.32), we arrive at a contradiction by using (3.33). �

Definition 3.26. A function V ∈ C1(Rd,R) is said to be a Lyapunov function for (3.29) if

V (x∗) < V (x) for any x 6= x∗, (3.34)

and
f(x) · V ′(x) ≤ 0 for any x ∈ Rd. (3.35)

Example 3.27. (i) Consider the system
dx1

dt
= x2,

dx2

dt
= −2x1 − x2.

(3.36)

Then x∗ = (0, 0) is an equilibrium point and

V (x) = x2
1 +

1

2
x2

2

is a Lyapunov function for (3.36).
(ii) For the gradient systems introduced in Subsection 1.3.4, there is a natural candidate for

a Lyapunov function. Suppose that f(x) = −∇Φ(x). Suppose that the potential Φ is
smooth and there exists x∗ such that Φ(x∗) < Φ(x) for any x 6= x∗. Then V = Φ is a
Lyapunov function for (3.29).
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Theorem 3.28. Suppose that there exists a Lyapunov function V . Then, for any ε > 0, there
exists δ > 0, such that

sup
t≥0
|x(t)− x∗| ≤ ε,

provided that |x0 − x∗| ≤ δ.

Proof. Condition (3.34) on V implies that for fixed ε > 0, there exists γ > 0 (sufficiently
small) such that {

x : |x− x∗| ≤ 2ε, V (x) ≤ V (x∗) + γ
}
⊂
{
x : |x− x∗| ≤ ε

}
.

Choose δ (0 < δ < ε) such that{
x : |x− x∗| ≤ δ

}
⊂
{
x : |x− x∗| ≤ 2ε, V (x) ≤ V (x∗) + γ

}
.

By using the fundamental property of a Lyapunov function V

d

dt
V (x(t)) = f(x(t)) · V ′(x(t)) ≤ 0, t ≥ 0, (3.37)

we obtain that
V (x(t)) ≤ V (x0) ≤ V (x∗) + γ if |x0 − x∗| ≤ δ.

In fact, we have
|x(s)− x∗| ≤ 2ε for all s ≥ 0,

since otherwise, there would exist t > 0 such that |x(t)− x∗| = 2ε. From V (x(t)) ≤ V (x∗) + γ we
would arrive at a contradiction. �

Theorem 3.29 (Global stability). Suppose that there exists V ∈ C1(Rd,R) satisfying (3.34)
such that

f(x) · V ′(x) < 0 for any x 6= x∗, (3.38)

and the set {x : V (x) ≤ V (x0)} is bounded. Then the solution x(t) of (3.29) converges to x∗ as
t→ +∞.

Proof. As in the proof of Theorem 3.28, we have V (x(t)) ≤ V (x0) and thus {x(t) : t ≥ 0} is
bounded. More precisely, (3.37) yields∫ +∞

0

∣∣f(x(t)) · V ′(x(t))
∣∣ dt =

∫ +∞

0

−f(x(t)) · V ′(x(t)) dt ≤ V (x0)− V ∗,

where V ∗ := limt→+∞ V (x(t)). Note that V ∗ > −∞ since (x(t))t≥0 is bounded.
Therefore, we can choose (tn)n∈N such that x(tn)→ x̃ and f(x(tn))·V ′(x(tn))→ 0 as n→ +∞.

Hence,
f(x̃) · V ′(x̃) = 0,

which, by (3.38), gives x̃ = x∗. �

Example 3.30. Consider the equation dx/dt = f(x) with the initial condition x(0) = x0,
where f(0) = 0 and x> · f(x) < 0 if x 6= 0. Then x∗ = 0 is the unique equilibrium point. Let
V (x) := |x|2. We have V (x) > V (0) for x 6= 0 and dV/dt = 2x> · (dx/dt) = 2x> · f(x) < 0.
Moreover, {x : V (x) ≤ V (x0)} is bounded since V (x) → +∞ if |x| → +∞. Therefore, it follows
from Theorem 3.29 that limt→+∞ x(t) = 0.

Problem 3.31 (Laplace transform). (i) Prove that if A ∈Md(R), then

etA − I =

∫ t

0

AesA ds.

(ii) Prove that if all eigenvalues of A have negative real parts, then

−A−1 =

∫ +∞

0

esA ds.
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(iii) Prove that if s ∈ R is sufficiently large, then

(sA− I)−1 =

∫ +∞

0

es(A−tI) ds,

that is, the Laplace transform of etA is (sI −A)−1.

Problem 3.32. Let A ∈Md(R).

(i) Apply the Jacobi formula

d

dt
detB(t) = (detB(t)) tr(B(t)−1 dB

dt
(t)) (3.39)

for B(t) = etA to prove that

det eA = etrA.

(ii) Prove that a vector u is an eigenvector of A corresponding to the eigenvalue α if and only
if u is an eigenvector of eA corresponding to the eigenvalue eα.

(iii) Prove that if detA(t) 6= 0, then

d

dt
A−1(t) = −A−1(t)

dA

dt
(t)A−1(t).

(iv) Prove that
det(I + εA+ o(ε)) = 1 + εtrA+ o(ε),

where o(ε) (Landau symbol) collects terms which vanish faster than ε as ε→ 0.

Problem 3.33 (Reduction of order). Use reduction of order to find the general solution of
the following equations:

(i)

t
d2x

dt2
− 2(t+ 1)

dx

dt
+ (t+ 2)x = 0, x1(t) = et.

(ii)

t2
d2x

dt2
− 3t

dx

dt
+ 4x = 0, x1(t) = t2.

Problem 3.34. (i) Verify that the second-order equation

d2x

dt2
+ (1− t2)x = 0, (3.40)

can be factorized as

(
d

dt
− t)( d

dt
+ t)x = 0. (3.41)

(ii) By solving two first-order problems, find the solution of (3.40).

Problem 3.35. Let A ∈ Md(R) be independent of t. Consider the linear system of ODEs
(3.24).

(i) Assume that there exist two positive definite matrices P and Q such that

A>P + PA = −Q. (3.42)

Prove that V (x) := x>Px is a Lyapunov function for (3.24).
(ii) Define

r := min
x 6=0

x>Qx

x>Px
.

Prove that V (x(t)) ≤ e−rtV (x0), where x(t) is the solution of (3.24).
(iii) Assume that every eigenvalue of A has a negative real part. Prove that given Q, the

solution P to (3.42) can be written as

P =

∫ +∞

0

etA
>
QetA dt.
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Problem 3.36 (Convergence of the gradient algorithm for finding a local minimum
of a function). Let f : Rd → R and assume that x∗ is a local minimum, i.e., f(x∗) < f(x) for x
close enough but not equal to x∗. Assume that f is continuously differentiable and let x(t) be the
solution to 

dx

dt
= −∇f(x), t ∈ [0,+∞[,

x(0) = x0 ∈ Rd.
(i) Prove that if x0 is close to x∗ then limt→+∞ x(t) = x∗.

(ii) Let f(x) = 1
2x
>Qx, where Q is symmetric, positive definite. Show directly that x(t)

converges to zero (= x∗).



CHAPTER 4

Numerical solution of ordinary differential equations

4.1. Introduction

This chapter is concerned with the numerical solution of initial value problems for systems of
ordinary differential equations. Since there is no hope of solving the vast majority of differential
equations in explicit and analytic form, the design of suitable numerical schemes for accurately
approximating solutions is essential. Explicit solutions, when they are known, can also be used as
test cases for tracking the reliability and accuracy of a chosen numerical scheme. In this chapter,
we survey the most basic numerical methods for solving initial value problems. It goes without
saying that some equations are more difficult to accurately approximate than others, and a variety
of more specialized techniques are employed when confronted with a recalcitrant system. However,
all of the more advanced developments build on the basic schemes and ideas laid out in this chapter.

4.2. The general explicit one-step method

4.2.1. Consistency, stability and convergence. Consider the initial value problem
dx

dt
= f(t, x), t ∈ [0, T ],

x(0) = x0, x0 ∈ R,
(4.1)

where f ∈ C0([0, t]× R) satisfies the Lipschitz condition (2.2).
Starting at the initial time t = 0, we introduce successive discretization points

t0 = 0 < t1 < t2 < . . . ,

continuing on until we reach the final time T . To keep the analysis as simple as possible, we use a
uniform step size, and so

∆t := tk+1 − tk > 0, (4.2)

does not dependent on k and is assumed to be relatively small, with tk = k∆t. We also suppose
that K = T/(∆t) is an integer.

A general explicit one-step method may be written in the form:

xk+1 = xk + ∆tΦ(tk, x
k,∆t), (4.3)

for some continuous function Φ(t, x, h). In (4.3), taking in succession k = 0, 1, . . . ,K − 1, one-
step at a time, the approximate values xk of x at tk can be easily obtained. Scheme (4.3) is called
explicit since xk+1 is obtained from xk. xk+1 appears only on the left-hand side of (4.3).

We define the truncation error of the numerical scheme (4.3) by

Tk(∆t) =
x(tk+1)− x(tk)

∆t
− Φ(tk, x(tk),∆t). (4.4)

As ∆t→ 0, k → +∞, k∆t = t,

Tk(∆t)→ dx

dt
− Φ(t, x, 0).

Definition 4.1 (Consistency). The numerical scheme (4.3) is consistent with (4.1) if

Φ(t, x, 0) = f(t, x) for all t ∈ [0, T ] and x ∈ R.

41
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Definition 4.2 (Stability). The numerical scheme (4.3) for solving (4.1) is stable if Φ is
Lipschitz continuous in x, i.e., there exist positive constants CΦ and h0 such that

|Φ(t, x, h)− Φ(t, y, h)| ≤ CΦ|x− y|, t ∈ [0, T ], h ∈ [0, h0], x, y ∈ R. (4.5)

Define global error the of the numerical scheme (4.3) by

ek = xk − x(tk). (4.6)

Definition 4.3 (Convergence). The numerical scheme (4.3) for solving (4.1) is convergent
if

|ek| → 0 as ∆t→ 0, k → +∞, k∆t = t ∈ [0, T ].

Theorem 4.4 (Dahlquist-Lax equivalence theorem). The numerical scheme (4.3) is convergent
if and only if it is consistent and stable.

Proof. From (4.1), it follows that

x(tk+1)− x(tk) =

∫ tk+1

tk

f(s, x(s)) ds,

which gives

x(tk+1)− x(tk) = (∆t)f(tk, x(tk)) +

∫ tk+1

tk

[
f(s, x(s))− f(tk, x(tk))

]
ds.

Therefore,∣∣∣∣x(tk+1)− x(tk)− (∆t)f(tk, x(tk))

∣∣∣∣ =

∣∣∣∣ ∫ tk+1

tk

[
f(s, x(s))− f(tk, x(tk))

]
ds

∣∣∣∣ ≤ (∆t) ω1(∆t), (4.7)

where

ω1(∆t) := sup
{
|f(t, x(t))− f(s, x(s))|, 0 ≤ s, t ≤ T, |t− s| ≤ ∆t

}
. (4.8)

Note that ω1(∆t)→ 0 as ∆t→ 0. Moreover, if f is Lipschitz in t, then ω1(∆t) = O(∆t).
From (4.3) and

ek+1 − ek = xk+1 − xk − (x(tk+1)− x(tk)),

we obtain

ek+1 − ek = ∆tΦ(tk, x
k,∆t)− (x(tk+1)− x(tk)),

or equivalently,

ek+1 − ek = ∆t
[
Φ(tk, x

k,∆t)− f(tk, x(tk))
]
−
[
x(tk+1)− x(tk)−∆t f(tk, x(tk))

]
.

Write
ek+1 − ek = ∆t

[
Φ(tk, x

k,∆t)− Φ(tk, x(tk),∆t) + Φ(tk, x(tk),∆t)

−f(tk, x(tk))
]
−
[
x(tk+1)− x(tk)−∆t f(tk, x(tk))

]
.

(4.9)

Let

ω2(∆t) := sup
{
|Φ(t, x, h)− f(t, x)|, t ∈ [0, T ], x ∈ R, 0 < h ≤ (∆t)

}
. (4.10)

Since the numerical scheme is consistent,∣∣∣∣Φ(tk, x(tk),∆t)− f(tk, x(tk))

∣∣∣∣ ≤ ω2(∆t)→ 0 as ∆t→ 0. (4.11)

On the other hand, from the stability condition (4.5), it follows that∣∣∣∣Φ(tk, x
k,∆t)− Φ(tk, x(tk),∆t)

∣∣∣∣ ≤ CΦ|ek|. (4.12)

Combining (4.7), (4.9), (4.11), and (4.12) yields

|ek+1| ≤
(
1 + CΦ∆t

)
|ek|+ ∆tω3(∆t), 0 ≤ k ≤ K − 1, (4.13)
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where K = T/(∆t) and ω3(∆t) := ω1(∆t)+ω2(∆t)→ 0 as ∆t→ 0. By induction, we deduce from
(4.13) that

|ek+1| ≤ (1 + CΦ∆t)k|e0|+ (∆t) ω3(∆t)

k−1∑
l=0

(1 + CΦ∆t)l, 0 ≤ k ≤ K. (4.14)

Estimate (4.14) together with

k−1∑
l=0

(1 + CΦ∆t)l =
(1 + CΦ∆t)k − 1

CΦ∆t
,

and

(1 + CΦ∆t)K ≤ (1 + CΦ
T

K
)K ≤ eCΦT ,

yields

|ek| ≤ eCΦT |e0|+
eCΦT − 1

CΦ
ω3(∆t). (4.15)

Therefore, if e0 = 0, then as ∆t→ 0, k → +∞ such that k∆t = t ∈ [0, T ]

lim
k→+∞

|ek| = 0,

which shows that the scheme is in fact convergent. �

Definition 4.5. An explicit one-step method is said to be of order p if there exist positive
constants h0 and C such that

|Tk(∆t)| ≤ C(∆t)p, 0 < ∆t ≤ h0, k = 0, . . . ,K − 1,

where the truncation error Tk(∆t) is defined by (4.4).

If the explicit one-step method is stable, then the global error is bounded by the truncation
error.

Proposition 4.6. Consider the explicit one-step scheme (4.3), where Φ satisfies the stability
condition (4.5). Suppose that e0 = 0. Then

|ek+1| ≤
(eCΦT − 1)

CΦ
max

0≤l≤k
|Tl(∆t)| for k = 0, . . . ,K − 1, (4.16)

where the truncation error Tl and the global error ek are defined by (4.4) and (4.6), respectively.

Proof. From (4.9), we have

ek+1 − ek = −(∆t)Tk(∆t) + (∆t)

[
Φ(tk, x

k,∆t)− Φ(tk, x(tk),∆t)

]
,

so we get

|ek+1| ≤ (1 + CΦ(∆t))|ek|+ (∆t)|Tk(∆t)|
≤ (1 + CΦ(∆t))|ek|+ (∆t) max

0≤l≤k
|Tl(∆t)|.

In exactly the same manner as in the proof of Theorem 4.4, we obtain estimate (4.16). �
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4.2.2. Explicit Euler’s method. Let Φ(t, x, h) = f(t, x). The numerical method (4.3)
reduces to

xk+1 = xk + (∆t)f(t, xk). (4.17)

The numerical method (4.17) is called the explicit Euler scheme.

Theorem 4.7. Consider the initial value problem (4.1). Suppose that f satisfies the Lipschitz
condition (2.2) and f is Lipschitz with respect to t. Then the explicit Euler scheme (4.17) is
convergent and the global error ek is of order ∆t. If f ∈ C1, then (4.17) is of order one.

