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Problem 1 A Parameter-Dependent Method
Consider the following family of single-step methods, depending on the real parameter α,

Ψhy0 := y0 + h
(
1− α

2

)
f(0,y0) + h

α

2
f(h,Ψhy0). (1.1)

(1a) Write down the Butcher scheme of (??). For which value of α is (??) consistent?

Solution:
0 0 0
1 1-α/2 α/2

1-α/2 α/2

The method is always consistent, since
∑
bi = 1.

(1b) Investigate the maximal order of convergence of (??) with respect to α.

Solution: The method has order of convergence of at least one due to ??. It has order two if∑
bici = 0.5, i.e. if α = 1. It does not attain order three, since for α = 1 we see that

∑
bic

2
i 6= 1

3
.

(1c) Deduce the stability function of (??). For which value of α is the method A-stable? What
about L-stability?

Solution:
S(z) =

1 + z(1− α/2)
1− zα/2

.

Let z = x+ iy, then

|S(z)| < 1⇐⇒ |S(z)|2 < 1

⇐⇒
∣∣∣1 + z

(
1− α

2

)∣∣∣2 < ∣∣∣1− zα

2

∣∣∣2
⇐⇒

(
1 + x

(
1− α

2

))2
+
(
1− α

2

)2
y2 <

(
1− xα

2

)2
+
α2

4
y2

⇐⇒ (1− α)x2 + 2x+ (1− α)y2 < 0.

A-stability is only satisfied if 1 − α < 0, thus if α > 1. For L-stability, we need that also
1 − α/2 = 0, thus α = 2 (which implies that the numerator of S(z) is a polynomial of order
zero).
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(1d) Write the function

y1 = parameterstep(t0,y0,h,alpha,f,Df),

which executes one step of the method (??). The inputs f and Df are function-handles and
correspond to the right-hand side f(t,y) and its derivative Dyf(t,y). Since the method can be
implicit, equation (??) should be solved with one iteration of Newton’s method. Use y0 as the
initial value for the Newton iteration.

Solution:

Listing 1.1: Solution of ??
1 f u n c t i o n y1 = parameterstep(t0,y0,h,alpha,f,Df)
2

3 % Function for root finding

4 F=@(y) y - y0 - h*(1-alpha/2)*f(t0,y0)-h*alpha/2*f(t0+h,y);
5

6 % Its derivative

7 DF = @(y) eye( l e n g t h(y))-h*alpha/2*Df(t0+h,y);
8

9 % Newton step

10 y1 = y0 - DF(y0)\F(y0);
11

12 end

Listing 1.2: Testcalls for ??
1 MISSING!

Listing 1.3: Output for Testcalls for ??
1 MISSING!
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Problem 2 Composition Methods
Let Ψh be the discrete evolution operator of a consistent single-step method for an autonomous
IVP

ẏ = f(y), y0 = y(0).

The discrete evolution Ψ̃h of the composition method Ψh with real step-sizes γ1h, γ2h and γ3h
is defined by

Ψ̃h := Ψγ3h ◦Ψγ2h ◦Ψγ1h. (2.1)

(2a) Prove that Ψ̃h is consistent of order p + 1, provided Ψh is consistent of order p and p is
even,

γ1 + γ2 + γ3 = 1, und γp+1
1 + γp+1

2 + γp+1
3 = 0. (2.2)

HINT: The order p must be even, because otherwise (??) would have no real roots.

Solution: It holds that (for γ1 + γ2 + γ3 = 1)

Φhy0 − Ψ̃hy0 = Φγ3hΦγ2h+γ1hy0 −Ψγ3hΦγ2h+γ1hy0

+ Ψγ3hΦγ2h+γ1hy0 −Ψγ3hΨγ2hΨγ1hy0

≤ C
(
Φγ2h+γ1hy0

)
γp+1
3 hp+1

+ (I +O(h))(Φγ2h+γ1hy0 −Ψγ2hΨγ1hy0) +O(hp+2)

≤ C
(
Φγ2h+γ1hy0

)
γp+1
3 hp+1 + C

(
Φγ1hy0

)
γp+1
2 hp+1

+ (I +O(h))(Φγ1hy0 −Ψγ1hy0) +O(hp+2)

≤ C
(
Φγ2h+γ1hy0

)
γp+1
3 hp+1 + C

(
Φγ1hy0

)
γp+1
2 hp+1

+ C(y0)γ
p+1
1 hp+1 +O(hp+2).

