Exam Summer 2014

Problem 1 A Parameter-Dependent Method

Consider the following family of single-step methods, depending on the real parameter α,

$$
\begin{equation*}
\boldsymbol{\Psi}^{h} \mathbf{y}_{0}:=\mathbf{y}_{0}+h\left(1-\frac{\alpha}{2}\right) \mathbf{f}\left(0, \mathbf{y}_{0}\right)+h \frac{\alpha}{2} \mathbf{f}\left(h, \boldsymbol{\Psi}^{h} \mathbf{y}_{0}\right) . \tag{1.1}
\end{equation*}
$$

(1a) Write down the Butcher scheme of (??). For which value of α is (??) consistent?

Solution:

0	0	0
1	$1-\alpha / 2$	$\alpha / 2$
	$1-\alpha / 2$	$\alpha / 2$

The method is always consistent, since $\sum b_{i}=1$.
(1b) Investigate the maximal order of convergence of (??) with respect to α.
Solution: The method has order of convergence of at least one due to ??. It has order two if $\sum b_{i} c_{i}=0.5$, i.e. if $\alpha=1$. It does not attain order three, since for $\alpha=1$ we see that $\sum b_{i} c_{i}^{2} \neq \frac{1}{3}$.
(1c) Deduce the stability function of (??). For which value of α is the method A-stable? What about L-stability?

Solution:

$$
S(z)=\frac{1+z(1-\alpha / 2)}{1-z \alpha / 2}
$$

Let $z=x+\mathrm{i} y$, then

$$
\begin{aligned}
|S(z)|<1 & \Longleftrightarrow|S(z)|^{2}<1 \\
& \Longleftrightarrow\left|1+z\left(1-\frac{\alpha}{2}\right)\right|^{2}<\left|1-\frac{z \alpha}{2}\right|^{2} \\
& \Longleftrightarrow\left(1+x\left(1-\frac{\alpha}{2}\right)\right)^{2}+\left(1-\frac{\alpha}{2}\right)^{2} y^{2}<\left(1-\frac{x \alpha}{2}\right)^{2}+\frac{\alpha^{2}}{4} y^{2} \\
& \Longleftrightarrow(1-\alpha) x^{2}+2 x+(1-\alpha) y^{2}<0 .
\end{aligned}
$$

A-stability is only satisfied if $1-\alpha<0$, thus if $\alpha>1$. For L-stability, we need that also $1-\alpha / 2=0$, thus $\alpha=2$ (which implies that the numerator of $S(z)$ is a polynomial of order zero).
(1d) Write the function
y1 = parameterstep(t0,y0,h,alpha,f,Df),
which executes one step of the method (??). The inputs f and $D f$ are function-handles and correspond to the right-hand side $\mathbf{f}(t, \mathbf{y})$ and its derivative $\mathbf{D}_{\mathbf{y}} \mathbf{f}(t, \mathbf{y})$. Since the method can be implicit, equation (??) should be solved with one iteration of Newton's method. Use y0 as the initial value for the Newton iteration.

Solution:

Listing 1.1: Solution of ??

```
function y1 = parameterstep(t0, Y0,h,alpha,f,Df)
% Function for root finding
F=@(y) Y - y0 - h*(1-alpha/2) *f (t0, Y0) -h*alpha/2*f (t0+h,y);
% Its derivative
DF = @ (y) eye(length (y)) -h*alpha/ 2*Df (t 0 +h,y);
* Newton step
y1 = y0 - DF (y0)\F(y0);
end
```


Listing 1.2: Testcalls for ??

```
MISSING!
```

Listing 1.3: Output for Testcalls for ??

```
MISSING!
```


Problem 2 Composition Methods

Let Ψ^{h} be the discrete evolution operator of a consistent single-step method for an autonomous IVP

$$
\dot{\mathbf{y}}=\mathbf{f}(\mathbf{y}), \quad \mathbf{y}_{0}=\mathbf{y}(0)
$$