Proof. Since f satisfies the Lipschitz condition (2.2) then the numerical scheme with Φ(t, x, h) =
f(t, x) is stable. Moreover, it is consistent since Φ(t, x, 0) = f(t, x) for all t ∈ [0, T ] and x ∈ R.
Therefore, by Theorem 4.4, (4.17) is convergent. Furthermore, since f is Lipschitz in t, ω1(∆t) =
O(∆t), where ω1 is defined by (4.8). On the other hand, ω2(∆t) = 0, and hence ω3(∆t) = O(∆t),
where ω2 is defined by (4.10) and ω3 = ω1 + ω2. Then, from (4.15), we have |ek| = O(∆t) for
1 ≤ k ≤ K. Now if f ∈ C1, then from Theorem 2.20 x ∈ C2. By using the mean-value theorem, we
have

Tk(∆t) =
1

∆t

(
x(tk+1)− x(tk)

)
− f(tk, x(tk))

=
1

∆t

(
x(tk) + (∆t)

dx

dt
(tk) +

(∆t)2

2

d2x

dt2
(τ)− x(tk)

)
− f(tk, x(tk))

=
∆t

2

d2x

dt2
(τ),

(4.18)

for some τ ∈ [tk, tk+1], which shows that (4.17) is of first order. �

Remark 4.8 (Round off error effects). Theorem 4.7 is true provided the arithmetic in
calculating the numerical approximation is perfect, that is, when performing the operations required
by (4.17) no errors occur. However computers always round off real numbers. In numerical methods
rounding errors become important when the step size ∆t is comparable with the precision of the
computations. Thus, when running Euler’s method (4.17), the best we can do is to compute the
solution of the perturbed scheme:

x̃k+1 = x̃k + ∆tf(tk, x̃
k) + (∆t)µk + ρk,

where µk and ρk represent the errors in f and in the assembling, respectively. Assume that |µk| ≤ µ
and |ρk| ≤ ρ for all k and f ∈ C1. Defining ẽk = x(tk)− x̃k, we have

|ẽk+1| ≤ (1 + Cf∆t)ẽk + (∆t)µ+ ρ,

and hence

|ẽk| ≤ eCfT |ẽ0|+ (∆t)eCfT
∫ T

0

|d
2x

dt2
|(s) ds+ µ(∆t)

eCfT

Cf
+ ρ

T

∆t
eCfT ,

where Cf is the Lipschitz constant for f .
Introduce

ϕ(∆t) =
µeCfT

Cf
∆t+

TρeCfT

∆t
.

One can see that ϕ attains its minimum at
√
ρCfT/µ and diverges for ∆t→ 0. From a practical

point of view, it is better to take time steps that are larger than
√
ρCfT/µ.

Remark 4.9 (Control of the time step). In (4.17) the time step is uniform and is chosen
such that the global error |ek| is smaller than a given tolerance. In view of (4.18) this supposes a
good knowledge of the exact solution. An alternative method consists in computing the numerical
solution for an arbitrary ∆t and then for 2∆t. If the discrepancy between the two numerical
solutions is smaller than the tolerance, we keep ∆t. If not, we restart the calculations with a
smaller step size, say ∆t/2, until we reach the target.
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4.2.3. High-order methods. In general, the order of a numerical solution method governs
both the accuracy of its approximations and the speed at which they converge to the true solution
as the step size ∆t → 0. Although the explicit Euler method is simple and easy to implement, it
is only a first order scheme as shown in Theorem 4.7, and therefore of limited use. So, the goal is
to devise simple numerical methods that enjoy a higher order of accuracy. The higher its order,
the more accurate the numerical scheme, and hence the larger the step size that can be used to
produce the solution to a desired accuracy. However, this should be balanced with the fact that
higher order methods inevitably require more computational effort at each step.

4.2.3.1. Taylor methods. The explicit Euler scheme is based on a first order Taylor approxi-
mation to the solution. The Taylor expansion of the solution x(t) at the discretization points tk+1

has the form

x(tk+1) = x(tk + ∆t) = x(tk) + (∆t)
dx

dt
(tk) +

(∆t)2

2

d2x

dt2
(tk) +

(∆t)3

6

d3x

dt3
(tk) + . . . . (4.19)

We can evaluate the first derivative term by using the differential equation

dx

dt
= f(t, x). (4.20)

The second derivative can be found by differentiating the equation with respect to t. Invoking the
chain rule,

d2x

dt2
=

d

dt
f(t, x) =

∂f

∂t
(t, x) +

∂f

∂x
(t, x)

dx

dt
. (4.21)

Substituting (4.20) and (4.21) into (4.19) and truncating at order (∆t)2 leads to the second order
Taylor method

xk+1 = xk + (∆t)f(tk, x
k) +

(∆t)2

2

(
∂f

∂t
(tk, x

k) +
∂f

∂x
(tk, x

k)f(tk, x
k)

)
, (4.22)

in which we have replaced the solution value x(tk) by its computed approximation xk. The resulting
method is of second order.

Proposition 4.10. Suppose that f ∈ C2. Then (4.22) is of second order.

Proof. If f is of class C2, then by Theorem 2.20 x ∈ C3. Therefore, by using the Taylor
expansion (4.19), we obtain that the truncation error Tk is given by

Tk(∆t) =
(∆t)2

6

d3x

dt3
(τ),

for some τ ∈ [tk, tk+1] and so, (4.22) is of second order. �

Higher order Taylor methods are obtained by including further terms in the expansion (4.19).
Whereas higher order Taylor methods are easy to motivate, they are rarely used in practice. There
are two principal difficulties:

(i) Owing to their dependence upon the partial derivatives of f , f needs to be smooth;
(ii) Efficient evaluation of the terms in the Taylor approximation and avoidance of round off

errors are significant concerns.

4.2.3.2. Integral equation method. In order to design high-order numerical schemes that avoid
the complications inherent in a direct Taylor expansion, we replace the differential equation by
an equivalent integral equation. The solution x(t) of (4.1) coincides with the solution to the
integral equation

x(t) = x0 +

∫ t

0

f(s, x(s)) ds, t ∈ [0, T ]. (4.23)

Starting at the discretization point tk instead of 0, and integrating until time t = tk+1 gives an
expression

x(tk+1) = x(tk) +

∫ tk+1

tk

f(s, x(s)) ds, (4.24)
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that implicitly computes the value of the solution at the subsequent discretization point. Compar-
ing formula (4.24) with the explicit Euler method

xk+1 = xk + (∆t)f(tk, x
k),

where ∆t is defined by (4.2) and assuming for the moment that xk = x(tk) is exact, we see that
we are merely approximating the integral by∫ tk+1

tk

f(s, x(s)) ds ≈ (∆t)f(tk, x(tk)), (4.25)

which is the left endpoint rule for numerical integration–that approximates the integral of
f(t, x(t)) between tk ≤ t ≤ tk+1 by the area of the rectangle whose height f(tk, x(tk)) is pre-
scribed by the left endpoint of the curve t 7→ f(t, x(t)). Approximation (4.25) is not an especially
accurate method of numerical integration. Better methods include the Trapezoid rule, which
approximates the integral of the function f(t, x(t)) between tk ≤ t ≤ tk+1 by the area of the trape-
zoid obtained by connecting the points f(tk, x(tk)) and f(tk+1, x(tk+1)) of the curve t 7→ f(t, x(t))
by a straight line.

We recall the following basic numerical integration formulas for continuous functions.

(i) Trapezoidal rule: ∫ tk+1

tk

g(s) ds ≈ ∆t

2

(
g(tk+1) + g(tk)

)
; (4.26)

(ii) Simpson’s rule:∫ tk+1

tk

g(s) ds ≈ ∆t

6

(
g(tk+1) + 4g(

tk + tk+1

2
) + g(tk)

)
; (4.27)

(iii) The Trapezoidal rule is exact for polynomials of order one, while the Simpson’s rule is
exact for polynomials of second order.

Replacing (4.25) by the more accurate Trapezoidal approximation∫ tk+1

tk

f(s, x(s)) ds ≈ (∆t)

2

[
f(tk, x(tk)) + f(tk+1, x(tk+1))

]
, (4.28)

and substituting (4.28) into the integral equation (4.24) leads to the Trapezoidal scheme

xk+1 = xk +
(∆t)

2

[
f(tk, x

k) + f(tk+1, x
k+1)

]
. (4.29)

The Trapezoidal scheme is an implicit numerical method, since the updated value xk+1 appears
on both sides of the equation, and hence is only defined implicitly. Only for very simple functions
f(t, x) can one expect to solve (4.29) explicitly for xk+1 given tk, x

k, and tk+1.

Proposition 4.11. Suppose that f ∈ C2 and

(∆t)Cf
2

< 1, (4.30)

where Cf is the Lipschitz constant for f in x defined by (2.2). Then the Trapezoidal scheme (4.29)
is convergent and is of second order.

Proof. Let

Φ(t, x,∆t) :=
1

2

[
f(t, x) + f(t+ ∆t, x+ (∆t)Φ(t, x,∆t))

]
.

The scheme (4.29) is clearly consistent. In order to show that it converges, according to Theorem
4.4, we must establish the stability condition (4.5). We have∣∣Φ(t, x,∆t)− Φ(t, y,∆t)

∣∣ ≤ Cf |x− y|+ ∆t

2
Cf
∣∣Φ(t, x,∆t)− Φ(t, y,∆t)

∣∣.
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Hence (
1− (∆t)Cf

2

)∣∣Φ(t, x,∆t)− Φ(t, y,∆t)
∣∣ ≤ Cf |x− y|,

and therefore, (4.5) holds with

CΦ =
Cf

1− (∆t)Cf
2

,

provided that ∆t satisfies (4.30). Now we prove that (4.29) is of second order.
By the mean-value theorem,

Tk(∆t) =
x(tk+1)− x(tk)

∆t
− 1

2

[
f(tk, x(tk)) + f(tk+1, x(tk+1))

]
= − 1

12
(∆t)2 d

3x

dt3
(τ),

(4.31)

for some τ ∈ [tk, tk+1], and therefore (4.29) is of second order, provided that f ∈ C2 (and conse-
quently x ∈ C3). �

An alternative is to replace in (4.29) xk+1 by xk + (∆t)f(tk, x
k). This yields the improved

Euler scheme

xk+1 = xk +
(∆t)

2

[
f(tk, x

k) + f(tk+1,x
k + (∆t)f(tk,x

k))

]
. (4.32)

Proposition 4.12. The numerical scheme (4.32) is convergent and is of second order.

The improved Euler scheme (4.32) performs comparably to the Trapezoidal scheme (4.29), and
significantly better than the Euler scheme (4.17). The improved Euler scheme (4.32) is the simplest
of a large family of so-called predictor-corrector algorithms. In general, one begins by using
a relatively crude method–in this case the explicit Euler method–to predict a first approximation
x̃k+1 to the desired solution value x(tk+1). One then employs a more sophisticated, typically
implicit, method to correct the original prediction, by replacing the required update xk+1 on the
right-hand side of the implicit scheme by a less accurate prediction x̃k+1. The resulting explicit,
corrected value xk+1 will be an improved approximation of the true solution, provided the method
has been designed with due care.

We can design a range of numerical solution schemes by implementing alternative numerical
approximations to the integral equation (4.24). For example, the midpoint rule approximates
the integral of f(t, x(t)) between tk ≤ t ≤ tk+1 by the area of the rectangle whose height is the
value of f at the midpoint t = tk + (∆t)/2∫ tk+1

tk

f(s, x(s)) ds ≈ (∆t)f(tk +
∆t

2
, x(tk +

∆t

2
)). (4.33)

The midpoint rule has the same order of accuracy as the trapezoid rule. Substituting (4.33) into
(4.24) leads to the midpoint scheme

xk+1 = xk + (∆t)f
(
tk +

∆t

2
, xk +

∆t

2
f(tk, x

k)
)
, (4.34)

where we have approximated x(tk + ∆t
2 ) by xk + ∆t

2 f(tk, x
k).

A comparison between the terms in the Taylor expansion (4.19) of x(tk+1) and (4.34) reveals
that the midpoint scheme is also of second order.
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4.3. Example of linear systems

Consider the linear system of ODEs (3.24), where A ∈Md(C) is independent of t.
A one-step numerical scheme for solving (3.24) is said to be stable if there exists a positive

constant C0 such that
|xk+1| ≤ C0|x0| for all k ∈ N. (4.35)

Consider the following schemes for solving (3.1):

(i) Explicit Euler’s scheme

xk+1 = xk + (∆t)Axk; (4.36)

(ii) Implicit Euler’s scheme

xk+1 = xk + (∆t)Axk+1; (4.37)

(iii) Trapezoidal scheme:

xk+1 = xk +
(∆t)

2

[
Axk +Axk+1

]
, (4.38)

where k ∈ N, and x0 = x0.

Proposition 4.13. Suppose that <λj < 0 for all j. The following results hold:

(i) The explicit Euler scheme (4.36) is stable for ∆t small enough;
(ii) The implicit Euler scheme is unconditionally stable;

(iii) The Trapezoidal scheme (4.38) is unconditionally stable.

Proof. Consider the explicit Euler scheme (4.36). By a change of basis, we have

x̃k+1 = (I + ∆t(D +N))kx̃0,

where x̃k = Cxk. If x̃0 ∈ Ej , then

x̃k =

min{k,d}∑
l=0

Clk(1 + ∆tλj)
k−l(∆t)lN lx̃0,

where Clk is the binomial coefficient.
If |1 + (∆t)λj | < 1, then x̃k is bounded. If |1 + (∆t)λj | > 1, then one can find x̃0 such that

|x̃k| → +∞ (exponentially) as k → +∞. If |1 + (∆t)λj | = 1 and N 6= 0, then for all x̃0 such that
Nx̃0 6= 0, N2x̃0 = 0, it can be seen that

x̃k = (1 + (∆t)λj)
kx̃0 + (1 + (∆t)λj)

k−1k∆tNx̃0

goes to infinity as k → +∞.
The stability condition |1 + (∆t)λj | < 1 is equivalent to

∆t < −2
<λj
|λj |2

,

and therefore holds for ∆t small enough.
For the implicit Euler scheme (4.36), we have

x̃k+1 = (I −∆t(D +N))−kx̃0.

Note that all the eigenvalues of the matrix (I−∆t(D+N))−1 are of modulus strictly smaller than
1. Therefore, the implicit Euler scheme (4.36) is unconditionally stable.

For the Trapezoidal scheme, we have

x̃k+1 = (I − (∆t)

2
(D +N))−k(I +

(∆t)

2
(D +N))kx̃0.

Therefore, the stability condition is

|1 +
(∆t)

2
λj | < |1−

(∆t)

2
λj |,
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which holds for all ∆t > 0 since <λj < 0.
�

Note that while the explicit and implicit Euler schemes are of order one, the Trapezoidal
scheme is of order two.

Remark 4.14. If <λj = 0 for some j, then the explicit Euler scheme may be unstable for any
∆t > 0. Consider the second order linear equation

d2x

dt2
+ x = 0, t ∈ [0,+∞[,

x(0) = x0,
dx

dt
(0) = x′0, x0, x

′
0 ∈ Rd.

(4.39)

We first reduce (4.39) to the first order linear equation
dX

dt
= AX, t ∈ [0,+∞[,

X(0) = (x0, x
′
0)> ∈ R2d,

(4.40)

where X = (x, dx/dt)> and A =

(
0 −1

1 0

)
. The eigenvalues of A are ±i. Consequently, the

explicit Euler scheme is unstable since |1±∆ti| > 1 for any ∆t > 0. However, the implicit Euler
scheme is stable since |1±∆ti|−1 < 1.

4.4. Runge-Kutta methods

The Runge-Kutta methods are by far the most popular and powerful general-purpose nu-
merical methods for integrating ordinary differential equations.