From Φγihy0 = y0 +O(h) we can deduce C
(
Φγihy0

)
= C(y0) +O(h). The condition γp+1

1 +

γp+1
2 + γp+1

3 = 0 then causes the term hp+1 to vanish.

(2b) Let Ψh be reversible (i.e., Ψh ◦Ψ−hy = Ψ−h ◦Ψhy = y, see [?, Def. 2.1.27]). Find γ1,
γ2 and γ3, such that Ψ̃h is reversible as well. What is the maximal order of convergence for Ψ̃h?

Solution: Ψ̃h can only be reversible if γ1 = γ3. This implies (recall that p has to be even) that

γ1 = γ3 =
1

2− 21/(p+1)
, γ2 =

−21/(p+1)

2− 21/(p+1)
.

For the second question, ?? implies p+1. However, since reversible methods have an even order
of convergence, this automatically improves to p+ 2.

(2c) Determine empirically the order of convergence for the composition method based on the
Störmer–Verlet method with parameters

γ1 = γ3 =
1

2− 21/3
, γ2 =

−21/3

2− 21/3
.

Conduct an experiment with the Kepler problem, which is described by the Hamiltonian

H(p1, p2, q1, q2) =
1

2
(p21 + p22)−

1√
q21 + q22

.
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The initial values are

q1(0) = 1− e, q2(0) = p1(0) = 0, p2(0) =

√
1 + e

1− e
,

where e = 0.6 and the integration interval is [0, 7.5]. Calculate the error at the end time for step
sizes h = 2−4, . . . , 2−8 and determine the algebraic convergence rate. The reference solution is
given in the template composition.m.

Solution: The Hamiltonian differential equation is{
q̇ = p,
ṗ = −(q21 + q22)

−3/2q.

The approximate algebraic convergence rate is 3.9678.

Listing 2.1: Solution to ??
1 f u n c t i o n [p,q] = stoermerverlet(h,p,q,g)
2

3 % One step of the Stoermer-Verlet method

4

5 p05 = p + h/2*g(q);
6

7 q = q + h*p05;
8

9 p = p05 + h/2*g(q);
10

11 end

Listing 2.2: Solution to ??
1 f u n c t i o n composition
2 c l o s e a l l
3

4 % Parameters

5 gamma1 = 1/(2-2ˆ(1/3));
6 gamma3 = gamma1;
7 gamma2 = -2ˆ(1/3)/(2-2ˆ(1/3));
8

9 e = 0.6;
10

11 % Initial values

12 q0 = [1-e;0];
13 p0 = [0; s q r t((1+e)/(1-e))];
14

15 % Reference solution

16 qref = [-0.828164402690770818204757585370;
17 0.778898095658635447081654480796];
18 pref = [-0.856384715343395351524486215030;
19 -0.160552150799838435254419104102];
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20

21 % Step-sizes

22 h = 2.ˆ-(4:8);
23

24 % Right-hand side

25 g = @(q) -(q(1)ˆ2+q(2)ˆ2)ˆ(-3/2)*q;
26

27 err=z e r o s( s i z e(h));
28 % For all step-sizes...

29 f o r jj = 1: l e n g t h(h)
30

31 % ...apply the Stoermer-Verlet method...

32 p = p0;
33 q = q0;
34

35 f o r ii=1:7.5/h(jj)
36

37 [p,q] = stoermerverlet(gamma1*h(jj),p,q,g);
38 [p,q] = stoermerverlet(gamma2*h(jj),p,q,g);
39 [p,q] = stoermerverlet(gamma3*h(jj),p,q,g);
40

41 end
42

43 % ...and determine the error

44 err(jj) = norm([qref;pref]-[q;p]);
45 end
46

47 f i g u r e;
48 l o g l o g(h,err,’*-’);
49

50 % Determine the convergence rate

51 fit = p o l y f i t( l o g(h), l o g(err),1);
52 f p r i n t f(’Algebraic convergence rate = %2.4f\n’,fit(1));
53

54 end

Composition with the adjoint Method

Composition methods like (??) are only defined for an even p. For odd orders of convergence, it
is possible to construct compositions with the adjoint method. The adjoint evolution operator

y1 = Ψ
h
y0

of a single-step method Ψh is implicitly defined by

Ψ−hy1 = y0
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(recall that for reversible methods, we have Ψ
h
= Ψh). The discrete evolution Ψ̂h of the compo-

sition method with the adjoint of Ψh is defined by

Ψ̂h := Ψh/2 ◦Ψ
h/2
.