The discrete evolution $\tilde{\boldsymbol{\Psi}}^{h}$ of the composition method $\boldsymbol{\Psi}^{h}$ with real step-sizes $\gamma_{1} h, \gamma_{2} h$ and $\gamma_{3} h$ is defined by

$$
\begin{equation*}
\tilde{\boldsymbol{\Psi}}^{h}:=\boldsymbol{\Psi}^{\gamma_{3} h} \circ \boldsymbol{\Psi}^{\gamma_{2} h} \circ \boldsymbol{\Psi}^{\gamma_{1} h} . \tag{2.1}
\end{equation*}
$$

(2a) Prove that $\tilde{\boldsymbol{\Psi}}^{h}$ is consistent of order $p+1$, provided $\boldsymbol{\Psi}^{h}$ is consistent of order p and p is even,

$$
\begin{equation*}
\gamma_{1}+\gamma_{2}+\gamma_{3}=1, \quad \text { und } \quad \gamma_{1}^{p+1}+\gamma_{2}^{p+1}+\gamma_{3}^{p+1}=0 . \tag{2.2}
\end{equation*}
$$

Hint: The order p must be even, because otherwise (??) would have no real roots.
Solution: It holds that (for $\gamma_{1}+\gamma_{2}+\gamma_{3}=1$)

$$
\begin{aligned}
\boldsymbol{\Phi}^{h} \mathbf{y}_{0}-\tilde{\boldsymbol{\Psi}}^{h} \mathbf{y}_{0}= & \boldsymbol{\Phi}^{\gamma_{3} h} \boldsymbol{\Phi}^{\gamma_{2} h+\gamma_{1} h} \mathbf{y}_{0}-\boldsymbol{\Psi}^{\gamma_{3} h} \boldsymbol{\Phi}^{\gamma_{2} h+\gamma_{1} h} \mathbf{y}_{0} \\
& +\boldsymbol{\Psi}^{\gamma_{3} h} \boldsymbol{\Phi}^{\gamma_{2} h+\gamma_{1} h} \mathbf{y}_{0}-\boldsymbol{\Psi}^{\gamma_{3} h} \boldsymbol{\Psi}^{\gamma_{2} h} \boldsymbol{\Psi}^{\gamma_{1} h} \mathbf{y}_{0} \\
\leq & C\left(\boldsymbol{\Phi}^{\gamma_{2} h+\gamma_{1} h} \mathbf{y}_{0}\right) \gamma_{3}^{p+1} h^{p+1} \\
& +(\mathbf{I}+\mathcal{O}(h))\left(\boldsymbol{\Phi}^{\gamma_{2} h+\gamma_{1} h} \mathbf{y}_{0}-\boldsymbol{\Psi}^{\gamma_{2} h} \boldsymbol{\Psi}^{\gamma_{1} h} \mathbf{y}_{0}\right)+\mathcal{O}\left(h^{p+2}\right) \\
\leq & C\left(\boldsymbol{\Phi}^{\gamma_{2} h+\gamma_{1} h} \mathbf{y}_{0}\right) \gamma_{3}^{p+1} h^{p+1}+C\left(\boldsymbol{\Phi}^{\gamma_{1} h} \mathbf{y}_{0}\right) \gamma_{2}^{p+1} h^{p+1} \\
& +(\mathbf{I}+\mathcal{O}(h))\left(\boldsymbol{\Phi}^{\gamma_{1} h} \mathbf{y}_{0}-\boldsymbol{\Psi}^{\gamma_{1} h} \mathbf{y}_{0}\right)+\mathcal{O}\left(h^{p+2}\right) \\
\leq & C\left(\boldsymbol{\Phi}^{\gamma_{2} h+\gamma_{1} h} \mathbf{y}_{0}\right) \gamma_{3}^{p+1} h^{p+1}+C\left(\boldsymbol{\Phi}^{\gamma_{1} h} \mathbf{y}_{0}\right) \gamma_{2}^{p+1} h^{p+1} \\
& +C\left(\mathbf{y}_{0}\right) \gamma_{1}^{p+1} h^{p+1}+\mathcal{O}\left(h^{p+2}\right) .
\end{aligned}
$$