The idea behind the Runge-Kutta methods is to evaluate f at carefully chosen values of its
arguments, t and x, in order to create an approximation that is as accurate as a higher-order Taylor
expansion of x(t+∆t) without evaluating derivatives of f . Runge-Kutta schemes are time-stepping
schemes that can be derived by matching multivariable Taylor series expansions of f(t, x)
with the Taylor series expansion of x(t + ∆t). To find the right values of t and x at which to
evaluate f , we need to take a Taylor expansion of f evaluated at these (unknown) values, and then
match the resulting numerical scheme to a Taylor series expansion of x(t+ ∆t) around t. Towards
this, we state a generalization of Taylor’s theorem to functions of two variables.

Theorem 4.15. Let f(t, x) ∈ Cn+1([0, T ]×R). Let (t0, x0) ∈ [0, T ]×R. There exist t0 ≤ τ ≤ t,
x0 ≤ ξ ≤ x, such that

f(t, x) = Pn(t, x) +Rn(t, x),

where Pn(t, x) is the nth Taylor polynomial of f around (t0, x0),

Pn(t, x) = f(t0, x0) +

[
(t− t0)

∂f

∂t
(t0, x0) + (x− x0)

∂f

∂x
(t0, x0)

]
+

[
(t− t0)2

2

∂2f

∂t2
(t0, x0) + (t− t0)(x− x0)

∂2f

∂t∂x
(t0, x0) +

(x− x0)2

2

∂2f

∂x2
(t0, x0)

]
. . .+

[
1

n!

n∑
j=0

Cnj (t− t0)n−j(x− x0)j
∂nf

∂tn−j∂xj
(t0, x0)

]
,

and Rn(t, x) is the remainder term associated with Pn(t, x),

Rn(t, x) =
1

(n+ 1)!

n+1∑
j=0

Cn+1
j (t− t0)n+1−j(x− x0)j

∂n+1f

∂tn+1−j∂xj
(τ, ξ).
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We now illustrate the proposed approach in order to obtain a second-order accurate method,
that is, its local truncation error is O((∆t)2). This involves matching

x+ ∆tf(t, x) +
(∆t)2

2

[∂f
∂t

(t, x) +
∂f

∂x
(t, x)f(t, x)

]
+

(∆t)3

6

d2

dt2
[f(τ, x)]

to

x+ (∆t)f(t+ α1, x+ β1),

where τ ∈ [t, t + ∆t] and α1 and β1 are to be found. After simplifying by removing terms that
already match, we see that we only need to match

f(t, x) +
(∆t)

2

[∂f
∂t

(t, x) +
∂f

∂x
(t, x)f(t, x)

]
+

(∆t)2

6

d2

dt2
[f(t, x)]

with f(t+α1, x+β1) at least up to terms of the order of O(∆t), so that the local truncation error
will be O((∆t)2). Applying the multivariable version of Taylor’s theorem to f , we obtain

f(t+α1, x+β1) = f(t, x)+α1
∂f

∂t
(t, x)+β1

∂f

∂x
(t, x)+

α2
1

2

∂2f

∂t2
(τ, ξ)+α1β1

∂2f

∂t∂x
(τ, ξ)+

β2
1

2

∂2f

∂x2
(τ, ξ),

where t ≤ τ ≤ t+ α1 and x ≤ ξ ≤ x+ β1. Hence comparing terms yields

α1 =
∆t

2
and β1 =

∆t

2
f(t, x).

The resulting numerical scheme is therefore the explicit midpoint method (4.34), which is the
simplest example of a Runge-Kutta method of second order. The improved Euler method
(4.32) is also another often-used Runge-Kutta method.

The most general Runge-Kutta method takes the form

xk+1 = xk + ∆t

m∑
i=1

cif(ti,k, xi,k), (4.41)

where m stands for the number of terms in the method. Each ti,k denotes a point in [tk, tk+1].
The second argument xi,k ≈ x(ti,k) can be viewed as an approximation to the solution at the point
ti,k, and so is computed by a similar but simpler formula of the same type. To construct an nth
order Runge-Kutta method, we need to take at least m ≥ n terms in (4.41).

The best-known Runge-Kutta method is the fourth-order Runge-Kutta method, which
uses four evaluations of f during each step. The method proceeds as follows:

κ1 := f(tk, x
k),

κ2 := f(tk + ∆t
2 , x

k + ∆t
2 κ1),

κ3 := f(tk + ∆t
2 , x

k + ∆t
2 κ2),

κ4 := f(tk+1, x
k + ∆tκ3),

xk+1 = xk +
(∆t)

6
(κ1 + 2κ2 + 2κ3 + κ4).

(4.42)

In (4.42), the values of f at the midpoint in time are given four times as much weight as values at
the endpoints tk and tk+1, which is similar to Simpson’s rule (4.27) from numerical integration.

4.4.1. Construction of Runge-Kutta methods. In this subsection we first construct
Runge-Kutta methods by generalizing collocation methods. Then we discuss their consistency,
stability, and order.
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4.4.1.1. Collocation methods. Let Pm denote the space of real polynomials of degree ≤ m.
Given a set of m distinct quadrature points c1 < c2 < . . . < cm in R, and corresponding data
g1, . . . , gm, there exists a unique polynomial, called the interpolating polynomial, P (t) ∈ Pm−1

satisfying P (ci) = gi, i = 1, . . . ,m.
Define the ith Lagrange interpolating polynomial li(t), i = 1, . . . ,m, for the set of quad-

rature points {cj} by

li(t) :=

m∏
j 6=i,j=1

t− cj
ci − cj

.

The set of Lagrange interpolating polynomials form a basis of Pm−1 and the interpolating polyno-
mial P corresponding to the data {gj} is given by

P (t) :=

m∑
i=1

gili(t). (4.43)

Consider first a smooth function g on [0, 1]. We can approximate the integral of g on [0, 1] by
exactly integrating the Lagrange interpolating polynomial of order m−1 based on m quadrature
points 0 ≤ c1 < c2 < . . . < cm ≤ 1. The data are the values of g at the quadrature points
gi = g(ci), i = 1, . . . ,m.

Define the weights

bi =

∫ 1

0

li(s) ds. (4.44)

The quadrature formula is∫ 1

0

g(s) ds ≈
∫ 1

0

P (s) ds =

m∑
i=1

big(ci),

where P is defined by (4.43).
Now let f be a smooth function on [0, T ] and let tk = k∆t for k = 0, . . . ,K = T/(∆t), be the

discretization points in [0, T ]. The integral
∫ tk+1

tk
f(s) ds can be approximated by∫ tk+1

tk

f(s) ds = (∆t)

∫ 1

0

f(tk + ∆tτ) dτ ≈ (∆t)

m∑
i=1

bif(tk + (∆t)ci). (4.45)

Next let x be a polynomial of degree m satisfying
x(0) = x0,

dx

dt
(ci∆t) = Fi,

(4.46)

where Fi ∈ R, i = 1, . . . ,m.
From the Lagrange interpolation formula (4.43), it follows that for t in the first time-step

interval [0,∆t],

dx

dt
(t) =

m∑
i=1

Fili(
t

∆t
). (4.47)

Integrating (4.47) over the intervals [0, ci∆t] gives

x(ci∆t) = x0 + (∆t)

m∑
j=1

Fj

∫ ci

0

lj(s) ds = x0 + (∆t)

m∑
j=1

aijFj , i = 1, . . . ,m, (4.48)

where

aij :=

∫ ci

0

lj(s) ds. (4.49)
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Integrating (4.47) over [0,∆t] yields

x(∆t) = x0 + (∆t)

m∑
i=1

Fi

∫ 1

0

li(s) ds = x0 + (∆t)

m∑
i=1

biFi, (4.50)

where bi is defined by (4.44).
Writing dx/dt = f(x(t)), we obtain from (4.48) and (4.50) on the first time step interval [0,∆t]

Fi = f(x0 + (∆t)

m∑
j=1

aijFj), i = 1, . . . ,m,

x(∆t) = x0 + (∆t)

m∑
i=1

biFi.

(4.51)

Similarly, we have on [tk, tk+1]
Fi,k = f(x(tk) + (∆t)

m∑
j=1

aijFj,k), i = 1, . . . ,m,

x(tk+1) = x(tk) + (∆t)

m∑
i=1

biFi,k.

(4.52)

In the collocation method (4.52), one first solves the coupled nonlinear system to obtain Fi,k,
i = 1, . . . ,m, and then computes x(tk+1) from x(tk).

Remark 4.16. Since

tl−1 =

m∑
i=1

cl−1
i li(t), t ∈ [0, 1], l = 1, . . . ,m,

we have
m∑
i=1

bic
l−1
i =

1

l
, l = 1, . . . ,m,

and
m∑
j=1

aijc
l−1
j =

cli
l
, i, l = 1, . . . ,m.

4.4.2. Runge-Kutta methods as generalized collocation methods. In (4.52), the co-
efficients bi and aij are defined by certain integrals of the Lagrange interpolating polynomials
associated with a chosen set of quadrature nodes ci, i = 1, . . . ,m.

A natural generalization of collocation methods is obtained by allowing the coefficients ci, bi,
and aij to take arbitrary values, not necessary related to quadrature formulas. In fact, we no
longer assume the ci to be distinct. However, we should assume that

ci =

m∑
j=1

aij , i = 1, . . . ,m. (4.53)

The result is the class of Runge-Kutta methods for solving (4.1), which can be written as
Fi,k = f(ti,k, x

k + (∆t)

m∑
j=1

aijFj,k),

xk+1 = xk + (∆t)

m∑
i=1

biFi,k,

(4.54)
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where ti,k = tk + ci∆t, or equivalently,
xi,k = xk + (∆t)

m∑
j=1

aijf(tj,k, xj,k),

xk+1 = xk + (∆t)

m∑
i=1

bif(ti,k, xi,k).

(4.55)

Let

κj := f(t+ cj∆t, xj), (4.56)

and define the function Φ by 
xi = x+ (∆t)

m∑
j=1

aijκj ,

Φ(t, x,∆t) =

m∑
i=1

bif(t+ ci∆t, xi).

(4.57)

One can see that the scheme (4.55) is a one step method. Moreover, if aij = 0 for j ≥ i, then
(4.55) is explicit.

It is also easy to see that with definition (4.55), explicit Euler’s method and Trapezoidal scheme
are Runge-Kutta methods. For example, explicit Euler’s method (4.17) can be put into the form
(4.55) with m = 1, b1 = 1, a11 = 0. The Trapezoidal scheme (4.29) has m = 2, b1 = b2 = 1/2, a11 =
a12 = 0, a21 = a22 = 1/2. Finally, for the fourth-order Runge-Kutta method (4.42), we have
m = 4, c1 = 0, c2 = c3 = 1/2, c4 = 1, b1 = 1/6, b2 = b3 = 1/3, b4 = 1/6, a21 = a32 = 1/2, a43 = 1,
and all the other aij entries are zero.

4.4.3. Consistency, stability, convergence, and order of Runge-Kutta methods.
From (4.57), the Runge-Kutta scheme is consistent if and only if

m∑
j=1

bj = 1. (4.58)

Let |A| be the matrix defined by (|aij |)mi,j=1. Let the spectral radius ρ(|A|) of the matrix |A|
be defined by

ρ(|A|) := max{|λj |, λj is an eigenvalue of |A|}. (4.59)

The following stability result holds.

Theorem 4.17. Let Cf be the Lipschitz constant for f . Suppose that

(∆t)Cfρ(|A|) < 1. (4.60)

Then the Runge-Kutta method (4.55) for solving (4.1) is stable.

Proof. Let Φ be defined by (4.57). We have

Φ(t, x,∆t)− Φ(t, y,∆t) =

m∑
i=1

bi

[
f(t+ ci∆t, xi)− f(t+ ci∆t, yi)

]
, (4.61)

where

xi = x+ (∆t)

m∑
j=1

aijf(t+ cj∆t, xj), (4.62)

and

yi = y + (∆t)

m∑
j=1

aijf(t+ cj∆t, yj). (4.63)
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Subtracting (4.63) from (4.62) yields

xi − yi = x− y + (∆t)

m∑
j=1

aij

[
f(t+ cj∆t, xj)− f(t+ cj∆t, yj)

]
. (4.64)

Therefore, for i = 1, . . . ,m,

|xi − yi| ≤ |x− y|+ (∆t)Cf

m∑
j=1

|aij ||xj − yj |, (4.65)

where Cf is the Lipschitz constant for f . Let the vectors X and Y be defined by

X =

 |x1 − y1|
...

|xm − ym|

 and Y =

|x− y|...
|x− y|

 .
From (4.65), it follows that

X ≤ Y + (∆t)Cf |A|X, (4.66)

and therefore,
X ≤ (I − (∆t)Cf |A|)−1Y, (4.67)

provided that condition (4.60) holds. Finally, combining (4.61) and (4.67) yields the stability of
the Runge-Kutta scheme (4.55). �

By the Dahlquist-Lax equivalence theorem (Theorem 4.4), it follows that the Runge-Kutta
scheme (4.55) is convergent provided that (4.58) and (4.60) hold.

In order to establish the order of the Runge-Kutta scheme (4.55), we compute the order as
∆t→ 0 of the truncation error

Tk(∆t) =
x(tk+1)− x(tk)

∆t
− Φ(tk, x(tk),∆t),

where Φ is defined by (4.57). We write

Tk(∆t) =
x(tk+1)− x(tk)

∆t
−

m∑
i=1

bif(tk + ci∆t, x(tk) + ∆t

m∑
j=1

aijκj).

Suppose that f is smooth enough. We have

f(tk+ci∆t, x(tk)+∆t

m∑
j=1

aijκj) = f(tk, x(tk))+∆t

[
ci
∂f

∂t
(tk, x(tk))+(

∑
j=1

aijκj)
∂f

∂x
(tk, x(tk))

]
+O((∆t)2).

Suppose that (4.53) holds. Then, from∑
j=1

aijκj = (
∑
j=1

aij)f(tk, x(tk)) = cif(tk, x(tk)) +O(∆t),

it follows that

f(tk+ci∆t, x(tk)+∆t

m∑
j=1

aijκj) = f(tk, x(tk))+∆tci

[
∂f

∂t
(tk, x(tk))+

∂f

∂x
(tk, x(tk))f(tk, x(tk))

]
+O((∆t)2).

Therefore, we obtain the following theorem.

Theorem 4.18. Assume that f is smooth enough. Then the Runge-Kutta scheme (4.55) for
solving (4.1) is of order 2 provided that the conditions (4.58) and

m∑
i=1

bici =
1

2
(4.68)

hold.

One can prove by higher-order Taylor expansions that the following results hold.



4.5. MULTI-STEP METHODS 55

Theorem 4.19. Assume that f is smooth enough. Then the Runge-Kutta scheme (4.55) for
solving (4.1) is of order 3 provided that the conditions (4.58), (4.68), and

m∑
i=1

bic
2
i =

1

3
,

m∑
i=1

m∑
j=1

biaijcj =
1

6
(4.69)

hold. It is of order 4 provided that (4.58), (4.68), (4.69), and

m∑
i=1

bic
3
i =

1

4
,

m∑
i=1

m∑
j=1

biciaijcj =
1

8
,

m∑
i=1

m∑
j=1

biciaijc
2
j =

1

12
,

m∑
i=1

m∑
j=1

m∑
l=1

biaijajlcl =
1

24

(4.70)
hold.

The Runge-Kutta scheme (4.42) satisfies the four conditions (4.58), (4.68), (4.69), and (4.70).
Hence, (4.42) is of order 4.