(2d) Determine the Butcher scheme of the composition method with the adjoint of the implicit
Euler method.

Solution: The implicit Euler method is

Ψhy0 = y0 + hf(y1).

Its adjoint is
Ψ
h
y0 = y0 + hf(y0).

The composition method is thus{
ỹ = y0 +

h
2
f(y0)

y1 = ỹ + h
2
f(y1) = y0 +

h
2
f(y0) +

h
2
f(y1).

This is exactly the implicit trapezoidal rule, whose Butcher scheme is

0 0 0
1 1/2 1/2

1/2 1/2
.

(2e) Show that the composition of the explicit Euler method with its adjoint results in the
implicit mid-point rule.

Solution: The explicit Euler scheme is

Ψhy0 = y0 + hf(y0),

whereas its adjoint is
Ψ
h
y0 = y0 + hf(y1).

Together, the composition is {
ỹ = y0 +

h
2
f(ỹ)

y1 = ỹ + f
2
f(ỹ) = y0 + hf(ỹ).

Define k := f(ỹ). We have that {
k = f(ỹ) = f(y0 +

h
2
k),

y1 = y0 + hk,

which is the implicit mid-point rule, as claimed.
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(2f) Show that, for the ODE
q̇ = p, ṗ = g(q),

with locally Lipschitz function g, the composition method of the symplectic Euler method{
q1 = q0 + hp0 ,

p1 = p0 + hg(q1) ,

with its adjoint is the Störmer–Verlet method.

Solution: The adjoint method is {
q1 = q0 + hp1,

p1 = p0 + hg(q0).

The composition method is 
q̃ = q0 +

h
2
p̃,

p̃ = p0 +
h
2
g(q0) =: p1/2,

q1 = q̃ + h
2
p̃ = q0 + hp1/2,

p1 = p̃+ h
2
g(q1) = p1/2 +

h
2
g(q1),

which is the Störmer-Verlet method.
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Problem 3 Perturbation Theory for DAEs
A DAE of the form {

y′ = z
0 = (1− y2)z − y (3.1)

can be approximated by {
y′ = z
εz′ = (1− y2)z − y (3.2)

with 0 < ε � 1. We speak of smooth solutions to (??), if the functions y and z have a Taylor
expansion ε; or in other words, that there exist functions y0, y1, z0, z1, such that

y(t) = y0(t) + εy1(t) +O(ε2)
z(t) = z0(t) + εz1(t) +O(ε2)

holds for all times t.

(3a) What is the index of the DAE (??)?

Solution: It has index one for y 6= 1, since

Dzc(y, z) = 1− y2.

(3b) Show that the functions y0, y1, z0 and z1 satisfy the following differential equations{
y′0 = z0,
0 = (1− y20)z0 − y0,

{
y′1 = z1,
z′0 = (1− y20)z1 − y1 − 2y0y1z0.

Solution: By inserting the Taylor expansions in (??), we see that
y′0 + εy′1 = z0 + εz1 +O(ε2),
εz′0 = (1− y20 − 2εy0y1)(z0 + εz1)− y0 − y1ε+O(ε2)

= (1− y20)z0 − y0 + ε(−2y0y1z0 + z1(1− y20)− y1) +O(ε2).

Since this holds for all ε in some interval [0, ε0], we arrive at the result by comparing coefficients.

(3c) The perturbed problem (??) has a smooth solution if the initial value of z is adapted to the
initial value of y. Determine the initial values of z0 and z1 in with respect to y0 for the choice of

y(0) = y0(0).

HINT: The differential equations from ?? hold for all times t ≥ 0.

Solution: The equation
0 = (1− y0(t)2)z0(t)− y0(t),

implies

z0(t) =
y0(t)

1− y0(t)2
∀t,

and thus

z0(0) =
y0(0)

1− y0(0)2
.
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The derivative of z0(t) is

z′0(t) = ... = z0(t)
1 + y20(t)

(1− y20(t))2
.