From $\boldsymbol{\Phi}^{\gamma_{i} h} \mathbf{y}_{0}=\mathbf{y}_{0}+\mathcal{O}(h)$ we can deduce $C\left(\boldsymbol{\Phi}^{\gamma_{i} h} \mathbf{y}_{0}\right)=C\left(\mathbf{y}_{0}\right)+\mathcal{O}(h)$. The condition $\gamma_{1}^{p+1}+$ $\gamma_{2}^{p+1}+\gamma_{3}^{p+1}=0$ then causes the term h^{p+1} to vanish.
(2b) Let Ψ^{h} be reversible (i.e., $\Psi^{h} \circ \boldsymbol{\Psi}^{-h} \mathbf{y}=\boldsymbol{\Psi}^{-h} \circ \boldsymbol{\Psi}^{h} \mathbf{y}=\mathbf{y}$, see [?, Def. 2.1.27]). Find γ_{1}, γ_{2} and γ_{3}, such that $\tilde{\boldsymbol{\Psi}}^{h}$ is reversible as well. What is the maximal order of convergence for $\tilde{\boldsymbol{\Psi}}^{h}$?
Solution: $\tilde{\boldsymbol{\Psi}}^{h}$ can only be reversible if $\gamma_{1}=\gamma_{3}$. This implies (recall that p has to be even) that

$$
\gamma_{1}=\gamma_{3}=\frac{1}{2-2^{1 /(p+1)}}, \quad \gamma_{2}=\frac{-2^{1 /(p+1)}}{2-2^{1 /(p+1)}}
$$

For the second question, ?? implies $p+1$. However, since reversible methods have an even order of convergence, this automatically improves to $p+2$.
(2c) Determine empirically the order of convergence for the composition method based on the Störmer-Verlet method with parameters

$$
\gamma_{1}=\gamma_{3}=\frac{1}{2-2^{1 / 3}}, \quad \gamma_{2}=\frac{-2^{1 / 3}}{2-2^{1 / 3}}
$$

Conduct an experiment with the Kepler problem, which is described by the Hamiltonian

$$
H\left(p_{1}, p_{2}, q_{1}, q_{2}\right)=\frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}\right)-\frac{1}{\sqrt{q_{1}^{2}+q_{2}^{2}}}
$$

The initial values are

$$
q_{1}(0)=1-e, \quad q_{2}(0)=p_{1}(0)=0, \quad p_{2}(0)=\sqrt{\frac{1+e}{1-e}}
$$

where $e=0.6$ and the integration interval is $[0,7.5]$. Calculate the error at the end time for step sizes $h=2^{-4}, \ldots, 2^{-8}$ and determine the algebraic convergence rate. The reference solution is given in the template composition.m.

Solution: The Hamiltonian differential equation is

$$
\left\{\begin{array}{l}
\dot{\mathbf{q}}=\mathbf{p}, \\
\dot{\mathbf{p}}=-\left(q_{1}^{2}+q_{2}^{2}\right)^{-3 / 2} \mathbf{q} .
\end{array}\right.
$$

The approximate algebraic convergence rate is 3.9678 .
Listing 2.1: Solution to ??

```
function [p,q] = stoermerverlet (h,p,q,g)
% One step of the Stoermer-Verlet method
p05 = p + h/2*g(q);
q = q +h*p05;
p = p05 + h/2*g(q);
end
```

Listing 2.2: Solution to ??

```
function composition
close all
% Parameters
gamma1 = 1/(2-2^(1/3));
gamma3 = gamma1;
gamma2 = -2^(1/3)/(2-2^(1/3));
e = 0.6;
O Initial values
q0 = [1-e;0];
p0 = [0; sqrit((1+e)/(1-e))];
% Reference solution
qref = [-0.828164402690770818204757585370;
    0.778898095658635447081654480796];
pref = [-0.856384715343395351524486215030;
    -0.160552150799838435254419104102];
```

```
% Step-sizes
h = 2.^-(4:8);
% Right-hand side
g = @(q) - (q(1)^2+q(2)^2)^(-3/2)*q;
err=zeros(size(h));
% For all step-sizes...
for jj = 1:length(h)
    % ...apply the Stoermer-Verlet method...
    p = p0;
    q = q0;
    for ii=1:7.5/h(jj)
        [p,q] = stoermerverlet(gammal*h(jj),p,q,g);
        [p,q] = stoermerverlet(gamma2*h(jj),p,q,g);
        [p,q] = stoermerverlet(gamma3*h(jj),p,q,g);
    end
    % ...and determine the error
    err(jj) = norm([qref;pref]-[q;p]);
end
figure;
loglog(h,err,'*-');
% Determine the convergence rate
fit = polyfit(log(h), log(err),1);
fprintf('Algebraic convergence rate = %2.4f\n',fit(1));
end
```