4.5. Multi-step methods

While Runge-Kutta methods present an improvement over Euler’s methods in terms of accu-
racy, this is achieved by investing additional computational effort. For example, the fourth-order
method (4.42) involves four function evaluations per step. For comparison, by considering three
consecutive points tk−1, tk, tk+1, integrating the differential equation between tk−1 and tk+1, and
applying Simpson’s rule to approximate the resulting integral yields

x(tk+1) = x(tk−1) +

∫ tk+1

tk−1

f(s, x(s)) ds

≈ x(tk−1) +
(∆t)

3

[
f(tk−1, x(tk−1)) + 4f(tk, x(tk)) + f(tk+1, x(tk+1))

]
,

which leads to the method

xk+1 = xk−1 +
(∆t)

3

[
f(tk−1, x

k−1) + 4f(tk, x
k) + f(tk+1, x

k+1)

]
. (4.71)

In contrast with the one-step methods considered in the previous sections where only a single
value of xk was required to compute the next approximation xk+1, in (4.71) we need two preceding
values, xk and xk−1 in order to calculate xk+1, and therefore (4.71) is a two-step method.

The general n-step method is of the form

n∑
j=0

αjx
k+j = (∆t)

n∑
j=0

βjf(tk+j , x
k+j), (4.72)

where the coefficients αj and βj are real constants and αn 6= 0.
If βn = 0, then xk+n is obtained explicitly from previous values of xj and f(tj , x

j), and the
n-step method is explicit. Otherwise, the n-step method is implicit.

Example 4.20. (i) The two-step Adams-Bashforth method

xk+2 = xk+1 +
(∆t)

2

[
3f(tk+1, x

k+1)− f(tk, x
k)

]
(4.73)

is an example of an explicit two-step method;
(ii) The three-step Adams-Bashforth method

xk+3 = xk+2 +
(∆t)

12

[
23f(tk+2, x

k+2)− 16f(tk+1, x
k+1) + f(tk, x

k)

]
(4.74)

is an example of an explicit three-step method;
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(iii) The four-step Adams-Bashforth method

xk+4 = xk+3 +
(∆t)

24

[
55f(tk+3, x

k+3)− 59f(tk+2, x
k+2) + 37f(tk+1, x

k+1)− 9f(tk, x
k)

]
(4.75)

is an example of an explicit four-step method;
(iv) The two-step Adams-Moulton method

xk+2 = xk+1 +
(∆t)

12

[
5f(tk+2, x

k+2) + 8f(tk+1, x
k+1) + f(tk, x

k)

]
(4.76)

is an example of an implicit two-step method;
(v) The three-step Adams-Moulton method

xk+3 = xk+2 +
(∆t)

24

[
9f(tk+3, x

k+3) + 19f(tk+2, x
k+2)− 5f(tk+1, x

k+1)− 9f(tk, x
k)

]
(4.77)

is an example of an implicit three-step method.

The construction of general classes of linear multi-step methods is discussed in the next sub-
section.

4.5.1. Construction of linear multi-step methods. Suppose that xk, k ∈ N, is a sequence
of real numbers. We introduce the shift operator E, the forward difference operator ∆+ and
the backward difference operator ∆− by

E : xk 7→ xk+1, ∆+ : xk 7→ xk+1 − xk, ∆− : xk 7→ xk − xk−1.

Since ∆+ = E − I and ∆− = I − E−1, it follows that, for any n ∈ N,

(E − I)n =

n∑
j=0

(−1)jCnj E
n−j ,

and

(I − E−1)n =

n∑
j=0

(−1)jCnj E
−j .

Therefore,

∆n
+x

k =

n∑
j=0

(−1)jCnj x
k+n−j

and

∆n
−x

k =

n∑
j=0

(−1)jCnj x
k−j .

Now let y(t) ∈ C∞(R) and let tk = k∆t,∆t > 0. By applying the Taylor series we find that,
for any s ∈ N,

Esy(tk) = y(tk + s∆t) =

(+∞∑
l=0

1

l!
(s∆t

∂

∂t
)ly

)
(tk) =

(
es(∆t)

∂
∂t y
)
(tk),

and hence

Es = es(∆t)
∂
∂t .

Thus, formally,

(∆t)
∂

∂t
= lnE = − ln(I −∆−) = ∆− +

1

2
∆2
− +

1

3
∆3
− + . . . (4.78)

Therefore, if x(t) is the solution of (4.1), then by using (4.78) we find that

(∆t)f(tk, x(tk)) =

(
∆− +

1

2
∆2
− +

1

3
∆3
− + . . .

)
x(tk). (4.79)
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The successive truncation of the infinite series on the right-hand side of (4.79) yields

xk − xk−1 = (∆t)f(tk, x
k),

3

2
xk − 2xk−1 +

1

2
xk−2 = (∆t)f(tk, x

k),

11

6
xk − 3xk−1 +

3

2
xk−2 − 1

3
xk−3 = (∆t)f(tk, x

k),

(4.80)

and so on. This gives rise to a class of implicit multi-step methods called backward differenti-
ation formulas.

Similarly,

E−1((∆t)
∂

∂t
) = (∆t)

∂

∂t
E−1 = −(I −∆−) ln(I −∆−),

and hence,

((∆t)
∂

∂t
) = −E(I −∆−) ln(I −∆−) = −(I −∆−) ln(I −∆−)E. (4.81)

Therefore, if x(t) is the solution of (4.1), then we find that

(∆t)f(tk, x(tk)) =

(
∆− −

1

2
∆2
− −

1

6
∆3
− + . . .

)
x(tk+1). (4.82)

The successive truncation of the infinite series on the right-hand side of (4.82) yields the following
explicit numerical schemes:

xk+1 − xk = (∆t)f(tk, x
k),

1

2
xk+1 − 1

2
xk−1 = (∆t)f(tk, x

k),

1

3
xk+1 +

1

2
xk − xk−1 +

1

6
xk−2 = (∆t)f(tk, x

k),

...

(4.83)

The first of these numerical scheme is the explicit Euler method, while the second is the explicit
mid-point method.

In order to construct further classes of multi-step methods, we define, for y ∈ C∞,

D−1y(tk) = y(t0) +

∫ tk

t0

y(s) ds,

and observe that

(E − I)D−1y(tk) =

∫ tk+1

tk

y(s) ds.

Now, from

(E − I)D−1 = ∆+D
−1 = E∆−D

−1 = (∆t)E∆−((∆t)D)−1,

it follows that

(E − I)D−1 = −(∆t)E∆−
(

ln(I −∆−)
)−1

. (4.84)

Furthermore,

(E − I)D−1 = E∆−D
−1 = ∆−ED

−1 = ∆−(DE−1)−1 = (∆t)∆−
(
(∆t)DE−1

)−1
.

Thus,

(E − I)D−1 = −(∆t)∆−

(
(I −∆−) ln(I −∆−)

)−1

. (4.85)

By using (4.84) and (4.85), we deduce from

x(tk+1)− x(tk) =

∫ tk+1

tk

f(s, x(s)) ds = (E − I)D−1f(tk, x(tk)),
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that

x(tk+1)− x(tk) =

{
−(∆t)∆−

(
(I −∆−) ln(I −∆−)

)−1
f(tk, x(tk))

−(∆t)E∆−
(

ln(I −∆−)
)−1

f(tk, x(tk)),
(4.86)

where x(t) is the solution of (4.1).
On expanding ln(I −∆−) into a Taylor series on the right-hand side of (4.86) we find that

x(tk+1)− x(tk) = (∆t)

[
I +

1

2
∆− +

5

12
∆2
− +

3

8
∆3
− + . . .

]
f(tk, x(tk)), (4.87)

and

x(tk+1)− x(tk) = (∆t)

[
I − 1

2
∆− −

1

12
∆2
− −

1

24
∆3
− + . . .

]
f(tk+1, x(tk+1)). (4.88)

The successive truncation of (4.87) yields the family (4.75) of (explicit) Adams-Bashforth methods,
while similar successive truncation of (4.88) gives rise to the family (4.77) of (implicit) Adams-
Moulton methods.

4.5.2. Consistency, stability, and convergence. In this subsection, we introduce the con-
cepts of consistency, stability, and convergence for analyzing linear multi-step methods.

Definition 4.21 (Consistency). The n-step method (4.72) is consistent with (4.1) if the
truncation error defined by

Tk =

∑n
j=0

[
αjx(tk+j)− (∆t)βj

dx
dt (tk+j)

]
(∆t)

∑n
j=0 βj

is such that for any ε > 0 there exists h0 for which

|Tk| ≤ ε for 0 < ∆t ≤ h0

and any (n+ 1) points
(
(tj , x(tj)), . . . , (tj+n, x(tj+n))

)
on any solution x(t).

Definition 4.22 (Stability). The n-step method (4.72) is stable if there exists a constant C
such that, for any two sequences (xk) and (x̃k) which have been generated by the same formulas
but different initial data x0, x1, . . . , xk−1 and x̃0, x̃1, . . . , x̃k−1, respectively, we have

|xk − x̃k| ≤ C max{|x0 − x̃0|, |x1 − x̃1|, . . . , |xk−1 − x̃k−1|} (4.89)

as ∆t→ 0.

Theorem 4.23 (Convergence). Suppose that the n-step method (4.72) is consistent with (4.1).
The stability condition (4.89) is necessary and sufficient for the convergence. Moreover, if x ∈ Cp+1

and the truncation error O((∆t)p), then the global error ek = x(tk)− xk is also O((∆t)p).

4.6. Stiff equations and systems

Let ε > 0 be a small parameter. Consider the initial value problem
dx(t)

dt
= −1

ε
x(t), t ∈ [0, T ],

x(0) = 1,
(4.90)

which has an exponential solution x(t) = e−t/ε. The explicit Euler method with step size ∆t relies
on the iterative scheme

xk+1 = (1− ∆t

ε
)xk, x0 = 1, (4.91)

with solution

xk = (1− ∆t

ε
)k.

Since ε > 0 the exact solution is exponentially decaying and positive. But now, if 1 − ∆t
ε < −1,

then the iterates (4.91) grow exponentially fast in magnitude, with alternating signs. In this case,
the numerical solution is nowhere close to the true solution. If −1 < 1 − ∆t

ε < 0, then the
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numerical solution decays in magnitude, but continue to alternate between positive and negative
values. Thus, to correctly model the qualitative features of the solution and obtain a numerically
accurate solution, we need to choose the step size ∆t so as to ensure that 1 − ∆t

ε > 0, and hence
∆t < ε.

Equation (4.90) is the simplest example of what is known as a stiff differential equation.
In general, an equation or system is stiff if it has one or more very rapidly decaying solutions. In
the case of the autonomous constant coefficient linear system (3.24), stiffness occurs whenever the
coefficient matrix A has an eigenvalues λj0 with large negative real part: <λj0 � 0, resulting in a
very rapidly decaying eigensolution. It only takes one such eigensolution to render the equation stiff,
and ruin the numerical computation of even well behaved solutions. Even though the component of
the actual solution corresponding to λj0 is almost irrelevant, as it becomes almost instantaneously
tiny, its presence continues to render the numerical solution to the system very difficult. Stiff
equations require more sophisticated numerical schemes to integrate.

Most of the numerical methods derived above also suffer from instability due to stiffness of
(4.90) for sufficiently small positive ε. Interestingly, stability of (4.90) suffices to characterize
acceptable step sizes ∆t, depending on the size of −1/ε, which, in the case of linear systems, is the
eigenvalue. Applying the Trapezoidal scheme (4.29) to (4.90) leads to

xk+1 = xk − ∆t

2ε

(
xk + xk+1

)
, x0 = 1, (4.92)

which we solve for

xk+1 =
1− ∆t

2ε

1 + ∆t
2ε

xk, x0 = 1. (4.93)

Thus, the behavior of the numerical solution is entirely determined by the size of the coefficient

µ :=
1− ∆t

2ε

1 + ∆t
2ε

.

Since |µ| < 1 for all ε > 0, the Trapezoidal scheme (4.92) is not affected by stiffness.
In the system of equations (1.5), the parameter satisfies 0 < a � 1. This makes (1.5) a stiff

system of ODEs.

4.7. Perturbation theories for differential equations

4.7.1. Regular perturbation theory. Let ε > 0 be a small parameter and consider the
differential equation 

dx

dt
= f(t, x, ε), t ∈ [0, T ],

x(0) = x0, x0 ∈ R.
(4.94)

If we suppose that f ∈ C1, then (4.94) is a regular perturbation problem. The solution x(t, ε)
is in C1 and has the following Taylor expansion:

x(t, ε) = x(0)(t) + εx(1)(t) + o(ε) (4.95)

with respect to ε in a neighborhood of 0.
Clearly, the unperturbed term x(0) is given as the solution of the unperturbed equation

dx(0)

dt
= f0(t, x(0)), t ∈ [0, T ],

x(0)(0) = x0, x0 ∈ R,
(4.96)

where f0(t, x) := f(t, x, 0). Moreover, the first-order correction term x(1), which is the derivative
of x(t, ε) with respect to ε at 0,

x(1)(t) =
∂x

∂ε
(t, 0),
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solves the equation 
dx(1)

dt
=
∂f

∂x
(t, x(0), 0)x(1) +

∂f

∂ε
(t, x(0), 0), t ∈ [0, T ],

x(1)(0) = 0.

(4.97)

The initial condition x(1)(0) = 0 follows from the fact that the initial condition x0 does not depend
on ε.

The numerical methods described in Section 4.4 can be used to efficiently compute the unper-
turbed solution x(0) and the first-order correction x(1).

Remark 4.24. Consider the equation
dx

dt
= −εx+ 1, t ∈ [0,+∞[,

x(0) = 0.
(4.98)

The solution can be easily found

x(t, ε) =
e−εt − 1

ε
. (4.99)

If we apply the perturbation theory to (4.98), then by solving (4.96) and (4.97) with

f(t, x, ε) = −εx+ 1,

we find

x(0)(t) = −t and x(1)(t) =
t2

2
,

which gives

x(t, ε) = −t+ ε
t2

2
+ o(ε). (4.100)

The approximation (4.100) of course coincides with the Taylor expansion of the exact solution
given by (4.99). However, note that the approximation is valid only for fixed t = O(1) and diverges
to +∞ as t increases while the exact solution converges to −1/ε. The limits ε → 0 and t → +∞
do not commute. Expansion (4.100) is not uniformly valid in time.

4.7.2. Singular perturbation theory. In this subsection we consider a system of ordinary
differential equations (together with appropriate boundary conditions) in which the highest deriv-
ative is multiplied by a small, positive parameter ε. In what follows we give the general (nonlinear)
form of the system:  ε

d2x

dt2
= f(t, x,

dx

dt
), t ∈ [0, T ],

x(0) = x0, x(T ) = x1.

(4.101)

The problem above is called a singular perturbation problem, and is characterized by the fact
that its order reduces when the problem parameter ε equals zero. In such a situation, the problem
becomes singular since, in general, not all of the original boundary conditions can be satisfied by
the reduced problem. Singular perturbed problems form a particular class of stiff problems.

Consider the following linear, scalar and of second-order ODE which is subject to Dirichlet
boundary conditions:  ε

d2x

dt2
+ 2

dx

dt
+ x = 0, t ∈ [0, 1],

x(0) = 0, x(1) = 1.

(4.102)

Let

α(ε) :=
1−
√

1− ε
ε

and β(ε) := 1 +
√

1− ε.
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The solution of equation (4.102) is given by

x(t, ε) =
e−αt − e−βt/ε

e−α − e−β/ε
, t ∈ [0, 1]. (4.103)

The solution x(t, ε) involves two terms which vary on widely different length-scales. Let us consider
the behavior of x(t, ε) as ε→ 0+. The asymptotic behavior is nonuniform, and there are two cases,
which lead to matching outer and inner solutions.

(i) Outer limit: t > 0 fixed and ε→ 0+. Then x(t, ε)→ x(0)(t), where

x(0)(t) := e(1−t)/2. (4.104)

This leading-order outer solution satisfies the boundary condition at t = 1 but not the
boundary condition at t = 0. Indeed, x(0)(0) = e1/2.