From y(0) = y0(0), we see that y1(0) = 0, and therefore

z1(0) = ... = y0(0)
1 + y0(0)

2

(1− y0(0)2)5
,

since
z′0(t) = (1− y0(t)2)z1(t)− y1(t)− 2y0(t)y1(t)z0(t) ∀t.

(3d) Write a MATLAB-function referencesol, which calculates the solution to the DAE
(??) with the MATLAB-integrator ode23t at time t = 0.5. Set the absolute and relative tolerance
to 10−8.

Solution:

Listing 3.1: Solution to ??
1 f u n c t i o n Y = referencesol
2

3 % End time

4 T=0.5;
5

6 % Initial value

7 y0 = 2;
8 z0 = -2/3;
9

10 % Right-hand side

11 f = @(t,y) [y(2); (1-y(1)ˆ2)*y(2)-y(1)];
12

13 % Mass Matrix

14 M = @(t,y) [1 0 ;0 0];
15

16 % Set options

17 opts = odeset(’Mass’,M,’AbsTol’,1e-8,’RelTol’,1e-8);
18

19 % Integrate

20 [˜,Y] = ode23t(f,[0 T],[y0;z0],opts);
21

22 % Read solution for end time

23 Y=Y(end,:).’;
24

25 end

(3e) Write a MATLAB-function referencesol2, which calculates the solution of the DAE
(??) at end time t = 0.5 with 1000 steps of the semi-implicit Euler method.

Solution:
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Listing 3.2: Solution to ??
1 f u n c t i o n [y,z]=referencesol2
2

3 % End time

4 T=0.5;
5

6 % Step-size

7 h=T/1000;
8

9 % Function for finding roots

10 F=@(y1,z1,y0) [y1-y0-h*z1;(1-y1ˆ2)*z1-y1];
11

12 % Its derivative

13 DF=@(y1,z1) [1, -h; -2*y1*z1-1, (1-y1ˆ2)];
14

15 % Initial value

16 y = 2;
17 z = -2/3;
18

19 % The semi-implicit Euler method

20 f o r ii=1:1000
21

22 temp = [y;z]-DF(y,z)\F(y,z,y);
23 y=temp(1);
24 z=temp(2);
25

26 end
27

28 end

(3f) Complete the template epsilonconv, in which the convergence of the solution of(??)
at time t = 0.5 with respect to ε is investigated. The DAE (??) should be solved with 1000 steps
of the semi-implicit Euler method.

Solution:

Listing 3.3: Solution to ??
1 f u n c t i o n epsilonconv
2

3 % End time

4 T=0.5;
5

6 % Initial value (z0 depends on epsilon!)

7 y0 = 2;
8 z0 = @(t) -2/3+10/81*t-292/2187*tˆ2-1814/19683*tˆ3;
9

10 % Different values of epsilon

Exam Summer 2014 Page 10 Problem 3



11 epsilon = 2.ˆ-(5:12);
12

13 % Reference solution

14 YREF = [1.596664988001934; -1.030545866002973];
15

16 % Number of steps

17 N = 1000;
18

19 % Step size

20 h=T/N;
21

22 % Function for finding roots

23 F = @(y1,z1,y0,z0,epsilon) [y1-y0-h*z1;
z1-z0-h/epsilon*((1-y1ˆ2)*z1-y1)];

24

25 % Its derivative

26 DF = @(y1,z1,epsilon) [1, -h; -h/epsilon*(-2*y1*z1-1),
1-h/epsilon*(1-y1ˆ2)];

27

28 % Allocate memory

29 err=z e r o s(1, l e n g t h(epsilon));
30

31 % For all values of epsilon...

32 f o r ii = 1: l e n g t h(epsilon)
33

34 % ...integrate with semi-implicit Euler method...

35 y=y0;
36 z=z0(epsilon(ii));
37

38 f o r jj = 1:N
39 temp=[y;z]-DF(y,z,epsilon(ii))\F(y,z,y,z,epsilon(ii));
40 y=temp(1);
41 z=temp(2);
42 end
43

44 % ...and determine the error

45 err(ii) = norm(YREF-temp);
46

47 end
48

49 % Suitable plot of the errors

50 f i g u r e;
51 l o g l o g(epsilon,err,’*-’);
52

53 % Determine the convergence rate

54 p= p o l y f i t( l o g(epsilon), l o g(err),1);
55 f p r i n t f(’rate = %2.4f\n’,p(1));
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Listing 3.4: Testcalls for ??
1 MISSING!