Composition with the adjoint Method

Composition methods like (??) are only defined for an even p. For odd orders of convergence, it is possible to construct compositions with the adjoint method. The adjoint evolution operator

$$
\mathbf{y}_{1}=\overline{\mathbf{\Psi}}^{h} \mathbf{y}_{0}
$$

of a single-step method Ψ^{h} is implicitly defined by

$$
\boldsymbol{\Psi}^{-h} \mathbf{y}_{1}=\mathbf{y}_{0}
$$

(recall that for reversible methods, we have $\bar{\Psi}^{h}=\Psi^{h}$). The discrete evolution $\widehat{\Psi}^{h}$ of the composition method with the adjoint of Ψ^{h} is defined by

$$
\widehat{\boldsymbol{\Psi}}^{h}:=\boldsymbol{\Psi}^{h / 2} \circ \overline{\boldsymbol{\Psi}}^{h / 2}
$$

(2d) Determine the Butcher scheme of the composition method with the adjoint of the implicit Euler method.
Solution: The implicit Euler method is

$$
\mathbf{\Psi}^{h} \mathbf{y}_{0}=\mathbf{y}_{0}+h \mathbf{f}\left(\mathbf{y}_{1}\right) .
$$

Its adjoint is

$$
\overline{\mathbf{\Psi}}^{h} \mathbf{y}_{0}=\mathbf{y}_{0}+h \mathbf{f}\left(\mathbf{y}_{0}\right) .
$$

The composition method is thus

$$
\left\{\begin{array}{l}
\tilde{\mathbf{y}}=\mathbf{y}_{0}+\frac{h}{2} \mathbf{f}\left(\mathbf{y}_{0}\right) \\
\mathbf{y}_{1}=\tilde{\mathbf{y}}+\frac{h}{2} \mathbf{f}\left(\mathbf{y}_{1}\right)=\mathbf{y}_{0}+\frac{h}{2} \mathbf{f}\left(\mathbf{y}_{0}\right)+\frac{h}{2} \mathbf{f}\left(\mathbf{y}_{1}\right)
\end{array}\right.
$$

This is exactly the implicit trapezoidal rule, whose Butcher scheme is

0	0	0
1	$1 / 2$	$1 / 2$
	$1 / 2$	$1 / 2$

(2e) Show that the composition of the explicit Euler method with its adjoint results in the implicit mid-point rule.
Solution: The explicit Euler scheme is

$$
\mathbf{\Psi}^{h} \mathbf{y}_{0}=\mathbf{y}_{0}+h \mathbf{f}\left(\mathbf{y}_{0}\right),
$$

whereas its adjoint is

$$
\overline{\boldsymbol{\Psi}}^{h} \mathbf{y}_{0}=\mathbf{y}_{0}+h \mathbf{f}\left(\mathbf{y}_{1}\right) .
$$

Together, the composition is

$$
\left\{\begin{array}{l}
\tilde{\mathbf{y}}=\mathbf{y}_{0}+\frac{h}{2} \mathbf{f}(\tilde{\mathbf{y}}) \\
\mathbf{y}_{1}=\tilde{\mathbf{y}}+\frac{f}{2} \mathbf{f}(\tilde{\mathbf{y}})=\mathbf{y}_{0}+h \mathbf{f}(\tilde{\mathbf{y}})
\end{array}\right.
$$

Define $\mathbf{k}:=\mathbf{f}(\tilde{\mathbf{y}})$. We have that

$$
\left\{\begin{array}{l}
\mathbf{k}=\mathbf{f}(\tilde{\mathbf{y}})=\mathbf{f}\left(\mathbf{y}_{0}+\frac{h}{2} \mathbf{k}\right), \\
\mathbf{y}_{1}=\mathbf{y}_{0}+h \mathbf{k}
\end{array}\right.
$$

which is the implicit mid-point rule, as claimed.
(2f) Show that, for the ODE

$$
\dot{q}=p, \quad \dot{p}=g(q),
$$

with locally Lipschitz function g, the composition method of the symplectic Euler method

$$
\left\{\begin{array}{l}
q_{1}=q_{0}+h p_{0} \\
p_{1}=p_{0}+h g\left(q_{1}\right)
\end{array}\right.
$$

with its adjoint is the Störmer-Verlet method.
Solution: The adjoint method is

$$
\left\{\begin{array}{l}
q_{1}=q_{0}+h p_{1} \\
p_{1}=p_{0}+h g\left(q_{0}\right) .
\end{array}\right.
$$