(ii) Inner limit: t/ε = τ fixed and ε→ 0+. Then x(ετ, ε)→ X(0)(τ) := e1/2(1− e−2τ ). This
leading-order inner solution satisfies the boundary condition at t = 0 but not the one
at t = 1, which corresponds to τ = 1/ε. Indeed, limτ→+∞X(0)(τ) = e1/2.

(iii) Matching: Both the inner and outer expansions are valid in the region ε � t � 1,
corresponding to t→ 0 and τ → +∞ as ε→ 0+. They satisfy the matching condition

lim
t→0+

x(0)(t) = lim
τ→+∞

X(0)(τ). (4.105)

Let us now construct an asymptotic solution of (4.102) without relying on the fact that we
can solve it exactly.

We begin with the outer solution. We look for a straightforward expansion

x(t, ε) = x(0)(t) + εx(1)(t) +O(ε2). (4.106)

We use this expansion in (4.102) and equate the coefficients of the leading-order terms to zero.
Guided by our analysis of the exact solution, we only impose the boundary condition at t = 1. We
will see later that matching is impossible if, instead, we attempt to impose the boundary condition
at t = 0. We obtain that  2

dx(0)

dt
+ x(0) = 0, t ∈ [0, 1],

x(0)(1) = 1.

(4.107)

The solution of (4.107) is given by (4.104), in agreement with the expansion of the exact solution
x(t, ε).

Next we consider the inner solution. We suppose that there is a boundary layer at t = 0
of width δ(ε), and introduce a stretched variable τ = t/δ. We look for an inner solution
X(τ, ε) = x(t, ε). Since

d

dt
=

1

δ

d

dτ
,

we find from (4.102) that X satisfies

ε

δ2

d2X

dτ2
+

2

δ

dX

dτ
+X = 0.

There are two possible dominant balances in this equation:

(i) δ = 1, leading to the outer solution;
(ii) δ = ε, leading to the inner solution.

Thus we conclude that the boundary layer thickness is of the order of ε, and the appropriate inner
variable is τ = t/ε. The equation for X is then

d2X

dτ2
+ 2

dX

dτ
+ εX = 0,

X(0, ε) = 0.

We impose only the boundary condition at τ = 0, since we do not expect the inner expansion to
be valid outside the boundary layer where t = O(ε).
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We seek an inner expansion

X(τ, ε) = X(0)(τ) + εX(1)(τ) +O(ε2)

and find that 
d2X(0)

dτ2
+ 2

dX(0)

dτ
= 0,

X(0)(0) = 0.

(4.108)

The general solution of (4.108) is

X(0)(τ) = c(1− e−2τ ), (4.109)

where c is an arbitrary constant of integration.
We can determine the unknown constant c in (4.109) by requiring that the inner solution

(4.109) matches with the outer solution (4.104). Here the matching condition is simply

lim
t→0+

x(0)(t) = lim
τ→+∞

X(0)(τ),

which implies that c = e1/2.
In summary, the asymptotic solution as ε→ 0+ is given by

x(t, ε) =

{
e1/2(1− e−2τ ) as ε→ 0+ with t/ε fixed,

e(1−t)/2 as ε→ 0+ with t fixed.

4.7.3. WKB approximations.
4.7.3.1. Schrödinger equation. Consider the Schrödinger equation iε

∂Ψ

∂t
(t, x) + ε2

∂2Ψ

∂x2
(t, x)− V (x)Ψ(t, x) = 0, x ∈ R, t ≥ 0,

Ψ(0, x) = Ψ0(x), x ∈ R,
(4.110)

where ε� 1 and V (x) > 0.
Write

Ψ(t, x) = ei
S(t,x)
ε .

It follows that

−∂S
∂t
− (

∂S

∂x
)2 + iε

∂2S

∂x2
− V (x)S = 0.

Hence, the leading order term in the asymptotic expansion with respect to ε

S(t, x) = S(0)(t, x) + εS(1)(t, x) + . . .

satisfies the Hamilton-Jacobi type equation

∂S(0)

∂t
(t, x) + (

∂S(0)

∂x
)2(t, x) + V (x)S(0)(t, x) = 0.

4.7.4. Wave equation. Consider the Helmholtz equation{
ε2
d2Ψ

dx2
(x) + V (x)Ψ(x) = 0, x ∈ R, (4.111)

where ε� 1 and V (x) > 0.
Using the ansatz

Ψ(x) = a(x, ε)e
S(x)
ε = (a(0)(x) + εa(1)(x) + . . .)e

S(x)
ε ,

it follows that

(−|dS
dx
|2 + V ) + 2iε

dS

dx

da

dx
+ iεa

d2S

dx2
+ ε2

d2a

dx2
= 0.

Therefore, the phase S is solution to the eikonal equation

|dS
dx
|2(x) = V (x), (4.112)
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and the leading order term a(0) in the asymptotic expansion of the amplitude a(x, ε) with respect
to ε satisfies the transport equation

2
dS

dx

da(0)

dx
+ a(0) d

2S

dx2
= 0. (4.113)

Problem 4.25. (i) Prove Proposition 4.12.
(ii) Prove estimate (4.31).





CHAPTER 5

Geometrical numerical integration methods for differential
equations

5.1. Introduction

Geometric integration is the numerical integration of a differential equation, while preserving
one or more of its geometric properties exactly, i.e., to within round-off error. Many of these
geometric properties are of crucial importance in physical applications: preservation of energy,
momentum, volume, symmetries, time-reversal symmetry, dissipation, and symplectic structure
being examples. The aim of this chapter is to present geometric numerical integration methods for
ordinary differential equations. We concentrate mainly on Hamiltonian systems and on methods
that preserve their symplectic structure, invariants, symmetries, or volume.

5.2. Structure preserving methods for Hamiltonian systems

The numerical methods discussed in Chapter 4 are designed for general differential equations,
and a distinction was drawn only between stiff and nonstiff problems. As shown in Chapter 1,
Hamiltonian systems are an important class of differential equations with a geometric structure
(their flow has the geometric property of being symplectic), whose preservation in the numerical
discretization leads to substantially better methods, especially when integrating over long times. In
general, most geometric properties are not preserved by the standard numerical methods presented
in Chapter 4.

Some of the reasons we are motivated to preserve structure are

(i) it may yield methods that are faster, simpler, more stable, and/or more accurate for some
types of ODEs;

(ii) it may yield more robust and quantitatively better results than standard methods for the
long-time integration of Hamiltonian systems.

The standard problem in numerical ODEs discussed in the previous chapter is to compute the
solution to an initial value problem at a fixed time, to within a given global error, as efficiently as
possible. The class of method, its order and local error, and choice of time steps are all tailored to
this end. In contrast, a typical application of a geometric numerical method is to fix a (sometimes
moderately large) time step and compute solutions with perhaps many different initial conditions
over very long time intervals.

5.2.1. Symplectic methods. Consider the Hamiltonian system
dp

dt
= −∂H

∂q
(p, q),

dq

dt
=
∂H

∂p
(p, q),

p(0) = p0, q(0) = q0,

(5.1)

where p0, q0 ∈ Rd, and the Hamiltonian function H : Rd × Rd → R is a smooth function.

65
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Let x = (p, q)>. The Hamiltonian system of equations (5.1) can be rewritten as a first-order
differential equation 

dx

dt
= f(x),

x(0) = x0 ∈ R2d,

(5.2)

where x0 = (p0, q0)> and

f : R2d → R2d

x 7→ J−1∇H(x).

Definition 5.1. Let J be defined by (1.26). A numerical one-step method (pk+1, qk+1) =
Φ∆t(p

k, qk) for solving (5.1) is called symplectic if the numerical flow Φ∆t is a symplectic
map:

Φ′∆t(p, q)
>JΦ′∆t(p, q) = J, (5.3)

for all (p, q) and all step sizes ∆t.

5.2.2. Symplectic Euler methods.

Theorem 5.2. The implicit Euler method for solving (5.1)
pk+1 = pk −∆t

∂H

∂q
(pk+1, qk),

qk+1 = qk + ∆t
∂H

∂p
(pk+1, qk),

(5.4)

is symplectic. Moreover, if the Hamiltonian function H(p, q) = T (p) + V (q) is separable, then
(5.4) is explicit.

Proof. Let Φ∆t be the numerical flow associated with (5.4). We have

Φ′∆t(p
k, qk) =

∂(pk+1, qk+1)

∂(pk, qk)
.

From I + ∆t
∂2H

∂p∂q
0

−∆t
∂2H

∂p2
I

Φ′∆t(p
k, qk) =

I −∆t∂
2H
∂q2

0 I + ∆t
∂2H

∂p∂q

 , (5.5)

where the matrices ∂2H
∂p2 , ∂2H

∂q2 , and ∂2H
∂p2 are evaluated at (pk+1, qk), one can easily verify by com-

puting Φ′∆t(p
k, qk) from (5.5) that the symplecticity condition (5.3) holds. �

A variant of (5.4) is 
pk+1 = pk −∆t

∂H

∂q
(pk, qk+1),

qk+1 = qk + ∆t
∂H

∂p
(pk, qk+1).

(5.6)

Analogously to (5.4), the Euler method (5.6) is symplectic and turns out to be explicit for separable
Hamiltonian functions.
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5.2.3. Composition of symplectic methods.

Theorem 5.3. The composition of two symplectic one-step methods for solving (5.1) is also
symplectic.

Proof. Let Φ
(1)
∆t and Φ

(2)
∆t be the numerical flows associated with two symplectic one-step

methods for solving (5.1). Let Φ∆t := Φ
(2)
∆t ◦ Φ

(1)
∆t . We have

(Φ′∆t(x))>JΦ′∆t(x) = ((Φ
(2)
∆t)
′(x∗)(Φ

(1)
∆t)
′(x))>J(Φ

(2)
∆t)
′(x∗)(Φ

(1)
∆t)
′(x)

= ((Φ
(1)
∆t)
′(x))>((Φ

(2)
∆t)
′(x∗))>J(Φ

(2)
∆t)
′(x∗)(Φ

(1)
∆t)
′(x)

= ((Φ
(1)
∆t)
′(x))>J(Φ

(1)
∆t)
′(x) = J,

where x∗ = Φ
(1)
∆t(x). That is, the composition of symplectic one-step methods is again a symplectic

one-step method. �

5.2.4. The adjoint method. The flow φt of an autonomous differential equation dx/dt =
f(x) satisfies φ−1

−t = φt. This property is in general not satisfied by the one-step map Φ∆t of a
numerical method.

Definition 5.4. The adjoint method Φ∗∆t of a method Φ∆t is the inverse map of the original
method with reversed time step −∆, i.e.,

Φ∗∆t := Φ−1
−∆t.

In other terms, Φ∗∆t is defined by replacing, in the method associated with Φ∆t, ∆t by −∆t and
exchanging the superscripts k and k + 1.

The adjoint method satisfies the usual properties.

Proposition 5.5. We have

(i) (Φ∗∆t)
∗ = Φ∆t;

(ii)
(
Φ

(2)
∆t ◦ Φ

(1)
∆t

)∗
= (Φ

(1)
∆t)
∗ ◦ (Φ

(2)
∆t)
∗ for any two one-step methods Φ

(1)
∆t and Φ

(2)
∆t ;

(iii)
(
Φ∆t/2 ◦ Φ∗∆t/2

)∗
= Φ∆t/2 ◦ Φ∗∆t/2.

5.2.5. Leapfrog method. Define the leapfrog method (Verlet method and Strömer-Verlet
method are also often-used names) for solving the Hamiltonian system (5.1) by

pk+ 1
2 = pk − ∆t

2

∂H

∂q
(pk+ 1

2 , qk),

qk+1 = qk +
∆t

2

(
∂H

∂p
(pk+ 1

2 , qk) +
∂H

∂p
(pk+ 1

2 , qk+1)

)
,

pk+1 = pk+ 1
2 − ∆t

2

∂H

∂q
(pk+ 1

2 , qk+1).

(5.7)

Theorem 5.6. The leapfrog method (5.7) for solving the Hamiltonian system (5.1) is symplec-
tic.

Proof. The leapfrog method (5.7) can be interpreted as the composition of the symplectric
Euler method 

pk+ 1
2 = pk − ∆t

2

∂H

∂q
(pk+ 1

2 , qk),

qk+ 1
2 = qk +

∆t

2

∂H

∂p
(pk+ 1

2 , qk),

(5.8)
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and its adjoint 
qk+1 = qk+ 1

2 +
∆t

2

∂H

∂p
(pk+ 1

2 , qk+1),

pk+1 = pk+ 1
2 − ∆t

2

∂H

∂q
(pk+ 1

2 , qk+1).

(5.9)

In other terms, if Ψ∆t denotes the numerical flow associated with the leapfrog method and Φ∆t

the one associated with the symplectic Euler method (5.4), then

Ψ∆t = Φ∗∆t/2 ◦ Φ∆t/2. (5.10)

The methods (5.8) and (5.9) are symplectic. Hence their composition (5.7) is also symplectic. �

5.2.6. Preserving time-reversal symmetry and invariants.
5.2.6.1. Preserving time-reversal symmetry. The leapfrog method (5.7) is symmetric with re-

spect to changing the direction of time: replacing ∆t by −∆t and exchanging the superscripts k
and k + 1 results in the same method. In terms of the numerical one-step map Φ∆t : (pk, qk) 7→
(pk+1, qk+1), the symmetry property is stated as follows.

Definition 5.7. The numerical one-step map Φ∆t is said to be symmetric if

Φ∆t = Φ∗∆t(= Φ−1
−∆t). (5.11)

Relation (5.11) does not hold for the symplectic Euler methods (5.8) and (5.9), where the time
reflection transforms (5.8) to (5.9) and vice versa.

The time-symmetry of the leapfrog method (5.7), which follows from (5.10) and item (iii)
in Proposition 5.5, implies an important geometric property of the numerical map, namely re-
versibility.

Assume that

H(−p, q) = H(p, q). (5.12)

Then the system (5.1) has the property that inverting the direction of the initial p0 does not change
the solution trajectory. The flow φt associated with (5.1) satisfies

φt(p0, q0) = (p, q)⇒ φt(−p, q) = (−p0, q0). (5.13)

Relation (5.13) shows that φt is reversible with respect to the reflection (p, q) 7→ (−p, q).

Definition 5.8. The numerical one-step map Φ∆t is said to be reversible if

Φ∆t(p, q) = (p̂, q̂)⇒ Φ∆t(−p̂, q̂) = (−p, q), (5.14)

for all p, q and all ∆t.

Since

Φ∆t(p, q) = (p̂, q̂)⇒ Φ−∆t(−p, q) = (−p̂, q̂), (5.15)

the symmetry (5.11) of the leapfrog method (5.7) is therefore equivalent to the reversibility (5.13).

Theorem 5.9. The leapfrog method (5.7) applied to (5.1) with H satisfying (5.12) is both
symmetric and reversible, i.e., its one-step map satisfies (5.11) and (5.13).

Remark 5.10. The composition with the adjoint method turns every consistent one-step method
of order one into a second-order symmetric method

Ψ∆t = Φ∆t/2 ◦ Φ∗∆t/2.
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5.2.6.2. Preserving invariants.

Definition 5.11. A numerical one-step method Φ∆t for solving (5.2) is said to preserve the
invariant F if F (Φ∆t(p, q)) = Constant for all p, q and all ∆t. If F = H, then we say that the
scheme preserves energy.

Theorem 5.12. The leapfrog method (5.7) applied to (5.1) preserves linear invariants and
quadratic invariants of the form

F (p, q) = p>(Bq + b). (5.16)

Proof. Let the linear invariant be F (p, q) = b>q + c>p, so that

b>
∂H

∂p
(p, q)− c> ∂H

∂q
(p, q) = 0,

for all p, q. Multiplying the formulas for Φ∆t(p, q) in (5.7) by (c, b)> thus yields the desired result
on linear invariants.