Listing 3.5: Output for Testcalls for ??
1 MISSING!
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Problem 4 Stability Regions of ODE-Integrators
The goal of this problem is to plot the stability regions of the MATLAB-integrators ode45 and
ode23s.

(4a) Assuming you want to plot the stability function of a single-step method, but you have
only an implementation and no explicit information about the discrete evolution Ψ. Develop and
explain a strategy to tackle this problem. You may assume that the first line of the implementation
is

function y1 = discreteEvolution(y0,f,h).

The inputs y0, f and h correspond to the initial value, the right-hand side and the step-size. The
output y1 is the discrete solution after one step.

Solution: y1 = S(hλ)y0, thus S(z) = discreteEvolution(1,@(t,y) z*y,1).

(4b) Now we want to plot the stability region of ode23s. The difficulty here is, that this inte-
grator uses adaptive step-sizes. Modify and explain your strategy from ?? accordingly. Complete
the template ODEstability23s.

Solution: ode23s ist A-stable.

Listing 4.1: Solution to ??
1 f u n c t i o n ODEstability23s
2

3 [X,Y] = meshgrid(-30:5:30);
4

5 % Create complex mesh

6 Z=X+1i*Y;
7

8 % Integration interval for ODE

9 T = [0 1];
10

11 % Evaluate stability function S on grid

12 L = l e n g t h(X);
13 Z = reshape(Z,Lˆ2,1);
14

15 opts = odeset(’AbsTol’,100,’RelTol’,100,’stats’,’on’);
16 [t,Sz] = ode23s(@(t,y) Z.*y,[0 1],ones(Lˆ2,1),opts);
17

18 % Read the discrete solution after one step

19 Sz = Sz(2,:).’;
20 Sz = reshape(Sz,L,L);
21

22 % Take into account the influence of time on X and Y

23 % and update these accordingly

24 X = t(2)*X;
25 Y = t(2)*Y;
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26

27 % Call contourf() with level lines abs(S) = 0:0.1:1

28 f i g u r e;
29 contourf(X,Y, abs(Sz), [0:0.1:1]);
30

31 colormap(hot);
32 c o l o r b a r;
33

34 x l a b e l(’Re’);
35 y l a b e l(’Im’);
36 a x i s square;
37 gr id on;

HINT: Choose high absolute and relative tolerances (100 is a good choice). Check how many
successful steps are listed in the command window and at which times the discrete evo-
lution was calculated.

(4c) Use your strategy from ?? to plot the stability region of ode45. Set the absolute and
relative tolerance to ∞ (inf in MATLAB) and observe how many successful steps are
shown in the command window and at which times the discrete evolution was calculated.

Solution: ode45 has a bounded stability region.

Listing 4.2: Solution to ??
1 f u n c t i o n ODEstability45
2

3 [X,Y] = meshgrid(-50:1:50);
4

5 % Create complex mesh

6 Z=X+1i*Y;
7

8 % Integration interval for ODE

9 T = [0 1];
10

11 % Evaluate stability function S on grid Z

12 L = l e n g t h(X);
13 Z = reshape(Z,Lˆ2,1);
14

15 opts = odeset(’AbsTol’,inf,’RelTol’,inf,’stats’,’on’);
16 [t,Sz] = ode45(@(t,y) Z.*y,T,ones(Lˆ2,1),opts);
17

18 % Read the discrete solution after one step

19 Sz = Sz(5,:).’;
20 Sz = reshape(Sz,L,L);
21

22 % Take into account the influence of time on X and Y

23 % and update these accordingly

24 X = t(5)*X;
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25 Y = t(5)*Y;
26

27 % Call contourf() with level lines abs(S) = 0:0.1:1

28 f i g u r e;
29 contourf(X,Y, abs(Sz), [0:0.1:1]);
30

31 colormap(hot);
32 c o l o r b a r;
33

34 x l a b e l(’Re’);
35 y l a b e l(’Im’);
36 a x i s square;
37 gr id on;

Listing 4.3: Testcalls for ??
1 MISSING!

Listing 4.4: Output for Testcalls for ??
1 MISSING!
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