The composition method is

$$
\begin{cases}\tilde{q}=q_{0}+\frac{h}{2} \tilde{p} & \\ \tilde{p}=p_{0}+\frac{h}{2} g\left(q_{0}\right) & =: p_{1 / 2} \\ q_{1}=\tilde{q}+\frac{h}{2} \tilde{p} & =q_{0}+h p_{1 / 2} \\ p_{1}=\tilde{p}+\frac{h}{2} g\left(q_{1}\right) & =p_{1 / 2}+\frac{h}{2} g\left(q_{1}\right)\end{cases}
$$

which is the Störmer-Verlet method.

Problem 3 Perturbation Theory for DAEs

A DAE of the form

$$
\left\{\begin{align*}
y^{\prime} & =z \tag{3.1}\\
0 & =\left(1-y^{2}\right) z-y
\end{align*}\right.
$$

can be approximated by

$$
\left\{\begin{align*}
y^{\prime} & =z \tag{3.2}\\
\varepsilon z^{\prime} & =\left(1-y^{2}\right) z-y
\end{align*}\right.
$$

with $0<\varepsilon \ll 1$. We speak of smooth solutions to (??), if the functions y and z have a Taylor expansion ε; or in other words, that there exist functions $y_{0}, y_{1}, z_{0}, z_{1}$, such that

$$
\begin{aligned}
& y(t)=y_{0}(t)+\varepsilon y_{1}(t)+\mathcal{O}\left(\varepsilon^{2}\right) \\
& z(t)=z_{0}(t)+\varepsilon z_{1}(t)+\mathcal{O}\left(\varepsilon^{2}\right)
\end{aligned}
$$

holds for all times t.
(3a) What is the index of the DAE (??)?
Solution: It has index one for $y \neq 1$, since

$$
\mathbf{D}_{z} \mathbf{c}(y, z)=1-y^{2}
$$

(3b) Show that the functions y_{0}, y_{1}, z_{0} and z_{1} satisfy the following differential equations

$$
\left\{\begin{array} { r l }
{ y _ { 0 } ^ { \prime } } & { = z _ { 0 } , } \\
{ 0 } & { = (1 - y _ { 0 } ^ { 2 }) z _ { 0 } - y _ { 0 } , }
\end{array} \quad \left\{\begin{array}{l}
y_{1}^{\prime}=z_{1}, \\
z_{0}^{\prime}=\left(1-y_{0}^{2}\right) z_{1}-y_{1}-2 y_{0} y_{1} z_{0}
\end{array}\right.\right.
$$

Solution: By inserting the Taylor expansions in (??), we see that

$$
\left\{\begin{array}{l}
y_{0}^{\prime}+\varepsilon y_{1}^{\prime}=z_{0}+\varepsilon z_{1}+\mathcal{O}\left(\varepsilon^{2}\right) \\
\varepsilon z_{0}^{\prime}=\left(1-y_{0}^{2}-2 \varepsilon y_{0} y_{1}\right)\left(z_{0}+\varepsilon z_{1}\right)-y_{0}-y_{1} \varepsilon+\mathcal{O}\left(\varepsilon^{2}\right) \\
\quad=\left(1-y_{0}^{2}\right) z_{0}-y_{0}+\varepsilon\left(-2 y_{0} y_{1} z_{0}+z_{1}\left(1-y_{0}^{2}\right)-y_{1}\right)+\mathcal{O}\left(\varepsilon^{2}\right)
\end{array}\right.
$$