Next we turn to the conservation by the leapfrog method of quadratic invariants of the form
(5.16). In order to prove that (5.7) applied to (5.1) preserves quadratic invariants of the form
F (p, q) = p>(Bq+ b), we write (5.7) as the composition of the two symplectic Euler methods (5.8)
and (5.9). For the first half-step, we obtain

(pk+ 1
2 )>(Bqk+ 1

2 + b) = (pk)>(Bqk + b).

For the second half-step, we obtain in the same way

(pk+1)>(Bqk+1 + b) = (pk+ 1
2 )>(Bqk+ 1

2 + b),

and the result follows. �

The energy is generally not preserved by the leapfrog method (5.7). Consider H(p, q) =
1
2 (p2 + q2). Applying (5.7) gives(

pk+1

qk+1

)
=

1− (∆t)2

2 −∆t(1− (∆t)2

4 )

∆t 1− (∆t)2

2

(pk
qk

)
. (5.17)

Since the propagation matrix in (5.17) is not orthogonal, H(p, q) is not preserved along numerical
solutions.

Consider the Hamiltonian

H(p, q) :=
1

2
p>M−1p+ V (q), (5.18)

where M is a symmetric positive definite matrix and the potential V is a smooth function.
In the particular case of the Hamiltonian (5.18), the leapfrog method (5.7) reduces to the

explicit method 

pk+ 1
2 = pk − ∆t

2
∇V (qk),

qk+1 = qk + ∆tM−1pk+ 1
2 ,

pk+1 = pk+ 1
2 − ∆t

2
∇V (qk+1).

(5.19)

Note that the Hamiltonian (5.18) is invariant under p 7→ −p and the corresponding Hamiltonian
system (5.1) is invariant under the transformation[

p
t

]
7→
[
−p
−t

]
. (5.20)

The time-reversal symmetry of (5.19) is preserved by the leapfrog method (5.19).
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5.2.6.3. Preserving volume. Recall that, due to equality of mixed partial derivatives, (5.2) is
divergence-free, i.e.,

∇ · f :=

2d∑
i=1

∂fi
∂xi

= 0.

A remarkable feature of divergence-free vector fields is that the associated flows are volume
preserving.

Given a map φ : R2d → R2d and a domain Ω, by change of variables

vol(φ(Ω)) =

∫
Ω

|detφ′(y)| dy,

where φ′ is the Jacobian of φ. It follows that φ preserves volume provided that

|detφ′(y)| = 1 for y ∈ Ω. (5.21)

Let φt be the flow associated with dx/dt = f(x), where ∇ · f = 0. Then φt satisfies

dφt(y)

dt
= f(φt(y)),

and therefore, its Jacobian φ′ satisfies

dφ′t(y)

dt
= f ′(φt(y))φ′t(y).

Assuming φ′t is invertible yields

tr

[
dφ′t(y)

dt
φ′t(y)−1

]
= trf ′(φt(y)).

Combining trf ′ = ∇ · f = 0 and Jacobi’s formula (3.39) for the derivative of a determinant gives

tr

[
dφ′t(y)

dt
φ′t(y)−1

]
=

1

detφ′t(y)

d

dt
detφ′t(y) = 0.

Hence,
detφ′t(y) = detφ′t=0(y) = 1.

The following result holds.

Theorem 5.13 (Liouville’s theorem). The flow φt associated with the system
dx

dt
= f(x),

x(0) = x0 ∈ R2d,

(5.22)

where the C1 vector field f is divergence-free, is a volume preserving map (for all t).

Note that if the system (5.22) is Hamiltonian, then Theorem 5.13 can be immediately obtained
from the symplecticity of the associated flow. In fact, from

(φ′t)
TJφ′t = J,

it follows that |detφ′t|2 = 1 since det J = 1. Moreover, using the facts that detφ′t=0 = 1 and the
continuity of the determinant, we obtain that detφ′t = 1 for all t.

Remark 5.14. Since

∇ · J−1∇H(x) = −
d∑
j=1

∂2H

∂xj∂xd+j
+

d∑
j=1

∂2H

∂xd+j∂xj
= 0

for any smooth function H, Hamiltonian systems are divergence free equations. If d = 1, all
divergence-free systems are Hamiltonians since ∇·f = 0 implies that f = ∇×H for some function
H ∈ C2 (at least locally) and

J−1∇ = ∇× .
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For d > 1, the previous identity is no longer true. Consequently, divergence-free systems are not
necessary Hamiltonians.

Definition 5.15. A numerical one-step method for solving (5.22) is said to be volume pre-
serving if |det Φ′∆t(p, q)| = 1 for all p, q.

Note that if (5.22) is a Hamiltonian system, then any symplectic numerical method preserves
the volume. However, no standard methods can be volume-preserving for all divergence-free vector
fields.

Example 5.16. Consider the divergence-free problem
dx

dt
= Ax,

x(0) = x0 ∈ R2d,

(5.23)

where A ∈M2d(R) and trA = 0. The Explicit and implicit Euler’s schemes for solving (5.23)

xk+1 = xk + ∆tAxk,

xk+1 = xk + ∆tAxk+1,

are volume-preserving if and only if

|det(I + ∆tA)| = 1,

and

|det(I −∆tA)| = 1,

respectively.

5.2.7. Composition methods. Now using the fact that (5.2) is divergence-free, we have

f2d(x) = f2d(x) +

∫ x2d

x

∂f2d

∂x2d
dx2d

= f2d(x)−
∫ x2d

x

( 2d−1∑
i=1

∂fi(x)

∂xi

)
dx2d,

(5.24)

where x is an arbitrary point which can be chosen conveniently (e.g., if possible such that f2d(x) =
0).

Substituting (5.24) into (5.2) yields

dx1

dt
= f1(x),

...

dx2d−1

dt
= f2d−1(x),

dx2d

dt
= f2d(x)−

2d−1∑
i=1

∫ x2d

x

∂fi(x)

∂xi
dx2d.

(5.25)

We now split this as the sum of 2d− 1 vector fields

dxi
dt

= 0, i 6= j, 2d− 1,

dxj
dt

= fj(x),

dx2d

dt
= f2d(x)δj,2d−1 −

∫ x2d

x

∂fj(x)

∂xj
dx2d,

(5.26)

for j = 1, . . . , 2d− 1. Here δ is the Kronecker delta function.
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Note that each of the 2d − 1 vector fields is divergence-free. Moreover, we have split (5.25)
into the 2d−1 problems (5.26). Each of these problems has a simpler structure than (5.2). In fact,
each of them corresponds to a two-dimensional Hamiltonian system

dxj
dt

=
∂Hj

∂x2d
,

dx2d

dt
= −∂Hj

∂xj
,

(5.27)

with Hamiltonian

Hj(x) := f2d(x)δj,2d−1xj −
∫ x2d

x

fj(x) dx2d, (5.28)

treating xi for i 6= j, 2d as fixed parameters.
Each of the two-dimensional problems (5.27) can either be solved exactly (if possible), or

approximated with a symplectic integrator Φ
(j)
∆t . A volume-preserving integrator for f is then

given by

Φ∆t = Φ
(1)
∆t ◦ Φ

(2)
∆t ◦ . . . ◦ Φ

(2d−1)
∆t . (5.29)

5.2.8. Splitting methods. Consider a Hamiltonian system

dx

dt
= f(x) = J−1∇H(x), H(x) = H1(x) +H2(x), (5.30)

and suppose the flows

dx

dt
= f1(x) = J−1∇H1(x) and

dx

dt
= f2(x) = J−1∇H2(x), (5.31)

can be exactly integrated.

Let φ
(1)
t and φ

(2)
t be the exact flows associated with the equations in (5.31) and let φ be the

flow associated with (5.30).
Since the exact solution of a Hamiltonian system defines a symplectic map, we have

((φ
(1)
t )′)>J(φ

(1)
t )′ = J and ((φ

(2)
t )′)>J(φ

(2)
t )′ = J.

Next consider the numerical method defined by composing these two exact flows:

Φ∆t(x) := φ
(2)
∆t ◦ φ

(1)
∆t(x).

This map is also symplectic, since

(Φ′∆t(x))>JΦ′∆t(x) = ((φ
(2)
∆t)
′(x∗)(φ

(1)
∆t)
′(x))>J(φ

(2)
∆t)
′(x∗)(φ

(1)
∆t)
′(x)

= ((φ
(1)
∆t)
′(x))>((φ

(2)
∆t)
′(x∗))>J(φ

(2)
∆t)
′(x∗)(φ

(1)
∆t)
′(x)

= ((φ
(1)
∆t)
′(x))>J(φ

(1)
∆t)
′(x) = J,

where x∗ = φ
(1)
∆t(x). That is, as shown in Theorem 5.3, the composition of symplectic maps is

again a symplectic map.
If, from a given initial value x0, we first solve the first system to obtain a value x 1

2
, and from

this value integrate the second system to obtain x1, we get two numerical integrators where one is
the adjoint of the other:

Φ∆t = φ
(2)
∆t ◦ φ

(1)
∆t and Φ∗∆t = φ

(1)
∆t ◦ φ

(2)
∆t .

By Taylor expansion, we find that

φ
(2)
∆t ◦ φ

(1)
∆t(x0) = φ∆t(x0) +O((∆t)2),

so that Φ∆t (and analogously Φ∗∆t) gives approximation of order one to the solution of (5.30).
Another idea is to use a symmetric version and put

Φ∆t = φ
(1)
∆t/2 ◦ φ

(2)
∆t ◦ φ

(1)
∆t/2. (5.32)
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By breaking up in (5.32)

φ
(2)
∆t = φ

(2)
∆t/2 ◦ φ

(2)
∆t/2

an using Taylor expansion, we see that (5.32) is symmetric and of order two.

Example 5.17. Consider the separable Hamiltonian H(p, q) = U(p)+V (q). Based on splitting
the Hamiltonian H into U and V , we interpret the symplectic Euler methods and the leapfrog
method for solving (5.2) as splitting methods.

To do so, we consider (5.30) as the sum of two Hamiltonians, the first one depending only on
p, the second one only on q. The corresponding Hamiltonian systems

dp

dt
= 0,

dq

dt
=
∂U

∂p
(p),

p(0) = p0, q(0) = q0,

and


dp

dt
= −∂V

∂q
(q),

dq

dt
= 0,

p(0) = p0, q(0) = q0,

can be solved explicitly
p(t) = p0,

q(t) = q0 + t
∂U

∂p
(p0),

and

 p(t) = p0 − t
∂V

∂q
(q0),

q(t) = q0.

Denoting the flows of these two systems by φUt and φVt , we see that the symplectic Euler method
pk+1 = pk −∆t

∂V

∂q
(qk),

qk+1 = qk + ∆t
∂U

∂p
(pk+1),

is just the composition
φU∆t ◦ φV∆t, (5.33)

and its adjoint is
φV∆t ◦ φU∆t. (5.34)

The leapfrog method 

pk+ 1
2 = pk − ∆t

2

∂V

∂q
(qk),

qk+1 = qk + ∆t
∂U

∂p
(pk+ 1

2 ),

pk+1 = pk+ 1
2 − ∆t

2

∂V

∂q
(qk+1),

is
φV∆t/2 ◦ φ

U
∆t ◦ φV∆t/2. (5.35)

Decompositions (5.33), (5.34), and (5.35) give second proofs of Theorems 5.2 and 5.6 in the
case of a separable Hamiltonian. They also show that the symplectic Euler methods are of order
one while the leapfrog method is order two.

5.3. Runge-Kutta methods

Now we turn to Runge-Kutta methods
xi,k = xk + (∆t)

m∑
j=1

aijf(xj,k),

xk+1 = xk + (∆t)

m∑
i=1

bif(xi,k),

(5.36)
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for solving (5.2).

Theorem 5.18. (i) All the Runge-Kutta methods (5.36) preserve linear invariants;
(ii) The Runge-Kutta method (5.36) whose coefficients satisfy the condition

biaij + bjaji − bibj = 0, i, j = 1, . . .m, (5.37)

preserves all quadratic invariants.

Proof. Define Φ∆t by xk+1 = Φ∆t(x
k). Let F (x) = d>x, where d ∈ R2d. We compute

F (Φ∆t(x
k)) = d>(xk + ∆t

m∑
i=1

bif(xi,k)) = d>xk,

since d>x is assumed to be an invariant of (5.2) and hence d>f(xi,k) = 0.
Next, let F (x) = x>Cx, where C is a symmetric 2d×2d matrix. Assume that F is an invariant

of (5.2). We have

x>Cf(x) = 0 for all x. (5.38)

On the other hand, we have

F (Φ∆t(x
k)) = (xk + ∆t

m∑
j=1

bjf(xj,k))>C(xk + ∆t

m∑
i=1

bif(xi,k))

= (xk)>Cxk + (∆t)

m∑
i=1

(xk)>Cbif(xi,k) + (∆t)

m∑
j=1

bjf(xj,k)>Cxk

+(∆t)2
m∑

i,j=1

bibjf(xj,k)>Cf(xi,k).

From (5.38), we obtain

(xi,k)>Cf(xi,k) = 0,

and hence, by writing

xk = xk + ∆t

m∑
j=1

aijf(xj,k)−∆t

m∑
j=1

aijf(xj,k) = xi,k −∆t

m∑
j=1

aijf(xj,k),

we get

F (Φ∆t(x
k)) = (xk)>Cxk − (∆t)2

m∑
i,j=1

biaijf(xj,k)>Cf(xi,k)− (∆t)2
m∑

i,j=1

bjajif(xj,k)>Cf(xi,k)

+(∆t)2
m∑

i,j=1

bibjf(xj,k)>Cf(xi,k)

= (xk)>Cxk − (∆t)2

( m∑
i,j=1

(biaij + bjaji − bibj)f(xj,k)>Cf(xi,k)

)
.

Therefore, the Runge-Kutta method (5.36) preserves the quadratic invariant F provided that (5.37)
holds. �

Lemma 1.19 shows that H is an invariant of (5.2). If H is quadratic, then Theorem 5.18 says
that the energy is preserved by the Runge-Kutta method (5.36) provided that condition (5.37)
holds.

The following characterization of symplectic Runge-Kutta methods for solving (5.2) holds.

Theorem 5.19. The Runge-Kutta method (5.36) for solving (5.2) whose coefficients satisfy
condition (5.37) is symplectic.
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Proof. Theorem 1.25 shows that the flow φt is a symplectic transformation (if H is smooth

enough). Let Ψ(t) := ∂φt(x0)
∂x0

= φ′t, where x0 is the initial condition. We have
dΨ

dt
= f ′(x)Ψ,

Ψ(0) = I.
(5.39)

Apply a Runge-Kutta method satisfying (5.37) to (5.2) and (5.39) to obtain the approximations
xk+1 and Ψk+1 from xk and Ψk. Since Ψ>JΨ is a quadratic invariant of (5.39), we obtain

(Ψk)>JΨk = J for all k.

Suppose for a moment that

Ψk+1 =
∂xk+1

∂xk
. (5.40)

We obtain

(
∂xk+1

∂xk
)>J

∂xk+1

∂xk
= J,

which means that the Runge-Kutta method for solving (5.2) whose coefficients satisfy condition
(5.37) is symplectic.

In order to complete the proof, we prove (5.40). We want to show that the result of first
applying Φ∆t and then differentiating with respect to xk is the same as applying the same Runge-
Kutta method to (5.39).

In fact, on the one hand, by differentiating (5.36) with respect to xk we obtain
∂xi,k
∂xk

= I + (∆t)

m∑
j=1

aijf
′(xj,k)

∂xj,k
∂xk

,

∂xk+1

∂xk
= I + (∆t)

m∑
i=1

bif
′(xi,k)

∂xi,k
∂xk

.

(5.41)

Multiplying the first equation in (5.41) by f ′(xi,k) yields the linear system in the unknowns

f ′(xi,k)
∂xi,k
∂xk

f ′(xi,k)
∂xi,k
∂xk

= f ′(xi,k)

(
I + (∆t)

m∑
j=1

aijf
′(xj,k)

∂xj,k
∂xk

)
, (5.42)

∂xk+1

∂xk
= I + (∆t)

m∑
i=1

bif
′(xi,k)

∂xi,k
∂xk

. (5.43)

On the other hand, applying the same Runge-Kutta method to (5.39) yields

Ψi,k = f ′(xk + ∆t

m∑
j=1

aijxj,k)

(
I + (∆t)

m∑
j=1

aijΨj,k

)
, (5.44)

Ψk+1 = I + (∆t)

m∑
i=1

biΨi,k. (5.45)

We conclude the proof by observing that (5.44) is the same system as (5.42) but in the unknowns
Ψi,k, i = 1, . . . ,m. It is easily seen that this system has a unique solution for sufficiently small ∆t,
so it must be

Ψi,k = f ′(xi,k)
∂xi,k
∂xk

for i = 1, . . . ,m,

which, in view of (5.43) and (5.45), yields (5.40).
�
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For arbitrary Hamiltonians, the only known symplectic one-step numerical methods are the
symplectic Runge-Kutta methods of the form (4.55) that satisfy the symplectic condition (5.37).

Example 5.20. The midpoint scheme for solving (5.2)

xk+1 = xk + ∆tf(
xk + xk+1

2
), (5.46)

is symplectic and preserves linear and quadratic invariants. Moreover, it is time-reversible.

5.4. Long-time behaviour of numerical solutions

In (5.17) we have seen that the energy is not exactly preserved by the leapfrog method (5.7).
In that example, it is however, approximately preserved. As shown in the following theorem, the
symplecticity of a one-step numerical method yields an approximate conservation of energy over
very long times for general Hamiltonian systems.

Theorem 5.21. For an analytic Hamiltonian H and a symplectic one-step numerical method
Φ∆t of order n, if the numerical trajectory remains in a compact subset, then there exist h > 0 and
∆t∗ > 0 such that, for ∆t ≤ ∆t∗,

H(pk, qk) = H(p0, q0) +O((∆t)n), (5.47)

for exponentially long times k∆t ≤ e h
∆t . Here, (pk+1, qk+1) = Φ∆t(p

k, qk).

Theorem (5.21) is based on simplicticity. It can be proved via backward error analysis. The
idea is to deduce the long-time behavior estimate (5.47) from properties of the solution of the
equation corresponding to an approximation H∆t of the Hamiltonian H.

Problem 5.22. Consider the flow φt of (5.2). Given a one-step numerical scheme xk+1 =
Φ∆t(x

k), its adjoint

xk+1 = Φ∗∆t(x
k)

is the method defined by

xk = Φ−∆t(x
k+1),

or equivalently,

xk+1 = Φ−1
−∆t(x

k).

(i) Prove that φt ◦ φs = φt+s and hence, φt ◦ φ−t = I, for t, s ∈ R.
(ii) Prove that Φ∆t is symmetric if and only if Φ∆t = Φ∗∆t.

(iii) Prove that (Φ∗∆t)
∗ = Φ∆t.

(iv) Prove that for any one-step methods Φ∆t and Ψ∆t,

(Φ∆t ◦Ψ∆t)
∗ = Ψ∗∆t ◦ Φ∗∆t.

(v) Prove that for any one-step method Φ∆t,

xk+1 = Φ∆t/2 ◦ Φ∗∆t/2(xk)

is a symmetric method.

Problem 5.23. Consider the Runge-Kutta method that is consistent, i.e.,
∑m
i=1 bi = 1, and

with coefficients such that
∑m
j=1 aij = ci, for 1 ≤ i ≤ m.

(i) Prove that the adjoint of the Runge-Kutta method is again a Runge-Kutta method, with
coefficients given by

a∗ij = bm+1−j − am+1−i,m+1−j , b∗i = bm+1−i for 1 ≤ i, j ≤ m.

(ii) Deduce that if the method is symmetric, then aij = bj − am+1−i,m+1−j for all i, j =
1, . . . ,m.

(iii) Prove that, if the Runge-Kutta method is explicit, then it can not be symmetric.
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Problem 5.24. Consider the average vector field method

xk+1 = xk + ∆t

∫ 1

0

f(θxk+1 + (1− θ)xk) dθ, (5.48)

where the vector field f is Lipschitz continuous.

(i) Prove that (5.48) is well-defined for a stepsize ∆t small enough.
(ii) Prove that (5.48) preserves exactly the energy of any Hamiltonian system.
(iii) Suppose that the Hamiltonian function is a polynomial. Prove that there exists a quadra-

ture formula (bi, ci)i=1,...,m, with nodes ci and weights bi, such that∫ 1

0

f(θxk+1 + (1− θ)xk) dθ =

m∑
i=1

bif(xk + ci(x
k+1 − xk)),

where f(x) = J−1∇H(x).
(iv) Construct a Runge-Kutta method that exactly preserves a given polynomial Hamiltonian

H.





CHAPTER 6

Finite difference methods

6.1. Introduction

Finite difference methods are basic numerical solution methods for partial differential equa-
tions. They are obtained by replacing the derivatives in the equation by the appropriate numerical
differentiation formulas. However, there is no guarantee that the resulting numerical scheme will
accurately approximate the true solution. Further analysis is required. In this chapter, we establish
some of the most basic finite difference schemes for the heat and the wave equations.

6.2. Numerical algorithms for the heat equation

6.2.1. Finite difference approximations. Consider the heat equation
∂u

∂t
− γ ∂

2u

∂x2
= 0, x ∈ [0, 1], t ≥ 0,

u(t, 0) = u(t, 1) = 0, t ≥ 0,

u(0, x) = u0(x), x ∈ [0, 1],

(6.1)

where γ > 0 is the thermal conductivity.
In order to design a numerical approximation to the solution u of (6.1), we begin by introducing

a rectangular mesh consisting of points (tk, xj) with

0 = t0 < t1 < t2 < . . . and 0 = x0 < x1 < . . . < xN+1 = 1.

For simplicity, we maintain a uniform mesh spacing in both directions, with

∆t = tk+1 − tk, ∆x = xj+1 − xj =
1

N
,

representing, respectively, the time step size and the spatial mesh size. We shall use the notation

ukj ≈ u(tk, xj) where tk = k∆t, xj = j∆x,

to denote the numerical approximation of u at the mesh point (tk, xj).
The Dirichlet boundary conditions u(t, 0) = u(t, 1) = 0, t ≥ 0, yield

uk0 = ukN+1 = 0 for all k > 0.

As a first attempt at designing a numerical method, we shall employ the simplest finite dif-
ference approximations to the derivatives. The second order space derivative is approximated
by

∂2u

∂x2
(tk, xj) ≈ u(tk, xj−1)− 2u(tk, xj) + u(tk, xj+1)

(∆x)2
+O((∆x)2)

≈
ukj−1 − 2ukj + ukj+1

(∆x)2
+O((∆x)2).

(6.2)

Similarly, the time derivative can be approximated by

∂u

∂t
(tk, xj) ≈

u(tk+1, xj)− u(tk, xj)

∆t
+O(∆t) ≈

uk+1
j − ukj

∆t
+O(∆t). (6.3)

79
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Replacing the derivatives in the heat equation (6.1) by their finite difference approximations (6.2)
and (6.3), we end up with the explicit scheme

uk+1
j − ukj

∆t
+ γ
−ukj−1 + 2ukj − ukj+1

(∆x)2
= 0 (6.4)

for k ≥ 0 and j ∈ {1, . . . , N}.
Let

µ :=
γ∆t

(∆x)2
, (6.5)

and let

u(k) := (uk1 , u
k
2 , . . . , u

k
N )> ≈ (u(tk, x1), u(tk, x2), . . . , u(tk, xN ))>, (6.6)

be the vector whose entries are the numerical approximations to the solution values at time tk at
the interior nodes.

The scheme (6.4) can be written in the matrix form

u(k+1) = Au(k), (6.7)

where

A :=



1− 2µ µ
µ 1− 2µ µ

µ 1− 2µ µ
. . .

. . .
. . .

µ 1− 2µ µ
µ 1− 2µ


. (6.8)

The matrix A is symmetric and tridiagonal.

6.2.2. Consistency, stability, and convergence. A general finite difference method is
defined by

F∆t,∆x({uk+m
j+n }m−≤m≤m+,n−≤n≤n+) = 0, (6.9)

where the integers m±, n± define the width of the stencil of the scheme.

Definition 6.1 (Consistency and order). The finite difference scheme (6.9) is consistent
with the equation F (u) = 0 if, for any smooth solution u(x, t), the truncation error defined by

F∆t,∆x({u(tk+m, xj+n)}m−≤m≤m+,n−≤n≤n+) (6.10)

goes to zero as ∆t and ∆x go to zero independently. Moreover, the scheme is said to be of order
p in time and order q in space if the truncation error is of the order of O((∆t)p + (∆x)q) as ∆t
and ∆x go to zero.

Theorem 6.2. The explicit scheme (6.4) is consistent with the heat equation (6.1), of order
one in time and two in space. Moreover, if

γ∆t

(∆x)2
=

1

6
, (6.11)

then it is of order two in time and four in space.

Proof. Let v(t, x) ∈ C6. By the Taylor expansion of v evaluated at (t, x),

v(t+ ∆t, x)− v(t, x)

∆t
+ γ
−v(t, x−∆x) + 2v(t, x)− v(t, x+ ∆x)

(∆x)2
= (

∂v

∂t
− γ ∂

2v

∂x2
)(t, x)

+
∆t

2

∂2v

∂t2
(t, x)− γ(∆x)2

12

∂4v

∂x4
(t, x) +O((∆t)2 + (∆x)4).

(6.12)
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If v is a solution to (6.1), then it follows from (6.12) that the truncation error goes to zero as
∆t,∆x → 0 and hence, the explicit scheme is consistent. Moreover, it is of order 1 in time and 2
in space. If we suppose that (6.11) holds, then the terms in ∆t and (∆x)2 cancel out since

∂2v

∂t2
= γ

∂3v

∂t∂x2
= γ2 ∂

4v

∂x4
.

Thus, the explicit scheme is of order 2 in time and 4 in space. �

Definition 6.3 (Stability). A finite difference scheme is stable with respect to the norm ‖ ‖r
defined by

‖u(k)‖r :=

( N∑
j=1

∆x|ukj |r
) 1
r

, 1 ≤ r ≤ +∞, (6.13)

where u(k) is given by (6.6), if there exists a positive constant C independent of ∆t and ∆x such
that

‖u(k)‖r ≤ C‖u(0)‖r for all k ≥ 0. (6.14)

Note that
‖u(k)‖∞ := sup

1≤j≤N
|ukj |.

Definition 6.4 (Linear scheme). A finite difference scheme defined by (6.9) is said to be

linear if (6.9) is linear with respect to its arguments uk+m
j+n .

If a finite difference scheme is linear, then it can be written in the form

u(k+1) = Au(k), (6.15)

where A is the iteration matrix. From (6.15), it follows that

u(k+1) = Ak+1u(0),

and therefore, the stability of (6.15) is equivalent to

‖Aku(0)‖r ≤ C‖u(0)‖r, for all k ≥ 0 and u(0) ∈ RN . (6.16)

Introduce the matrix norm

‖M‖r = sup
u∈RN ,u 6=0

‖Mu‖r
‖u‖r

.

The stability of (6.15) with respect to ‖ ‖r is equivalent to

‖Ak‖r ≤ C, for all k ≥ 0.

6.2.2.1. Stability in the L∞ norm. Introduce the implicit scheme

uk+1
j − ukj

∆t
+ γ
−uk+1

j−1 + 2uk+1
j − uk+1

j+1

(∆x)2
= 0 (6.17)

for k ≥ 0 and j ∈ {1, . . . , N}. The scheme (6.17) is well defined since u(k+1) can be obtained from
u(k) by inverting the definite positive matrix

1 + 2µ −µ
−µ 1 + 2µ −µ

−µ 1 + 2µ −µ
. . .

. . .
. . .

−µ 1 + 2µ −µ
−µ 1 + 2µ


. (6.18)

Theorem 6.5. (i) The explicit scheme (6.4) is stable with respect to the L∞ norm if
and only if the following Courant-Friedrichs-Lewy (CFL) condition holds:

2γ∆t ≤ (∆x)2. (6.19)
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(ii) The implicit scheme (6.17) is unconditionally stable with respect to the L∞ norm.

6.2.2.2. Stability in the L2 norm. In order to investigate the stability of a finite difference
scheme for solving the heat equation with the respect to the L2 norm, we consider (6.1) with the
periodic boundary conditions

u(t, x+ 1) = u(t, x) for all x ∈ [0, 1], t ≥ 0.

For any u(k) = (ukj )j=0,...,N , we associate a piecewise constant function u(k)(x), periodic with
period 1, defined on [0, 1] by

u(k)(x) := ukj for xj− 1
2
< x < xj+ 1

2
,

where

xj+ 1
2

= (j +
1

2
)∆x, j = 0, . . . , N, x− 1

2
= 0, xN+1+ 1

2
= 1.

The Fourier series of u(k) reads
u(k)(x) =

∑
n∈Z

û(k)
n e2πinx,

where

û(k)
n :=

∫ 1

0

u(k)(x)e−2πinx dx.

Moreover, by Plancherel’s formula, we have∫ 1

0

|u(k)(x)|2 dx =
∑
n∈Z
|û(k)
n |2.

Furthermore, an important property of Fourier series of periodic functions is that

v(k)(x) = u(k)(x+ ∆x)⇒ v̂(k)
n = û(k)

n e2πin∆x.

With this notation, one can rewrite the explicit scheme (6.4) in the form

uk+1(x)− uk(x)

∆t
+ γ
−uk(x−∆x) + 2uk(x)− uk(x+ ∆x)

(∆x)2
= 0. (6.20)

Applying the Fourier transform yields

û(k+1)
n =

(
1− γ∆t

(∆x)2
(e−2πin∆x + 2− e2πin∆x)

)
û(k)
n ,

or equivalently,

û(k+1)
n = α(n)û(k)

n = α(n)k+1û(0)(n) with α(n) := 1− 4γ∆t

(∆x)2
(sin(πn∆x))2.

Therefore, û
(k)
n is bounded as k → +∞ if and only if the amplification factor α(n) satisfies

|α(n)| ≤ 1 for all n ∈ Z.
Similarly, the implicit scheme (6.17) can be rewritten in the form

uk+1(x)− uk(x)

∆t
+ γ
−uk+1(x−∆x) + 2uk+1(x)− uk+1(x+ ∆x)

(∆x)2
= 0. (6.21)

Again, by applying the Fourier transform, it follows that

û(k+1)
n = β(n)û(k)

n = β(n)k+1û(0)(n),

where

β(n) :=

(
1 +

4γ∆t

(∆x)2
(sin(πn∆x))2

)−1

.

Theorem 6.6. (i) The explicit scheme (6.4) is stable with respect to the L2 norm if and
only if the CFL condition (6.19) holds.

(ii) The implicit scheme (6.17) is unconditionally stable with respect to the L2 norm.
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6.2.3. Convergence.

Theorem 6.7 (Lax theorem). Let u be a smooth solution of the heat equation (6.1). Suppose
that the finite difference scheme for computing the numerical solution ukj is linear, consistent, and

stable with respect to the norm ‖ ‖r. Let ekj := ukj −u(tk, xj) and e(k) = (ek1 , e
k
2 , . . . , e

k
N )>. Assume

that u0
j = u0(xj). Then,

lim
∆t,∆x→0

(
sup
tk≤T

‖e(k)‖r
)

= 0 for all T > 0.