Since this holds for all ε in some interval $\left[0, \varepsilon_{0}\right]$, we arrive at the result by comparing coefficients.
(3c) The perturbed problem (??) has a smooth solution if the initial value of z is adapted to the initial value of y. Determine the initial values of z_{0} and z_{1} in with respect to y_{0} for the choice of

$$
y(0)=y_{0}(0) .
$$

Hint: The differential equations from ?? hold for all times $t \geq 0$.
Solution: The equation

$$
0=\left(1-y_{0}(t)^{2}\right) z_{0}(t)-y_{0}(t),
$$

implies

$$
z_{0}(t)=\frac{y_{0}(t)}{1-y_{0}(t)^{2}} \quad \forall t
$$

and thus

$$
z_{0}(0)=\frac{y_{0}(0)}{1-y_{0}(0)^{2}} .
$$

The derivative of $z_{0}(t)$ is

$$
z_{0}^{\prime}(t)=\ldots=z_{0}(t) \frac{1+y_{0}^{2}(t)}{\left(1-y_{0}^{2}(t)\right)^{2}}
$$

From $y(0)=y_{0}(0)$, we see that $y_{1}(0)=0$, and therefore

$$
z_{1}(0)=\ldots=y_{0}(0) \frac{1+y_{0}(0)^{2}}{\left(1-y_{0}(0)^{2}\right)^{5}}
$$

since

$$
z_{0}^{\prime}(t)=\left(1-y_{0}(t)^{2}\right) z_{1}(t)-y_{1}(t)-2 y_{0}(t) y_{1}(t) z_{0}(t) \quad \forall t .
$$

(3d) Write a MatLab-function referencesol, which calculates the solution to the DAE (??) with the MatLAB-integrator ode23t at time $t=0.5$. Set the absolute and relative tolerance to 10^{-8}.

Solution:

Listing 3.1: Solution to ??

```
function Y = referencesol
% End time
T=0.5;
% Initial value
y0 = 2;
z0 = -2/3;
% Right-hand side
f = @(t,y) [y(2); (1-y(1)^2) *y(2)-y(1)];
% Mass Matrix
M = @(t,y) [1 0 ;0 0];
% Set options
opts = odeset('Mass',M,'AbsTol',1e-8,'RelTol',1e-8);
% Integrate
[~,Y] = ode23t(f,[0 T],[y0;z0],opts);
% Read solution for end time
Y=Y (end,:).' ;
end
```

(3e) Write a MATLAB-function referencesol2, which calculates the solution of the DAE (??) at end time $t=0.5$ with 1000 steps of the semi-implicit Euler method.

Solution:

Listing 3.2: Solution to ??

```
function [y,z]=referencesol2
% End time
T=0.5;
% Step-size
h=T/1000;
% Function for finding roots
F=@(y1,z1,y0) [y1-y0-h*z1; (1-y1^2)*z1-y1];
% Its derivative
DF=@(y1,z1) [1, -h; -2*y1*z1-1, (1-y1^2)];
% Initial value
y = 2;
z = -2/3;
% The semi-implicit Euler method
for ii=1:1000
    temp = [y;z]-DF(y,z)\F(y,z,y);
    y=temp (1);
    z=temp (2);
end
end
```

(3f) Complete the template epsilonconv, in which the convergence of the solution of(??) at time $t=0.5$ with respect to ε is investigated. The DAE (??) should be solved with 1000 steps of the semi-implicit Euler method.

Solution:

Listing 3.3: Solution to ??

```
function epsilonconv
% End time
T=0.5;
% Initial value (z0 depends on epsilon!)
y0 = 2;
z0 = @(t) -2/3+10/81*t-292/2187*t^2-1814/19683*t^3;
% Different values of epsilon
```

```
epsilon = 2.^-(5:12);
% Reference solution
YREF=[1.596664988001934; -1.030545866002973];
% Number of steps
N = 1000;
% Step size
h=T/N;
% Function for finding roots
F = @(y1,z1,y0,z0,epsilon) [y1-y0-h*z1;
    z1-z0-h/epsilon*((1-y1^2)*z1-y1)];
% Its derivative
DF = @(y1,z1,epsilon) [1, -h; -h/epsilon*(-2*y1*z1-1),
    1-h/epsilon*(1-y1^2)];
% Allocate memory
err=zeros(1, length(epsilon));
% For all values of epsilon...
for ii = 1:length(epsilon)
    % ...integrate with semi-implicit Euler method...
    y=y0;
    z=z0(epsilon(ii));
    for jj = 1:N
        temp=[y;z]-DF(y,z,epsilon(ii))\F(y,z,y,z,epsilon(ii));
        y=temp (1);
        z=temp (2);
    end
    % ...and determine the error
    err(ii) = norm(YREF-temp);
end
% Suitable plot of the errors
figure;
loglog(epsilon, err,'*-' );
% Determine the convergence rate
p=polyfit(log(epsilon), log(err), 1);
fprintf('rate = %2.4f\n', p(1));
```

Listing 3.4: Testcalls for ??
1 MISSING!

Listing 3.5: Output for Testcalls for ??
1 MISSING!

Problem 4 Stability Regions of ODE-Integrators

The goal of this problem is to plot the stability regions of the MatLAB-integrators ode 45 and ode23s.
(4a) Assuming you want to plot the stability function of a single-step method, but you have only an implementation and no explicit information about the discrete evolution Ψ. Develop and explain a strategy to tackle this problem. You may assume that the first line of the implementation is

$$
\text { function } y 1=\text { discreteEvolution (y0,f,h). }
$$

The inputs $y 0, f$ and h correspond to the initial value, the right-hand side and the step-size. The output y 1 is the discrete solution after one step.
Solution: $y_{1}=S(h \lambda) y_{0}$, thus $S(z)=$ discreteEvolution(1,@(t,y) z*y,1).
(4b) Now we want to plot the stability region of ode23s. The difficulty here is, that this integrator uses adaptive step-sizes. Modify and explain your strategy from ?? accordingly. Complete the template ODEstability23s.

Solution: ode23s ist A-stable.
Listing 4.1: Solution to ??

```
function ODEstability23s
[X,Y] = meshgrid(-30:5:30);
% Create complex mesh
Z=X+1i*Y;
% Integration interval for ODE
T = [0 1];
% Evaluate stability function S on grid
L = length(X);
Z = reshape(Z,L^2,1);
opts = odeset('AbsTol',100,'RelTol',100,'stats','on');
[t,Sz] = ode23s(@(t,y) Z.*y,[0 1],ones(L^2,1),opts);
% Read the discrete solution after one step
Sz = Sz(2,:).';
Sz = reshape(Sz,L,L);
% Take into account the influence of time on X and Y
O and update these accordingly
X = t(2)*X;
Y = t(2)*Y;
```

```
% Call contourf() with level lines abs(S) = 0:0.1:1
figure;
contourf(X,Y, abs(Sz), [0:0.1:1]);
colormap (hot);
colorbar ;
xlabel('Re');
ylabel('Im');
axis square;
grid on;
```

Hint: Choose high absolute and relative tolerances (100 is a good choice). Check how many successful steps are listed in the command window and at which times the discrete evolution was calculated.
(4c) Use your strategy from ?? to plot the stability region of ode 45. Set the absolute and relative tolerance to ∞ (inf in MatLab) and observe how many successful steps are shown in the command window and at which times the discrete evolution was calculated.

Solution: ode 45 has a bounded stability region.

Listing 4.2: Solution to ??

```
function ODEstability45
[X,Y] = meshgrid (-50:1:50);
% Create complex mesh
Z=X+1i*Y;
% Integration interval for ODE
T = [0 1];
% Evaluate stability function }S\mathrm{ on grid Z
L = length (X);
Z = reshape(Z, L^2, 1);
opts = odeset('AbsTol', inf,'RelTol',inf,'stats','on');
[t,Sz] = ode45(@(t,y) Z.*y,T,ones(L^2,1),opts);
% Read the discrete solution after one step
Sz = Sz(5,:).';
Sz = reshape (Sz,L,L);
% Take into account the influence of time on X and Y
% and update these accordingly
X = t (5)*X;
```

```
Y = t(5)*Y;
% Call contourf() with level lines abs(S) = 0:0.1:1
figure;
contourf(X,Y, abs(Sz), [0:0.1:1]);
colormap (hot);
colorbar;
xlabel(' Re');
ylabel('Im');
axis square;
grid on;
```


Listing 4.3: Testcalls for ??

```
MISSING!
```


Listing 4.4: Output for Testcalls for ??

```
MISSING!
```


References

[NUMODE] Lecture Slides for the course "Numerical Methods for Ordinary Differential Equations", SVN revision \# 63606.