Moreover, if the scheme is of order p in time and q in space, then there exists a constant CT > 0
such that

sup
tk≤T

‖e(k)‖r ≤ CT
(
(∆t)p + (∆x)q

)
.

Proof. Let u(k+1) = Au(k), where A is the iteration matrix, and let ũkj = u(tk, xj). Since the

scheme is consistent, there exists ε(k) such that

ũ(k+1) = Aũ(k) + (∆t)ε(k) and lim
∆t,∆x→0

‖ε(k)‖r = 0, (6.22)

uniformly in k. If the scheme is of order p in time and q in space, then

‖ε(k)‖r ≤ C((∆t)p + (∆x)q
)
.

By subtracting (6.22) from (6.15), we obtain

e(k+1) = Ae(k) −∆tεk, (6.23)

and therefore, by induction,

e(k) = Ake(0) −∆t

k∑
l=1

Ak−lεl−1. (6.24)

The stability of the scheme yields

‖Ak‖r ≤ C ′

for some positive constant C ′. Therefore, since e(0) = 0, (6.24) yields

‖e(k)‖r ≤ (∆t)kCC ′((∆t)p + (∆x)q
)
≤ TCC ′((∆t)p + (∆x)q

)
. (6.25)

The proof is then complete. �

6.3. Numerical algorithms for the wave equation

Consider the wave equation

∂2u

∂t2
= c2

∂2u

∂x2
, 0 < x < 1, t ≥ 0,

u(t, x+ 1) = u(t, x), 0 < x < 1, t ≥ 0,

u(0, x) = u0(x), 0 < x < 1,

∂u

∂t
(0, x) = u1(x), 0 < x < 1,

(6.26)

where c > 0 is the wave speed.
Suppose that ∫ 1

0

u1(x) dx = 0. (6.27)
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A standard finite difference scheme for solving (6.26) is the θ-centered scheme
uk+1
j − 2ukj + uk−1

j

(∆t)2
+ θc2

−uk+1
j−1 + 2uk+1

j − uk+1
j+1

(∆x)2

+(1− 2θ)c2
−ukj−1 + 2ukj − ukj+1

(∆x)2
+ θc2

−uk−1
j−1 + 2uk−1

j − uk−1
j+1

(∆x)2
= 0,

(6.28)

where 0 ≤ θ ≤ 1/2.
If θ = 0, then the scheme is explicit, while it is implicit if θ 6= 0.
The initial conditions can be expressed by

u0
j = u0(xj) and

u1
j − u0

j

∆t
=

∫ xj+1/2

xj−1/2

u1(x) dx,

which shows that (6.27) is satisfied by the numerical solution.

Theorem 6.8. If 1/4 ≤ θ ≤ 1/2, then the θ-centered scheme (6.28) is unconditionally stable
with respect to the L2 norm. If 0 ≤ θ < 1/4, (6.28) is stable provided that the CFL condition

c∆t

∆x
<

√
1

1− 4θ
(6.29)

holds and is unstable if c∆t/∆x > 1/
√

1− 4θ.

6.4. Numerical algorithms for the Hamilton-Jacobi equation in one dimension

Consider the Hamiltonian-Jacobi equation
∂u

∂t
+H(

∂u

∂x
) = 0, x ∈ R, t ≥ 0,

u(0, x) = u0(x), x ∈ R,
(6.30)

where H(y) = y2 .
Consider the upwind scheme

uk+1
j = ukj −

∆t

∆x
H
(ukj − ukj−1

∆x

)
. (6.31)

Introduce

v =
∂u

∂x
.

Then, v solves 
∂v

∂t
+

∂

∂x
(H(v)) = 0, x ∈ R, t ≥ 0,

v(0, x) = v0(x) =
∂u0

∂x
, x ∈ R.

(6.32)

The upwind scheme for solving (6.32) is

vk+1
j = vkj −

∆t

∆x

(
H(vkj )−H(vkj−1)

)
. (6.33)

The scheme (6.33) is related to (6.31) via the corresponding substitution:

ukj+1 − ukj
∆x

= vkj . (6.34)

Problem 6.9. Consider the advection equation
∂u

∂t
= −v ∂u

∂x
, 0 < x < 1, t ≥ 0,

u(t, x+ 1) = u(t, x), 0 < x < 1, t ≥ 0,

u(0, x) = u0(x), 0 < x < 1,

(6.35)
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where v > 0.

(i) Prove that the centered explicit scheme

uk+1
j − ukj

∆t
+ v

ukj+1 − ukj−1

2∆x
= 0

is unconditionally unstable in L2.
(ii) Prove that the Lax-Friedrichs scheme

2uk+1
j − ukj+1 − ukj−1

2∆t
+ v

ukj+1 − ukj−1

2∆x
= 0

is consistent if ∆t/∆x is constant as ∆t,∆x→ 0, stable in L2 under the CFL condition

v∆t ≤ ∆x, (6.36)

and of order 1 in time and space.
(iii) Prove that the Lax-Wendroff scheme

uk+1
j − ukj

∆t
+ v

ukj+1 − ukj−1

2∆x
− v2∆t

2

ukj−1 − 2ukj + ukj+1

(∆x)2
= 0

is consistent, stable in L2 under the CFL condition (6.36), and is of order 2 in time and
space.

(iv) Prove that the leapfrog scheme

uk+1
j − uk−1

j

2∆t
+ v

ukj+1 − ukj−1

2∆x
= 0

is consistent and is stable in L2 under the CFL condition

v∆t ≤M∆x, (6.37)

with M < 1.





CHAPTER 7

Stochastic differential equations

7.1. Introduction

Stochastic differential equation models play a prominent role in a range of applications areas,
including biology, chemistry, and finance. In this chapter, we keep the theory to a minimum and
explain how to apply Euler’s method to a simple stochastic differential equation and discuss the
concept of convergence from practical point of view.

7.2. Langevin equation

In this section we consider the Langevin equation (1.6), which is a linear stochastic ODE of
order 1.

For a random variable x, we denote E[x] the mean-value of x and

V (x) := E[|x− E(x)|2] = E[x2]− E[x]2

the variance of x. If x has a Gaussian (or normal) distribution, with mean m and variance σ2, we
write x is an N(m,σ2) random variable.

A collection {x(t) : t ≥ 0} of random variables is called a stochastic process.

Definition 7.1. A real-valued stochastic process W is called a Brownian motion if

(i) W (0) = 0 almost surely,
(ii) W (t)−W (s) is an N(0, t− s) random variable for all t ≥ s ≥ 0,
(iii) for all times 0 < t1 < t2 < . . . < tn, the random variables W (t1),W (t2)−W (t1), . . . ,W (tn)−

W (tn−1)are independent.

Note in particular that if W is a Brownian motion, then

E[W (t)] = 0, E[W (t)] = t for each time t ≥ 0.

In (1.6), we write η(t) = σξ(t), where σ is a diffusion coefficient and ξ(·) is white noise, and
interpret this to mean {

dx = −ax dt+ σdW,

x(0) = x0,
(7.1)

for some initial distribution x0 such that V [x0] < +∞.
The solution to (7.1) is

x(t) = e−atx0 + σ

∫ t

0

e−a(t−s) dW, t ≥ 0. (7.2)

Observe that

E[x(t)] = e−atE[x0]

87
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and

E[x2(t)] = E[e−2atx2
0 + 2σe−atx0

∫ t

0

e−a(t−s)dW + σ2(

∫ t

0

e−a(t−s)dW )2]

= e−2atE[x2
0] + 2σe−atE[x0]E[

∫ t

0

e−a(t−s)dW ] + σ2

∫ t

0

e−2a(t−s) ds

= e−2atE[x2
0] +

σ2

2a
(1− e−2at).

Thus the variance V [x(t)] is given by

V [x(t)] = e−2atV [x0] +
σ2

2a
(1− e−2at).

Therefore, we have

E[x(t)]→ 0, V [x(t)]→ σ2

2a
, t→ +∞. (7.3)

From the explicit form (7.2) of the solution, we see that the distribution of x(t) approaches N(0, σ
2

2a )
as t→ +∞.

7.3. Ornstein-Uhlenbeck equation

For any initial distribution x0, the solution of the Langevin (7.1) for large time is approximately
a Gaussian distribution whose variance σ2/(2a) represents a balance between the random disturbing
force σξ(·) and the friction damping force −ax(·).

A better model of Brownian movement is provided by the Ornstein-Uhlenbeck equation{
d2y
dt2 = −adydt + σξ,

y(0) = y0,
dy
dt (0) = y1,

(7.4)

where y(t) is the position of Brownian particle at time t, y0 and y1 are given Gaussian random
variables. As before, a > 0 is the friction coefficient, σ is the diffusion coefficient, and ξ(·) is white
noise.

Then x := dy/dt satisfies the Langevin equation{
dx = −ax dt+ σdW,

x(0) = y1.
(7.5)

Hence,

x(t) = e−aty1 + σ

∫ t

0

e−a(t−s) dW, t ≥ 0, (7.6)

and

y(t) = y0 +

∫ t

0

x(s) ds, t ≥ 0. (7.7)

Moreover,

E[y(t)] = E[y0] +

∫ t

0

E[x(s)] ds

= E[y0] +

∫ t

0

e−asE[y1] ds

= E[y0] +
(1− e−at)

a
E[y1],

and

V [y(t)] = V [y0] +
σ2

a2
t+

σ2

2a3
(−3 + 4e−at − e−2at).
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7.4. Existence and uniqueness of solutions in dimension one

Suppose that f : R→ R is C1, with |f ′| ≤ Cf . Consider{
dx = f(x) dt+ σdW, t ∈ [0, T ],

x(0) = x0 ∈ R.
(7.8)

From

x(t) = x0 +

∫ t

0

f(x) ds+ σW (t), t ≥ 0. (7.9)

we construct a solution to (7.9) by the successive approximation method. We define x(0) = x0 and

x(n+1) = x(n) +

∫ t

0

f(x(n)) ds+ σW (t), t ≥ 0. (7.10)

Define

ε(n)(t) := max
0≤s≤t

|x(n+1)(s)− x(n)(s)|, n ≥ 0.

We have

ε(0)(t) = max
0≤s≤t

∣∣ ∫ s

0

f(x(τ))dτ + σW (s)
∣∣ ≤ C,

for some constant C and, for n ≥ 1,

ε(n)(t) = max
0≤s≤t

∣∣ ∫ s

0

f(x(n+1)(s))− f(x(n)(s)) ds
∣∣

≤ Cf

∫ t

0

ε(n)(s) ds

≤ Cf

∫ t

0

C
Cn−1
f sn−1

(n− 1)!
ds by the induction assumption

= C
Cnf t

n

n!
.

Hence, for m ≥ n,

max
0≤t≤T

|x(m)(t)− x(n)(t)| ≤ C
+∞∑
l=n

ClfT
l

l!
as n→ +∞.

Therefore, x(n) converges uniformly for 0 ≤ t ≤ T to a limit process x(·) which solves (7.8).
Thus the following result holds.

Theorem 7.2. Assume that f : R → R is C1, with |f ′| ≤ Cf . The stochastic differential
equation (7.8), where W is a Brownian motion, has a unique solution.

7.5. Numerical solution of stochastic differential equations

We first consider discretized Brownian motion, where W (t) is specified at discrete t values. We
thus set ∆t = T/K for some positive integer K and let W k denote W (tk) with tk = k∆t. From
Definition 7.1, we have W 0 = 0 with probability 1, and

W k+1 = W k + dW k+1, k = 0, . . . ,K − 1, (7.11)

where each dW k is an independent random variable of the form
√

∆tN(0, 1).

On the other hand, the stochastic integral
∫ T

0
h(t)dW (t) can be approximated by the Riemann

sum
K−1∑
k=0

h(tk)(W (tk+1)−W (tk)). (7.12)
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Note that an alternative to the Riemann sum (7.12) is

K−1∑
k=0

h(
tk + tk+1

2
)(W (tk+1)−W (tk)). (7.13)

The Euler-Maruyama method Euler-Maruyama method for solving (7.8) over [0, T ] takes
the form

xk+1 = xk + ∆tf(xk) + σ(W k+1 −W k), k = 0, . . . ,K − 1. (7.14)

Note that in the deterministic case (σ = 0), (7.14) reduces to explicit Euler’s method (4.17).

Definition 7.3. A numerical method is said to have a strong order of convergence equal to γ
if there exists a constant C such that

E[|xk − x(tk)|] ≤ C(∆t)γ

for any fixed k = 0, . . . ,K, and ∆t small.

It can be shown that the Euler-Maruyama method (7.14) has strong order of convergence
γ = 1/2, which, in view of Theorem 4.7, marks a departure from the deterministic setting.

Problem 7.4. Consider the equation{
dx = ax dt+ bxdW, t ∈ [0, T ],

x(0) = x0 ∈ R,
(7.15)

where a and b are real constants and W is a Brownian motion.

(i) Prove that

x(t) = x0e
(a− b22 )t+bW (t), t ∈ [0, T ].

(ii) Apply the Euler-Maruyama method for solving (7.15).

Problem 7.5. Consider the system of equations
dp = q dt,

dq = −pdt+ dW (t),

p(0) = p0, q(0) = q0 ∈ R,
(7.16)

where p0 and q0 are independent of the Brownian motion W .

(i) Apply the Euler-Maruyama method for solving (7.16).
(ii) Generalize the leapfrog method (5.7) to (7.16).
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convergence, 42, 58
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Euler-Maruyama method, 90

exact equation, 10

explicit Euler scheme, 44

explicit one-step method, 41

explicit scheme, 80

exponential of a matrix, 27

finite difference method, 79

flow, 14

Fourier analysis, 82

fourth-order Runge-Kutta method, 50

fundamental matrix, 32

geometrical numerical integration, 65

global error, 42

gradient system, 16

Gronwall’s lemma, 19

Hamilton-Jacobi equation, 17, 62

Hamiltonian, 12

Hamiltonian system, 12

Hamiltonian-Jacobi equation, 17, 84

heat equation, 79

Helmholtz equation, 62

implicit Euler’s scheme, 48

implicit scheme, 82

improved Euler scheme, 47

inner expansion, 62

integral equation method, 45

invariant, 12

invariant preserving, 69

Jacobi’s formula, 39, 70

Jordan-Chevalley decomposition, 27

Lagrange interpolating polynomial, 51

Lagrange interpolation formula, 51

Langevin equation, 87

Lax theorem, 83

Lax-Friedrichs scheme, 85

Lax-Wendroff scheme, 85

leapfrog method, 67, 85

linear scheme, 81

Liouville’s theorem, 70

Lipschitz condition, 20

local stability, 36

long-time behavior, 76

Lyapunov function, 37

matching condition, 61

method of integrating factors, 9

midpoint rule, 47

midpoint scheme, 47

multi-step method, 55

numerical flow, 66

numerical integration formula, 46

order, 43, 54, 80

Ornstein-Uhlenbeck equation, 88

outer expansion, 61

perturbation theory, 59

Poincaré’s theorem, 14

propagation matrix, 69

reversibility, 68

Riccati equation, 8

round off error, 44

Runge-Kutta method, 49

Schrödinger equation, 62

Simpson’s rule, 46

singular perturbation theory, 60

spectral radius, 53

splitting method, 72

93



94 INDEX

stability, 42, 53, 58, 81

stiff equation, 58

stochastic process, 87
strong continuity theorem, 23

structure preserving method, 65

successive approximation method, 89
symmetry, 68

symplectic linear mapping, 14

symplectic method, 65
symplectic Runge-Kutta method, 73

time-reversal symmetry, 69
transport equation, 63

Trapezoidal rule, 46

Trapezoidal scheme, 46, 47
truncation error, 41

upwind scheme, 84

volume preserving, 71

wave equation, 83
Wronskian determinant, 30
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